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Abstract
A cabin climate control system, often referred to as a heating, ventilation, and
air conditioning (HVAC) system, is one of the largest auxiliary loads of an elec-
tric vehicle (EV), and the real-time optimal control of HVAC brings a significant
energy-saving potential. In this article, a linear-time-varying (LTV) model pre-
dictive control (MPC)-based approach is presented for energy-efficient cabin
climate control of EVs. A modification is made to the cost function in the
considered MPC problem to simplify the Hessian matrix in utilizing quadratic
programming for real-time computation. A rigorous parametric study is con-
ducted to determine optimal weighting factors that work robustly under var-
ious operating conditions. Then, the performance of the proposed LTV-MPC
controller is compared against a rule-based (RB) controller and a nonlinear
economic MPC (NEMPC) benchmark. Compared with the RB controller bench-
mark, the LTV-MPC reaches the target cabin temperature at least 69 s faster
with 3.2% to 15% less HVAC system energy consumption, and the averaged
cabin temperature difference is 0.7◦C at most. Compared with the NEMPC,
the LTV-MPC controller can achieve comparable performance in temperature
regulation and energy consumption with fast computation time: the maxi-
mum differences in temperature and energy consumption are 0.4◦C and 2.6%,
respectively, and the computational time is reduced 72.4% on average with the
LTV-MPC.
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1 INTRODUCTION

The market share of electric vehicles (EVs) has increased noticeably during the past decades.1 Nonetheless, range anxiety,
EV drivers’ fear that battery state of charge (SOC) is too low to reach the desired destination, is still one of the concerns
for the potential customers of EVs. They are more anxious about the SOC and the remaining range than current EV
owners.2 Thus, improving the all-electric range (AER) of an EVs is essential for resolving lagging EV adoption. Among
all the auxiliary components of the EVs, a vehicle cabin climate control system, which includes an air-conditioning (A/C)
system and an electric heater, is accountable for the most significant energy consumption.3 Due to the energy consumed
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by the cabin climate control, the average AER can be decreased by approximately 30%–40%, depending on vehicle types
and driving scenarios.4,5 Therefore, optimizing the cabin climate control is essential for enhancing the AER performance
of an EV.

In various practical scenarios, an A/C system and a heater may operate at the same time. For example, to avoid unpleas-
ant odor from the evaporator outlet air, the temperature should be kept under a certain level.6 In such a case, the A/C may
over-cools, and the vent outlet air temperature will need to be heated to achieve a desired cabin air temperature. More-
over, in a dehumidification mode, the A/C is utilized to chill the airflow at the evaporator. In such cases, the outlet air
from the evaporator may be too cold to be supplied directly to the cabin; therefore, a heating process, so-called reheating
operation, is required to warm up the chilled air.7-9 In an EV, an electric heater is typically utilized, and a more efficient
heat pump option is also available.10 However, these are far less efficient than a heater core using wasted heat from an
internal combustion engine. Therefore, an optimal cabin climate control algorithm should consider cabin cooling and
heating at the same time.

For vehicle cabin climate control, various control techniques have been introduced in the literature. A rule-based
(RB) controller typically utilizes map-based control actions depending on given environmental conditions and vari-
ous states as measured from the heating, ventilation, and air conditioning (HVAC) system of the vehicle cabin.11 The
maps or rules for the control actions need to be pre-calibrated for given driving conditions and operating ranges.
Therefore, this type of controller does not require any online optimization process, and hence the computational
load is low. However, the RB controller does not ensure optimality in temperature regulation and energy minimiza-
tion. Rostiti et al.12 proposed an RB controller utilizing offline-solved dynamic programming in the process of rule
calibration. This strategy offers control performance approaching the optimal temperature regulation and energy
consumption of dynamic programming. However, the method still does not guarantee the optimal control trajec-
tory in various driving scenarios. To pursue the robustness of the controller in various conditions, Zhang et al.13

applied an H∞ control method to a vehicle A/C system. The H∞ controller is constructed so that the H∞ norm of
the transfer function between the disturbance and the controlled output is as small as possible, which leads to bet-
ter temperature trajectory tracking and disturbance rejection. However, energy consumption is not considered in the
control design.

Recently, model predictive control (MPC) has become popular in addressing the vehicle climate control problem to
achieve optimal temperature tracking and energy-saving performance. Optimal control is achieved by minimizing a cost
function about the states and controls within a prediction horizon. For such an optimization process, the computational
cost for the control-oriented model needs to be adequately reduced. The HVAC system is nonlinear and inherits the com-
plexity of two-phase fluid dynamics, making MPC-based cabin climate control more challenging. Several studies have
proposed approaches for reducing the order of the control-oriented model by utilizing the A/C system’s setpoints as con-
trol inputs for the MPC problem; however, heating operation is typically ignored. Wang et al.14,15 developed a nonlinear
MPC (NMPC), which is based on a phenomenological model of the evaporator, discharge temperature, and blower mass
flow rate, to regulate cabin temperature with minimum energy consumption. This NMPC works as a high-level con-
troller to determine the control settings of the climate control panel, such as blower level and temperature set point.
However, the heating is not considered as well as the optimal control of the refrigerant cycle components. Glos et al.16

proposed an NMPC for an EV climate control system. In the considered system, the duct air for the cabin is cooled by
a coolant circuit that is between the duct and refrigerant cycle. The heat transfer rate from the refrigerant cycle works
as a control input, which reduces the computational burden greatly since the two-phase flow heat transfer is not calcu-
lated. The NMPC problem is solved to achieve optimal operation, including cabin temperature tracking, carbon dioxide
reduction, and energy saving. However, this NMPC also has similar drawbacks to the controllers in References 14,15;
the heating operation is not considered, and the A/C components such as the compressor and the fan are not optimally
controlled.

The prediction model accuracy and control performance may be improved further by including a vapor com-
pression cycle model in the MPC instead of estimating total energy consumption from cooling power demand. In
our previous work,17 a nonlinear economic MPC (NEMPC) is proposed for vehicle climate control with the coop-
eration of both air conditioner and heater. With the quasi-steady-state assumption, the vapor compression cycle
and the cabin air dynamics are simplified to a three-state nonlinear model. The compressor and the fan mass flow
rates and the heater power are included as control inputs for the optimal control of the HVAC system. The pro-
posed controller shows outstanding performance in temperature tracking and energy saving under various driving
scenarios.
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However, the aforementioned NMPC controllers can still be computationally demanding; therefore, they are inade-
quate for real-time application with limited computational power. The computational load of the optimal cabin climate
control problem can be dramatically reduced by using a linear MPC in the form of quadratic programming (QP), as
many fast QP solvers have been developed for online implementation.18,19 In general, a highly nonlinear climate control
model is converted into a linear model via linearization around a fixed point.8,20-22 Then, the original complex optimal
control problems are transformed with the quadratic cost function into a QP problem. The linear MPC for the cabin cli-
mate control can demonstrate good temperature tracking and energy-saving performance comparable to NMPCs, and
the computational time can be reduced by up to 10 to 15 times.8 However, in the previous studies,8,20-22 the linearized
model remains the same within the prediction horizon. In transient cases where state and control trajectories could sig-
nificantly vary, the performance of the LTI-MPC can be degraded due to the inaccurate prediction of the LTI model.23

Thus, a linear-time-varying (LTV)-MPC, which constructs the linearized prediction model multiple times within the pre-
diction horizon, is utilized in this article to enhance the quality of the prediction and the performance of the QP-based
optimal cabin climate control of EVs.

The LTV-MPC controller is designed to minimize the energy consumption of the HVAC system while regulating
temperatures of the cabin air and evaporator outlet airflow. The main contribution of this article is threefold:

• A QP-based LTV-MPC controller is proposed based on the nonlinear physics-based vehicle climate control problem
proposed in our previous work,17 and the detailed development process is presented. To simplify the Hessian matrix
calculation by eliminating non-symmetric bi-linear terms, a modification to the compressor power consumption model
is introduced and its effectiveness is evaluated.

