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A1 Details of the Variational Inference Algorithm

In the following, let ¢;(A) represent a generic variational distribution for unknown quantities
in A at iteration ¢; Let ¢;(—A) represent the variational distribution for all but the random
quantities in A. Let pr(A) represent a generic true joint distribution of the quantities in A.
Q] :={1,...,Q} represents the set of positive integers smaller than or equal to an integer

0.

Step 0. Initialize the variational distribution ¢/(-) at ¢ = 0. Because the updates for each
component of the variational distribution in Equation (14) of the Main Paper has a
closed form that is fully determined by the first and second moments, it is sufficient
to initialize these moments. In addition, because the sigmoid functions are bounded
by Gaussian kernels that depend on additional tuning parameters (¢, ¢»), we need to
initialize them too. Finally, we initialize hyperparameters (71, 7). In particular,

e Additive components of the logistic stick-breaking parameters «,; given s, = 1:
2

{() 1 0mh) = (Byloun | s = 1] Vilawr | s = 1]) : k € [K — 1],u € V}. The

mean and variance determine the optimal variational distribution for «,; given

sy = 1, which can be shown to be a Gaussian distribution;
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Step 1a.

Step 1b.

e Logit-transformed response probabilities: {(Ey,[vjx], Vo, [vix)) : J € [J], k € [K]};
e Probability of spike-and-slab indicators: {pgf ) = E,[su] :u eV},

e Tuning parameters in the Jaakkola-Jordan lower bounding technique: {wj(.z), JE
),k € K]} {7 v eV, ke [K —1]}, and

e The hyperparameters {TI(Z)Z,/{ €[K—1],0e[L]}, {72%,] e [J], ke [K]}.

Compute additional first and second moments as follows:

Euliz) = > {p0 020, + (=), 1)} + B2 lnl v € Vi

u€a(v)

By lof] = pP (020 + ), 1)+ (1 —p)o2® .
where a[i;f,?o = T1ke, Wy 1S the variance of oy in its variational distribution given s, =0

(this will be derived in Step 1b below according to the VI update for a,;). Finally,

compute eq h/]k] = 0-3]5@) + [/’L’(Y])k] ) qu [nvk} = Zuea(v) eq [éuk]a eq [fuk] = eq [Suauk] =

pi)uﬁflk .. Calculate the initial £*(¢;) =0

At Step t + 1, iterate between Step 1 to 4 until convergence:
Update Qt+1(Z¢(U)>7 i € [ny], v € Vi, by a multinomial distribution with probabilities
PO e @)y

TZ(:),(t—I—l) x

J
exp Zlog a(w](-?) + [Xi(;)eq(’yjk) — %(}?} /2 = g(¥j) {eq (%21@) - [7/5(2]2}
=1

+ 2 [ 1og @) + [~Eu o) = 070] /2 = 90 0) { B o) = (0121}

m<k

F1{k < K} 1og (o) + [By ) — 070] /2 = g0 0) { B () — 60}

Update q1(7y) and gi41(Su, o), u € V. We first do the update for the root node
u = ug when = gets updated; for non-root nodes, the ~ is not updated. We follow
a topological ordering in 7, when updating (s,, a@,), v € V; Random ordering also



works. In particular, the update is

1Og Qt+1(7a Sus au) = eq(—('y,su7au)) [10g{h*<X, ¢> Y, Z)h**(¢, S, &, Z)pI(S, v, &, Q)}] + const

J K 1 ) 1
= — - — D) (t+1)
j=1 k=1 { 40k
K-1 1 ]
t+1 2,(t+1
~ Su {2 2,(t+1) (ovur — “&:@i)z + B 10g[27r0a51:1 )]}
k=1 ~“0a,;,1
K-1 1 1
— (1 —s4) {Toz = log{QWTW wu}} + Su<75t+1) + const
=1 271, W
where const does not depend on s, v and a,; u%:l) B(t /A]k , mtﬂ 1/Ajk , at;;li

