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Key Points: 

• Atmospheric profiles and surface properties are simultaneously retrieved from 

satellite observations made 50 years ago.  

• Compared to reanalysis data, the retrieval estimates produce radiances which are more 

consistent with the observations. 

• Retrievals of humidity and temperature profiles in the lower troposphere can be 

considerably affected by the surface spectral emissivity.  
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Abstract 

Atmosphere and surface properties are routinely retrieved from satellite measurements and 

extensively used in weather forecast and climate analysis. Satellite missions dedicated to fill 

the gap of far-infrared (far-IR) observations are scheduled to be launched this decade. To 

explore mid-infrared (mid-IR) and far-IR joint retrievals for the future far-IR satellite missions, 

this study uses an optimal-estimation-based method to retrieve atmospheric specific humidity 

and temperature profiles, surface skin temperature, and surface spectral emissivity from the 

Infrared Interferometer Sounder-D (IRIS-D) measurements in 1970, the only existing 

spaceborne far-IR spectral observations with global coverage. Based on a set of criteria, two 

cases in the Arctic, which are most likely under clear-sky conditions, are chosen for the retrieval 

experiments. Information content analysis suggests that the retrieved surface skin temperature 

and the mid-IR surface spectral emissivity are highly sensitive to the true values while the 

retrieval estimates of far-IR surface emissivity are subject to the variation of water vapor 

abundance. Results show that radiances based on the retrieved state variables are more 

consistent with the IRIS-D observations compared to those based on the reanalysis data. 

Retrieval estimates of the state variables along with retrieval uncertainties generally fall within 

reasonable ranges. The relative uncertainties of retrieved state variables decrease compared to 

the a priori relative uncertainties. In addition, the necessity to retrieve surface emissivity is 

corroborated by a parallel retrieval experiment assuming a blackbody surface emissivity that 

has revealed significant distortions of retrieved specific humidity and temperature profiles in 

the Arctic lower troposphere. 
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1. Introduction 

Atmosphere and surface properties including humidity and temperature profiles, surface 

temperatures, and surface spectral emissivity are routinely retrieved from satellite 

measurements and are widely used for operational weather forecast and climate analysis. 

Accurate retrievals of atmospheric humidity and temperature profiles from radiances at the top-

of-atmosphere (TOA) require information of the surface spectral emissivity, which plays a key 

role not only in the radiation budget but also atmospheric sounding. It has been demonstrated 

that simultaneous retrievals of atmospheric profiles and surface skin temperature with the 

surface spectral emissivity can substantially improve their retrieval accuracy (Plokhenko & 

Menzel, 2000; Ma et al., 2000; Li et al., 2007). While most retrieval studies investigate surface 

emissivity only in the mid-infrared (mid-IR, >667 cm-1), it has been recently recognized that 

far-IR (≤667 cm-1) surface emissivity have a non-negligible influence on the polar climate. 

Chen et al. (2014) showed that distinct bias existed in the radiation budget due to the blackbody 

surface assumption (i.e.,  = 1). Feldman et al. (2014) demonstrated the sensitivity of polar 

climatology projections to the specifications of surface spectral emissivity in the far-IR. A 

global surface emissivity dataset covering both mid-IR and far-IR (Huang et al., 2016) was 

implemented in the NCAR Community Earth System Model 1.1.1 and revealed differences 

with statistical significance in the simulations of polar climatology at the surface (Huang et al., 

2018). 

Despite the significance of far-IR surface emissivity for atmospheric sounding and climate 

projections, retrievals of surface emissivity in the far-IR are more complicated compared to 

those in the mid-IR. First, surface emissivity retrievals in the far-IR are subject to the strong 
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water vapor absorption. Mid-IR window channels can stay nearly transparent (clear-sky 

transmittances > 0.8) even for extremely humid scenarios (Xie et al., 2022a). However, the far-

IR spectrum will become almost opaque with the clear-sky transmittances less than 0.05 when 

the total column water vapor (TCWV) exceeds 1 cm as indicated by Feldman et al. (2014). 

This implies that retrieval of far-IR surface emissivity from space-borne observations is only 

practical when the TCWV is small enough, such as over the polar or high-elevation regions. 

Second, knowledge of far-IR surface emissivity retrievals has been insufficient due to gap in 

the far-IR observations. Ever since the Infrared Interferometer Sounder-D (IRIS-D) was 

launched onboard the Nimbus IV (Hanel et al., 1971), no other satellite observations covering 

the far-IR have been operated for half a century. During its 10-month operation (April 1970 to 

January 1971), the IRIS-D measured nadir-view radiance spectra from 400 to 1600 cm-1 at a 

footprint of approximately 94 km in diameter (Hanel et al., 1971). Besides that, there are also 

some field campaigns launched recently to monitor the far-IR surface emissivity using aircraft 

observations over a portion of the Greenland Plateau (Bellisario et al., 2017; Murray et al., 

2020).  

In an effort to fill the gap of far-IR observations, two future satellite missions are selected 

and scheduled to be launched in this decade: PREFIRE (Polar Radiant Energy in the Far-

InfraRed Experiment; L’Ecuyer et al., 2021) by NASA and FORUM by ESA (Far-infrared 

Outgoing Radiation Understanding and Monitoring; Palchetti et al., 2020) will open up a new 

era for far-IR surface emissivity retrievals in polar regions. Previous work has shown promising 

results with surface spectral emissivity retrieved in mid-IR and far-IR from simulated 

PREFIRE measurements in the Arctic (Xie et al., 2022a) and simulated FORUM observations 
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at different latitudes including polar regions (Ridolfi et al., 2020; Sgheri et al., 2022). It is 

therefore necessary and interesting to carry out a retrieval effort with real far-IR satellite 

observations. The IRIS-D observations, even made half a century ago, still remain as the only 

existing space-borne, spectrally resolved measurements covering the far-IR spectrum. It thus 

provides an opportunity to investigate the feasibility of simultaneously retrieving atmospheric 

humidity and temperature profiles, surface temperatures, and mid- and far-IR surface spectral 

emissivity in the Arctic. 

