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Introduction 

 Overweight and obesity were estimated to cause 3.4 million deaths, 3.9% of years of life 

lost, and 3.8% of disability adjusted life years (DALYs) globally in 2010 (Ng et al., 2014; US 

Burden of Disease Collaborators et al., 2018). The prevalence of overweight and obesity is also 

rising among children and adolescents significantly in both developed and developing countries 

(Ng et al., 2014). Given that the etiology of obesity is multifactorial and likely involves gene-

environment interactions (Nakamura et al., 2019), epigenetics has emerged as a possible 

molecular biomarker that will aid understanding of obesity-related phenotypes, complications, 

and underlying mechanisms (Campión et al., 2009). In recent years, mounting human 
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epidemiology and animal model evidence has identified associations between epigenetic marks 

and chronic inflammatory cardiometabolic conditions including obesity (Stylianou, 2019; Wang 

et al, 2013), though the directionalities of these associations remain inconclusive (Mendelson et 

al. 2017; Richmond et al. 2016; Vehmeijer et al., 2020).  

Epigenetics is a discipline that studies mitotically heritable and potentially reversible 

changes in gene expression that are unrelated to the DNA sequence (Bernal and Jirtle, 2010); the 

major epigenetic mechanisms include DNA methylation, histone modifications, and non-coding 

RNA (Bernal and Jirtle, 2010). DNA methylation is a relatively well-understood epigenetic 

modification, in mammals, it typically occurs at the 5’-carbon position of cytosine in a Cytosine-

phospho-Guanine (CpG) dinucleotide (Medvedeva et al., 2014). DNA methylation is generally 

associated with decreased transcription factor binding when it occurs at promoter or enhancer 

regions, resulting in decreased gene transcription (Medvedeva et al., 2014; Mutize et al., 2018).  

DNA methylation patterns at functionally relevant genes have the potential to affect 

obesity susceptibility (van Dijk SJ et al., 2017). However, it is also possible that obesity 

secondarily leads to changes to DNA methylation, thereby contributing to the development of 

adiposity-related chronic diseases (Mendelson et al., 2017). Recently, several studies have 

attempted to infer the direction of the relationship between DNA methylation and obesity 

(Richmond et al., 2016; Mendelson et al. 2017). For example, Mendelson et al. conducted an 

association analysis of BMI and blood DNA methylation for over 400,000 CpG sites using the 

Framingham Heart Study and the Lothian Birth Cohorts. The authors used Mendelian 

randomization and genetic sequence variants to show that for a subset of CpG sites associated 

with BMI among elderly adults (16 out of 83), BMI likely altered DNA methylation, not the 

other way around. However, even with Mendelian randomization the cross-sectional nature of 
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this study still limits definitive causal inference (Mendelson et al. 2017). Taking full advantage 

of a longitudinal study design, Richmond et al. tested for replication of associations between 

DNA methylation at CpG sites in Hypoxia Inducible Factor 3 Subunit Alpha (HIF3A) and 

adiposity using cord and peripheral blood samples from individuals in the Avon Longitudinal 

Study of Parents and Children (ALSPAC) cohort. Their findings provided evidence for a causal, 

positive effect of childhood BMI on HIF3A methylation levels in adolescents (2016). However, 

this study also reported positive associations between maternal pre-pregnancy BMI on offspring 

HIF3A methylation, highlighting the importance of including measures of birth DNA 

methylation data whenever possible to account for the strong influence of gestational epigenetic 

programming on baseline levels.  

 We proposed “environmental deflection” as a conceptual framework by which specific 

internal physiological factors or external toxicant exposures could affect the rate and direction of 

DNA methylation changes that occur over the life-course (Kochmanski et al., 2017). 

Environmental deflection refers to an environment-mediated (endogenous and/or exogenous) 

shift away from the baseline rate of age-related methylation or stochastic DNA methylation drift, 

e.g., gradual increases or decreases at specific loci in ageing cells and tissues within an organism 

(Kochmanski et al., 2017; Issa, 2014; Jung and Pfeifer, 2015). Certain DNA methylation changes 

with age are so reliable and reproducible that researchers including Horvath and Raj (2018) have 

developed estimators of age that are based on DNA methylation at specific sets of genes. They 

observed that individuals with an epigenetic age that is older than their chronological age exhibit 

accelerated biological ageing of underlying tissues and cells (2018). More intriguingly, higher 

BMI and weight status were found to be associated with faster extrinsic epigenetic age 

acceleration in participants’ blood (Horvath and Raj, 2018). A series of additional environmental 
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factors, such as exposures to carcinogenic substances, smoking status, nutritionally induced 

oxidative stress, and traumatic stress are also associated with accelerated epigenetic ageing 

(Silva et al., 2020; Shah et al., 2014; Horvath et al., 2014; Boks et al., 2015; Brody et al., 2016). 

