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There is growing interest in developing causal inference methods for
multi-valued treatments with a focus on pairwise average treatment effects. Here
we focus on a clinically important, yet less-studied estimand: causal drug-drug
interactions (DDIs), which quantifies the degree to which the causal effect of
drug A is altered by the presence versus the absence of drug B. Confound-
ing adjustment when studying the effects of DDIs can be accomplished via
inverse probability of treatment weighting (IPTW), a standard approach orig-
inally developed for binary treatments and later generalized to multi-valued
treatments. However, this approach generally results in biased results when the
propensity score model is misspecified. Motivated by the need for more robust
techniques, we propose two empirical likelihood-based weighting approaches
that allow for specifying a set of propensity score models, with the second
method balancing user-specified covariates directly, by incorporating additional,
nonparametric constraints. The resulting estimators from both methods are con-
sistent when the postulated set of propensity score models contains a correct
one; this property has been termed multiple robustness. In this paper, we derive
two multiply-robust estimators of the causal DDI, and develop inference pro-
cedures. We then evaluate their finite sample performance through simulation.
The results demonstrate that the proposed estimators outperform the standard
IPTW method in terms of both robustness and efficiency. Finally, we apply the
proposed methods to evaluate the impact of renin-angiotensin system inhibitors
(RAS-I) on the comparative nephrotoxicity of nonsteroidal anti-inflammatory
drugs (NSAID) and opioids, using data derived from electronic medical records
from a large multi-hospital health system.
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1 INTRODUCTION

Causal inference methods are increasingly used to assess effects of treatments on health outcomes in both randomized
clinical trials and observational studies.1,2 Although a substantial amount of research has focused on methodology for
examining the comparative safety and effectiveness of one or more treatments of interest, considerably less attention
has been given to causal inference of interactions, where the target of inference is an interaction contrast such as a
difference-in-difference or a ratio-of-ratios.3 Control of confounding in the context of an interaction can be more complex
relative to standard treatment comparisons because there are two sets of confounders to consider, one for each exposure
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participating in the interaction.2-4 An area where interaction causal inference is particularly important is the study of
drug-drug interactions (DDIs),5,6 which account for an estimated 13% of adverse drug events in community-dwelling
older adults.7 DDI occurs when the pharmacologic effect of a drug is altered by the coadministration of a second drug,
through either a pharmacokinetic (the body’s impact on the drug) and/or pharmacodynamic (the drug’s impact on the
body) mechanism; the affected drug is called the object (or victim) and the affecting drug is called the precipitant (or per-
petrator). Causal inference methods for DDIs are useful for answering the following key question:5 To what degree does
the DDI increase the absolute or relative risk of an adverse drug event?

In principle, causal inference methods developed for multi-valued treatments can be applied to estimate the effects of
DDIs, by noticing that a two-drug DDI fits into a 4-level treatment setting, when considering all four combinations of two
drugs: (i) object + precipitant, (ii) object + control of precipitant, (iii) control of object + precipitant, and (iv) control of
object + control of precipitant. In well-implemented randomized controlled trials with a 2 × 2 factorial design, a causal
DDI can be nonparametrically estimated. Specifically, the investigator first estimates the mean of potential outcomes for
each of the four treatment arms by the average of outcome data. A causal DDI interaction contrast, either a difference
of differences or a ratio of ratios, is a function of the four averages and hence can be directly calculated from them.
Such trials are, however, rarely if ever conducted. More commonly, observational studies are employed to examine DDI
effects. In this context, a widely used approach to confounding adjustment is through inverse probability of treatment
weighting (IPTW),1,2,8-11 originally developed for binary treatments and later extended to multi-valued treatments.12,13

For each individual, the investigator first estimates the weight by the reciprocal of the estimated probability of receiving
the treatment level that this individual actually received, that is, the estimated propensity score. Then, the investigator
estimates the causal DDI using the four weighted averages of outcome data corresponding to four treatment levels, that
is, treating the weighted sample data as if they were collected from a 2 × 2 factorial trial.

One advantage of the IPTW approach is that the possibly complex outcome model is left completely unspecified.
Instead, only a propensity score model needs to be specified. In many applications, it is more feasible to model the prob-
ability of receiving treatment than to model the outcome process, for example, in pharmacoepidemiologic studies with
common treatments and rare adverse events. There is growing interest in developing methods for propensity score estima-
tion with multi-valued treatments.14-18 We take a different weighting approach based on empirical likelihood19-22 to make
use of a set of propensity score model simultaneously, with an option to directly balance distributions of user-specified
covariates. Our work was motivated by the need to increase the chance of correctly modeling the true treatment decision
process, which is generally unknown in observational studies. It has long been recognized that model selection is one of
the most challenging steps of applied causal inference. While failing to include important confounders can result in bias,
adding additional variables into an existing model can paradoxically increase bias.23,24 For example, including a variable
that is a collider, an intermediate variable, or an instrumental variable in the presence of unmeasured confounding can
increase rather than decrease bias. Bias can also be increased if the added variable is incorrectly specified (eg, assuming
linearity for a nonlinear function). Variable selection of the propensity score model can also contribute to decreased effi-
ciency, as in the case of including a variable that is strongly related to the exposure but, unrelated to or only weakly related
to, the outcome.25 Even with the help of useful guidelines,25-28 it is often difficult to develop a final, correct propensity
score model. Multiply robust estimation22,29-33 makes it possible not to rely on a single hopefully correct propensity score
model, in the sense that its validity requires only one model among all candidate models be correctly specified. Moreover,
there is no need to identify the correct model.

In this paper, we propose two multiply robust estimators of the causal DDI. Both estimators allow for specifying a
set of propensity score models, by setting up a set of constraints on these models when maximizing the empirical likeli-
hood. The first method extends empirical likelihood weights in Shu et al33 to accommodate multi-valued treatments. As
a major difference from the first method and the original empirical likelihood-based multiply robust method,22,29,30 the
second proposed method imposes additional constraints to directly balance the distributions for user-specified covariates
of interest. For each method, the resulting estimator of the causal DDI achieves statistical consistency when the postu-
lated model set contains a correct one, thereby providing increased protection against model misspecification. To our
knowledge, this work is the first to develop and evaluate multiply robust methods focusing on estimation of causal DDIs.

The remainder of this paper is organized as follows. In Section 2, we introduce the notations and estimand. In
Section 3, we first describe the standard IPTW method for causal inference of DDIs that uses a single propensity score
model, then propose two multiply robust approaches making use of a set of propensity score models. In Sections 4
and 5, we conduct simulations to assess the finite sample performance of the proposed methods compared with the
IPTW method, with and without including a correctly specified propensity score model in the set of postulated mod-
els, respectively. In Section 6, we apply the proposed methods to estimate the causal interaction between nonsteroidal
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anti-inflammatory drugs (NSAID) and renin-angiotensin system inhibitors (RAS-I) with regard to acute kidney injury
(AKI) outcomes in hospitalized patients. Specifically, we contrast the difference in AKI risk between NSAID ver-
sus oxycodone in patients treated with RAS-I and the difference in AKI risk between NSAID versus oxycodone in
patients treated with amlodipine (an active comparator for RAS-I treatment). We conclude the paper with a discussion
in Section 7.

2 DATA STRUCTURE AND ESTIMAND

We begin by introducing the notation. In our two-drug DDI context, let A be the observed treatment indicator for the
affected drug (also called object or victim) such that A = 1 if treated and A = 0 if untreated; let B be the observed treatment
indicator for the affecting drug (also called the precipitant or perpetrator) such that B = 1 if treated and B = 0 if untreated.
Let X be a vector of measured baseline covariates and Y the observed outcome.

