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Abstract

Multisite λ-dynamics (MSλD) is a novel method for the calculation of relative

free energies of binding for ligands to their targeted receptors. It can be readily

used to examine a large number of molecules with multiple functional groups

at multiple sites around a common core. This makes MSλD a powerful tool in

structure-based drug design. In the present study, MSλD is applied to calculate

the relative binding free energies of 1296 inhibitors to the testis specific serine

kinase 1B (TSSK1B), a validated target for male contraception. For this system,

MSλD requires significantly fewer computational resources compared to tradi-

tional free energy methods like free energy perturbation or thermodynamic

integration. From MSλD simulations, we examined whether modifications of a

ligand at two different sites are coupled or not. Based on our calculations, we

established a quantitative structure–activity relationship (QSAR) for this set of

molecules and identified a site in the ligand where further modification, such

as adding more polar groups, may lead to increased binding affinity.
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1 | INTRODUCTION

Alchemical free energy calculations are powerful tools in
computer-aided drug design, especially in the lead optimi-
zation process. For example, free energy perturbation
(FEP; Wang et al., 2012; Zwanzig, 1954) and thermody-
namic integration (TI; Straatsma & Berendsen, 1988) are
among the most popular alchemical free energy methods
in structure-based drug design. Instead of directly comput-
ing absolute binding free energies for two ligands, where
sufficient sampling is often difficult because ligand binding
is a slow and complex process, the relative binding free
energies can be obtained by considering alchemical

transformations between two ligands in both an unbound
state and a protein bound state (Figure 1). In combination
with recent advancements in developing more accurate
force fields (and powerful machine learning strategies in
some cases), these alchemical free energy calculations have
gained a lot of success in accelerating drug development
(Knight et al., 2021; Raman et al., 2020; Rufa et al., 2020;
Schindler et al., 2020; Steinbrecher et al., 2015; Wang
et al., 2015). Depending on the system of interest, the errors
of calculated relative binding free energies are usually less
than 1.5 kcal/mol, which implies that these approaches are
practically useful and can offer significant advantage in the
lead optimization workflow (Shirts et al., 2010).
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Although highly accurate, a major limitation of TI
and FEP is the computational cost. In both TI and FEP,
the alchemical transformation between two ligands is
divided into multiple steps (or windows) to ensure suffi-
cient overlap of phase space between two adjacent win-
dows. Usually, 10–20 λ windows are needed in one set of
TI or FEP simulations and more λ windows are needed if
there is a change in the net charge of two ligands, which
makes them expensive (Pohorille et al., 2010). Moreover,
these methods scale poorly with the total number of com-
pounds studied. To compute relative binding free ener-
gies between N molecules, at least N-1 sets of FEP or TI
simulations are needed and typically more are used to
ensure cycle closure using methods like LOMAP (Liu
et al., 2013). For this reason, it is very expensive to com-
pute relative binding free energies for hundreds or thou-
sands of ligands to a common protein target using these
approaches.

Multisite λ dynamics (MSλD) is an innovative
alchemical free energy method that aims, in part, to
address these two problems (Knight & Brooks III, 2011a;
Kong & Brooks III, 1996). In MSλD, the alchemical cou-
pling parameter λ is treated as a dynamic variable that
can spontaneously fluctuate between two end states
(i.e., λ = 0 and λ = 1). In this way, we do not need multi-
ple λ windows to compute the free energy difference
between two molecules. Moreover, multiple λ parameters
corresponding to multiple functional groups at different
sites around a common core can be used. This enables us
to explore a combinatorial chemical space of hundreds to
thousands of small molecules in a single MSλD simula-
tion. In this way, MSλD addresses the scalability problem
encountered in FEP and TI calculations, thus signifi-
cantly reducing the computational cost of accurate free
energy calculations. Moreover, it has been demonstrated
that MSλD does so without any loss in statistical preci-
sion (Knight & Brooks, 2011a; Raman et al., 2020; Vilseck
et al., 2018, 2019).

