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Summary

In this technical note we study the computation of the Maximal Output Admissi-
ble Set for linear systems subject to polynomial constraints. The computation of
an inner approximation of the Maximal Output Admissible Sets requires the deter-
mination of constraint redundancy. We use a procedure to determine polynomial
constraint redundancy based on a consequence of Putinar’s Positivstellensatz. Fur-
ther, we present a modification of the algorithm to compute the Maximal Output
Admissible Set with improved performance. Lastly, demonstrate the potential for
practical applications in two case studies of spacecraft rendezvous and control of an
electromagnetic actuator.
KEYWORDS:
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1 INTRODUCTION

With applications ranging from estimating regions of attraction1,2, to the analysis of uncertain systems3, and to constrained
control4,5, set-theoretic methods keep proving themselves very useful to characterize and control dynamic systems6.

This note focuses on a particularly useful family of sets: the Maximal Output Admissible Sets (MOASs). These sets were con-
sidered in7, where a MOAS was defined as “the set of initial states such that the output will fulfill the constraints in the future”.
More recently, this definition was extended from considering only outputs to considering every arbitrary combination of states
and constant input signals8,9. The MOAS is very important for the design of many constrained control schemes. In particular, it
is the key ingredient for the formulation of Reference/Command Governor schemes9, of multimode control schemes10, and is
also a commonly used terminal set in Model Predictive Control (MPC) schemes11. The use of these schemes is quite common,
for instance, in aerospace control applications, see e.g.12,13,14,15,16,17,18.

However, at the current stage, the availability of algorithms to compute efficiently this MOASs is mainly restricted to linear
systems subject to linear constraints9. This note develops a method to compute an efficient representation of the MOAS for
linear systems subject to general polynomial constraints. This method significantly enlarges the classes of applications where
MOAS is needed, e.g., to systems which are feedback linearized in which case the dynamics become linear while constraints
become nonlinear after the transformations and can be approximated as polynomial.

The note is organized as follows. We first give a brief introduction to the algorithmic determination of the MOAS based on
certificates of constraint redundancy. We then provide a systematic way to generate these certificates in the case of polynomial
constraints. Further, we modify the algorithm to determine the MOAS to improve its performance based on several observations.
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Finally, we demonstrate the methodology on two relevant examples of spacecraft rendezvous and electromagnetic actuator
control that suggest significant potential for its practical impact.

2 PROBLEM STATEMENT

Consider a pre-stabilized1 closed loop discrete-time linear system,
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑣(𝑡), (1)

where 𝑥(𝑡) ∈ ℝ𝑛, 𝑣(𝑡) ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑛×𝑛 is Schur, 𝐵 ∈ ℝ𝑛×𝑝, and 𝑡 ∈ ℤ≥0 designates the discrete-time instant. This system is
subject to constraints in the form (𝑥, 𝑣) ∈ C, where

C = {(𝑥, 𝑣) ∶ 𝑐𝑖(𝑥, 𝑣) ≥ 0, 𝑖 = 1,… , 𝑛𝑐}, (2)
with 𝑐𝑖 ∈ ℝ[𝑥, 𝑣], where by ℝ[𝑥, 𝑣] we denote the set of all polynomials in the variables 𝑥 ∈ ℝ𝑛 and 𝑣 ∈ ℝ𝑚. Since system (1)
describes a closed-loop system, the input 𝑣(𝑡) can be seen as a set-point reference for the closed loop system. Furthermore, the
set C is determined by constraints in 𝑥(𝑡) and 𝑣(𝑡) that characterize state and input constraints on the original open-loop system.

The objective of this paper is to present a procedure to compute the Maximal Output Admissible Set (MOAS) for this class
of systems and constraints. For a pre-stabilized system, the MOAS can be defined as the set of states 𝑥 and references 𝑣 such
that, if 𝑥 is the initial state and the set-point 𝑣 is kept constant, constraints will not be violated. More formally the MOAS can
be defined as
Definition 1. (Maximal Output Admissible Set.) Consider a pre-stabilized system (1) subject to (𝑥, 𝑣) ∈ C. The MOAS is
defined as O∞ = {(𝑥, 𝑣) ∶ (𝑥̂(𝑘|𝑥, 𝑣), 𝑣) ∈ C, 𝑘 ∈ ℤ≥0}, where 𝑥̂(𝑘|𝑥, 𝑣) = 𝐴𝑘𝑥 +

∑𝑘−1
𝑗=0 𝐴

𝑗𝐵𝑣 is the prediction of the state at
time 𝑘 given the initial state 𝑥 and constant applied reference 𝑣.