Following the potential outcome framework in causal inference,34,35 let Yab represent the potential outcome for an
individual that would have been observed had we set the treatment levels to a and b for a = 1 (treated with the object) or 0
(untreated with the object) and b = 1 (treated with the precipitant) or 0 (untreated with the precipitant). Each individual
has four potential outcomes, Y11, Y10, Y01 and Y00, but only the one under the actually observed treatment status can be
observed. That is, Y = Yab when A = a and B = b; this is the consistency assumption in causal inference.2

Suppose we have an independent and identically distributed (i.i.d.) sample of size n. The observed data are
(Yi,Xi,Ai,Bi) for the i th individual, where i = 1, … ,n. We aim to use the observed data to estimate the causal effect of
DDI, 𝜃, defined in the following general form:

𝜃 = [f {E(Y11)} − f {E(Y01)}] − [f {E(Y10)} − f {E(Y00)}], (1)

where f (⋅) is a known monotone link function.
When f (⋅) is an identity link function, (1) reduces to a measure of interaction on the additive scale. That is, 𝜃 =

{E(Y11) − E(Y01)} − {E(Y10) − E(Y00)}, where E(Y11) − E(Y01) represents the average causal effect of the object had the
entire population been treated with the precipitant, and E(Y10) − E(Y00) represents the average causal effect of the object
had the entire population been untreated with the precipitant. A non-zero 𝜃 suggests that the presence of the precipi-
tant alters the magnitude of the effect of the object. In other words, the DDI does exist. Equivalently, 𝜃 can be written as
{E(Y11) − E(Y10)} − {E(Y01) − E(Y00)}, representing the difference between the average causal effect of precipitant had
the entire population been treated with the object and the average causal effect of precipitant had the entire population
been untreated with the object. With binary Y , 𝜃 can be interpreted as the causal risk difference comparing object and
its control in the presence of the precipitant, minus the causal risk difference comparing object and its control in the
absence of the precipitant. As noted by VanderWeele,3 the interaction is sometimes said to be positive (or super-additive)
if 𝜃 > 0 and negative (or sub-additive) if 𝜃 < 0. If 𝜃 = 0, then there is no interaction on the additive scale for risk
differences.

When f (⋅) is a log link function and the outcome is binary, (1) reduces to a measure of interaction on the multiplicative
scale for risk ratios.3 In this case, exp(𝜃) represents the ratio of two causal risk ratios, one risk ratio comparing the object
and its control in the presence of the precipitant and the other risk ratio comparing the object and its control in the
absence of the precipitant. Similar to the DDI on the additive scale, this multiplicative interaction does not change when
exchanging the order of two drugs. It is said to be positive if exp(𝜃) > 1 and negative if exp(𝜃) < 1. If exp(𝜃) = 1, that is,
𝜃 = 0, then there is no interaction on the multiplicative scale for risk ratios.

3 CAUSAL INFERENCE OF DRUG-DRUG INTERACTIONS USING THE
PROPENSITY SCORE

To consistently estimate the causal DDI measure 𝜃 in (1), it suffices to consistently estimate E(Yab) for each of the four
treatment combinations: (i) a = 1, b = 1, (ii) a = 0, b = 1, (iii) a = 1, b = 0, and (iv) a = 0, b = 0. In randomized controlled
trials with a 2 × 2 factorial design, E(Yab) can be nonparametrically estimated by the average outcome across individuals
exposed to treatment level A = a and B = b. In observational studies, this can be accomplished using adjusted averages
that account for measured confounding. Here, we focus on confounding adjustment via weighting.
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Specifically, we consider a general form of causal DDI estimator:

̂
𝜃 = [f {̂E(Y11)} − f {̂E(Y01)}] − [f {̂E(Y10)} − f {̂E(Y00)}], (2)

where ̂E(Yab) is the weighting-based estimator of E(Yab) given by

̂E(Yab) =
∑

i∶Ai=a,Bi=b
ŵiYi (3)

for a, b = 1, 0.
To calculate ŵi in (3), we describe three propensity score-based weighting methods in next sections: the IPTW

approach, the empirical likelihood approach, and a modified empirical likelihood approach with covariate balancing.

3.1 The IPTW approach using a single propensity score model

We apply IPTW for multi-valued treatments, originally developed by Imbens12 as an extension of the propensity score
methodology for binary treatments, to calculate the weights for estimating the causal DDI. The reason for taking this
approach is that a two-drug DDI can be understood as a multi-valued treatment setting, with a composite treatment
(combining the object and precipitant) having four levels: (a, b) = (1, 1), (0, 1), (1, 0) and (0, 0).

Just like in IPTW estimation with binary treatments, causal inference assumptions (including consistency, exchange-
ability, and positivity2) are required for valid IPTW estimation with multi-valued treatments.12,15 The consistency
assumption means the observed outcome equals the potential outcome under the actually observed treatment. The
exchangeability assumption, termed weak unconfoundedness by Imbens, is satisfied if T(a, b) ⟂⟂ Yab|X, where Ti(a, b) =
I(Ai = a,Bi = b). That is, adjusting for X is sufficient to eliminate confounding bias; thus exchangeability is often also
called an assumption of no unmeasured confounding. Here, the role of two exposures are symmetric in an interaction,
and both exposures (or the composite exposure) are required to be unconfounded. These features distinguish interaction
from the concept of effect modification.2,4 The positivity assumption states that each individual has a positive probability
of receiving each treatment. Formally, 0 < P(A = a,B = b|X) < 1 for all X and for a, b = 1 or 0.

Provided that these standard causal inference assumptions are satisfied, propensity score weighting effectively
eliminates confounding bias because the weighted data in theory emulate data that would have been collected from a
2 × 2 factorial trial.

Since the true treatment decision process is often unknown in observational studies, the propensity score eab(X) =
P(A = a,B = b|X) needs to be estimated from the data. A modeling strategy is to fit a parametric propensity score model
for eab(X) that relates the treatment variable to baseline covariates X. Let ̂P(Ai = a,Bi = b|Xi) denote the resulting estimate
of the propensity score P(Ai = a,Bi = b|Xi) for the i th individual. Then the IPTW weights are given by

ŵIPTW,i =
1

̂P(Ai = a,Bi = b|Xi)

/ ∑

i∶Ai=a,Bi=b

1
̂P(Ai = a,Bi = b|Xi)

for i with Ai = a,Bi = b. (4)

Substituting (4) into (3) gives a commonly-used ratio estimator in the IPTW estimation literature:10

̂E(Yab) =

{
∑

i∶Ai=a,Bi=b

Yi

̂P(Ai = a,Bi = b|Xi)

}/{
∑

i∶Ai=a,Bi=b

1
̂P(Ai = a,Bi = b|Xi)

}
.

This estimator can be regarded as a Hájek-type estimator in the sampling literature.36 It was found to have higher
efficiency for estimating the average causal treatment effect than the Horvitz-Thompson-type counterpart.10

In practice, one single propensity score model is specified and fitted to the data, and multinomial logistic regression
has been commonly employed with standard software packages such as the R function multinom. This model describes
eab(X) using three vectors of parameters 𝜸11, 𝜸01 and 𝜸10:

P(Ai = a,Bi = b|Xi) =
exp

(
𝜸

T
abXi

)

1 + exp
(
𝜸

T
11Xi

)
+ exp

(
𝜸

T
01Xi

)
+ exp

(
𝜸

T
10Xi

) for (a, b) = (1, 1), (0, 1) or (1, 0)
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and

P(Ai = a,Bi = b|Xi) =
1

1 + exp
(
𝜸

T
11Xi

)
+ exp

(
𝜸

T
01Xi

)
+ exp

(
𝜸

T
10Xi

) for (a, b) = (0, 0),

where treatment (0, 0) is considered the reference level; such choice of reference level is arbitrary. Write
𝜸 =

(
𝜸

T
11, 𝜸

T
01, 𝜸

T
10
)T. Fitting the model gives an estimate of 𝜸 and hence estimates of eab(X) for a, b = 1 or 0.

It is also possible to estimate P(Ai = a,Bi = b|Xi) by multiplying estimates for probabilities P(Ai = a|Xi) and P(Bi =
b|Ai = a,Xi). This can be accomplished by fitting two binary logistic models, one relating A to X and the other relating B
to A and X.

Substituting ŵi = ŵIPTW,i into (3) and then applying (2) gives the causal DDI estimator based on IPTW, denoted
as ̂𝜃IPTW. The consistency of estimator ̂𝜃IPTW requires a correctly specified propensity score model. Misspecifying the
propensity score model generally leads to biased results.