In the present study, we apply MSλD to calculate rela-
tive binding free energies of 1296 inhibitors to testis spe-
cific serine kinase 1B (TSSK1B), a validated target for
male contraception. TSSK1B is primarily expressed in the
testis and is required during spermatid development.
Overexpression of TSSK1B has been reported in human
cancers, including some colon, bladder, and breast can-
cers (The Human Protein Atlas, n.d.). Its missense muta-
tions have been discovered in male patients with
unresolved infertility causes and are associated with
sperm dysmorphology (Kadiyska et al., 2022). However,
TSSK1B has been identified as one of the “understudied”
kinases by Illuminating the Druggable Genome (IDG),
since it lacks antibodies and validated chemical probes
(National Institutes of Health, n.d.). An initial screening
assay using the published kinase inhibitor set (PKIS;
Drewry et al., 2014) identified that the molecule KQQ
(see Figure 2) inhibits TSSK1B activity with a cellular

FIGURE 1 Thermodynamic cycle for calculating relative

binding free energy between two ligands (L1 and L2) to a common

protein (P). Alchemical methods consider the two vertical processes

rather than the two horizontal processes, and it is particularly

useful for two congeneric ligands

FIGURE 2 Structure of lead

compound KQQ and its modifications.

There are six substituents at sites A, C,

and D, two substituents at site B, and

three substituents at site E. This gives a

combinatorial library of 1296 unique

molecules
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half maximal inhibitory concentration (IC50) of 180 nM,
which suggests that molecule KQQ is a lead compound
for targeting TSSK1B.

To find KQQ analogs that have improved potency
for TSSK1B, we would like to perform large scale free
energy calculations to study the quantitative
structure–activity relationship (QSAR). As an initial
attempt to achieve this goal, the size and shape of the
substituent at sites A, C, and D of the ligand was var-
ied from hydrogen through methyl, ethyl, butyl, iso-
propyl, to tert-butyl, as illustrated in Figure 2. This
allowed us to probe the size and shape of the binding
pocket in TSSK1B and identify potential hydrophobic
contacts. Site B could be either carbon or nitrogen, fur-
ther extending the explored chemical space. Three sub-
stituents were tested at site E, since the relevant
experimental measurements are available. Taken
together, we examined the relative binding free ener-
gies of 6 � 2 � 6 � 6 � 3 = 1296 compounds using
MSλD. To the best of our knowledge, this may repre-
sent one of the largest scale free energy calculations to
date. Thus, the current study demonstrates the unique
advantages of the MSλD free energy framework, which
enables us to rapidly explore this vast chemical space
and obtain QSAR of a combinatorial library of small
molecules.

2 | METHODS

2.1 | Homology modeling of TSSK1B
structure

As an understudied kinase, there is no experimental
structure of TSSK1B to date. Therefore, we used homol-
ogy modeling to construct a model for the TSSK1B struc-
ture. Four modeling methods were tested, Swiss Model
(Waterhouse et al., 2018), I-TASSER (Roy et al., 2010;
Yang et al., 2015; Zhang, 2008), Robetta (Baek
et al., 2021) and AlphaFold 2 (Jumper et al., 2021), and
all predicted models were highly similar, containing a
well-structured region (residues 1–275) followed by a
long, disordered tail (residues 276–367; Figure S1). The
root mean squared deviation (RMSD) of Cα atoms in
folded regions between any two homology models ranged
from 1.8 to 2.1 Å (i.e., excluding loop residues 150–180
and 276–367). Moreover, the structure of residues near
the binding site are highly similar (Figure S2). Therefore,
we assume that the specific choice of homology modeling
method will have little impact on the resultant TSSK1B
structure and subsequent free energy calculations. Since
the C-terminal tail (residues 276–367) is highly

disordered, it poses great challenges in accurate modeling
of its structural ensemble as well as sufficient sampling of
its heterogeneous conformations in molecular dynamics
(MD) simulations, so this region was discarded in our
MSλD simulations. This is expected to introduce little
artifact in relative binding free energy calculations since
MD simulations of the whole protein (residues 1–367) in
complex with the lead compound KQQ suggest that this
disordered C-terminal tail does not form stable contacts
with the ligand (Figure S3).