3 GENERAL CONSIDERATIONS ON THE COMPUTATION OF Õ∞

Since O∞ is, in general, described by an infinite number of constraints, it is a common practice to use Õ∞, which is a slightly
tightened version of O∞, defined as Õ∞ = O∞ ∩ O𝜀 with O𝜀 = {(𝑥, 𝑣) ∶ (𝑥𝑣, 𝑣) ∈ (1 − 𝜀)C}, where 𝑥𝑣 = (𝐼𝑛 − 𝐴)−1𝐵𝑣 is
the steady-state associated to the constant applied reference 𝑣 and 𝜀 > 0 is a small constant. The set Õ∞ has a number of very
desirable properties7: it is positively invariant, it can approximate arbitrary well O∞ by decreasing 𝜀, and, most notably, if Õ∞
is compact, then it is also finitely determined, i.e. and there exists a 𝑘∗ such that

Õ∞= Õ𝑘∗ ={(𝑥, 𝑣)∶(𝑥̂(𝑘|𝑥, 𝑣), 𝑣) ∈ C,∀𝑘=1,… , 𝑘∗} ∩ O𝜀.

In general, using Lyapunov arguments20 and possibly solving two (in general non-convex) optimization problems it is possible
to compute an upper bound on 𝑘∗, 𝑘̄ ≥ 𝑘∗ for general class of systems and constraints9. However, this upper bound is typically
very conservative. As a consequence, to describe the MOAS as Õ∞ = Õ𝑘̄ results in an unnecessarily large number of constraints
which might sensibly slow down the control algorithms making use of such a set.

In7 it was proven that 𝑘∗ can be defined as the smallest 𝑘 such that Õ∗
𝑘 = Õ𝑘∗+1. Accordingly, an iterative algorithm able to

determine Õ∞ (Algorithm 1) and 𝑘∗ was presented, which, in principle, allows to find an optimal2 representation of Õ∞.
The main difficulty in the implementation of Algorithm 1 is to check if the constraint 𝑐𝑖(𝑥̂(𝑘|𝑥, 𝑣), 𝑣) ≥ 0 is redundant or not

with respect to to the set Õ. By definition, given a general constraint 𝑐(𝑧) ≥ 0 with 𝑧 ∈ ℝ𝑛𝑧 , 𝑐(𝑧) > 0 is redundant with respect
to a set K ⊂ ℝ𝑛𝑧 if and only if 𝑐(𝑧) ≥ 0, ∀𝑧 ∈ K. Using this fact, a common way to build a redundancy certificate is to compute

𝛾∗ = min
𝑧∈K

𝑐(𝑧) (3)
and to note that 𝛾∗ ≥ 0 if and only if the constraint is redundant.

1It is important to remark that this is not a limiting assumption; in fact, the RG literature is based on this assumption as well as a significant part of the MPC literature,
e.g., semi-feedback MPC 19.

2For the sake of precision it is worth remarking that, in principle, the representation output by Algorithm 1 may not be minimal: once a constraint is added to Õ𝑘 it
is not checked for redundancy at a later stage and it might have become redundant in later iterations of the algorithm. Consequently, to obtain a minimal representation of
Õ∞ it is necessary to assess the redundancy of every constraint that defines this set, eliminating those which are determined to be so.
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Algorithm 1 Computation of Õ∞
7.

