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Objective. Patients with diffuse cutaneous systemic sclerosis (dcSSc) display a complex clinical phenotype.
Transcriptional profiling of whole blood or tissue from patients are affected by changes in cellular composition that drive gene
expression and an inability to detect minority cell populations.We undertook this study to focus on the 2main subtypes of cir-
culating monocytes, classical monocytes (CMs) and nonclassical monocytes (NCMs) as a biomarker of SSc disease severity.

Methods. SSc patients were recruited from the Prospective Registry for Early Systemic Sclerosis. Clinical data
were collected, as well as peripheral blood for isolation of CMs and NCMs. Age-, sex-, and race-matched healthy vol-
unteers were recruited as controls. Bulk macrophages were isolated from the skin in a separate cohort. All samples
were assayed by RNA sequencing (RNA-seq).

Results. We used an unbiased approach to cluster patients into 3 groups (groups A–C) based on the transcriptional
signatures of CMs relative to controls. Each group maintained their characteristic transcriptional signature in NCMs.
Genes up-regulated in group C demonstrated the highest expression compared to the other groups in SSc skin mac-
rophages, relative to controls. Patients from groups B and C exhibited worse lung function than group A, although there
was no difference in SSc skin disease at baseline, relative to controls. We validated our approach by applying our
group classifications to published bulk monocyte RNA-seq data from SSc patients, and we found that patients without
skin disease were most likely to be classified as group A.

Conclusion. We are the first to show that transcriptional signatures of CMs and NCMs can be used to unbiasedly
stratify SSc patients and correlate with disease activity outcome measures.

INTRODUCTION

Systemic sclerosis/scleroderma (SSc) is a complex,

autoimmune-mediated connective tissue disease characterized

by widespread vascular damage, chronic inflammation, and fibro-

sis. SSc is highly heterogenous in presentation and disease

course, and may involve the skin, blood vessels, lungs, heart, kid-

neys, and gastrointestinal tract. SSc can be subtyped by
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cutaneous involvement, including limited cutaneous SSc (lcSSc),

diffuse cutaneous SSc (dcSSc), and noncutaneous SSc (ncSSc,

more recently known as SSc sine scleroderma). While clinically

defined SSc cutaneous subsets are associated with internal

organ complications and death, they cannot predict disease

course on a per-patient basis or inform treatment decisions.

Thus, identification of disease endophenotypes and their longitu-

dinal course will facilitate precision medicine implementation.
The role of immune cells in SSc pathogenesis is supported

by the fact that the vast majority of genetic susceptibility loci in
SSc belong to immunologic pathways (1). Circulating monocytes
exist in 3 main states, characterized by CD14 and CD16 in
humans: classical monocytes (CMs) (CD14+CD16−), which con-
stitute the majority of monocytes; intermediate monocytes (IMs)
(CD14+CD16+); and nonclassical monocytes (NCMs)
(CD14+CD16+), which constitute <5% of total monocytes. How-
ever, recent studies have identified additional monocyte subsets
with definitions beyond expression of CD14 and CD16 (2,3). The
numbers of CD14+ monocytes in the blood of patients with SSc
are higher compared to healthy controls (4,5) and are associated
with reduced survival (5). Our group was the first to identify a
causal role for monocyte-derived alveolar macrophages in a
murine model of fibrosis and to confirm the presence of these
cells in humans with SSc-related interstitial lung disease (6,7).
Increased numbers of dermal macrophages have also been
identified in skin from SSc patients (5,8) and in murine models of
SSc-like disease (9). Moreover, reductions in skin macrophage
numbers have been detected in a subset of SSc patients receiv-
ing mycophenolate mofetil (MMF) (10). These data suggest that
the monocyte/macrophage population is crucial for SSc develop-
ment. However, little is known regarding individual populations of
monocytes in SSc.

There are numerous studies that identify relationships
between transcriptional signatures from peripheral blood mono-
nuclear cells (PBMCs) or whole skin of SSc patients and disease
activity (5,11). We and others identified 4 molecular pathway–
centric “intrinsic SSc subsets” using whole-genome microarray
analysis of PB, whole skin, and esophageal biopsies from SSc
patients (12–15), which were validated by 2 groups (13,16). More-
over, patients with an inflammatory gene expression signature in
skin are the most likely to demonstrate skin disease improvement
during MMF treatment (17). However, there were patients classi-
fied in the inflammatory intrinsic subset who were MMF nonre-
sponders (17,18), which suggests that an understanding of the

transcriptional profile of individual immune populations may be
necessary to discern which patients are more susceptible to a
particular therapy.

In this study, we profiled the transcriptional signature of CMs
and NCMs in patients from the Prospective Registry of Early
Systemic Sclerosis (PRESS) consortium, a multicenter incident
cohort study of patients with diffuse cutaneous SSc, which has
the goal of advancing the understanding of disease pathogenesis
and identifying novel biomarkers to inform patient care (19–24).
Our study demonstrates the potential for transcriptional profiling
of individual monocyte populations as a useful tool to stratify
patients prior to therapeutic intervention.

