@AGUPUBLICATIONS

Journal of Geophysical Research: Atmospheres

Supporting Information for

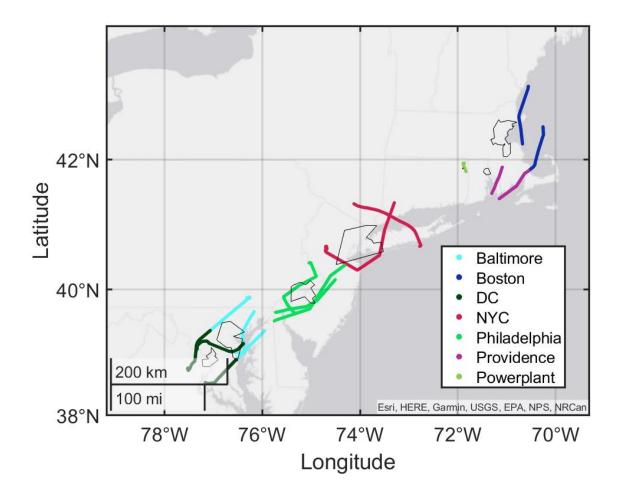
Observing system choice can minimize interference of the biosphere in studies of urban CO_2 emissions

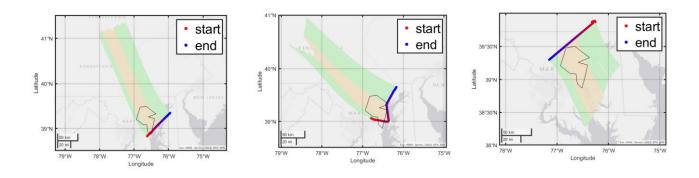
Raj M. Lal¹, Eric A. Kort¹

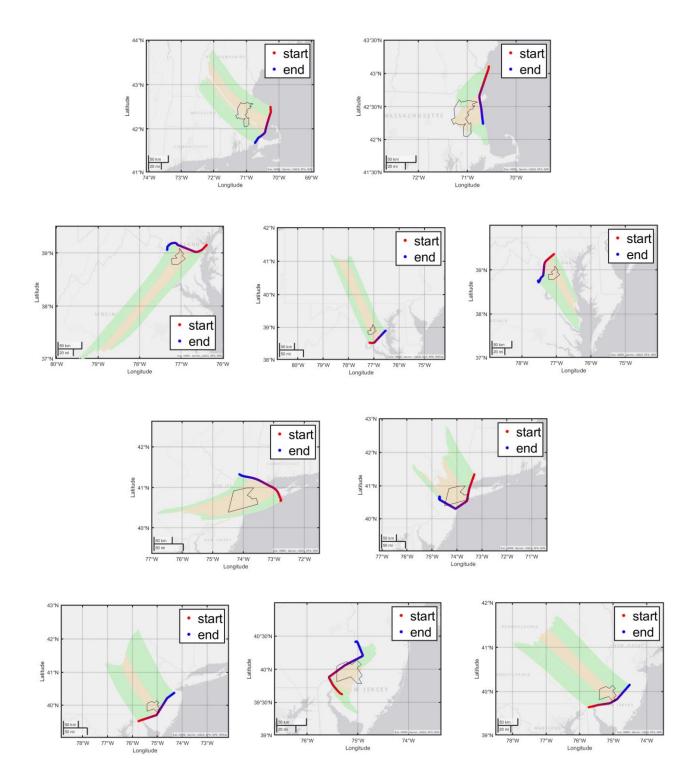
¹Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI., USA