A large variety of algorithms have been implemented to retrieve atmospheric profiles and 

surface parameters. These retrieval techniques generally fall into two categories: statistical 

methods or physical methods (Maahn et al., 2020). Statistical methods utilize empirical 

relationships and assumptions to solve the inverse problems (Maahn et al., 2020). However, 

when the empirical relationships cannot hold true anymore, the retrieval results of these 

statistical methods become problematic (Becker & Li, 1990). Physical methods, however, 

depend less on empirical assumptions and approach the solutions through iterative steps. For 

example, the optimal estimation (OE) method seeks the solution iteratively by minimizing the 

mismatch between the simulations by forward radiative transfer model and the observations. 

The OE method is based on the Bayesian framework, combining the a priori knowledge and 

observations to generate retrieval results with inherent uncertainty estimates (Rodgers, 2000). 

This method has a widespread use in retrievals of atmospheric profiles and surface properties 

(L’Ecuyer and Stephens, 2002; Li et al., 2000; Liu et al., 2009; Scarlat et al., 2017; Turner & 

Löhnert, 2014; Wood and L’Ecuyer, 2021), also in the retrievals of both atmospheric profiles 

and surface properties in either a sequential (Susskind et al., 2003) or simultaneous (Ma et al., 
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2000; Li et al., 2007) way. These successful applications of the OE method thus encourage us 

to apply it to the simultaneous retrieval of atmospheric profiles and surface properties. 

This study seeks to implement the OE method to simultaneously retrieve atmospheric 

specific humidity and temperature profiles, surface temperatures, and surface spectral 

emissivity in mid-IR and far-IR using the IRIS-D observations in the Arctic. Section 2 

introduces the data and the forward radiative transfer model used in the study. Details of the 

OE-based retrieval framework are described in Section 3. Section 4 presents the information 

content analysis and retrieval experiment results, followed by conclusions and discussions in 

Section 5. 

2. Data and Forward Modeling  

2.1 IRIS-D spectral radiances 

The IRIS-D onboard the Nimbus IV is a single detector Michelson interferometer (Hanel et 

al., 1971). The IRIS-D instrument measured outgoing spectral radiances covering 400 to 1600 

cm-1 at a nominal spectral resolution of 2.8 cm-1 in nadir view from April 1970 to January 1971. 

IRIS-D operated in a near-polar orbit at the height of 1100 km with a footprint of approximately 

94 km in diameter. Over the ten-month operation period, IRIS-D has collected around 700,000 

calibrated spectra in total. IRIS-D was an instrument well ahead of the time. It was the 

prototype of two IRIS instruments aboard Voyager1 and Voyager2 that recorded detailed 

infrared spectra of outer planets during their flybys. Decades after its operation ended, its 

measurements were still used to infer climate change signals (Harries et al., 2001), to test 

climate models (Haskins et al., 1999; Huang et al., 2002), and to evaluate the clear-sky flux 

biases in the climate model (Huang et al., 2006).  
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The noise-equivalent spectral radiances (NeSRs) of IRIS-D are mostly between 0.5 and 1.0 

mW ∙ m−2 ∙ sr−1/ cm−1 , but tend to be higher at both the ends of the spectral range. The 

estimates of IRIS-D NeSRs shown in Hanel et al. (1972) are used in our study to characterize 

noise level on each channel. To be more specific, measurement noises on each IRIS-D channel 

are assumed to follow the Gaussian distribution with zero mean and the corresponding NeSR 

as the standard deviation. 

Due to the small signal-to-noise ratio at frequencies higher than 1400 cm-1 (Haskins et al., 

1997), only the channels from 400 to 1400 cm-1 are considered as done in previous studies 

using the IRIS-D data (Huang et al., 2002; Huang et al., 2006). Besides that, channels 

significantly affected by absorption of greenhouse gases other than H2O and CO2, i.e., O3, CO, 

N2O and CH4, are excluded from the retrieval as shown by the gray shades in Figure 1a. The 

atmospheric CO2 concentration data used in the study are from the monthly mean observations 

by NOAA Global Monitoring Laboratory (Tans & Keeling, 2022). In total, 406 out of 862 

IRIS-D channels are selected for the retrieval. 

2.2 ERA5 back extension reanalysis data 

The ERA5 reanalysis is generated on the basis of the Integrated Forecasting System (IFS) 

Cy41r2 with a 4-D variational data assimilation scheme by the European Centre for Medium-

Range Weather Forecasts (ECMWF) (Hersbach et al., 2020). Recently, Bell et al. (2021) 

developed a back-extended segment of ERA5 reanalysis covering the period from January 

1950 to December 1978, which incorporated supplementary conventional observations and 

early satellite data. This ERA5 extension provides hourly estimates of essential atmospheric 

and surface variables over the globe with a 0.25º-by-0.25º spatial resolution and covers 37 
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pressure levels from the surface up to 1hPa in the vertical direction. Compared to other 

ECMWF reanalysis extended back to the 1950s, the ERA5 extension provides higher spatial 

and temporal resolution. The fidelity of the ERA5 extension has been demonstrated by showing 

an ability to accurately depict well-known synoptic events in 1952 and 1953 (Bell et al., 2021). 

Also, since the number of assimilated observations increases by over 10 times from 1950 to 

1978, the reanalysis quality is presumed to improve steadily in the 1970s. 

2.3 Surface spectral emissivity data set  

Huang et al. (2016) developed a surface spectral emissivity dataset which covers the whole 

longwave spectrum with a horizontal resolution of 0.5°-by-0.5° all over the globe. This surface 

emissivity dataset includes various surface types such as water, ice, snow (fine, medium and 

coarse), conifer, grass, tundra, and desert (Huang et al., 2016). The mid-IR surface emissivity 

in this dataset were validated against retrievals from IASI observations (Huang et al., 2016; 

Zhou et al., 2011). Since there are no far-IR observations applicable yet to validate this global 

dataset, the far-IR surface emissivity in this dataset is derived from either first-principle 

calculations or extrapolation depending on the surface type. More information about this 

surface emissivity dataset is available in Huang et al. (2016). Due to the lack of any 

observationally based far-IR surface emissivity dataset, our study uses this dataset to construct 

the a priori mean and covariance for the surface spectral emissivity. 