PATIENTS AND METHODS

Study participants, recruitment, and sample
collection. Patients were recruited to the PRESS registry at
Northwestern University (NU), University of Texas, University of
Utah, and University of Michigan (protocol no. STU00062447),
as previously described (22). Consecutive patients in the PRESS
registry from 4 PRESS sites (University of Michigan, NU, Univer-
sity of Texas-Houston, and University of Utah) were enrolled in this
substudy if they were naive to immunosuppressant treatment
with plans to start a new treatment for SSc from September
2015 through June 2016, although some samples were collected
at posttreatment initiation. At the time of sample collection, 7 out
of 14 patients were receiving immunosuppressants: 6 patients
were receiving MMF and 1 patient was receiving rituximab and
prednisone. Clinical information including modified Rodnan skin
score (MRSS) and pulmonary function tests were obtained. Age-
, sex-, and ethnicity-matched controls were recruited at NU
through the Control Blood Acquisition for Rheumatology
Research (no. STU00045513) protocol. For skin biopsies,
patients and healthy controls were recruited independently from
NU (no. STU00002669). Two side-by-side 4-mm dermal punch
biopsies from the dorsal surface of the forearm midway between
the ulnar styloid and the olecranon were sampled.

Blood processing and fluorescence-activated cell
sorting (FACS). Blood and tissue were processed, stained, and
sorted via FACS using an antibody cocktail including BB515-con-
jugated anti-CD45 (BD Horizon), PerCP–Cyanine5.5–conjugated
anti-CD14 (eBioscience), eFluor 450–conjugated anti–HLA–DR
(eBioscience), allophycocyanin (APC)–conjugated anti-CD15
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allophycocyanin (Biolegend), APC–Cy7–conjugated anti-CD16
(BD Biosciences), phycoerythrin-conjugated anti-CD1c (PE;
Miltenyi Biotec), Alexa Fluor 700-conjugated anti-CD20
(BD Biosciences), and PE–Cy7–conjugated anti-CD56 PE–Cy7
(BD Biosciences). Cell sorting was performed on the FACSAria III
(BD Biosciences) at the NU Robert H. Lurie Cancer Center Flow
Cytometry Core Facility.

Skin biopsy digestion and macrophage sorting. Fat
was discarded, epidermal and dermal tissues were separated,
and tissue was mechanically digested with preset gentleMACS
program m_lung_01. Cells were labeled with viability dye,
treated with Fc block, and stained with the following cocktail:
anti-CD45 PE–Cy7, anti–HLA–DR eFluor 450, anti-CD206 APC
(BD Biosciences), anti-CD16 PE (BD Biosciences), anti-CD56
Alexa 700 (Biolegend), and anti-CD15 Alexa700 (BD Biosciences).

Preparation of RNA library. RNA from sorted cells was
extracted using the PicoPure RNA isolation kit per instructions of
the manufacturer (Arcturus). Full-length RNA-seq libraries from
CMs and skin were prepared using SMART-Seq v4 Ultra Low
Input RNA Kit (Clontech Laboratories) followed by Nextera XT
protocol (Illumina). For NCM samples, a QuantSeq FWD
(Lexogen GmbH) was used to generate Illumina compatible librar-
ies. Libraries were sequenced on a NextSeq 500 instrument
(Illumina) with a minimum of 5 × 106 reads per sample, and com-
mercially available universal human RNA was included for
reference.

RNA-seq alignment and mapping. Sequenced reads
were de-multiplexed (bcl2fastq), trimmed (Trimmomatic0.36 for
full-length, bbduk for 30), and aligned to hg19 (TopHat2
2.17.1.14 for full-length or STAR, version 2.5.2, for 30 data sets
[NCMs]). Samples with fewer than 5 × 106 uniquely aligned reads
or with complexity (percentage of reads mapping to unique geno-
mic positions) <30% were excluded due to low quality. As this
included 1 of the original 15 SSc CM samples, we also removed
the paired NCM sample for this patient. Aligned reads were
mapped to genes and counted using HTseq with Homo_sa-
piens.GRCh37.75 as reference. Gene coverage (50 and 30) for
full-length libraries was calculated using the RSeQC package.
Gene counts were normalized by calculating fragments per kilo-
base per million (FPKM) for CM and skin macrophage samples
or counts per million (CPM) for NCM samples. Expressed genes
in each data set were defined as those with ≥3 samples above
the minimum threshold (FPKM = 5 for CMs, CPM = 31 for NCMs,
FPKM = 3 for skin).

