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Abstract8

At altitudes below about 600 km, satellite drag is one of the most important and9

variable forces acting on a satellite. Neutral mass density predictions in the upper10

atmosphere are therefore critical for (1) designing satellites; (2) performing adjust-11

ments to stay in an intended orbit; and (3) collision avoidance maneuver planning.12

Density predictions have a great deal of uncertainty, including model biases and13

model misrepresentation of the atmospheric response to energy input. These may14

stem from inaccurate approximations of terms in the Navier-Stokes equations, un-15

modeled physics, incorrect boundary conditions, or incorrect parameterizations. Two16

commonly parameterized source terms are the thermal conduction and eddy diffu-17

sion. Both are critical components in the transfer of the heat in the thermosphere.18

Determining how well the major constituents (N2, O2, O) are as heat conductors19

will have effects on the temperature and mass density changes from a heat source.20

This work shows the effectiveness of using the retrospective cost model refinement21

(RCMR) technique at removing model bias caused by different sources within the22

Global Ionosphere Thermosphere Model (GITM). Numerical experiments, Challeng-23

ing Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment24

(GRACE) data during real events are used to show that RCMR can compensate25

for model bias caused by both inaccurate parameterizations and drivers. RCMR is26

used to show that eliminating model bias before a storm allows for more accurate27

predictions throughout the storm.28

Key Points:29

• Inaccurate approximations to physics terms and incorrect drivers within30

GITM can be corrected for using data-driven model refinement.31

• Dynamic adjustments to the parameterized thermal conductivity coefficients32

can compensate for errors in model predicted mass densities.33

• Comparative statistics were computed when GITM was configured in a biased34

version, an out-of-the-box version and the refined version.35
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Plain Language Summary36

Physics-based models have a difficult time accurately estimating the upper37

atmosphere density. These densities are needed to compute satellite orbit trajec-38

tories to monitor for potential collisions. Inaccurate density estimation can be due39

to variety of factors and so methods of correcting the model-predicted density are40

needed. We are presenting a method to correct the densities using available satellite41

measurements from the CHAMP and GRACE satellites and the commonly used em-42

pirical model NRLMSISE-00. Upon reducing the model error, we show the improved43

ability of a physics-based model to capture a geomagnetic storm.44

1 Introduction45

Orbit estimation of drag along a satellite path for collision avoidance is grow-46

ing in importance due to the increased risk of collisions as more objects are being47

launched into low Earth orbit. Satellites are expensive to build, launch and main-48

tain [Saleh et al., 2004] and there is an increasing collision risk posed by over twenty49

thousand pieces of space debris larger than 10 cm3 [Garcia, 2021]. In response to50

the threat of collisions, the Joint Space Operations Center (JSpOC) continuously51

monitors orbiting objects’ positions and velocities. From its database, it computes a52

probability of collision between two bodies and will issue a Conjunction Data Mes-53

sage (CDM) to the mission operator for further action [Hejduk and Frigm, 2015],54

[Bussy-Virat et al., 2018]. Then a collision avoidance maneuver could be performed,55

costing time of inactivity and fuel.56

There are underlying assumptions to the advanced computing technique of

predicting a collision. One assumption is the drag force estimation used to solve the

kinematic equations. The acceleration (a) experienced due to satellite drag is pro-

portional to the ratio of surface area (A) to mass (m) of the spacecraft, coefficient

of drag (cD), the atmospheric density (ρ) and the velocity, relative to a rotating

atmosphere, squared (v):

a = −1

2

A

m
cDρv

2v̂ (1)

where density is the largest uncertainty in this equation.57

Attitude control is a related topic that requires properly estimating the drag-58

induced torques on a satellite to control its orientation. This could be important59
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for instrumentation to function properly. Part of the attitude control problem is60

bounding torques to ensure systems do not get overwhelmed. Alternatively, over-61

engineering a powerful attitude control system costs extra money. The accuracy of62

torque prediction is reliant on low-error density estimation too. Moorthy et al. [2021]63

describes the importance of attitude control and the potential impact to expand our64

ability to explore extremely low Earth orbits (150-250 km). This region of Earth’s65

atmosphere is under-explored due to the large drag force causing short expected66

lifetimes.67

Accurately predicting the density in the thermosphere is a difficult task and68

atmospheric models are often called upon to make these density-driven drag estima-69

tions, but can be inaccurate by 20% ([Kuang et al., 2014], [Marcos, 1990], [Bruinsma70

et al., 2004]). The errors in the prediction are amplified during a geomagnetic storm,71

largely due to poor density estimation [Pachura and Hejduk , 2016]. Drag inaccura-72

cies can create positioning errors on the order of 10 km after just one day. In a short73

period of time, the satellites’ trajectory can change enough such that JSpOC may74

need to reacquire them.75

One of the models available to estimate density is NRLMSISE-00 (referred to76

as MSIS). MSIS is an empirical model ([Hedin, 1983], [Hedin, 1987], [Hedin, 1991],77

[Picone et al., 2002]) that uses a spherical harmonic fitting of ground-based and78

satellite measurements to estimate neutral densities and temperatures of the thermo-79

sphere for given solar conditions (F10.7) and geomagnetic activity (Ap). Empirical80

models incorporate data from remote observations so they are able to capture back-81

ground neutral densities well, but do not have the same success during a solar storm82

due to limited time periods of enhanced activity. Wang et al. [2022] analyzed 26583

storms, showed that MSIS under-predicted the density during storms, and fit coeffi-84

cients to improve MSIS’s peak density prediction during weak, moderate and intense85

storms.86

The Jacchia-Bowman 2008 Empirical Thermospheric Density Model (JB2008)87

[Bowman et al., 2008] is an empirical model that estimates total mass density.88

JB2008 is a series of improvements upon the Jacchia 70 model [Jacchia, 1970]89

changing the input for the geomagnetic indices (from Ap to Dst) and adding to90

the input for the solar indices using orbit-based sensor measurements of solar data91
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in the EUV and far EUV (FUV) wavelengths. As part of the change from Jacchia92

