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Abstract
In this technical note we study the computation of the Maximal Output Admis-
sible Set for linear systems subject to polynomial constraints. The computation
of an inner approximation of the Maximal Output Admissible Sets requires
the determination of constraint redundancy. We use a procedure to determine
polynomial constraint redundancy based on a consequence of Putinar’s Posi-
tivstellensatz. Further, we present a modification of the algorithm to compute
the Maximal Output Admissible Set with improved performance. Lastly, demon-
strate the potential for practical applications in two case studies of spacecraft
rendezvous and control of an electromagnetic actuator.
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1 INTRODUCTION

With applications ranging from estimating regions of attraction,1,2 to the analysis of uncertain systems,3 and to con-
strained control,4,5 set-theoretic methods keep proving themselves very useful to characterize and control dynamic
systems.6

This note focuses on a particularly useful family of sets: the Maximal Output Admissible Sets (MOASs). These sets
were considered in Reference 7, where a MOAS was defined as “the set of initial states such that the output will fulfill
the constraints in the future.” More recently, this definition was extended from considering only outputs to considering
every arbitrary combination of states and constant input signals.8,9 The MOAS is very important for the design of many
constrained control schemes. In particular, it is the key ingredient for the formulation of Reference/Command Governor
schemes,9 of multimode control schemes,10 and is also a commonly used terminal set in Model Predictive Control (MPC)
schemes.11 The use of these schemes is quite common, for instance, in aerospace control applications, see for example,
References 12-18.

However, at the current stage, the availability of algorithms to compute efficiently this MOASs is mainly restricted
to linear systems subject to linear constraints.9 This note develops a method to compute an efficient representation
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of the MOAS for linear systems subject to general polynomial constraints. This method significantly enlarges the
classes of applications where MOAS is needed, for example, to systems which are feedback linearized in which case
the dynamics become linear while constraints become nonlinear after the transformations and can be approximated
as polynomial.

The note is organized as follows. We first give a brief introduction to the algorithmic determination of the MOAS based
on certificates of constraint redundancy. We then provide a systematic way to generate these certificates in the case of
polynomial constraints. Further, we modify the algorithm to determine the MOAS to improve its performance based on
several observations. Finally, we demonstrate the methodology on two relevant examples of spacecraft rendezvous and
electromagnetic actuator control that suggest significant potential for its practical impact.

2 PROBLEM STATEMENT

Consider a prestabilized1 closed loop discrete-time linear system,

x(t + 1) = Ax(t) + Bv(t), (1)

where x(t) ∈ Rn, v(t) ∈ Rm, A ∈ Rn×n is Schur, B ∈ Rn×p, and t ∈ Z≥0 designates the discrete-time instant. This system is
subject to constraints in the form (x, v) ∈ , where

 = {(x, v) ∶ ci(x, v) ≥ 0, i = 1, … ,nc}, (2)

with ci ∈ R[x, v], where by R[x, v]we denote the set of all polynomials in the variables x ∈ Rn and v ∈ Rm. Since system (1)
describes a closed-loop system, the input v(t) can be seen as a set-point reference for the closed loop system. Furthermore,
the set is determined by constraints in x(t) and v(t) that characterize state and input constraints on the original open-loop
system.

The objective of this paper is to present a procedure to compute the MOAS for this class of systems and constraints.
For a prestabilized system, the MOAS can be defined as the set of states x and references v such that, if x is the initial state
and the set-point v is kept constant, constraints will not be violated. More formally the MOAS can be defined as

Definition 1 (Maximal Output Admissible Set). Consider a prestabilized system (1) subject to (x, v) ∈ . The MOAS
is defined as ∞ = {(x, v) ∶ (x̂(k|x, v), v) ∈ , k ∈ Z≥0}, where x̂(k|x, v) = Akx +

∑k−1
j=0 AjBv is the prediction of the state at

time k given the initial state x and constant applied reference v.