Õ ← O𝜀

𝑘 ← 0
𝜌 ← 1
while 𝜌 ≠ 0 ∧ 𝑘 ≤ 𝑘̄ do

𝜌 ← 0
for 𝑖 = 1, .., 𝑛𝑐 do

if 𝑐𝑖(𝑥̂(𝑘|𝑥, 𝑣), 𝑣) ≥ 0 is not redundant with respect to Õ then
𝜌 ← 1
Õ ← Õ ∩ {(𝑥, 𝑣)|𝑐𝑖(𝑥̂(𝑘|𝑥, 𝑣), 𝑣) ≥ 0}

end if
end for
𝑘 ← 𝑘 + 1

end while
Õ∞ = Õ

The main problem with this formulation is that it provides a redundancy certificate only in the case one can compute the
exact optimal solution of (3). If instead one can compute only a sub-optimal solution 𝛾 ≤ 𝛾∗, the method only provides a non-
redundancy certificate in the case 𝛾 < 0, otherwise nothing can be said. Accordingly, the above approach can be used to remove
redundant constraints only when it is reasonable to solve exactly problem (3), e.g. when (3) is convex. Note that for (3) to be
convex the constraint to be checked must be concave and the set K needs to be convex. This means that this method can be used
for the computation of Õ∞ only in the case of linear systems subject to linear constraints. A number of efficient implementations
of this idea of certifying the redundancy of linear constraints have been proposed in the literature, including Linear Programming
approaches21, various heuristics22 and deterministic methods23. For an extensive survey on the subject, the reader is referred
to24. In the Reference Governor literature, the Linear Programming approach is customarily used in conjunction with Algorithm
1 to compute Õ∞ for systems subject to linear constraints9.

For what concerns the case of nonlinear constraints, to the best of the authors’ knowledge, the existing literature does not
provide systematic methods for the certification of redundancy, and as a consequence for the computation of Õ∞. Indeed, so far
most of the literature dealing with nonlinear systems and/or constraints has used either the upper bound 𝑘̄ derived by Lyapunov
arguments that can be very conservative or, more often, empirically estimated "sufficiently long" prediction horizons20,25. In
this paper we propose a novel procedure that allows to ascertain whether a polynomial constraint is redundant with respect to
a set defined by polynomial constraints, thus allowing to compute for efficient representations of Õ∞. The proposed solution
makes use of the Sum of Squares framework.

4 REDUNDANCY CERTIFICATE FOR POLYNOMIAL CONSTRAINTS

In order to build a redundancy certificate for nonlinear constraints we recall the Putinar’s formulation of the Positivstellensatz
(P-satz)26

Theorem 1 (Putinar, 1993). Consider a polynomial 𝑝(𝑧) ∈ ℝ[𝑧] and a set K = {𝑧 ∶ 𝑞𝑖(𝑧) ≥ 0, 𝑖 = 1,… , 𝑁}, where
𝑞𝑖(𝑧) ∈ ℝ[𝑧], 𝑖 = 1, ..., 𝑁 . Then every 𝑝(𝑧) > 0 ∀𝑧 ∈ K can be written as

𝑝(𝑧) −
𝑁
∑

𝑖=1
𝑠𝑖(𝑧)𝑞𝑖(𝑧) ∈ Σ[𝑧], (4)

for some 𝑠𝑖 ∈ Σ[𝑧], 𝑖 = 1,… , 𝑁 in which Σ[𝑧] represents the set of all Sum of Squares polynomials27.
It is important to remark that this theorem is nonconstructive and that the implication it states is

𝑝(𝑧) > 0 ∀𝑧 ∈ K ⇒ (4) holds.
Instead, we will use the converse result, which is summarized in the following corollary:
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Corollary 1. Let 𝑝(𝑥) ∈ ℝ[𝑥] and K =
{

𝑥 ∈ ℝ𝑛 ∶ {𝑓𝑖(𝑥)}𝑚𝑖=1 ≥ 0
}, then 𝑝(𝑥) is nonnegative over K if there exist {𝑠𝑖(𝑥)}𝑚𝑖=0 ∈

Σ[𝑥] such that
𝑝(𝑥) = 𝑠0(𝑥) +

𝑚
∑

𝑖=1
𝑠𝑖(𝑥)𝑓𝑖(𝑥).

