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ABSTRACT 

Background/Purpose: Patients with diffuse cutaneous systemic sclerosis (dcSSc) display a 

complex clinical phenotype. Transcriptional profiling of whole blood or tissue from patients are 

affected by changes in cellular composition that drive gene expression and an inability to detect 

minority cell populations. Here, we focused on the two main subtypes of circulating monocytes, 

classical (CM) and non-classical (NCM). 

 

Methods: SSc patients were recruited from the Prospective Registry for Early SSc registry. 

Clinical data were collected as well as peripheral blood for isolation of CM and NCM. Age-, sex-

, and race-matched healthy volunteers were recruited as controls. Bulk macrophages were isolated 

from skin in a separate cohort. All samples were assayed by RNA-seq. 

 

Results: We used an unbiased approach to cluster patients into three groups (A-C) based on their 

transcriptional signatures of CM relative to controls. Further, each group maintained their 

characteristic transcriptional signature in NCM. Genes upregulated in Group C demonstrated the 

highest signature compared to the other groups in skin macrophages. Patients from Group B and 

C exhibited worse lung function than Group A, although there was no difference in skin disease at 

baseline. We validated our approach by applying our group classifications to published bulk 

monocyte RNA-seq data on SSc patients: we found that patients with no skin disease were most 

likely to be classified as Group A. 

 

Conclusion: We are the first to show that transcriptional signature of CM and NCM can be used 

to unbiasedly stratify SSc patients and correlate with disease activity outcome measures.  



INTRODUCTION 

Systemic sclerosis/scleroderma (SSc) is a complex, autoimmune-mediated connective tissue 

disease characterized by widespread vascular damage, chronic inflammation, and fibrosis. SSc is 

highly heterogenous in presentation and disease course, and may involve the skin, blood vessels, 

lungs, heart, kidneys, and gastrointestinal (GI) tract. SSc can be subtyped by cutaneous 

involvement, including limited (lcSSc), diffuse (dcSS), and non-cutaneous (ncSSc, more recently 

known as sine scleroderma). While clinically defined SSc cutaneous subsets are associated with 

internal organ complications and death, they cannot predict disease course on a per-patient basis 

or inform treatment decisions. Thus, identification of disease endophenotypes and their 

longitudinal course will facilitate precision medicine implementation.  

 

The role of immune cells in SSc pathogenesis is supported by the fact that the vast majority 

of genetic susceptibility loci in SSc belong to immunological pathways [1]. Circulating monocytes 

exist in three main states, characterized by CD14 and CD16 in humans: classical (CM) 

(CD14++CD16-), they constitute the majority of monocytes, intermediate (IM) (CD14+CD16+), and 

non-classical (NCM) (CD14lowCD16+), < 5% of total monocytes. However, recent studies have 

identified additional monocyte subsets with definitions beyond expression of CD14 and CD16 [2, 

3]. The numbers of CD14+ monocytes in blood of patients with SSc are higher compared to healthy 

controls [4, 5] and are associated with reduced survival [5]. Our group was the first to identify a 

causal role for monocyte-derived alveolar macrophages in a murine model of fibrosis and to 

confirm the presence of these cells in humans with SSc-ILD [6, 7]. Increased numbers of dermal 

macrophages have also been identified in skin from SSc patients [5] [8] and in murine models of 

SSc-like disease [9]. Moreover, reductions in skin macrophage numbers are detected in a subset 



of SSc patients on MMF [10]. These data suggest that the monocyte/macrophage population is 

crucial for SSc development. However, little is known regarding individual populations of 

monocytes in SSc.  

 

There are numerous studies that relate transcriptional signatures from peripheral blood 

mononuclear cells (PBMC) or whole skin of SSc patients to disease activity [5, 11]. We and others 

identified four molecular pathway-centric ‘intrinsic SSc subsets’ using whole-genome microarray 

analysis of PB, whole skin and esophageal biopsies from SSc patients [12-15], which were 

validated by two groups [13, 16]. Moreover, patients with an inflammatory gene expression 

signature in skin are the most likely to demonstrate skin disease improvement during MMF [17]. 

However, there were patients classified in the inflammatory intrinsic subset who were MMF non-

responders [17, 18], which suggests that an understanding of the transcriptional profile of 

individual immune populations may be necessary to discern which patients are more susceptible 

to a particular therapy. 

 

In this study, we profiled the transcriptional signature of CM and NCM in patients from 

the Prospective Registry of Early Systemic Sclerosis (PRESS) consortium, a multicenter incident 

cohort study of patients with diffuse cutaneous SSc, that has the goal of advancing the 

understanding of disease pathogenesis and identifying novel biomarkers for patients [19-24]. Our 

study demonstrates the potential for transcriptional profiling of individual monocyte populations 

as a useful tool to stratify patients prior to therapeutic intervention.   