2.2 | System preparation

In MSλD simulations, we construct a hybrid ligand where
all atoms that belong to the maximum common substruc-
ture are represented once and atoms unique to each ligand
are represented explicitly (Knight & Brooks III, 2011a).
We have used the automated workflow named msld_py_-
prep (https://github.com/Vilseck-Lab/msld-py-prep) to
identify the maximum common substructure in each sim-
ulation, and partial atomic charges in the maximum com-
mon substructure were assigned using the charge
renormalization scheme (Vilseck et al., 2022). Initial con-
formations of these small molecules were generated by
modifying the ligand structure extracted from PDB 4PNI
(Homan et al., 2015), an experimental structure of G
protein-coupled receptor kinase 1 in complex with the lead
compound KQQ. The CHARMM general force field
(CGenFF; Vanommeslaeghe et al., 2010; Yu et al., 2012)
was used to model these compounds. In all MD simula-
tions, the initial structure of TSSK1B (residues 8–275) was
obtained from Swiss Model (Waterhouse et al., 2018) using
4PNI as the template, with the N- and C-termini of the
truncated construct (residues 8–275 only) capped with an
N-acetyl group and N-methyl amide, respectively. Proton-
ation states of titratable residues were determined using
PROPKA3 (Olsson et al., 2011; Sondergaard et al., 2011).
This analysis suggested that both Nδ and Nε of His109
were protonated at pH 7.4, the pH representing our simu-
lated solution. For simulations of TSSK1B in complex with
small molecules, the ligands were initially placed into the
TSSK1B binding pocket based on the binding pose
observed in PDB 4PNI. The protein was modeled using
the CHARMM36m force field (Huang et al., 2017). Each
system was solvated in a cubic box using TIP3P (Jorgensen
et al., 1983) water molecules, allowing for at least 12 Å
between protein/ligand and the nearest box edge. To neu-
tralize the system and represent a NaCl concentration
close to the physiological concentration (i.e., 150 mM), a
proper amount of NA+ and Cl� ions were randomly
placed in bulk water.
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2.3 | MSλD methodology

The details of MSλD methodology have been reported in
previously published works (Hayes et al., 2017; Knight &
Brooks, 2011a). In brief, the potential energy of the sys-
tem is as follows:

V ¼ V x0,x0ð Þþ
XM
s¼1

XNs

i¼1

λsi V x0,xsið ÞþV xsi,xsið Þð Þ

þ
XM
s¼1

XNs

i¼1

XM
t¼sþ1

XNt

j¼1

λsiλtjV xsi,xtj
� �þVbias λf gð Þ

ð1Þ

where x0 are the coordinates of the environment, includ-
ing water molecules, ions, the maximum common sub-
structure of the hybrid ligand and the protein, if present.
xsi are ligand coordinates of substituent i at site s. M is
the total number of sites, and Ns is the number of substit-
uents at site s. Vbias is the biasing potential used to facili-
tate transitions between different end states.

To maximally enhance sampling in alchemical space,
optimized biasing potentials, Vbias, need to be used in
MSλD simulations as described in previous work (Hayes
et al., 2017; Hayes et al., 2018). Briefly, four types of biasing
potentials are applied, Vfixed, Vquad, Vend, and Vskew, as
shown below. Vfixed is to ensure that the end points have
similar free energies. Vquad is tuned to lower the free energy
barrier between two end points. Vend and Vskew are used to
help escape the deep free energy wells near the end point.

Vbias ¼VfixedþVquadþVendþVskew ð2Þ

Vfixed ¼
XM

s

XNs

i
ϕsiλsi ð3Þ

Vquad ¼
XM

s

XNs

i

XNs

j> i
ψ si,sjλsiλsj ð4Þ

Vend ¼
XM

s

XNs

i

XNs

j≠ i
ωsi,sjλsiλsj= λsiþαð Þ ð5Þ

Vskew ¼
XM

s

XNs

i

XNs

j≠ i
χsi,sjλsj 1� exp �λsi=δð Þð Þ ð6Þ

where α¼ 0:017 and δ¼ 0:18. Other parameters, ϕsif g,
ψ si,sj

n o
, ωsi,sj
� �

, and χsi,sj

n o
are optimized using adaptive

landscape flattening (ALF, available at https://github.
com/RyanLeeHayes/ALF; Hayes et al., 2017, 2018), an
iterative process to flatten free energy landscapes in the
alchemical space. At each iteration, the system was equil-
ibrated, followed by short MD simulations. Two phases
of biasing potential optimization were used in this work.
In the first phase, 50 iterations of 100-ps simulations were

