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Abstract 

Multisite λ-dynamics (MSλD) is a novel method for the calculation of relative free energies of 

binding for ligands to their targeted receptors. It can be readily used to examine a large number 

of molecules with multiple functional groups at multiple sites around a common core. This makes 

MSλD a powerful tool in structure-based drug design. In the present study, MSλD is applied to 

calculate the relative binding free energies of 1296 inhibitors to the testis specific serine kinase 

1B (TSSK1B), a validated target for male contraception. For this system, MSλD requires 

significantly fewer computational resources compared to traditional free energy methods like 

free energy perturbation or thermodynamic integration. From MSλD simulations, we examined 

whether modifications of a ligand at two different sites are coupled or not. Based on our 

calculations, we established a quantitative structure-activity relationship (QSAR) for this set of 

molecules and identified a site in the ligand where further modification, such as adding more 

polar groups, may lead to increased binding affinity. 

  



Introduction 

Alchemical free energy calculations are powerful tools in computer-aided drug design, especially 

in the lead optimization process. For example, free energy perturbation (FEP) [1, 2] and 

thermodynamic integration (TI) [3] are among the most popular alchemical free energy methods 

in structure-based drug design. Instead of directly computing absolute binding free energies for 

two ligands, where sufficient sampling is often difficult because ligand binding is a slow and 

complex process, the relative binding free energies can be obtained by considering alchemical 

transformations between two ligands in both an unbound state and a protein bound state (Figure 

1). In combination with recent advancements in developing more accurate force fields (and 

powerful machine learning strategies in some cases), these alchemical free energy calculations 

have gained a lot of success in accelerating drug development [4-9]. Depending on the system of 

interest, the errors of calculated relative binding free energies are usually less than 1.5 kcal/mol, 

which implies that these approaches are practically useful and can offer significant advantage in 

the lead optimization workflow [10]. 

 

Figure 1. Thermodynamic cycle for calculating relative binding free energy between two ligands 
(L1 and L2) to a common protein (P). Alchemical methods consider the two vertical processes 
rather than the two horizontal processes, and it is particularly useful for two congeneric ligands.  

Although highly accurate, a major limitation of TI and FEP is the computational cost. In both TI 

and FEP, the alchemical transformation between two ligands is divided into multiple steps (or 



windows) to ensure sufficient overlap of phase space between two adjacent windows. Usually, 

10-20 λ windows are needed in one set of TI or FEP simulations and more λ windows are needed 

if there is a change in the net charge of two ligands, which makes them expensive [11]. Moreover, 

these methods scale poorly with the total number of compounds studied. To compute relative 

binding free energies between N molecules, at least N-1 sets of FEP or TI simulations are needed 

and typically more are used to ensure cycle closure using methods like LOMAP[12]. For this 

reason, it is very expensive to compute relative binding free energies for hundreds or thousands 

of ligands to a common protein target using these approaches. 

Multisite λ dynamics (MSλD) is an innovative alchemical free energy method that aims, in part, 

to address these two problems [13, 14]. In MSλD, the alchemical coupling parameter λ is treated 

as a dynamic variable that can spontaneously fluctuate between two end states (i.e., λ = 0 and λ 

= 1). In this way, we do not need multiple λ windows to compute the free energy difference 

between two molecules. Moreover, multiple λ parameters corresponding to multiple functional 

groups at different sites around a common core can be used. This enables us to explore a 

combinatorial chemical space of hundreds to thousands of small molecules in a single MSλD 

simulation. In this way, MSλD addresses the scalability problem encountered in FEP and TI 

calculations, thus significantly reducing the computational cost of accurate free energy 

calculations. Moreover, it has been demonstrated that MSλD does so without any loss in 

statistical precision [9, 14-16]. 

In the present study, we apply MSλD to calculate relative binding free energies of 1296 inhibitors 

to testis specific serine kinase 1B (TSSK1B), a validated target for male contraception. TSSK1B is 

primarily expressed in the testis and is required during spermatid development. Overexpression 

of TSSK1B has been reported in human cancers, including some colon, bladder, and breast 

cancers [17]. Its missense mutations have been discovered in male patients with unresolved 

infertility causes and are associated with sperm dysmorphology [18]. However, TSSK1B has been 

identified as one of the “understudied” kinases by Illuminating the Druggable Genome (IDG), 

since it lacks antibodies and validated chemical probes [19]. An initial screening assay using the 

published kinase inhibitor set (PKIS)[20] identified that the molecule KQQ (see Figure 2) inhibits 



TSSK1B activity with a cellular half maximal inhibitory concentration (IC50) of 180 nM, which 

suggests that molecule KQQ is a lead compound for targeting TSSK1B. 