3 GENERAL CONSIDERATIONS ON THE COMPUTATION OF ̃∞

Since ∞ is, in general, described by an infinite number of constraints, it is a common practice to use ̃∞, which is a
slightly tightened version of∞, defined as ̃∞ = ∞ ∩ 𝜀 with𝜀 = {(x, v) ∶ (xv, v) ∈ (1 − 𝜀)},where xv = (In − A)−1Bv
is the steady-state associated to the constant applied reference v and 𝜀 > 0 is a small constant. The set ̃∞ has a number
of very desirable properties:7 it is positively invariant, it can approximate arbitrary well ∞ by decreasing 𝜀, and, most
notably, if ̃∞ is compact, then it is also finitely determined, that is, and there exists a k∗ such that

̃∞ = ̃k∗ = {(x, v) ∶ (x̂(k|x, v), v) ∈ ,∀k = 1, … , k∗} ∩ 𝜀.

In general, using Lyapunov arguments20 and possibly solving two (in general nonconvex) optimization problems it
is possible to compute an upper bound on k∗, k ≥ k∗ for general class of systems and constraints.9 However, this
upper bound is typically very conservative. As a consequence, to describe the MOAS as ̃∞ = ̃k results in an
unnecessarily large number of constraints which might sensibly slow down the control algorithms making use of
such a set.

1It is important to remark that this is not a limiting assumption; in fact, the RG literature is based on this assumption as well as a significant part of the
MPC literature, for example, semi-feedback MPC.19
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In Reference 7 it was proven that k∗ can be defined as the smallest k such that ̃∗k = ̃k∗+1. Accordingly, an iterative
algorithm able to determine ̃∞ (Algorithm 1) and k∗ was presented, which, in principle, allows to find an optimal2

representation of ̃∞.

Algorithm 1. Computation of ̃∞ 7

̃ ← 𝜀

k ← 0
𝜌 ← 1
while 𝜌 ≠ 0 ∧ k ≤ ̄k do

𝜌← 0
for i = 1, ..,nc do

if ci(x̂(k|x, v), v) ≥ 0 is not redundant with respect to ̃ then
𝜌 ← 1
̃ ← ̃ ∩ {(x, v)|ci(x̂(k|x, v), v) ≥ 0}

end if
end for
k ← k + 1

end while
̃∞ = ̃

The main difficulty in the implementation of Algorithm 1 is to check if the constraint ci(x̂(k|x, v), v) ≥ 0 is redundant or
not with respect to to the set ̃. By definition, given a general constraint c(z) ≥ 0 with z ∈ Rnz

, c(z) > 0 is redundant with
respect to a set  ⊂ Rnz if and only if c(z) ≥ 0, ∀z ∈ . Using this fact, a common way to build a redundancy certificate
is to compute

𝛾

∗ = min
z∈

c(z), (3)

and to note that 𝛾∗ ≥ 0 if and only if the constraint is redundant.
The main problem with this formulation is that it provides a redundancy certificate only in the case one can compute

the exact optimal solution of (3). If instead one can compute only a suboptimal solution 𝛾 ≤ 𝛾∗, the method only provides a
nonredundancy certificate in the case 𝛾 < 0, otherwise nothing can be said. Accordingly, the above approach can be used
to remove redundant constraints only when it is reasonable to solve exactly problem (3), for example, when (3) is convex.
Note that for (3) to be convex the constraint to be checked must be concave and the set needs to be convex. This means
that this method can be used for the computation of ̃∞ only in the case of linear systems subject to linear constraints.
A number of efficient implementations of this idea of certifying the redundancy of linear constraints have been proposed
in the literature, including Linear Programming approaches,21 various heuristics22 and deterministic methods.23 For an
extensive survey on the subject, the reader is referred to Reference 24. In the Reference Governor literature, the Linear
Programming approach is customarily used in conjunction with Algorithm 1 to compute ̃∞ for systems subject to linear
constraints.9

For what concerns the case of nonlinear constraints, to the best of the authors’ knowledge, the existing literature
does not provide systematic methods for the certification of redundancy, and as a consequence for the computation of
̃∞. Indeed, so far most of the literature dealing with nonlinear systems and/or constraints has used either the upper
bound k derived by Lyapunov arguments that can be very conservative or, more often, empirically estimated “sufficiently
long” prediction horizons.20,25 In this paper we propose a novel procedure that allows to ascertain whether a polynomial
constraint is redundant with respect to a set defined by polynomial constraints, thus allowing to compute for efficient
representations of ̃∞. The proposed solution makes use of the Sum of Squares framework.