performed, and in the second phase, 14 or more itera-
tions of 1-ns simulations were carried out until reversible
transitions can be observed in alchemical space. Sam-
pling statistics were used to compute three types of free
energy profiles, including G(λsi), G(λsi, λsj), and G(λsi
/(λsi + λsj)) under the condition of λsi + λsj >0.8. Parame-
ters ϕsif g, ψ si,sj

n o
, ωsi,sj
� �

, and χsi,sj

n o
were updated to

flatten these three types of free energy profiles. Note that
implicit constraints in Equation (7) bias sampling toward
the end points (Knight & Brooks, 2011b), which is a
desirable property for efficient calculation of free energy
differences between two ligands based on the empirical
estimator in Equation (8). Therefore, the corresponding
entropic component of free energies originating from
these implicit constraints was removed from total free
energies before flatting the free energy profiles.

λsi ¼ exp 5:5sinθsið ÞPNs
j¼1exp 5:5sinθsj

� � ð7Þ

ΔGMSλD λsif g! λsj
� �� �

≈ �kBTln
P λsj

� �
>0:99

� �
P λsif g>0:99ð Þ

� Vbias λsj
� �¼ 1
� �h

� Vbias λsif g¼ 1ð Þ
i

ð8Þ

2.4 | Simulation details

All MD simulations were performed using CHARMM
v46a1 (Brooks et al., 1983; Brooks et al., 2009). The DOM-
DEC package (Hynninen & Crowley, 2014) within
CHARMM was utilized to accelerate simulations on
GPUs. Periodic boundary conditions were applied to all
systems. The van der Waals interactions were smoothly
switched to zero between 9 and 10 Å, using the
VFSWITCH function in CHARMM. Electrostatic interac-
tions were treated with the particle mesh Ewald method
(Darden et al., 1993). To alleviate the problem of solvent
inaccessible cavities as λ approaches 0 when hard-core
potentials are used, a soft-core potential (Hayes
et al., 2017) was used in the MSλD simulations. All simu-
lations were performed under NPT conditions, with a
temperature of 298.15 K and a pressure of 1 atm. Any
bond containing hydrogen atoms was constrained using
SHAKE (Vangunsteren & Berendsen, 1977), allowing for
an integration time step of 2 fs. Five independent MSλD
simulations were run for each system (see Table 1). Since
the free ligand simulations converged more rapidly than
the simulations of the protein–ligand complex, the pro-
duction runs of the former were shorter than those of the
latter. Examination of λ values as a function of
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simulation time suggests that sufficient sampling was
achieved in alchemical space (Figure S4). Free energy
uncertainties were estimated using bootstrap analysis.
Specifically, for each of the five independent simulations,
free energies were estimated using the λ trajectories. Fifty
free energy estimates were obtained from these five inde-
pendent measurements using random sampling with
replacement, and standard deviation of these 50 estimates
was taken to be the uncertainty.

2.5 | Experimental measurements of IC50

We have measured IC50 for three ligands where sites A,
B, C, and D are the same as those in molecule KQQ and site
E is one of the three substituents in Figure 2. The TSSK1B
NanoBRET TE assay kit (NV4471) was purchased from Pro-
mega and carried out as described in the assay kit. HEK293
cells (ATCC) were used for transfection. Commercial nano-
BRET tracer K9 (N2632) was used for the tracer at 660 nM.
The adherent cell format was used as this led to optimal
BRET. BRET ratios were calculated from the donor signal
(415 nm) and acceptor signal (610 nm).