Hence, since obesity predisposes individuals to a pro-inflammatory and higher oxidative stress 

state (Nakamura & Junichi., 2019), it could alter the rate or direction of DNA methylation 

change that typically occurs with ageing, yet this question has rarely been explored in children.  

Environmental deflection could manifest as either 1) shifting the rate of expected DNA 

methylation change at a locus known to increase or decrease with age or 2) shifting the 

methylation pattern of a gene over time that is typically stable with age (Kochmanski et al., 

2017). With this in mind, we selected three regions for this pilot. Long interspersed nuclear 

element-1 (LINE-1) is a repetitive element that makes up 17% of the human genome and is used 

as a broad biomarker of DNA methylation status. LINE-1 is heavily methylated to prevent 

retrotransposition and is hypomethylated in cancers (Barchitta et al., 2014). LINE-1 methylation 

decreases with age in adulthood (Bollati et al., 2009), and there is evidence for very small 

declines between birth and 9 years of age (Huen et al., 2013). We also quantified DNA 

methylation at two growth-related genes that have previously been associated with adiposity in 

children - imprinted maternally expressed transcript (non-coding) H19; and non-imprinted 

hydroxysteroid (11-beta) dehydrogenase 2 HSD11B2 (Huang et al., 2012; Bowman et al., 2019) . 

H19 is expected to be stable over time and across tissues (Murphy et al., 2012), while the aging-

related pattern of HSD11B2 promoter methylation in children is unknown.   

This pilot study leverages the Early Life Exposure in Mexico to ENvironmental 

Toxicants (ELEMENT) birth cohort to examine the associations between adiposity at two 

developmental stages and repeat longitudinal measures of DNA methylation from birth through 
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adolescence (Figure 1). We quantified DNA methylation at LINE-1, H19 and HSD11B2 via 

pyrosequencing. We estimated the associations between childhood BMI and early adolescent 

BMI, weight, or waist circumference with these repeat measures of DNA methylation in early 

and late adolescence. We then assessed the interaction between age and each anthropometric 

measure as a proof-of-concept to test whether adiposity could deflect age-related DNA 

methylation levels. 

 

Methods 

Study population 

The study population comprised a subset of participants from the ELEMENT project, a 

longitudinal epidemiological study consisting of three sequentially enrolled birth cohorts (Perng 

et al., 2019). ELEMENT was originally designed to focus primarily on lead exposure and its 

impact on cognitive performance, as well as analyses of other metals and chemicals (Watkins et 

al., 2017; Cantoral et al., 2015). Epigenetics data were then added over time using archived 

samples (Perng et al., 2019). As a brief overview, participants were recruited at three maternity 

hospitals (Instituto Mexicano del Seguro Social, Hospital Manuel Gea Gonzalez, and the 

National Institute of Perinatology) and clinics of the Instituto Mexicano del Seguro Social, 

representing low- to moderate-income populations in Mexico City from 1994 to 2005. Prior to 

participation, study procedures were explained to mothers and children. Mothers provided 

written consent upon enrollment in the study, and children also provided assent during the 

childhood and adolescent study visits. The research protocol was approved by the Human 

Subjects Committee of the National Institute of Public Health of Mexico, participating hospitals, 
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and the Internal Review Board at all participating institutions including the University of 

Michigan.  

The study subjects in this project were a subset of 1,079 mother-child pairs from the 

second and third birth cohorts who had archived samples from birth and at least one other time 

point in mid-childhood/adolescence available for epigenetic analysis. Umbilical cord blood 

samples were collected shortly after birth and stored frozen at -20 to -24 degrees Celsius until 

analysis for a subset of these families. At the clinic visit after the child was born, mothers 

provided household and demographic information, including age, education, and previous 

numbers of pregnancies. The child’s birth weight and gestational age were also obtained from 

medical records. Mother-child pairs were followed up at multiple timepoints throughout early 

childhood, mid-childhood, and adolescence (Perng et al., 2019). Briefly, offspring were followed 

every 3 to 6 months from birth until 5 years of age. Starting in 2011, we re-contacted a subset of 

the offspring (n=250) and brought them in for a follow-up visit, referred to as the ‘early-teen’ 

visit. Three to five years later, one additional follow-up visit (‘late-teen’ visit) was completed 

among 549 children, of whom 223 had participated in the ‘early-teen’ visit. Anthropometry 

information was measured at all visits, and fasting blood samples were collected at both teen 

visits. The time periods utilized in this study are depicted in Figure 1.  

Assessment of DNA methylation 

DNA was isolated from umbilical cord blood nucleated cells and blood leukocytes from 

the ‘late-teen’ visit using Qiagen kits following standard protocols (Qiagen, Valencia, CA). For 

the ‘early-teen’ visit, DNA was isolated from blood leukocytes using the PaxGene Blood DNA 

kit (PreAnalytiX, Switzerland). All samples were bisulfite converted via the Epitect kit (Qiagen, 

Valencia, CA) or the EZ DNA Methylation kit (Zymo Research, Irvine, CA) as previously 
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described (Goodrich et al., 2016, Rygiel et al., 2020). Percent of DNA methylation was 

quantified at LINE-1, H19, and HSD11B2 (Wu et al., 2018). Percent DNA methylation was 

quantified via the pyrosequencing platform (Tost & Gut, 2007) using previously described 

assays (locations and primers described in Wu et al., 2018). Briefly, sequences were amplified 

from approximately 50 ng bisulfite-converted DNA using HotStartTaq Master Mix (Qiagen). 