2.4 Forward radiative transfer model PCRTM 

The forward radiative transfer model plays a key role in the retrieval scheme by mapping 

the retrieval estimates into the measurement space at each iteration step. Liu et al. (2006) 

developed the Principal Component-based Radiative Transfer Model (PCRTM) V3.4 which 
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utilizes the inter-channel correlation to decrease the computational cost. It has been 

demonstrated that the root-mean-square error (RMSE) of brightness temperature between the 

PCRTM calculations and benchmark calculations is smaller than 0.4K (Liu et al., 2006). In 

addition, it has been showed by Chen et al. (2013) that the RMSE of brightness temperature 

between the PCRTM V2.1 and the LBLRTM (Line-By-Line Radiative Transfer Model) 12.0 

(Clough et al., 2005) can be 0.67K under clear-sky conditions, while the PCRTM requires 

approximately only 0.02% of the computation time that LBLRTM takes. A PCRTM-based 

simulator has been developed by Chen et al. (2013) and successfully applied in multiple studies 

(Huang et al., 2014; Bantges et al., 2016; Chen et al., 2018; Xie et al, 2022a). It is applied in 

our study as the forward model to calculate spectral radiances and Jacobians in clear-sky 

conditions. 

3. Methodology  

3.1 Selection of clear-sky cases 

This study is focused on retrievals in clear-sky conditions only. The ERA5 hourly reanalysis 

data has been interpolated to the time and location of each IRIS-D measurement. A multiple-

step approach is used to identify clear-sky spectra. First, spectra observed over the Arctic Ocean 

are chosen for less ambiguity in classification of surface types using retrieved surface spectral 

emissivity. Surface emissivity spectra of various kinds of surface types, such as water, ice, snow, 

tundra, grass, conifer, are all used in constructing the a priori constraints in the retrieval 

procedure. Then a tri-spectral method developed by Ackerman et al. (1990) is used to determine 

whether the input radiance spectrum is under clear- or cloudy-sky condition. Based on the 

different spectral absorption features of water vapor, liquid and ice clouds at 8 µm, 11 µm and 
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12 µm bands, if the brightness temperatures difference is negative between 8 µm and 11 µm 

bands and positive between 11 µm and 12 µm bands, the spectra is deemed to be under clear-

sky condition (Ackerman et al., 1990). This method has been applied to IRIS-D measurements 

before (Huang et al., 2006). Thirdly, for the IRIS-D spectra classified as clear-sky in the 

previous step, the maximum brightness temperatures over the mid-IR window region (900-970 

cm-1 and 1090-1200 cm-1) are then compared against the corresponding surface temperatures 

as derived from the ERA5 reanalysis. The transmittances of mid-IR window channels can be 

0.94 or higher under the clear-sky conditions, which implies the maximum mid-IR brightness 

temperatures should be close to surface temperatures if the footprint was indeed clear-sky. 

Finally, the synoptic weather patterns for each spectrum that pass the previous three steps are 

examined. The footprint of IRIS-D is around 94 km in diameter, several factors larger than 

those of current hyperspectral sounders (which is ~10-15km in diameter), which means clear 

Arctic footprints at this large field of view are rare to find. Given this fact, the synoptic analysis 

is especially useful to the selection of clear-sky cases. If the synoptic weather patterns over the 

identified satellite footprints are patterns favoring clear sky more than cloudy sky, it can further 

increase our confidence about the clear-sky detection. 

Two qualified cases are chosen according to the abovementioned requirements, one in April 

and the other in July 1970, referred to as Case 1 and Case 2 respectively. Geolocation, time, 

and surface pressure of the two selected cases are listed in Table 1. Figure 1a and Figure 2a 

show the respective spectra in brightness temperature and the surface temperatures. For both 

cases, the absolute difference between the maximum brightness temperature of the spectra over 

mid-IR window region and surface temperature is less than 3K. The synoptic weather fields 
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for the two cases are summarized in Figure 1b/1c and 2b/2c, respectively. The ground footprints 

of both cases (black star on the plot) are under deep high-pressure weather systems. Such 

weather systems are featured with upper-level convergency and low-level divergency, indeed 

favoring clear sky rather than cloud formation.  

3.2 Optimal estimation method 

The retrieval algorithm used here largely follows the optimal estimation (OE) method 

described in Rodgers (2000) and Xie et al. (2022a). According to the Bayes’ theorem, 

P(𝐱|𝐲) =
P(𝐲|𝐱) ∙  P(𝐱)

P(𝐲)
(1) 

where 𝐲  denotes the radiances observed at TOA and 𝐱  denotes the state vector. P(𝐱) 

represents the a priori probability distribution of the state variable x. In this study x = (q, T, 

TS, 𝜺𝝂), with q and T vectors refer to the specific humidity and air temperature profiles, TS the 

surface skin temperature, and 𝜺𝝂  the surface spectral emissivity. P(𝐱|𝐲)  represents the 

posteriori probability, a conditional probability distribution of 𝐱 given the observation 𝐲. 

P(𝐲) serves a normalization term and can be seen as a constant. Based on the assumption that 

the a priori P(𝐱) and the likelihood P(𝐲|𝐱) both follow Gaussian distributions, the derived 

P(𝐱|𝐲) is therefore also a Gaussian-distributed probability. The OE method solves the retrieval 

problem by iteratively approaching the optimal estimate 𝐱̂  that maximizes P(𝐱|𝐲) . The 

posteriori covariance matrix  𝐒̂  evaluates the retrieval uncertainty. 𝐱̂  can be estimated 

iteratively using the Gauss-Newton method in moderately linear cases (Rodgers 2000). 