• The impact of weighting factors on energy consumption and temperature regulation performance is thoroughly
investigated and analyzed through extensive parametric studies in various driving scenarios including two ambient
temperature conditions at 24 and 38◦C. Weighting factors for temperature tracking have different impacts on the
control performance at different ambient temperatures. On the other hand, weighting factors for control rates work
distinctively in different driving cycles.

• The performance of the LTV-MPC controller with optimal weighting factors is compared with the NEMPC in our
previous work.17 The proposed LTV-MPC has a temperature tracking and energy consumption difference of less than
0.3◦C and 2.6%, respectively. Also, compared with an RB controller,11 the LTV-MPC shows a shorter time (more than
20%) to reach the target temperature while using less energy (more than 5.1%).

The rest of the article is organized as follows: Section 2 presents the control-oriented model for cabin climate control.
Section 3 presents the development of the proposed LTV-MPC, including model linearization, cost function, and con-
straints to the LTV-MPC. Section 4 discusses the results and analysis of the parametric study and the comparison against
the NEMPC17 under three different driving cycles. The performance of the proposed LTV-MPC controller is evaluated
under a validation driving cycle. The evaluation results are compared with the NEMPC and the RB controller.11 Finally,
concluding remarks and discussion on future directions are given in Section 5.

2 NONLINEAR CABIN CLIMATE CONTROL MODEL

In this section, the nonlinear control-oriented prediction model for the proposed LTV-MPC, which had been developed
in our previous work,17 is presented. A schematic diagram of the cabin climate control system considered in this article is
illustrated in Figure 1. As shown in the figure, the system consists of an A/C system and a vehicle cabin system. The cooled
air from the evaporator of the A/C system is delivered to the cabin by a blower. Since the A/C system is kept running
to regulate the evaporator at a low temperature for odor avoidance, an electric heater is utilized to warm up the cooled
air to avoid cabin overcooling. The cabin air will be re-circulated to the evaporator, the amount of which is controlled by
a re-circulation door. The modeling details of the two systems as well as their energy consumption are discussed in the
following Subsections 2.1,2.2, and 2.3.

2.1 Cabin modeling

The vehicle cabin is modeled using a lumped parameter method. Both the thermal dynamics of the cabin air and a pseudo
vehicle component called the interior structure are calculated as lumped masses. The interior structure takes the heat
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F I G U R E 1 A schematic diagram of the considered cabin climate control system

transfer from the solar radiation ( ̇Qsolar) and the ambient air ( ̇Qamb), and exchanges heat with the lumped cabin air ( ̇Qint).
The lumped cabin air also has heat transfer with air cooled by the evaporator, which is heated before entering the cabin.
The dynamics of the cabin air temperature Tcab and the interior structure temperature Tstr are described as follows:

̇Tcab =
1

mcabcp,a

(
ṁblwrcp,a(Tavo,k − Tcab) + ̇Qint

)
, (1)

̇Tstr =
1

Cp,str

(
̇Qsolar + ̇Qamb − ̇Qint

)
, (2)

Tavo = Taeo +
̇Qhtr

ṁblwrcp,a
(3)

̇Qamb = (a1Vkph + a2)(Tamb − Tstr), (4)

̇Qint = (a3ṁblwr + a4)(Tstr − Tcab), (5)

where Taeo is the air temperature at the evaporator outlet, the dynamics of which are discussed in the following Subsec-
tion 2.2; Tavo is the air temperature at the vent outlet; Tamb is the ambient temperature; ̇Qhtr is the heat transfer rate from
the electric heater to the evaporator outlet airflow; ṁblwr is the air mass flow rate of the blower. The mass of the cabin
air, the specific heat capacity for the air, and the heat capacity of the structure are denoted by mcab, cp,a, and Cp,str, respec-
tively. ̇Qamb and ̇Qint are calculated with the overall thermal conductance, which are functions of the vehicle speed Vkph
and the blower air mass flow rate ṁblwr, respectively. ̇Qsolar is considered as a constant value in this article.

2.2 A/C system modeling

The A/C system is modeled based on an ideal vapor-compression cycle assumption. Since the refrigerant flow transient
response is much faster than the cabin thermal dynamics, the refrigerant flow is assumed to be quasi-steady and the
evaporator heat transfer at the refrigerant side is calculated with a static energy balance equation. Meanwhile, at the air
side, both the sensible heat transfer (temperature change) and latent heat transfer (humidity change) are considered.
Therefore, the dynamics of the air temperature at the evaporator outlet Taeo are described as follows:

̇Taeo = −
1
𝜏aeo

Taeo +
1
𝜏aeo

(
Tabo +

ṁcompΔh
ṁblwrcp,a

+
(𝜔i − 𝜔e)hfg

cp,a

)
, (6)

Δh = f (ṁcomp, ṁfan), (7)

Tabo = rinTcab + (1 − rin)Tamb, (8)

where ṁcomp is the refrigerant mass flow rate of the compressor, ṁfan is the fan air mass flow rate, Δh is the refrig-
erant enthalpy difference between the evaporator inlet and outlet, Tabo is the blower outlet air temperature, rin is
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the ratio of the return air mass flow to the ambient air mass flow. The absolute humidity of the evaporator inlet
and outlet airflow is denoted by 𝜔i and 𝜔e, respectively, and hfg is the latent heat of the water. Computing Δh in
the thermodynamic cycle typically requires an iterative method due to its inherent recursive relationship with Taeo.
Therefore, Δh is calculated and its sensitivity to the refrigerant and air mass flow rates are investigated under a wide
range of operating conditions including various ambient temperatures. Then Equation (7) is developed as a regres-
sion model as a function of ṁcomp and ṁfan to capture the response of the ideal vapor-compression cycle.17 It is noted
that for the Taeo, a first-order filter with a time constant 𝜏aeo is used in Equation (6) to capture any dynamics that are
not modeled.

2.3 Power consumption modeling

In this article, three components in the cabin climate control system are controlled, which are the compressor,
the fan, and the electric heater. For energy consumption minimization, the power consumption of each compo-
nent is modeled and used in the cost function in the MPC. The power consumption model is developed based on
the performance test data of the components provided by the manufacturer. The compressor responses in a wide
range of operating conditions are investigated, and the power consumption is expressed as a regression model.
The fan power consumption model is regressed based on the numerical test data at different vehicle speeds to
account for the ram-air effect by the vehicle frontal structure in a wide range of conditions. It is noted that the
blower is controlled by an RB controller instead of the MPC because its settings are often manually adjusted by
the driver or the passenger. Therefore, it is considered as a disturbance, and hence its power is not considered
in the MPC formulation. The power consumption of the compressor, the fan, and the electric heater is expressed
as follows:

Pcomp = a1Treṁcomp + a2ṁ2
comp + a3ṁcomp,+a4ṁfanṁcomp, (9)

Pfan = a5ṁ2
fan + a6ṁfan + g(v), (10)

Phtr = ̇Qhtr (11)

Tre = Tabo − 𝜀−1
e (Tabo,k − Taeo), (12)

where Pcomp, Pfan, and Phtr are the power consumption of the compressor, the fan, and the heater, respectively; Tre is
the refrigerant temperature at the evaporator; g(v) is a function of the vehicle speed to account the ram-air effect; 𝜀−1

e is
the inverse of the evaporator effectiveness, which is linearly regressed as a function of ṁblwr using the heat exchanger
performance data.