Each PCR batch (experimental plate) contained at least two controls of known methylation status 

(0 and 100%). For pyrosequencing, Pyro Q-CpG software was used to compute percent DNA 

methylation for 4-5 CpG sites per gene from the PyroMark ID Pyrosequencer (Qiagen), and this 

software incorporates internal quality control checks (e.g., bisulfite conversion control). To 

minimize the influence of batch effects on the accuracy of DNA methylation level 

quantifications, matched birth and ‘early-teen’ samples from each individual were included in 

the same pyrosequencing batch; meanwhile, all ‘late-teen’ samples were pyrosequenced at a later 

time period together in their own batch. Technical replicates had to pass a 10% coefficient of 

variance test or the samples were repeated.  

Anthropometry 

Weight (kg) and height (cm) were measured at 5 years of age and at 2 adolescent visits 

and waist circumference at adolescent visits following Lohman standardized protocols (Nuttall, 

2015; Ross et al., 2020; Wu et al., 2019). BMI was calculated as weight over height squared 

(kg/m2). BMI is commonly recommended as a practical estimate of obesity in children and 

adolescents. Abundant evidence has shown the main limitations of BMI include it measures 

excess weight rather than excess fat, and it does not provide information on fat distribution 

(Health Technology Assessment). Waist circumference assesses central adiposity, which is more 

closely associated with cardiometabolic risk.  
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Covariates 

Based on a priori knowledge, the study objective and the sample size limitation, 

covariates included in all final models were sex and age. Since our focus is on the potential 

associations of adiposity with the rate of DNA methylation fluctuations with age (Kochmanski et 

al., 2017; Laubach et al., 2018), we adjusted each participant’s age by coding baseline age (the 

age when the predictor variable was collected) as 0 in each model. Age at the year-5 follow-up 

visit was considered the baseline age when using childhood BMI (kg/m2) as the predictor; while 

‘early-teen’ visit age was considered the baseline age when using early-teen BMI (kg/m2), 

weight (kg), and waist circumference (cm) as predictors. 

Statistical Methods 

We first examined the distribution of age, sex, childhood BMI (calculated based on their 

measured weight and height) at age 5 years, as well as BMI, waist circumference, weight and 

height from the ‘early-teen’ visit, across subgroups with subjects who had cord, ‘early-teen’ or 

‘late-teen’ DNA methylation levels available. For LINE-1, H19 and HSD11B2, we calculated 

descriptive statistics for DNA methylation at individual CpG sites, as well as the average values 

of all sites in each region. The distribution comparisons of these variables across subgroups were 

performed using ANOVA tests.  

 We first assessed the main effect of childhood BMI and early adolescent BMI, weight, or 

waist circumference on repeat measures of DNA methylation. As such, we measured DNA 

methylation from three timepoints – birth (to account for baseline levels that participants were 

born with), ‘early-teen’, and ‘late-teen’. To maximize the sample size as much as possible while 

keeping the same baseline measurement of DNA methylation for each participant, we included 

subjects that had either DNA methylation information from all three timepoints, or who had 
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umbilical cord blood DNA methylation and one additional time point (‘early-teen’ or ‘late-teen’) 

in the analysis. Based upon previous literature evidence (Stuart & Panico, 2016), BMI at 5 years 

of age was selected as a proxy of the early childhood adiposity status. Moreover, due to limited 

total sample size and few participants categorized as obese, all weight-related outcomes were 

included as continuous variables, instead of creating categorical variables. We used linear mixed-

effects models to examine the associations of BMI, weight, or waist circumference with repeat 

measures of DNA methylation at each loci, while accounting for age and sex (fixed effects) and 

random effects for intra-person variability and between-batch variability. While there is ample 

evidence that gestational age and maternal smoking impact offspring DNA methylation levels 

(Shah et al., 2014; Horvath et al., 2014; Boks et al., 2015; Brody et al., 2016), we did not adjust 

for these variables as they would be expected to impact ‘baseline’ birth DNA methylation which 

is one of the included repeat measures of DNA methylation in our study.        

To examine evidence for environmental deflection of age-related DNA methylation 

trajectories by adiposity-related measures at key stages in childhood (5-years of age and early-

teen), we ran a linear mixed-effects model with an interaction term between weight-related 

measures and age, including fixed effects for age, sex, and random effects for individual and 

batch. Coefficients with P-values smaller than 0.05 were considered statistically significant. All 

analyses were conducted using R software version 3.5.1 (cran.r-project.org). The lme4 package 

was used for modeling (Bates et al., 2015).  