Identification of CM transcriptional signature in
SSc. R Studio (https://www.rstudiocom/) was used to calculate
Pearson’s correlation coefficients and to generate principal com-
ponents analysis (PCA) plots, Venn diagrams (ggplots package),

and scatterplots (ggplot2 package). GraphPad Prism was
used to generate bar graphs of individual gene expression.
Differential expression was calculated using the DEseq package
(version 1.18.1) on 5,171 expressed genes; genes with changes
in expression of ≥2-fold and with Benjamini-Hochberg-adjusted
P values less than 0.05 were considered differentially expressed
genes (DEGs) between the SSc cohort and controls (25). Gene
Ontology (GO) analysis was performed on up and down DEGs
independently using GOrilla (cbl-gorilla.cs.technion.ac.il) with
expressed genes (5171) as background. To define differential
genes in individual SSc patients compared to healthy controls,
we calculated a modified Z score (z0) for each gene based on its
expression distribution in the control cohort:

z0 ij =
xij − μCi
� �

σCi

Where x is the expression level of gene i in patient j, μCi is the
mean expression for gene i across controls, and σCi is the SD of
expression for gene i across controls. To prevent artificially high
Z scores resulting from small SDs, where a high Z score may not
represent true biologic variability, we set the minimum σCi to 2.5.
We identified 1,790 genes with jz0j>2 in ≥3 patients. GENE-E
(https://software.broadinstitute.org/GENE-E/) was used to per-
form hierarchical clustering of samples and K-means clustering
of genes (k = 4), resulting in patient groups A–C and gene clusters
I–IV. Pvclust was used to assess the confidence in the dendro-
gram resulting from hierarchical clustering. We used resampling
method (without replacement) of the genes to evaluate the
robustness of the three groups by determining how often the
patients ended up in the same clade out of 1,000 iterations with
varying subset sizes. DEseq was run, and DEGs were defined as
above in each patient group compared to controls.

Gene set enrichment analysis (GSEA). To determine
the biologic processes of enriched genes in each group,
5,171 expressed genes were ranked by group based on their
fold change relative to the mean expression across controls
and given as preranked input for GSEA version 3.0 (www.gsea-
msigdb.org). Preranked genes were compared to the biologic
processes of the Molecular Signature Database (MSigDB) C5 ver-
sion 7.0 collection, using preranking and classic weighting. Nor-
malized enrichment scores were reported, and significant
enrichment (or depletion) was defined as having an adjusted
P value less than 0.05.

Comparison to NCM transcriptional signature.
Starting with the 1,790 genes in CM clusters, we identified 1,599
among the NCM expressed genes and calculated the modified Z
score relative to NCM controls. Hierarchical clustering was per-
formed on these genes based on their NCM Z score, and dendro-
gram confidence and group robustness were assessed as
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described above. DEseq was performed as above on 7,143
expressed genes to define DEGs between each patient group
and controls, and ggplot2 was used to compare DEGs in CMs
versus NCMs. GSEA was run as described above based on
fold-change in NCMs.

Expression of publishedmonocyte genes.We defined
431 CM and 388 NCM genes based on a publicly available
microarray data set (26). To determine whether these gene
sets were differentially expressed in our patient groups, we cal-
culated the average expression in each individual and com-
pared the distribution in patient groups to the control cohort.
We calculated the average expression of each gene by patient
groups and determined the percentage that exhibited greater
expression than in controls. Significance was calculated by
Fisher’s exact test (P < 0.05). Prism was used to graph
these data.

Skin macrophages. We used a nonparametric Mann-
Whitney U test to define SSc-specific genes (n = 190) and
control-specific genes (n = 138) out of 6,338 expressed genes
in skin macrophages from patients compared to controls with a
P value less than 0.05. GENE-E was used to visualize the relative
expression of these genes as a heatmap with minimum-to-
maximum scaling. The number of these genes that overlap with
those defined in each of the CM clusters were calculated, and
the significance of enrichment was determined using Fisher’s
exact test (P < 0.05). Receiver operating characteristic (ROC)
curve (pROC package in R) was used to determine the perfor-
mance of clusters I–IV at delineating status in patients versus
controls. Each sample was scored as the mean of the
minimum-to-maximum value for all genes in the given cluster;
P values were calculated by the package using Mann-Whitney
U test.

Statistical analysis of clinical data. Baseline forced vital
capacity percent predicted (FVC%) and MRSS differences among
the groups identified in the cluster analysis were assessed using
the Kruskal-Wallis test. Baseline distributions of FVC and MRSS
by groups identified in the cluster analysis were illustrated using
box plots using Prism. Additionally, the longitudinal FVC and
MRSS data are displayed as spaghetti plots using Prism.

Comparison to published SSc monocyte data. All
information on patient diagnosis, grouping, and sample acquisi-
tion was obtained from the publicly available data set by van der
Kroef et al (27). Starting with 1,790 genes across the CM clusters,
we identified 1,523 that were expressed in bulk monocyte RNA-
seq from this data set. For each gene, we normalized using
minimum-to-maximum scaling and calculated the mean score
across genes in each cluster for each individual. ROC curves were

plotted as described above to determine the performance of clus-
ters I–IV at delineating each SSc patient category versus controls.