To find KQQ analogs that have improved potency for TSSK1B, we would like to perform large 

scale free energy calculations to study the quantitative structure-activity relationship (QSAR). As 

an initial attempt to achieve this goal, the size and shape of the substituent at sites A, C, and D of 

the ligand was varied from hydrogen through methyl, ethyl, butyl, isopropyl, to tert-butyl, as 

illustrated in Figure 2. This allowed us to probe the size and shape of the binding pocket in TSSK1B 

and identify potential hydrophobic contacts. Site B could be either carbon or nitrogen, further 

extending the explored chemical space. Three substituents were tested at site E, since the 

relevant experimental measurements are available. Taken together, we examined the relative 

binding free energies of 6*2*6*6*3=1296 compounds using MSλD. To the best of our knowledge, 

this may represent one of the largest scale free energy calculations to date. Thus, the current 

study demonstrates the unique advantages of the MSλD free energy framework, which enables 

us to rapidly explore this vast chemical space and obtain QSAR of a combinatorial library of small 

molecules. 

 

Figure 2. Structure of lead compound KQQ and its modifications. There are six substituents at 
sites A, C and D, two substituents at site B, and three substituents at site E. This gives a 
combinatorial library of 1296 unique molecules. 



Methods 

Homology modeling of TSSK1B structure 

As an understudied kinase, there is no experimental structure of TSSK1B to date. Therefore, we 

used homology modeling to construct a model for the TSSK1B structure. Four modeling methods 

were tested, Swiss Model [21], I-TASSER [22-24], Robetta [25] and AlphaFold 2 [26], and all 

predicted models were highly similar, containing a well-structured region (residues 1-275) 

followed by a long, disordered tail (residues 276-367) (Figure S1). The root mean squared 

deviation (RMSD) of Cα atoms in folded regions between any two homology models ranged from 

1.8 to 2.1 Å (i.e., excluding loop residues 150-180 and 276-367). Moreover, the structure of 

residues near the binding site are highly similar (Figure S2). Therefore, we assume that the 

specific choice of homology modeling method will have little impact on the resultant TSSK1B 

structure and subsequent free energy calculations. Since the C-terminal tail (residues 276-367) is 

highly disordered, it poses great challenges in accurate modeling of its structural ensemble as 

well as sufficient sampling of its heterogeneous conformations in molecular dynamics (MD) 

simulations, so this region was discarded in our MSλD simulations. This is expected to introduce 

little artifact in relative binding free energy calculations since MD simulations of the whole 

protein (residues 1-367) in complex with the lead compound KQQ suggest that this disordered C-

terminal tail does not form stable contacts with the ligand (Figure S3).  

System preparation 

In MSλD simulations, we construct a hybrid ligand where all atoms that belong to the maximum 

common substructure are represented once and atoms unique to each ligand are represented 

explicitly [14]. We have used the automated workflow named msld_py_prep 

(https://github.com/Vilseck-Lab/msld-py-prep) to identify the maximum common substructure 

in each simulation, and partial atomic charges in the maximum common substructure were 

assigned using the charge renormalization scheme [27]. Initial conformations of these small 

molecules were generated by modifying the ligand structure extracted from PDB 4PNI [28], an 

experimental structure of G protein-coupled receptor kinase 1 in complex with the lead 



compound KQQ. The CHARMM general force field (CGenFF) [29, 30] was used to model these 

compounds. In all MD simulations, the initial structure of TSSK1B (residues 8-275) was obtained 

from Swiss Model [21] using 4PNI as the template, with the N- and C-termini of the truncated 

construct (residues 8-275 only) capped with an N-acetyl group and N-methyl amide, respectively. 

Protonation states of titratable residues were determined using PROPKA3 [31, 32]. This analysis 

suggested that both Nδ and Nε of His109 were protonated at pH 7.4, the pH representing our 

simulated solution. For simulations of TSSK1B in complex with small molecules, the ligands were 

initially placed into the TSSK1B binding pocket based on the binding pose observed in PDB 4PNI. 

