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Abstract
This paper is concerned with using multivariate binary observations to estimate
the probabilities of unobserved classes with scientific meanings. We focus on the
setting where additional information about sample similarities is available and
represented by a rooted weighted tree. Every leaf in the given tree contains mul-
tiple samples. Shorter distances over the tree between the leaves indicate a priori
higher similarity in class probability vectors. We propose a novel data integra-
tive extension to classical latent classmodels with tree-structured shrinkage. The
proposed approach enables (1) borrowing of information across leaves, (2) esti-
mating data-driven leaf groups with distinct vectors of class probabilities, and (3)
individual-level probabilistic class assignment given the observed multivariate
binary measurements. We derive and implement a scalable posterior inference
algorithm in a variational Bayes framework. Extensive simulations show more
accurate estimation of class probabilities than alternatives that suboptimally use
the additional sample similarity information. A zoonotic infectious disease appli-
cation is used to illustrate the proposed approach. The paper concludes by a brief
discussion on model limitations and extensions.
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1 INTRODUCTION

1.1 Motivating application

The fields of infectious disease epidemiology and micro-
bial ecology need better tools for tracing the transmission
of microbes between humans and other vertebrate ani-
mals (i.e., zoonotic transmissions), especially for coloniz-
ing opportunistic pathogens (COPs).Unlike frank zoonotic
pathogens (e.g., Salmonella, SARS-CoV-2), the epidemiol-
ogy of COPs, such as Escherichia coli (E. coli), Staphylo-
coccus aureus (S. aureus), and Enterococcus spp., can be

particularly cryptic due to their ability to asymptomati-
cally colonize the human body for indefinite periods prior
to initiating an infection, transmitting to another person,
or being shed without a negative outcome (e.g., Price
et al., 2017). Some COPs can colonize many different verte-
brate hosts and cross-species transmissions can go unrec-
ognized. Estimating the probability of zoonotic origin for
a population of isolates and for each isolate would pro-
vide important insights into the natural history of infec-
tions and inform more effective intervention strategies,
such as eliminating high-risk clones from livestock via
vaccination.
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Scientists often have two complementary sources of
information: (i) a phylogenetic tree constructed based
on a few single nucleotide polymorphisms (SNPs) in the
core genome shared by all isolates, where the leaves rep-
resent distinct core-genome multi-locus sequence types
(STs, Maiden et al., 1998); the tree is useful for identify-
ing a recent common ancestor for isolates that comprise
an infectious disease outbreak; (ii) presence or absence
of multiple mobile genetic elements (MGE) that provide
selective advantages in particular hosts and may be lost
and gained as COPs transmit among hosts (e.g., Lindsay
and Holden, 2004).
Recent research on two COP species, E. coli and S.

aureus, has demonstrated the utility of complement-
ing core-genome phylogenetic trees with host-associated
MGEs to resolve host origins (e.g., Liu et al., 2018). How-
ever, in both cases only a single host-associated MGE was
used. Analyses were largely limited to visual inspection
of how each element fell on the scaffold of the evolution-
ary tree. For this approach to reach its full potential, we
would need a statistical model that can (1) integrate phylo-
genetic informationwith the presence and absence ofmul-
tiple host-associated MGEs, and (2) estimate the probabil-
ity with which the isolates were derived from a particular
host in each ST-specific population and for each individ-
ual isolate.

1.2 Integrating sample similarities into
latent class analysis

Based on multivariate binary data (e.g., presence or
absence of multiple MGEs), we use latent class models
(LCMs; e.g., Lazarsfeld, 1950; Goodman, 1974) to achieve
the scientific goal of estimating the probabilities of unob-
served host origins and perform individual-level proba-
bilistic assignment of host origin. LCMs are examples of
latent variable models that assume the observed depen-
dence among multivariate discrete responses is induced
by variation among unobserved or “latent” variables. It is
well known that any multivariate discrete data distribu-
tion can be approximated arbitrarily closely by an LCM
with a sufficiently large number of classes (Dunson and
Xing, 2009, corollary 1). The most commonly used LCMs
assume the class membership indicators for the observa-
tions are drawn from a population with the same vector of
class probabilities.
Trees or hierarchies are useful and intuitive for repre-

senting and reasoning about similarity or relation among
objects in many real-world domains. We assume known
entities at the leaves. In our context, each leaf may contain
multiple observations or samples, each associated with the
multivariate binary responses that are then combined to

form the rows of a binary data matrix 𝐘. In the motivating
application, the latent class indicates the unobserved host
origin (human or nonhuman) to be inferred by the pres-
ence or absence of multiple MGEs. The additional sam-
ple similarity information is represented by a maximum
likelihood phylogenetic tree (e.g., Scornavacca et al., 2020).
The leaves represent distinct contemporary core-genome
E. coli STs.
To integrate tree-encoded sample similarity information