3 LTV-MPC CONTROLLER DEVELOPMENT

In this section, the development of the LTV-MPC for cabin climate control is discussed. The LTV-MPC is designed to reg-
ulate Tcab and Taeo smoothly with minimum energy consumption. Because of the LTV prediction model and the quadratic
cost function, the LTV-MPC can be converted into a QP problem and solved with relatively small computational burden.
The following equations express the general form of the LTV-MPC problem, including a quadratic cost function, an LTV
state evolution equation, and linear inequality constraints:

min
Δuk

J = ΣNh−1
k=0

(
𝜉

T
k+1Q𝜉k+1 + ΔuT

k RΔuk + q
𝜉

𝜉k+1
)
,

s.t. 𝜉k+1 = Aaug,k𝜉k + Baug,kΔuk + Dk,

E
𝜉

𝜉k ≤ F
𝜉,k,

EΔuΔuk ≤ FΔu, (13)
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where J is the cost function, k is the discrete-time index, Nh is the number of prediction steps, 𝜉 is the augmented system
state vector, and Δu is the augmented system control input vector. The system states are evolved in an LTV prediction
model while the state and control input vectors follow linear constraints in the prediction horizon. The system is expressed
in an augmented form, with the increment of the control variables (ṁcomp, ṁfan, and ̇Qhtr) as the control inputs, so that
constraints and cost function terms for the rate of control inputs can be applied.

In the following subsections, the details of the augmented LTV model, the cost function, and the constraints are
discussed. Then, the optimization problem is expressed in a QP form.

3.1 The augmented LTV model

The nonlinear model discussed in Section 2 is linearized for the LTV-MPC. For simplicity, the nonlinear equations (1),
(2), and (6) are expressed as follows:

ẋk = f (xk,uk, dk),
xk = [Tcab,k,Taeo,k,Tstr,k]T ,
uk = [ṁcomp,k, ṁfan,k, ̇Qhtr,k, 𝜖aeo,k, 𝜖fan,k]T ,
dk = [Vkph,k, ṁblwr,Tamb, ̇Qsolar, rin, 𝜔i, 𝜔e]T , (14)

where x and u are state vector and control input vector; d is the disturbance vector; 𝜖aeo and 𝜖fan are the slack variables for
the Taeo regulation and the fan-related soft constraints, which will be discussed in Subsection 3.3. It is noted that accurate
information about vehicle speed Vkph is assumed to be available and kept updated in the prediction horizon, similar to
the approaches used by Wang et al.14 and Amini et al..24

The other disturbances are kept constant in the prediction horizon. At an operating point, in the prediction horizon,
(xl,ul, dl), the nonlinear model is linearized and discretized as follows:

xk+1 = xk + Δt
𝜕f
𝜕xk

||||(xl,ul,dl)
(xk − xl) + Δt

𝜕f
𝜕uk

||||(xl,ul,dl)
(uk − ul) + Δt ⋅ f (xl,ul, dl), (15)

where Δt is the sampling time of the discretization.
When the nonlinear model is linearized in the LTV-MPC formulation using Equation (15), a sequence of multi-

ple linearization points, {(x0,k,u0,k, d0,k), … , (xNh−1,1,uNh−1,k, dNh−1,k)}, is needed. This sequence of linearization points
is obtained as follows: (i) the estimated control trajectory for the kth step is obtained by shifting the optimal control
trajectory at the (k − 1)th step, {u0,k−1,u1,k−1, … ,uNh−1,k−1}, one step forward to {u1,k−1,u2,k−1, … ,uNh−1,k−1,uNh−1,k−1};
(ii) the estimated states sequence, {x1,k, x2,k, … , xNh,k}, is obtained by applying the estimated control trajectory at the
kth step to the kth states, x0,k, using the nonlinear model (with disturbances updated); (iii) finally, the estimated state
sequence and the estimated control trajectory at the kth step are combined to form the sequence of linearization
points.

For smooth operation, constraints on the rate of control input are considered in the LTV-MPC formulation. For
convenience, the system is augmented to a velocity form by substituting uk = vk−1 + Δuk for uk as follows:

vk−1 = [ṁcomp,k−1, ṁfan,k−1, ̇Qhtr,k−1, 0, 0]T ,
Δuk = [Δṁcomp,k,Δṁfan,k,Δ ̇Qhtr,k, 𝜖aeo,k, 𝜖fan,k]T . (16)

Since the last two elements in vk−1 are 0, we can replace vk−1 by a three-element vector, 𝜈k−1.

𝜈k−1 = [ṁcomp,k−1, ṁfan,k−1, ̇Qhtr,k−1]T . (17)

Then linearization point (xl,ul, dl) becomes (xl, vl−1 + Δul, dl), and the linearized system is expressed as follows:

xk+1 = Akxk + Bk𝜈k−1 + BkΔuk + 𝛿k, (18)
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with

Ak = Δt
𝜕f
𝜕xk

||||(xl,ul,dl)
+ I3×3,

Bk = Δt
𝜕f
𝜕uk

||||(xl,ul,dl)
,

Bk = Δt
𝜕f
𝜕𝜈k

||||(xl,𝜈l,dl)
,

𝛿k = −Δt
(
𝜕f
𝜕uk

||||(xl,ul,dl)
ul +

𝜕f
𝜕xk

||||(xl,ul,dl)
xl

)
+ Δt ⋅ f (xl,ul, dl).

Equation (18) is further expressed with an augmented state vector 𝜉k = [xk, 𝜈k−1]T , and the augmented system
expressed in Equation (19) is used in the LTV-MPC controller as follows:

𝜉k+1 = Aaug,k𝜉k + Baug,kΔuk + Dk, (19)

with

Aaug,k =

[
Ak Bk

03×3 I3×3

]

,

Baug,k =

[
Bk

I3×3 03×2

]

,

Dk =

[
𝛿k

03×1

]

.

3.2 Cost function

In this article, the objective of cabin climate control is to minimize the energy consumption and to regulate the
temperatures. The cost function is expressed as follows:

J = ΣNh−1
k=0

(1
2
𝛼Tcab (Tcab,k+1 − Tcab,target)2 +

1
2
𝛼Taeo𝜖

2
Taeo,k

+ 1
2
𝛼fan𝜖

2
fan,k

+ ̃Pcomp,k + Pfan,k + Phtr,k +
1
2
𝛼ΔcompΔṁ2

comp,k +
1
2
𝛼ΔfanΔṁ2

fan,k +
1
2
𝛼ΔhtrΔ ̇Q2

htr,k

)
, (20)

where 𝛼s indicate weighting factors used for the different cost terms and Δ indicates the increment of the control inputs
(the rate of the control inputs). The first term handles the Tcab regulation. The second and third terms are used for penal-
izing slack variables of the Taeo and ṁfan constraints. The fourth, fifth, and sixth terms represent the power consumption
of the controlled components. The rest are for penalizing the rate of the control inputs. It is noted that a small weighting
factor for ̇Qhtr is introduced just to ensure that the Hessian matrix is positive definite.

To obtain a symmetric cost function and further reduce the matrix complexity, a modification is made to the com-
pressor power consumption. In Equation (9), Pcomp,k is not a symmetric quadratic function because Tre,k at the kth step is
multiplied by the state, ṁcomp,k at the (k + 1)th step, which belongs to 𝜉k+1 in Equation (19). Therefore, the first term in
Equation (9) is calculated by Tre,k(ṁcomp,k−1 + Δṁcomp). Although Tre,kṁcomp,k−1 can be expressed as a quadratic term of
𝜉k, additional matrix calculation is necessary for the non-symmetric bi-linear term Tre,kΔṁcomp, which increases the com-
putational burden. This issue can be resolved if the intermediate variable Tre,k is shifted one step forward to Tre,k+1, with
the result that the term Tre,k+1ṁcomp,k is expressed as a quadratic term of 𝜉k+1. The modified compressor power ̃Pcomp,k is
expressed as follows:

̃Pcomp,k = a1Tre,k+1ṁcomp,k + a2ṁ2
comp,k + a3ṁcomp,k + a4ṁfan,kṁcomp,k (21)
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F I G U R E 2 Temporal trends of original Pcomp and shifted Pcomp at Tamb of (A) 24◦C and (B) 38◦C, (C) temporal trends of Tre difference,
and (D) corresponding Pcomp error