t) clh) G2 1/052 where

uk ozkl

Uz

Aﬁ?——+222 i g, (S1)
2jl€

veYr, 1=1
t v),(t+1 v
BY = 3 S (i ex 2} (2)
veVy =1
) — 0 2 Y Z Z rO D g (@O for ke [K — 1), (S3)
lee veVLNd(u) i=1 m=k
K K
Dq(;); _ Z Z t+1 Z Tg,t;l) _9 Z Z(::—l) (¢( )(t)) Z Eq; [Swerun] |
veVrNd(u) =1 m:k-i-l m=k wea(v)\u
(54)
p = K-1 ()2
0w t t u
G = By [tog 2| = 2 S log(r{ ) + o€ + 3 22 (55)
Ptu k=1 =1 20

where Eq; =F

w1 if the node w € a(v) \ u has already been updated; E, = K,
otherwise.

It is readily recognized that the update for « is Gaussian and the update for (s,, o)



is a two-component Gaussian mixture:

K
(t+1) _2,(t+1
H ('YJ’f ’ ’u')’gk )’ ’YJEC )>

:k‘

Jj=1k=1
M

K-1

. H N <a k| suuat:;l), 5,0 a}iﬁl) +(1— su)ai’izzl)) - Bernoulli (su,pg*l)), (S6)

k=1 p

(an
(t+1)
where %(Hl) TQ(EL, aaqffj)l) Tl(}?g w,, and pi ™" satisfies log {%} = ¢,

Of note, we have induced factorization szl T, qeea () and TTey qer (s | S0)-
In the variational family, we did not assume this factorization. However, we do obtain
updates that factorize. This phenomenon is determined by the underlying generative
model (the graph structure that determines the joint distribution) and the variational
assumption (which determines blocks of parameters to iteratively update) (see, e.g.,
Bishop, 2006, Section 10.2.5). We update ¢;41(y) according to component (1) in (S6)
and qy41(Sy, @) according to (1) in (S6) when u is the root node; for a non-root node,
we only update g¢1(sy, o) according to component (/1) in (S6).

Step 1c. Update th(pg), ¢=1,...,Lby Beta(eyﬂ), fe(t+1)>’ where egtﬂ) _ Zuevzfu:eng) +ay
and fe(tH) = ZueV:@u:E(l - P(Hl ) + by
For every d steps above, do Step 2-4:

Step 2. Update variational parameters {1, j € [J], k € [K]} and {gb?),v eV, kel|K-1]}
by optimizing the lower bound £*(g;;1) which leads to the updates:

t+1 v),(t+1
W — BB Y = B %), (S7)

Step 3. Update the hyperparameters 75, by

t+1
Tl(ké = Z Z Eq,, [0 /wa], (S8)
Mu—f ueV:ily =L
and update 7, by 7_2(;:1) Eq .y [%k]

Step 4. Compute £*(q;41) according to Appendix Al.1. Stop the iteration once the absolute
change in £*(q;41) is less than a tolerance tol=1e-8. The hyperparameter updates
are often slower than the variational parameter updates to converge in terms of the
E*(qi+1). In practice, we can separate the tolerance levels for the hyperparameter
updates (hyper_tol=1e-4) and VI parameter updates (e.g., tol=1e-8). One may
update the hyperparameters every d steps of the updates of the variational parameters.



In practice, we can adjust d to speed up the convergence. In this paper, we use d = 10
which works well in simulations and data analysis.

We access the approximate posterior densities when needed by plugging in the relevant
moments at convergence. Finally, different initializations may lead to distinct converged
values of the parameters, some of which are local optima. In practice, we initialize M
times and select the converged set of parameters (among M sets) that produces the highest
E*(q11); In this paper, we used M = 5.



Al.1 Computing £*(q)

For ease of presentation, we omit the iterator ¢ during the VI updates.