70, Bowman [2004] concluded that a Fourier time series and an altitude dependent,93

quadratic function could accurately replace the existing Jacchia 70 density functions94

used to compute the semidiurnal density variation. Bowman et al. [2006] introduced95

EUV and FUV solar indices into their temperature equation, replacing the standard96

Jacchia temperature equation. The accumulation of these changes led to lower stan-97

dard deviation in errors, particularly during solar minimum conditions and during98

major geomagnetic storms.99

There are two common issues with models: (1) bias during background condi-100

tions where mean densities from the model differ from mean measurements over a101

period of several days or longer and (2) enhanced errors over periods of a couple of102

days, driven by space weather events like storms. There are many ways people have103

tried to address these issues of poor density estimation.104

The High Accuracy Satellite Drag Model (HASDM) [Storz et al., 2005] is105

an extension of JB2008 used by the US Space Force Combined Space Operations106

Center which uses observed drag effects from approximately 75 Earth-orbiting107

spheres to compute diurnal and semidiurnal variations to the thermosphere den-108

sity. Doornbos et al. [2008] has done work with two-line element (TLE) data to109

directly create altitude-dependent multiplication factors to scale the densities of110

empirical models. Brandt et al. [2020] created the Multifacted Optimization Algo-111

rithm (MOA) which similarly uses TLE data to incrementally adjust the drivers112

for MSIS within the orbital propagator (SpOCK) [Bussy-Virat et al., 2018]. MOA113

adjusts the drivers of MSIS when MSIS has a large bias or misrepresents a storm114

to bring SpOCK-predicted orbits in line with TLEs from several small satellites.115

Lastly, [Kalafatoglu Eyiguler et al., 2019] showed that debiasing a model’s back-116

ground density prior to a storm may lead to improved performance for some models117

and recommends a few calculations for assessing storm-time performance.118

Physics-based models estimate the thermosphere state variables using approx-119

imations of the Navier-Stokes equations. The idea is that correctly implemented120

physics could more accurately reproduce typical and highly-variable thermosphere121

conditions as observed during storms. Coupled Thermosphere Ionosphere Model122

(CTIM) [Fuller-Rowell and Rees, 1980], Thermosphere Ionosphere Electrodynamics123

–5–
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General Circulation Model (TIEGCM) [Richmond et al., 1992] and Global Iono-124

sphere Thermosphere Model (GITM) [Ridley et al., 2006] are examples of Earth-125

based, physics models. The different numerical approximations, source terms in-126

cluded (or not included), and drivers in each model generates different temperatures,127

wind structures and densities. TIEGCM and CTIM use the hydrostatic assump-128

tion, whereas GITM does not make the same hydrostatic equilibrium assumption129

and solves a more complete vertical momentum and energy equation, but takes sig-130

nificantly longer to run. GITM makes use of the Flare Irradiance Spectral Model131

(FISM) [Chamberlin et al., 2008] fluxes to better represent the solar EUV entering132

the atmosphere.133

Matsuo et al. [2013] used an ensemble Kalman filter to assimilate CHAMP134

measurements in the TIEGCM and in turn back out solar forcing terms such as135

the F10.7 index. Their work also demonstrated that electron density profiles from136

COSMIC can infer neutral states better than a single satellite’s measurements of137

in-situ neutral densities. Progressing on this work, indirect and direct measurements138

of electron densities were used to determine the effectiveness of orbit propagation139

and quantify the improvements to ionosphere-thermosphere states ([Matsuo and140

Hsu, 2021][Dietrich et al., 2022]). Matsuo and Hsu [2021] also pointed out that after141

removing the bias, forecasting neutral densities remained reliable for the next three142

days in geomagnetically quiet conditions. It is important that a balance be struck143

when assimilating data without addressing the model drivers/parameterizations144

because during active time periods, the fundamental physics is needed to capture145

the fast changing states. Sutton [2018] points this out and developed the Iterative146

Reinitialization, Driver Estimation, and Assimilation (IRIDEA) technique which has147

demonstrated that assimilating satellite measurements in TIEGCM to modify solar148

and geomagnetic indices (drivers for models) improve active time period errors.149

This study presents work on debiasing the background density in GITM us-150

ing observational data. It also shows the impact of debiasing a model prior to a151

geomagnetic storm using satellite measurements and the MSIS model.152

–6–
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1.1 The Global Ionosphere Thermosphere Model (GITM)153

Understanding the parameters that affect the thermosphere’s neutral density154

are critical for improving physics-based models like GITM. GITM is a 3D spherical155

model that is used for Earth [Ridley et al., 2006], Mars [Bougher et al., 2015] and156

Saturn’s moon Titan [Bell et al., 2010]. In this study, the resolution of GITM was 2◦157

latitude and 4◦ in longitude.158

Ridley et al. [2006] explains the capabilities of the model, including the chem-

istry and numerical schemes. The vertical energy equation in GITM, including

source terms, is [Ridley et al., 2006]:

∂T
∂t

+ ur
∂T
∂r

+ (γ − 1)T (
2ur
r

+
∂ur
∂r

) =
k

cvρm̄n
Q (2)

where the first term is the time rate of change for the normalized, neutral temper-

ature, T = kT/m̄n. The second term is the advection of temperature gradients,

while the third term is the adiabatic heating, which is a result of the divergence of

the velocity. This is is only the vertical component which depends on the vertical

velocity, ur, radius of the Earth, r, and the temperature gradient. γ is the adiabatic

index that is attached to the change in energy from the expansion of the gas. On the

right-hand side, cv is the specific heat, k is Boltzmann’s constant, ρ is the mass den-

sity, and m̄n is the mean mass of the neutrals. The various source terms are given

by:

Q = QEUV +QNO+QO+
∂

∂r
((κc+κeddy)

∂T

∂r
)+

∑
i

nimi

∑
n

νin[3k(Tn − Ti) +mn(v − u)2]

mi +mn

(3)

where: QEUV is the contribution from the solar extreme ultraviolet irradiance; the159

QNO and QO terms are the cooling to space from the 5.3 µm and 63 µm bands160

respectively. The last term is the collisional frictional heating and heat transfer be-161

tween ions and neutrals. This is a function of the ion density (ni), mass of the ion162

(mi), mass of the neutrals (mn), the ion-neutral collision frequency (νin), the ion ve-163

locity (vi), neutral velocity (un), ion temperature (Ti) and the neutral temperature164

(Tn). Finally, the fourth term is the thermal conductivity, where κeddy and κc are165

the conductivity coefficients due to eddy diffusion and molecular heat conductivity166

respectively, and is the focus of this study.167
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1.2 Thermal Conductivity in the Upper Atmosphere168

Thermal conductivity uncertainty is a serious issue in physics-based models

([Banks and Kockarts, 1973], [Pawlowski and Ridley , 2009], [Schunk and Nagy ,

2004]). Most of the literature describes thermal conductivity in a laboratory setting

where it is expressed as a function of temperature alone for specific species [Vargaftik

et al., 1993]. The theoretical expression for the thermal conductivity coefficient (κc)

are complex and so it has been useful to simplify the coefficient to be a parameteri-

zation ([Banks and Kockarts, 1973], [Schunk and Nagy , 2004]) as:

κc =
∑

i=O,O2,N2

[
Ni

Ntotal
]AiT

s (4)

where Ni/Ntotal is a weighting factor by number density of each neutral species, T is173

the thermosphere temperature, Ai and s are species specific thermal conductivity co-174

efficients to fit the total conductivity as needed. The summation includes the three175

species with the largest concentrations in the thermosphere. From Figure 1, above176

about 200 km, O is a dominant neutral species whereas in the lower thermosphere177

O2 and N2 densities are more prevalent and must be considered in the contribu-178

tion to the heat exchange process. The temperature profile shows that above about179

250 km, the atmosphere is roughly isothermal, so the conduction term can be quite180

small. This is the region where O is dominant. This implies that the N2 term in the181

thermal conductivity is probably a more important term since N2 is dominant below182

∼250 km where the vertical temperature gradient is largest.183

–8–
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Figure 1. (a) Globally averaged atmosphere constituents and (b) globally averaged temper-

ature in the thermosphere from GITM on September 26th, 2002. This time period is represen-

tative of solar max conditions (F10.7 ≈ 180) and is used in some of the tests performed in later

sections.

169

170

171

172

Pavlov [2017] gives approximations from tabulated values in Vargaftik et al.

[1993] for thermal conduction (denoted as λ in Pavlov [2017]) experiencing pressures

much less than 0.1 MPa in temperature ranges of 160 - 2500 K for N2 and 160 -

1500 K for O2. The full expressions a

κN2
= −3520 + 720.5T 0.5 − 41.93T + 1.613T 1.5 − 0.02685T 2 + 1.665× 10−4T 2.5 (5)

κO2 = −3169 + 735.7T 0.5 − 53.83T + 2.583T 1.5 − 0.05325T 2 + 4.083× 10−4T 2.5 (6)

κO = 46.7(1 + 2.228× 10−5T − 5.545× 10−9T 2)T 0.77 (7)

Figure 2 shows the Pavlov [2017] values of κN2
, κO2

, κO, as well as the correspond-188

ing Schunk and Nagy [2004] conductivities (assuming s = 0.75). In the bottom189

subplot, ”best fit” lines are shown using the same parameterization scheme in (4).190

The estimation of the coefficients and exponent in the parameterization are derived191

from data and theoretical expressions of the thermal conductivity of individual gases192

from [Hilsenrath, 1960], [Reid et al., 1977], [Lide, 1997], [Barlier et al., 1969] and193
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[Banks and Kockarts, 1973]. While Vargaftik et al. [1993] describes more complex194

expressions that best fit to an exponent close to 0.8. Although the parameteriza-195

tions of the atomic oxygen, O, and nitrogen, N2, seem to match fairly well, there is a196

great deal of discrepancy for the estimation of the O2.197

Figure 2. Different species-specific thermal conductivities plotted as a function of tempera-

ture with differing definitions of the suggested parameterization. Top: Pavlov and Schunk and

Nagy parameterized species-specific conductivities. Bottom: Best fit lines for the Pavlov species-

specific curves with the form AiT
s.

184

185

186

187

As described in Pawlowski and Ridley [2009], model bias can originate from198

incorrectly defined parameters like the thermal conductivity, eddy diffusion, or pho-199

toelectron heating efficiencies. Certain quantities such as the eddy diffusion, and200

lower boundary density and temperature affect model bias such that the best mod-201

eled physics equations can still result in inaccurate mass density calculations. It is202

therefore quite difficult to identify the cause of data-model comparison discrepancies.203

For example, Masutti et al. [2016] explored a time period in which F10.7 in-204

creased over the course of several days and showed that GITM’s mass density at205
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approximately 400 km altitude overresponded to this change. Overall, there was206

an underestimate of a mass density when F10.7 was low and an overestimate when207