  



METHODS  

Study participant, recruitment and sample collection:  

Patients were recruited to the Prospective Registry of Early Systemic Sclerosis (PRESS) registry 

at Northwestern University (NU), University of Texas, University of Utah, and University of 

Michigan (STU00062447) as previously described [23]. Consecutive patients in the PRESS 

registry from four PRESS sites (University of Michigan, Northwestern University, University of 

Texas-Houston and University of Utah) were enrolled in this sub-study if they were 

immunosuppressant naïve with plans to start a new treatment for SSc from September 2015 

through June 2016, although some samples were collected at a subsequent visit post-treatment. At 

the time of sample collection 7 out of 14 patients were on immunosuppressants: Six patients were 

on MMF and one patient was on rituxan and prednisone. Clinical information including modified 

Rodnan skin score (mRSS) and pulmonary function tests were obtained. Age, sex-, and ethnicity-

matched controls were recruited at NU through the Control Blood Acquisition for Rheumatology 

Research (STU00045513) protocol. For skin biopsies, patients and healthy controls were recruited 

independently from NU (STU00002669). Two side-by-side 4 mm dermal punch biopsies from the 

dorsal surface of the forearm midway between the ulnar styloid and the olecranon were sampled.  

 

Blood processing and Fluorescence Activated Cell Sorting (FACS): 

Blood and tissue were processed, stained, and sorted via FACS using antibody cocktail including 

anti-CD45 BB515 (BD Horizon), anti-CD14 PerCP-Cyanine5.5 (eBioscience), anti-HLA-DR 

eFlour 450 (eBioscience), anti-CD15 APC (Biolegend), anti-CD16 APC-Cy7 (BD Biosciences), 

anti-CD1c PE (Miltenyi Biotec), anti-CD20 Alexa Flour 700 (BD Biosciences), anti-CD56 PE-



Cy7 (BD Biosciences). Cell sorting was performed on the FACSAria III (BD Bioscience) at 

Northwestern University RLHCCC Flow Cytometry Core Facility. 

 

Skin biopsy digestion and macrophage sorting:  

Fat was discarded, and epidermal and dermal tissues were separated, tissue was mechanically 

digested with pre-set gentleMACS program m_lung_01.  Cells were labeled with viability dye, 

treated with Fc block, and stained with the following cocktail; Anti-CD45 PE-Cy7 (BD), anti-

HLA-DR eFluor 450 (eBioscience), anti-CD206 APC (BD Biosciences), anti-CD16 PE (BD 

Biosciences), anti-CD56 Alexa 700 (Biolegend), and Anti-CD15 Alexa700 (BD Biosciences).   

 

Preparation of RNA library:  

RNA from sorted cells was extracted using the PicoPure RNA isolation kit per manufacturer’s 

instructions (Arcturus). Full-length RNA-seq libraries from CM and skin were prepared using 

SMART-Seq v4 Ultra Low Input RNA Kit (Clontech Laboratories) followed by Nextera XT 

protocol (Illumina). For NCM samples, the QuantSeq FWD (Lexogen GmbH, Vienna, Austria) 

was used to generate Illumina compatible libraries. Libraries were sequenced on a NextSeq 500 

instrument (Illumina) with a minimum of 5 x 106 reads per sample and commercially available 

universal human RNA (uhRNA) was included for reference.   

 

RNA-seq alignment and mapping:  

Sequenced reads were de-multiplexed (bcl2fastq), trimmed (Trimmomatic0.36 for full-length,  

bbduk for 3’), aligned hg19 (TopHat2 2.17.1.14for full-length or STAR (version 2.5.2) for 3’ data 

sets (NCM). Samples with fewer than 5 x 106 uniquely aligned reads or with complexity 



(percentage of reads mapping to unique genomic positions) less than 30% were excluded due to 

low quality. As this included one of the SSc CM samples, we also removed the paired NCM sample 

for this patient. Aligned reads were mapped to genes and counted using HTseq with 

Homo_sapiens.GRCh37.75 as reference. Gene coverage (5’à3’) for full-length libraries were 

calculated using the RSeQC package. Gene counts were normalized by calculating fragments per 

kilobase per million (FPKM) for CM and skin macrophage samples or counts per million (CPM) 

for NCM samples. Expressed genes in each dataset were defined as those with at least three 

samples above the minimum threshold (CM: FPKM=5, NCM: CPM=31, Skin: FPKM=3).   

 

Identification of CM transcriptional signature in SSc:  

R Studio (https://www.rstudiocom/) was used to calculate Pearson’s correlation coefficients and 

to generate PCA plots, Venn diagrams (ggplots package), and scatterplots (ggplot2 package). 

PRISM (GraphPad Software LLC) was used to generate bar graphs of individual gene expression. 

Differential expression was calculated using the DEseq package (version 1.18.1) on 5171 

expressed genes; genes with changes in expression of two-fold or greater and Benjamini Hochberg 

adjusted p-value < 0.05 were considered differentially expressed genes (DEGs) between the SSc 

cohort and controls [25]. Gene Ontology (GO) analysis was performed on up and down DEGs 

independently using GOrilla (cbl-gorilla.cs.technion.ac.il) with expressed genes (5171) as 

background. To define differential genes in individual SSc patients compared with healthy 

controls, we calculated a modified z-score (𝑧𝑧′) for each gene based on its expression distribution 

in the control cohort: 

𝑧𝑧′𝑖𝑖𝑖𝑖 =  
(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜇𝜇𝐶𝐶𝐶𝐶)