Note that, by construction, the polynomial 𝑝(𝑥) is positive over K since it is the sum of strictly positive terms over K. This
corollary can be used to obtain a redundancy certificate of a polynomial constraint with respect to a set consisting of polynomial
inequalities. In fact, if there exist 𝑠1,… , 𝑠𝑛 ∈ Σ[𝑧] such that 𝑝(𝑧) −∑𝑛

𝑖=1 𝑠𝑖(𝑧)𝑞𝑖(𝑧) is a sum of squares polynomial, 𝑝(𝑧) ≥ 0 is
certified to be redundant with respect to K. This condition can be checked using the following Sum of Squares Programming
(SOSP) feasibility test

find 𝑠𝑖(𝑧), 𝑖 = 1,… , 𝑛𝑐
s.t.

𝑝(𝑧) −
∑𝑛𝑐

𝑖=1 𝑠𝑖(𝑧)𝑞𝑖(𝑧) ∈ Σ[𝑧]
𝑠𝑖 ∈ Σ[𝑧], 𝑖 = 1,… , 𝑛𝑐 .

(5)

In many cases it is also of interest to quantify “how much" a constraint is redundant. A possible way to do so is to maximize
on a slack variable 𝛾 as follows

𝛾∗ = max 𝛾
s.t

𝑝(𝑧) −
∑𝑛𝑐

𝑖=1 𝑠𝑖(𝑧)𝑞𝑖(𝑧) − 𝛾 ∈ Σ[𝑧]
𝑠𝑖(𝑧) ∈ Σ[𝑧], 𝑖 = 1,… , 𝑛𝑐 .

(6)

In this formulation, if 𝛾∗ is positive, the constraint 𝑝(𝑧) ≥ 0 is redundant with respect to K. This slack variable approach can
also be used to assess which constraints are “almost redundant". Almost redundant constraints are those whose associated 𝛾∗ is
negative and small in absolute value, and can be potentially eliminated using inner approximations. This concept is explored in28
where it was shown that the elimination of almost redundant constraints and a pull-in transformation can be used to compute
simple inner approximations of Õ∞ and implement reference governors with a significant reduction in online computational
time and effort.

As proven in29, it is possible to determine whether a polynomial is SOS through a Semi-Definite Programming (SDP)
optimization problem, which means that optimization problem (6) can be efficiently solved by off-the-shelf solvers e.g.30. Addi-
tionally, there exist software suites that provide an interface between SOSP and SDP e.g.31, thus transforming the optimization
problem (6) into an LMI problem.

5 EFFICIENT COMPUTATION OF Õ∞

Note that using Algorithm 1 and the proposed redundancy certificate to compute Õ∞ requires performing (𝑘∗ + 1) ⋅ 𝑛𝑐 LMI
feasibility tests as in (5). Accordingly, every iteration will take longer than the previous one, since the number of inequalities
describing Õ𝑘 grows by up of 𝑛𝑐 every iteration. Furthermore, the number of variables of the optimization problem increases as
well, since we need to declare a new SOS multiplier 𝑠𝑖 for every new inequality. Interestingly, it is possible to reduce the number
of redundancy checks and consequently the computational time by using the following proposition.
Proposition 1. If a constraint 𝑐𝑗(𝑥, 𝑣) ≥ 0 is redundant at iteration 𝑘′ with respect to Õ𝑘′ , then it will be redundant for any
iterations 𝑘 > 𝑘′.

PROOF - Let C𝑖 = {(𝑥, 𝑣) ∶ 𝑐𝑖(𝑥, 𝑣) ≥ 0}, 𝑖 = 1,… , 𝑛𝑐 and let us assume that constraint 𝑗 becomes redundant at iteration 𝑘′.
By definition

(𝑥̂(𝑘|𝑥, 𝑣), 𝑣) ∈
𝑛𝑐
⋂

𝑖=1
C𝑖, 𝑘 = {1,… , 𝑘′ − 1}, (7)

and since the 𝑗-th constraint is redundant at iteration 𝑘′

(𝑥̂(𝑘′|𝑥, 𝑣), 𝑣) ∈ C𝑗 .