Since the compressor power consumption is used as one of the cost terms, with properly tuned weighting factors the
overall cost function shape will not be significantly affected as long as the compressor power trend is captured. To examine
the impact of the shifting strategy on the power consumption accuracy, Pcomp from the two methods are compared in
an open-loop simulation with given control trajectories in various driving conditions. The temporal trends of Pcomp, Tre
difference (= Tre,k+1 − Tre,k) and the Pcomp error (= ( ̃Pcomp − Pcomp)∕Pcomp) are evaluated as shown in Figure 2A–D. The
simulations are based on three driving cycles, the urban dynamometer driving schedule cycle (UDDS), the highway fuel
economy test cycle (HWFET), and the US06 driving cycle, and two ambient temperatures, 24 and 38◦C. As can be seen
from Figure 2A,B, the trend of Pcomp by the shifted method follows that of the original compressor power. The largest
error is observed only during the initial period for about 30 s because of the Tre error swing shown in Figure 2C in that
period. Then, the Tre difference in Figure 2C is kept within ±2◦C after 30 s. The corresponding Pcomp error in Figure 2D
is less than ±10% overall, and the error reduces to ±5% after the initial period. The Tre difference is kept within ±2◦C
after 30 s. The corresponding Pcomp error is less than ±10%. The Tre difference becomes almost zero after 100 s, as does
the Pcomp error. Therefore, this strategy allows for exploiting a QP formulation without significant sacrifice in prediction
accuracy.

3.3 Constraints

The inequality constraints considered in the control problem are (i) the upper and lower bounds of the evaporator
air temperature, (ii) the feasible zones of the compressor and fan operation, (iii) the upper and lower bounds of the
compressor mass flow rate at different refrigerant temperatures, and (iv) the range of control input uk, including their
rate Δuk.
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F I G U R E 3 The feasible zone for ṁcomp and ṁfan and approximated linear inequality constraints illustrated on the compressor power
consumption under the ideal vapor-compression cycle operation at Tamb of 24◦C

By applying identical upper and lower bounds, Taeo is regulated using a slack variable to a reference range, which
is between Tmin

aeo and Tmax
aeo , to prevent unpleasant odor. In addition, to prevent ice accretion on the evaporator, Taeo is

maintained above 0◦C.

Tmin
aeo − 𝜖Taeo ≤ Taeo,k+1 ≤ Tmax

aeo + 𝜖Taeo ,

0 ≤ Taeo,k+1, (22)

The feasible zone of the compressor and the fan operations is constrained by six linear inequality equations to main-
tain the ideal vapor-compression cycle assumption. A high-fidelity MATLAB/Simulink component model based on the
performance test data of the compressor is used to generate raw data in wide operating ranges at different ambient temper-
atures. Then, the feasible zone under the ideal cycle assumption is determined, as illustrated in Figure 3. The boundaries
of the zone are expressed as follows:

b1,jṁfan,k + b2,jṁcomp,k + b3,j ≤ 0, j = 1, … , 6, (23)

where the coefficients b1,j, b2,j, and b3,j are determined based on the ambient temperature.
The compressor mass flow rate varies depending on the inlet refrigerant temperature of the compressor, Tre,k.

Therefore, two additional constraints are used:

b4Tre,k − ṁcomp,k ≤ b5, (24a)

b6Tre,k + ṁcomp,k ≥ b7. (24b)

Considering physical limitations for the HVAC system components, box constraints are applied to the control inputs
as shown in Equation (25).

ṁmin
comp,k ≤ ṁcomp,k ≤ ṁmax

comp,k (25a)

ṁmin
fan,k − 𝜖fan,k ≤ ṁfan,k ≤ ṁmax

fan,k + 𝜖fan,k (25b)

0 ≤ ̇Qhtr,k ≤ ̇Qmax
htr,k, (25c)

To account for the ram-air effect from the vehicle frontal structure, ṁmin
fan,k and ṁmax

fan,k are calculated based on the vehicle
speed. It is noted that the fan mass flow rate is limited by a soft constraint with a slack variable, which avoids numerical
feasibility issues raised by dramatic vehicle velocity changes.



782 CHEN et al.

The rate of the control inputs and the slack variables are also constrained as follows:

Δṁmin
comp,k ≤ Δṁcomp,k ≤ Δṁmax

comp,k, (26a)

Δṁmin
fan,k ≤ Δṁfan,k ≤ Δṁmax

fan,k, (26b)

Δ ̇Qmin
htr,k ≤ Δ ̇Qhtr,k ≤ Δ ̇Qmax

htr,k, (26c)

0 ≤ 𝜖Taeo,k, (26d)

0 ≤ 𝜖fan,k. (26e)

3.4 LTV-MPC formulated in the QP form

With the linearized system, quadratic cost function, and linear inequality constraints, the LTV-MPC problem formulated
in Equation (13) can be converted into a QP form as follows:

min
U

J = 𝜃

T
̃Q𝜃 + UT

̃RU + q̃
𝜉

𝜃

= 1
2
(UTHU + 2qTU + c),

s.t. GU ≤ W + T𝜉0, (27)

where the stacked state vector is expressed with the stacked control and residual constant vectors given by:

𝜃 = SU +M𝜉0 + CΦ, (28)

with

𝜃 =
[
𝜉1 𝜉2 … 𝜉Nh

]T
,

U =
[
Δu0 Δu1 … ΔuNh−1

]T
,

Φ =
[

D0 D1 … DNh−1

]T
. (29)

It is noted that the Hessian matrix is checked to be positive definite for all the cases with simulations, which ensure
the cost function is convex. The details of derivation can be found in the Appendices.

4 SIMULATION RESULTS AND DISCUSSION

This section presents the results of a parametric study of weighting factors and a performance evaluation of the proposed
LTV-MPC control strategy. Since the performance of the MPC-based control strategy depends on the weighting factors in
Equation (20), it is important to determine their optimal values that work for various operating conditions. To this end, a
parametric study is conducted with consideration of different driving cycles and ambient temperatures. More specifically,
this article considers three driving cycles, the UDDS, the HWFET, and the US06 driving cycles shown in Figure 4A–C,
and two ambient temperatures, 24 and 38◦C. In the parametric study, full factorial combinations of the weighting factors
create different cost function shapes, influencing the preference and performance of the LTV-MPC controller. These full
factorial combinations are tested in simulations, and the results are analysed and compared with each other. Based on
the result of the parametric study, an optimal set of the weighting factors is chosen for the performance evaluation under
various driving cycles, including the worldwide harmonized light vehicles test cycle (WLTC) shown in Figure 4D as a
validation cycle.
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F I G U R E 4 Driving cycles used in the simulation. (A) Urban dynamometer driving schedule, (B) highway fuel economy test cycle, (C)
US06 driving cycle, (D) worldwide harmonized light vehicles test cycle

The proposed LTV-MPC controller is implemented in a high-fidelity MATLAB/Simulink® plant model11,25 for vehicle
simulations. The LTV-MPC problem is solved by using qpOASES26 in the form of QP shown in Equation (27). All the
simulations are executed on a laptop with a 2.8 GHz processor. In this article, some parameters of the LTV-MPC are set as
constants for all simulations: (1) the prediction horizon is 100 s; (2) the LTV-MPC sampling time is 5 s; (3) the LTV-MPC
update time is 5 s; (4) the weighting factor for the slack variable on the fan bounds, 𝛼fan, is 1 × 109; (5) the weighting
factor, 𝛼Δhtr, is set as a small value 1 × 10−4 for a positive-definite Hessian matrix, as is discussed in Section 3.2; (6) both
Tmin

aeo and Tmax
aeo are set as 6◦C for simplicity. The prediction horizon is also tested over 200 and 300 s with simulations,

and the performance is not improved noticeably. Considering the much smaller computational burden, 100 s is selected
as the horizon length. Similarly, the sampling time and update time are also tested with 1 to 5 s and chosen as 5 s because
of the computational burden. The weighting factor of the fan soft constraint, 𝛼fan, is determined as a large value by multiple
tests so that the fan operation is properly constrained. It is also noted that the vehicle is assumed to be soaked in the
ambient temperature at the initial point of the simulations. Therefore, the initial cabin temperature is set as Tamb + 5 ◦C
due to the solar load.