 𝜎𝜎𝐶𝐶𝐶𝐶
 



Where 𝑥𝑥 is the expression level of gene i in patient j, 𝜇𝜇𝐶𝐶𝐶𝐶 is the mean expression for gene i across 

controls, and 𝜎𝜎𝐶𝐶𝐶𝐶 is the standard deviation of expression for gene i across controls.  To prevent 

artificially high z scores resulting from small standard deviations, where high z score may not 

represent true biological variability, we set the minimum 𝜎𝜎𝐶𝐶𝐶𝐶 to 2.5.  We identified 1790 genes 

with |𝑧𝑧′| > 2 in at least 3 patients. GENE-E (https://software.broadinstitute.org/GENE-E/) was 

used to perform hierarchical clustering of samples and K-means clustering of genes (k=4), 

resulting in patient Groups A-C and gene Clusters I-IV.  Pvclust was used to assess the confidence 

in the dendrogram resulting from hierarchical clustering. We used resampling method (without 

replacement) of the genes to evaluate the robustness of the three groups by determining whether 

how often the patients ended up in the same clade out of 1000 iterations with varying subset sizes. 

DEseq was run and DEGs defined as above on each patient group compared with controls. 

 

Gene Set Enrichment Analysis (GSEA):  

To determine the biological processes of enriched genes in each Group, 5171 expressed genes 

were ranked by Group based on their fold-change relative to the mean expression across controls 

and given as pre-ranked input for Gene Set Enrichment Analysis (GSEA v3.0, www.gsea-

msigdb.org). Pre-ranked genes were compared to the biological processes (BP) of the Molecular 

Signature Database (MSigDB) C5v7.0 collection using pre-ranking and classic weighting. 

Normalized enrichment scores (NES) were reported, and significant enrichment (or depletion) was 

defined as adjusted p value < 0.05.   

 

Comparison with NCM transcriptional signature:  



Starting with the 1790 genes in CM clusters, we identified 1599 among the NCM expressed genes 

and calculated the modified z-score relative to NCM controls. Hierarchical clustering was 

performed on these genes based their NCM z-score and dendrogram confidence and group 

robustness were assessed as described above. DEseq was performed as above on 7143 expressed 

genes to define DEG between each patient group and controls and ggplot2 was used to compare 

DEG in CM vs. NCM.  GSEA was run as above based on fold-change in NCM. 

 

Expression of published monocyte genes:  

We defined 431 CM and 388 NCM genes based on a publicly available microarray dataset [26]. 

To determine whether these gene sets were differentially expressed in our patient groups, we 

calculated the average expression in each individual and compared the distribution in patient 

groups to the control cohort. We calculated the average expression of each gene by patient groups 

and determined the percentage that exhibited greater expression than in controls. Significance was 

calculated by Fisher’s exact test (p<0.05).  PRISM (GraphPad Software LLC) was used to the 

graphs of this data. 

 

Skin macrophages:  

We used a non-parametric Mann-Whitney U test to define SSc-specific (190 genes) and control-

specific (138 genes) genes out of 6338 expressed genes in skin macrophages from patients 

compared to controls with a p-value <0.05. GENE-E was used to visualize the relative expression 

of these genes as a heatmap with Min-Max Scaling. The number of these genes that overlap with 

those defined in each of the CM clusters were calculated and the significance of enrichment was 

determined using Fisher’s exact test (P<0.05). ROC curve (pROC package in R) was used to 



determine the performance of Clusters I-IV at delineating patient vs control status. Each sample 

was scored as the mean of the min-max value for all genes in the given cluster; p-values were 

calculated by the package using Mann-Whitney U.  

 

Statistical analysis of clinical data:  

Baseline FVC and mRSS differences among the groups identified in the cluster analysis were 

assessed using the Kruskal-Wallis test. Baseline distributions of FVC and mRSS by groups 

identified in the cluster analysis were illustrated using box plots in PRISM (GraphPad Software 

LLC). Additionally, the longitudinal FVC and mRSS data are displayed as spaghetti plots by 

PRISM.  

 

Comparison with published SSc monocyte data:  

All information on patient diagnosis, grouping and sample acquisition were obtained from the 

publicly available dataset by van der Kroef et al [27]. Starting with 1790 genes in CM cluster, we 

identified 1523 that were expressed in bulk monocyte RNA-seq from this dataset. For each gene, 

we normalized using min-max scaling and calculated the mean score across genes in each cluster 

for each individual. ROC curves were plotted as above to determine the performance of Clusters 

I-IV at delineating each SSc patient category from controls. 

  



Results: 

 

Classical Monocytes from SSc Patients Exhibit Greater Variability versus Healthy Controls  

We obtained blood samples from 14 dcSSc patients and 15 age, sex, and race-matched healthy 

volunteers as controls (Figure 1A). We then isolated classical (CM) and non-classical (NCM) 

monocytes by flow cytometry and found no significant differences in the proportion detected 

among CD45+ immune cells between the SSc and control cohorts (Figure 1B-C). We performed 

RNA-seq to profile the gene expression of CM, the predominant monocyte population. One sample 

was eliminated that did not pass quality control tests, and we confirmed patient gender as an 

additional quality control (Supp. Figure 1A-D). From the remaining 29 samples, we found that 

the expression of genes tended to be more variable across SSc patients than across controls (Figure 

1D, Supp Figure 1E). By calculating an average transcriptional profile for the control cohort, we 

determined that SSc patients exhibited a range in their similarity to “healthy control” (Supp Figure 

1F). Moreover, while the CM gene expression of patients that most resembled controls was 

necessarily similar to each other, the remaining patients exhibited substantial variability in their 

transcriptional profiles (Supp Figure 1G). This variability did not seem to be associated with the 

site of sample collection (Supp Figure 1H), although patients receiving immunosuppressive 

therapies tended to more closely resemble controls (Figure 1E). We next performed pairwise 

differential expression analysis between the SSc and control cohorts and defined 146 and 21 genes 

as up- and down-regulated in SSc, respectively (Figure 1F, Supp Table 1A,B). The 146 genes 

include type I interferon signaling pathway (OAS1, OAS2, IRF2), response to cAMP (FOS, FOSB, 

JUN), regulation of vascular development (VEGFA, KLF2, SERPINE1) and regulation of 

leukocyte migration (CSF1R, CCR2, CCL2).  