Then for any (𝑥, 𝑣) ∈ Õ𝑘′ , (𝑥̂(𝑘′|𝑥, 𝑣), 𝑣) ∈ C𝑗 . Finally, since Õ𝑘′+1 ⊆ Õ𝑘′ , (𝑥, 𝑣) ∈ O𝑘′ implies (𝑓 (𝑥, 𝑣), 𝑣) ∈ C𝑗 , therefore, the
𝑗-th constraint is redundant at iteration number 𝑘′ + 1. ■
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Using Proposition 1 we can refine Algorithm 1 into the more computationally efficient Algorithm 2 which only checks the
redundancy of constraints that have not been redundant so far.

Algorithm 2 More efficient computation of Õ∞

Õ ← O𝜀

𝑘 ← 0
𝜌 ← 1
𝜌𝑖 ← 1, 𝑖 = 1, ..., 𝑛𝑐
while 𝜌 ≠ 0 ∧ 𝑘 ≤ 𝑘̄ do

𝜌 ← 0
for 𝑖 = 1, .., 𝑛𝑐 do

if 𝜌𝑖 ≠ 0 then
if 𝑐𝑖(𝑥̂(𝑘|𝑥, 𝑣), 𝑣) ≥ 0 is redundant with respect to Õ then

𝜌𝑖 ← 0
else

𝜌 ← 1
Õ ← Õ ∩ {(𝑥, 𝑣)|𝑐𝑖(𝑥̂(𝑘|𝑥, 𝑣), 𝑣) ≥ 0}

end if
end if

end for
𝑘 ← 𝑘 + 1

end while
Õ∞ ← Õ

6 ILLUSTRATIVE EXAMPLES

6.1 Application: Satellite Rendezvous
In this example we apply the proposed methodology to compute Õ∞ for a deputy-chief satellite rendezvous. In this setting, the
control objective is for the deputy satellite to approach the chief while staying in line of sight32. A non-inertial Hill frame is
attached to the chief spacecraft where the three axes are the radial direction towards earth, the along-track direction towards the
chief spacecraft, and the cross-track direction along the chief’s angular momentum vector, respectively.

The orbit can be represented by the following linearized model,

𝑥̇(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3𝜈2 0 0 0 2𝜈 0
0 0 0 −2𝜈 0 0
0 0 −𝜈2 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑥(𝑡) +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑢(𝑡), (8)

where 𝜈 = 0.0011 rad s−1, 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥̇1 𝑥̇2 𝑥̇3]T are the relative positions in km and velocities in km s−1 along the three axes
of the Hill frame, and 𝑢 = [𝑢1 𝑢2 𝑢3]T are the three components of the thrust in the aforementioned axes. System (8) is subject
to the following constraints:

(tan2 𝛾)(𝑥2 + 0.01)2 − 𝑥21 − 𝑥23 ≥ 0
𝑢2𝑚𝑎𝑥 − 𝑢21 − 𝑢22 − 𝑢23 ≥ 0

𝑥2 ≥ 0
(9)

where 𝛾 = 15 ° is the Line of Sight cone half angle, and 𝑢𝑚𝑎𝑥 = 0.001 km s−2 is the maximum thrust acceleration. Discretizing
(8) with 𝑇𝑠 = 30 s and controlling it with the control law 𝑢(𝑡) = 𝐹𝑥(𝑡) + 𝐺𝑣(𝑡), with LQR gain 𝐹 and feedforward gain 𝐺 such
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FIGURE 1 3D slice of the 9-dimensional Õ∞ of system (10) corresponding to 𝑥1 = 0.1, 𝑥2 = 5, 𝑥3 = −1.2, 𝑥4 = 𝑥5 = 𝑥6 = 0.

that 𝑣 becomes the reference position of the deputy spacecraft yields
𝑥(𝑡 + 1) = 𝐴𝑥 + 𝐵𝑣, (10)

where

𝐴=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0111 0.0007 0 0.1676 0.0129 0
0.0611 0.1247 0 0.8913 1.9383 0

0 0 0.0138 0 0 0.2079
−0.0659 −0.0006 0 −0.9879 −0.0205 0
0.0048 −0.0583 0 0.0822 −0.8705 0

0 0 −0.0657 0 0 −0.9861

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9889 −0.0007 0
−0.0611 0.8753 0