4.1 A parametric study: Weighting factors for reference tracking

This subsection reports the results of the parametric study, which investigates the impact of two weighting factors on
reference tracking. The simulation cases are generated by a full factorial combination of 𝛼Tcab and 𝛼Taeo :

𝛼Tcab ∈ {1 × 102
, 2.5 × 102

, 5 × 102
, 7.5 × 102

, 1 × 103
, 2.5 × 103

, 5 × 103},
𝛼Taeo ∈ {1 × 103

, 2.5 × 103
, 5 × 103

, 7.5 × 103
, 1 × 104

, 2.5 × 104
, 5 × 104}.

The two other weighting factors in Equation (20), such as 𝛼Δcomp and 𝛼Δfan, are set and kept constant to 1 × 102 and
1 × 103, respectively. These weighting factors are set to mimic control trajectories of NEMPC.17

Figure 5A shows the average Tcab evaluated from the time when Tcab cools down to Tcab,target for the first time at tc
to the end of each simulation. As expected, by increasing 𝛼Tcab , the average Tcab approaches the target; however, it is not
sensitive to the 𝛼Taeo . Figure 5B shows the average Taeo, which is also evaluated from tc to the end of each simulation.
Although the overall variation of the average Taeo is small, it becomes close to the target of 6◦C, predominantly by a larger
𝛼Taeo . In general, the average values of Tcab and Taeo in the 38◦C cases are not as close to the target temperature as in the
24◦C cases. This trend is due to the fact that the energy consumption is much larger in the 38◦C cases, which overweights
temperature regulation terms in the cost function. Figure 5C,D show the cool-down time tc and total energy consumption
results. In the cases of Tamb at 24◦C, tc and the overall energy consumption increase as 𝛼Tcab increases; however, they are
not very sensitive to 𝛼Taeo . On the other hand, in the cases of higher Tamb at 38◦C, tc is shorter with larger 𝛼Tcab paired
with smaller 𝛼Taeo and vice versa. Unlike Tamb at 24◦C case, higher overall energy consumption is clearly observed with
shorter tc. To illustrate the influence of the weighting factors in detail, the temperature and control trajectories of four



784 CHEN et al.

F I G U R E 5 Parametric study results of 𝛼Tcab
and 𝛼Taeo

: (A) Average Tcab, (B) average Taeo, (C) tc, and (D) total energy consumption the
red marks represent the selected parameter combination
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corner cases are shown and discussed. These four cases are selected because the combination of the boundary values of
the weighting factors gives the most notable differences.

To analyze the observed average temperature trends in details, temperature and control trajectories are investigated
for the four selected sets of weighting factors:

• Case (1): 𝛼Tcab = 1 × 102∕𝛼Taeo = 1 × 103,
• Case (2): 𝛼Tcab = 1 × 102∕𝛼Taeo = 5 × 104,
• Case (3): 𝛼Tcab = 5 × 103∕𝛼Taeo = 1 × 103,
• Case (4): 𝛼Tcab = 5 × 103∕𝛼Taeo = 5 × 104.

Figure 6A–E show the comparison of the four cases at Tamb of 24◦C until 400 s under the UDDS. In Figure 6A, Tcab
trajectories are also predominantly influenced by 𝛼Tcab but not by 𝛼Taeo . The trajectories of the cases (1) and (2) are almost
indistinguishable from each other, as are cases (3) and (4). On the other hand, all of the trajectories of Taeo shown in
Figure 6B are very close to each other. These observations in the temperature trajectories can be explained by control
actions shown in Figure 6C,D. When 𝛼Tcab is small (case (1) and case (2)), the heater is actively used 50 s later, and the
power trajectories are also lower than the other two cases. In comparison, the compressor and fan operations from all
four cases are similar to each other. Specifically, once Taeo is saturated to the target temperature, the compressor and fan
operations are almost identical for all cases and approaches the lower bounds, especially for the compressor. The fan
operation stays around 0.25 to 0.3 kg/s until the lower bound increases due to the ram-air effect at high vehicle speed. The
compressor and fan operations of the four cases show that the target Taeo can be achieved with the compressor operation
near the low bounds. Maintaining the target Taeo with the RB controlled blower operation in this intermediate ambient
temperature condition overcools the cabin. Therefore, the heater is the main control action for the Tcab regulation. As 𝛼Tcab

decreases, the relative cost of the HVAC power consumption increases; thus, lowering the heater usage is the resulting
optimal solution from the LTV-MPC. As a result, Tcab and the cool-down time become lower by approximately 2◦C and
longer by 5 s, respectively.

F I G U R E 6 Temperature and control trajectories under the UDDS cycle for the four cases: (A–E) At Tamb of 24◦C and (F–J) at
Tamb of 38◦C
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Figure 6F–J show the comparison of the four cases at Tamb of 38◦C until 600 s under the UDDS. In cases (1), (2),
and (4), the temperatures, compressor, and fan trajectories are very similar to each other. In case (3), when 𝛼Tcab is larger
than 𝛼Taeo , the compressor and the fan are used at their maximum limits until about 130 s, longer than the other cases.
This operation causes undershooting of Taeo as shown in Figure 6G, which leads to the slightly faster Tcab cool-down.
Therefore, the heater is used early in case (3) to compensate the Taeo undershooting; then, Taeo is stabilized to the same
level as observed in case (4). It should be noted that the blower setting by the RB controller is higher than the optimal
setting. As a result, the A/C system still over-cools the cabin slightly, and the heater is utilized, which is used more with
larger 𝛼Tcab , although the heater power is about half compared to Tamb of 24◦C.

The parametric study in this subsection can be summarized as follows:

• In general, larger 𝛼Tcab leads to better Tcab regulation and higher heater utilization, while larger 𝛼Taeo leads to better Taeo
regulation.

• The temperature regulation in the 38◦C cases is not as good as in the 24◦C cases because much higher energy
consumption compromises temperature regulation in the 38◦C cases.

• In the 24◦C cases, the A/C system overcools the cabin even with the minimum operation of the compressor and fan.
Only the heater is affected by 𝛼Tcab , which further influences Tcab regulation.

• In the 38◦C cases, the compressor, the fan, and the heater will be utilized more for Tcab regulation, if 𝛼Tcab is larger than
𝛼Taeo . Even in 38◦C cases, the heater is used because the A/C system overcools the cabin with the blower setting.

Considering the reference temperature tracking performance, 𝛼Tcab can be as small as 5 × 102 for both temperatures
to keep the average Tcab above 21◦C, but 𝛼Taeo can be any value to keep Taeo within ± 1◦C from the target, although at
1 × 103, the temperature increase is noticeable. Although optimal 𝛼Tcab depends on the ambient temperature, lower 𝛼Taeo

is preferred for faster cool-down, especially at Tamb of 38◦C. When 𝛼Tcab is 5 × 102, the total energy consumption is not
very sensitive to 𝛼Taeo even at Tamb of 38◦C. Based on this result, 𝛼Tcab = 5 × 102 and 𝛼Taeo = 2.5 × 103 are selected for the
following parametric study and performance evaluation. The selected combination is highlighted with a red mark in
Figure 5.

4.2 Parametric study: Weighting factors for control rate

This subsection reports the results of the parametric study, which investigates the impact of weighting factors on the
control rate for smooth control actions. These weighing factors could affect the control performance, such as reference
tracking and minimizing the total energy consumption. Among the three weighing factors, 𝛼Δcomp and 𝛼Δfan are varied but
𝛼Δhtr is still kept constant at 10−4. For this parametric study, simulation cases are generated by a full factorial combination:

𝛼Δcomp = {0.1, 1, 10, 1 × 102
, 1 × 103

, 1 × 104
, 1 × 105

, 1 × 106
, 1 × 107

, 1 × 108},
𝛼Δfan = {1, 10, 1 × 102

, 1 × 103
, 1 × 104

, 1 × 105
, 1 × 106}.