3 | RESULTS AND DISCUSSION

3.1 | Comparison of simulation results
with experimental measurements

IC50 values for three of the ligands in which sites A, B, C,
and D are the same as those in molecule KQQ and site E

is one of the three substituents shown in Figure 2, have
been measured experimentally (see Figure S5). This allows
us to examine the force field accuracy in reproducing their
relative binding affinities. As shown in Table 2, our MSλD
simulations (set I in Table 1) suggest that substituent 3 at
site E leads to strongest binding, while binding becomes
weaker with substituent 1 or 2. But experimentally, the
tightest binder to TSSK1B is when site E is substituent
2, followed by those with substituent 3 and 1, whose bind-
ing free energies are 0.4 and 2.2 kcal/mol higher than that
with substituent 2, respectively. Such discrepancy was
partly due to the imperfect dihedral potentials for rotatable
bonds that connect substituents at site E with the maxi-
mum common substructure. As shown in Table 2, after
we optimize dihedral potentials based on quantum
mechanics calculations (see Figure S6), our MSλD calcula-
tions better captured the overall trend that substituents
2 and 3 at site E result in tighter binding than substituent
1, although the simulation results still underestimate the
improvement of binding affinity when replacing substitu-
ent 1 with the other two. Note that the experimental mea-
surements of IC50 were conducted using the nanoBRET
assay with intact cells, where any difference in permeabil-
ity across the cell membrane between these molecules
could also contribute to the difference in IC50 values. Also,
compound KQQ is a type-I inhibitor, which occupies the
ATP binding site. In the nanoBRET assay, ATP competi-
tively binds TSSK1B and this will have an impact on the
IC50 measurement. It is also possible that we did not
obtain sufficient sampling of certain important structural
reorganizations of protein and/or water molecules. For
instance, based on the PDB structure 4PNI, there are two

TABLE 1 MSλD simulations performed in this work

Set

Simulation time
for each
replicate (ns) Hybrid ligand

Unbound Bound Site A Site B Site C Site D Site E

I 10 40 same as KQQ same as KQQ same as KQQ same as KQQ 1, 2, 3

II* 40 120 H, Me, Et, Bu, iPr,
tBu

C H, Me, Et, Bu, iPr,
tBu

H, Me, Et, Bu, iPr,
tBu

1, 2, 3

III* 40 120 H, Me, Et, Bu, iPr,
tBu

N H, Me, Et, Bu, iPr,
tBu

H, Me, Et, Bu, iPr,
tBu

1, 2, 3

C H

IV 10 40 same as KQQ same as KQQ same as KQQ same as KQQ Modified
substituent 1

Note: Note that for each set, we have carried out simulations in both unbound and protein bound state as illustrated in Figure 1.
*Since sites B and C are directly connected (see Figure 2) and probably tightly coupled, we can consider site B–C as one site with 2 � 6 = 12 substituents. In
principle, we can perform a single simulation with all 12 substituents at site B–C. However, the fraction of physical ligand decreases if there are too many
substituents at a given site. Therefore, here we performed two simulations to alleviate this problem and to reduce computational cost. There is no fixed rule

about how to divide these 12 substituents among multiple simulations, as long as there is at least one common ligand between them so that we can combine
the simulation results to compute relative binding free energies of all possible ligands.
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water molecules inside the binding pocket that are within
5 Å of site E of molecule KQQ. In our simulations,
although we also observed multiple water molecules near
site E, it is possible that the probability of water molecules
residing inside the active site is different for different sub-
stituents at site E, and insufficient sampling of motion of
these water molecules may contribute to the discrepancy
between simulation and experimental results. Moreover,
errors of order of 1 kcal/mol for free energy calculations
are near the anticipated force field limit. For instance, pre-
vious MSλD simulations of β-secretase 1 inhibitors using
the CGenFF force field in combination with CM1A partial
atomic charges illustrated that simulation results deviate
from experimental measurements by a mean unsigned
error (MUE) of 0.47 kcal/mol (Vilseck et al., 2019). A
recent study of a large number of ligands for seven pro-
teins demonstrated that the MUE may range from 0.39 to
0.93 kcal/mol, depending on the protein of interest
(Raman et al., 2020). A non-equilibrium thermodynamic
integration method with Amber and CHARMM force
fields has also been used to examine a large dataset of
482 ligand modifications from 13 different protein-ligand
datasets, and the overall MUE was found to be 0.87 kcal/
mol, with MUE for each protein-ligand system ranging
from 0.47 to 1.26 kcal/mol (Gapsys et al., 2020). Since our
ultimate goal is to find KQQ analogs that show signifi-
cantly higher binding affinities to TSSK1B, we did not fur-
ther optimize CGenFF to improve its accuracy, and the
above optimized dihedral potentials (see Figure S6) were
used in all later simulations.