3.2 The empirical likelihood approach using multiple propensity score models

Placing the development in biased sampling context (eg, the likelihood function contributed by treated individuals is
only a biased version of the likelihood function that would have been obtained had all individuals been treated), empiri-
cal likelihood theory19,20 provides a different confounding adjustment approach from IPTW.37 To correct biased samples,
Qin and Zhang38 added two constrains to the biased likelihood to be maximized, with one constraint on the propen-
sity score and the other on a function of covariates. Han and Wang22 and Han29,30,39 developed an extended approach
to incorporating a set of constraints on the propensity score model as well as a set of constraints on the outcome
model.

With binary treatments, Shu et al33 adapted this methodology by using propensity score constraints only. They did
not use any outcome model constraint in order to get around the noncollapsibility issue for conditional and marginal
Cox models. One practical advantage of their approach is, the resulting weights are generally applicable to other outcome
types. Here, we first generalize this strategy to multi-valued treatment case and then use the resulting weights to estimate
the causal DDI. Our method allows the investigator to postulate a set of propensity score models simultaneously. The
resulting DDI estimator is statistically consistent when this model set contains a correct one. We describe the estimation
procedures below.

3.2.1 Postulating a set of propensity score models

Instead of using just one parametric model for the propensity score eab(X) = P(A = a,B = b|X), we postulate a set of J
models to increase the chance of modeling eab(X) correctly, where J is a user-specified, arbitrary positive integer. Let
 =

{
ej

ab(𝜸
j;X

)
∶ j = 1, … , J

}
denote this set of J postulated propensity score models, where 𝜸j is the vector of parameters

for the j th model.
For j = 1, … , J, fitting the j th propensity score model gives an estimator of 𝜸j, denoted as �̂�

j. We define
�̂� =

(
�̂�

1T
, … , �̂�

JT)T. For a, b = 1 or 0, we define 𝜇j
ab = n−1∑n

i=1ej
ab(�̂�

j;Xi) for j = 1, … , J and

ĝab(�̂�; i) =
(

e1
ab
(
�̂�

1;Xi
)
− 𝜇1

ab, … , eJ
ab

(
�̂�

J ;Xi
)
− 𝜇J

ab

)T (5)

for i = 1, … ,n. Note that the superscript j is needed for 𝜇j
ab because n−1∑n

i=1ej
ab

(
�̂�

j;Xi
)

depends on the j th model and
may not be the marginal probability P(A = a,B = b). Consider an example with binary treatments. Suppose the true
propensity score model is a standard logistic model with intercept whereas the j th postulated model is a logistic model
without intercept. In this case, 𝜇j

ab can be different from the marginal treatment prevalence; interestingly, any logistic
model with intercept, even if misspecified, would ensure that 𝜇j

ab equals the treatment prevalence through solving the
estimating equation for the intercept parameter.
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3.2.2 Empirical likelihood weights

For individuals whose observed treatment level is (a, b), consider a constrained optimization problem with respect to
weights {wi} jointly:

max
∏

i∶Ai=a,Bi=b
wi

subject to constraints

wi ≥ 0,
∑

i∶Ai=a,Bi=b
wi = 1, and

∑

i∶Ai=a,Bi=b
wiĝab(�̂�; i) = 0. (6)

Here {wi} represents the discrete distribution of (Yi,Xi) conditional on Ai = a,Bi = b.22 Solving this optimization problem
amounts to finding the most plausible values of {wi} such that the resulting empirical likelihood (ie, product of discrete
probabilities) is maximized.

The third constraint in (6) is a weighted summation using data contributed by individuals with observed treatment
level (a, b) only. By definition,

∑n
i=1ĝab(�̂�; i) = 0, indicating that the unweighted summation using the entire sample also

equals zero. Thus, the constraint
∑

i∶Ai=a,Bi=b wiĝab(�̂�; i) = 0 produces weights to re-balance the group of treatment level
(a, b), an originally biased sample of the entire sample. The constraint

∑
i∶Ai=a,Bi=b wiĝab(�̂�; i) = 0 can also be understood

as an empirical data version of equation

E

[
ej

ab

(
𝜸

j;X
)
− E

{
ej

ab

(
𝜸

j;X
)}

P(A = a,B = b|X)
|||A = a,B = b

]
= 0,

whose justification is the same as that for Equation (5) of Han and Wang.22 For binary treatments, constraints (6) reduce
to that considered by Shu et al,33 as a modification to the original constraints in Han and Wang22 and Han,29,30,39 by not
using constraints on conditional outcome models.

Solving the above constrained optimization gives the empirical likelihood weights for individuals {i ∶ Ai = a,Bi = b}:

ŵEL,i =

{
1

1 + �̂�T
abĝab(�̂�; i)

}/ ∑

i∶Ai=a,Bi=b

{
1

1 + �̂�T
abĝab(�̂�; i)

}
for i with Ai = a,Bi = b (7)

where for a, b = 1 or 0, �̂�ab is a J × 1 vector that satisfies

∑

i∶Ai=a,Bi=b

ĝab(�̂�; i)
1 + �̂�T

abĝab(�̂�; i)
= 0

and can be obtained via the convex minimization method of Han.29

3.2.3 Proposed weighted estimation method

We propose to estimate the causal DDI by substituting the empirical likelihood weights ŵi = ŵEL,i into (3) and then
applying (2). Denote the resulting estimator as ̂𝜃EL. Applying existing proofs22,33 to each treatment level (a, b) reveals
multiple robustness of ̂𝜃EL. That is, ̂𝜃EL consistently estimates the causal DDI 𝜃 in (1), if the postulated set of propen-
sity score models  =

{
ej

ab

(
𝜸

j;X
)
∶ j = 1, … , J

}
contains a correctly specified one. Specifically, the proposed weights are

asymptotically equivalent to the IPTW weights obtained by fitting a correctly specified propensity score model. There-
fore, weights ŵEL,i are expected to eliminate confounding bias and lead to a consistent estimator of 𝜃 if the postulated set
of propensity score models contains the true model, just like the IPTW weights from a correct propensity score model.
The empirical likelihood approach can be understood as a way to automatically select a correct model from postulated
models.
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3.3 Modified empirical likelihood weights with covariate balancing

In practice, it is sometimes desirable to assure satisfactory covariate balance of certain user-specified, important covari-
ates. However, using a good propensity score model (or even the true model) does not always produce optimal balances
given that chance imbalances may still occur in finite samples. While our empirical likelihood weighting approach in
Section 3.2 reduces model dependence by increasing the number of postulated models (and hence the chance of correctly
estimating propensity scores), it does not directly, nonparametrically enforce the covariate balance.

In this section, we propose a modified empirical likelihood weighting approach, in order to achieve covariate balance
for a set of user-specified covariates in finite samples. Let Xs1 , … ,XsP denote this set of P covariates. For example, if we
aim to balance the distributions of age and chronic kidney disease, then P = 2. To incorporate this need into estimating
procedures described in Section 3.2, we now define a vector:

(
Xs1i − Xs1 , … ,XsPi − XsP

)T, where Xsli denotes covariate Xsl

for the i th individual, and Xsl =
1
n
∑n

i=1Xsli denotes the unweighted mean of the covariate Xsl for the pooled sample across
all four treatment combinations, for l = 1, … ,P.