RESULTS

Greater variability in CMs from SSc patients versus
those from healthy controls. We obtained blood samples
from 14 dcSSc patients and 15 age-, sex-, and race-matched
healthy volunteers as controls (Figure 1A). We then isolated CMs
and NCMs using flow cytometry and found no significant differ-
ences in the proportion detected among CD45+ immune cells
between the SSc and control cohorts (Figures 1B and C). We per-
formed RNA-seq to profile the gene expression of CM, the pre-
dominant monocyte population. One sample that did not pass
quality control tests was eliminated, and we confirmed patient
sex as an additional quality control (Supplementary Figures 1A–D,
available on the Arthritis & Rheumatology site at https://
onlinelibrary.wiley.com/doi/10.1002/art.42380). From the
remaining 29 samples, we found that the expression of genes
tended to be more variable across SSc patients than across con-
trols (Figure 1D and Supplementary Figure 1E). By calculating an
average transcriptional profile for the control cohort, we deter-
mined that SSc patients exhibited a range in their similarity to
healthy controls (Supplementary Figure 1F). Moreover, while the
CM gene expression of patients that most resembled controls
was necessarily similar to each other, the remaining patients
exhibited substantial variability in their transcriptional profiles
(Supplementary Figure 1G). This variability did not seem to be
associated with the site of sample collection (Supplementary
Figure 1H), although patients receiving immunosuppressive ther-
apies tended to more closely resemble controls (Figure 1E).

We next performed pairwise differential expression analysis
between the SSc and control cohorts and defined 146 and
21 genes as up- and down-regulated in SSc, respectively
(Figure 1F and Supplementary Tables 1A and B, https://
onlinelibrary.wiley.com/doi/10.1002/art.42380). The 146 genes
include a type I interferon (IFN) signaling pathway (OAS1, OAS2,
IRF2), response to cAMP (FOS, FOSB, JUN), regulation of vascu-
lar development (VEGFA, KLF2, SERPINE1), and regulation of
leukocyte migration (CSF1R, CCR2, CCL2).

Clustering SSc CMs into 3 transcriptional subgroups.
In order to capture the transcriptional dysregulation in individual
SSc patients, we devised an alternative approach to define genes
associated with disease. For each patient, we considered a given
gene to be differential if its expression was >2 SDs from the con-
trol mean. By hierarchically clustering the SSc patients based on
the 1,790 genes that were differential in ≥3 patients, we identified
3 patient subgroups (groups A–C). We also noted that 1 patient
(no. SSc15) was highly similar to controls and not included in
any group (Figure 2A Supplementary Table 2A, https://
onlinelibrary.wiley.com/doi/10.1002/art.42380). The clustering of
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Figure 1. Classical monocytes (CMs) from patients with early diffuse systemic sclerosis (SSc) displayed transcriptional heterogeneity. A, Char-
acteristics of the patients in the Prospective Registry of Early Systemic Sclerosis and the controls. P value for age (by Mann-Whitney U test) was
not significant (ns), and P values for sex and race (by Fisher’s exact test) were not significant. B, Contour plots depicting stepwise isolation of
CMs and nonclassical monocytes (NCMs) from blood by fluorescence-activated cell sorting.C, Percentage of CMs and NCMs in CD45+ cells from
SSc compared to control samples (P = 0.14 and P = 0.89, respectively, by Mann-Whitney U test). Symbols represent individual samples; bars
show the mean ± SD. D, Scatterplot showing the coefficient of variation (SD/average) for expression (fragments per kilobase per million (FPKM)
relative to the average expression (log2[FPKM +1]) in SSc and control CMs. E, Principal Components Analysis (PCA) of gene expression in CM
samples from treated SSc patients, untreated SSc patients, and controls. F, Volcano plot showing differentially expressed genes in the SSc cohort
(n = 167) compared to controls, based on log2 fold change ≥1 or ≤−1 (significance calculated by DEseq with Benjamini-Hochberg false discovery
rate correction). Purple indicates genes with Padj < 0.05 and log2 fold change ≥1 or ≤−1. Data shown in C–F were based on 5,171 expressed
genes in CMs. MRSS = modified Rodnan skin thickness score; DCs = dendritic cells; NA = not applicable.
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Figure 2. Patients with early diffuse SSc stratified into 3 groups based on the transcriptional profile of CMs. A, Heatmap of adapted Z scores of
CM gene expression relative to controls, depicting dendrogram resulting from unsupervised hierarchical clustering of samples into 3 groups and
K-means clustering of 1,790 differentially expressed genes (DEGs) by individual (|adapted Z score| >2 in ≥3 patients) (rows) (k = 4). B–D, Expres-
sion of representative genes from cluster I (n = 592) (B), cluster II (n = 261) (C), and cluster III (n = 500) (D), in each patient group as well as controls
(Ctrl). Symbols represent individual samples; bars show the mean ± SD. * = Padj < 0.05, by DEseq with Benjamini-Hochberg false discovery rate
(FDR) correction. E, PCA of gene expression in CM samples color-coded based on patient groups. F, Number of genes with adapted Z scores
>2 or <−2 in individual CM samples organized by patient groups. G, Venn diagram showing overlap of up-regulated (log2 fold change >1 and
Padj < 0.05) or down-regulated (log2 fold change <−1 and Padj < 0.05) genes in each group (groups A–C) compared to controls. H, Heatmap
showing the FDR based on gene set enrichment analysis of biologic processes associated with DEGs in the 3 groups. Data shown in A–H were
based on 5,171 expressed genes in CMs. GPCR = G protein–coupled receptor; BMP = bone morphogenetic protein; TGFB = transforming
growth factor β (see Figure 1 for other definitions).
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patients was robust: while individual branches of the dendrogram
changed, the identity of the groups remained largely constant
regardless of the subset of genes used for clustering analyses
(Supplementary Figures 2A and B). Moreover, using K-means
clustering of the 1,790 genes, we characterized 4 gene expres-
sion patterns associated with these subgroups. Cluster I is pri-
marily expressed in group A, cluster II in group B, cluster III in
group C, and cluster IV is down-regulated in the majority of
patients compared to controls (Figures 2A–D). The distinct tran-
scriptional signatures of each group were reinforced when visual-
ized using PCA (Figure 2E). Patients in group A tended to have the
most DEGs, and both groups A and B demonstrated overlap with
the genes identified in the prior full-cohort analysis (Figure 2F). On
the other hand, group C patients were characterized by the
expression of genes in CMs that have hitherto been undetected
and may represent dysregulated pathways that have been
missed in earlier studies as well.