Figure 7A shows the average Tcab evaluated from tc to the end of the simulation. For Tamb at both 24 and 38◦C, the two
weighting factors do not affect the average Tcab, although there exists a variation of the average temperature depending
on different driving cycles and Tamb. Figure 7B shows that the average Taeo is essentially insensitive to 𝛼Δcomp and𝛼Δfan
except for the largest end of 𝛼Δcomp. Figure 7C,D show the cool-down time tc and total energy consumption results. The
cool-down time tc tends to be insensitive to the weighting factors; however, tc becomes slightly shorter with the higher
weighting factors at Tamb of 24◦C. On the other hand, at Tamb of 38◦C, tc become slightly longer at the higher 𝛼Δcomp.
The total energy consumption does not exhibit any specific trends in Tamb of either 24 or 38◦C. However, at the highest
𝛼Δcomp, the total energy consumption decreases slightly under the US06 and the HWFET. Under the UDDS, lower energy
consumption is pronounced when both 𝛼Δcomp and𝛼Δfan are extremely high. Similar to the parametric study in the previous
section, four sets of weighting factors in the corner cases are used to analyze the observed average temperature trends
in detail:

• Case (1) 𝛼Δfan = 1∕𝛼Δcomp = 0.1,
• Case (2) 𝛼Δfan = 1∕𝛼Δcomp = 1 × 108,
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F I G U R E 7 Parametric study results of 𝛼Δcomp and 𝛼Δfan: (A) Average Tcab, (B) average Taeo, (C) tc, and (D) total energy consumption the
red marks represent the selected parameter combination

• Case (3) 𝛼Δfan = 1 × 106∕𝛼Δcomp = 0.1,
• Case (4) 𝛼Δfan = 1 × 106∕𝛼Δcomp = 1 × 108.

Figure 8A–E show the comparison of the four cases at Tamb of 24◦C until 400 s under the UDDS. In Figure 8A, Tcab
trajectories are almost the same. However, the Taeo trajectories in Figure 8B noticeably deviate from each other in the
early stage before the temperature is regulated to the target. The Tcab and Taeo variations indicate that the trajectories of
the compressor and fan vary much more than the heater among the four cases, as shown in Figure 6C–E. In cases (2)
and (4), ṁcomp changes much faster after 25 s and results in lower Taeo undershooting compared to cases (1) and (3) due
to the small 𝛼Δcomp. Similarly, ṁfan of cases (1) and (2) changes more rapidly than that of cases (3) and (4) in between
25 and 50 s due to the very small 𝛼Δfan. The small penalty of Δṁfan in cases (1) and (2) allows a decrease in ṁfan to save
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F I G U R E 8 Temperature and control trajectories at 24◦C for the four cases: (A–E) Under the UDDS and (F–J) under the US06

F I G U R E 9 Components energy consumption results from the parametric study of 𝛼Δcomp and 𝛼Δfan under the UDDS and the US06. (A)
UDDS cycle, Tamb=24◦C, (B) US06 cycle, Tamb=24◦C

on fan energy consumption before the raised lower bound from 195 s because the controller can quickly increase the
fan operation. However, with different fan operations, different 𝛼Δcomp have different impacts on the compressor energy
consumption, as shown in Figure 9A. When 𝛼Δfan is small, such as in cases (1) and (2), a larger 𝛼Δcomp will lead to more
energy consumption. This trend is because the heat transfer effectiveness at the condenser is smaller in the low ṁfan
region (25 to 100 s) and higher ṁcomp is therefore needed. In this case, larger 𝛼Δcomp restricts the increment of ṁcomp, which
leads to an overshooting at 75 s and slightly higher energy consumption. Contrarily, when 𝛼Δfan is large, ṁfan is kept at a
relatively high value between 25 and 100 s. As a result, lower ṁcomp is needed because of higher heat transfer effectiveness
at the condenser. In this case, no overshooting is caused by larger 𝛼Δcomp, and less energy is used. The heater operation is
very similar in each cases because 𝛼Δhtr, 𝛼Tcab , and 𝛼Taeo are constant.
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Under the US06 cycle at Tamb of 24◦C, on the other hand, the Taeo and control trajectories shown in Figure 8G–I are
slightly different from the UDDS case. Since the vehicle speed profile of the US06 cycle is much more aggressive (higher
speed and acceleration) than the UDDS cycle, the feasible range of ṁfan is much narrower and higher. Therefore, a larger
condenser heat transfer effectiveness is achieved regardless of 𝛼Δfan. In this case, the situation is similar to the UDDS
cases, with large 𝛼Δfan and larger 𝛼Δcomp leading to less energy consumption. This trend can be observed in Figure 9B,
which shows the component energy consumption under the US06 cycle. Meanwhile, with a larger 𝛼Δfan, the fan is utilized
more since the large 𝛼Δfan restricts the increment of the fan operation, and the fan cannot reach the lower bound of the
narrow feasible range.

The parametric study in this subsection can be summarized as follows:

• The speed profile of the vehicle will affect the heat transfer effectiveness of the condenser, which will further influence
the impact of 𝛼Δfan and 𝛼Δcomp on the compressor and fan operation.

• Under a mild driving scenario, such as the UDDS cycle:

(1) with a small 𝛼Δfan, the larger 𝛼Δcomp brings more compressor utilization in the early stage;
(2) with a large 𝛼Δfan, the larger 𝛼Δcomp brings less compressor utilization because of more efficient condenser heat

transfer;
(3) the larger 𝛼Δfan is, the more fan utilization there will be.

• Under an aggressive driving scenario, such as the US06 cycle:

(1) the larger 𝛼Δcomp brings less compressor utilization in the early stage because of efficient condenser heat transfer;
(2) the larger 𝛼Δfan is, the more fan utilization there will be.

• The heater operation is not affected by 𝛼Δfan and 𝛼Δcomp.

Although different optimal parameter sets can be found for different driving cycles, 𝛼Δcomp = 1 and 𝛼Δfan = 10 are
selected for further performance evaluations, considering the energy consumption of all six driving scenarios. The selected
combination is highlighted with a red mark in Figure 7.

4.3 Performance evaluation

In this subsection, the performance of the LTV-MPC controller with selected weighting factors from the parametric stud-
ies is evaluated under four driving cycles: the UDDS, the HWFET, and the US06, which are used in the parametric study
to determine the optimal set of weighting factors, and the WLTC cycle, which is used for performance validation. Par-
ticularly, the LTV-MPC is compared with the NEMPC17 and the RB controller11 from our previous works. These two
controllers are also implemented in the MATLAB/Simulink® high-fidelity plant model.

The NEMPC used as the benchmark utilizes the same control-oriented HVAC model described in Section 2. Similar to
the LTV-MPC, the cost function of the NEMPC includes the three power terms (the compressor, the fan, and the heater),
the temperature tracking error costs (Tcab and Taeo), and the slack variable costs (Taeo and ṁfan) as follows:

JNEMPC =
Nh∑

k=0

(
Pcomp,k + Pfan,k + Phtr,k + 𝛼Tcab (Tcab,k − Ttarget

cab )2 + 𝛼Taeo (Taeo,k − Ttarget
aeo )2 + 𝛼slack(𝜖2

Taeo,k
+ 𝜖2

ṁfan,k
)
)
. (30)

The prediction horizon, the MPC update time interval, and the sample time interval for the NEMPC are set to be
identical to the LTV-MPC: 100, 5, and 5 s, respectively.

