Trajectory Based Traffic Control with Low Penetration of Connected and Automated Vehicles

Dr. Yiheng Feng
Dr. Henry Liu
Trajectory Based Traffic Control with Low Penetration of Connected and Automated Vehicles

by
Yiheng Feng, Assistant Research Scientist
Henry Liu, Professor
University of Michigan
DISCLAIMER

Funding for this research was provided by the Center for Connected and Automated Transportation under Grant No. 69A3551747105 of the U.S. Department of Transportation, Office of the Assistant Secretary for Research and Technology (OST-R), University Transportation Centers Program. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

Suggested APA Format Citation:

Contacts

For more information:

Dr. Henry X. Liu
University of Michigan
2350 Hayward, Ann Arbor, MI, 48109
Phone: (734) 647-4796
Email: henryliu@umich.edu

Dr. Yiheng Feng
University of Michigan
2901 Baxter Rd, Ann Arbor, MI, 48109
Phone: (734) 936-1052
Email: yhfeng@umich.edu

Center for Connected and Automated Transportation
University of Michigan Transportation Research Institute
2901 Baxter Road
Ann Arbor, MI 48152
umtri-ccat@umich.edu
ccat.umtri.umich.edu
(734) 763-2498
### Technical Report Documentation Page

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Government Accession No.</td>
<td></td>
</tr>
<tr>
<td>3. Recipient’s Catalog No.</td>
<td></td>
</tr>
<tr>
<td>4. Title and Subtitle</td>
<td>Trajectory Based Traffic Control with Low Penetration of Connected and Automated Vehicles</td>
</tr>
<tr>
<td></td>
<td>DOI: 10.7302/7021</td>
</tr>
<tr>
<td>5. Report Date</td>
<td>May 2021</td>
</tr>
<tr>
<td>6. Performing Organization Code</td>
<td></td>
</tr>
<tr>
<td>7. Author(s)</td>
<td>Feng, Yiheng, Ph.D., <a href="https://orcid.org/0000-0001-5656-3222">https://orcid.org/0000-0001-5656-3222</a></td>
</tr>
<tr>
<td></td>
<td>Liu, Henry, Ph.D., <a href="https://orcid.org/0000-0002-3685-9920">https://orcid.org/0000-0002-3685-9920</a></td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>UMTRI</td>
</tr>
<tr>
<td></td>
<td>2901 Baxter Road</td>
</tr>
<tr>
<td></td>
<td>Ann Arbor, MI  48109</td>
</tr>
<tr>
<td>10. Work Unit No.</td>
<td></td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td>Contract No. 69A3551747105</td>
</tr>
<tr>
<td>12. Sponsoring Agency Name and Address</td>
<td>Center for Connected and Automated Transportation</td>
</tr>
<tr>
<td></td>
<td>University of Michigan Transportation Research Institute</td>
</tr>
<tr>
<td></td>
<td>2901 Baxter Road</td>
</tr>
<tr>
<td></td>
<td>Ann Arbor, MI  48109</td>
</tr>
<tr>
<td>13. Type of Report and Period Covered</td>
<td>Final Report</td>
</tr>
<tr>
<td></td>
<td>February 2018 – December 2019</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td>Conducted under the U.S. DOT Office of the Assistant Secretary for Research and Technology’s (OST-R) University Transportation Centers (UTC) program.</td>
</tr>
<tr>
<td>16. Abstract</td>
<td>The state-of-the-practice real-time signal control strategies rely heavily on infrastructure-based sensors. With the advances in connected vehicle (CV) technologies, real-time vehicle trajectory data are reported to the traffic control system. The new source of data provides a much more complete picture of the traffic conditions around the intersection so that traffic controllers should be able to make “smarter” decisions. However, most of the existing connected vehicle (CV)-based traffic control models require a critical CV penetration rate of around 25%. This project aims to develop new models of vehicle trajectory based real-time traffic control under low penetration of CVs (~10%). A probabilistic delay estimation model is proposed, which only requires a few critical CV trajectories. An adaptive signal control algorithm based on dynamic programming is implemented utilizing estimated delay to calculate the performance function (i.e., total delay). The proposed model is evaluated at a real-world intersection in VISSIM with different demand levels and CV penetration rates.</td>
</tr>
<tr>
<td>17. Key Words</td>
<td>Connected vehicles, Vehicle trajectory, Traffic signal control, Penetration rate</td>
</tr>
<tr>
<td>18. Distribution Statement</td>
<td>No restrictions.</td>
</tr>
<tr>
<td>19. Security Classif. (of this report)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>20. Security Classif. (of this page)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>21. No. of Pages</td>
<td>23</td>
</tr>
<tr>
<td>22. Price</td>
<td>Form DOT F 1700.7 (8-72)</td>
</tr>
</tbody>
</table>

