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Appendix Figure S1. Characterization of Zeb7 null osteoclast precursors and normal

osteoclast differentiation-related gene expression in Zeb7-deleted osteoclasts.

A Western blot quantification of Zeb1, c-Src, pro-Ctsk, and mature Ctsk expression in BMDMs

and mature osteoclasts as shown in Fig 1D (n = 3).

B Western blot quantification of ZEB1, B3 INTEGRIN, and CTSK protein expression in hMDMs
and mature hOCs as shown in Fig EV1D (n = 3).

C CD11b expression in wild-type or Zeb14"2M gsteoclast precursor cells as determined by flow

cytometry (n = 3).
D Proliferation of wild-type and Zeb 142" BMDMs by WST-1 assay (n = 6).

E Wild-type and Zeb1“™2M osteoclasts cultured atop plastic substrata were non-starved or

starved for 12h. TUNEL staining was then performed and apoptotic nuclei quantitated (n = 3).

F Relative mRNA expression of Zeb1, Zeb2, Acp5, Nfatc1, c-fos, Dcstamp, Oscar, Itgh3,
Atp6v0d2, Src, and Ctsk in BMDMs and osteoclasts generated from wild-type or Zeb14MAM
mice (n = 3).

Data information: Bars and error bars represent mean + SEM. Data are representative of at least
3 independent experiments with biological replicates. Data were analyzed using unpaired
Student’s t test (A, B, D) or one-way ANOVA with Bonferroni correction (E, F). ns, not significant;
*P <0.05, **P<0.01.



>

Relative protein expression

[ WT RANKL do [ Zeb142¥ RANKL d0 ns
25+ CJ WT RANKL d2 [ Zeb12wsM RANKL d2 _ns
[ WT RANKL d4 [ Zeb 142 RANKL d4 ns
- L
20
154
* % ns
10 I'IS** ns ns ns
ns ns ns
54 ns ns
ol imem ﬁﬂﬂlﬁﬂn | ﬂ'nﬂl-l nnl-l_.-u—.rl 0l o
Zeb Nfatc1 c-Fos c-Src B3 integrin
I WT RANKL do [ Zeb 12424 RANKL d0
25+ COWT RANKL d2 [ Zeb14¥2¥ RANKL d2 ns
[ WT RANKL d4 [ Zeb12%2M RANKL d4 e
204 ns

Relative protein expression

a

=
o

=
=]

b
o

—
o

=

e

=

=) [ n
@

g

E L]

@

Q

c

@

Q

@

]

2

£

= 0.0

Acidification (Red/green

WT  Zeb1awam

Mmp@ Mmp14 Pro-Ctsk Mature Ctsk
E 100 4 Isotype control
—_— WT
—— Zabamwam
280
25+ ns 6 ns
— o
o 20 £ X o
S5 = 2
Eg . . ,ar_g 44 . :
58 - e o 2 07
B z [=1y'7} . el
0 » 104 . o m 5 o oy
EL . 2o 2 * - 20 ]
= €
z 51 g
=z
0 T T 0 T r 0 ¥ T T T T T
WT  Zebipamsm WT  Zebjawsm L A L
¢ ¢ CD61-Alexa Fluor 488
COWT [ Zebiawam
\b@ 2.0+
& & 5
‘9\ 2 ns ns
2 7
1 (kDa) @
E 1.5
p-Src e = 60 (3]
£ T — T
% 1.04 - -
C-Src wwm s —60 s
g
'ﬁ 0.54
B-actin | e - 15 <
v
0.0 T T
p-Src &-Sre



Appendix Figure S2. Normal osteoclast differentiation-related protein expression,
unaltered surface B3 integrin expression and B3 integrin downstream activation in Zeb1-

deleted osteoclasts.

A Western blot quantification of Zeb1, Nfatc1, c-Fos, c-Src, B3 integrin, Mmp9, Mmp14, and Ctsk
expression in wild-type and Zeb 7™M BMDMs during osteoclast differentiation as shown in Fig
3B (n = 3).

B, C BMDMs were isolated from wild-type or Zeb14"AM

mice and cultured atop bone slices with
M-CSF and RANKL for 6 d. Acidification of osteoclast lacunar zones was visualized by acridine
orange staining (B) and quantified as the ratio of red versus green fluorescence intensity (C).

Scale bar, 20 ym.

D, E After a 6-day culture atop bone slice, phalloidin staining was performed in wild-type versus
Zeb1*M2M gsteoclasts, then the number of nuclei per osteoclast (D) and the number of actin
ring per osteoclast (E) quantified (n = 6).

F Measurements of surface B3 integrin (CD61) expression in osteoclasts generated from wild-
type or Zeb1°™2M mice with flow cytometry (n = 3).