We performed pairwise differential analysis between each
patient group relative to controls for all expressed genes in the
data set to better characterize their transcriptional profiles
(Figures 2G and H, Supplementary Figures 2C, E, and G, and
Supplementary Tables 2B and C, https://onlinelibrary.wiley.com/
doi/10.1002/art.42380). We found that up-regulated genes in
group A were associated with type I IFN, such as IFI16, OAS1,
OAS2, and IRF2, as well as innate immunity in general and G
protein–coupled receptor (GPCR) signaling, including CSFR1,
CCR2, and CD86. Group B had the fewest DEGs and the most
overlap with other groups. This may explain why group B was
the least conserved in resampling (Supplementary Figure 2B).
Like group A, group B genes were associated with type I IFN
pathways and innate immunity but exhibited higher enrichment
of chemokine production and response to cAMP and glucocorti-
coids. Both groups B and C showed up-regulated genes associ-
ated with vasculature development and blood vessel
morphogenesis, such as VEGFA and HBEGF (28). Group C
exhibited additional genes associated with transforming growth
factor β (TGFβ), tube formation, and bone morphogenetic protein
(BMP) signaling, including TGFB1, SMAD3, SKIL, PPARD,
CXCR4, and PTPN12.

Patient groups were largely conserved in NCM
analyses. Next, we analyzed RNA-seq data from NCMs isolated
from the same patients (Supplementary Figure 3A, https://
onlinelibrary.wiley.com/doi/10.1002/art.42380). The variation in
gene expression was higher in NCMs than CMs in both patients
and controls (Supplementary Figures 3B–D), but this may be
due to technical differences in the protocols or higher sampling
bias from the smaller NCM population. NCMs were clustered
based on the 1,790 CM genes that defined groups A, B, and C
to address the conservation of groups on a global scale without
introducing new genes (Figure 3A and Supplementary Table 3A).
Patients in groups A and C continued to cluster next to each

other, but group B no longer formed its own clade (Figure 3A
and Supplementary Figures 3E–G). As with CMs, we performed
pairwise analyses for DEGs for each of the 3 groups
(Supplementary Figure 3H and Supplementary Tables 3B and
C). To complement our approach in Figure 3A, we then compared
the list of DEGs between the previously defined groups to deter-
mine whether individual genes were conserved and identify genes
that may be uniquely differential in NCMs (Figures 3B–F and Sup-
plementary Figure 3I). We found that genes related to IFN path-
ways and innate immunity were preferentially expressed in group
A in both CMs and NCMs. Although group B did not exhibit as
many significantly up-regulated genes in NCMs as in CMs, group
B NCM genes were associated with similar processes as CMs.
Group C patients exhibited far fewer NCM DEGs, but those asso-
ciated with its unique transcriptional signature, such as CXCR4,
PTPN12, and SKIL, were significantly up-regulated.