Reproduction of completed page authorized
# Table of Contents

List of Tables ................................................................................................................ 2  
List of Figures ............................................................................................................... 2  
Project Summary .......................................................................................................... 3  
1. Introduction .......................................................................................................... 4  
2. Methodology ......................................................................................................... 5  
   2.1 Vehicle Delay Estimation .............................................................................. 6  
   2.2 Adaptive Signal Optimization ....................................................................... 9  
3. Simulation Experiments ......................................................................................... 9  
4. Findings ............................................................................................................... 14  
5. Recommendations ............................................................................................... 15  
6. Outputs, Outcome, and Impacts .......................................................................... 15  
References ................................................................................................................. 17
List of Tables

Table 1 Total Vehicle Delay in Seconds under Medium Demand Level ............................................. 13
Table 2 Total Vehicle Delay in Seconds under Congested Demand Level............................................. 13
List of Figures

Figure 1 Illustration of CV trajectory under 10% penetration rate .............................................. 6
Figure 2 Four Scenarios Based on Critical CV Trajectory .............................................................. 8
Figure 3 Software-in-the-loop Simulation Architecture .............................................................. 10
Figure 4 Geometry and Signal Phasing at Huron Pkwy & Plymouth Rd Intersection ................... 10
Figure 5 Estimated Vehicle Delay Under 10% Penetration Rate ................................................ 12
Project Summary

This project develops a detector-free real-time adaptive signal control model in a low connected vehicle (CV) penetration environment, which only requires a few CV trajectories. Critical CVs are defined, which referred to the last stopped CV in the queue and the first non-stopped CV that passed the intersection. They provide the lower and upper boundaries of queue length, respectively. Based on critical CV information, a simple delay estimation model is developed. Then the model is integrated with an adaptive control algorithm to generate optimal signal plans with the objective of minimizing vehicle delay. Meanwhile, if no CV is observed during one signal cycle, historical traffic volume is used to generate signal timing plans. Microscopic simulation results from a real-world intersection show the proposed model works well under 10% penetration rate in all scenarios. Compared with well-tuned actuated control, the total delay reduction can reach as much as 16.3%.
1. Introduction

Driven by the rapid development of connected vehicle (CV) technologies, we are on the cusp of a new revolution in transportation safety and mobility on a scale not seen since the introduction of automobiles a century ago. To evaluate the CV technologies in real-world environments, the US Department of Transportation (USDOT) has initialized a number of deployment projects including the Safety Pilot Model Deployment (SPMD) project in Ann Arbor, Michigan [1], CV pilot deployment projects, and Smart City Challenge. Through these projects, thousands of vehicles and hundreds of intersections have/will be equipped with wireless communication technologies such as dedicated short range communication (DSRC) and 4G/5G cellular communication, which enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications to improve safety, mobility and sustainability.

Traffic signal control systems, as one of the critical components of urban transportation operations, can also benefit from the CV technology. Through V2I communications, the traffic control system receives vehicle trajectories from nearby CVs to make control decisions. Compared to traditional data from fixed location infrastructure-based sensors, CV data provide much more information and have high potentials in improving signal operations. A number CV based signal control and performance estimation models have been proposed [2–8]. However, results from existing studies have shown that minimum required penetration rates vary from different applications, but typically 20%-30% penetration rate is necessary [9]. If the critical penetration rate cannot be reached, then data from traditional sources (e.g., loop-detectors) need to be added to improve the performance [10]. Some studies intended to characterize individual vehicle behaviors through limited CV trajectories. For example, Goodall et al. [5] estimated unequipped vehicle location while Feng et al. [3] inferred both location and speed of unequipped vehicles. Sun and Ban [11] attempted to reconstruct the entire trajectory of unequipped vehicles. From traffic signal control point of view, aggregated performance measures such as volume, queue length, travel time and delay are sufficient to optimize traffic signals. Although from individual vehicles, these aggregated metrics can be easily derived, it requires more information and therefore higher penetration rates. A systematic review of adaptive signal control with CVs can be found in [12].