Retrieval estimates of 𝐱̂ at the (i+1)-th iteration step, xi+1, can be written as 

𝐱𝑖+1 =  𝐱𝑎 + (𝛾𝐒𝑎
−1 + 𝐊𝑖

𝑇𝐒𝜖
−1𝐊𝑖)

−1
𝐊𝑖

𝑇𝐒𝜖
−1[𝐲 − F(𝐱𝑖) +  𝐊𝑖(𝐱𝑖 − 𝐱𝑎)] (2) 

The corresponding retrieval uncertainty 𝐒̂ at the i-th iteration can be expressed as 
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𝐒𝑖 = (𝛾𝐒𝑎
−1 + 𝐊𝑖

𝑇𝐒𝜖
−1𝐊𝑖)

−1
(𝛾2𝐒𝑎

−1 + 𝐊𝑖
𝑇𝐒𝜖

−1𝐊𝑖)(𝛾𝐒𝑎
−1 + 𝐊𝑖

𝑇𝐒𝜖
−1𝐊𝑖)

−1
  (3) 

𝐱𝑎 and 𝐒𝑎 are the a priori mean and covariance matrix of 𝐱, containing information of state 

variables known before the measurements take place. The noise covariance 𝐒𝜖 , which is a 

diagonal matrix composed of the squared IRIS-D NeSRs, denotes the uncertainty contributed 

by measurement noise 𝜖. The Jacobian matrix 𝐊 = ∂F(𝐱)/𝜕𝐱 is computed as the derivative 

of TOA radiances with respect to the state variables, which can be generated by the forward 

model PCRTM. The tuning parameter 𝛾 in Eqs.2-3 is introduced to modify the weightings of 

a priori constraints and observation information (Carissimo et al., 2005; Zhou et al., 2007; 

Turner and Löhnert, 2014). A series of 𝛾 values starting from 1000 then gradually decreasing 

to 1 are applied to the formulas following the previous study by Turner and Löhnert (2014), 

which is meant to increase the weighting of observations step by step to stabilize the retrieval 

process against measurement noises. The convergence criterion (Eq. 4) indicates that the 

difference in retrieval estimates between two successive steps when converged should be 

negligible compared to the retrieval uncertainty.  

(𝐱𝑖 −  𝐱𝑖+1)𝑇𝐒𝑖
−1(𝐱𝑖 −  𝐱𝑖+1) <

𝑙𝑒𝑛𝑔𝑡ℎ(𝐱)

10
(4) 

The iteration will stop when the tunning parameter equals 1 and the convergence criterion is 

satisfied. 

3.3 Transformation of state variables 

3.3.1 Specific humidity 

Since the sensitivity of infrared radiances to water vapor in the stratosphere is relatively 

low (Susskind et al., 2003; Davis et al., 2017), retrievals of water vapor profile using infrared 

satellite measurements usually focus on the troposphere. In this study, only tropospheric 
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specific humidity profiles below 200hPa are retrieved, and those above 200hPa are prescribed 

with the corresponding seasonal mean profiles as in the ERA5 back-extension reanalysis. 

Previous studies have shown that the logarithmically transformed specific humidity can fit 

the Gaussian distribution better than the original humidity profiles (Masiello et al., 2018; 

Maahn et al. 2020). Figure 3a shows the probability distribution of ERA5 hourly specific 

humidity at 500hPa in March, April, and May 1970 over the Arctic. And Figure 3c presents a 

quantile-quantile plot (Q-Q plot) comparing the quantiles of 100 samples randomly drawn from 

this specific humidity distribution to the quantiles of a standard normal distribution. If the 

samples followed a Gaussian distribution, the data points would fall along a straight line in the 

Q-Q plot. As shown in Figure 3c, although the samples fit fairly with the standard normal 

distribution between the first and third quantiles, the consistency no longer holds true beyond 

this range. On the other hand, Figure 3b and 3d provide a glance at the distribution and Q-Q 

plot of logarithmically transformed specific humidity. The probability density function (PDF) 

of logarithmic specific humidity now resembles a Gaussian curve much more than the PDF of 

original specific humidity does (Figure 3b). Figure 3d also indicates that compared to the 

specific humidity, its logarithmic transformation fits the Gaussian distribution more closely. 

Therefore, the logarithm of specific humidity profiles, log(q), is treated as a state variable to 

retrieve specific humidity in the OE algorithm. The Jacobians of logarithmic specific humidity 

𝐊log(q) can be calculated using the chain rule 

𝐊log(q) =
𝜕𝐅(𝐱)

𝜕 log(q)
= q 

∂𝐅(𝐱)

∂q
= q𝐊q (5) 

where 𝐊q can be conveniently calculated by the PCRTM. 

3.3.2 Surface spectral emissivity 
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It has been demonstrated that the retrieval uncertainties of mid-IR surface spectral 

emissivity using satellite observations can vary from 0.005 to 0.04 with a median value around 

0.02, depending on multiple factors such as wavenumbers of surface emissivity, noise levels of 

the measurements, meteorological conditions, surface types, retrieval algorithms, and 

validation methodology (Faysash and Smith, 2000; Gillespie et al., 1998; Li et al., 2007; 

Masiello et al., 2018; Wan 2008). Figure 4 shows that the changes of radiances due to a 

perturbation of 0.02 in the surface spectral emissivity are distinguishable from the IRIS-D 

measurement noise level. The radiances differences of Case 1 and Case 2 mostly exceed the 

IRIS-D NeSRs over the 755 to 970 cm-1 mid-IR window region. In the far-IR, radiances 

changes of Case 1 are comparable to the NeSRs from 495 to 556 cm-1 while those of Case 2 

are close to zero as a result of the enhanced water vapor absorption in July.  

Different from the jagged radiances spectra with spiky absorption lines, the surface 

emissivity spectra are typically smoother and can be well characterized at a spectral interval of 

10 cm-1 (Borel, 1998; Huang et al., 2016). Thus, surface spectral emissivities are retrieved on 

the channels at an interval of 10 cm-1 in this study, which are denoted by the black horizontal 

lines in Figure 4. In total, there are 58 channels for surface emissivity retrievals, with 37 mid-

IR channels and 21 far-IR channels. 

Surface emissivity is physically bounded between 0 to 1. However, the OE retrieval 

framework does not set hard boundary conditions for the surface spectral emissivity, therefore 

it is possible for the retrieval algorithm to converge on an unrealistic surface spectral emissivity 

exceeding unity. To avoid such an issue, the surface spectral emissivity εν (𝜈 refers to the 

wavenumber) is projected to an unbounded range through the logit transformation (Masiello et 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

al., 2018).  