The protein was modeled using the CHARMM36m force field [33]. Each system was solvated in a 

cubic box using TIP3P [34] water molecules, allowing for at least 12 Å between protein/ligand 

and the nearest box edge. To neutralize the system and represent a NaCl concentration close to 

the physiological concentration (i.e., 150 mM), a proper amount of NA+ and Cl- ions were 

randomly placed in bulk water. 

MSλD methodology 

The details of MSλD methodology have been reported in previously published works [14, 35]. In 

brief, the potential energy of the system is as follows: 

𝑉𝑉 = 𝑉𝑉(𝑥𝑥0, 𝑥𝑥0) +  ∑ ∑ 𝜆𝜆𝑠𝑠𝑠𝑠(𝑉𝑉(𝑥𝑥0, 𝑥𝑥𝑠𝑠𝑠𝑠) + 𝑉𝑉(𝑥𝑥𝑠𝑠𝑠𝑠, 𝑥𝑥𝑠𝑠𝑠𝑠))𝑁𝑁𝑠𝑠
𝑖𝑖=1

𝑀𝑀
𝑠𝑠=1 +

∑ ∑ ∑ ∑ 𝜆𝜆𝑠𝑠𝑠𝑠𝜆𝜆𝑡𝑡𝑡𝑡𝑉𝑉�𝑥𝑥𝑠𝑠𝑠𝑠 , 𝑥𝑥𝑡𝑡𝑡𝑡�
𝑁𝑁𝑡𝑡
𝑗𝑗=1

𝑀𝑀
𝑡𝑡=𝑠𝑠+1

𝑁𝑁𝑠𝑠
𝑖𝑖=1

𝑀𝑀
𝑠𝑠=1 + 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏({𝜆𝜆})                                                                             (1) 

where x0 are the coordinates of the environment, including water molecules, ions, the maximum 

common substructure of the hybrid ligand and the protein, if present. xsi are ligand coordinates 

of substituent i at site s. M is the total number of sites, and Ns is the number of substituents at 

site s. 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the biasing potential used to facilitate transitions between different end states. 

To maximally enhance sampling in alchemical space, optimized biasing potentials, 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, need to 

be used in MSλD simulations as described in previous work [35, 36]. Briefly, four types of biasing 

potentials are applied, Vfixed, Vquad, Vend and Vskew, as shown below. Vfixed is to ensure that the end 

points have similar free energies. Vquad is tuned to lower the free energy barrier between two end 

points. Vend and Vskew are used to help escape the deep free energy wells near the end point. 



𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑉𝑉𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 + 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                                                                   (2) 

𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ ∑ 𝜙𝜙𝑠𝑠𝑠𝑠𝜆𝜆𝑠𝑠𝑠𝑠
𝑁𝑁𝑠𝑠
𝑖𝑖

𝑀𝑀
𝑠𝑠                                                                                                                                (3) 

𝑉𝑉𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 = ∑ ∑ ∑ 𝜓𝜓𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝜆𝜆𝑠𝑠𝑠𝑠𝜆𝜆𝑠𝑠𝑠𝑠
𝑁𝑁𝑠𝑠
𝑗𝑗>𝑖𝑖

𝑁𝑁𝑠𝑠
𝑖𝑖

𝑀𝑀
𝑠𝑠                                                                                                              (4) 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ ∑ ∑ 𝜔𝜔𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝜆𝜆𝑠𝑠𝑠𝑠𝜆𝜆𝑠𝑠𝑠𝑠/(𝜆𝜆𝑠𝑠𝑠𝑠 + 𝛼𝛼)𝑁𝑁𝑠𝑠
𝑗𝑗≠𝑖𝑖

𝑁𝑁𝑠𝑠
𝑖𝑖

𝑀𝑀
𝑠𝑠                                                                                            (5) 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ ∑ ∑ 𝜒𝜒𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝜆𝜆𝑠𝑠𝑠𝑠(1 − 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝜆𝜆𝑠𝑠𝑠𝑠/𝛿𝛿))𝑁𝑁𝑠𝑠
𝑗𝑗≠𝑖𝑖