Despite substantial efforts in investing and developing CV technologies in the past decade, over the next ten years or longer, the CV penetration rate is expected to remain at a low level. Therefore, optimizing traffic signals with low penetration rates of CVs is essential and will make an immediate impact on the state-of-the-practice. To the best of our knowledge, there are only a few studies that focused on low penetration environments. A study from Day and Bullock [9] proposed a proof-of-concept study to optimize signal offsets with limited connected vehicle market penetration. The penetration rates used in the paper were from 0.1% to 50%. However,
instead of focusing on real-time implementation, their analysis periods were set to 3h (offline) and 15 min (online). The selected analysis period may be sufficient for offset adjustment since offset may change much over a few cycles. However, for real-time adaptive signal control, traffic conditions change significantly within 15 minutes. Moreover, the data used in this study were sampled from loop detectors, which don’t represent real CV trajectories. A recent study by Zheng and Liu [13] utilized aggregated CV trajectory data to estimate traffic volumes. The model was formulated as a maximum likelihood estimation problem and solved by the expectation maximization (EM) algorithm. The overall penetration varied from 3%-12% at different approaches and time of day, and the mean absolute percentage error (MAPE) of the estimated volume was about 10%. However, it can’t be implemented for real-time signal operations since the trajectory data need to be aggregated over days.

This project aims to propose new models for real-time traffic signal control under low penetration of CVs (i.e., ≤ 10%). It extends the previous study by combining both historical and real-time trajectory data to perform detector-free adaptive signal control. A probabilistic model is applied to estimate cycle-by-cycle vehicle arrival times and delays based on estimated average historical volume and a limited number of observed critical CV trajectories. Then a dynamic programming (DP) based adaptive signal control algorithm is applied to generate the optimal signal plan, using estimated vehicle delay as the objective function. The proposed model is tested in software-in-the-loop (SIL) simulation with various low penetration rates (10%, 5%, 2%, and 0%) and demand levels at a real-world intersection. Results are compared to well-tuned actuated signal control.

2. Methodology

Figure 1 shows the CV trajectories in one lane at a signalized intersection under 10% penetration rate with a demand level of 700 veh/h/ln, which represents a typical scenario. The figure shows that some CVs passed the intersection without stop while others stopped in the queue because of the red signal. Some of the vehicle trajectories are only partial because of lane changes. Note that during most of the cycles just one or two CVs were observed and during some cycles, there was no CV.
2.1 Vehicle Delay Estimation

The effectiveness of traffic signal control models relies on the accuracy of the traffic state estimation models. A typical performance index (i.e., objective function) for traffic signal control is total vehicle delay. The core idea of using limited trajectories to estimate delay is to utilize critical CV information. Critical CVs are defined as the last stopped CV and the first non-stopped CV. The last stopped CV provides a lower boundary of queue length while the first non-stopped CV provides an upper boundary because the queue has to be fully discharged before the arrival of the non-stopped CV. For those cycles that don’t have any CV observed, an average hourly volume is used to generate vehicle arrival and departure times for delay estimation. The hourly volume can be estimated from the aggregation of historical CV trajectory data in [13]. We assume the vehicle arrivals follow the Poisson process with a mean arrival rate \( \lambda \). The cumulative number of arrivals during time interval \( t \) is expressed as \( N(t) \sim \text{Poisson}(\lambda t) \).

Four cases are identified according to the existence of observed CVs as shown in Figure 2.

Case 1: No Observed CV

If no CV is observed during the entire cycle (Figure 2(a)), the only information that can be utilized is the average volume estimated by historical data. Given cycle length \( C \), the total number of vehicles arrive within the cycle \( n=\lambda C \), which is the mean of the Poisson distribution. Total vehicle delay \( D \) is the summation of delay from each vehicle.
(a) No CV

(b) Only Stopped CV

(c) Only Non-stopped CV
Figure 2 Four Scenarios Based on Critical CV Trajectory

**Case 2: Only Stopped CV**

If only stopped CVs are observed during a cycle, then the cycle time is divided into two intervals (Figure 2(b)). The first interval is the time period from the entry time of the first stopped vehicle to the entry time of the stopped CV \((t_1)\), and the second interval is the time period after the entry time of the stopped CV until the last vehicle that passes during the green time \((t_2)\), with \(t_1 + t_2 = C\). All vehicles that enter during \(t_1\) are stopped vehicles since the stopped CV provides a lower boundary of the queue. The number of vehicles that enter during \(t_2\) is estimated based on the average arrival rate because no more CV information is available.