We add this vector into (5) and obtain an augmented version of function gab(⋅):

ĝ+ab(�̂�; i) =
(

e1
ab
(
�̂�

1;Xi
)
− 𝜇1

ab, … , eJ
ab

(
�̂�

J ;Xi
)
− 𝜇J

ab,Xs1i − Xs1 , … ,XsPi − XsP

)T
. (8)

For individuals {i ∶ Ai = a,Bi = b}, consider empirical likelihood weights defined through the following constrained
optimization problem with respect to weights {wi} jointly:

max
∏

i∶Ai=a,Bi=b
wi

subject to constraints

wi ≥ 0,
∑

i∶Ai=a,Bi=b
wi = 1, and

∑

i∶Ai=a,Bi=b
wiĝ+ab(�̂�; i) = 0. (9)

The resulting empirical likelihood weights are

ŵmELCB,i =

{
1

1 + �̂�T
abĝ+ab

(
�̂�; i

)

}/ ∑

i∶Ai=a,Bi=b

{
1

1 + �̂�T
abĝ+ab

(
�̂�; i

)

}
for i with Ai = a,Bi = b (10)

where for a, b = 1 or 0, �̂�ab is a (J + P) × 1 vector that satisfies

∑

i∶Ai=a,Bi=b

ĝ+ab(�̂�; i)

1 + �̂�T
abĝ+ab

(
�̂�; i

) = 0

and can be obtained via convex minimization.29

We propose to estimate the causal DDI by substituting the modified empirical likelihood weights ŵi = ŵmELCB,i into (3)
and then applying (2). Denote the resulting estimator as ̂𝜃mELCB. Similar to justification in Section 3.2.3, multiple robust-
ness of ̂𝜃mELCB is guaranteed as long as  =

{
ej

ab

(
𝜸

j;X
)
∶ j = 1, … , J

}
contains a correctly specified propensity score

model, because under this condition the proposed weights are asymptotically equivalent to the IPTW weights obtained
from a correct model. In other words, including additional mean-centered covariates helps achieve covariate balance
without breaking multiple robustness.

3.4 Estimation of variance and 95% confidence interval

We apply the nonparametric bootstrap method40 for variance estimation of the IPTW estimator ̂𝜃IPTW and the proposed
empirical likelihood-based estimators ̂𝜃EL and ̂

𝜃mELCB. Unlike the robust variance estimation which tends to be con-
servative, the bootstrap method provides more efficient inference by taking the uncertainty in weight estimation into
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account.10,41,42 In the binary treatment setting of marginal hazard ratio estimation, prior simulations reported satisfactory
performance of bootstrapping using 200 replicates, for both the IPTW and empirical likelihood methods.33,41

We describe the bootstrap procedures using ̂𝜃mELCB as an example. We first resample the observed data (Yi,Xi,Ai,Bi),
i = 1, … ,n at the individual level with replacement R times to construct R bootstrap samples each having the same sam-
ple size n as the original data, where R is a user-specified positive integer (say, R = 200). For r = 1, … ,R, let ̂𝜃mELCB,r
denote the estimated causal DDI in the r th bootstrap sample using the modified empirical likelihood approach with
covariate balancing; here the weights are estimated using the same r th bootstrap sample rather than the original
data, which accounts for uncertainty in estimation of weights. Then, the bootstrap variance estimators for ̂𝜃mELCB is
given by

v̂ar(̂𝜃mELCB) =
1

R − 1

R∑

r=1

(
̂
𝜃mELCB,r −

1
R

R∑

r=1

̂
𝜃mELCB,r

)2

.

A normality-based 95% confidence interval for ̂𝜃mELCB is ̂𝜃mELCB ± 1.96 ⋅
√

v̂ar(̂𝜃mELCB). Variance and confidence interval
estimation for ̂𝜃IPTW and ̂𝜃EL can be obtained in the same manner.

3.5 Balance diagnosis in two-drug interaction context

Balance diagnosis is an important component in a propensity score weighting-based analysis. McCaffrey et al15 described
useful balance metrics for multiple treatments when using IPTW. They can be adapted to our two-drug DDI context and
to other weighting methods. Here we focus on metrics using standardized mean bias.

For each treatment level (a, b) and each of the three methods (with ŵi given by ŵIPTW,i, ŵEL,i and ŵmELCB,i), balance for
covariate Xk can be summarized by the following absolute standardized difference (also called population standardized
bias):15

PSBab,k = |Xk,ab − Xk|∕𝜎k,

where

Xk,ab =
∑

i∶Ai=a,Bi=b
ŵiXki

is the weighted mean of this covariate within treatment group (a, b), and Xk and 𝜎k denote the unweighted mean and
standard deviation of this covariate in the pooled sample across all four treatment levels (a, b) = (1, 1), (0, 1), (1, 0) and
(0, 0).

A useful overall summary of balance across four treatment levels is

PSBk = max
ab∶a,b=1,0

PSBab,k.

The investigator can then report PSBk across covariates before and after weighting. An absolute standardized difference
larger than 0.2 was considered problematic.15

Notably, by (8) and (9), if a covariate Xk is in the set {Xs1 … ,XsP} for which additional covariate balancing constraints
are used,

∑
i∶Ai=a,Bi=b ŵmELCB,i(Xki − Xk) = 0, leading to

∑
i∶Ai=a,Bi=b ŵmELCB,iXki = Xk and hence Xk,ab = Xk for the weighted

sample based on the modified empirical likelihood approach. These results reveal the relation between the balance con-
strains with balance metrics PSBab,k and PSBk: the proposed modified empirical likelihood approach aims to optimize
balance metrics PSBab,k and PSBk for those user-specified covariates.

Above balance metrics compare each treatment level with the unweighted, pooled sample across four treatment levels.
It is also possible to check for covariate balance for each of the six pairwise comparisons: (1, 1) vs (1, 0), (1, 1) vs (0, 1), (1, 1)
vs (0, 0), (1, 0) vs (0, 1), (1, 0) vs (0, 0) and (0, 1) vs (0, 0). Within each comparison, the standardized difference measure
across covariates can be evaluated and a cutoff point at 0.1 is commonly used.43
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4 SIMULATION STUDIES: WHEN THE POSTULATED SET OF
PROPENSITY SCORE MODELS CONTAINS A CORRECT ONE

We conducted simulation studies to evaluate the finite sample performance of the proposed multiply robust estimators
̂
𝜃EL and ̂𝜃mELCB in comparison to the standard IPTW estimator ̂𝜃IPTW.

4.1 Data generating process: The true model

For each individual, we first simulated a vector of covariates X = (X (1)
,X (2)

,X (3)
,X (4)

,X (5))T. These covariates were
independently simulated with X (1) following a Bernoulli distribution with probability 0.2; X (2) following a Bernoulli distri-
bution with probability 0.4; X (3) following the standard normal distribution; X (4) following a uniform distribution ranging
from -0.5 to 0.5; and X (5) following a unit exponential distribution.

We then simulated the treatment indicators A and B from the following multinomial logistic propensity score model:

P(A = a,B = b|X) = Qab

1 + Q11 + Q01 + Q10
for (a, b) = (1, 1), (0, 1) or (1, 0), (11)

where

Q11 = exp
[
𝛾0 + 0.7 + 0.4X (1) + 0.2X (2) − 0.2X (3) − 0.4 exp(X (4)) − 0.4 exp(X (5)) + 0.2{X (1)X (3) + X (2) exp(X (4))}

]
,

Q01 = exp
[
𝛾0 + 0.6 + 0.2X (1) + 0.6X (2) − 0.4X (3) − 0.6 exp(X (4)) − 0.2 exp(X (5)) + 0.2{X (1)X (3) + X (2) exp(X (4))}

]
,

Q10 = exp
[
𝛾0 + 0.5 + 0.6X (1) + 0.4X (2) − 0.2X (3) − 0.2 exp(X (4)) − 0.2 exp(X (5)) + 0.4{X (1)X (3) + X (2) exp(X (4))}

]
,

and the parameter 𝛾0 was selected to yield desired prevalence of treatment level (0, 0) of 10%, 20%, 30%, 40% or 50%. By
definition,

P(A = a,B = b|X) = 1
1 + Q11 + Q01 + Q10

for (a, b) = (0, 0).

Next, we generated the binary outcome Y from the following outcome model:

logit P(Y = 1|A,B,X) = 0.5 − 0.1A − 0.2B − 𝜉AB
+ 0.4

{
X (1) + X (2) − X (3) + exp(X (4)) − exp(X (5)) + X (1)X (3) + X (2) exp(X (4))

}
{0.5 + 𝜉(0.2A + 0.1B + AB)},

where 𝜉 = 0.5, 1 or 2, corresponding to a resulting causal DDI of −0.107, −0.170 or −0.231.
With above set-up, we assume covariates X (1) to X (5) (and their functions) are sufficient for confounding control.