𝑁𝑁𝑠𝑠
𝑖𝑖

𝑀𝑀
𝑠𝑠                                                                               (6) 

where 𝛼𝛼 = 0.017  and 𝛿𝛿 = 0.18 . Other parameters, {𝜙𝜙𝑠𝑠𝑠𝑠} , �𝜓𝜓𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠� , �𝜔𝜔𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠� and  {𝜒𝜒𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠}  are 

optimized using adaptive landscape flattening (ALF, available at 

https://github.com/RyanLeeHayes/ALF) [35, 36], an iterative process to flatten free energy 

landscapes in the alchemical space. At each iteration, the system was equilibrated, followed by 

short MD simulations. Two phases of biasing potential optimization were used in this work. In 

the first phase, 50 iterations of 100-ps simulations were performed, and in the second phase, 14 

or more iterations of 1-ns simulations were carried out until reversible transitions can be 

observed in alchemical space.  Sampling statistics were used to compute three types of free 

energy profiles, including G(λsi), G(λsi, λsj), and G(λsi /(λsi + λsj)) under the condition of λsi + λsj > 

0.8. Parameters {𝜙𝜙𝑠𝑠𝑠𝑠}, �𝜓𝜓𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠�, �𝜔𝜔𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠�and {𝜒𝜒𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠} were updated to flatten these three types of 

free energy profiles. Note that implicit constraints in Eq. 7 bias sampling towards the end points 

[37], which is a desirable property for efficient calculation of free energy differences between 

two ligands based on the empirical estimator in Eq. 8. Therefore, the corresponding entropic 

component of free energies originating from these implicit constraints was removed from total 

free energies before flatting the free energy profiles. 

𝜆𝜆𝑠𝑠𝑠𝑠 =
𝑒𝑒𝑒𝑒𝑒𝑒 (5.5𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑠𝑠𝑠𝑠)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒 (5.5𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑠𝑠𝑠𝑠)𝑁𝑁𝑠𝑠
𝑗𝑗=1

                                                                                                                       (7) 

𝛥𝛥𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�{𝜆𝜆𝑠𝑠𝑠𝑠} → �𝜆𝜆𝑠𝑠𝑠𝑠�� ≈ −𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇
𝑃𝑃�{𝜆𝜆𝑠𝑠𝑠𝑠} > 0.99�
𝑃𝑃({𝜆𝜆𝑠𝑠𝑠𝑠} > 0.99) − [𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏({𝜆𝜆𝑠𝑠𝑠𝑠} = 1) − 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏({𝜆𝜆𝑠𝑠𝑠𝑠} = 1)] 

(8) 



Simulation details 

All MD simulations were performed using CHARMM v46a1 [38, 39]. The DOMDEC package [40] 

within CHARMM was utilized to accelerate simulations on GPUs. Periodic boundary conditions 

were applied to all systems. The van der Waals interactions were smoothly switched to zero 

between 9 and 10 Å, using the VFSWITCH function in CHARMM. Electrostatic interactions were 

treated with the particle mesh Ewald method [41]. To alleviate the problem of solvent 

inaccessible cavities as λ approaches 0 when hard-core potentials are used, a soft-core potential 

[35] was used in the MSλD simulations. All simulations were performed under NPT conditions, 

with a temperature of 298.15 K and a pressure of 1 atm. Any bond containing hydrogen atoms 

was constrained using SHAKE [42], allowing for an integration time step of 2 fs. Five independent 

MSλD simulations were run for each system (see Table 1). Since the free ligand simulations 

converged more rapidly than the simulations of the protein-ligand complex, the production runs 

of the former were shorter than those of the latter. Examination of λ values as a function of 

simulation time suggests that sufficient sampling was achieved in alchemical space (Figure S4). 

Free energy uncertainties were estimated using bootstrap analysis. Specifically, for each of the 

five independent simulations, free energies were estimated using the λ trajectories. 50 free 

energy estimates were obtained from these five independent measurements using random 

sampling with replacement, and standard deviation of these 50 estimates was taken to be the 

uncertainty. 

 Table 1. MSλD simulations performed in this work. Note that for each set, we have carried out 
simulations in both unbound and protein bound state as illustrated in Figure 1. 



*Since sites B and C are directly connected (see Figure 2) and probably tightly coupled, we can 

consider site B-C as one site with 2*6=12 substituents. In principle, we can perform a single 

simulation with all 12 substituents at site B-C. However, the fraction of physical ligand decreases 

if there are too many substituents at a given site. Therefore, here we performed two simulations 

to alleviate this problem and to reduce computational cost. There is no fixed rule about how to 

divide these 12 substituents among multiple simulations, as long as there is at least one common 

ligand between them so that we can combine the simulation results to compute relative binding 

free energies of all possible ligands. 