 

SSc Classical Monocytes Cluster into Three Transcriptional Subgroups 

In order to capture the transcriptional dysregulation in individual SSc patients, we devised an 

alternative approach to define genes associated with disease. For each patient, we considered a 

given gene to be differential if its expression was more than 2 standard deviations from the control 

mean. By hierarchically clustering the SSc patients based on the 1790 genes that were differential 

in at least 3 patients, we identified 3 patient subgroups (Groups A-C). We also note that one patient 

(SSc15) was highly similar to controls and not included in any group (Figure 2A, Supp Table 

2A). The clustering of patients was robust: while individual branches of the dendrogram changed, 

the identity of the groups remained largely constant regardless of the subset of genes used for 

clustering analyses (Supp Figure 2A-B). Moreover, by k-means clustering of the 1790 genes, we 

characterized 4 gene expression patterns associated with these subgroups: Cluster I is primarily 

expressed in Group A, Cluster II in Group B, Cluster III in Group C, and Cluster IV is down-

regulated in the majority of patients compared with Controls (Figure 2A-D). The distinct 

transcriptional signatures of each Group were reinforced when visualized using Principal 

Component Analysis (PCA) (Figure 2E). Patients in Group A tended to have the most 

differentially expressed genes and both Group A and B demonstrated overlap with the genes 

identified by the prior full-cohort analysis (Figure 2F). On the other hand, Group C patients are 

characterized by the expression of genes in CM that have hitherto been undetected and may 

represent dysregulated pathways that have been missed in earlier studies as well.   

 

We performed pairwise differential analysis between each patient Groups relative to 

Controls for all expressed genes in the dataset to better characterize their transcriptional profiles 



(Figure 2G-H, Supp Figure 2C, E, G, Supp Table 2B-C). We found that Group A upregulated 

genes were associated with type I interferon such as IFI16, OAS1, OAS2, and IRF2, as well as 

innate immunity in general and G protein-coupled receptor (GPCR) signaling including CSFR1, 

CCR2 and CD86.  Group B had the fewest DEGs and the most overlap with other Groups.  This 

may explain why Group B was the least conserved in re-sampling (Supp Figure 2B). Like Group 

A, Group B genes were associated with type I interferon pathways and innate immunity but 

exhibited higher enrichment of chemokine production and response to cAMP and corticosteroids.  

Both Group B and C upregulated genes associated with vasculature development and blood vessel 

morphogenesis, such as VEGFA and HBEGF [28]. Group C exhibited additional genes associated 

with TGF-β, tube formation, and BMP signaling, including TGFB1, SMAD3, SKIL, PPARD, 

CXCR4 and PTPN12.  

 

Patient Groups are Largely Conserved in Non-Classical Monocytes 

Next, we analyzed RNA-seq data from NCM isolated from the same patients (Supp Figure 3A).  

The variation in gene expression was higher in NCM than CM in both patients and controls (Supp 

Figure 3B-D), but this may be due to technical differences in the protocols or higher sampling 

bias from the smaller NCM population. NCM were clustered based on the 1790 CM genes that 

defined the Groups A, B and C to address the conservation of groups on a global scale without 

introducing new genes (Figure 3A, Supp Table 3A). Patients in Group A and C continued to 

cluster next to each other, but Group B no longer formed its own clade (Figure 3A, Supp Figure 

3E-G).  As with CM, we performed pairwise analyses for DEG for each of the three Groups (Supp 

Figure 3H, Supp Table 3B-C). To complement our approach in Figure 3A, we then compared 

the list of DEG between the previously defined groups to determine whether individual genes were 



conserved and identify genes that may be uniquely differential in NCM (Figure 3B-F and Supp 

Figure 3I). We found that genes related to interferon and innate immunity were preferentially 

expressed in Group A in both CM and NCM. Although Group B did not exhibit as many 

significantly upregulated genes in NCM as in CM, Group B NCM genes were associated with 

similar processes as CM. Group C patients exhibited far fewer NCM DEG but those associated 

with its unique transcriptional signature – such as CXCR4, PTPN12 and SKIL – were significantly 

upregulated.  

 

Monocyte identity is Altered Across Patients   

It has been proposed using mouse models that a subset of CM that have egressed from the bone 

marrow differentiate into NCM [29]. The genes that distinguish NCM from CM on a 

transcriptional level have been well-established and are conserved between mice and humans [30]. 