F10.7 was high. Since GITM’s performance was a function of the solar irradiance,208

improved performance could possibly be captured through thermal conductivity209

adjustments based on solar activity, but may be possibly masking other incorrectly210

modeled physics.211

The thermal conductivity is the focus of this study because its parameteriza-212

tion is a possible deficiency in GITM and it significantly changes the density results213

needed for orbit prediction. This is an opportunity to settle the discrepancy of pa-214

rameterizations and compensate for neutral density model bias that may be caused215

by other incorrectly modeled physics, boundary conditions or drivers. For instance,216

inaccurate modeling of a term like the eddy diffusion coefficient could also influence217

neutral density results [Qian et al., 2009]. Handling the eddy diffusion has been a218

topic of previous research in GITM ([Goel et al., 2018], [Malhotra et al., 2017]), but219

the eddy diffusion is a term that also controls the composition and ionospheric den-220

sity due to the changed turbulent mixing and its inclusion in the continuity, vertical221

momentum and energy equations.222

1.3 Manually Debiasing the Thermal Conductivity223

This section outlines the need for debiasing models by describing an attempt224

to choose a single constant, thermal conductivity coefficient that allows GITM’s225

mass density to better match CHAMP observations. Nine runs with varying thermal226

conductivity coefficients (Table 1) were performed. Six different contour maps are227

shown for the six different time periods simulated (Figure 3). For each run, the eddy228

diffusion coefficient was set to 500, and s was set to 0.69. The percent difference in229

mass density from CHAMP measurements and GITM calculations were examined.230

GITM was ran for ten days, but only the last five days of each run were used to al-231

low GITM to reach a quasi-diurnally reproducible state before comparison. CHAMP232

and GITM densities were averaged over the orbital period (∼ 90 minutes).233

Contours of percent error for each time period are shown in Figure 3. The236

September 2002 and September 2004 time periods were selected to tune GITM,237

–11–
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Run A(O2,N2) A(O)

1 3.6 4.6

2 4.6 4.6

3 5.6 4.6

4 3.6 5.6

5 4.6 5.6

6 5.6 5.6

7 3.6 6.6

8 4.6 6.6

9 5.6 6.6

Table 1. The variety of inputs to thermal conductivity coefficients. Multiply A(i) by 10−4 to

yield Jm−1s−1K−1.

234

235

keeping the season and geomagnetic conditions similar, but allowing the solar activ-238

ity to vary (see Table 2).239
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Time period F10.7

September 2002 146-196

February 2003 107-133

September 2004 89-110

August 2005 85-110

October 2005 74-80

September 2006 70-81

Table 2. Range of F10.7 (solar flux units) values during the different time periods.240

Figure 3. Contours of model errors as a function of thermal conductivity (molecular on

x-axis, atomic on y-axis) for different time periods. The blue and red regions indicate GITM

having mass densities lower and higher than CHAMP observed, respectively. Areas of white yield

results similar mean densities to CHAMP. (a) and (b) are baseline runs to find suitable thermal

conductivity coefficients. The yellow region in (c)-(f) are thermal conduction values that yield

good results for both the reference runs to within 5%.

241

242

243

244

245

246
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As the thermal conductivity is increased, the gradient in temperature in the247

lower thermosphere decreases. Since the lower boundary condition fixes the tem-248

perature, the temperature in the upper thermosphere must decrease. Pressure and249

density profiles are strongly controlled by the temperature, so as the temperature250

decreases, the density at a fixed altitude in the upper thermosphere also decreases.251

This means that the neutral density in GITM decreases as the thermal conductivity252

increases. Figure 3 shows that the molecular coefficient has a stronger effect than253

the atomic oxygen coefficient. This is because the thermal conductivity multiplies254

∇T , which is largest in the lower thermosphere (∼100-200 km), where the major255

species O2 and N2 are dominant (Figure 1). Hence, the thermal conductivity in the256

lower thermosphere dictates the middle and upper thermosphere temperature and257

density.258

The top two plots of Figure 3 indicate that, for these two intervals, there259

is a span of atomic and molecular coefficients that reduce the model bias to ex-260

tremely low levels, even with different solar irradiance. However, when the study261

was expanded to include other seasons and other conditions, it became clear that262

no combination reduced the bias universally. Times outside of September 2002 and263

2004 needed to be considered to see that this overlapping parameterization space264

does not provide unbiased results at different parts of the solar cycle. The yellow265

zone overlayed on each subplot is the parameter space from the September 2002 and266

2004 runs where the error was within ±5% for both times. These yellow zones show267

that a debiased set of thermal conductivity parameters for one set of times do not268

necessarily reduce the error to zero for other time periods.269

Figure 4 shows the sensitivity of the thermal conductivity exponent, s, for270

September 16-26th, 2002. The molecular and diatomic coefficients were held con-271

stant at A(O) = A(O2, N2) = 4.6 × 10−4 Jm−1s−1K−1 while ’s’ varied from 0.63272

- 0.75 in increments of 0.03. For the GITM conditions during this time period, an273

exponent of 0.68 minimized the absolute error between GITM and CHAMP. As in-274

dicated in the sensitivity study of the molecular and diatomic coefficients, this is not275

expected to be a universal value due to the uncertainty in other terms within GITM.276

These runs show that GITM is more sensitive to the exponent than the molecular277

and diatomic coefficients (i.e. a small percentage change in s drives a large change in278

–14–
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GITM densities). For this reason, the work in the next sections focus on estimating279

the thermal conductivity exponent, s.280

The causes of model bias varying from event to event in Figure 3 could stem283

from incorrect drivers (EUV, lower boundary condition, aurora, etc...) or incorrect284

physics (ion variability, small-scale structures, turbulent heating, etc...). This is the285

reason an automated debiasing mechanism is needed. The difference in performance286

to estimate other state variables (aside from the neutral density) between the three287

parameters within the thermal conductivity coefficient was not studied in this work.288

Figure 4. A five-run sensitivity study for the thermal conductivity exponent, s, which varied

from 0.63 - 0.75. Percent differences between GITM and CHAMP are shown for each run.