**Case 3: Only Non-stopped CV**

If only non-stopped CVs are observed during the cycle, then the cycle time is also divided into two intervals (Figure 2 (c)). The first interval is the time period from the entry time of the first stopped vehicle to the entry time of the non-stopped CV \((t_1)\), and the second interval is the time period after the entry time of the non-stopped CV until the last vehicle that passes during the green time \((t_2)\), with \(t_1 + t_2 = C\). The non-stopped CV provides an upper boundary of the queue. Unlike stopped CV, it only gives the maximum possible number of vehicles entered during \(t_1\), because the queue can be cleared before the arrival of the non-stopped CV. The total estimated delay of vehicles entered during \(t_1\) is the summation of total delays of all possible numbers of entered vehicles multiplied by the corresponding probability. The number of vehicles that enter during \(t_2\) is estimated based on the average arrival rate as in Case 2. Note that since the queue is already fully discharged before the non-stopped CV, vehicles that enter after the CV don’t cause any delay.

**Case 4: Both Stopped and Non-stopped CV**

In this case, both the lower boundary and the upper boundary of the vehicle queue are provided by the stopped CV and non-stopped CV respectively (Figure 2 (d)). Therefore, the cycle time is
divided into three intervals. The first interval is the time period from the entry time of the first stopped vehicle to the entry time of the non-stopped CV \((t_1)\). The second interval is the time period from the entry time of the stopped CV to the entry time of the non-stopped CV \((t_2)\), and the third interval is after the entry time of the non-stopped CV until the last vehicle that passes during the green period \((t_3)\), with \(t_1 + t_2 + t_3 = C\). It is easy to see that delay estimation of the three intervals is included in the previous three cases. To avoid redundancy, the detailed calculation is skipped. If multiple stopped and non-stopped CVs are observed within one cycle, only the last stopped CV and the first non-stopped CV are utilized because they represent the critical information.

For the detailed formulation of the delay estimation method, please refer to [14].

### 2.2 Adaptive Signal Optimization

The adaptive control algorithm is adapted from previous research by Feng et al. [3]. The algorithm generates optimal signal phase sequence and duration using a two-level optimization model. The model is based on dynamic programming (DP) and can apply different objective functions including total delay minimization and total queue length minimization. In this study, only total delay minimization is chosen as the objective.

The algorithm uses an arrival table as the input to the optimization model. The arrival table is a two-dimensional matrix with time and phase respectively. The value of each cell is the number of vehicles that will arrive at the stop bar at time point \(t\) requesting phase \(p\). It is generated based on CV trajectory data at the time of executing the signal optimization. The original model adds all queuing vehicles to the first line of the arrival table, which doesn’t consider the accumulative delay. Delay of all vehicles is calculated from the time point when the signal optimization is conducted. In the proposed delay estimated model, entry times of each individual vehicle are generated so that the arrival time of each vehicle at the stop-bar can be calculated. As a result, the accumulative delay of each queuing vehicle can be obtained. A new arrival table is constructed to incorporate the delay from vehicles that already stopped before the planning time.

### 3. Simulation Experiments

To test the proposed models, a SIL simulation framework is designed and implemented with VISSIM microscopic simulation software. The SIL simulation architecture is shown in Figure 3. CVs in VISSIM simulation network generate Basic Safety Messages (BSMs) at a frequency of 10Hz and broadcast to the Data Processor application. This application also requests Signal Phasing and Timing (SPaT) data from the Econolite ASC/3 virtual controller. Processed CV trajectory and
signal information are then sent to the Delay Estimation Model. This module generates the arrival table and sends it to the Adaptive Control Algorithm, which is responsible for producing an optimal signal timing plan with the objective to minimize total vehicle delay. The optimal signal plan will be converted into a series of control commands by the Signal Controller Interface application and control virtual signal controllers in VISSIM.