3.2 | Sites A, C, D, and E are largely
independent of each other

A commonly used assumption in many small molecule
drug design projects is that two sites are independent of

each other, and therefore effects of modifications on dif-
ferent sites are additive. To test whether this is a reason-
able assumption in the present study, we compared the
calculated relative binding free energies obtained from
this additive model (Equation 9) with those directly
from MSλD simulations (Equation 8) for all combina-
tions of two sites. As demonstrated in Figure 3, relative
binding free energies obtained from these two methods
are in good agreement with each other, suggesting that
sites A, C, D, and E are not strongly coupled, and we
can use the additive model to estimate relative binding
free energies.

ΔGadditive λsif g! λsj
� �� �

≈
XM

s¼1
�kBTln

P λsj >0:99
� �

P λsi >0:99ð Þ

8<
:

� Vbias λsj ¼ 1
� ��Vbias λsi ¼ 1ð Þ� �

9=
;
ð9Þ

Note that we do not need to make any assumption
that two sites are independent before setting up a MSλD
simulation. After obtaining a MSλD simulation trajec-
tory, we can always check if two sites are independent
like in Figure 3. If site i and site j are coupled, we could
use Potts model-based estimator to compute free ener-
gies (Hayes et al., 2022). Alternatively, we may treat
sites i and j as a single site with Ni*Nj substituents and
test if this new site is independent of other sites. This
process can be repeated if more than two sites are
coupled with each other. One advantage of this
approach is to further reduce sampling requirements of
MSλD simulations. Specifically, since the probability of
observing λsi >0:99 and λsj >0:99 simultaneously is
always lower than the probability of observing λsi >0:99,
the uncertainty associated with ΔGMSλD in Equation 8 is

TABLE 2 Relative binding free energies for modification of KQQ molecule at site E

Substituent index 1 2 3

IC50 (nM) 3800 ± 1900 90 ± 40 180 ± 90

ΔΔGexp
bind (kcal/mol) 0 �2.23 �1.82

ΔΔGMSλD
bind (kcal/mol) 0 ± 0.10 �0.20 ± 0.09 �1.04 ± 0.21

ΔΔGMSλD
bind * (kcal/mol) 0 ± 0.28 �0.38 ± 0.19 �0.47 ± 0.25

Note: The molecule in which site E is substituent 1 is selected as the reference molecule for computing relative binding free energies. ΔGexp
bind was estimated

based on RTln(IC50).

*MSλD simulation using CGenFF with optimized dihedral potentials. To see if the relative binding free energies are significantly different when site E is
substituent 1 or 2, we performed independent samples t-test. The t value was calculated from X1�X2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21þ s21ð Þ=n

p	 

, where X1 and X2 are mean values, s1

and s2 are standard deviations, and n is 5. The calculated t value was 2.511, which was greater than the two-tailed table value of 2.306 at α = 0.05, suggesting
that the binding free energies can be considered different between substituents 1 and 2. Similarly, the difference in binding free energy between substituents 1
and 3 can also be considered statistically significant since the calculated t value is 2.800, greater than table value of 2.306.
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greater than the uncertainties of ΔGadditive in Equation 9
for a given MSλD simulation. As demonstrated in previ-
ous work (Hayes et al., 2022), if there is no coupling
between any two sites, ALF is able to completely flatten
the alchemical free energy landscape, and all sites have
the same relaxation time scale, the amount of sampling
for the original estimator (Equation 8) scales exponen-
tially to the number of sites (M). For Potts model includ-
ing up to two-body terms, the sampling requirement
scales to M2. For the additive model (Equation 9), the
sampling should be proportional to M. Therefore, to
achieve certain precision, the additive model presents a
more rapid approach of using MSλD to calculate relative
free energies whenever possible. In this way, MSλD simu-
lation in combination with the additive model could sig-
nificantly improve the computational efficiency of free
energy calculations when exploring large combinatorial
chemical space.