The RB controller controls the compressor speed to meet the desired Taeo, and the fan speed is determined by
a pre-calibrated rule depending on the refrigerant pressure at the condenser and vehicle speed. The blower speed
is controlled for the desired cabin cooling power computed based on the thermal loads and the Tcab target. Lastly,
the heater is used to increase the vent outlet temperature to keep the vent outlet air temperature from being
too cold.
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F I G U R E 10 Performance evaluation of reference temperature tracking: (A) Average Tcab, (B) average Taeo, and (C) cabin cool-down time

Figure 10A–C summarizes the reference temperature tracking performance of the controllers for eight different driv-
ing conditions. In Figure 10A, the LTV-MPC shows that the averaged Tcab deviates slightly more from the 22◦C target
(by 0.1 to 0.4◦C) but shows an averaged Taeo closer to the target (by 0.2 to 0.3◦C) when compared to the NEMPC results
in all cases. When compared to the RB controller, the LTV-MPC shows a larger deviation of the averaged Tcab from
the target (by 0.1 to 0.8◦C) except for the HWFET and US06 under 24◦C conditions. On the other hand, in Figure 10B,
the RB controller shows the averaged Taeo closer to the target (by 0.1 to 0.5◦C) than the LTV-MPC except for the
UDDS 38◦C and the US06 38◦C conditions. The cabin cool-down performance of the LTV-MPC shown in Figure 10C
is almost identical to the NEMPC at 24◦C but is 15 to 25 s longer than at 38◦C. However, the LTV-MPC shows much
faster cool-down performance than the RB controller: 69 to 86 s faster at 24◦C and 85 to 115 s faster at 38◦C. It can
be found that the performance of the LTV-MPC is consistent over different driving cycles, including the validation
cycle WLTC.

Figure 11A–D summarizes the energy consumption performance of the controllers under eight different driving
conditions. In terms of the total HVAC system (Figure 11A), the energy consumption of the LTV-MPC is similar to
that of the NEMPC, ranging from −2.6% to 2.5%: more energy consumption at 38◦C, but less at 24◦C conditions,
except under the WLTC, where the LTV-MPC consumes slightly more energy than NEMPC at both temperature
conditions. On the other hand, the LTV-MPC consumes 3.2% to 15.0% less energy than the RB controller. The com-
pressor and the fan energy consumption in Figure 11B,C show that the LTV-MPC prefers to use the compressor a
little more and to use the fan a little less compared to the NEMPC. The RB controller does not show a clear trend
in the compressor and the fan usage over different conditions when compared to the LTV-MPC or the NEMPC. A
noticeable and consistent trend observed over different driving conditions is that the RB utilizes the heater more
than the LTV-MPC or the NEMPC, as shown in Figure 11D. The difference is more pronounced at 38◦C condi-
tions. Overall, the LTV-MPC and the NEMPC save more energy than the RB controller while achieving a faster
cool-down time.

Figure 12A–J show the comparison of the three controllers under the WLTC. As shown in the figure, the temperature
trajectories of the LTV-MPC and the NEMPC are very similar to each other. In addition, the cool-down performance of
the LTV-MPC is very close to that of the NEMPC and much faster than the RB controller in both ambient temperature
conditions. The average Tcab and Taeo of the LTV-MPC are within ± 1◦C from the targets, although Tcab is slightly further
away from the target compared to the NEMPC or the RB controller. Especially, in 38◦C condition, the RB controller shows
the best Tcab tracking performance compared to the LTV-MPC and the NEMPC as shown in Figure 12F, which is because
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F I G U R E 11 Performance evaluation of energy consumption: (A) HVAC system energy consumption, (B) compressor energy
consumption, (C) fan energy consumption, and (D) heater energy consumption
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F I G U R E 12 Comparison between LTV-MPC, NEMPC, and RB controllers under the WLTC cycle: (A–E) At Tamb of 24◦C and (F–J) at
Tamb of 38◦C
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the energy consumption of the HVAC system is much larger in the 38◦C case; thus, the penalty on the energy consumption
term is relatively higher than the temperature error cost with the same weighting factors when compared to the 24◦C
case. This phenomenon is more pronounced in the LTV-MPC, resulting from the lower average Tcab than the NEMPC.
The temperature tracking performance of the LTV-MPC may be improved further by tuning weighting factors differently
depending on Tamb.

The control trajectories obtained with the LTV-MPC and the NEMPC are shown to be very similar. Only small dif-
ferences in the fan and heater operation are observed, which is because of the slight differences in the cost function
and weighting factors. The results show that the LTV-MPC controller designed with the modified compressor power
consumption performs comparably to the NEMPC. While the LTV-MPC and the NEMPC show similar trajectories of
the compressor, the fan, and the heater, the RB utilizes the heater more than the other two controllers, as shown in
Figure 12E–J. The RB controller uses the heater in the early stage, when the cabin temperature has not yet reached the
target, because the controller is not designed to consider energy consumption minimization but to avoid cold air vent-
ing out. In contrast, the LTV-MPC and the NEMPC do not utilize the heater achieving faster cool-down and saving more
energy, as presented in Figures 10 and 11.

In summary, all three controllers performed well in temperature tracking. However, the two MPC controllers perform
better than the RB controller, with faster cool-down and lower energy consumption. In addition, the proposed LTV-MPC
shows similar performance to the NEMPC in the WLTC driving cycle, which is not used to calibrate the weighting factors
in the cost function. Comparing the results of the two MPC controllers, the average Tcab difference is less than 0.4◦C; the
average Taeo difference is less than 0.3◦C; the overall consumption difference is less than 2.6%.

However, the computational performance is improved significantly by the LTV-MPC compared with the NEMPC. The
average computation time per MPC update calculation is 97 ms in the case of the LTV-MPC, while it takes 352 ms with the
NEMPC. Furthermore, the computation time is consistent among different driving conditions, with a SD of 2.6 and 12 ms
for the LTV-MPC and the NEMPC, respectively. During the LTV-MPC computation, construction of the linearization and
optimization problems takes on average 3 and 4.6 ms, respectively. Then, the QP solver’s computation time is 82.9 ms on
average, and the rest of the computational time is used for the signal processing and monitoring for the LTV-MPC. In
conclusion, the proposed LTV-MPC performs comparably to the NEMPC while reducing the computation time by 72.4%
on average.

5 CONCLUSION

This article proposes an LTV-MPC-based approach for real-time implementable cabin climate control of EVs. The pro-
posed LTV-MPC is formulated in the form of QP since QP has been applied widely for real-time optimal control with
various fast QP solvers. To express the optimal cabin climate control in QP form, the nonlinear cabin climate control
model is converted into an LTV model. Also, a necessary modification is made to the compressor power consumption
model that simplifies the Hessian matrix calculation by eliminating non-symmetric bi-linear terms. The error in pre-
dicting power consumption with this modification is found to remain acceptable based on the results from open-loop
simulations.

In order to determine optimal weighting factors that work robustly under various operating conditions, a rigorous
parametric study is conducted, and its results are discussed. The parametric study shows that the impact of weighting
factors for the temperature regulation is influenced by the ambient temperature, while the impact of weighting factors
for the control rate depends on the vehicle speed profile. Based on the results, appropriate weighting factors are selected
for the cost function, and the LTV-MPC controller is evaluated and compared with the NEMPC17 and the RB controller.11

Compared with the RB controller, the proposed LTV-MPC reaches the target cabin temperature at least 69 s faster and
using 3.2% to 15% less total HVAC system energy consumption under various driving conditions, while the averaged Tcab
difference is 0.8◦C at most. On the other hand, the performance of the proposed LTV-MPC in temperature regulation and
energy consumption is very similar to that of the NEMPC; averaged Tcab difference is 0.4◦C at most and the difference in
total HVAC system energy consumption is within 2.6%. While maintaining the performance of the NEMPC, the LTV-MPC
reduces computational time significantly, by 72.4% on average.