into a latent class analysis, ad hoc groupings of the leaves
may be adopted. From the finest to the coarsest leaf group-
ing, one may (1) analyze data from distinct lineages one
at a time, (2) manually form groups of at least one leaf
node and fit separate LCMs, or (3) fit all the data by a
single LCM. However, all these methods pose significant
statistical challenges. First, separate latent class analyses
may have low accuracy in estimating latent class probabil-
ities and othermodel parameters for rare lineages. Second,
observations of similar lineagesmayhave similar propensi-
ties in host jump resulting in similar host origin class prob-
abilities. Modeling these similarities could lead to gain in
statistical efficiency. Third, approaches based on coarse ad
hoc groupings may obscure the study of the variation in
the latent class probabilities across different parts of the
tree. Finally, based on a single LCM or other approaches
that use ad hoc leaf groupings, individual-specific poste-
rior class probabilities can be averaged within in each leaf
to produce a local estimate of the vector of class proba-
bilities. However, the ad hoc post-processing cannot fully
address the issue of assessment of posterior uncertainty
nor data-driven grouping of leaves, necessitating develop-
ment of an integrative probabilistic modeling framework
for uncertainty quantification and adaptive formation of
leaf groups.
In this paper, we focus on integrating the tree-encoded

sample similarity information into latent class analysis.
We assume the tree information is given and not com-
puted from the multivariate binary measurements. Obser-
vations in nearby leaves are assumed to have a priori sim-
ilar propensities of being members of a particular class as
characterized by the latent class probabilities. For exam-
ple, higher similarities are indicated by shorter pairwise
distances between observations. More generally, classical
covariate-dependent latent class models (e.g., Formann,
1992; Bandeen-Roche et al., 1997) let the latent class prob-
abilities vary explicitly as functions of observed covari-
ates so that observations with more similar covariate val-
ues are assumed to have more similar latent class proba-
bilities. Fully probabilistic tree-integrative methods have
appeared in machine learning literature (e.g., Roy et al.,
2006; Ghahramani et al., 2010; Ranganath et al., 2015) or
in statistics for modeling hierarchical topic annotations
(e.g., Airoldi and Bischof, 2016) or hierarchical outcome
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annotations based on given trees (e.g., Thomas et al., 2019).
In epidemiology, Avila et al. (2014) proposed a two-stage
approach to link patient clusters estimated from the tree
and by the LCM results, which, however, remains ad hoc.
The existing literature does not address probabilistic tree-
integrative latent class analysis or adaptive formation of
leaf groups for dimension reduction.

1.3 Primary contributions

In this paper, we propose an unsupervised, tree-integrative
LCM framework to (1) discover groups of leaves where
multivariate binary measurements in distinct leaf groups
have distinct vectors of latent class probabilities; and obser-
vations nested in any leaf group may belong to a pre-
specified number of latent classes; (2) accurately estimate
the latent class probabilities for each discovered leaf group
and assign probabilities of an individual sample belonging
to the latent classes; (3) leverage the relationship among
the observations as encoded by the tree to boost the accu-
racy of the estimation of latent class probabilities. With-
out pre-specifying the leaf groups, the automatic data-
driven approach enjoys robustness by avoiding potential
mis-specification of the grouping structure. On the other
hand, the discovered data-driven leaf groups dramatically
reduce the dimension of leaves into fewer subgroups of
leaves hence improving interpretation. In addition, the
proposed approach shows better accuracy in estimating the
latent class probabilities in terms of root mean squared
errors, indicating the advantage of the shrinkage. On pos-
terior computation, we derive a scalable inference algo-
rithm based on variational inference (VI).
The rest of the paper is organized as follows. Section 2.2

defines tree-related terminologies and formulates LCMs.
Section 3 proposes the prior for tree-structured shrinkage
in LCMs. Section 4 derives a variational Bayes algorithm
for inference. Section 5 compares the performances of the
proposed and alternative approaches via simulations. Sec-
tion 6 illustrates the approach by analyzing an E. coli data
set. The paper concludes with a brief discussion.

2 MODEL

We first introduce necessary terminologies and notations
to describe a rooted weighted tree. LCMs are then formu-
lated for data on the leaves of the tree.