To determine whether monocyte identity is altered in SSc, we generated a list of CM-specific and 

NCM-specific genes based on recent studies [26] (Supp Table 4). We found that both CM and 

NCM from Group A patients exhibited higher expression of their respective genes than controls – 

including PLAC8, PADI4, SELL, LYZ, and CCR2 in CM and ITGAL, SPN, CX3CR1, and CSF1R 

in NCM (Figure 4A-D). This was a cell-type-specific effect as we did not observe increased 

expression of these genes in the opposite population (Supp Figure 4A-D).  Group B also exhibited 

increased classical monocytes genes only in CM, while Group C was slightly lower. These 

observations were driven by more than a few genes as a significant proportion were expressed 

above the average level of the control cohort (Supp Figure 4E-F). In comparing CM and NCM, 

we may have expected that the genome-wide transcriptional profile would be most similar between 

monocytes from the same patient; however, this is not the case (Figure 4E). The over-expression 



of CM genes in Groups A and B may explains why CM gene expression from this SSc cohort is 

less similar compared to NCM (Supp Figure 4E, F).  

 

Skin Macrophages Upregulate SSc-Associated Monocyte Genes 

Since we observed common transcriptional signatures across monocyte populations in SSc and 

control cohorts, we investigated whether similar gene expression profiles are observed in skin 

macrophages.  We isolated CD206+HLADR+ macrophages from fibrotic skin of 7 SSc patient 

biopsies (Figure 5A, Supp Figure 5A, B and C) and from 7 age, sex, and race-matched healthy 

controls and performed RNA-seq (Supp Figure 5D, E). We identified 328 DEG between skin 

macrophages in SSc patients vs. controls (Figure 5B and Supp Figure 5F, Supp Table 5). The 

190 SSc-specific genes included those that have been previously implicated in SSc and/or 

macrophages such as ITGB2 [31], ITGA5 [32], ADAM8 [33], ALOX15 [34], CLEC10A [35, 36], 

NFKB2 [37], NFKBIE [38, 39] and RUNX3 [40]. The 138 control-specific genes included 

transcription factors such CEBPD, which potentiates macrophage inflammatory response and 

angiogenesis [41, 42], ID3, which is necessary for macrophage specification in liver [43], EPAS1 

(HIF2a), which suppresses the NLRP3 inflammasome [44] and LRG1 [45] and IL6, which play a 

role in angiogenesis (Figure 5C).  Of note, ITGB2, ITGA5, ADAM8, CEBPD, and NFKB2 were 

all differentially expressed in CM SSc patients compared to controls. We found that Clusters I-III 

genes, which corresponded to upregulated genes in Groups A, B, and C in our CM analysis, were 

more likely to be SSc-specific than control-specific (Enrichment: I=1.54, II=1.82, III=3.27), but 

only Cluster III was significantly enriched (p=0.0412) (Figure 5D, Supp Figure 5G). Similarly, 

classification strategies based on the average expression of Clusters I and III genes in skin 

macrophages were able to differentiate between SSc patients and controls significantly better than 



random (p= 0.03, 0.01) (Figure 5E). On the other hand, Cluster IV genes, which were largely 

downregulated in monocytes, were generally expressed higher in controls than patients 

(Enrichment: IV=0.40, p=0.029).  

 

Patients Subgroups Differ in Disease Characteristics 

Our analysis stratified SSc patients based on CM transcriptional profiles while remaining agnostic 

to clinical presentation such as cutaneous and pulmonary involvement. Using baseline and 

longitudinally collected FVC, mRSS data up to 42 months after blood sample collection, we found 

that Group B and C patients exhibited significant FVC decline indicating poor lung function at 

baseline compared to Group A patients that did not tend to improve over time (Figure 6A, C). In 

contrast, there were no significant differences in mRSS levels between groups at baseline or 

longitudinally (Figure 6B, D).  

 

Application of Transcriptional Groups to Independent Dataset  

In order to assess the potential utility of our CM classification for future clinical studies, we 

developed an unbiased algorithm that is tolerant to data differences resulting from technical 

artefacts, protocol choice, sequencing depth, and normalization. To test the algorithm, we used 

gene expression data from an unrelated study on monocytes in SSc patients performed by another 

group [27].  In this study, they isolated bulk monocytes for RNA-seq, and categorized patients as 

dcSSc, lcSSc, or non-cutaneous (ncSSc/Sine). For each patient, we calculated a score to reflect the 

relative level of expression of each cluster from our CM analysis (Figure 6E, Supp Figure 6, 

Supp Table 6). We found that there was variability in the transcriptional signature of each patient 

that did not align with their disease subtype. We then built classifiers for each of the four gene 



Clusters and assessed their ability to correctly assign a patient to the correct SSc subtype (Figure 

6F). As expected, Cluster IV, which was downregulated in the majority of our patients, worked 

better as a negative classifier in each subtype. Cluster I (associated with Group A) accurately 

distinguished dcSSc from controls (p=0.02) but performed particularly well on ncSSc patients. 

Cluster I and II both exhibited high, but not significant AUC values in lcSSc patients, suggesting 

that this category is split between these transcriptional identities. Although individual patients 

exhibited high expression of Cluster III genes, it did not perform well as a classifier in any subtype. 

These results suggest that the transcriptional signatures we defined can be identified in independent 

data sets, but more investigation is needed to determine the full clinical significance of our patient 

groups.   