Experimental measurements of IC50 

We have measured IC50 for three ligands where sites A, B, C and D are the same as those in 

molecule KQQ and site E is one of the three substituents in Figure 2. The TSSK1B NanoBRET TE 

assay kit (NV4471) was purchased from Promega and carried out as described in the assay kit. 

HEK293 cells (ATCC) were used for transfection. Commercial nanoBRET tracer K9 (N2632) was 

used for the tracer at 660 nM. The adherent cell format was used as this led to optimal BRET. 

BRET ratios were calculated from the donor signal (415 nm) and acceptor signal (610 nm). 

Set 

Simulation Time 
for each 

Replicate (ns) 
Hybrid Ligand 

unbound bound site A site B site C site D site E 
I 10 40 same as KQQ same as KQQ same as KQQ same as KQQ 1, 2, 3 

II* 40 120 H, Me, Et, Bu, 
iPr, tBu C H, Me, Et, 

Bu, iPr, tBu 
H, Me, Et, 

Bu, iPr, tBu 1, 2, 3 

III* 40 120 H, Me, Et, Bu, 
iPr, tBu 

N H, Me, Et, 
Bu, iPr, tBu H, Me, Et, 

Bu, iPr, tBu 1, 2, 3 
C H 

IV 10 40 same as KQQ same as KQQ same as KQQ same as KQQ Modified 
substituent 1 



Results and discussion 

Comparison of simulation results with experimental measurements 

IC50 values for three of the ligands in which sites A, B, C and D are the same as those in molecule 

KQQ and site E is one of the three substituents shown in Figure 2, have been measured 

experimentally (see Figure S5). This allows us to examine the force field accuracy in reproducing 

their relative binding affinities. As shown in Table 2, our MSλD simulations (set I in Table 1) 

suggest that substituent 3 at site E leads to strongest binding, while binding becomes weaker 

with substituent 1 or 2. But experimentally, the tightest binder to TSSK1B is when site E is 

substituent 2, followed by those with substituent 3 and 1, whose binding free energies are 0.4 

and 2.2 kcal/mol higher than that with substituent 2, respectively. Such discrepancy was partly 

due to the imperfect dihedral potentials for rotatable bonds that connect substituents at site E 

with the maximum common substructure. As shown in Table 2, after we optimize dihedral 

potentials based on quantum mechanics calculations (see Figure S6), our MSλD calculations 

better captured the overall trend that substituents 2 and 3 at site E result in tighter binding than 

substituent 1, although the simulation results still underestimate the improvement of binding 

affinity when replacing substituent 1 with the other two. Note that the experimental 

measurements of IC50 were conducted using the nanoBRET assay with intact cells, where any 

difference in permeability across the cell membrane between these molecules could also 

contribute to the difference in IC50 values. Also, compound KQQ is a type-I inhibitor, which 

occupies the ATP binding site. In the nanoBRET assay, ATP competitively binds TSSK1B and this 

will have an impact on the IC50 measurement. It is also possible that we did not obtain sufficient 

sampling of certain important structural reorganizations of protein and/or water molecules. For 

instance, based on the PDB structure 4PNI, there are two water molecules inside the binding 

pocket that are within 5 Å of site E of molecule KQQ. In our simulations, although we also 

observed multiple water molecules near site E, it is possible that the probability of water 

molecules residing inside the active site is different for different substituents at site E, and 

insufficient sampling of motion of these water molecules may contribute to the discrepancy 

between simulation and experimental results. Moreover, errors of order of 1 kcal/mol for free 



energy calculations are near the anticipated force field limit. For instance, previous MSλD 

simulations of β-secretase 1 inhibitors using the CGenFF force field in combination with CM1A 

partial atomic charges illustrated that simulation results deviate from experimental 

measurements by a mean unsigned error (MUE) of 0.47 kcal/mol [15]. A recent study of a large 

number of ligands for seven proteins demonstrated that the MUE may range from 0.39 to 0.93 

kcal/mol, depending on the protein of interest [9]. A non-equilibrium thermodynamic integration 

method with Amber and CHARMM force fields has also been used to examine a large dataset of 

482 ligand modifications from 13 different protein-ligand datasets, and the overall MUE was 

found to be 0.87 kcal/mol, with MUE for each protein-ligand system ranging from 0.47 to 1.26 

kcal/mol [43]. Since our ultimate goal is to find KQQ analogs that show significantly higher binding 

affinities to TSSK1B, we did not further optimize CGenFF to improve its accuracy, and the above 

optimized dihedral potentials (see Figure S6) were used in all later simulations. 