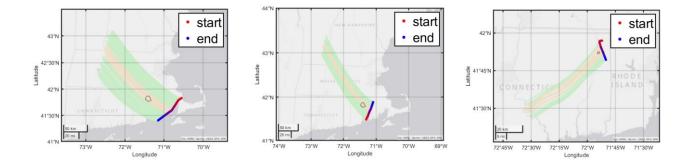
Contents of this file

Text S1

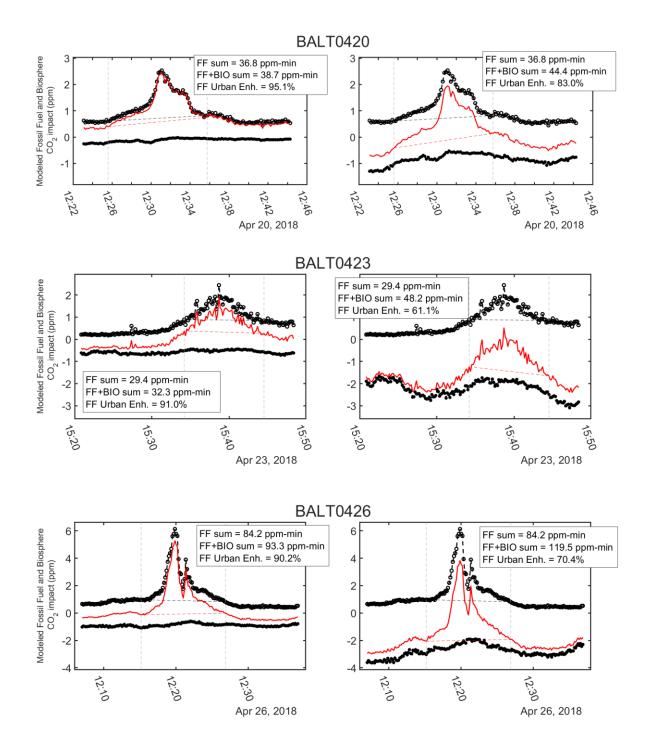

Figures S1 to S6

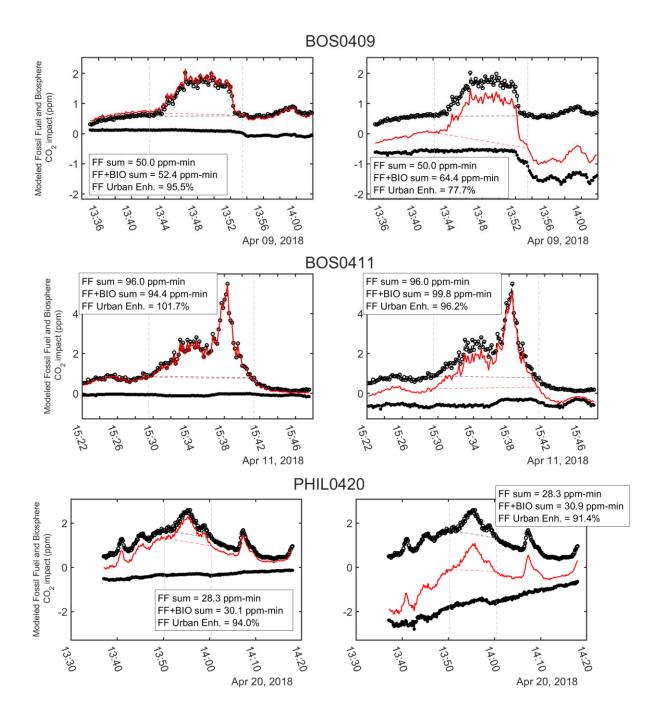

Tables S1 to S2

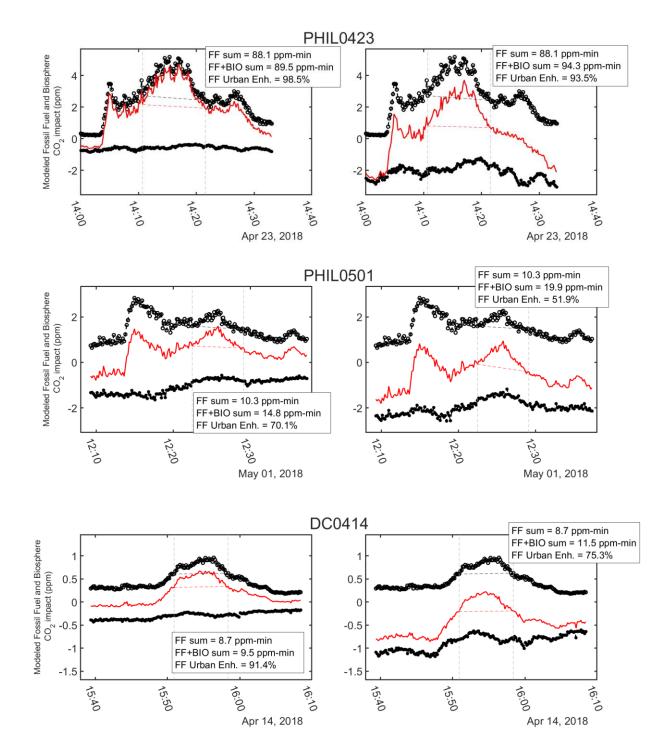

<u>SI Section 1: Justifying a 6-hour Stochastic Time-Inverted Lagrangian Transport (STILT) back trajectory for</u> <u>characterizing urban CO₂ enhancements with a local background observing framework</u>


Studies that assess CO₂ profiles from tower observations to understand urban CO₂ generally use air masses that have traveled ~days back in time. However, when assessing an urban core against its direct urban background with a local background observing framework, e.g., downwind airborne transects, where air masses upwind of the urban core are likely capturing similar surface influences, it is less necessary to assess upwind influences – assessed air masses need only to traverse the urban core. In addition, running STILT at fine resolutions 72-hours back in time can become prohibitively computationally expensive. Thus, we choose a time (6 hours) to run STILT backwards that can capture the entire urban air mass across cities while still capturing the regional background CO₂ contribution (see SI Fig. 1 confirming each urban area is captured with a 6-hour back trajectory). The focus of this observing framework is to