 

Results 

 The ELEMENT cohort included 113 subjects who had DNA samples for epigenetic 

analysis at birth and at least one other time point (boys: 60 (53.1%), girls: 53 (46.9%)). Among 
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those, 62 subjects had repeated measurements from all three time points; 17 subjects had DNA 

methylation measurements obtained from cord and early-teen blood samples; and 34 subjects had 

DNA methylation measurements from cord and late-teen blood samples (Table 1). We observed 

some statistically significant differences in DNA methylation at CpG sites between age groups 

(Table 1). However, this effect did not remain statistically significant when adjusting for batch 

in linear mixed-effects models.  

 When averaging across all CpG sites and at CpG site 3, we observed consistent inverse 

associations between childhood or early-teen BMI and weight-related measures with H19 DNA 

methylation. Most of these associations were not statistically significant via a standard P value 

cut-off of 0.05, though some demonstrated suggestive associations with P values < 0.1. For 

instance, for each kg/m2 increase of early childhood BMI, we observed a 0.07%-point decrease 

on average across three repeat measures of H19 methylation at CpG site 3, adjusting for age, sex 

and intra-person effect (P value = 0.04), or a 0.06% decrease when also adjusting for batch 

effects (P value = 0.06) (Table 2). We also observed suggestive evidence showing an association 

between early-teen weight and DNA methylation of H19. Specifically, for each 1 kg increase of 

early-teen weight, H19 methylation at CpG site 2 and 3 decreased by 0.02% (P value = 0.07) and 

0.03% (P value = 0.09) respectively, adjusting for age, sex, intra-person and batch effects (Table 

3). We did not observe any statistically significant associations of early-teen BMI and waist 

circumference with repeat measures of DNA methylation at any other sites of H19 (Table 3). 

Our analysis results did not identify any evidence of associations between anthropometric 

outcomes and repeat measures of LINE-1 or HSD11B2 DNA methylation.   

We next modeled the interaction between adiposity measures and time to the last measure 

of DNA methylation (age) on DNA methylation to investigate evidence for environmental 
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deflection of age-related DNA methylation by adiposity (represented by the dashed lines in 

Figure 1). None of the interaction terms were statistically significant (P value > 0.05; 

Supplemental Table 1). However, this pilot study was underpowered to detect interactions, and 

several interactions had P values less than 0.2. There were positive interactions between age and 

early teen adiposity measures (BMI and waist circumference) in models of DNA methylation at 

H19 CpG site 3. Effect estimates for the interaction terms were 0.013±0.008 (P = 0.12) and 

0.004±0.003 (P = 0.20) for age*BMI and age*waist circumference, respectively. There were 

interaction terms with similar magnitude in models of H19 CpG site 1 and also average of all 

H19 sites. There was suggestive evidence that age and adiposity at the early teen visit interact to 

influence DNA methylation of HSD11B2 CpG site 5. Effect estimates for the interaction with 

age were -0.013±0.010 (P = 0.18), -0.004±0.003 (P = 0.20), and -0.006±0.003 (P = 0.10) for 

BMI, weight, and waist circumference, respectively. Future studies with appropriate power to 

detect interaction should follow up on these preliminary results.  

 

Discussion 

Few population-based longitudinal cohort studies have examined the association of 

childhood BMI and early adolescent BMI, weight, or waist circumference with levels of DNA 

methylation using repeat measures. Compared to cross-sectional studies, longitudinal cohorts 

with repeated epigenetic assessments enable higher statistical reliability and potentially provide 

information regarding directionality of disease-epigenome relationships. This is especially 

important in studies of epigenetics and adiposity given that epigenetic regulation of some genes 

can impact adiposity risk but the reverse is true for other genes (Mendelson et al. 2017; 

Richmond et al. 2016; Bowman et al. 2019; van Dijk et al., 2017; Kaufman et al., 2018; 
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Vehmeijer et al., 2020). There is a small but growing set of cohort studies that examined 

associations between environmental factors and age-related DNA methylation trajectories over 

time using repeat measures (Shah et al., 2014; Silva et al., 2020), but they mainly focused on 

elderly participants. Here, we expanded on this existing literature by conducting a pilot analysis 

in a sample of adolescents with archived blood DNA from birth (cord blood) and two follow-up 

visits in adolescence. We observed an inverse association between measures of childhood BMI 

and repeat measures of H19 DNA methylation, an imprinted gene that is expected to remain 

fairly stable over time. We also observed suggestive associations in the same, inverse direction 

between early-teen weight and repeat measures of H19 DNA methylation. We do not report any 

statistical evidence for deflection of age-related DNA methylation by adiposity, though 

interactions between age and early teen adiposity on H19 and HSD11B2 with P value < 0.2 merit 

further investigation in larger studies.  