3.3 | Structure–activity relationship for
KQQ variants binding to TSSK1B

The above findings that site A, C, D, and E are indepen-
dent of each other greatly simplified our QSAR study and
further design. Now we can examine each site individu-
ally and determine which site(s) we should focus on and
what additional modifications may be needed based on
the structure–activity relationships. As shown in
Figure 4, whether site B is carbon or nitrogen, varying
the substituent at site A between methyl, ethyl, butyl, iso-
propyl, and tert-butyl shows the same trend, where tert-
butyl appears to be most unfavorable and the butyl group
is most favorable among these hydrophobic substituents.
To understand the structural basis of these free energy
results, we examined how site A substituents fit and
interact with the TSSK1B binding pocket. As shown in
Figure 4, protein residues near site A are mainly

FIGURE 3 Comparison of relative

binding free energies computed from the

standard estimator in Equation (8) and

the additive model in Equation (9).

Results were computed from simulation

set III. See Figure S7 for results from

simulation set II
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hydrophobic and this pocket is largely solvent exposed.
Small/linear alkyl groups nicely fit in the hydrophobic
groove (Figure 4c for example). Branched alkyl groups
are not able to fit into the protein pocket very well due to
steric hindrance, thus leading to reduced binding
affinities.

We also found that changing substituent at site C
between hydrogen, methyl, ethyl, butyl, isopropyl, and
tert-butyl groups has little impact on binding free ener-
gies, regardless of whether site B is carbon or nitrogen
(see Figure 5). Again, the main reason is that site C is
mostly solvent exposed (see Figure 5c,d for example). The
general trend of free energy among these substituents
appears to be slightly different when site B is changed
from carbon to nitrogen. Further examination of simula-
tion trajectories suggests that when site B is carbon, the
site C substituent, such as the butyl group, mainly

pointed “up” during simulations (Figure 5c). Having a
branched alkyl group, like isopropyl or tert-butyl, at site
C may lead to steric hindrance, thus reducing binding
affinity. In contrast, when site B is nitrogen, the tert-butyl
group, for example, mainly pointed “down” in the simu-
lation. In this way, the site C substituent is mostly solvent
exposed and there is more room to accommodate a bulky
group like isopropyl or tert-butyl (Figure 5d).

Similar to sites A and C, site D is also largely solvent
exposed (see Figure 6c,d for example). Moreover, there
are three negatively charged residues (Asp 97, Glu
100, and Asp 140) near site D, which makes hydrophobic
substituents, including methyl, ethyl, butyl, isopropyl,
and tert-butyl, generally unfavorable. Interestingly, the
covalent geometry of the common core is slightly differ-
ent when site B is changed from carbon to nitrogen,
which then affects the orientation of site D substituent.

FIGURE 4 Relative binding free energies when substituent at site A is varied, while site B is either carbon (a) or nitrogen (b). The

results were obtained from simulation set II and III, respectively, and can be found in Table S1 as well. (c) Illustration of how butyl at site A

fits the testis specific serine kinase 1B (TSSK1B) binding pocket. (d) Illustration of how tert-butyl at site A fits the TSSK1B binding pocket.

Here, the protein is shown as a surface, colored by partial atomic charges, with red for negative charges and blue for positive charges. Ligand

is shown in Licorice, with substituent at site A highlighted in purple van der Waals spheres