measure the urban-suburban-rural gradient along a transect – what happens far upwind of the city is mostly homogenous and doesn't directly affect the local gradient. We use a base number of hours and not transect-dependent number of hours for computational efficiency purposes. Here, we utilize the NYC-0413 transect, as this was the only transect whose 72-hour back trajectory stayed within the Continental US (where we had surface emission flux data) (SI Fig. 3). We found that >90% of the CO₂ fossil fuel and combined (fossil fuel + biosphere) source contribution within each season along the airborne transect occurred within 6 hours of the ensemble being released compared to a 72-hour run (SI Fig. 6), suggesting the 6-hour approach adequately captures near-field impacts and can be used to assess urban CO₂ profiles that are assessed with a local background observing framework.

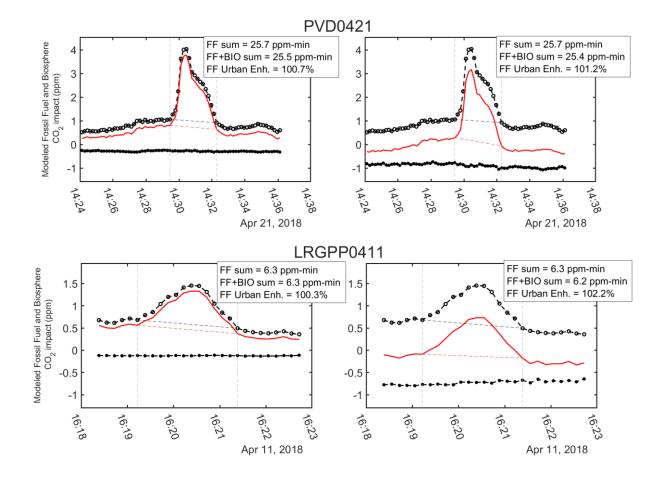
SI Fig. 1: The airborne transects whose urban CO₂ outflows were used in model space for this study, including modeled city boundaries and STILT-derived, 6-hour back trajectories of receptors along each downwind transect. In the transect-specific back-trajectory plots, the tan region indicates back trajectories along receptors that are defined as urban while the green swaths represent receptors that are defined as urban-background.