Zν = logit(εν) = log (
εν

1 − εν
) (6) 

In this way, the logit of surface emissivity is updated iteratively in the retrievals. And when 

transformed back, the optimal estimates of surface spectral emissivity are assured to be within 

the range [0,1]. The formula of Jacobians for the logit-transformed surface emissivity, 𝐊zν
, 

can be written as 

𝐊zν
=

𝜕𝐅(𝐱)

𝜕 logit(εν)
=

𝜕𝐅(𝐱)

𝜕εν
εν(1 − εν) (7) 

3.4 Construction of a priori constraints 

In Eqs.1-4, Sϵ is a diagonal matrix determined by the IRIS-D instrument noise level. K are 

obtained from the PCRTM output. While the a priori constraints 𝐱𝑎 and 𝐒𝑎 are constructed 

more subjectively compared to K and Sϵ. 

A priori information of the state variables is available from a large variety of sources 

including records of meteorological and climatological fields, laboratory experiments, and 

empirical knowledge. There are significant seasonal variations in the temperature and humidity 

profiles in the Arctic. Therefore, the a priori constraints for humidity and temperature profiles 

in this study are seasonal-dependent. The a priori mean 𝐱𝑎 for logarithmic specific humidity 

profiles, air temperature profiles and surface temperatures are calculated as the seasonal mean 

based on the ERA5 hourly reanalysis data in the Arctic. And the corresponding a priori 

covariance 𝐒𝑎 is modified based on the original covariance by halving the off-diagonal values 

in order to weaken the effect of intercorrelation between different state variables. On the other 

hand, the seasonal changes of surface spectral emissivity are within a smaller range. For surface 

spectral emissivity, the a priori mean 𝐱𝑎 is calculated as the annual mean averaged over the 
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Arctic using the global surface emissivity dataset (Huang et al., 2016) mentioned above. The a 

priori covariance is constructed from the same surface emissivity dataset. Surface spectral 

emissivity in nadir view is averaged on each IRIS-D channel, then the covariance matrix is 

calculated based on the surface emissivity spectra in the Arctic at the IRIS-D spectral resolution. 

Note that there are no far-IR observations available yet to confirm the accuracy of the global 

surface emissivity dataset (Huang et al., 2016). Therefore, it would be problematic to treat the 

calculated covariance from the emissivity dataset as the a priori covariance 𝐒𝑎: the directly 

calculated covariance may underestimate the realistic variations of surface emissivity spectra 

and result in a too tight a priori constraint to allow information from observations to be 

retrieved. To cope with this, further adjustments are made to construct a relatively loose a priori 

covariance 𝐒𝑎. First of all, a priori spread of surface spectral emissivity is doubled based on 

the calculated values to allow a larger variation range for the retrieval estimates. In addition, 

the correlation coefficients among surface emissivity on different channels are decreased by 

half to reduce the influence of a priori inter-channel correlations on the surface emissivity 

retrievals. 

4. Results 

4.1 Evaluation of information content 

Information content estimates the amount of information arising from the true state 

variables which are retrievable from the noisy measurements. The averaging kernel (Backus et 

al., 1970) and the degree of freedom (DoF) for signal (Rodgers, 2000) are two metrics which 

are used here to quantitatively evaluate the information content. The averaging kernel 𝐀 

characterizes the change of retrieval estimates in response to variations in the true state 
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variables,  

𝐀 =  
𝜕𝐱̂

𝜕𝐱
=  𝐒𝑎𝐊𝑇(𝐊𝐒𝑎𝐊𝑇 + 𝐒𝜖)−1𝐊 (8) 

The DoF for signals ds  is defined as the number of independent pieces of information 

contributed by the true state variables which can be retrieved (Rodgers 2000) considering the 

a priori covariance, measurement noise, and sensitivity of measurements to state variables, and 

equals the trace of the averaging kernel 𝐀. 

ds = ∑ diag(𝐀) (9) 

Averaging kernels of some state variables in Case 1 are shown in Figure 5. The averaging 

kernels of logarithmic specific humidity (Figure 5a) and air temperature (Figure 5b) generally 

have their maximum at the corresponding pressure level and relatively low values everywhere 

else, which indicates the retrieval estimates are most sensitive to its own true value and can 

also be modestly affected by other state variables. It is noticeable that the averaging kernel of 

logarithmic specific humidity on 400hPa has its maximum near 550hPa instead of 400hPa. This 

implies the retrieved specific humidities in the upper troposphere tend to be more sensitive to 

water vapor changes in the middle troposphere, which is likely owing to the fact that most 

water vapor channels used in our study are responsive to changes in the mid-troposphere 

instead of upper troposphere (most upper-tropospheric water vapor channels are between 1400-

1600 cm-1, which are not used due to the large NeSR). The averaging kernels of surface 

properties are superior to those of atmospheric profiles, with the narrow peaks close to 1 for 

surface skin temperature (Figure 5c) and surface emissivity on several channels in mid-IR and 

far-IR (Figure 5d). Table 2 lists the DoF for signals of all the state variables including 

logarithmic specific humidity profile on 23 ERA5 pressure levels from 200hPa to 1000hPa, air 
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temperature profile on 37 ERA5 pressure levels from 1hPa to 1000hPa, surface skin 

temperature, and logit-transformed surface spectral emissivity from 400 to 1400 cm-1 with 37 

out of 58 channels in the mid-IR and the rest 21 channels in the far-IR. The ds values of air 

temperature profile, surface skin temperature, and mid-IR surface spectral emissivity almost 

hold constant despite the different meteorological conditions of the two cases. While the ds 

values of specific humidity profile and far-IR surface emissivity are subject to seasonal 

variations to different extents. The ds value of far-IR surface emissivity for Case 2 in July is 

less than one-thousandth of that for Case 1 in January as shown in Table 2, which is consistent 

with what is shown in Figure 4. This decrease of ds is mainly due to the increased water vapor 

abundance in summer and thus enhanced atmospheric absorption over the far-IR.  

4.2 Retrieval experiment with IRIS-D observations 

The OE framework is applied to the two selected cases for the retrieval of both atmospheric 

and surface properties. For both Case 1 and Case 2, the retrieval converged within 10 iterations. 