4.2 Propensity score models used to analyze simulated data

We considered a set of four propensity score models, denoted as  =
{

ej
ab

(
𝜸

j;X
)
∶ j = 1, … , 4

}
, to analyze the simulated

data:

Multinomial logistic P(A = a,B = b|X) ∼ X (1) + X (2) with parameters 𝜸1
, (12)

Multinomial logistic P(A = a,B = b|X) ∼ X (1) + X (2) + X (3) + X (4) + X (5) with parameters 𝜸2
, (13)

Multinomial logistic P(A = a,B = b|X) ∼ X (1) + X (3) + X (4) with parameters 𝜸3
, (14)

and

Multinomial logistic P(A = a,B = b|X) ∼ X (1) + X (2) + X (3) + exp(X (4)) + exp(X (5))
+
{

X (1)X (3) + X (2) exp(X (4))
}

with parameters 𝜸4
, (15)

where 𝜸j was the vector of the parameters in the j th propensity score model, for j = 1, … , 4.
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Taking model (12) as an example, with treatment (0, 0) considered the reference level, this model assumes

P(A = a,B = b|X) =
exp

{
𝜸

1T
ab(X

(1)
,X (2))T

}

1 + exp
{
𝜸

1T
11 (X (1)

,X (2))T
}
+ exp

{
𝜸

1T
01 (X (1)

,X (2))T
}
+ exp

{
𝜸

1T
10 (X (1)

,X (2))T
}

for (a, b) = (1, 1), (0, 1) or (1, 0) where 𝜸1 =
(
𝜸

1T
11 , 𝜸

1T
01 , 𝜸

T
10
)T.

Among these four postulated propensity score models, only model (15) is correct, given the true model (11). The other
models (12)–(14) misspecified the treatment assignment process by excluding some covariates and interaction terms, or
by using incorrect functional form(s).

4.3 Evaluation criteria

We compared six estimators, where the first four were the standard IPTW estimators using the individual propensity score
models (12)–(15), respectively. The final two estimators were the proposed multiply robust estimators ̂𝜃EL and ̂𝜃mELCB.
Both methods used all the four models (12)–(15) simultaneously. The difference between them was that the final, sixth
estimator further incorporated balance constraints for covariates X (2) and X (3).

Our comparison focused on the conditional outcome model parameter 𝜉 = 0.5, 1 or 2. These three cases corresponded
to a true causal DDI of −0.107, −0.170 or −0.231. We considered a sample size of 2000 and ran 1000 simulations for each
parameter configuration. In variance estimation for each estimator, we created 200 bootstrap samples.

We considered three criteria to evaluate the finite sample performance of each estimator. First, we examined the aver-
age empirical relative bias across 1000 simulation runs, where the relative bias for an estimator in one run was defined
to be the difference of the estimated and true causal DDIs divided by the true causal DDI. Second, we examined the
empirical coverage (in percent), defined to be the percentage of 95% confidence intervals in 1000 simulation runs that
covered the true causal DDI. Third, we examined the empirical standard error across 1000 simulation runs. The first
two criteria help assess the statistical consistency and the performance of variance and 95% confidence intervals estima-
tion based on bootstrapping. The third criterion is useful to compare the statistical efficiency (or variability) of different
estimators.

4.4 Results

4.4.1 Consistency and robustness

Figure 1 reports the empirical relative bias for each of the six estimators, under various combinations of causal DDI and
treatment prevalence. As expected from their consistency, the IPTW estimator under a correctly specified propensity score
model (15) and two proposed multiply robust estimators using models (12)–(15) produced rather small empirical bias. In
comparison, due to the use of incorrect models (12)–(14), the first three IPTW estimators led to biased results. Among
the three estimators, the one under the main effects model (13) produced the least bias; its bias was slightly larger than
that of the proposed methods.

Figure 2 reports the coverage probability for each of the six estimators. Due to misspecifying the propensity score
model, the first three IPTW estimators yielded undercovered 95% confidence intervals. The IPTW estimator under a
correctly specified model (15) and two proposed multiply robust estimators using models (12)–(15) all gave coverage close
to the nominal 95%. These results also demonstrated that bootstrapping with 200 replicates performed reasonably well.

To more carefully examine different estimators, Figure 3 is a zoom-in version of Figure 2. Here, we drew three
horizontal lines (at 93.65%, 95%, and 96.35%) to indicate a plausible range of coverage; the approximation formula
0.95 ± 1.96 ⋅

√
0.95 × 0.05∕1000 treated coverage status in each of the 1000 simulation runs as a Bernoulli random vari-

able with success rate 0.95. The empirical coverage rates from both empirical likelihood-based estimators fluctuated
around 95% and lay within the range of 93.65% to 96.35% in most cases. However, we observed slight undercoverage
of the IPTW estimator under a correct model (when the prevalence of treatment level (0, 0) > 10%, 𝜉 = 1 or 2 corre-
sponding to a DDI of −0.170 or −0.231). The undercoverage of the IPTW estimator under the main effects model (13) is
clearly shown. These results showed better finite sample performance of the proposed estimators than the standard IPTW
estimator.
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Case 3

incorrectly specified PS−1
incorrectly specified PS−2
incorrectly specified PS−3
correctly specified PS−4
multiply robust      
multiply robust + covariate balancing       

F I G U R E 1 Empirical relative bias with n = 2000. Incorrectly specified PS-1 to PS-3: IPTW estimators of the causal DDI using three
incorrectly specified propensity score models (12)–(14), respectively; correctly specified PS-4: IPTW estimator of the causal DDI using a
correctly specified propensity score model (15); multiply robust and multiply robust + covariate balancing: the proposed multiply robust
estimators using multiple models (12)–(15) simultaneously, without and with additional covariate balance constraints, respectively. Cases 1
to 3: the conditional outcome model parameter 𝜉 = 0.5, 1 or 2, yielding a true causal DDI of −0.107, −0.170 or −0.231

From robustness perspective, evidently, the proposed estimators achieved satisfactory finite sample performance,
because they both returned valid results even if involving three misspecified propensity score models.

4.4.2 Efficiency

We further compared efficiency performance of two proposed, multiply robust estimators with the IPTW estimator under
a correct propensity score model (15), quantified by the empirical standard error. IPTW estimators under incorrect mod-
els were excluded for efficiency comparison, because for biased estimators, less variability would only lead to worse
coverage.

Figure 4 displays the results. In all combinations of causal DDI and treatment prevalence, on average the first pro-
posed estimator ̂𝜃EL produced the smallest standard error, indicating the highest efficiency among three estimators. The
other proposed estimator ̂𝜃mELCB, from the modified empirical likelihood approach with covariate balance, had efficiency
similar to ̂𝜃EL and remarkably higher than the IPTW estimator. These results demonstrated improved efficiency of the
proposed methods relative to the IPTW estimator.



SHU et al. 981

prevalence of taking A = 0 & B = 0

em
pi

ric
al

 c
ov

er
ag

e 
(%

)
0

25
50

75
95

0.1 0.2 0.3 0.4 0.5

Case 1

prevalence of taking A = 0 & B = 0

em
pi

ric
al

 c
ov

er
ag

e 
(%

)
0

25
50

75
95

0.1 0.2 0.3 0.4 0.5

Case 2

prevalence of taking A = 0 & B = 0

em
pi

ric
al

 c
ov

er
ag

e 
(%

)
0

25
50

75
95

0.1 0.2 0.3 0.4 0.5

Case 3
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F I G U R E 2 Empirical coverage in percent with n = 2000. Incorrectly specified PS-1 to PS-3: IPTW estimators of the causal DDI using
three incorrectly specified propensity score models (12)–(14), respectively; correctly specified PS-4: IPTW estimator of the causal DDI using a
correctly specified propensity score model (15); multiply robust and multiply robust + covariate balancing: the proposed multiply robust
estimators using multiple models (12)–(15) simultaneously, without and with additional covariate balance constraints, respectively. Cases 1
to 3: the conditional outcome model parameter 𝜉 = 0.5, 1 or 2, yielding a true causal DDI of −0.107, −0.170 or −0.231

5 SIMULATION STUDIES: WHEN ALL POSTULATED PROPENSITY
SCORE MODELS ARE WRONG

The consistency of both proposed estimators ̂𝜃EL and ̂𝜃mELCB requires a critical condition: at least one candidate model is
correct. In this section, we conducted simulations to examine their finite sample performance in the worst scenario when
all models were wrong.