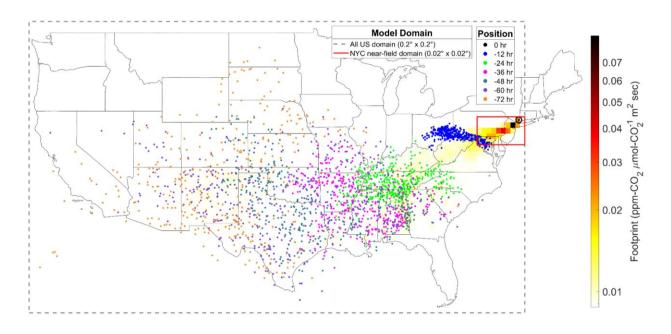


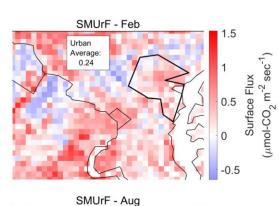


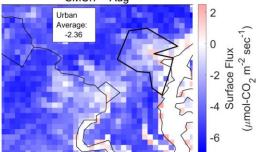


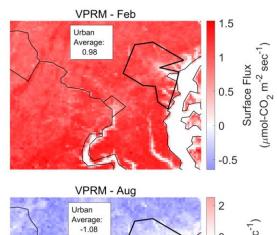



SI Fig. 2: Fossil fuel and biosphere CO₂ source contributions on the day of each airborne transect for each transect assessed in this study, shown with both modeled biosphere representations: (left column) VPRM and (right column) SMUrF. In each plot, the fossil fuel contribution is indicated by the black lines with open circles, the biosphere representation is indicated by the black lines with closed circles, and the combined (fossil fuel plus biosphere) impact is indicated by the red line.



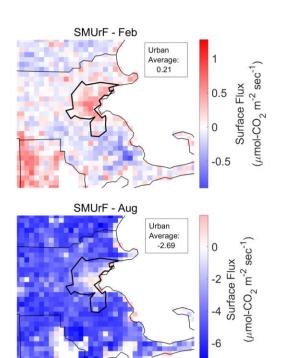


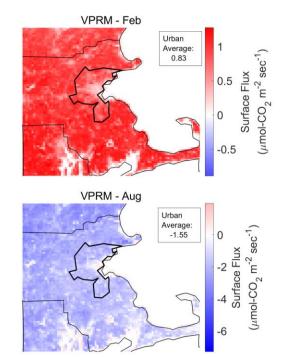

SI Fig. 3: Location of 400 released air parcels and surface footprint profile from an idealized-located tower site downwind of New York City as part of the NYC-0413 transect (the only transect whose 72-hour back trajectory stayed in CONUS). The 72-hour source contribution approach included the near-field domain (first 6 hours) where STILT was run at a 0.02°x0.02° resolution and the far-field domain where STILT was run at a 0.2°x0.2° resolution

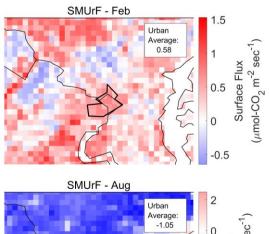


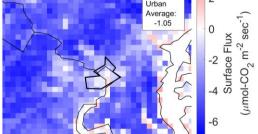

SI Fig. 4: Gridded SMUrF and VPRM surface fluxes for a winter and summer month (February and August, respectively) across urban study domains