Differences between the radiances based on the retrieved state variables and the corresponding 

IRIS-D observations, i.e., the residual radiances, are shown in Figure 6 for both cases. The 

residual radiances mostly fall within the range of measurement noises denoted by the shade. 

For Case 1, the RMSE of residual radiances is 0.67 mW ∙ m−2sr−1/ cm−1 for the selected 

channels represented by the solid curve. The dashed curve stands for the difference between 

radiances based on the initial guess of state variables and the observations, of which the RMSE 

is 1.59 mW ∙ m−2sr−1/ cm−1. Similarly for Case 2, the RMSE of residual radiances are 0.90 

mW ∙ m−2sr−1/ cm−1  and 1.42 mW ∙ m−2sr−1/ cm−1  for the radiance spectra based on 

retrieval estimates and initial guess respectively. It is noteworthy that this improved consistency 
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in radiance spectra from the initial step to the convergence step is not only reflected by the 

selected channels, but also occur over the channels not selected for the retrieval which are 

denoted by the dotted lines in Figure 6. This indicates the retrieved state variables indeed 

represent a physical projection of the IRIS-D observations into the state space, rather than 

overfitting the measurements on the selected channels at the sacrifice of accuracy on the rest 

unselected channels. 

For Case 1 and Case 2, the initial guesses are based on the humidity and temperature 

profiles from the ERA5 reanalysis which are denoted by the blue curves in Figure 7a/7b and 

Figure 8a/8b, and a graybody assumption of surface spectral emissivity at 0.95. Retrieval 

estimates of state variables for Case 1 are shown in Figure 7. The retrieved specific humidity 

profile agrees with the ERA5 reanalysis profile in the upper troposphere above 500hPa (Figure 

7a). Differences between the retrieved profile and ERA5 profile below 500hPa can be as large 

as 0.21 g/kg near 650hPa and 0.34 g/kg near 950hPa, mostly due to the vertical variations of 

the ERA5 specific humidity profile in the middle and lower troposphere. Figure 7b exhibits the 

retrieved air temperature profile from 1hPa to 1000hPa as well as the surface skin temperature. 

The retrieved air temperature profile is highly consistent with the ERA5 reanalysis temperature 

profile above 300hPa. In the troposphere, the retrieved temperatures tend to be colder than the 

reanalysis values with the largest discrepancy of approximately 10.4 K between 800hPa and 

900hPa. The retrieval uncertainty of tropospheric temperatures, as denoted by the shade range, 

gradually increases from a standard deviation of 3.4 K at the tropopause to 7.5 K at 1000hPa. 

As a reference, the corresponding a priori uncertainty is 4.3 K at 300hPa and 10.5 K at 1000hPa. 

This decrease of uncertainty level from the a priori knowledge to the retrieval estimates reflects 
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the contribution of satellite measurements to further narrowing down the range of temperature 

profiles in the troposphere. The retrieved surface skin temperature at 1027.2hPa is lower than 

the ERA5 reanalysis value by 3.4 K, with a retrieval uncertainty of 0.3 K, which is much 

smaller than those of the air temperature retrievals. Figure 7c shows the retrieved surface 

spectral emissivity together with the spectral emissivities of pure ice and water surfaces from 

Huang et al. (2016). The retrieved surface spectral emissivity values are between 0.93 and 0.99 

and comparable with the ranges of ice and water emissivity spectra. Note that the spectral 

smoothness of the retrieved surface emissivity is not similar to those of the ice and water 

emissivity spectra, which also makes it difficult to categorize the surface type to either one. 

Possible reasons for this phenomenon include the impact of measurement noises and the 

interplay between different state variables in the retrieval. The retrieval uncertainties of surface 

spectral emissivity on the channels between 400 to 450 cm-1, and 600 to 700 cm-1 are more 

than twice of those in the mid-IR, which mostly reflect the a priori uncertainty rather than 

information from the measurements. This is because of the atmospheric absorption over these 

spectral ranges, which can also be corroborated by the relatively low Jacobian values at the 

corresponding wavenumbers in Figure 4. As shown in Table 3, the decrease from the a priori 

to the posteriori average relative uncertainty shows that the IRIS-D observations have 

effectively narrowed down the variation ranges of atmospheric profiles and surface properties 

in the retrievals. The average relative retrieval uncertainties of state variables in Case 1 are 

25.7% for the logarithmic specific humidity, 2.4% for air temperature, 0.1% for surface skin 

temperature, 16.7% and 8.5% for the mid-IR and far-IR surface emissivity on the logit scale 

(Table 3), among which the average relative uncertainties of specific humidity and surface skin 
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temperature decrease by the largest extents.  

As for Case 2, the retrieval estimates of both specific humidity and temperature profiles are 

consistent with the ERA5 reanalysis profiles. The retrieved specific humidity profile in July 

has a wider range of variation from 0.004 g/kg at 200hPa to 1 g/kg near surface (Figure 8a), 

almost five times larger than those of Case 1 in April. While for the air temperature profile, the 

retrieval uncertainty is now 6.4 K at 1000hPa and smaller by approximately 1 K compared to 

that in the Case 1 on every pressure level in the middle and lower troposphere (Figure 8b). The 

retrieved surface skin temperature at 1015.1hPa is a bit colder than the ERA5 reanalysis 

estimate by 2.2K, with a retrieval uncertainty of 0.4 K. The retrieval estimate of surface spectral 

emissivity is shown in Figure 8c. The retrieval uncertainty of surface emissivity in the far-IR 

can be up to 0.15, which is dominated by the a priori constraint instead of information from 

the measurements because of the water vapor absorption predominant in the far-IR during 

summer. This relatively large a priori uncertainty level is not directly calculated from the 

surface emissivity dataset (Huang et al., 2016) but from the logit-transformed surface spectral 

emissivity, and then manually doubled on the logit basis, which makes it loose enough to allow 

more weightings given to the measurements by the retrieval framework. Although the spectral 

characteristics of retrieved surface emissivity are within a reasonable range from the 

perspective of the retrieval algorithm, they did not provide conclusive information on the 

possible surface types. Since Case 1 and Case 2 differ in geolocation and season, it is expected 

that the retrieved surface spectral emissivity of these two cases are different from each other. 