5.1 Setting 1: True model is multinomial logistic

We conducted simulations the same as those presented in Section 4 except that the following model set was used to
analyze simulated data:

Multinomial logistic P(A = a,B = b|X) ∼ X (1) with parameters 𝜸1
, (16)

Multinomial logistic P(A = a,B = b|X) ∼ X (4) + X (5) with parameters 𝜸2
, (17)

Multinomial logistic P(A = a,B = b|X) ∼ X (1) + X (4) with parameters 𝜸3
, (18)
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F I G U R E 3 A zoom-in version of Figure 2: Empirical coverage in percent with n = 2000. Three horizontal lines (at 93.65%, 95%, and
96.35%) indicate a plausible range of coverage. Incorrectly specified PS-2: IPTW estimator of the causal DDI using incorrectly specified
propensity score model (13), that is, the main effects model; Correctly specified PS-4: IPTW estimator of the causal DDI using a correctly
specified propensity score model (15); multiply robust and multiply robust + covariate balancing: the proposed multiply robust estimators
using multiple models (12)–(15) simultaneously, without and with additional covariate balance constraints, respectively. Cases 1 to 3: the
conditional outcome model parameter 𝜉 = 0.5, 1 or 2, yielding a true causal DDI of −0.107, −0.170 or −0.231

and

Multinomial logistic P(A = a,B = b|X) ∼ X (1) + exp(X (4)) + exp(X (5)) with parameters 𝜸4
, (19)

where 𝜸j was the vector of the parameters in the j th propensity score model, for j = 1, … , 4.
Given the true propensity score model (11), all these four postulated models are wrong due to excluding some

covariates and interaction terms, or by using incorrect functional form(s).
We compared six estimators. The first four were IPTW estimators using the individual propensity score models

(16)–(19), respectively. The final two estimators were the proposed multiply robust estimators ̂𝜃EL and ̂
𝜃mELCB. Both

methods used all four incorrect models (16)–(19) simultaneously. Compared with the fifth estimator ̂𝜃EL, the final, sixth
estimator ̂𝜃mELCB further imposed balance constraints for covariates X (2) and X (3). Since models (16)–(19) all excluded
covariates X (2) and X (3), they allowed for more direct evaluation of the estimator ̂𝜃mELCB that aimed to balance the
distributions of covariates X (2) and X (3).

For each of the six estimators, Figures 5 and 6 summarize the empirical relative bias and coverage probability, respec-
tively, under various combinations of causal DDI and treatment prevalence. Four IPTW estimators using individual,
wrong models (16)–(19) all led to severely biased results and undercoverage due to misspecifying the treatment decision
process. The proposed estimator ̂𝜃EL had slightly better performance compared to the least-biased IPTW estimator (among
all IPTW estimators). Performance of the proposed estimator ̂𝜃mELCB was promising. It produced very small empirical
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F I G U R E 4 Empirical standard error with n = 2000. Correctly specified PS-4: IPTW estimator of the causal DDI using a correctly
specified propensity score model (15); multiply robust and multiply robust + covariate balancing: the proposed multiply robust estimators
using multiple models (12)–(15) simultaneously, without and with additional covariate balance constraints, respectively. Cases 1 to 3: the
conditional outcome model parameter 𝜉 = 0.5, 1 or 2, yielding a true causal DDI of −0.107, −0.170 or −0.231

bias and satisfactory empirical coverage close to the nominal 95%. The better performance of ̂𝜃mELCB compared to ̂𝜃EL was
probably due to the use of additional balance conditions for covariates X (2) and X (3), given that information on X (2) and
X (3) was not used by any of the models (16)–(19). We note that such simulation design was intended to examine the non-
parametric balance constraints for ̂𝜃mELCB. The results do not necessarily suggest that ̂𝜃mELCB generally outperforms ̂𝜃EL.
The reason is, if information on X (2) and X (3) was leveraged by ̂𝜃mELCB, such information could also be leveraged by ̂𝜃EL
too, by including X (2) and X (3) in propensity score model(s).

To directly examine the performance of balance conditions for ̂𝜃mELCB, Figure 7 displays boxplot of overall balance (ie,
the maximum absolute standardized difference across four drug pairs) of X (2) and X (3) across 1000 simulation runs, before
and after weighting data using the proposed multiply robust estimator with balance constraints for X (2) and X (3). The
results showed negligible imbalance in the majority of runs under various treatment prevalence. Compared to balance
results before weighting, results after weighting were significantly improved. Given that all postulated models did not
involve X (2) and X (3), it is reasonable to attribute good covariate balancing to the balance constraints for X (2) and X (3).

5.2 Setting 2: True model is not multinomial logistic

We conducted simulations the same as those presented in Section 4 except that a non-multinomial logistic model served
as the true propensity score model.
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F I G U R E 5 When all models are wrong: empirical relative bias with n = 2000. Incorrectly specified PS-1 to PS-4: IPTW estimators of
the causal DDI using four incorrectly specified propensity score models (16)–(19), respectively; multiply robust and multiply robust +
covariate balancing: the proposed multiply robust estimators using wrong models (16)–(19) simultaneously, without and with additional
covariate balance constraints, respectively. Cases 1 to 3: the conditional outcome model parameter 𝜉 = 0.5, 1 or 2, yielding a true causal DDI
of −0.107, −0.170 or −0.231

We first generated two continuous random variables Z1 = Q10 + Z0 and Z2 = Q01 − Z0, where Q10 and Q01 were defined
as in Section 4 with 𝛾0 = 0, and Z0 followed the standard normal distribution. Then, we simulated treatment indicators
as below:

(A,B) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

(1, 1), if Z1 ≥ c,Z2 ≥ c
(1, 0), if Z1 ≥ c,Z2 < c
(0, 1), if Z1 < c,Z2 ≥ c
(0, 0), if Z1 < c,Z2 < c

(20)

where constant c was chosen to yield desired prevalence of treatment level (0, 0) of 10%, 20%, 30%, 40% or 50%.
Following Section 4, we postulated multinomial logistic models (12)–(15) to analyze simulated data. Since the true

model (20) is not multinomial logistic, all postulated models are incorrect.
Figure 8 reports the results. All models produced severely biased results due to misspecification. Of note, IPTW estima-

tors under fuller models (13) and (15) had even worse performance compared with models (12) and (14), demonstrating
that adding more covariates into an existing propensity score model can paradoxically increase bias. The two proposed
estimators outperformed IPTW estimators under models (13) and (15) but not IPTW estimators under models (12)
and (14).
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F I G U R E 6 When all models are wrong: empirical coverage in percent with n = 2000. Incorrectly specified PS-1 to PS-4: IPTW
estimators of the causal DDI using four incorrectly specified propensity score models (16)–(19), respectively; multiply robust and multiply
robust + covariate balancing: the proposed multiply robust estimators using wrong models (16)–(19) simultaneously, without and with
additional covariate balance constraints, respectively. Cases 1 to 3: the conditional outcome model parameter 𝜉 = 0.5, 1 or 2, yielding a true
causal DDI of −0.107, −0.170 or −0.231

6 APPLICATION TO KIDNEY DATA

We applied the proposed methods from Sections 3.2 and 3.3, and the standard IPTW method from Section 3.1 in order to
analyze data from a pharmacoepidemiologic study on possible impact of renin-angiotensin system inhibitors (RAS-I) on
the comparative nephrotoxicity of nonsteroidal anti-inflammatory drugs (NSAIDS) and opioids.44