Comparison of monocyte identity across patient
subgroups. It has been proposed using mouse models that a
subset of CMs that have egressed from the bone marrow differ-
entiate into NCMs (29). The genes that distinguish NCMs from
CMs on a transcriptional level have been well established and
are conserved between mice and humans (30). To determine
whether monocyte identity is altered in SSc, we generated a list
of CM-specific and NCM-specific genes based on recent studies
(26) (Supplementary Table 4). We found that both CMs and
NCMs from group A patients exhibited higher expression of their
respective population genes than controls, including PLAC8,
PADI4, SELL, LYZ, and CCR2 in CMs and ITGAL, SPN, CX3CR1,
and CSF1R in NCMs (Figures 4A–D). This was a cell type–specific
effect, as we did not observe increased expression of these genes
in the opposite population (Supplementary Figures 4A–D, https://
onlinelibrary.wiley.com/doi/10.1002/art.42380). Group B also
exhibited increased CM gene expression only in CMs, while group
C levels were slightly lower. These observations were driven by
more than a few genes, as a significant proportion were
expressed above the average level of the control cohort
(Supplementary Figures 4E and F). In comparing CMs and NCMs,
we may have expected that the genome-wide transcriptional pro-
file would be most similar between monocytes from the same
patient; however, this was not the case (Figure 4E). The overex-
pression of CM genes in groups A and B may explain why CM
gene expression among this SSc cohort is less similar compared
to NCMs (Supplementary Figures 4E and F).

Up-regulation of SSc-associated monocyte genes by
skin macrophages. Since we observed common transcrip-
tional signatures across monocyte populations in SSc and control
cohorts, we investigated whether similar gene expression profiles
were observed in skin macrophages. We isolated CD206+HLA–
DR+ macrophages from fibrotic skin from 7 SSc patient biopsy
samples (Figure 5A and Supplementary Figures 5A–C, https://
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Figure 3. Patient groupings based on CMs exhibited distinct transcriptional profiles in NCMs. A, Heatmap of adapted Z scores of NCM gene
expression relative to controls using 1,599 genes from CM clusters in Figure 2A. B–D, Expression of representative genes from cluster I (B), cluster
II (C), and cluster III (D), in each patient group as well as controls (Ctrl). Symbols represent individual samples; bars show the mean ± SD.
* = Padj < 0.05, by DEseq with Benjamini-Hochberg false discovery rate correction. E, Scatterplots of log2 fold change of gene expression in each
patient group compared to controls for CMs versus NCMs. Significant genes, as described in Figure 2, were color-coded if they were shared
between CMs and NCMs (purple), only in NCMs (pink), or only in CMs (blue). F, Bar graph of the normalized enrichment scores (NES) based on
gene set enrichment analysis of biologic processes from Figure 2H in CMs and NCMs. Dashed lines indicate the 90% threshold for NES in CMs
and NCMs. Vertical lines separate GO terms that relate to each group. Data shown in A–F were based on 7,143 expressed genes in NCMs.
CPM = counts per million; IFN = interferon; GPCR = G protein–coupled receptor; BMP = bone morphogenetic protein; TGFB = transforming
growth factor β (see Figure 1 for other definitions).
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onlinelibrary.wiley.com/doi/10.1002/art.42380) and from 7 age-,
sex-, and race-matched healthy controls for RNA-seq analysis
(Supplementary Figures 5D and E). We identified 328 DEGs
between skin macrophages in SSc patients versus controls
(Figure 5B, Supplementary Figure 5F, and Supplementary
Table 5). The 190 SSc-specific genes included those that have
been previously implicated in SSc and/or macrophages, such as
ITGB2 (31), ITGA5 (32), ADAM8 (33), ALOX15 (34), CLEC10A
(35,36), NFKB2 (37), NFKBIE (38,39), and RUNX3 (40). The
138 control-specific genes included transcription factors, such
as CEBPD, which potentiates macrophage inflammatory
response and angiogenesis (41,42), ID3, which is necessary for
macrophage specification in liver (43), EPAS1 (HIF2a), which sup-
presses the NLRP3 inflammasome (44), and LRG1 (45) and IL6,
which play a role in angiogenesis (Figure 5C). Of note, ITGB2,
ITGA5, ADAM8, CEBPD, and NFKB2 were all differentially
expressed in CM SSc patients compared to controls.

We found that cluster I–III genes, which corresponded to
up-regulated genes in groups A, B, and C in our CM analysis,
were more likely to be SSc-specific than control-specific

(enrichment: cluster I = 1.54, cluster II = 1.82, cluster
III = 3.27), but only cluster III (group C) was significantly
enriched (P = 0.0412) (Figure 5D and Supplementary
Figure 5G, https://onlinelibrary.wiley.com/doi/10.1002/art.
42380). Similarly, classification strategies based on the average
expression of cluster I and III genes in skin macrophages were
able to differentiate between SSc patients and controls signifi-
cantly better than at random (P = 0.03 and P = 0.01, respec-
tively) (Figure 5E). On the other hand, cluster IV genes, which
were largely down-regulated in monocytes, were generally
expressed more highly in controls than in SSc patients (enrich-
ment: cluster IV = 0.40; P = 0.029).