E(q) =E(q; 0,9, 11, T2) =

= i Sl { > (10g0(¢£2)> + [(~1) By (o) — 0] /2 = g(68) { EQe(n,) — wﬁ?ﬁ})

veYr i=1 k=1 m<k

+1{k<K}(loga<¢;:>>+[eqmvk) V] /2= gl <”>>{eq<n3k>[¢é”>12})

J
+ > log(o (i) + By [{X5 50 = e} /2] = 9(sn) By ({X5 70} - )} (9)
7j=1
+ > Eyllog pr, ) Eglsu] + Eqllog(1 — pe, )| Eg[1 — 5. (S10)
u€ey
L
+ Z(ag — 1)E,[log pe] + (b — 1) E,[log(1 — p¢)] — log Beta(ay, by) (S11)
=1
N ((Eidod |1
_ 2.2 <27_1Muwu + 5 log(QWleguwu)> (S12)
L& EQh/Q'k] 1
_ ; ; ( 27_2]; + 5 10g(27r7’2jk)> (S13)
I K
+3 D By — pie)? /03, 4] + log(2ma? ) (514)
j=1 k=1
- Ey[su]log(pu) + Ey4[1 — su]log(1 — pu) (S15)
ulev o
+3 Eqlsu(0ur = tan)?/0a,, 1] + Byls] log(2may, | ) (516)
1 uey I]zi_ll
+ 2 [Ey[1 = su] + E4[1 — su]log(2n 71, w)] (S17)
uey k=1

er — 1) Eqllog(pe)] + (fe — 1) Eqllog(1 — pr)] — log Beta(ey, fo)} (518)

=1 k=1

_ Z{
- Z log (S19)



A2 Additional Simulation Details and Results

Multiple true leaf groups. In the Main Paper, we set G = 3 leaf groups in the tree shown in
Figure 3a of the Main Paper (with indexed internal nodes and leaves): Group 1 ({6,7,8}),
Group 2 ({9,10,11}) and Group 3 ({12,13,14,15,16}). The true grouping of leaves is
obtained by setting s; = s, = s3 = 1 in Equation (5) of the Main Paper and s, = 0,u #
1,2,3. We set m, = (0.197,0.303,0.500)7, (0.644,0.221,0.134)T and (0.4,0.3,0.3)7 for leaf
v € G, Gs, Gy, respectively. For K = 3 classes, we set the response probability profiles
©=1[04,...,0K]" to be

0~,k:1 - {(607 - 607 1- 90)7 R (9071 - 007 1- 90)}7
9~,k:2 - {(1 - 90,90, 1 - 60), ey (1 - 90,90, 1 - 90)},
0. =3 ={(1 —00,1—00,00),...,(1—0p,1—0,060)},

J

for J = 21,84 binary measurements per subject, and 6y = 0.95, 0.8 to represent stronger and
weaker between-class signal strengths. We simulated for NV = 1000, 4000 observations, under
balanced or unbalanced leaf-specific sample sizes (see Section 5.1 in the Main Paper).

A single true leaf group. We also simulated R = 200 independent replicate data sets corre-
sponding to the truth with a single leaf group (equivalent to a single vector of latent class
probabilities 7, = (), under which a classical latent class model would be perfectly appro-
priate. We fitted the proposed model and compared the RMSE against a few alternative
models as in the Main Paper. Figure S3 shows, by learning the posterior node-specific slab-
versus-spike selection probabilities, the proposed model produced similar or smaller RMSEs
for estimating the population latent class probabilities. Here we have set my = (0.4,0.3,0.3)7
and otherwise identical scenario setup as in the above setting of multiple true leaf groups.
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Figure S1: Empirical coverage rates (“e”) of the approximate 95% credible intervals (Crls)
based on the proposed grouped estimates from 200 replications (the intervals reflect Monte
Carlo uncertainty). The vertical dashed lines indicate 95%.
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Figure S2: Under less discrepant class-specific response probabilities, simulation studies
show the proposed model produces grouped estimates 7™ with similar or smaller RMSEs
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compared to alternatives (see Section 5 in the Main Paper).
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Figure S3: Under the simulation truth of a single vector of latent class probabilities 7, = g
(equivalent to a single leaf group), simulation results show that the proposed model produces
grouped estimates TP with similar or smaller RMSEs compared to alternatives considered
in Section 5.1 of the Main Paper.
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A3 Appendix Figures
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Figure S4: Data results: estimated groups and class probabilities based on fixed ad hoc leaf
groupings as indicated by the group id’s near the tips of the circular tree.
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Figure S5: Data results: estimated class-specific response profiles based on fixed
ad hoc leaf groupings as in Figure S4.
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