2For the sake of precision it is worth remarking that, in principle, the representation output by Algorithm 1 may not be minimal: once a constraint is
added to ̃k it is not checked for redundancy at a later stage and it might have become redundant in later iterations of the algorithm. Consequently, to
obtain a minimal representation of ̃∞ it is necessary to assess the redundancy of every constraint that defines this set, eliminating those which are
determined to be so.
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4 REDUNDANCY CERTIFICATE FOR POLYNOMIAL CONSTRAINTS

In order to build a redundancy certificate for nonlinear constraints we recall the Putinar’s formulation of the Positivstel-
lensatz (P-satz)26

Theorem 1 (Putinar, 1993). Consider a polynomial p(z) ∈ R[z] and a set  = {z ∶ qi(z) ≥ 0, i = 1, … ,N}, where
qi(z) ∈ R[z], i = 1, … ,N. Then every p(z) > 0 ∀z ∈  can be written as

p(z) −
N∑

i=1
si(z)qi(z) ∈ Σ[z], (4)

for some si ∈ Σ[z], i = 1, … ,N in which Σ[z] represents the set of all Sum of Squares polynomials.27

It is important to remark that this theorem is nonconstructive and that the implication it states is

p(z) > 0 ∀z ∈ ⇒ (4) holds.

Instead, we will use the converse result, which is summarized in the following corollary:

Corollary 1. Let p(x) ∈ R[x] and =
{

x ∈ Rn ∶ {fi(x)}m
i=1 ≥ 0

}
, then p(x) is nonnegative over  if there exist {si(x)}m

i=0 ∈
Σ[x] such that

p(x) = s0(x) +
m∑

i=1
si(x)fi(x).

Note that, by construction, the polynomial p(x) is positive over since it is the sum of strictly positive terms over.
This corollary can be used to obtain a redundancy certificate of a polynomial constraint with respect to a set consisting of
polynomial inequalities. In fact, if there exist s1, … , sn ∈ Σ[z] such that p(z) −

∑n
i=1si(z)qi(z) is a sum of squares polyno-

mial, p(z) ≥ 0 is certified to be redundant with respect to . This condition can be checked using the following Sum of
Squares Programming (SOSP) feasibility test

find si(z), i = 1, … ,nc

s.t.

p(z) −
nc∑

i=1
si(z)qi(z) ∈ Σ[z]

si ∈ Σ[z], i = 1, … ,nc. (5)

In many cases it is also of interest to quantify “how much” a constraint is redundant. A possible way to do so is to
maximize on a slack variable 𝛾 as follows

𝛾

∗ = max 𝛾
s.t

p(z) −
nc∑

i=1
si(z)qi(z) − 𝛾 ∈ Σ[z]

si(z) ∈ Σ[z], i = 1, … ,nc. (6)

In this formulation, if 𝛾∗ is positive, the constraint p(z) ≥ 0 is redundant with respect to . This slack variable approach
can also be used to assess which constraints are “almost redundant.” Almost redundant constraints are those whose
associated 𝛾∗ is negative and small in absolute value, and can be potentially eliminated using inner approximations. This
concept is explored in Reference 28 where it was shown that the elimination of almost redundant constraints and a pull-in
transformation can be used to compute simple inner approximations of ̃∞ and implement reference governors with a
significant reduction in online computational time and effort.

As proven in Reference 29, it is possible to determine whether a polynomial is SOS through a Semi-Definite Program-
ming (SDP) optimization problem, which means that optimization problem (6) can be efficiently solved by off-the-shelf
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solvers, for example, Reference 30. Additionally, there exist software suites that provide an interface between SOSP and
SDP, for example Reference 31, thus transforming the optimization problem (6) into an LMI problem.