Differing disease characteristics across patient sub-
groups. Our analysis stratified SSc patients based on CM tran-
scriptional profiles, while remaining agnostic to clinical
presentation such as cutaneous and pulmonary involvement.
We collected baseline and longitudinal MRSS and FVC data
up to 42 months after blood sample collection, we found that
patients in groups B and C exhibited significant FVC

Figure 4. Variation in expression of monocyte gene signatures in SSc CMs and NCMs. A, Average expression level of all CM genes in CM sam-
ples from patient groups and controls.B, Average expression level of all NCM genes in NCM samples from patient groups and controls.C, Expres-
sion levels of representative CM genes in patient CM samples by group. D, Expression levels of representative NCM genes in patient NCM
samples by group. Symbols represent individual samples; bars show the mean ± SD. * = P < 0.05 by Mann-Whitney nonparametric test (A and
B) and Padj < 0.05 by DEseq with Benjamini-Hochberg false discovery rate correction (C and D). E, Pearson correlation of average gene expres-
sion between CM and NCM samples in patient groups and controls. CPM = counts per million (see Figure 1 for other definitions).
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Figure 5. SSc-associated monocyte genes were up-regulated in SSc skin macrophages compared to controls. A, Characteristics of the
patients in the Prospective Registry of Early Systemic Sclerosis and the controls. P values for age (by Mann-Whitney U test) and for sex and race
(by Fisher’s exact test) were not significant. B, Gating scheme depicting the purification of macrophages from skin. C, Heatmap of 190 SSc-
specific and 138 control-specific genes based on significantly differential expression in skin macrophages (P < 0.05 by Mann-Whitney U test).
D, Expression of representative genes from heatmap in skin macrophages from SSc patients and controls. Symbols represent individual samples;
bars show the mean ± SD. * = Padj < 0.05. E, Number of genes from B that overlap CM clusters I–IV in Figure 2A. * = P < 0.05 by Fisher’s exact
test. F, Receiver operating characteristic curve based on the sensitivity and specificity of distinguishing skin macrophages from SSc patients ver-
sus controls using the average normalized expression of genes from CM clusters I–IV. Significant areas under the curve (AUCs) are colored. Data
shown in B–E were based on 6,338 expressed genes in skin macrophages. See Figure 1 for other definitions.
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reduction, indicating poor lung function at baseline, com-
pared to group A patients who had better lung function that
tended to remain stable over time (Figures 6A and C). In con-
trast, there were no significant differences in MRSS levels
between groups at baseline or longitudinally (Figures 6B
and D).

Application of transcriptional groups to indepen-
dent data set. In order to assess the potential utility of our CM
classification for future clinical studies, we developed an unbiased
algorithm that is tolerant to data differences resulting from techni-
cal artifacts, protocol choice, sequencing depth, and normaliza-
tion. To test the algorithm, we used gene expression data from

Figure 6. SSc patient groups differed across clinical phenotypes.A, Forced vital capacity (FVC) by patient group at baseline (time of blood sample).
* = P < 0.05 by Kruskal-Wallis test for 3 groups. B, FVC of each patient colored by group longitudinally over 42 months from baseline (time = 0). C,
MRSS patient group at baseline (time of blood sample). InA andC, each box extends from the 25th to the 75th percentile. Lines inside the boxes rep-
resent the median. Whiskers represent the minimum to maximum values. D, MRSS of each patient colored by group longitudinally over 42 months
from baseline. E, Average normalized expression of genes from CM clusters I–IV (Figure 2A) in bulk monocytes from SSc patients categorized by dis-
ease phenotype (data set described in ref. 27). F, Receiver operating characteristic curve based on the sensitivity and specificity of distinguishing bulk
monocytes from SSc patient categories versus controls, using the average normalized expression of genes from CM clusters I–IV. Significant areas
under the curve (AUCs) are colored. dcSSc = diffuse cutaneous SSc; lcSSc = limited cutaneous SSc; ncSSc = noncutaneous SSc; (see Figure 1
for other definitions).
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an unrelated study of monocytes in having SSc patients per-
formed by another group (27). In this study, they isolated bulk
monocytes for RNA-seq and categorized patients as having
dcSSc, lcSSc, or ncSSc/sine scleroderma. For each patient, we
calculated a score to reflect the relative level of expression of each
cluster from our CM analysis (Figure 6E, Supplementary Figure 6,
and Supplementary Table 6). We found that there was variability in
the transcriptional signature of each patient that did not align with
their disease subtype. We then built classifiers for each of the
4 gene clusters and assessed their ability to correctly assign a
patient to the correct SSc subtype (Figure 6F). As expected, clus-
ter IV, which was down-regulated in the majority of our patients,
worked better as a negative classifier in each subtype. Cluster I
(associated with group A) accurately distinguished dcSSc from
controls (P = 0.02) but performed particularly well in ncSSc
patients. Clusters I and II both exhibited high but not significant
AUC values in lcSSc patients, suggesting that this category is split
between these transcriptional identities. Although individual
patients exhibited high expression of cluster III genes, it did not
perform well as a classifier in any subtype. These findings suggest
that the transcriptional signatures we defined can be identified in
independent data sets, but more investigation is needed to deter-
mine the full clinical significance of our patient groups.