A real-world intersection at Huron Pkwy and Plymouth Rd in Ann Arbor, Michigan is modeled in VISSIM 9. The intersection geometry and signal phasing are shown in Figure 4.
To evaluate the proposed delay estimation model, the VISSIM model is run for one hour, and all vehicle trajectories are recorded and served as the ground truth. The traffic signals are under actuated control so that the cycle lengths and phase splits change over time. FIGURE 5 shows the comparison of the estimated total vehicle delay and the actual vehicle delay of Phase 6 by lane with 10% penetration rate. There are total 31 full cycles operated within one hour. To further quantify the accuracy, we calculate the Mean Absolute Percentage Error (MAPE).
Under 10% penetration rate, the MAPEs for Lane 1 and Lane 2 are 18.99% and 14.56% respectively. If two lanes are combined together, the MAPE for Phase 6 is 14.30%. We also tested the model under 0% penetration rate, under which only hourly volume is used to generate vehicle arrivals (i.e., always in Case 1 because of no observed CV). The MAPE for Lane 1 and Lane 2 are 32.60% and 28.65% respectively. If two lanes are combined together, the MAPE for Phase 6 is 30.49%. The result indicates that if the hourly volume is used as the only input for the delay estimation model, the estimated delays in each cycle significantly differ from the actual delays. From Figure 5(c), it can be seen that the vehicle delay of each cycle varied from less than 500 veh·s to over 2000 veh·s. Estimation using only 10% CV’s data can reduce the MAPE significantly, from more than 30% to less than 15% percent. It suggests that just a few critical CV trajectories are needed to improve the vehicle delay estimation to a relatively accurate level.

Since the delay estimation algorithm generates individual vehicle arrival times, an arrival table can be easily constructed and served as the input to the adaptive control algorithm. Two scenarios with two different demand levels and four penetration rates are evaluated. Scenario 1

Scenario 2 assumes the estimated hourly volume of each phase has 10% error, which is more realistic based on field data [13]. In scenario 2, we add 10% of demand on phase one to four and deduct 10% of demand on phase five to eight. The objective of such adjustment is to maximize the disturbance on the signal timing. Two demand levels are considered as medium (critical v/c ratio 0.82) and congested (critical v/c ratio 0.93) traffic conditions. Four penetration rates under evaluation are: 10%, 5%, 2% and 0%. Under 0% penetration rate, the adaptive control basically becomes a fixed time signal plan, which is generated by the hourly volume (always Case 1 in delay estimation algorithm).
A total duration of 3900s is executed in VISSIM simulation for each scenario, each demand level, and each penetration rate, with 300s of warm-up period and 3600s of data collection time. To capture the stochastic pattern, each simulation run is repeated with 5 random seeds. The results are compared to a well-tuned fully actuated control, in which the minimum green time, maximum green time, yellow interval, and all-red clearance interval are set to be the same as in the adaptive control algorithm. The unit extension time of the actuated control is set to 1.6s, which is obtained by the recommendations from Signal Timing Manual [15]. TABLE 2 and TABLE 3 show the delay comparison under two demand levels.

Table 1 Total Vehicle Delay in Seconds under Medium Demand Level

<table>
<thead>
<tr>
<th>Random Seed</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Average (SD)</th>
<th>Delay Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1: Accurate hourly volume estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% PR</td>
<td>143336</td>
<td>152534</td>
<td>135818</td>
<td>151338</td>
<td>137554</td>
<td>144311 (7674)</td>
<td>5.23%</td>
</tr>
<tr>
<td>5% PR</td>
<td>148165</td>
<td>157135</td>
<td>141530</td>
<td>158741</td>
<td>149372</td>
<td>150988 (7034)</td>
<td>0.84%</td>
</tr>
<tr>
<td>2% PR</td>
<td>168963</td>
<td>190877</td>
<td>152779</td>
<td>178334</td>
<td>168224</td>
<td>171835 (14046)</td>
<td>-12.84%</td>
</tr>
<tr>
<td>Actuated</td>
<td>145736</td>
<td>162606</td>
<td>150933</td>
<td>158352</td>
<td>143770</td>
<td>152279 (8070)</td>
<td>N/A</td>
</tr>
<tr>
<td>SD = Standard Deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Total Vehicle Delay in Seconds under Congested Demand Level