In this article, two ambient temperatures are considered in the investigation. As discussed in the work by Hemmati
et al.,27 complex weather conditions can affect the HVAC system efficiency considerably. Thus, investigating various
factors such as ambient temperatures, humidity, wind speed, and solar radiation variations will be one of the directions
for future work. Furthermore, an exact future vehicle speed trajectory is assumed to be known for the MPC controllers in
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this article. Therefore, investigating the impact of imperfection in the speed profile prediction on the MPC controller’s per-
formance and robustness in traffic is also desirable for future work. Another important direction for future research will
be the development of control algorithms for comprehensive vehicle thermal management, including additional relevant
subsystems such as batteries and power electronics.
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APPENDIX A. COST FUNCTION IN THE QP PROBLEM

The cost function Equation (20) in Section 3.2 can be expressed in a matrix form as follows:

J = ΣNh−1
k=0 (𝜉

T
k+1Q𝜉k+1 + ΔuT

k RΔuk + q
𝜉

𝜉k+1).

where the matrices are given by,

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼Tcab
2

0 0 a∗0
2

0 0
0 0 0 a∗1

2
0 0

0 0 0 0 0 0
a∗0
2

a∗1
2

0 a∗2
a∗4
2

0
0 0 0 a∗4

2
b1 0

0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼Δcomp

2
0 0 0 0

0 𝛼Δfan

2
0 0 0

0 0 𝛼ΔQ

2
0 0

0 0 0 𝛼Taeo
2

0
0 0 0 0 𝛼fan

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, q
𝜉

=
[
− 𝛼Tcab Tcab,target 0 0 a∗3 b2 1

]
.

(A1)

The matrices applied in Equations (27) and (28) are shown in this Appendix. The matrices S, M, and C are expressed as
follows to calculate state evolution corresponding to applied control:

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Baug,0 0 … 0
Aaug,1Baug,0 Baug,1 … 0

⋮ ⋮ ⋱ ⋮

Baug,0Π1
Nh−1Aaug,k Baug,1Π2

Nh−1Aaug,k … Baug,Nh−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

M =
[

Aaug,0 Aaug,1Aaug,0 … Π0
Nh−1Aaug,k

]T
, (A2)

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

I6×6 0 … 0
Aaug,1 I6×6 … 0
⋮ ⋮ ⋱ ⋮

Π1
Nh−1Aaug,k Π2

Nh−1Aaug,k … I6×6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

info:doi/10.1016/j.applthermaleng.2020.116084
info:doi/10.1016/j.conengprac.2020.104309
info:doi/10.3182/20140824-6-ZA-1003.02783
info:doi/10.1109/TCST.2020.2975464
info:doi/10.1016/j.apenergy.2020.116353
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The cost function matrices in Equation (A1) are stacked diagonally since the same weighting factors are applied at every
time step:

̃Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Q 0 … 0
0 Q … 0
⋮ ⋮ ⋱ ⋮

0 0 … Q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

̃R =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

R 0 … 0
0 R … 0
⋮ ⋮ ⋱ ⋮

0 0 … R

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, q̃
𝜉

=
[

q
𝜉

… q
𝜉

]
. (A3)

Thus, the matrices in Equation (27) are expressed using Equations (A2) and (A3) as follows:

H = 2(ST
̃QS + ̃R),

q = 2(2𝜉T
0 MT

̃QS + 2ΦTCT
̃QS + q̃

𝜉

S),
c = 𝜉T

0 MT
̃QM𝜉0 + ΦTCT

̃QCΦ + 2ΦTCT
̃QM𝜉0,

+ q̃
𝜉

M𝜉0 + q̃
𝜉

CΦ.

APPENDIX B. CONSTRAINT MATRICES IN THE QP PROBLEM

Equation (22) can be expressed in a matrix form as follows:

Atemp𝜉k+1 + BtempΔuk ≤ Ctemp, (B1)

where

Atemp =
⎡
⎢
⎢
⎢
⎣

0 1 0 0 0 0
0 −1 0 0 0 0
0 −1 0 0 0 0

⎤
⎥
⎥
⎥
⎦

, Btemp =
⎡
⎢
⎢
⎢
⎣

0 0 0 −1 0
0 0 0 −1 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

, Ctemp =
⎡
⎢
⎢
⎢
⎣

Taeo,target

− Taeo,target

0

⎤
⎥
⎥
⎥
⎦

.

Equation (23) can be expressed in a matrix form as follows:

AZone𝜉k+1 ≤ CZone, (B2)

where

Azone =
[
0 0 0 A2 A1 0

]
, Czone =

[
−A3

]
.

Equation (24) can be rearranged to the following form:

Acomp𝜉k + BcompΔuk ≤ Ccomp, (B3)

where

Acomp =

[
(1 − 𝜀−1

e )rin 𝜀

−1
e 0 −1

2.224×10−4 0 0
(𝜀−1

e − 1)rin −𝜀−1
e 0 −1

0.0023
0 0

]

,

Bcomp =

[
−1

2.224×10−4 0 0 0 0
−1

0.0023
0 0 0 0

]

,

Ccomp =

[
−0.0055

2.224×10−4 − (1 − 𝜀−1
e )(1 − rin)Tamb

−1
0.0023

+ (1 − 𝜀−1
e )(1 − rin)Tamb

]

.
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Equations (25) and (26) are expressed as follows:

Au𝜉k+1 + BuΔuk ≤ Cu, (B4)

BrateΔuk ≤ Crate, (B5)

where

Au =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bu =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Cu =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.125
− 0.005
fanmax

− fanmin

5000
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Arate =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
− 1 0 0 0 0
0 1 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Crate =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.003
0.006
0.005
0.02
100
100

0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Δt.

The inequality constraints Equations (B1)–(B5) are further expressed, respectively, in QP form by stacking elements
diagonally in Equations (B6)–(B10):

⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎣

Acomp … 0 0
⋮ ⋱ ⋮ ⋮

0 … Acomp 0

⎤
⎥
⎥
⎥
⎦

S +
⎡
⎢
⎢
⎢
⎣

0 Bcomp … 0
⋮ ⋮ ⋱ ⋮

0 0 … Bcomp

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

U ≤
⎡
⎢
⎢
⎢
⎣

Ccomp

⋮

Ccomp

⎤
⎥
⎥
⎥
⎦

−
⎡
⎢
⎢
⎢
⎣

Acomp … 0 0
⋮ ⋱ ⋮ ⋮

0 … Acomp 0

⎤
⎥
⎥
⎥
⎦

M𝜉0,

[
Bcomp

] [
I5×5 0 … 0

]
U ≤

[
Ccomp

]
−
[

Acomp

]
𝜉0, (B6)

([
Atemp|N×N

]
S +

[
Btemp|N×N

])
U ≤

[
Ctemp|N×1

]
−
[

Atemp|N×N

]
M𝜉0, (B7)

[
Azone|N×N

]
SU ≤

[
Czone|N×1

]
−
[

Azone|N×N

]
M𝜉0, (B8)

[
Au|N×N

]
SU ≤

[
Cu|N×1

]
−
[

Au|N×N

]
M𝜉0, (B9)

[
Brate|N×N

]
U ≤

[
Crate|N×1

]
. (B10)



CHEN et al. 797

The matrices G, W , and T applied in Equation (27) are expressed as follows, combining Equations (B6)–(B10).

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Acomp1 … 0 0

⋮ ⋱ ⋮ ⋮

0 … Acomp1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

S +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 Bcomp1 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Bcomp1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Acomp2 … 0 0

⋮ ⋱ ⋮ ⋮

0 … Acomp2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

S +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 Bcomp2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Bcomp2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

Bcomp1

Bcomp2

⎤
⎥
⎥
⎥
⎦

[

I|5×5 0 … 0
]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Atemp … 0

⋮ ⋱ ⋮

0 … Atemp

⎤
⎥
⎥
⎥
⎥
⎥
⎦

S +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Btemp … 0

⋮ ⋱ ⋮

0 … Btemp

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Azone … 0

⋮ ⋱ ⋮

0 … Azone

⎤
⎥
⎥
⎥
⎥
⎥
⎦

S

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Au … 0

⋮ ⋱ ⋮

0 … Au

⎤
⎥
⎥
⎥
⎥
⎥
⎦

S

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Arate … 0

⋮ ⋱ ⋮

0 … Arate

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,W =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ccomp1

⋮

Ccomp1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ccomp2

⋮

Ccomp2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

Ccomp1

Ccomp2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ctemp

⋮

Ctemp

⎤
⎥
⎥
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