 

Table 2. Relative binding free energies for modification of KQQ molecule at site E. The molecule 
in which site E is substituent 1 is selected as the reference molecule for computing relative binding 
free energies. ∆𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑒𝑒𝑒𝑒𝑒𝑒  was estimated based on RTln(IC50). 

Substituent Index 1 2 3 

IC50 (nM) 3800 ± 1900 90 ± 40 180 ± 90 

∆∆𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑒𝑒𝑒𝑒𝑒𝑒  (kcal/mol) 0 -2.23 -1.82 

∆∆𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (kcal/mol) 0 ± 0.10 -0.20 ± 0.09 -1.04 ± 0.21 

∆∆𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀* (kcal/mol) 0 ± 0.28 -0.38 ± 0.19 -0.47 ± 0.25 

* MSλD simulation using CGenFF with optimized dihedral potentials. To see if the relative binding 

free energies are significantly different when site E is substituent 1 or 2, we performed 

independent samples t-test. The t value was calculated from (𝑋𝑋�1 − 𝑋𝑋�2)/(�(𝑠𝑠12 + 𝑠𝑠12)/𝑛𝑛), where 

𝑋𝑋�1 and 𝑋𝑋�2 are mean values,  𝑠𝑠1 and 𝑠𝑠2 are standard deviations, and n is 5. The calculated t value 

was 2.511, which was greater than the two-tailed table value of 2.306 at α = 0.05, suggesting that 

the binding free energies can be considered different between substituents 1 and 2. Similarly, 

the difference in binding free energy between substituents 1 and 3 can also be considered 

statistically significant since the calculated t value is 2.800, greater than table value of 2.306. 



 

Sites A, C, D and E are largely independent of each other  

A commonly used assumption in many small molecule drug design projects is that two sites are 

independent of each other, and therefore effects of modifications on different sites are additive. 

To test whether this is a reasonable assumption in the present study, we compared the calculated 

relative binding free energies obtained from this additive model (Eq. 9) with those directly from 

MSλD simulations (Eq. 8) for all combinations of two sites. As demonstrated in Figure 3, relative 

binding free energies obtained from these two methods are in good agreement with each other, 

suggesting that sites A, C, D and E are not strongly coupled, and we can use the additive model 

to estimate relative binding free energies. 

𝛥𝛥𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�{𝜆𝜆𝑠𝑠𝑠𝑠} → �𝜆𝜆𝑠𝑠𝑠𝑠��  ≈ ∑ {−𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇
𝑃𝑃�𝜆𝜆𝑠𝑠𝑠𝑠>0.99�
𝑃𝑃(𝜆𝜆𝑠𝑠𝑠𝑠>0.99) − [𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜆𝜆𝑠𝑠𝑠𝑠 = 1) − 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜆𝜆𝑠𝑠𝑠𝑠 = 1)]}𝑀𝑀

𝑠𝑠=1      (9)  

Note that we do not need to make any assumption that two sites are independent before setting 

up a MSλD simulation. After obtaining a MSλD simulation trajectory, we can always check if two 

sites are independent like in Figure 3. If site i and site j are coupled, we could use Potts model-

based estimator to compute free energies [44]. Alternatively, we may treat sites i and j as a single 

site with Ni*Nj substituents and test if this new site is independent of other sites. This process 

can be repeated if more than two sites are coupled with each other. One advantage of this 

approach is to further reduce sampling requirements of MSλD simulations. Specifically, since the 

probability of observing 𝜆𝜆𝑠𝑠𝑠𝑠 > 0.99  and 𝜆𝜆𝑠𝑠𝑠𝑠 > 0.99  simultaneously is always lower than the 

probability of observing 𝜆𝜆𝑠𝑠𝑠𝑠 > 0.99, the uncertainty associated with 𝛥𝛥𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  in Eq. 8 is greater 

than the uncertainties of 𝛥𝛥𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  in Eq. 9 for a given MSλD simulation. As demonstrated in 

previous work [44], if there is no coupling between any two sites, ALF is able to completely flatten 

the alchemical free energy landscape, and all sites have the same relaxation time scale, the 

amount of sampling for the original estimator (Eq. 8) scales exponentially to the number of sites 

(M). For Potts model including up to two-body terms, the sampling requirement scales to M2. For 

the additive model (Eq. 9), the sampling should be proportional to M. Therefore, to achieve 

certain precision, the additive model presents a more rapid approach of using MSλD to calculate 



relative free energies whenever possible. In this way, MSλD simulation in combination with the 

additive model could significantly improve the computational efficiency of free energy 

calculations when exploring large combinatorial chemical space. 