281

282

2 Retrospective Cost Model Refinement (RCMR)289

Retrospective Cost Model Refinement (RCMR) is a technique developed for290

parameter estimation in nonlinear systems [Morozov et al., 2011]. The technique291

is a variation of retrospective cost adaptive control (RCAC) that was primarily292

developed for adaptive control applications in aerospace engineering [Santillo and293

Bernstein, 2010]. In this work, RCMR is used to estimate thermal conductivity coef-294

ficients in a system modeled by Navier-Stokes partial differential equations. RCMR295
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minimizes a cumulative cost function that is based on the difference between the296

density computed self-consistently by GITM and the density specified externally,297

such as that measured by a real satellite or estimated by a different model. This298

technique has been applied for estimation of (1) the eddy diffusion coefficient us-299

ing total electron content (TEC) as the comparison variable [Goel et al., 2018], (2)300

NOx cooling using simulated space-based measurements [DAmato et al., 2013], (3)301

the photoelectron heating coefficient based on real satellite measurements [Burrell302

et al., 2015] and, (4) the thermal conductivity coefficients using simulated density303

measurements [Goel et al., 2020]. Each of these studies successfully estimated the304

corresponding unknown parameter using RCMR. This method is different from the305

other data assimilation methods talked about in the introduction because it does306

not use an ensemble [Matsuo et al., 2013] or run restarts [Sutton, 2018] which saves307

considerably on computational time. RCMR has been applied to parameters within308

GITM rather than directly updating the model states or modifying the drivers. For309

a more complete description of RCMR, refer to Goel et al. [2020].310

Figure 5 shows the block diagram used to estimate the unknown parameter311

within RCMR. As shown by the top block in Figure 5, the external drivers, in-312

cluding the solar EUV, frictional heating and auroral precipitation, force the real313

thermosphere’s density, ρ. Thermal conductivity serves to move the energy verti-314

cally. When trying to reproduce nature’s physics with a model (GITM), there are315

assumptions that try to emulate the true relationships. The empirical formulations,316

boundary conditions and other model necessities result in error accumulation. This317

is seen when comparing the model estimated density, ρ̂ with in-situ measurements,318

as shown in Figure 3.319

Reducing the error (z) is ideally done by correctly implementing equations that320

accurately and completely capture all dynamics, boundary conditions and drivers321

within the model. Low error could also be obtained by incorrect physics within the322

models that cancel each other out, inadvertently matching the measurements. This323

can occur when multiple incomplete physics terms compensate for each other. For324

example, having too low solar EUV heating along with too high frictional heating325

at high-latitudes could result in an orbit-averaged mass density that is more or less326

correct. In the case of RCMR, intentionally adjusting thermal conductivity coef-327
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ficient(s) changes the error by altering the thermal balance between sources and328

sinks.329

Figure 5. Modified block diagram from Goel et al. [2020] to illustrate the RCMR process.330

In Figure 5, the top block represents the true physical system with real drivers331

and boundary conditions. In the real system, κ is driven by the states and dy-332

namics, making a complex, nonlinear system. GITM approximates the drivers and333

boundary conditions as well as approximating the dependence of κ on the system334

state as described above (i.e. κ =
∑
AiT

s). RCMR takes the difference between the335

”actual” ρ and the GITM-estimated ρ̂, and alters the κ (through the values of Ai336

and/or s) to minimize the difference.337

In order to validate the integration of RCMR within GITM, RCMR was used338

to estimate κ (A(O2, N2)) using simulated truth density data obtained from a GITM339

simulation with a known value of κ. The density data was recorded and serves as340

the satellite measurements. Next, GITM was re-run with an intentionally incorrect341

A(O2, N2) and RCMR updated the estimate A(O2, N2) using the simulated truth342

density data. If RCMR was implemented correctly, RCMR’s estimated A(O2, N2)343

would converge to the true value of A(O2, N2) used to generate the simulated truth344

data, validating the technique. When this is true, it is a good indication that when345
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actual truth data (i.e. CHAMP, GRACE, MSIS) is used, the convergence will pro-346

vide the real thermosphere thermal conductivity coefficients.347

3 Results348

3.1 Automating the Model Debiasing Process via RCMR349

RCMR estimates the thermal conductivity coefficients every 60 seconds using350

density measurements from the CHAMP and GRACE satellites as well as Naval351

Research Laboratory’s (NRL) Mass Spectrometer and Incoherent Scatter Radar352

(MSIS) empirical model [Picone et al., 2002]. In order to implement this, GITM353

was ran independent of RCMR to obtain global density values from September 16-354

26, 2002 forming a truth data set. The thermal conductivity coefficients of A(O) =355

4.6×10−4 Jm−1s−1K−1, A(O2, N2) = 4.6×10−4 Jm−1s−1K−1 and the exponent s =356

0.69 were used. In comparison to CHAMP satellite data, this provided a low-biased357

mass density result (Figure 3a).358

The orbit of the CHAMP satellite was used to extract densities from the366

GITM run (ρ4.6) at a one minute cadence to match the update frequency of RCMR.367

Using GITM densities at the satellite-position as inputs for RCMR (see Figure 6), a368

GITM simulation was run again during the same time, but used RCMR to change369

the molecular coefficient. This work was different from Goel et al. [2020] which used370

the simulated global maximum, minimum and mean densities instead of the densities371

directly at the satellite position. The thermal conductivity coefficient A(O2, N2) was372

initialized to 1.0 × 10−4 Jm−1s−1K−1, while the A(O) and exponent S were held373

constant at their previously set values above. The densities modeled by GITM with374

RCMR is denoted as ρRCMR. RCMR used the ρ4.6 data and ρRCMR data to com-375

pute an error (z) to update the thermal conductivity estimation while the simulation376

progressed. Figure 6 shows two RCMR simulations that demonstrate that the inde-377

pendent dynamic adjustments of A(O2, N2) and s in RCMR debias GITM. In the378

left column, the error z decreased to zero, while A(O2, N2) converged to 4.6 × 10−4
379