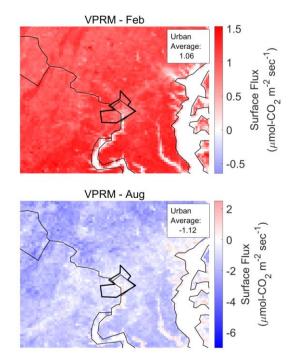
BALTIMORE

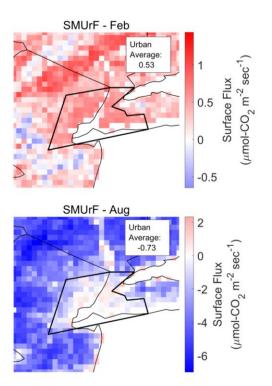


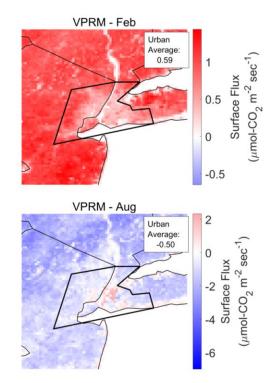


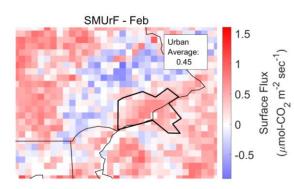



BOSTON

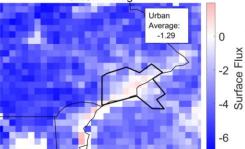


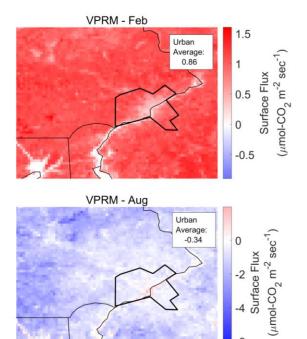

WASHINGTON D.C.