 

 



Figure 3. Comparison of relative binding free energies computed from the standard estimator in 
Eq. 8 and the additive model in Eq. 9. Results were computed from simulation set III. See Figure 
S7 for results from simulation set II. 

 

Structure-activity relationship for KQQ variants binding to TSSK1B 

The above findings that site A, C, D and E are independent of each other greatly simplified our 

QSAR study and further design. Now we can examine each site individually and determine which 

site(s) we should focus on and what additional modifications may be needed based on the 

structure-activity relationships. As shown in Figure 4, whether site B is carbon or nitrogen, 

varying the substituent at site A between methyl, ethyl, butyl, isopropyl and tert-butyl shows the 

same trend, where tert-butyl appears to be most unfavorable and the butyl group is most 

favorable among these hydrophobic substituents. To understand the structural basis of these 

free energy results, we examined how site A substituents fit and interact with the TSSK1B binding 

pocket. As shown in Figures 4, protein residues near site A are mainly hydrophobic and this 

pocket is largely solvent exposed. Small/linear alkyl groups nicely fit in the hydrophobic groove 

(Figure 4C for example). Branched alkyl groups are not able to fit into the protein pocket very 

well due to steric hindrance, thus leading to reduced binding affinities. 

 

 



Figure 4. Relative binding free energies when substituent at site A is varied, while site B is either 
carbon (A) or nitrogen (B). The results were obtained from simulation set II and III, respectively, 
and can be found in Table S1 as well. (C) Illustration of how butyl at site A fits the TSSK1B binding 
pocket. (D) Illustration of how tert-butyl at site A fits the TSSK1B binding pocket. Here, the protein 
is shown as a surface, colored by partial atomic charges, with red for negative charges and blue 
for positive charges. Ligand is shown in Licorice, with substituent at site A highlighted in purple 
van der Waals spheres. 

 

We also found that changing substituent at site C between hydrogen, methyl, ethyl, butyl, 

isopropyl and tert-butyl groups has little impact on binding free energies, regardless of whether 

site B is carbon or nitrogen (see Figure 5). Again, the main reason is that site C is mostly solvent 

exposed (see Figure 5C-D for example). The general trend of free energy among these 

substituents appears to be slightly different when site B is changed from carbon to nitrogen. 

Further examination of simulation trajectories suggests that when site B is carbon, the site C 

substituent, such as the butyl group, mainly pointed “up” during simulations (Figure 5C). Having 

a branched alkyl group, like isopropyl or tert-butyl, at site C may lead to steric hindrance, thus 

reducing binding affinity. In contrast, when site B is nitrogen, the tert-butyl group, for example, 

mainly pointed “down” in the simulation. In this way, the site C substituent is mostly solvent 

exposed and there is more room to accommodate a bulky group like isopropyl or tert-butyl 

(Figure 5D). 

 



Figure 5. (A-B) Relative binding free energies when substituent at site C is varied, while site B is 
carbon (A) or nitrogen (B). The results were obtained from simulation set II and III, respectively, 
and can be found in Table S1 as well. (C) Illustration of how butyl (C) at site C fits the binding 
pocket in TSSK1B protein when site B is carbon. (D) Illustration of how tert-butyl at site C fits the 
binding pocket in TSSK1B protein when site B is nitrogen. See Figure 4 caption for coloring scheme. 

 

Similar to sites A and C, site D is also largely solvent exposed (see Figure 6C-D for example). 

Moreover, there are three negatively charged residues (Asp 97, Glu 100, and Asp 140) near site 

D, which makes hydrophobic substituents, including methyl, ethyl, butyl, isopropyl, and tert-butyl, 

generally unfavorable. Interestingly, the covalent geometry of the common core is slightly 

different when site B is changed from carbon to nitrogen, which then affects the orientation of 

site D substituent. When site B is carbon, even a small hydrophobic group, like methyl, can be 

close to the negatively charged residues, thus leading to reduced binding affinity (Figure 6A). 