The data set included 27,741 patients who were age ≥ 18 years and admitted to one of four hospitals within the Uni-
versity of Pennsylvania Health System from January 1, 2004 to June 30, 2017. NSAIDS and RAS-I were considered the
possible object and precipitant, respectively. Lacking effects on kidney function, oxycodone and amlodipine were con-
sidered comparator drugs. Specifically, the first treatment indicator A was set to 1 for NSAIDS and 0 for oxycodone. The
second treatment indicator B was set to 1 for RAS-I and 0 for amlodipine. Eligible patients had to maintain at least 24
hours of concomitant treatment with a drug pair of interest. Among these patients, 4250 (15.3%) were treated with the
NSAIDS+RAS-I drug pair, 1181 (4.3%) the NSAIDS+amlodipine drug pair, 17,610 (63.5%) the oxycodone+RAS-I drug
pair, and 4700 (16.9%) the oxycodone+amlodipine drug pair. The outcome was a binary indicator for acute kidney injury
(AKI) during the first 14 days of follow-up, defined using Kidney Disease Improving Global Outcomes (KDIGO) crea-
tinine and dialysis criteria. A total of 2486 patients (9.0%) were observed to experience the AKI incident. Our goal is to
estimate the causal DDI between NSAIDS and RAS-I, defined in (1) on the additive scale, that is, a difference of risk
differences.
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F I G U R E 7 When all models are wrong: boxplot of overall balance (defined as the maximum absolute standardized difference across
four drug pairs) of X (2) and X (3) across 1000 simulation runs, before and after weighting data using the proposed multiply robust estimator
with balance constraints on X (2) and X (3). The dotted horizontal line represents zero imbalance

We built a set of multinomial logistic propensity score models guided by clinical knowledge and prior literature. We
began with the first model (PS-1) that included baseline covariates that have clearly been identified as risk factors for the
outcome of AKI in previous studies. They fell into six categories (a) demographics, including age and body mass index
(BMI); (b) hospital admission characteristics, including admission type, treatment in an ICU at the time of cohort entry,
and postoperative status; (c) comorbidities, including chronic kidney disease, heart failure, myocardial infarction, hyper-
tensions, other cardiac arrhythmia, liver disease, and diabetes mellitus; (d) kidney function, including baseline glomerular
filtration rate, and history of prior AKI; (e) labs, including baseline hemoglobin concentration, and baseline chloride con-
centration; (f) medications, including loop diuretics, hydrochlorothiazide, vancomycin, trimethoprim/sulfamethoxazole,
antibiotic nephrotoxins, and other miscellaneous nephrotoxins.

The second model (PS-2) included variables that have clearly been identified as risk factors for the outcome of AKI,
with additional variables that may be associated with treatment decisions, but are less well established as risk factors.
Specifically, we added variables to PS-1, which fell into categories (a) demographics, including sex and race; (c) comor-
bidities, including atrial fibrillation, valvular disease, pulmonary circulation disease, chronic pulmonary disease, cancer,
and obstructive sleep apnea.

The third model (PS-3) included variables from PS-2 plus variables that may be associated with treatment decisions and
also may function as overall markers of illness severity. Specifically, we added variables to PS-2, which fell into categories
(b) hospital admission characteristics, including hospital where the patient was treated, and duration of hospitalization
prior to cohort entry, in days; (c) comorbidities, including unexplained weight loss, fluid or electrolyte disorder, and
human immunodeficiency virus infection; (e) labs, including baseline white blood cell count, baseline platelet count, and
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F I G U R E 8 When all models are wrong and the true model (20) is not multinomial logistic: Empirical relative bias with n = 2000.
Incorrectly specified PS-1 to PS-4: IPTW estimators of the causal DDI using four incorrectly specified propensity score models (12)–(15),
respectively; multiply robust and multiply robust + covariate balancing: The proposed multiply robust estimators using wrong models
(12)–(15) simultaneously, without and with additional covariate balance constraints, respectively. Cases 1 to 3: the conditional outcome
model parameter 𝜉 = 0.5, 1 or 2, yielding a true causal DDI of −0.107, −0.170 or −0.231

baseline potassium concentration; (f) medications, including beta-blockers, alpha-beta blockers, hydralazine, other mis-
cellaneous antihypertensive medications, broad-spectrum gram negative antibiotics, and narrow spectrum gram negative
antibiotics.

The fourth model (PS-4) included variables from PS-3 plus interaction terms between admission type and the following
variables: age, chronic kidney disease, heart failure, baseline hemoglobin concentration, and baseline platelet count. To
further capture nonlinear terms, the fifth, final model (PS-5) included variables from PS-4 plus quadratic terms for the
following variables: body mass index, baseline glomerular filtration rate, baseline hemoglobin concentration, and baseline
chloride concentration.

We compared seven estimators of the causal DDI, quantified by comparing the difference in AKI risk between NSAID
versus oxycodone in patients treated with RAS-I to the difference in AKI risk between NSAID versus oxycodone in
patients treated with amlodipine. The first, second, third, fourth and fifth estimators were the standard IPTW estimators
using individual models PS-1, PS-2, PS-3, PS-4 and PS-5, respectively. The sixth and seventh estimators were obtained by
applying the proposed multiply robust methods described in Sections 3.2 and 3.3, respectively. Both estimators used all
five propensity score models simultaneously, motivated by an understanding that the true propensity score model was
unknown; in this reality, the fifth, fullest model PS-5 is not necessarily the best-performing one among all five models.
Compared to the sixth estimator, the seventh estimator imposed additional balance constraints for age and chronic kid-
ney disease; these two covariates were selected for illustration purpose given that they were both known risk factors and
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T A B L E 1 Analysis results of the real-world kidney data estimating the causal DDI between NSAIDS and RAS-I

Method Model DDI Standard error 95% Confidence interval

IPTW PS-1 0.259% 0.0144 (−2.55% , 3.07% )

PS-2 0.354% 0.0153 (−2.65% , 3.36% )

PS-3 0.524% 0.0150 (−2.41% , 3.46% )

PS-4 0.509% 0.0153 (−2.49% , 3.51% )

PS-5 0.324% 0.0159 (−2.80% , 3.44% )

EL PS-1 to PS-5 0.200% 0.0150 (−2.74% , 3.14% )

mELCB PS-1 to PS-5 0.146% 0.0146 (−2.71% , 3.00% )

Note: The DDI column represents the difference-in-difference estimate; The DDI was quantified by comparing the difference in AKI risk between NSAID
vs oxycodone in patients treated with RAS-I to the difference in AKI risk between NSAID vs oxycodone in patients treated with amlodipine. See text for the
list of selected covariates in each model.
Abbreviations: EL, the first proposed multiply robust estimator using all five propensity score models simultaneously; mELCB, the second proposed
multiply robust estimator using all five propensity score models simultaneously, with additional balance constraints on age and chronic kidney disease;
PS-1, multinomial logistic propensity score model including key risk factors; PS-2, multinomial logistic propensity score model including key risk factors
and possible risk factors; PS-3, multinomial logistic propensity score model including key risk factors, possible risk factors, and other surrogate markers of
overall severity of illness; PS-4, multinomial logistic propensity score model including key risk factors, possible risk factors, other surrogate markers of
overall severity of illness, and interaction terms; PS-5, multinomial logistic propensity score model including key risk factors, possible risk factors, other
surrogate markers of overall severity of illness, interaction terms, and non-linear terms.
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F I G U R E 9 Overall absolute standardized differences of baseline covariates before and after weighting the kidney data sample using
various methods: (i) IPTW estimator based on the simplest model PS-1, (ii) IPTW estimator based on the fullest model PS-5, (iii) the first
proposed multiply robust estimator (EL) using models PS-1 to PS-5, and (iv) the second proposed multiply robust estimator (mELCB) with
balance constraints on age and chronic kidney disease
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T A B L E 2 Absolute standardized differences of age and chronic kidney disease (ckd) in each of the four drug pairs, before and after
weighting the kidney data sample using various methods: (i) IPTW estimator based on the simplest model PS-1, (ii) IPTW estimator based
on the fullest model PS-5, (iii) the first proposed multiply robust estimator (EL) using models PS-1 to PS-5, and (iv) the second proposed
multiply robust estimator (mELCB) with balance constraints on age and ckd

NSAIDS+RAS-I NSAIDS+Amlodipine Oxycodone+RAS-I Oxycodone+Amlodipine

Method Age ckd Age ckd Age ckd Age ckd

Unadjusted 0.220 0.188b 0.223a 0.169 0.043 0.022 0.095 0.129

IPTW PS-1 0.005 0.020 0.156a 0.157b 0.005 0.003 0.047 0.014

IPTW PS-5 0.009 0.015 0.200a 0.245b 0.005 0.005 0.048 0.029

EL 0.016 0.005 0.137a 0.146b 0.005 0.005 0.051 0.027

mELCB <0.001 <0.001 0.002 <0.001 <0.001 <0.001 0.003a 0.001b

a Indicates the overall balance of age for each method, defined as the maximum absolute standardized difference across four drug pairs.
b Indicates the overall balance of ckd for each method, defined as the maximum absolute standardized difference across four drug pairs.

were the only two covariates having overall absolute standardized difference >15% before and after weighting the data
sample using IPTW under the fullest model PS-5. For each of these seven estimators, we bootstrapped the data set 200
times to estimate the variance and 95% confidence interval.