As shown in Table 3, the average relative retrieval uncertainties of state variables in Case 2 are 

58.3% for the logarithmic specific humidity, 1.2% for air temperature, 0.1% for surface skin 
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temperature, 28.8% and 9.4% for the mid-IR and far-IR surface emissivity on the logit scale. 

In order to further investigate the influence of blackbody surface assumption on retrieval 

results, a parallel experiment is performed with all settings the same except the surface spectral 

emissivity values being fixed at unity (i.e., blackbody surface) Differences in the retrieval 

estimates of specific humidity and temperature profiles between the two setups are shown in 

Figure 9. According to the two cases in the Arctic, the blackbody surface assumption distorts 

the retrieval estimates of atmospheric humidity and temperature profiles more distinctly in the 

lower troposphere. The decrease in retrieved specific humidity and temperature can be as large 

as 0.4 g/kg and 6.5K at 1000hPa. For both cases, the retrieved surface skin temperatures based 

on the assumption of a blackbody surface are lower than those shown in Figure 7 and 8 by 

around 3K, which is an inevitable consequence of the overestimated surface emissivity values.  

5. Conclusions and discussion 

Retrieval products of atmospheric profiles and surface properties are widely used for 

weather analysis and climate research. Atmospheric sounding using satellite observations 

requires accurate information of surface spectral emissivity. It has been recently acknowledged 

that far-IR surface emissivity is important to polar climate, which motivates the selection of 

satellite missions dedicated to fill the gap of far-IR observations in this decade. The launch of 

future far-IR satellite missions will bring unprecedented opportunities for retrievals in the polar 

regions and would also benefit from retrieval studies using real satellite measurements. 

Therefore, this study seeks to simultaneously retrieve atmospheric profiles and surface 

properties using IRIS-D observations, an antique dataset which is also currently the only 

available far-IR satellite measurements, with a hope to provide a valuable reference for future 
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far-IR satellite missions. 

Given the large footprint of IRIS-D and the frequent occurrence of clouds in the Arctic, a 

multiple-step clear-sky selection method is applied to filter the IRIS-D measurement. Two 

cases are chosen for the retrieval experiments. Information content analysis of the two cases 

indicate adequate information content for retrievals of surface skin temperature and surface 

spectral emissivity. In addition, the DoF for signals of far-IR surface emissivity decreases 

rapidly as the water vapor absorption becomes stronger. A retrieval framework based on the 

OE method has been implemented to perform simultaneous retrieval using mid- and- far-IR 

radiances. Specific humidity profiles and surface spectral emissivity are mathematically 

transformed for better retrieval performance. Both cases converge within 10 iterations.  

It has been demonstrated that radiances based on the retrieved state variables are more 

consistent with the IRIS-D observations than those based on the reanalysis estimates. This 

improved consistency occurs not only at the selected IRIS-D channels for retrievals but also at 

the channels not used for the retrievals, which indicates the retrieved state variables indeed 

represent a more accurate projection of the satellite observations. Retrieved specific humidity 

and air temperature profiles are smoothly varying. The retrieved surface skin temperatures have 

a narrow variation range and differ from the ERA5 reanalysis value by around 3 K. Radiance 

changes in response to an uncertainty level of 0.02 in the surface spectral emissivity are 

distinguishable from the IRIS-D measurement noises. The retrieval estimates of surface 

spectral emissivity generally fall within a reasonable range with the retrieval uncertainty 

varying between 0.006 and 0.15. The average relative retrieval uncertainties of state variables 

in Case 1 (Case 2) are 25.7% (58.3%) for the logarithmic specific humidity, 2.4% (1.2%) for 
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air temperature, 0.1% (0.1%) for surface skin temperature, 16.7% (28.8%) and 8.5% (9.4%) 

for the mid-IR and far-IR logit-transformed surface emissivity. These average relative 

uncertainties decrease by different extents compared to the a priori relative uncertainties, 

which indicates that information from the IRIS-D measurements has helped to narrow the 

variation ranges of state variables in the retrievals. In addition, a parallel retrieval experiment 

based on the blackbody assumption for surface emissivity has revealed significant distortion of 

retrieved specific humidity and temperature profiles in the lower troposphere. 

The sensitivity of retrieved state variables to the initial guess has also been investigated by 

applying a series of different initial guess values to the retrieval framework (not shown here). 

Our results suggest that the retrieval estimates are mostly insensitive to the variation of initial 

guess values. For example, in a scenario when the initial guess of specific humidity profile is 

increased by 395% to 405% randomly at each level, the temperature profile is increased by 

19.8K to 20.2K at each level, and surface spectral emissivity is randomly perturbed between -

0.01 and 0.01, changes in retrieval estimates and uncertainty level are less than 0.1%. In this 

study, the bias between IRIS-D observations and the forward modeling has not been 

quantitatively considered in the retrieval algorithm. While we are aware of the existence of 

such bias, to quantify the bias requires extremely accurate characterization of the atmospheric 

profiles at the exact geolocation and time when the radiance spectra are observed, which is 

usually obtained through in-situ measurements. As the IRIS-D radiances were measured half a 

century ago, there was no chance to accurately quantify these bias values. Ignoring such biases 

would inevitably affect the retrieval results to some extent, but this defect can be improved in 

the algorithm development for the upcoming PREFIRE and FORUM missions with carefully 
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planned calibration and validation field campaigns. Another thing worth noting is that by 

simulating radiances at a finer spectral resolution than that of IRIS-D, the DoF for signals of 

specific humidity profiles and surface spectral emissivity are distinctly increased. For example, 

if we perform the radiance simulation at 0.4 cm-1 spectral resolution (full width half maximum), 

i.e., a spectral resolution comparable to that of FORUM, the DoFs for humidity profiles, mid-

IR and far-IR surface spectral emissivity in Case 1 become 2.3, 176.4 and 58.5, respectively. 