5 EFFICIENT COMPUTATION OF ̃∞

Note that using Algorithm 1 and the proposed redundancy certificate to compute ̃∞ requires performing (k∗ + 1) ⋅ nc
LMI feasibility tests as in (5). Accordingly, every iteration will take longer than the previous one, since the number of
inequalities describing ̃k grows by up of nc every iteration. Furthermore, the number of variables of the optimization
problem increases as well, since we need to declare a new SOS multiplier si for every new inequality. Interestingly, it is
possible to reduce the number of redundancy checks and consequently the computational time by using the following
proposition.

Proposition 1. If a constraint cj(x, v) ≥ 0 is redundant at iteration k′ with respect to ̃k′ , then it will be redundant for any
iterations k > k′.

Proof. Let i = {(x, v) ∶ ci(x, v) ≥ 0}, i = 1, … ,nc and let us assume that constraint j becomes redundant at iteration k′.
By definition

(x̂(k|x, v), v)∈
nc⋂

i=1
i, k = {1, … , k′ − 1}, (7)

and since the jth constraint is redundant at iteration k′

(x̂(k′|x, v), v) ∈ j.

Then for any (x, v) ∈ ̃k′ , (x̂(k′|x, v), v) ∈ j. Finally, since ̃k′+1 ⊆ ̃k′ , (x, v) ∈ k′ implies (f (x, v), v) ∈ j, therefore, the
jth constraint is redundant at iteration number k′ + 1. ▪

Using Proposition 1 we can refine Algorithm 1 into the more computationally efficient Algorithm 2 which only checks
the redundancy of constraints that have not been redundant so far.

Algorithm 2. More efficient computation of ̃∞
̃ ← 𝜀

k ← 0
𝜌 ← 1
𝜌i ← 1, i = 1,… ,nc
while 𝜌 ≠ 0 ∧ k ≤ ̄k do

𝜌← 0
for i = 1, ..,nc do

if 𝜌i ≠ 0 then
if ci(x̂(k|x, v), v) ≥ 0 is redundant with respect to ̃ then

𝜌i ← 0
else

𝜌← 1
̃← ̃ ∩ {(x, v)|ci(x̂(k|x, v), v) ≥ 0}

end if
end if

end for
k ← k + 1

end while
̃∞ ← ̃
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6 ILLUSTRATIVE EXAMPLES

6.1 Application: satellite rendezvous

In this example we apply the proposed methodology to compute ̃∞ for a deputy-chief satellite rendezvous. In this set-
ting, the control objective is for the deputy satellite to approach the chief while staying in line of sight.32 A noninertial
Hill frame is attached to the chief spacecraft where the three axes are the radial direction toward earth, the along-track
direction toward the chief spacecraft, and the cross-track direction along the chief’s angular momentum vector,
respectively.

The orbit can be represented by the following linearized model,

ẋ(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3𝜈2 0 0 0 2𝜈 0
0 0 0 −2𝜈 0 0
0 0 −𝜈2 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u(t), (8)

where 𝜈 = 0.0011 rads−1, x = [x1 x2 x3 ẋ1 ẋ2 ẋ3]T are the relative positions in km and velocities in km s−1 along the three
axes of the Hill frame, and u = [u1 u2 u3]T are the three components of the thrust in the aforementioned axes. System (8)
is subject to the following constraints:

(tan2
𝛾)(x2 + 0.01)2 − x2

1 − x2
3 ≥ 0

u2
max − u2

1 − u2
2 − u2

3 ≥ 0

x2 ≥ 0, (9)

where 𝛾 = 15 ◦ is the Line of Sight cone half angle, and umax = 0.001 kms−2 is the maximum thrust accel-
eration. Discretizing (8) with Ts = 30 s and controlling it with the control law u(t) = Fx(t) + Gv(t), with
LQR gain F and feedforward gain G such that v becomes the reference position of the deputy spacecraft
yields

x(t + 1) = Ax + Bv, (10)

where

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0111 0.0007 0 0.1676 0.0129 0