DISCUSSION

Multiple studies have quantified gene expression in whole
peripheral blood or skin from SSc patients (46). Like all bulk
microarray or RNA-seq experiments, these studies are subject
to changes in cellular composition that can drive gene expression
signatures and a loss of the ability to detect biologically important
transcriptional changes within minority cell populations. As such,
they rely on complex analyses, such as deconvolution and net-
work analysis, and a priori knowledge from extant gene expres-
sion databases (e.g., GEO). Here, we are the first to show that
unbiased transcriptomic analysis of CMs and NCMs can stratify
SSc patients and associate with disease activity outcome mea-
sures independent of treatment. One of the strengths of focusing
on circulating monocytes is that they are composed of only 2–3
populations, which allows for bulk separation.

Patients were segregated into 3 groups based on CM tran-
scriptional profiles, with each group demonstrating up-regulation
of functionally distinct gene sets, including response to type I
IFN, myeloid leukocyte–mediated immunity, and regulation of
GPCR signaling pathway for group A; interleukin-1 (IL-1) and che-
mokine production, response to cAMP, and response to gluco-
corticoids for group B; and tube/vessel formation, response to
BMP, and TGFß receptor signaling pathway for group C. They
were compared to each other and to other participants. Since
these 3 groups are largely recapitulated in the analysis of NCM
transcription profiling, these data suggest some conservation in
the gene signatures from groups A, B, and C.

Analysis of bulk skin CD206+HLA–DR+ macrophages
revealed that genes associated with groups A, B, and C tended
to increase in expression in skin macrophages from SSc patients
compared to controls. Many of these genes were previously
associated with disease processes in monocytes and macro-
phages. These results suggest a connection between circulating
precursors and mature tissue-resident cells, and ongoing studies
are underway to further investigate these results in paired skin and
blood, which will enable direct comparison of immature and
mature myeloid gene expression. The SSc patients in group A
displayed the highest baseline lung function compared to either
group B or C, but exhibited no difference in MRSS. Taken
together, our results suggest that transcriptional profiling of dis-
tinct CM and NCM subpopulations may represent a viable mech-
anism for stratifying patients and potentially their response to
therapeutics.

Over the past decade, numerous studies have utilized tran-
scriptional profiling to understand SSc disease pathology or gen-
erate new patient stratification methods. DNA microarray of skin
biopsies from patients with SSc has demonstrated four SSc
“intrinsic” subsets that may be detectable in PBMCs and esoph-
ageal biopsies (14,47,48); however, it had not been established
that this type of differentiation is detectable outside of diseased
end organs, although one study suggested a link between the
immune component and fibrosis across multiple end organs
(48). Further, an inflammatory gene signature associated with
macrophages in bulk skin using RNA-seq provides additional
support for the crucial roles that macrophages play in the devel-
opment of SSc. Moreover, a change in skin severity score that
includes a 415-gene signature has been shown to correlate with
MRSS (49), although to date no studies have corroborated the
skin severity score. Recently, a few groups examined gene
expression specifically in individual immune populations such as
monocytes or macrophages using bulk or single-cell RNA-seq
(27,50,51). While these studies support the role for the type I IFN
as well as the IL-1β pathway in bulk SSc monocytes (CMs and
NCMs), neither study examined any clinical associations (27,50).

Currently, there are only 2 single-cell RNA-seq studies of
human SSc skin which examined the proportion of populations
and their respective gene signature but did not examine associa-
tion with disease outcome measures (51,52). The importance of
our CM and NCM data is that they clearly illustrate the presence
of disease subsets—or endotypes—in circulating immune cells.
Further, our data differentiate subtypes of SSc patients in another
study, which were only stratified based on their clinical cutaneous
classification, i.e., dcSSc, lcSSc, and ncSSc (27). These data
suggest that comparison of variability across populations which
can be discerned via CM or NCMRNA-seq analysis may influence
the traditional analyses and classification of SSc patients.
Although our study clearly delineated 3 patient groups without
apparent distinguishing clinical phenotypes, further studies will
examine the reproducibility of this grouping and expand the
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sampling to definitively test any association with clinical parame-
ters. Additional limitations to our study include the sample size,
an inability to acquire match blood and skin over time, the poten-
tial that circulating factors may affect monocyte subpopulation
numbers as well as gene expression at various stages of disease,
the focus on tissue resident macrophages, and the heterogenous
SSc population in the validation cohort. Future studies that
include a larger number of patients, match blood and skin, and
include longitudinal analysis are needed to determine whether
these groups are static with and without treatment.

Clinical heterogeneity in SSc presentation has been well
characterized for decades, and differential gene expression has
been demonstrated in fibrotic tissue; however, reproducible con-
nections have only begun to be established between transcrip-
tomic intrinsic subsets and clinical characteristics (53), including
prognosis and response to treatment (17,18,54,55). A thorough
molecular understanding of SSc may help to stratify patients for
enrollment in clinical trials and to inform drug selection. Further
investigation of CMs and NCMs could determine how SSc sub-
sets respond to targeted interventions and whether they can pre-
dict which end organ would respond to a particular therapeutic.
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