G, H Phospho-Src and c-Src expression as assessed by Western blot in wild-type and Zeb 14MAM
osteoclasts attached on vitronectin-pretreated plate for 30 min (G), and quantified (H; n = 3).
Data information: Bars and error bars represent mean + SEM. Data are representative of at least
3 independent experiments with biological replicates. Data were analyzed using one-way ANOVA

with Bonferroni correction (A, H) or unpaired Student’s t test (C-E). ns, not significant; **P < 0.01.

Source data are available online for this figure.
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Appendix Figure S3. Temporal requirements for Zeb1 in orchestrating osteoclast function.

A, B Zeb1*"2M BMDMs were transduced with a lentiviral Cre or an empty expression vector (EV),
differentiated into osteoclasts, and cell lysates collected for Zeb1 immunoblotting (A) and
quantified (B; n = 3).

C-E Lentiviral Cre or EV-transduced Zeb 12 BMDMs were induced into osteoclasts, cultured
atop bone slices for 3 days and cells stained with phalloidin (red) or TRAP. Following osteoclast
removal, resorption pits were visualized by WGA-DAB staining (E). Scale bar, upper and middle
100 pm, lower 20 ym. Quantification of TRAP (C), actin ring area per cell, and WGA staining
(D; n=6).

F, G An empty control vector (EV)-transduced wild-type BMDMs, and EV- or ZEB1-transduced
Zeb1*M2M BMDMs, were differentiated into osteoclasts, and cell lysates collected for Zeb1, c-
Src, and Ctsk immunoblotting (F) and quantified (G; n = 3).

H, I An empty control vector (EV)-transduced wild-type pre-osteoclasts, and EV- or ZEB1-
transduced Zeb14™2M pre-osteoclasts were cultured atop bone slices for 3 days, stained with
phalloidin (red). Osteoclasts were removed and resorption pits visualized by WGA-DAB staining
(H). The actin ring area per cell and resorption pit area were quantified (I; n = 6).

Data information: Bars and error bars represent mean + SEM. Data are representative of at least

3 independent experiments with biological replicates. Data were analyzed using unpaired

Student’s t test (B-D) or one-way ANOVA with Bonferroni correction (G, 1). ns, not significant; **P

<0.01.

Source data are available online for this figure.
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Appendix Figure S4. Zeb1 regulates osteoclastic MtCK1 expression while the intracellular

ROS level and H20; production remain unaltered in Zeb7-deleted osteoclasts.

A Western blot quantification of MtCK1, Ckb, VDAC, and Tomm20 expression in BMDMs and
osteoclasts generated from wild-type or Zeb12"2M mice as shown in Fig 4F (n = 3).

B Western blot quantification of MtCK1 expression in the mitochondrial fraction in BMDMs and
osteoclasts generated from wild-type or Zeb 1™ mice as shown in Fig 4G (n = 3).

1AM/AM

C Quantification of MtCK1 immunofluorescence intensity of wild-type and Zeb osteoclasts

in vitro as shown in Fig 4H (n = 6).

D Quantification of MtCK1 immunofluorescence intensity of the TRAP* wild-type and Zeb14MAM

osteoclasts of a femur section from wild-type and Zeb74"AM

mice as shown in Fig EV3D (n = 6).

E Relative mRNA expression of Epcam in BMDMs and osteoclasts generated from wild-type or
Zeb 1M mice (n = 3).

F Representative FACS plot analysis of EpCAM expression in osteoclasts generated from wild-
type or Zeb 1™ mice with flow cytometry (n = 3).

G Measurements of intracellular ROS level by the DCFH-DA probe in osteoclasts generated from
wild-type or Zeb1*™2M mice with flow cytometry (n = 3).

H Measurements of H,O; level in wild-type or Zeb12™2M osteoclasts in vitro (n = 3).

| Relative mRNA expression of Cybb, Nox4, Sic16a4, and Gpx4 in BMDMs and osteoclasts
generated from wild-type or Zeb 1AM mice (n = 3).

Data information: Bars and error bars represent mean + SEM. Data are representative of at least

3 independent experiments with biological replicates. Data were analyzed using one-way ANOVA

with Bonferroni correction (A), two-way ANOVA with Bonferroni correction (B, E, I), or unpaired

Student’s t test (C, D, H). ns, not significant; **P < 0.01.
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Appendix Figure S5. Zeb14"2M osteoclasts display normal mitochondria abundance and

mitochondrial complex expression.

A 3D reconstruction of MitoTracker Green immunofluorescence of wild-type or Zeb14W4M
osteoclasts. Scale bar, 20 um.

B, C Measurements of mitochondrial mass of BMDMs and osteoclasts generated from wild-type
or Zeb1*2M mice using MitoTracker Green with flow cytometry (B) and quantified (C; n = 3).