DISCUSSION 

Multiple studies have quantified gene expression in whole peripheral blood or skin from SSc 

patients [46]. Like all bulk microarray or RNA-seq experiments, these studies are subject to 

changes in cellular composition that can drive gene expression signatures and a loss of the ability 

to detect biologically important transcriptional changes within minority cell populations. As such 

they rely on complex analyses, such as deconvolution and network analysis, and a priori 

knowledge from extant gene expression databases (e.g., GEO). Here, we are the first to show that 

unbiased transcriptomic analysis of CM and NCM can stratify SSc patients and associate with 

disease activity outcome measures independent of treatment. One of the strengths of focusing on 

circulating monocytes is that they are composed of only 2-3 populations, which allows for bulk 

separation. Patients segregated into three groups based on CM transcriptional profiles, with each 

group demonstrating upregulation of functionally distinct gene sets including response to type I 

interferon, myeloid leukocyte mediated immunity and regulation of GPCR signaling pathway for 

group A, interleukin 1 and chemokine production, response to cAMP and response to 

corticosteroid for group B and tube/vessel formation, response to BMP, and TGF-ß receptor 

signaling pathway for group C compared to each other and to health participants. Since these three 

groups are largely recapitulated in analysis of NCM transcription profiling, these data suggest 

some conservation is the gene signatures from Groups A, B and C. Analysis of bulk skin 

CD206+HLADR+ macrophages revealed that genes associated with Groups A, B and C tend to 

increase in expression in skin macrophages from SSc patients compared with controls. Many of 

these genes were previously associated with disease processes in monocytes and macrophages. 

These results suggest a connection between circulating precursors and mature tissue-resident cells, 

and ongoing studies are underway to replicate these results in paired skin and blood, which will 



enable direct comparison of immature and mature myeloid gene expression. The Group A SSc 

patients display the highest FVC compared to either Group B or C but exhibits no change in mRSS.  

Together, our results suggest that transcriptional profiling of distinct CM and NCM subpopulations 

may represent a viable mechanism for identifying patients and potentially their response to 

therapeutics.   

 

Over the past decade numerous studies have utilized transcriptional profiling to understand 

SSc disease pathology or generate new patient stratification methods.  DNA microarray of skin 

biopsies from patients with SSc has demonstrated four SSc “intrinsic” subsets that may be 

detectable in PBMCs and esophageal biopsies [14, 47, 48]; however, it had not been established 

that this type of differentiation is detectable outside of diseased end-organs, although one study 

suggested a link between the immune component and fibrosis across multiple end organs [48]. 

Further, an inflammatory gene signature associated with macrophages in bulk skin using RNA seq 

provides additional support for the crucial roles that macrophages play in the development of SSc.  

Moreover, a change in skin severity score that includes a 415 gene signature has been shown to 

correlate with mRSS [49], although to date no studies have corroborated the skin severity score. 

Recently, a few groups examined gene expression specifically in individual immune populations 

such as monocytes or macrophages using bulk or single cell RNA-seq [27, 50, 51]. While these 

studies support the role for the type I interferon as well as the IL-1β pathway in bulk SSc 

monocytes (CM and NCM), neither study examined any clinical associations [27, 50]. Currently, 

there are only two single cell RNA seq studies of human SSc skin which examined the proportion 

of populations and their respective gene signature but did not examine association with disease 

outcome measures [51, 52.]. The importance of our CM and NCM data are that it clearly illustrates 



the presence of disease subsets –or endotypes –in circulating immune cells.  Further, our data 

differentiate subtypes of SSc patients in another study, which are only stratified based their clinical 

cutaneous classification i.e., dcSSc, lcSSc, and ncSSc [27]. These data suggest that comparison of 

variability across populations which can be discerned via CM or NCM RNA seq analysis, may 

influence the traditional analyses and classification of SSc patients. Although our study clearly 

delineated three patient groups without apparent distinguishing clinical phenotypes, further studies 

will establish the reproducibility of this grouping and expand the sampling to definitively test any 

association with clinical parameters. Additional limitations to our study include the sample size, 

an inability to acquire match blood and skin over time, the potential that circulating factors may 

affect monocyte subpopulation numbers as well as gene expression at various stages of disease, 

the focus on tissue resident macrophages and the heterogenous SSc population in the validation 

cohort.  Future studies that include larger number of patients, match blood and skin and 

longitudinal analysis are needed to determine whether these groups are static with and without 

treatment.   

 

 Clinical heterogeneity in SSc presentation has been well characterized for decades, and 

differential gene expression has been demonstrated in fibrotic tissue; however, reproducible 

connections have not been established between transcriptomic intrinsic subsets and clinical 

characteristics, including prognosis and response to treatment. A thorough molecular 

understanding of SSc may help to stratify patients for enrollment in clinical trials and to inform 

drug selection. Further investigation of CM and NCM could determine how SSc subsets respond 

to targeted interventions and whether they can predict which end organ would respond to a 

particular therapeutic.   
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Figure Legends: 
 
Figure 1: Classical monocytes from early diffuse SSc patients display transcriptional 

heterogeneity. (A) Panel of PRESS patients’ information. Age p-value = ns, Mann-Whitney U, 

and sex/race p-value = ns, Fishers Exact Test. (B) Contour plots depicting stepwise isolation of 

classical monocytes (CM) and non-classical monocytes (NCM) from blood by FACS. (C) The 

percent of CM and NCM in CD45+ cells from SSc compared to control samples (p = 0.14 and 

0.89, respectively. Mann-Whitney).  (D) Scatterplot showing the coefficient of variation (standard 

deviation/average FPKM) relative to the average expression (log2(FPKM+1)) in SSc (purple) and 

control (grey) CM. (E) Principal Components Analysis (PCA) of gene expression in CM samples 

from Treated patients (purple), Untreated patients (pink), and controls (grey).  (F) Volcano plot 

showing differentially expressed genes in the SSc cohort (167) compared with controls log2 fold 

change >= 1 or <=-1 (significance calculated by DEseq with Benjamini Hochberg FDR correction, 

purple indicates genes with Padj < 0.05 & log2 fold change >= 1 or <=-1).  C-F based on 5171 

expressed genes in CM. 