We conducted this study because the epigenome can change with age, sometimes in a 

predictable way (Horvath & Raj, 2018), yet the gene-environment interactions that contribute to 

these changes are only now beginning to be identified. We previously used a mouse model to 

examine whether developmental bisphenol A (BPA) exposure, high-fat diet, and/or physical 

activity-related energy expenditure would lead to environmental deflection of age-related 

methylation (Kochmanski et al., 2018). We observed that western high fat diet (WHFD) as well 

as WHFD with BPA exposure had statistically significant impacts on trajectories of age-related 

DNA methylation at the Estrogen Receptor 1 (Esr1) locus and at two repeat regions, 

Intracisternal A Particle (IAP), and LINE-1. The results from the present cohort study suggest 

that increased early childhood BMI and early-teen weight, which could be related to WHFD 

intake (Epstein et al., 2001) and an altered cardiometabolic state, were associated with decreased 
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repeat measures of H19 DNA methylation from birth to adolescence on average. However, since 

the interactions between age and BMI or weight were not statistically significant in the second 

set of models, the results do not provide evidence for deflection. Given the estimates and P 

values of some interaction terms (P < 0.2) between early teen adiposity measures and age in 

models of both H19 and HSD11B2, we recommend examination of this question in future studies 

with adequate statistical power. 

 Since the epigenome is reprogrammed shortly after fertilization, it is important to 

acknowledge that in utero environmental exposures can have long-lasting impacts on individual 

epigenetic profiles and contribute to the ‘baseline’ for each individual. While exposures during 

other developmental periods (i.e., infancy, childhood, adolescence) are not expected to have as 

great of an impact on epigenetic profiles compared with in utero exposures, cumulative and 

continued exposures and conditions such as obesity or inflammation may have subtle impacts on 

maintenance of DNA methylation profiles in dividing cells, especially in tissues with high 

turnover, such as blood cells. DNA methylation profiles are important for health; associations 

between DNA methylation and risk for cardiometabolic complications, cancer, polycystic ovary 

syndrome, and more are widely published (Laubach et al., 2019). The reverse direction – the 

impact of disease states on DNA methylation – is also plausible but less well studied. One of the 

potential mechanisms by which adiposity could impact DNA methylation levels is through 

induction of oxidative stress (OS). It is widely accepted that accumulation of adipose tissue in 

the visceral compartment is considered an active endocrine organ, releasing a variety of 

biologically active adipocytokines or adipokines (Marseglia et al., 2015). Due to the complex 

interplay between adipokines, overweight/obesity leads to chronic low-grade inflammation with 

permanently increased OS (Marseglia et al., 2015). Meanwhile, other work has provided 
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evidence that elevated OS can transiently alter the epigenome by modulating the activity of 

enzymes responsible for demethylation of DNA and deacetylation of histones (Kreuz et al., 

2016). Integrating the pieces of evidence above provides biological plausibility for the impact of 

early-life adiposity on maintenance of DNA methylation profiles with ageing. Future analyses on 

this hypothesis could incorporate biomarkers of OS along with longitudinal epigenetic profiling.  

The results reported in this pilot study are largely null, yet several factors limited our 

ability to detect evidence for environmental deflection by adiposity. First, the sample size was 

restricted to participants with repeat archived DNA samples, and statistical power to detect 

interactions with small to medium effect sizes was extremely limited. None of the associations 

observed would be significant at a Bonferroni corrected p-value accounting for multiple testing 

(p<0.001). Second, we quantified DNA methylation at only LINE-1 repetitive elements and two 

adiposity-related genes; as such, we are likely missing many key gene regions of interest 

including those that have been associated with BMI in children in other studies (Vehmeijer et al., 

2020). Third, cell type composition influences DNA methylation levels at many loci, and we did 

not have cell type differentials to adjust for at all time points of sample collection. Confounding 

bias from changing cell type composition is expected to be minimal for H19, an imprinted gene 

which is stable across tissues (Murphy et al., 2012). Fourth, unlike animal studies, cohort studies 

are complex and we may not be controlling for all important confounders or beneficial factors 

(e.g. micronutrients) that could protect against any detrimental effects of obesity on DNA 

methylation patterns. Finally, we included adiposity measures commonly collected in clinical 

settings, e.g., BMI, weight and waist circumference, expecting each to offer some insights in 

evaluating whether weight status and fat distribution may relate to changes in DNA methylation 

of growth-related genes across childhood and adolescence. Nevertheless, future research that 
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relies on measures of adipose tissue via DEXA or MRI would provide more accurate information 

on total fat and fat distribution.             