D Relative mtDNA copy number per nuclear genome in osteoclasts generated from wild-type or
Zeb1M2M mice (n = 3).

E, F OXPHOS protein expression as assessed by Western blot (E) in osteoclasts generated from
wild-type or Zeb14MAM

G Western blot quantification of MtCK1, Ckb, Tomm20, VDAC, Zeb1, c-Src, Pro-Ctsk, and mature

Ctsk expression in osteoclasts differentiated from the mock vector, wild-type human MtCK1, or

mice and quantified (F; n = 3).

a catalytically-inactive MtCK 13166 mutant expression vector-transduced wild-type BMDMs (n =
3).
Data information: Bars and error bars represent mean + SEM. Data are representative of at least
3 independent experiments with biological replicates. Data were analyzed using two-way ANOVA
with Bonferroni correction (C), unpaired Student’s t test (D), or one-way ANOVA with Bonferroni

correction (F, G). ns, not significant; **P < 0.01.

Source data are available online for this figure.
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Appendix Figure S6. Phosphocreatine potentiates mitochondrial bioenergetics and

osteoclast activation in vitro.

A, B Oxygen consumption rate (OCR) profile plot (A) and mitochondrial function parameters (B)
analyzed by XF Cell Mito Stress Assay in phosphocreatine-treated wild-type osteoclasts after
sequential treatment of compounds modulating mitochondrial function (n = 4).

C ATP levels of phosphocreatine-treated wild-type osteoclasts (n = 3).

D, E Resorption pits visualized with WGA-DAB staining and phalloidin staining (E) in
phosphocreatine-treated wild-type osteoclasts in the presence or absence of 50 pM Y16
cultured on bone slices with the resorption pit area and actin ring area per cell quantified (D; n
= 6).

F RhoA activity of phosphocreatine-treated wild-type osteoclasts in the presence or absence of
10 nM oligomycin (n = 6).

G, H Resorption pits visualized with WGA-DAB staining and phalloidin staining (G) in
phosphocreatine-treated wild-type osteoclasts in the presence or absence of 10 nM oligomycin
cultured on bone slices with the resorption pit area and actin ring area per cell quantified (H; n
= 6).

Data information: Bars and error bars represent mean + SEM. Data are representative of at least

3 independent experiments with biological replicates. Data were analyzed using unpaired

Student’s t test (B, C) or one-way ANOVA with Bonferroni correction (D, F, H). **P < 0.01.
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Appendix Figure S7. The alternative involvement of other key cellular metabolism-related

genes is excluded during Zeb1-regulated osteoclast activity.

A Western blot quantification of MtCK1, Ckb, VDAC, Zeb1, c-Src, pro-Ctsk, and mature Ctsk
expression in osteoclasts differentiated from shCtri-transduced wild-type BMDMs, and shCtrl-
or shCkmt1-transduced Zeb 12" BMDMs as shown in Fig EV4E (n = 3).

B Relative mRNA expression of Sirt3, Hk2, Pkm2, Pfkm, and Pfkp in BMDMs and osteoclasts
generated from wild-type or Zeb1*"2M mice (n = 3).

C Western blot quantification of MtCK1, CKB, ZEB1, ¢c-SRC, pro-CTSK, and mature CTSK

expression in human osteoclasts differentiated from siCTRL- or siCKMT 1-transfected hMDMs as

shown in Fig EV5A (n = 3).

Data information: Bars and error bars represent mean + SEM. Data are representative of at least
3 independent experiments with biological replicates. Data were analyzed using one-way ANOVA
with Bonferroni correction (A, C) or two-way ANOVA with Bonferroni correction (B). ns, not
significant; *P < 0.05, **P < 0.01.
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Appendix Figure S8. Differentially regulated Zeb1 and MtCK1 level in osteoclasts when

cultured on bone substrate.

A Zeb1 (green) and F-actin (red) immunofluorescence of wild-type osteoclasts cultured on glass and
bone substrate. Scale bar, 20 ym.

B MtCK1 (green) and F-actin (red) immunofluorescence of wild-type osteoclasts cultured on glass
and bone substrate. Scale bar, 20 ym.

C Quantification of Zeb1 immunofluorescence intensity of wild-type osteoclasts cultured on glass
and bone substrate as shown in Appendix Fig S8A (n = 6).

D Quantification of MtCK1 immunofluorescence intensity of wild-type osteoclasts cultured on glass
and bone substrate as shown in Appendix Fig S8B (n = 6).

Data information: Bars and error bars represent mean + SEM. Data are representative of at least
3 independent experiments with biological replicates. Data were analyzed using unpaired
Student’s t test (C, D). **P < 0.01.
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Appendix Table S1. Genotyping PCR primers.