FIGURE 5 (a, b) Relative binding free energies when substituent at site C is varied, while site B is carbon (a) or nitrogen (b). The results

were obtained from simulation set II and III, respectively, and can be found in Table S1 as well. (c) Illustration of how butyl (c) at site C fits

the binding pocket in testis specific serine kinase 1B (TSSK1B) protein when site B is carbon. (d) Illustration of how tert-butyl at site C fits

the binding pocket in TSSK1B protein when site B is nitrogen. See Figure 4 caption for coloring scheme
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When site B is carbon, even a small hydrophobic group,
like methyl, can be close to the negatively charged resi-
dues, thus leading to reduced binding affinity (Figure 6a).
When site C is nitrogen, larger/bulkier hydrophobic
groups are more unfavorable (Figure 6b). For this reason,
we suggest it is probably better to keep site B and D the
same as that in the original KQQ molecule (Figure 2).
The predicted pKa of the site D group in the KQQ mole-
cule is 7.7 based on MolGpKa (Pan et al., 2021), and the
pKa of trimethylamine is 9.8 (Settimo et al., 2014). There-
fore, molecule KQQ may be protonated at site D with cer-
tain probabilities and form favorable interactions with
these three negatively charged protein residues.

3.4 | Adding more polar groups at site E
further increases binding affinity

Although the three substituents at site E only showed
small differences in binding free energies (see Table 2),
site E is less solvent exposed and has multiple interac-
tions with the protein. As illustrated in Figure 7b, the
aromatic ring in these three substituents could form sta-
ble hydrophobic contacts with the protein. Also,

depending on the orientation of the substituent, addi-
tional polar interactions can be observed (Figure 7c).
Taken together, we anticipate that further modifying site
E may help design better inhibitors of TSSK1B.

Therefore, we changed the site E substituent by add-
ing more hydrophobic or polar groups and examined the
effects on binding affinity. Here, we performed another
set of MSλD simulations (simulation set IV in Table 1) by
modifying position Y of substituent 1 at site E (see
Figure 7a). As shown in Figure 7a, adding a polar group,
like an amine or hydroxyl, further lowers the binding free
energy. This polar group can form contacts with polar/
charged residues in TSSK1B, including Asp 154, Asp
140, and Lys 41. Further experimental studies will be
needed to validate our predictions.

4 | CONCLUSION

Being able to rapidly explore the large chemical space of a
combinatory library and establish the QSAR relationship is
very important in the lead optimization process of drug
design. Unlike other popular free energy methods like FEP
or TI, MSλD is a novel method that allows one to compute

FIGURE 6 (a, b) Relative binding

free energies when substituent at site D

is varied, while site B is either carbon

(a) or nitrogen (b). The results were

obtained from simulation set II and III,

respectively, and can be found in

Table S1 as well. (c, d) Illustration of

how butyl at site D fits the binding

pocket in TSSK1B protein when site B is

either carbon (c) or nitrogen (d). See

Figure 4 caption for coloring scheme

FIGURE 7 (a) Relative binding free

energies when substituent 1 at site E is

further modified. The results were

obtained from simulation set IV. (b, c)

Illustration of how substituent 3 at site E

fits the binding pocket of testis specific

serine kinase 1B protein in simulation

set II. See Figure 4 caption for coloring

scheme. Note that the radii of VDW

spheres have been scaled to 50% to

better show the protein surface
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the relative free energy of many compounds within a single
simulation and shows excellent scalability to the total num-
ber of compounds modeled. In the present study, we used
MSλD to explore a large combinatorial chemical space by
calculating the relative binding free energies of 1296 inhibi-
tors to kinase TSSK1B, a validated target for male contra-
ception. For this system, we found that the sites A, C, D,
and E in the small molecule scaffold are independent of
each other, which allowed us to examine each site individ-
ually and compute relative binding free energies of these
ligands using an additive model. This significantly reduced
the required computational resources with no loss of statis-
tical precision. Note that the lack of cooperativity between
two sites in this study may not necessarily be generalized
to other systems. It is possible that a ligand may take
advantage of cooperative effects between different sites to
achieve highest possible binding affinity. Depending on the
target of interest and the ligand scaffold, such cooperative
effective may need to be considered. Based on our simula-
tions, we have also identified that sites A, C, and D are
largely solvent exposed and might be less sensitive to modi-
fications. However, site E in the ligand is able to form both
hydrophobic and polar interactions with the protein, and
further modifications, such as adding more polar groups,
may lead to increased binding affinity. Based on our calcu-
lations, we predict that by modifying sites A of the ligand
KQQ to butyl, and position Y of substituent 1 at site E to
an amine or hydroxyl group, we could further increase the
binding affinity by �1.5 kcal/mol.
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