In summary, we conducted a pilot epidemiological study to examine the associations of 

early-life adiposity with repeated measurements of DNA methylation at three key developmental 

time periods (birth, early and late-teen). We also estimated the interaction between childhood 

adiposity measures and age to investigate deflection of age-related DNA methylation levels 

through adolescence. While our results were largely null and the statistical power to detect 

interactions was low, we provide some preliminary evidence for the association between early-

life adiposity and DNA methylation at H19, and potential interactions between age and early 

teen adiposity on H19 and HSD11B2 methylation. Future studies with larger sample sizes should 

incorporate multiple measures of DNA methylation across childhood, ideally using an 

epigenome-wide approach, in order to investigate deflection of age-related DNA methylation 

trajectories during childhood and adolescence by obesity. Remaining questions that could be 

assessed with such studies include whether: 1) the magnitude of effects vary according to obesity 

status (i.e. in obese versus normal weight children); 2) adiposity impacts DNA methylation at 

other growth-, visceral fat metabolism- or hormone related genes; 3) adiposity has a stronger 

effect at certain developmental periods, especially during childhood adiposity rebound timing 

(Freedman et al., 2001); and 4) additional endogenous and exogenous factors modulate the 

association.       

It is known that a complex interplay between genetic and environmental factors influence 

child growth, development, and outcomes including childhood obesity. We often think of 

epigenetics as a molecular mechanism linking the child’s broader environment to adverse health 

outcomes. It is now becoming clear that obesity itself can act like an adverse ‘environmental 
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exposure’ – leading to inflammation, oxidative stress (Nakamura et al. 2019), and a modified 

epigenome (Mendelson et al. 2017). These subtle biological changes can propagate risk for 

further health complications. We believe it is important to understand the extent to which 

childhood obesity/adiposity modifies the child epigenome, as this is a molecular mechanism that 

can be targeted for further study to identify subtle alterations in biological pathways that could 

contribute to further metabolic complications as children age. Small effect sizes, as we observe 

here, are what is commonly observed in children’s health studies involving epigenetics (Breton 

et al. 2017), and the impact of such small effects across a multitude of genes could be important 

for health. 
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Table 1: Demographic characteristics of ELEMENT participants included in the analyses 
 

 ELEMENT participants 
Sample Size of Individual Group Cord (N = 113) Early-teen (N = 79) Late-teen (N = 96) ANOVA test (P value) 

Age (years) n = 113 n = 79 n = 96  
 N/A 11.16 (1.90) 14.85 (2.10) <0.0001 

Boys, n (%) n = 113 n = 79 n = 96  
 60 (53.10) 41 (51.8) 54 (56.25) 0.77 

Predictors     
Childhood BMI (kg/m2) n = 81 n = 66 n = 67  

 16.68 (6.16) 16.94 (6.78) 16.71 (6.66) 0.97 
Early-teen BMI (kg/m2) n = 79    

 19.98 (4.24)    
Early-teen Waist Circumference (cm) n = 79    

 72.46 (12.35)    
Early-teen Weight (kg) n = 79    

 42.75 (14.01)    
Repeat Measures of DNA Methylation Loci     

LINE-1 n = 78 n = 75 n = 94  
Averaged Methylation of LINE-1 68.49 (3.90) 68.09 (3.74) 77.65 (3.72) <0.0001 
Methylation of LINE-1, CpG 1 65.54 (4.46) 64.79 (5.03) 75.43 (5.64) <0.0001 
Methylation of LINE-1, CpG 2 67.91 (3.27) 68.04 (2.71) 77.43 (2.65) <0.0001 
Methylation of LINE-1, CpG 3 63.18 (5.78) 63.04 (5.05) 74.81 (4.73) <0.0001 
Methylation of LINE-1, CpG 4 77.35 (5.67) 76.73 (5.06)# 83.33 (3.40)# <0.0001 

H19 n = 106 n = 79 n = 92  
Averaged Methylation of H19 50.61 (2.84) 49.45 (2.52) 50.37 (3.45) 0.03 
Methylation of H19, CpG 1 53.14 (5.67) 51.81 (4.51) 52.00 (5.23) 0.16 
Methylation of H19, CpG 2 49.54 (2.16) 48.55 (2.13) 49.28 (3.55)# 0.04 
Methylation of H19, CpG 3 49.55 (2.80) 48.19 (2.62) 49.16 (4.52)# 0.03 
Methylation of H19, CpG 4 50.21 (2.62) 49.26 (2.55) 50.82 (3.21)# 0.002 

HSD11B2 n = 86 n = 79 n = 93  
Averaged Methylation of HSD11B2 2.24 (2.58) # 2.13 (2.49) # 2.74 (1.42) 0.14 
Methylation of HSD11B2, CpG 1 3.15 (3.21) 3.24 (2.90) 3.84 (1.24) 0.15 
Methylation of HSD11B2, CpG 2 1.05 (1.75) 0.80 (1.44)  2.24 (1.53) <0.0001 
Methylation of HSD11B2, CpG 3 2.90 (4.05)  2.97 (3.81) 3.01 (1.66)# 0.98 
Methylation of HSD11B2, CpG 4 0.46 (1.17) 0.47 (1.22) 1.24 (1.37) # <0.0001 
Methylation of HSD11B2, CpG 5 3.11 (3.72) # 2.99 (3.44) # 3.43 (2.02) # 0.64 
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#: Specific sample size variations at certain CpG sites. This occurs from CpG sites near the end of the sequencing runs failing quality control in some 
samples. The fourth CpG site for LINE-1 failed in 2 early-teen and 5 late-teen samples. The fourth CpG site for H19 failed in 2 late-teen samples. 
The last three CpG sites in HSD11B2 failed in 1 to 4 samples per time point.   
 