0.0611 0.1247 0 0.8913 1.9383 0

0 0 0.0138 0 0 0.2079

− 0.0659 −0.0006 0 −0.9879 −0.0205 0

0.0048 −0.0583 0 0.0822 −0.8705 0

0 0 −0.0657 0 0 −0.9861

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.9889 −0.0007 0
− 0.0611 0.8753 0

0 0 0.9862
0.0659 0.0006 0
− 0.0048 0.0583 0

0 0 0.0657

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

A 3D slice of the ̃∞ computed applying Algorithm 2 is depicted in Figure 1. For this system, k∗ was determined to be
k∗ = 19 and ̃∞ is defined by 31 inequalities. This represents a very significant decrease compared to the 30 step prediction
horizon (and the resulting 90 constraints) which were empirically estimated in Reference 32. The computation of ̃∞ took
2.07 s on an Intel Core i7-7500 at 2.7 GHz with 16 GB of RAM. All optimization problems were solved using MOSEK33

interfaced in Julia 1.5.3.



COTORRUELO et al. 7 of 10

F I G U R E 1 Three-dimensional slice of the nine-dimensional ̃∞ of system (10) corresponding to x1 = 0.1, x2 = 5, x3 = −1.2,
x4 = x5 = x6 = 0

6.2 Electromagnetically actuated mass-spring damper

In this example we apply the proposed methodology to an electromagnetically actuated mass-spring damper system,25

depicted in Figure 2. This system has been used to describe many electromagnetic actuators, for example, injectors,
valves,34,35 and is modeled by the following equations:

ẋ1 = x2,

ẋ2 = −
k
m

x1 −
c
m

x2 +
𝛼

m
u

(d0 − x1)𝛾
, (11)

where x1 and x2 are the position in m and velocity in m s−1 of the armature, respectively, k = 38.94 N m−1, m = 1.54 kg,
c = 0.65 N s m−1, 𝛼 = 4.5 ⋅ 10−5 C2 kg−1 m−3, d0 = 0.0102 m, and 𝛾 = 2. This system can be feedback linearized using the
control law

u = 1
𝛼

(d0 − x1)𝛾 (kv − cdx2), (12)

1

0

F I G U R E 2 Electromagnetically actuated mass-spring damper system
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F I G U R E 3 ̃∞ for system (14) viewed from two different angles

with cd = 4. The closed loop system becomes

ẋ1 = x2

ẋ2 = −
k
m

x1 −
c + cd

m
x2 +

k
m

v. (13)

System (13) is subject to the following constraints:

x1 ≤ 0.008, kv − cdx2 ≥ 0, u ≤ 0.3,

where u is given by (12). Finally, the system is discretized with a sampling time of Ts = 0.05 s, yielding

x(t + 1) =

[
0.9701 0.0459
− 1.1610 0.8312

]

x(t) +

[
0.0299
1.1610

]

v(t). (14)

The resulting ̃∞ is depicted in Figure 3. For its computation we considered 𝜀 = 10−2. ̃∞ was finitely determined
after k∗ = 35 iterations and it is described by 87 inequalities. The elapsed time to compute ̃∞ was 0.58 s. Out of the total
105 inequalities resulting from this horizon, 18 were determined to be redundant. It must be remarked that the upper
bound k computed using the Lyapunov approach as in Reference 20 would give an unreasonably long horizon of k = 786
and that, in absence of a sound methodology, in previous publications reporting this example the horizon k was estimated
empirically.

7 CONCLUSION

In this note we presented a systematic procedure to compute MOASs for linear systems subject to polynomial constraints.
To do so, we introduced a redundancy certificate for polynomial constraints based on SOSP. Further, we provided a mod-
ification of the traditional algorithm for the computation of the MOAS for increased computational efficiency. Finally,
we demonstrated the effectiveness of the proposed methodology by computing the MOASs for two relevant examples of
spacecraft rendezvous and an electromagnetic actuator control, indicating a significant potential for practical impact of
the proposed methodology.
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