0 0 0.9862
0.0659 0.0006 0
−0.0048 0.0583 0

0 0 0.0657

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

A 3D slice of the Õ∞ computed applying Algorithm 2 is depicted in FIGURE 1. For this system, 𝑘∗ was determined to be
𝑘∗ = 19 and Õ∞ is defined by 31 inequalities. This represents a very significant decrease compared to the 30 step prediction
horizon (and the resulting 90 constraints) which were empirically estimated in32. The computation of Õ∞ took 2.07 s on an Intel
Core i7-7500 at 2.7 GHz with 16 GB of RAM. All optimization problems were solved using MOSEK33 interfaced in Julia 1.5.3.

6.2 Electromagnetically Actuated Mass-Spring Damper
In this example we apply the proposed methodology to an electromagnetically actuated mass-spring damper system25, depicted
in FIGURE 2. This system has been used to describe many electromagnetic actuators, e.g. injectors, valves,34,35 and is modeled
by the following equations:

𝑥̇1 = 𝑥2,

𝑥̇2 = − 𝑘
𝑚
𝑥1 −

𝑐
𝑚
𝑥2 +

𝛼
𝑚

𝑢
(𝑑0 − 𝑥1)𝛾

,
(11)
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𝑘

𝑐

𝑚

𝑥1

𝑑0

𝑢

FIGURE 2 Electromagnetically actuated mass-spring damper system.

where 𝑥1 and 𝑥2 are the position in m and velocity in ms−1 of the armature, respectively, 𝑘 = 38.94 Nm−1, 𝑚 = 1.54 kg,
𝑐 = 0.65 N sm−1, 𝛼 = 4.5 ⋅ 10−5 C2 kg−1 m−3, 𝑑0 = 0.0102 m, and 𝛾 = 2. This system can be feedback linearized using the
control law

𝑢 = 1
𝛼
(𝑑0 − 𝑥1)𝛾 (𝑘𝑣 − 𝑐𝑑𝑥2), (12)

with 𝑐𝑑 = 4. The closed loop system becomes
𝑥̇1 = 𝑥2

𝑥̇2 = − 𝑘
𝑚
𝑥1 −

𝑐 + 𝑐𝑑
𝑚

𝑥2 +
𝑘
𝑚
𝑣.

(13)

System (13) is subject to the following constraints:
𝑥1 ≤ 0.008, 𝑘𝑣 − 𝑐𝑑𝑥2 ≥ 0, 𝑢 ≤ 0.3,

where 𝑢 is given by (12). Finally, the system is discretized with a sampling time of 𝑇𝑠 = 0.05 s, yielding
𝑥(𝑡 + 1) =

[

0.9701 0.0459
−1.1610 0.8312

]

𝑥(𝑡) +
[

0.0299
1.1610

]

𝑣(𝑡). (14)
The resulting Õ∞ is depicted in FIGURE 3. For its computation we considered 𝜀 = 10−2. Õ∞ was finitely determined

after 𝑘∗ = 35 iterations and it is described by 87 inequalities. The elapsed time to compute Õ∞ was 0.58 s. Out of the total
105 inequalities resulting from this horizon, 18 were determined to be redundant. It must be remarked that the upper bound 𝑘̄
computed using the Lyapunov approach as in20 would give an unreasonably long horizon of 𝑘̄ = 786 and that, in absence of a
sound methodology, in previous publications reporting this example the horizon 𝑘 was estimated empirically.

7 CONCLUSION

In this note we presented a systematic procedure to compute Maximal Output Admissible Sets for linear systems subject to
polynomial constraints. To do so, we introduced a redundancy certificate for polynomial constraints based on Sum of Squares
programming. Further, we provided a modification of the traditional algorithm for the computation of the Maximal Output
Admissible Set for increased computational efficiency. Finally, we demonstrated the effectiveness of the proposed methodology
by computing the Maximal Output Admissible Sets for two relevant examples of spacecraft rendezvous and an electromagnetic
actuator control, indicating a significant potential for practical impact of the proposed methodology.
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FIGURE 3 Õ∞ for system (14) viewed from two different angles.
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