  



25 
 

Table 2: Associations between early childhood BMI as well as early-teen BMI with repeated measures of cord, early-teen and late-teen 
blood DNA methylation levels using linear mixed-effects models 

   Model 11 Model 22  Model 33 Model 44 
LINE1   Childhood BMI  Early-teen BMI 

 N % of 
Methylation 

ß3 
(95% CI) 

P 
Value 

ß3 
(95% CI) 

P 
Value 

N ß3 
(95% CI) 

P 
Value 

ß3 
(95% CI) 

P 
Value 

 78 Avg 0.02 
(0.01, 0.03) 

0.65 0.02 
(0.01, 0.03) 

0.67 78 0.05 
(0.03, 0.07) 

0.53 0.05 
(0.04, 0.07) 

0.48 

 78 CpG 1 0.07 
(0.05, 0.08) 

0.31 0.06 
(0.05, 0.07) 

0.24 78 0.08 
(0.06, 0.11) 

0.50 0.07 
(0.05, 0.10) 

0.51 

 78 CpG 2 0.00 
(-0.01, 0.01) 

0.96 0.00 
(-0.01, 0.00) 

0.95 78 0.05 
(0.03, 0.06) 

0.45 0.03 
(0.02, 0.04) 

0.53 

 78 CpG 3 0.01 
(-0.01, 0.03) 

0.90 0.00 
(-0.02, 0.01) 

0.98 78 0.04 
(0.02, 0.07) 

0.72 0.07 
(0.05, 0.09) 

0.50 

 78 CpG 4 0.02 
(0.01, 0.04) 

0.74 0.02 
(0.00, 0.03) 

0.77 78 0.08  
(0.06, 0.11) 

0.46 0.08 
(0.06, 0.11) 

0.46 

    
H19 N % of 

Methylation 
ß3 

(95% CI) 
P 

Value 
ß3 

(95% CI) 
P 

Value 
N ß3 

(95% CI) 
P 

Value 
ß3 

(95% CI) 
P 

Value 
 81 Avg -0.02 

(-0.02, -0.01) 
0.66 -0.02 

(-0.02, -0.01) 
0.66 79 -0.03 

(-0.04, -0.01) 
0.71 -0.03 

(-0.04, -0.01) 
0.71 

 81 CpG 1 -0.01 
(-0.03, 0.00) 

0.81 0.01 
(-0.02, 0.01) 

0.93 79 0.07 
(0.04, 0.09) 

0.52 0.07 
(0.04, 0.09) 

0.52 

 81 CpG 2 0.02 
(0.01, 0.02) 

0.56 0.02 
(0.01, 0.02) 

0.57 79 -0.08 
(-0.09, -0.06) 

0.27 -0.08 
(-0.09, -0.06) 

0.22 

 81 CpG 3 -0.07 
(-0.08, -0.06) 

0.04 -0.06 
(-0.07, -0.05) 

0.06* 79 -0.02 
(-0.04, -0.01) 

0.75 -0.03 
(-0.04, -0.01) 

0.69 

 81 CpG 4 0.00 
(-0.01, 0.00) 

0.94 -0.01 
(0.00, 0.02) 

0.87 79 -0.07 
(-0.09, -0.06) 

0.34 -0.07 
(-0.09, -0.06) 

0.34 

    
HSD11B

2 
N % of 

Methylation 
ß3 

(95% CI) 
P 

Value 
ß3 

(95% CI) 
P 

Value 
N ß3 

(95% CI) 
P 

Value 
ß3 

(95% CI) 
P 

Value 
 79 Avg -0.01 

(-0.02, -0.01) 
0.66 -0.01 

(-0.01, 0.00) 
0.81 62 0.00 

(-0.01, 0.01) 
0.97 0.00 

(-0.01, 0.01) 
0.98 

 79 CpG 1 0.00 
(-0.01, 0.01) 

0.95 0.00 
(-0.01, 0.01) 

0.99 62 -0.01 
(-0.02, 0.01) 

0.91 -0.01 
(-0.02, 0.01) 

0.91 

 79 CpG 2 -0.02 
(-0.03, -0.02) 

0.24 -0.01 
(-0.02, -0.01) 

0.46 62 -0.01 
(-0.02, -0.01) 

0.65 -0.02 
(-0.02, -0.01) 

0.53 

 79 CpG 3 -0.02 0.66 -0.01 0.79 62 0.03 0.70 0.03 0.71 
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(-0.03, -0.01) (-0.02, 0.00) (0.01, 0.04) (0.01, 0.04) 
 79 CpG 4 -0.02 