When site C is nitrogen, larger/bulkier hydrophobic groups are more unfavorable (Figure 6B). For 

this reason, we suggest it’s probably better to keep site B and D the same as that in the original 

KQQ molecule (Figure 2). The predicted pKa of the site D group in the KQQ molecule is 7.7 based 

on MolGpKa [45], and the pKa of trimethylamine is 9.8 [46]. Therefore, molecule KQQ may be 

protonated at site D with certain probabilities and form favorable interactions with these three 

negatively charged protein residues. 

 

Figure 6. (A-B) Relative binding free energies when substituent at site D is varied, while site B is 
either carbon (A) or nitrogen (B). The results were obtained from simulation set II and III, 



respectively, and can be found in Table S1 as well. (C-D) Illustration of how butyl at site D fits the 
binding pocket in TSSK1B protein when site B is either carbon (C) or nitrogen (D). See Figure 4 
caption for coloring scheme. 

Adding more polar groups at site E further increases binding affinity 

Although the three substituents at site E only showed small differences in binding free energies 

(see Table 2), site E is less solvent exposed and has multiple interactions with the protein. As 

illustrated in Figure 7B, the aromatic ring in these three substituents could form stable 

hydrophobic contacts with the protein. Also, depending on the orientation of the substituent, 

additional polar interactions can be observed (Figure 7C). Taken together, we anticipate that 

further modifying site E may help design better inhibitors of TSSK1B. 

Therefore, we changed the site E substituent by adding more hydrophobic or polar groups and 

examined the effects on binding affinity. Here, we performed another set of MSλD simulations 

(simulation set IV in Table I) by modifying position Y of substituent 1 at site E (see Figure 7A). As 

shown in Figure 7A, adding a polar group, like an amine or hydroxyl, further lowers the binding 

free energy. This polar group can form contacts with polar/charged residues in TSSK1B, including 

Asp 154, Asp 140, and Lys 41. Further experimental studies will be needed to validate our 

predictions. 

 



Figure 7. (A) Relative binding free energies when substituent 1 at site E is further modified. The 
results were obtained from simulation set IV. (B-C) Illustration of how substituent 3 at site E fits 
the binding pocket of TSSK1B protein in simulation set II. See Figure 4 caption for coloring scheme. 
Note that the radii of VDW spheres have been scaled to 50% to better show the protein surface. 

Conclusion 

Being able to rapidly explore the large chemical space of a combinatory library and establish the 

QSAR relationship is very important in the lead optimization process of drug design. Unlike other 

popular free energy methods like FEP or TI, MSλD is a novel method that allows one to compute 

the relative free energy of many compounds within a single simulation and shows excellent 

scalability to the total number of compounds modeled. In the present study, we used MSλD to 

explore a large combinatorial chemical space by calculating the relative binding free energies of 

1296 inhibitors to kinase TSSK1B, a validated target for male contraception. For this system, we 

found that the sites A, C, D and E in the small molecule scaffold are independent of each other, 

which allowed us to examine each site individually and compute relative binding free energies of 

these ligands using an additive model. This significantly reduced the required computational 

resources with no loss of statistical precision. Note that the lack of cooperativity between two 

sites in this study may not necessarily be generalized to other systems. It is possible that a ligand 

may take advantage of cooperative effects between different sites to achieve highest possible 

binding affinity. Depending on the target of interest and the ligand scaffold, such cooperative 

effective may need to be considered. Based on our simulations, we have also identified that sites 

A, C and D are largely solvent exposed and might be less sensitive to modifications. However, site 

E in the ligand is able to form both hydrophobic and polar interactions with the protein, and 

further modifications, such as adding more polar groups, may lead to increased binding affinity. 

Based on our calculations, we predict that by modifying sites A of the ligand KQQ to butyl, and 

position Y of substituent 1 at site E to an amine or hydroxyl group, we could further increase the 

binding affinity by ~1.5 kcal/mol. 

Supplementary Information 

Comparison between different homology models of TSSK1B, probability of forming contacts 

between molecule KQQ and the C-terminal tail of TSSK1B, reversible transitions in the alchemical 



space, experimental measurements of IC50, optimization of dihedral potentials, verification of 

site independence for simulation set II, relative binding free energy values estimated using the 

additive model. 
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