 

Figure 2: Early diffuse SSc patients stratify into 3 groups based on the transcriptional profile 

of CM.  (A) Heatmap of adapted z-score of CM gene expression relative to controls, depicting 

dendrogram resulting from unsupervised hierarchical clustering of samples into 3 groups (Group 

A=coral; Group B=cyan; Group C=green) and K-means clustering of 1790 differential genes by 

individual (|adapted z-score| > 2 in at least 3 patients) (rows) (k=4). Expression of representative 

genes from (B) Cluster I (592), (C) Cluster II (261), (D) Cluster III (500), and Cluster IV (437) in 

each patient group as well as controls. * Indicates padj < 0.05 calculated by DEseq with Benjamini 

Hochberg FDR correction (E) PCA of gene expression in CM samples color-coded based on 



patient groups. (F) Number of genes with adapted Z scores greater than 2 or less than -2 in 

individual CM samples organized by patient groups. (G) Venn Diagram showing overlap of 

upregulated ((log2FC >1, and p-adj < 0.05) or downregulated ((log2FC <-1, and p-adj < 0.05) genes 

in each group compared to controls. (H) Heatmap showing the FDR based on GSEA of biological 

processes associated with differential genes in the three groups. A-H based on 5171 expressed 

genes in CM. 

 

Figure 3: Patient groups from CM exhibit distinct transcriptional profiles in NCM.  (A) 

Heatmap of adapted z-score of NCM gene expression relative to controls using 1599 genes from 

CM clusters in 2A. (B-D) Expression of representative genes from clusters I-III respectively. * 

Indicates padj < 0.05 calculated by DEseq with Benjamini Hochberg FDR correction. (E) 

Scatterplot of Log2FC of gene expression in each patient group compared to controls in CM (x-

axis) versus NCM (y-axis).  Significant genes (Log2FC =>1 or <= -1and Padj<=0.05) are colored 

if they are shared between CM and NCM (purple), only NCM (pink), or only in CM (blue). (F) 

Bar graph of the Normalized Enrichment Scores (NES) based on GSEA of biological processes 

from Figure 2H in CM and NCM.  Dashed lines indicate the 90% threshold for NES in CM (blue) 

and NCM (pink). A-F based on 7143 expressed genes in NCM. 

 
Figure 4: Variation in expression of monocyte gene signature in SSc CM and NCM. (A) 

Average expression level of all CM genes in CM samples of patient groups and controls. (B) 

Average expression level of all NCM genes in NCM samples of patient groups and controls. * 

Indicates p < 0.05 Mann-Whitney nonparametric test. (C) Expression levels of representative CM 

genes in patient CM samples by group. * Indicates padj < 0.05 calculated by DEseq with Benjamini 

Hochberg FDR correction. (D) Expression levels of representative NCM genes in patient NCM 



samples by group. * Indicates padj < 0.05 calculated by DEseq with Benjamini Hochberg FDR 

correction.  (E) Pearson correlation of average gene expression between CM and NCM samples in 

patient groups and controls. 

 

Figure 5: Clusters I and III genes are upregulated in SSc skin macrophages compared to 

control. (A) Panel of SSc patients and control subject information. Age p-value = ns, Mann-

Whitney U, and sex/race p-value = ns, Fishers Exact Test. (B) Gating scheme depicting the 

purification of macrophages from skin. (C) Heatmap of 190 SSc-specific and 138 Control-specific 

genes based on significantly differential expression in skin macrophages (p < 0.05 by Mann-

Whitney U test). (D) Expression of representative genes from heatmap in skin macrophages from 

SSc patients and controls. (E) Number of genes from B that overlap CM Clusters I-IV in 2A. * 

indicates p <0.05 by Fisher’s exact test.  (F) ROC curve based on the sensitivity and specificity of 

distinguishing skin macrophages from SSc patients vs. controls using the average normalized 

expression of genes from CM Clusters I-IV (2A). B-E based on 6338 expressed genes in skin 

macrophages. 

 

Figure 6: SSc patient groups differ across clinical phenotypes. (A) Forced vital capacity (FVC) 

by patient group at baseline (time of blood sample), * P <0.05 by Kruskal-Wallis test for 3 groups. 

(B) FVC of each patient colored by group longitudinally over 42 months from baseline (time 0).  