Table 1 summarizes the analysis results. The five IPTW estimators produced larger (further from the null) causal DDI
estimates than two proposed methods. PS-3 and PS-4 produced IPTW-based DDI estimates greater than twice the size of
estimates from the proposed methods. The estimator based on PS-1 produced slightly smaller estimates than that based on
PS-5, but the difference was not large. This implied that once the key risk factors (that have clearly been identified as risk
factors for the outcome of AKI in previous studies) have been adjusted for, further including possible risk factors, other
surrogate markers of overall severity of illness, interaction terms and non-linear terms, did not make a remarkable differ-
ence. The estimates based on PS-3 and PS-4 were similar, and were larger than results from PS-1, PS-2 and PS-5. Although
DDI estimates differed from method to method, the differences between methods were small on the additive scale. All
methods produced 95% confidence intervals for the causal DDI that included 0, suggesting no evidence of a statistically
significant synergistic interaction at the 5% level. The point estimates were close to the null value zero (eg, 0.200% and
0.146% from two proposed methods), implying a small excess risk attributed to RAS-I when assessing the NSAID-AKI
risk. These results were consistent with prior studies.44 The estimate based on PS-1 (the simplest model) had the least
standard error, and the estimate based on PS-5 (the fullest model) had the largest standard error. Two proposed methods
produced estimates that had less standard errors than all IPTW estimates except for the estimate based on PS-1. The last
estimate, based on modified empirical likelihood procedures, had standard error slightly higher than but comparable to
the estimate based on PS-1.

To assess covariate balance, Figure 9 visualizes the overall absolute standardized differences across drug pairs for 52
baseline covariates (including dummy variables for categorical data), before and after weighting the sample using the
following methods: (i) IPTW under the simplest model PS-1, (ii) IPTW under the fullest model PS-5, (iii) the proposed
empirical likelihood method using models PS-1 to PS-5, and (iv) the proposed modified empirical likelihood method
with additional balance constraints on age and chronic kidney disease. We drew a horizontal line to represent a cutoff
value of 0.2, beyond which a balance result might be problematic.15 Without any confounding adjustment (ie, before
weighting), several baseline covariates had remarkably imbalanced distributions. In particular, 8 covariates had overall
standardized mean differences > 0.2 for the unweighted sample. On contrary, two proposed empirical likelihood weight-
ing methods were found to well balance all measured covariates in the weighted sample; no covariate had an overall
standardized mean difference > 0.2. If we considered a more conservative cutoff value of 0.1, then 29 covariates had
overall standardized mean differences> 0.1 for the unweighted sample. In comparison, 2 covariates for the empirical like-
lihood weighting method (without additional covariate balance constraints), and no covariate for the modified empirical
likelihood weighting method (with additional balance constraints), had an overall standardized mean difference > 0.1.

In terms of covariate balancing, the proposed methods appeared to outperform the IPTW estimators based on PS-1
and PS-5, which led to 13 and 6 covariates having an overall standardized mean difference > 0.1 for the weighted sample.
Comparing two IPTW estimators, the more complex model PS-5 performed better than the simpler model PS-1.

We further examined covariate balance performance of the proposed modified empirical likelihood method that
directly balanced the distributions of age and chronic kidney disease for each drug pair. Table 2 reports absolute
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standardized differences of age and chronic kidney disease in each of the four drug pairs. As expected, the modified
empirical likelihood method produced negligible standardized mean differences for both covariates.

7 DISCUSSION

In this paper, we have proposed two multiply robust methods for estimating the causal DDIs by making use of a set of
propensity score models instead of just one. The second method further reduces model dependence by adding constraints
to directly balance the distributions of user-specified covariates. Both methods guarantee statistical consistency, as long
as one of the candidate models is correctly specified (and in this case, there is no need to identify which model is correct).
Compared to the standard IPTW method that relies on a single propensity score model, the proposed methods provide
increased protection against model misspecification. Although we place the development in two-drug DDI context, the
methodology can be directly applied to general multi-valued treatment case, and to other applications such as interactions
between genetic and environmental exposures.3

Our simulations demonstrated severe bias and undercoverage due to misspecifying a propensity score model when
using the IPTW method. Simulation results also confirmed satisfactory finite sample performance of the proposed meth-
ods in terms of robustness. Moreover, our methods produced a smaller standard error compared to the IPTW method
under a correct model, suggesting an efficiency gain without losing consistency. This is consistent with numerical
findings in a prior study.33 Similarly, in weight calibration context, Han45 illustrated that including incorrect models
can enhance efficiency when a correct propensity score model is specified, by examining the projection residual. In
simulations settings where all postulated models were severely misspecified, both IPTW and the proposed methods
can lead to biased results, suggesting the need to include good candidate model(s) when implementing the proposed
methods.

In theory, the proposed methods allow for any finite number of candidate models, and more models would natu-
rally offer a better chance of including a correct one. However, numerically, having too many models/constraints may
result in challenges such as collinearity.29,30,39 It is advisable to only include reasonable models that are not too simi-
lar with each other. In our limited experiences, postulating J = 5 models or so does not lead to numerical challenges.
Such number of models might be sufficient in many applications. The hope is that after careful considerations with
subject matter knowledge, a short list of models will be generated to form the model set. For example, our kidney data
analysis involves five models, where Model 1 includes key risk factors only, Model 2 = Model 1 + possible risk fac-
tors, Model 3 = Model 2 + other surrogate markers of the outcome, Model 4 = Model 3 + interaction terms, and Model
5 = Model 4 + non-linear terms. This 5-model strategy may or may not be the most meaningful in other studies. We
need more discussion on actionable model specification strategies to facilitate the implementation of multiply robust
estimation.

As for what covariates to impose balance constraints when implementing the modified empirical likelihood method,
there are at least two strategies. The first is to specify a priori, important covariates using subject matter knowledge prior
to the collection and analysis of data. The second is to select covariates that are severely imbalanced in the unweighted
data or are suboptimally balanced in another weighted analysis (eg, the original empirical likelihood method without
additional balance constraints). The second strategy may serve as a means to handle residual imbalance. Evaluating dif-
ferent strategies is beyond the scope of the current work. More generally, the proposed methods might be employed in
combination with matching for improved covariate balance. When matching alone does not well balance all covariates,
one could apply empirical likelihood weighting presented here to the matched sample.

The distance between two proposed estimators (when postulating the same model set) might be used to detect pos-
sible model misspecification. The reason is that if the model set contains a correctly specified propensity score model,
the resulting estimators from both methods are consistent, and their difference should converge to zero as sample
size grows. Therefore, a significant discrepancy between these two estimates may indicate that none of the candidate
models is correct. Formal tests using this idea were developed in various contexts.46,47 It is useful to study specifi-
cation tests in our multiple-model context, although non-significant results cannot confirm the inclusion of correct
model(s).

The current development does not use any outcome model, making it easy to examine different outcome variables;
thus there is no need to re-calculate the empirical likelihood weights for DDIs with respect to a new outcome. Future
work will further include multiple conditional outcome models and evaluate its statistical performance for the estimation
of causal DDIs.
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