Jm−1s−1K−1 after around three days. The right column shows the same simulation380

where s was the free parameter for RCMR to estimate. It is expected that s would381

converge to 0.69 to match the thermal conductivity exponent used to generate the382

truth data. Instead, RCMR estimated a value closer to 0.72 which is due to differ-383
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ent versions of GITM being used for the truth data run and that of the most recent384

RCMR run. From here forward, RCMR only updates s due to GITM’s sensitivity to385

this parameter.386

Figure 6. Top row: Densities along the CHAMP orbit are shown with three different values

of AO2 or s. Raw values are shown as transparent lines, while orbit averaged values are shown

as bold. The error (middle row) and thermal conductivity coefficient (bottom row) from using

simulation data at CHAMP locations at a one minute cadence is shown in blue for the RCMR

assisted run, red for a constant, purposefully-biased, constant parameterization, and black for a

constant parameterization matching the truth data parameters. The orbit averaged errors are

shown with a thicker line of their corresponding color.

359

360

361

362

363

364

365

In addition to the truth data and RCMR-adjusted mass densities, the density387

and error is shown when the incorrect parameterization was used and not corrected.388

This provides a quantification of the level of improvement that can be gained using389

RCMR.390
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This example shows that RCMR can correct for an incorrectly set thermal co-391

efficient, but model bias can be caused by a variety of issues, as described above. For392

a second example of idealized RCMR runs, illustrated in Figure 7, GITM was run393

with consistent thermal conductivity parameters but incorrect drivers.394

F10.7, the daily solar flux at wavelength 10.7 cm, is a proxy for solar spectra403

[Richards et al., 1994]. An alternative to the F10.7 proxy is using FISM to describe404

the spectrum [Chamberlin et al., 2008]. Near real time and for predictions, F10.7405

is approximate and one of the only ways to describe the solar spectrum. If F10.7 is406

not right or does not describe the spectrum correctly, model bias could result. This407

second test explores whether RCMR can compensate for an incorrect specification408

of the F10.7. The RCMR estimated parameter for this run and future runs was the409

exponent s, with an initial value of s as 0.1.410
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Figure 7. Densities and errors are shown with three different run conditions: (1) the truth

data used as input for RCMR in black, (2) the RCMR run dynamically debiasing GITM with

incorrect solar drivers in blue, and (3) the case where GITM has incorrect solar drivers and is

not implementing RCMR in red. The orbit averaged errors are shown with a thicker line of their

corresponding color. The third subplot shows the thermal conductivity exponent over time. The

bottom subplot shows the corresponding F10.7 used in each run. The blue line corresponding

to the F10.7 for the RCMR run is overlapping with the red line corresponding to the biased run

since they were both run with the same incorrect F10.7.

395

396

397

398

399

400

401

402

Similarly to the previous run, the truth data being used was an extraction of411

GITM results where the F10.7 was updated based on the actual F10.7, which varied412
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Satellite Sept. 2002

Altitude (km)

Sept. 2004

Altitude (km)

Inclination

(◦)

CHAMP 390-450 370-410 87.3

GRACE 485-515 460-505 89.0

Table 3. Information on the altitude and orbit inclination during the two test periods.433

from 190 to 150 solar flux units. The RCMR run was intentionally run with an in-413

correct constant F10.7 of 125 solar flux units. Over time, the RCMR-debiased run414

converged to the truth data and the error decreased dramatically. The time it took415

to converge was longer than the first test by roughly two days. This was due to the416

densities being similar between the two runs for the first two days despite the very417

different run settings. In this case, a low F10.7 incorrect driver caused a low density,418

having a negative bias. At the same time, a low initial value of s caused a high den-419

sity since the thermal conduction would be reduced leading to a high temperature.420

In this case, a positive bias would result. In combination, the biases mostly cancelled421

and RCMR was relatively ineffective for the first two days. After this, RCMR was422

able to track the error and produced an ’s’ that adequately compensated for the423

incorrect specification of F10.7.424

3.2 RCMR with CHAMP and GRACE Satellite Densities425

In the previous section, the simulated densities generated from a GITM run426

represented the ”true” thermosphere. In this section, tests of RCMR with real satel-427

lite data are described. Initial tests were done using data from September of the428

years 2002 and 2004 as sample months for high and moderate F10.7 fluxes, respec-429

tively, since these were used for manual debiasing earlier in the study. Both time430

periods had relatively low levels of activity, with |Dst| being less than 50 nT during431

each time period.432

The estimation of the thermal conductivity exponent s was explored using434

CHAMP and GRACE individually. Figures 8 and 9 show the September 16-26, 2002435
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period comparing the results of GITM with a constant thermal conductivity to the436

RCMR adjusted values against the satellite observations.437

Figure 8. The top subplot shows the raw and orbit averaged densities are shown for GITM,

CHAMP and RCMR. In the middle subplot, the errors are plotted over one another to observe

how RCMR compares to a constant thermal conductivity typically used in GITM. The bottom

subplot shows the consequent thermal conductivity exponent estimated in blue. In red is the

constant value used when RCMR was not applied. The local time of ascending node for CHAMP

was 13.4 LT.