Allele Sequence (5’ to 3’)

Zeb1™ fwd CGTGATGGAGCCAGAATCTGACCCC
Zeb1™* rev GCCCTGTCTTTCTCAGCAGTGTGG
Zeb1® rev GCCATCTCACCAGCCCTTACTGTGC

Csf1r-Cre_ fwd

ACAACTACCTGTTCTGCCG

Csf1r-Cre_ rev

GCCTCAAAGATCCCTTCCAG
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Appendix Table S2. Quantitative real-time PCR primers.

Gene Forward (5’ to 3’) Reverse (5’ to 3’)

Mouse Zeb1 GCTGGCAAGACAACGTGAAAG GCCTCAGGATAAATGACGGC

Mouse Zeb2 ATTGCACATCAGACTTTGAGGAA ATAATGGCCGTGTCGCTTCG

Mouse Acp5 CACTCCCACCCTGAGATTTGT CCCCAGAGACATGATGAAGTCA

Mouse Nfatc1 | GACCCGGAGTTCGACTTCG TGACACTAGGGGACACATAACT
G

Mouse c-fos CGGGTTTCAACGCCGACTA TTGGCACTAGAGACGGACAGA

Mouse GGGGACTTATGTGTTTCCACG ACAAAGCAACAGACTCCCAAAT

Dcstamp

Mouse Oscar | CCTAGCCTCATACCCCCAG CGTTGATCCCAGGAGTCACAA

Mouse Itgb3 CCACACGAGGCGTGAACTC CTTCAGGTTACATCGGGGTGA

Mouse Src GAACCCGAGAGGGACCTTC GAGGCAGTAGGCACCTTTTGT

Mouse CAGAGCTGTACTTCAATGTGGAC AGGTCTCACACTGCACTAGGT

Atp6v0d2

Mouse Ctsk AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA

Mouse Sic6a8 | GCAGGGTGTGCATATCTCCAA TACCCCCACTCACATCAGTCA

Mouse TGCTTCCTTGTTACCATCTGC CATGCTGTTTGGGAGTAATCCT
Sic6a12

Mouse Gatm GCTTCCTCCCGAAATTCCTGT CCTCTAAAGGGTCCCATTCGT
Mouse Gamt | CACGCACCTGCAAATCCTG TACCGAAGCCCACTTCCAAGA
Mouse Ckmt1 | TGTCTTCAAGAGTCAGAACTGGC AGCATCCACCACAACACGTT
Mouse MtCK2 | ACACCCAGTGGCTATACCCTG CCGTAGGATGCTTCATCACCC
Mouse Ckb AGTTCCCTGATCTGAGCAGC GAATGGCGTCGTCCAAAGTAA
Mouse Ckm CTGACCCCTGACCTCTACAAT CATGGCGGTCCTGGATGAT

Mouse Gapdh

AGGTCGGTGTGAACGGATTTG

AGGTCGGTGTGAACGGATTTG

Human ZEB1 | CAGCTTGATACCTGTGAATGGG TATCTGTGGTCGTGTGGGACT
Human TGAGGAGACCTATGAGGTATTTGC | CTCATCAAAGTAGCCAGAACGG
CKMT1

Human CTSK | ACACCCACTGGGAGCTATG GACAGGGGTACTTTGAGTCCA
Human GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG

19




GAPDH

Mouse Epcam | GCGGCTCAGAGAGACTGTG CCAAGCATTTAGACGCCAGTTT
Mouse Cybb AGTGCGTGTTGCTCGACAA GCGGTGTGCAGTGCTATCAT
Mouse Nox4 GAAGGGGTTAAACACCTCTGC ATGCTCTGCTTAAACACAATCCT
Mouse AAAACGCCCTCCCCTTACAC CCAATTTGCTCTGAAGTGCCT
Sic16a4

Mouse Gpx4 GATGGAGCCCATTCCTGAACC CCCTGTACTTATCCAGGCAGA
Mouse GCCCCAGATATAGCATTCCC GTTCATCCTGTTCCTGCTCC
cytochrome ¢

oxidase |

18s ribosomal | TAGAGGGACAAGTGGCGTTC CGCTGAGCCAGTCAGTGT

RNA

Mouse CCCTGTACTTATCCAGGCAGA GAAAGCTCGTCCACGTCAGAC
Ppargc1b

Mouse Sirt3 ATCCCGGACTTCAGATCCCC CAACATGAAAAAGGGCTTGGG
Mouse Hk2 TGATCGCCTGCTTATTCACGG AACCGCCTAGAAATCTCCAGA
Mouse Pkm2 | GCCGCCTGGACATTGACTC CCATGAGAGAAATTCAGCCGAG
Mouse Pfkm TGTGGTCCGAGTTGGTATCTT GCACTTCCAATCACTGTGCC
Mouse Pfkp GAAACATGAGGCGTTCTGTGT CCCGGCACATTGTTGGAGA
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