(-0.02, -0.01) 
0.22 -0.01 

(-0.01, 0.00) 
0.34 62 -0.01 

(-0.02, -0.01) 
0.61 -0.02 

(-0.02, -0.01) 
0.55 

 79 CpG 5 0.00 
(0.00, 0.01) 

0.98 0.01 
(0.00, 0.02) 

0.87 62 0.03 
(0.01, 0.05) 

0.66 0.03 
(0.02, 0.05) 

0.62 

 
1:  Model 1: % of Methylation = ß0 + ß1*(Age) + ß2*(Sex) + ß3*(Childhood BMI) + (1| Subject ID) 
2: Model 2: % of Methylation = ß0 + ß1*(Age) + ß2*(Sex) + ß3*(Childhood BMI) + (1| Subject ID) + (1| Batch ID) 
3:  Model 3: % of Methylation = ß0 + ß1*(Age) + ß2*(Sex) + ß3*(Early-teen BMI) + (1| Subject ID) 
4: Model 4: % of Methylation = ß0 + ß1*(Age) + ß2*(Sex) + ß3*(Early-teen BMI) + (1| Subject ID) + (1| Batch ID) 
*:  P value < 0.1 
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Table 3: Associations between early-teen waist circumference and weight status with repeat measures of cord, early-teen and late-teen 
blood DNA methylation levels using linear mixed-effects model 

  Model 11 Model 22 
LINE-1   Waist Circumference Weight  
 N % of Methylation ß (95% CI) P value ß (95% CI) P value 
 78 Avg 0.02 (0.01, 0.02) 0.55 0.01 (0.00, 0.01) 0.80 
 78 CpG 1 0.01 (0.00, 0.02) 0.79 -0.00 (-0.01, 0.01) 0.95 
 78 CpG 2 0.01 (0.01, 0.02) 0.42 0.00 (0.00, 0.01) 0.85 
 78 CpG 3 0.01 (0.00, 0.02) 0.85 0.00 (-0.01, 0.00) 0.92 
 78 CpG 4 0.05 (0.04, 0.06) 0.24 0.02 (0.01, 0.02) 0.64 
H19     
 N % of Methylation ß (95% CI) P value ß (95% CI) P value 
 79 Avg -0.01 (-0.01, 0.00) 0.70 -0.03 (-0.04, -0.03) 0.11 
 79 CpG 1 0.02 (0.01, 0.03) 0.56 -0.01 (-0.01, 0.00) 0.84 
 79 CpG 2 -0.02 (-0.02, -0.01) 0.40 -0.05 (-0.05, -0.04) 0.02 
 79 CpG 3 -0.00 (-0.01, 0.00) 0.85 -0.04 (-0.04, -0.03) 0.12 
 79 CpG 4 -0.03 (-0.03, -0.02) 0.31 -0.04 (-0.05, -0.03) 0.09* 
HSD11B
2 

    

 N % of Methylation ß (95% CI) P value ß (95% CI) P value 
 62 Avg 0.00 (-0.00, 0.00) 0.96 -0.00 (-0.01, 0.00) 0.77 
 62 CpG 1 -0.00 (-0.01, 0.00) 0.91 -0.01 (-0.01, -0.00) 0.67 
 62 CpG 2 -0.01 (-0.01, -0.00) 0.61 -0.01 (-0.01, -0.00) 0.43 
 62 CpG 3 0.01 (0.00, 0.02) 0.66 0.00 (-0.00, 0.01) 0.97 
 62 CpG 4 -0.00 (-0.01, -0.00) 0.62 -0.00 (-0.01, -0.00) 0.73 
 62 CpG 5 0.01 (0.00, 0.31) 0.74 0.00 (0.00, 0.01) 0.93 

 
1:  Model 1: % of Methylation = ß0 + ß1*(Age) + ß2*(Sex) + ß3*(Early-teen Waist Circumference) + (1| Subject ID) + (1| Batch ID) 
2: Model 2: % of Methylation = ß0 + ß1*(Age) + ß2*(Sex) + ß3*(Early-teen Weight) + (1| Subject ID) + (1| Batch ID) 
*:  P value < 0.1 
 



Figure 1. Conceptual Framework and Timing of Measures. Baseline DNA methylation profiles at birth 
are shaped by a combination of the gestational environment and genetics. While DNA methylation 
remains stable at some genes across the life-course, others change with age. Whether 
environmental or physiological conditions alter or ‘deflect’ the rate or direction of this change with 
age is a new area of research. In a pilot sample from the Early Life Exposures in Mexico to 
Environmental Toxicants (ELEMENT) study, we quantified DNA methylation at LINE-1 repetitive 
elements and two growth and adiposity related genes (H19 and HSD11B2) via pyrosequencing at 
three developmental time periods. We assessed interactions between age and measures of 
children’s adiposity (represented by the dashed arrows) to infer whether adiposity deflects age-
related DNA methylation patterns. BMI=body mass index; DNAm=DNA methylation; Adiposity 
measures=BMI, weight, and waist circumference 
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