438

439

440

441

442

443

The RCMR and non-RCMR runs both converge to the CHAMP and GRACE444

measurements. With RCMR, the convergence is much faster with large improve-445

–23–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Confidential manuscript submitted to JGR-Space Weather

ments in mass density after around two to three days. As observed in Figures 8446

and 9, the free parameter s converged to 0.70 which is similar to the constant value447

of 0.69 used in a typical GITM run. This set of thermal conductivity coefficients448

(4.6e-4, 4.6e-4, 0.69) matched the results found in the manual debiasing process.449

Normalized root mean square (nRMS) and percent error are shown on the450

bottom right of Figures 8 and 9 to quantify the improvement with RCMR. These451

values were computed based on orbit-averaged densities for the final five days of the452

run (marked as t0 on the figure). This gave sufficient time for RCMR to debias the453

model and allow GITM to reach a roughly diurnally reproducible state. In Figure454

9, the nRMS and percent difference show improvement of ±33% percent error and455

nRMS to less than 3%.456
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Figure 9. Same as Figure 8, except using GRACE instead of CHAMP. The local time of

ascending node for GRACE was 21.7 LT.

457

458

Switching to the time period in 2004, a similar simulation was performed459

using CHAMP data to check the robustness of RCMR under different solar condi-460

tions. The F10.7 was considerably lower for this run mostly being between 90-110461

Wm−2Hz−1, while the seasonality and geomagnetic activity was similar. Recall that462

debiasing between September 2002 and 2004 was possible with similar thermal con-463

ductivity coefficients, and so running this time period gave RCMR the opportunity464

to demonstrate this. As shown in Figure 10, the RCMR and non-RCMR mass densi-465

ties converged to CHAMP measurements with RCMR reducing the time to converge466
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by nearly seven days. In the bottom subplot, the estimated thermal conductivity467

exponent converges to right around 0.70 which is consistent with the RCMR test468

performed in 2002 and the manual debiased simulations. nRMS and percent error469

were used to quantify the improvement with RCMR. They showed a much larger470

improvement from a roughly -20% percent error and nRMS to less than 5%.471

Figure 10. Same as Figure 8, except for September 2004. The local time of ascending node

for CHAMP was 19.4 LT.

472

473
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3.3 Storm-time Debiasing and Forecasting474

In this section, GITM was debiased by RCMR before the storm in August475

2005. The F10.7 for this time period was lower than the previous runs shown. It476

varied between 70-100 Wm−2Hz−1. Comparisons between the typical GITM run,477

a purposefully biased GITM run, an RCMR-assisted GITM run with purposefully478

biased F10.7, and CHAMP data were made in an effort to improve forecasting of479

density enhancements during and after the storm. Figure 11 shows the interplan-480

etary magnetic field (IMF), solar wind velocity, hemispheric power, and Dst prior481

to and through the storm on August 24-25th, 2005. During the quiet time, the Dst482

never went below ∼-25 nT, while the hemispheric power was quite low most of the483

time. On August 24th, the IMF Bz turned negative as well as the solar wind speed484

increasing dramatically. This drove a large increase in the aurora and a significant485

development of the ring current as indicated by the nearly -200 nT Dst.486
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Figure 11. Interplanetary magnetic field (IMF), solar wind velocity, hemispheric power and

Dst measurements from August 14th-28th, 2005. In the Dst panel, the green portion indicates

the quiet time period before the storm, while the red indicates the active storm period.

487

488

489

The storm took place between August 24-26, 2005. In the RCMR run, the de-490

biasing took place from August 14-21. The run continued through the storm from491

August 21-28 without the assistance of RCMR. During the storm, the exponent ’s’492

was held constant at its last value specified by RCMR on August 21. In Figure 12,493

the debiasing was done prior to the storm using CHAMP measurements. As was494
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done before, the densities, errors and dynamic thermal conductivity exponenent are495

shown in comparison to the static runs.496

Figure 12. The densities and errors compared to CHAMP during August 2005 with RCMR

on (blue) and RCMR off in two conditions. One run is with the daily averaged F10.7 values

included (orange) and the other is with a constant, incorrect F10.7 of 150 (red). Both of the

non-RCMR runs have the same constant thermal conductivity exponent, but only one of them is

shown. The RCMR run is done with the incorrect F10.7. The bottom subplot shows the conse-

quent thermal conductivity coefficient estimated.

497

498

499

500

501

502
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As expected, the biased run with a constant F10.7 of 150 Wm−2Hz−1 was very503

different than the CHAMP measurements and a GITM run using real F10.7 mea-504

surements. It is important to point out that the parameter estimation from RCMR505

showed that the best exponent s was around 0.8 which was considerably larger than506

the other runs. The F10.7 of 150 Wm−2Hz−1 is higher than the true conditions507

artificially increasing mass densities. To counteract this, an increased thermal con-508

ductivity was needed to dissipate this excess energy, reducing the mass density.509

Figure 13. Similar to the previous figure, but for the August 21st-28th, 2005. RCMR is

turned off so no thermal conductivities are being shown.

510

511

Figure 13 shows the runs proceeding through the storm and storm recovery.512

For the three days after RCMR was turned off, the densities stayed debiased. The513

storm was better represented because of this, although GITM with RCMR un-514

der predicted the storm response during the peaks. This is most likely due to the515
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increased thermal conductivity, which pulled energy out of the thermosphere too516

quickly during the storms. This is relatively minor compared to the biased model517

results though. The RCMR run matched the recovery density after the storm quite518

well. Additional performance assessment metrics are shown in Table 4. The formula-519

tions for each metric is shown in Kalafatoglu Eyiguler et al. [2019]. When comparing520

the RCMR run to the biased run, the RCMR run performed better in every metric.521