(C) modified Rodnan Skin Score (mRSS) by patient group at baseline (time of blood sample). (D) 

mRSS of each patient colored by group longitudinally over 42 months from baseline (time 0). (E) 

Average normalized expression of genes from CM Clusters I-IV (2A) in bulk monocytes from SSc 

patients categorized by disease phenotype (dataset described in van der Kroef, et al).  (F) ROC 



curve based on the sensitivity and specificity of distinguishing bulk monocytes from SSc patient 

categories vs. controls using the average normalized expression of genes from CM Clusters I-IV 

(2A) (dataset described in van der Kroef, et al).  

 

  



Supplemental Figures.  

 

Supplemental Figure 1: Quality control analysis of classical monocyte RNA-seq. (A) 

Histogram indicating the number of genes expressed at the given Log2(FPKM) in each CM sample. 

Red line indicates the threshold for 5171 expressed genes (FPKM = 5) in at least 3 samples. (B) 

Normalized 5’-3’ gene coverage across length of genes. Sum of FPKM mapped to (C) Y-

chromosome and (D) X-chromosome genes for each SSc CM sample. (E) Coefficient of variation 

histogram between control and SSc samples. F) Correlation (Pearson’s coefficient) of CM 

expression in each SSc patient relative to the average gene expression across control samples. (G) 

Pairwise Pearson correlation between gene expression of CM samples from SSc patients.  (H) 

PCA of control and SSc samples are color coded based on sample collection sites. MI= University 

of Michigan. (green), NU, Northwestern University (purple), UT= University of Texas at Houston 

(orange).   

 
Supplemental Figure 2: Differentially expressed genes vary by group in CM. Validation of 

the hierarchical clustering of CM gene expression in SSc patients. (A) Resampling of 1790 genes 

from 2A to calculate approximately unbiased (AU) probability (red) and bootstrap probability (BP) 

(green) of each edge (order in grey). (B) The percent of subset samples at various sizes that 

successfully recapitulate each patient group (A, B, C) or all patient groups. Volcano plot showing 

differential expression of genes in (C) Group A, 421 genes up regulated, and 433 genes down 

regulated (E) Group B, 161 genes upregulated, and 47 genes down regulated and (G) Group C, 

263 genes up regulated and 66 genes down regulated vs control. FDR was calculated independently 

for each group taking into account the total number of expressed genes.  Purple dots are Padj < 0.05 



& log2 fold change >= 1 or <=-1. Representative enrichment plot from GSEA software for (D) 

Group A, (F) Group B and (H) Group C. 

 
Supplemental Figure 3: CM and NCM share transcriptional features in SSc patients. (A) 

Histogram indicating the number of genes expressed at the given Log2(CPM) in each NCM 

sample. Red line indicates the threshold for 7143 expressed genes (CPM = 31) in at least 3 samples. 

(B) Coefficient of variation histogram between control and SSc NCM samples. (C-D) Coefficient 

of variation histogram between CM and NCM of (C) SSc patients and (D) Controls. Validation of 

the hierarchical clustering of NCM gene expression in SSc patients. (E) Resampling of 1599 genes 

from 3A to calculate approximately unbiased (AU) probability (red) and bootstrap probability (BP) 

(green) of each edge (order in grey). (F) The percent of subset samples at various sizes that 

successfully recapitulate each patient group (A, B, C) or all patient groups. (G) Comparison of the 

hierarchical clustering dendrograms for SSc CM and NCM gene expression.  (H) Venn Diagram 

showing overlap of upregulated (log2FC >1 and p-adj < 0.05) or downregulated (log2FC < -1 and 

p-adj < 0.05) genes in each patient group compared to controls. (I) Adapted z-score of relative 

expression in CM and NCM for representative genes associated with conserved processes patient 

groups.  

 

Supplemental Figure 4: CM and NCM retain their individual cell type signature. (A) Average 

expression level of all CM genes in NCM of patients and controls. (B) Average expression level 

of all NCM genes in CM of patients and controls. (C) Expression of representative NCM genes in 

patient CM samples by group. (D) Expression of representative CM genes in patient NCM samples 

by group. E) Percentage of CM genes with higher average CM expression in each patient group 



than control average.  (F) Percentage of NCM genes with higher average NCM expression in each 

patient group than control average. * Indicates p < 0.05, Fisher’s exact test. 

 

Supplemental Figure 5:  Gene expression in skin macrophages.  (A) FACS of enzymatic 

digestions (Dig. 1-4) performed on mammoplasty surgical discards. (B) Flow cytometric analyses 

of sorted biopsies obtained from HC and SSc patients. (C) Numbers of macrophages (46-700, avg 

240) FACSorted from two 4mm punch biopsies for HC vs. SSc patients (healthy n=4, SSc n=5). 

Dermal macrophages are denoted by CD45+CD14+HLADR+CD11b+CD163+CD206+. (D) 

Histogram indicating the number of genes expressed at the given Log2(FPKM) in each skin 

macrophage sample. Red line indicates the threshold for 6339 expressed genes (FPKM = 3) in at 

least 3 samples. (E) 5’3’ gene coverage in each patient and control sample. (F) PCA of skin 

macrophages samples annotated by SSc or control. (G) Bar graph showing the enrichment of SSc-

specific vs. Control-specific genes in the overlap with CM Clusters compared to the expected ratio 

(190/138); dotted line). 

 

Supplemental Figure 6: Heatmap of normalized expression of genes per patient from CM 

Clusters I-IV in bulk monocytes from SSc patients categorized by disease phenotype (dataset 

described in van der Kroef, et al). 

 

 

 
