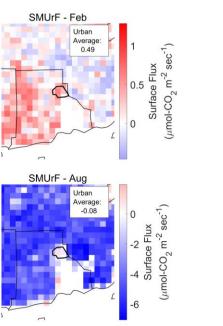
NEW YORK CITY

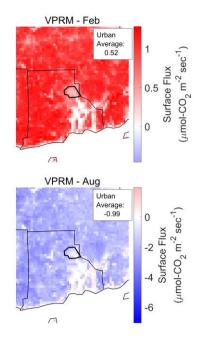


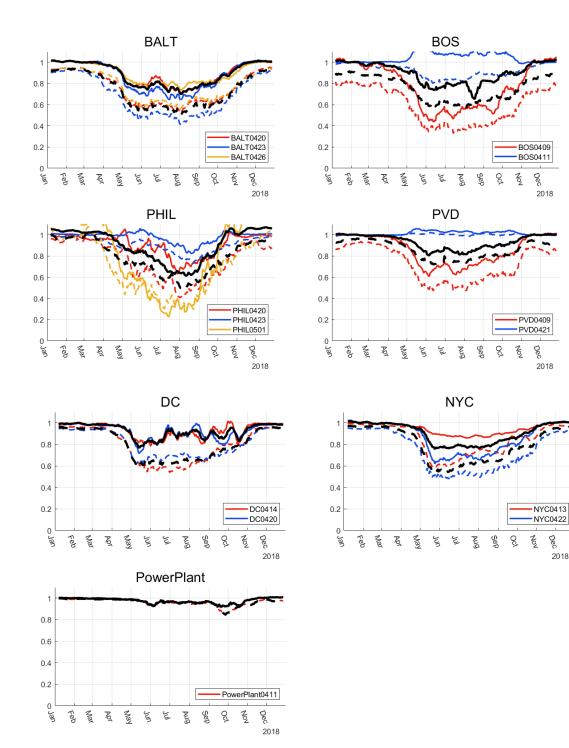


PHILADELPHIA

SMUrF - Aug

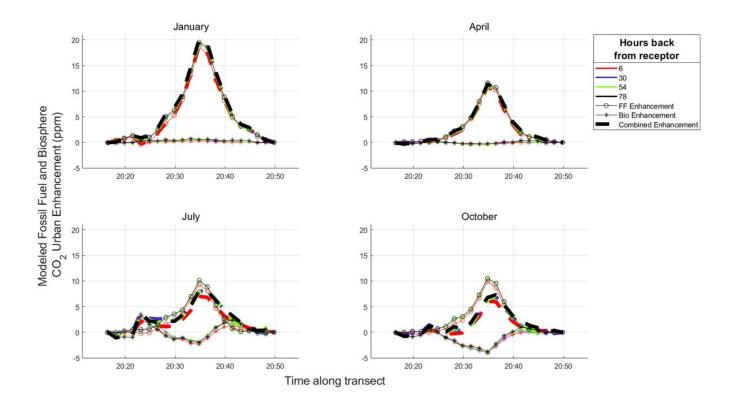





-6

PROVIDENCE

 $(\mu \text{mol-CO}_2 \text{ m}^{-2} \text{ sec}^{-1})$



Dec

2018

SI Fig. 5: Simulated fossil fuel contribution (%) for each airborne transect in each study domain (6 cities and 1 power plant) over the course of a year. The averages of each city are shown in Main Text Fig. 2.

SI Fig. 6: One-week averaged fossil fuel, biosphere, and combined (fossil fuel + biosphere) CO₂ enhancement across seasons for the NYC-0413 transect modeled 78 hours back in time. We find that across seasons, the first 6 hours captures >90% of the combined CO₂ enhancement.

SI Table 1: Comparison of percent differences between the two calculation approaches as shown in Main Text Eqn. 1 across all urban areas for all months. The highlighted value indicates the percent difference that was shown in Main Text Table 2 and used in the analysis

		Average Urban Surface Flux (nmol m ⁻² s ⁻¹)		Percent Difference Eqn. 1A	Percent Difference Eqn. 1B			Average Urban Surface Flux (nmol m ⁻² s ⁻¹)		Percent Difference Eqn. 1A	Percent Difference Eqn. 1B	
		VPRM	SMUrF					VPRM	SMUrF			
	BALT	772	6	197	99		BALT	-1864	-3427	59	46	
	BOS	627	102	144	84		BOS	-3354	-4268	24	21	
	DC	699	301	80	57		DC	-1349	-1957	37	31	
NAL	NYC	422	380	11	10	_	NYC	-995	-1667	50	40	
A L	PHIL	709	266	91	62	า	PHIL	-1463	-2474	51	41	
	PVD	363	326	11	10		PVD	-2338	-685	109	71	
	All City Average	599	230	89	54		All City Average	-1894	-2413	55	42	
	BALT	980	237	122	76		BALT	-1082	-2360	74	54	
	BOS	831	206	121	75		BOS	-1552	-2691	54	42	
	DC	1058	583	58	45		DC	-1122	-1048	7	7	
~	NYC	592	526	12	11	U	NYC	-504	-726	36	31	
E	PHIL	861	445	64	48	AUG	PHIL	-342	-1293	116	74	
	PVD	516	486	2	6		PVD	-993	-82	169	92	
	All City Average	806	414	63	44		All City Average	-933	-1367	76	50	
	BALT	817	-87	247	111		BALT	1219	-772	891	163	
	BOS	547	170	105	69		BOS	-517	-1837	112	72	
	DC	783	186	123	76	SEP	DC	1250	-21	207	102	
æ	NYC	458	344	28	25		NYC	723	-255	418	135	
MAR	PHIL	751	168	127	78		PHIL	1464	-364	333	125	
_	PVD	402	303	28	25		PVD	-133	106	1764	180	
	All City						All City					
	Average	626	181	110	64		Average	668	-524	621	129	
	BALT	634	-366	747	158	<u> </u>	BALT	1173	-534	535	146	
	BOS	546	-254	547	146		BOS	593	-812	1278	173	
	DC	606	-9	206	101		DC	1122	-7	203	101	
<u>د</u>	NYC	444	240	60	46	E E	NYC	674	40	178	94	
APR	PHIL	530	-83	274	116	oct	PHIL	766	-111	268	115	
	PVD	401	168	82	58		PVD	381	224	52	41	
	All City						All City					
	Average	527	-51	319	104		Average	785	-200	419	112	
	BALT	-1195	-2897	83	59		BALT	1049	-31	212	103	
	BOS	-1984	-2669	29	26		BOS	918	128	151	86	
	DC	-1089	-1660	42	34		DC	973	279	111	71	
MAY	NYC	-443	-865	65	49	NOV	NYC	683	415	49	39	
Σ	PHIL	-653	-1442	75	55	ž	PHIL	940	207	128	78	
]	PVD	-1058	-463	78	56		PVD	678	349	64	48	
	All City	-1070	-1666	62	46		All City	874	225	110	71	
	Average			62			Average			119		
	BALT	-2148	-4710	75	54		BALT	956	549	54	43	
	BOS	-4259	-5853	32	27		BOS	759	495	42	35	
	DC	-1646	-2814	52	41		DC	862	759	13	12	
JUNE	NYC	-1487	-1902	25	22	DEC	NYC	577	692	18	17	
2	PHIL	-1874	-3059	48	39	_	PHIL	846	709	18	16	
	PVD	-2640	-1283	69	51		PVD	513	561	9	9	
	All City	-2342	-3270	50	39		All City	752	627	26	22	
	Average						Average					