Given the fact that FORUM covers a broader spectral range (100-1600 cm-1) than IRIS-D, the 

DoFs for the atmospheric profiles and surface properties using FORUM measurements can be 

even higher. It has been shown by Ben-Yami et al. (2022) that DoFs for simulated FORUM 

measurements can be as high as 5 for the humidity profile and greater than 65 for far-IR surface 

emissivity when the precipitable water vapor is lower than 1mm. 
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Table 1. Basic information of the selected cases 

Case NO. Geolocation Time Surface Pressure 

1 (80.0ºN, 43.4ºE) April 21 3:25 am UTC, 1970 1027.2hPa 

2 (76.2ºN, 215.4ºE) July 13 6:29 pm UTC, 1970 1015.1hPa 

 

Table 2. Degree of Freedom for signals of the state variables. 

 
Specific 

humidity (log) 
Temperature 

Surface skin 

temperature 

Surface spectral emissivity (logit) 

mid-IR far-IR 

Case 1 1.32 4.13 0.99 24.92 10.60 

Case 2 1.91 4.03 0.97 24.21 0.01 

 

Table 3. Average relative uncertainty of state variables before and after the retrieval. The a 

priori relative uncertainty is calculated as the ratio of a priori uncertainty to the a priori 

mean. The posteriori relative uncertainty is calculated as the ratio of retrieval uncertainty to 

the retrieved state variables. 

Average relative 

uncertainty (%) 

Specific 

humidity 

(log) 

Temperature 

Surface 

skin 

temperature 

Surface spectral 

emissivity (logit) 

mid-IR far-IR 

Case 1 

a priori 179.4 3.4 4.6 31.1 18.3 

posteriori 25.7 2.4 0.1 16.7 8.5 

Case 2 

a priori 98.3 1.7 2.4 31.1 18.3 

posteriori 58.3 1.2 0.1 28.8 9.4 
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Figure 1. (a) The IRIS-D spectra of Case 1 shown in brightness temperature. It was measured 

on April 21, 1970 at 80.0ºN, 43.4ºE. The dashed line denotes the corresponding surface skin 

temperature from the ERA5 hourly reanalysis data. The gray shades denote the IRIS-D 

channels not used in the retrieval due to (1) absorption of greenhouse gases other than H2O 

and CO2, i.e., O3, CO, N2O and CH4, and (2) large measurement noises (1400-1600 cm-1). (b) 

ERA5 1000-hPa geopotential height (GPH) in color and the horizontal wind field for the time 

of observation. The black pentagram marks the geolocation of Case 1. (c) Same as (b) but on 

500hPa pressure level. 
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Figure 2. Same as Figure 1, but for the Case 2 observed on July 13, 1970 at 76.2ºN, 215.4ºE. 
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Figure 3. (a) Probability density function (PDF) of the Arctic 500-hPa specific humidity 

based on the ERA5 hourly reanalysis data in March, April, and May 1970. (b) PDF of the 

logarithmic transformation of the specific humidity in (a). The red curve represents the 

theoretical PDF of a Gaussian distribution with identical mean and standard deviation. (c) 

Quantiles of the specific humidity samples from (a) (sample size = 100) versus the theoretical 

quantiles of the standard normal distribution (SND). (d) Same as (c), but for the 

logarithmically transformed specific humidity at 500hPa. 
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Figure 4. Radiances change at TOA in response to an increase of surface spectral emissivity 

by 0.02 for Case 1 and Case 2, denoted by blue curve with dot and red curve, respectively. 

For both curves, solid part represents the selected IRIS-D channels used in the retrieval, while 

the dotted part represents the channels not used in the retrievals (refers to Section 2.1 for 

further details.) The blue shade denotes the IRIS-D NeSR (1). The black horizontal lines, 

each covering a 10 cm-1 spectral interval, indicate channels on which surface spectral 

emissivity are retrieved. 
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Figure 5. Averaging kernels of selected state variables in Case 1: (a) for logarithmic specific 

humidity on pressure levels of 400hPa, 600hPa and 900hPa, (b) for air temperature on four 

pressure levels from middle stratosphere to lower troposphere (c) for surface skin 

temperature, and (d) for logit-transformed surface spectral emissivity on eight random 

channels. The shaded layer in subpanel (b) is to highlight the pressure level of surface skin 

temperature. For better visualization, the averaging kernels for humidity and temperature at 

other pressure levels are not shown.  
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Figure 6. (a) The blue curve represents the difference between the radiances based on the 

retrieved state variables and the IRIS-D observations, i.e., the residual radiances for Case 1 

on April 21, 1970, and the root-mean-squared error (RMSE) is 0.67 mW ∙ m−2sr−1/ cm−1. 

The red dash curve represents the residual radiances based on the initial guess which consists 

of the temperature and humidity fields from the ERA5 hourly reanalysis and constant surface 

spectral emissivity at 0.95. Its RMSE is 1.59 mW ∙ m−2sr−1/ cm−1. As in previous figures, 

solid part denotes the selected channels used in the retrieval while the dotted part denotes the 

channels not used in the retrieval. The blue shade represents the IRIS-D NeSR (±1). (b) 

Same as (a), but for the Case 2 measured on July 13, 1970. 
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Figure 7. Retrieval estimates of the state variables for Case 1 on April 21, 1970. (a) The blue 

curve represents the specific humidity profile from the ERA5 hourly reanalysis up to 1hPa 

(i.e., initial guess). The red curve represents the retrieved specific humidity between 200-

1000hPa with the retrieval uncertainty denoted by the red shade. (b) Similar to (a), but for the 

temperature profile from 1hPa to the surface. The shaded layer is to highlight the pressure 

level of surface skin temperature. (c) The blue curve represents the retrieved surface spectral 

emissivity with the retrieval uncertainty denoted by the blue shade. The surface emissivity 

spectra for ice and water are from a global surface emissivity database (Huang et al., 2016).  



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 

 

Figure 8. Same as Figure 7, but for the Case 2 observed on July 13, 1970. 
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Figure 9. Differences in the retrieved atmospheric humidity (a) and temperature profiles (b) 

between two configurations: (1) blackbody assumption for surface emissivity and (2) 

simultaneous retrieval of surface spectral emissivity together with other state variables. Blue 

lines with filled dots (Diff. 1) denote differences between two configurations for Case 1. Red 

lines with open circles (Diff. 2) represent differences between two configurations for Case 2. 

Shaded layer in subpanel (b) highlights the pressure level of surface skin temperature. 

 