Each of these statistics help quantify the improvements that can be had to the mean522

and variability of the mass densities.523

On the other hand, the calibrated model of GITM also performed better than524

the biased run. Comparing the RCMR run and the calibrated model of GITM, the525

Ratioavg of the default GITM simulation performed better than the RCMR run.526

RCMR was capable of improving the time delay (TD) of the storm peak, the mean527

average error (MAE) and normalized root mean square error (NRMSE).528

3.4 Debiasing using an Empirical Model529

Satellite measurements of the thermosphere are not always available, especially530

during real-time operations. For this reason, an empirical model such as MSIS may531

be useful as a source of ”truth data”. Whereas empirical models are not always532

skilled at correctly predicting highly perturbed events, like solar storms, they are533

useful for obtaining information on the background state. Further, satellite orbits534

may not be ideally placed to represent the global conditions, while an empirical535

model can be sampled anywhere (or everywhere). While satellite data is the ideal536

choice for debiasing, using an empirical model may help in some situations. For537

these reasons, a final test was run to attempt to debias GITM under conditions538

where satellite data was (in theory) not available.539

In this run, MSIS mass densities at the subsolar point at 400 km altitude545

were used as the source of ”truth data”. The same time period in August 2005 was546

used for this. RCMR was allowed to debias GITM for seven days and then proceed547

through the storm. During the storm, RCMR was turned off and the storm-time548

performance evaluation of GITM was checked against CHAMP data, as in the previ-549

ous case.550
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Figure 14. The densities and errors compared to MSIS at the 400 km altitude sub-solar

point during August 2005 with RCMR on (blue) and RCMR off in two conditions. One run is

with manually calibrated thermal conductivity values included (orange) and the other is with

a constant, biased thermal conductivity exponent of 0.69 (red). The bottom subplot shows the

consequent thermal conductivity coefficient estimated.

540

541

542

543

544

In Figure 14 shows the mass density for different runs at the subsolar point553

at 400 km altitude, which is where the MSIS data was extracted. The biased run554

(labeled ρ0.69) and RCMR run no longer had error induced by the F10.7. The only555

source of error in the RCMR run (ρRCMR) was the initial value of 0.1 given to the556

thermal conductivity exponent s. The thermal conductivity exponent s in the wrong557

tuning run was 0.69, whereas the best tuning had an exponent of 0.72 (ρ0.72). At558

the 400 km, subsolar point each run converged to MSIS results within a few days of559
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the run. As shown in the bottom subplot, RCMR estimated the ’s’ to be 0.71, using560

the MSIS results.561

Figure 15. Similar to Figure 13, but for the MSIS debiased mass densities at CHAMP loca-

tions.

551

552

Figure 15 shows the same runs proceeding through the storm and storm re-562

covery, but now at the CHAMP positions. These densities are quite different than563

the subsolar density, since CHAMP is a high inclination satellite sampling the high564

latitudes, where the energy balance can be quite different. In this case, the biased565

run performed worst of the three runs. In Table 4, the same performance tools from566
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Performance

Assessment Tool

ρF10.7 ρ150 ρRCMR ρ0.72 ρ0.69 ρRCMR

Ratiomax (-) 0.98 1.56 0.98 0.98 1.5 1.38

Ratioavg (-) 0.96 2.00 0.9 0.96 1.75 1.52

TD (hours) 3.8 3.8 -0.8 3.8 3.8 3.8

MAE (kg/m3) 4.44e-13 3.13e-12 3.47e-13 4.44e-13 2.35e-12 1.64e-12

NRMSE (%) 8.32 48.68 8.29 8.32 38.15 27.41

PE (-) 0.65 -1.06 0.65 0.65 -0.62 -0.16

Table 4. Statistical analysis on orbit-averaged data from t0 for each run in Figure 13. The first

two are dimensionless quantities. TD is the time difference between storm peak as seen from data

and from the model computed in hours. The mean average error (MAE) has units of kg/m3. The

normalized root mean square error (NRMSE) is shown as a percentage. The prediction efficiency

(PE) is also a non-dimensional statistic. The columns are separated by run-type the first three

columns being associated with debiasing with CHAMP data and the final three columns are

associated with debiasing with MSIS.

576

577

578

579

580

581

582

Kalafatoglu Eyiguler et al. [2019] are shown. The RCMR run performed similarly or567

better than the biased run, but considerably worse than the calibrated GITM run.568

This is due to the difference between MSIS and CHAMP during the proceeding time569

period. Since RCMR was debiasing towards MSIS, the debiasing improvement is570

subject to the accuracy of MSIS. It is possible that debiasing with MSIS at locations571

other than at 400 km altitude at the subsolar point could improve this, but it was572

not explored in this work. This simulation does show that debiasing with an em-573

pirical model improves the performance of the biased model, but then is subject to574

other limitations.575

4 Summary and Conclusion583

In this work, GITM used RCMR with CHAMP and GRACE satellite measure-584

ments to correct for uncertain parameters and incorrect drivers. During these runs,585

it was shown that after sufficient error accumulation, RCMR was able to reduce the586
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bulk of the error and nRMS to below 5% within 2-3 days. This work also showed587

the effectiveness of debiasing GITM prior to a storm in August 2005 with CHAMP588

measurements and MSIS. When debiasing was applied before a storm, the results589

during the storm were shown to improve in all metrics except the time delay be-590

tween a measured storm peak and the model-predicted peak (where they performed591

identically with and without RCMR). It was demonstrated that RCMR could use592

empirical models within GITM to debias the model, but this was reliant on MSIS593

results having low error during the pre-storm time period and the choice of where594

to sample the empirical model. Future work will show more runs and have a statis-595

tical approach to address how beneficial using MSIS for parameter estimation can596

be. This work also implied that reducing the model bias improved the forecasting597

performance along a specified path. Lower model bias in neutral densities help make598

GITM a more feasible model to assist in satellite drag calculations. Getting the ac-599

celeration due to drag correct is important for accurate estimation of future satellite600

positions and potential collision detection and prevention.601
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model is available on the Community Coordinated Modeling Center607

(https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php). Hemispheric608

power is provided by the National Oceanic and Atmospheric Administration609

(http://ftp.swpc.noaa.gov/). Plotting routines and data within this work are pub-610

lished on DeepBlue (https://doi.org/10.7302/9r1a-c979).611
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