<table>
<thead>
<tr>
<th>Random Seed</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Average (SD)</th>
<th>Delay Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1: Accurate hourly volume estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% PR</td>
<td>144404</td>
<td>155736</td>
<td>143002</td>
<td>155517</td>
<td>149726</td>
<td>149677 (5983)</td>
<td>1.71%</td>
</tr>
<tr>
<td>5% PR</td>
<td>157791</td>
<td>168744</td>
<td>146392</td>
<td>159259</td>
<td>151568</td>
<td>156750 (8447)</td>
<td>-2.94%</td>
</tr>
<tr>
<td>2% PR</td>
<td>164093</td>
<td>182495</td>
<td>145614</td>
<td>170820</td>
<td>164004</td>
<td>165405 (13386)</td>
<td>-8.62%</td>
</tr>
<tr>
<td>Actuated</td>
<td>145736</td>
<td>162606</td>
<td>150933</td>
<td>158352</td>
<td>143770</td>
<td>152279 (8070)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
4. Findings

The following findings are made by analyzing the results:

- When the penetration rate is 10%, the proposed model outperforms well-tuned actuated control in all cases. The total vehicle delay is decreased by 16.33% under congested demand level with accurate volume estimation. Under the medium demand level with a 10% volume estimation error, the vehicle delay is still reduced by 7.1%. As the penetration rate decreases, the total delay tends to increase.

- The hourly volume estimated from historical data has a significant impact on the performance. Under the same demand level and same penetration rate, the results with 10% volume estimation error are all worse than no error in volume estimation. When the algorithms are executed under low penetration rates, it is common that no connected vehicle is observed within the entire cycle. Then the hourly volume serves as the only data for determining the phase duration.
• Besides penetration rate, the absolute number of observed CV is also crucial to the performance of the algorithm. This explains why the algorithm performs better under congested demand level than medium demand level with the same penetration rate. Under congested demand level with accurate volume estimation, even 2% penetration has a delay reduction of 8.35%. However, under the medium demand level with accurate volume estimation, model performance with a 5% penetration rate is almost the same as actuated control.

• Vehicle delays with 10% and 5% penetration rates under the congested demand level are similar, in both scenarios. This indicates that a few critical vehicle trajectories are enough to make an accurate estimation of vehicle delay. Higher penetration rates only receive marginal benefits.

• When the algorithm is executed under the 0% penetration rate, the adaptive control becomes a fixed time control. Because no CV trajectory is available, the control decision is made only based on estimated hourly volume, which is a set value. The results under such conditions are significantly worse than other cases, which supports a well-accepted argument that fixed time control can’t accommodate short time demand fluctuation, even if the average volume is accurate. Moreover, under congested demand level, the intersection under fixed time control may enter oversaturated conditions due to demand fluctuation, and the delay increases significantly. On the other hand, actuated and adaptive control can handle the demand fluctuation better and prevent the intersection enter the oversaturated condition.

5. Recommendations

One direction for further research is to extend the current model to a corridor level, where the vehicle arrivals may not be Poisson distributed, and signal coordination needs to be considered. One of the difficulties lay in the determination of platoon size and speed on coordinated phases to dynamically update offset and split. In addition, the current model relies on the estimated average volume from historical data as the first step. It is very interesting to develop an integrated platform that combines the volume estimation algorithm as in [13] and the real-time adaptive signal control together so that the estimated volumes can be updated dynamically when new CV trajectories become available.

6. Outputs, Outcome, and Impacts

The proposed model has two significant advantages and real-world implementation impacts.
First, it doesn’t require any data from infrastructure-based sensors, which usually have considerable high installation and maintenance costs. Second, it only needs at most 10% CV penetration rate, so that it can be implemented at an early stage of CV deployment. For example, the Ann Arbor Connected Vehicle Test Environment (AACVTE) project is targeting to equip up to 3,000 vehicles in the next few years, which accounts for about 3% of total vehicles in the Ann Arbor metro area. The proposed model has great potential to be implemented at real-world intersections in the near future.

The following outputs were generated during the performance of this project:

- Conference Presentation: 2018 TRB Annual Meeting

https://journals.sagepub.com/doi/full/10.1177/0361198118790860
References