SI Table 2: Monthly fossil fuel contribution (% of simulated CO₂ enhancement) within each of the study domains (6 cities and 1 power plant) for both biosphere representations (VPRM and SMUrF). The monthly averages presented here are the averages of the 6-hour daily period aligned with the STILT simulations across model spaces

	All Sit	All Site Average		BALTIMORE		BOSTON		DC		NYC		PHILADELPHIA		PROVIDENCE		POWER PLANT	
	VPRM	SMURF	VPRM	SMURF	VPRM	SMURF	VPRM	SMURF	VPRM	SMURF	VPRM	SMURF	VPRM	SMURF	VPRM	SMURF	
Jan	1.02	0.95	1.01	0.93	1.01	0.91	1.00	0.95	1.01	0.96	1.04	0.97	1.04	0.96	1.04	0.99	
Feb	1.01	0.95	1.01	0.94	0.99	0.90	0.99	0.94	1.00	0.96	1.04	0.98	1.04	0.97	1.04	0.99	
Mar	1.01	0.94	0.99	0.90	0.99	0.88	0.98	0.93	0.99	0.94	1.03	0.99	1.03	0.97	1.04	0.99	
Apr	0.96	0.84	0.96	0.80	0.95	0.85	0.96	0.85	0.97	0.88	0.97	0.82	0.96	0.84	0.98	0.89	
May	0.83	0.68	0.80	0.60	0.85	0.68	0.82	0.63	0.83	0.62	0.85	0.74	0.81	0.73	0.88	0.86	
Jun	0.78	0.63	0.78	0.57	0.77	0.60	0.83	0.62	0.78	0.58	0.79	0.68	0.72	0.66	0.82	0.81	
lut	0.75	0.61	0.75	0.56	0.80	0.61	0.87	0.63	0.79	0.62	0.67	0.58	0.66	0.63	0.75	0.78	
Aug	0.74	0.61	0.74	0.56	0.78	0.62	0.85	0.64	0.79	0.63	0.64	0.53	0.69	0.63	0.77	0.77	
Sep	0.82	0.68	0.79	0.60	0.82	0.65	0.86	0.71	0.84	0.69	0.79	0.66	0.82	0.73	0.88	0.83	
Oct	0.93	0.76	0.89	0.68	0.89	0.70	0.89	0.76	0.89	0.76	1.00	0.79	0.96	0.80	1.00	0.89	
Nov	1.01	0.89	0.99	0.84	0.97	0.84	0.98	0.90	0.98	0.89	1.04	0.92	1.04	0.93	1.05	0.96	
Dec	1.03	0.94	1.01	0.93	1.01	0.90	0.99	0.95	1.00	0.94	1.06	0.95	1.06	0.95	1.06	0.99	