2.1 Rooted weighted trees

A rooted tree is a graph  = ( , 𝐸) with node set  and
edge set 𝐸 where there is a root 𝑢0 and each node has

at most one parent node. Let 𝑝 = || represent the total
number of leaf and nonleaf nodes. Let 𝐿 ⊂  be the set
of leaves, and 𝑝𝐿 = |𝐿| < 𝑝. We typically use 𝑢 to denote
any node (𝑢 ∈ ) and 𝑣 to denote any leaf (𝑣 ∈ 𝐿). Each
edge in a rooted tree defines a clade: the group of leaves
below it. Splitting the tree at an edge creates a partition of
the leaves into two groups. For any node 𝑢 ∈  , the follow-
ing notations apply: 𝑐(𝑢) is the set of offspring of 𝑢, 𝑝𝑎(𝑢)
is the parent of 𝑢, 𝑑(𝑢) is the set of descendants of 𝑢 includ-
ing 𝑢, and 𝑎(𝑢) is the set of ancestors of 𝑢 including 𝑢.
In Figure 3(a), if 𝑢 = 2, then 𝑐(𝑢) = {6, 7, 8}, 𝑝𝑎(𝑢) = {1},
𝑑(𝑢) = {2, 6, 7, 8}, and 𝑎(𝑢) = {1, 2}. The phylogenetic tree
in our motivating application is a nested hierarchy of 133
STs for𝑁 = 2663 observations, where the 𝑝𝐿 = |𝐿| = 133

leaves represent distinct STs and the 𝑝 − 𝑝𝐿 = 132 internal
(nonleaf) nodes represent ancestral E. coli strains leading
up to the observed leaf descendants.
Edge-weighted graphs appear as a model for numer-

ous problems where nodes are linked with edges of dif-
ferent weights. In particular, the edges in  are attached
with weights where 𝑤 ∶ 𝐸 → ℝ+ is a weight function. Let
𝑤 = ( , 𝑤) be a rooted weighted tree. A path in a graph
is a sequence of edges that joins a sequence of distinct ver-
tices. For a path 𝑃 in the tree connecting two nodes, 𝑤(𝑃)

is defined as the sum of all the edge weights along the
path, often referred to as the “length” of 𝑃. The distance
between two vertices 𝑢 and 𝑢′, denoted by 𝑑𝑖𝑠𝑡𝑤(𝑢, 𝑢′)
is the length of a shortest (with minimum length) (𝑢, 𝑢′)-
path. 𝑑𝑖𝑠𝑡𝑤 is a distance: it is symmetric and satisfies the
triangle inequality. In our motivating application, the edge
length represents the number of nucleotide substitutions
per position; the distance between two nodes provides a
measurement of the similarity or divergence between any
two core-genome sequences of the input set. In this paper,
we use 𝑤𝑢 to represent the edge length between a node 𝑢
and its parent node 𝑝𝑎(𝑢). 𝑤𝑢 is fully determined by 𝑤.
For the root 𝑢0, there are no parents, that is, 𝑝𝑎(𝑢0) = ∅;
we set 𝑤𝑢0 = 1.

2.2 Latent class models for data on the
leaves

Although LCMs can deal with multiple categorical
responses in general, for simpler presentations in this
paper, we focus on presenting the model and algorithm
using multivariate binary responses and their application
to the motivating data.

Notations
Let 𝒀

(𝑣)
𝑖

= (𝑌
(𝑣)
𝑖1

, … , 𝑌
(𝑣)
𝑖𝐽

)𝖳 ∈ {0, 1}𝐽 be the vector of
binary responses for observation 𝑖 ∈ [𝑛𝑣] that is nested
within leaf node 𝑣 ∈ 𝐿, where 𝑛𝑣 is the number of
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F IGURE 3 Simulation studies show the proposed model produces grouped estimates 𝝅𝖽𝗀𝗋𝗉
𝑣 with similar or smaller RMSEs compared to

alternatives (see Section 5). This figure appears in color in the electronic version of this article, and any mention of color refers to that version

observations in leaf 𝑣. Throughout this paper, let
[𝑄] ∶= {1, … , 𝑄} denote the set of positive integers
smaller than or equal to 𝑄, where 𝑄 is a positive integer.
Let𝐘(𝑣) = (𝒀

(𝑣)
1 , … , 𝒀

(𝑣)
𝑛𝑣

)𝖳 be the data from observations in
leaf 𝑣. Let 𝐘 = ((𝐘(1))𝖳, … , (𝐘(𝑝𝐿))𝖳)𝖳 represent the binary
data matrix with 𝑁 =

∑
𝑣∈𝐿

𝑛𝑣 rows and 𝐽 columns. Let
 = (𝑣1, … , 𝑣𝑁)

𝖳 be the “sample-to-leaf indicators” that
map every row of data 𝐘 into a leaf in 𝑤. Sample similar-
ities are then characterized by between-leaf distances in
𝑤. In this paper, we assume  and 𝑤 are given and focus
on incorporating (, 𝑤) into a statistical model for 𝐘.
LCM for Data on the Leaves
The LCM is specified in two steps:

𝖼𝗅𝖺𝗌𝗌 𝗂𝗇𝖽𝗂𝖼𝖺𝗍𝗈𝗋 ∶𝐼
(𝑣)
𝑖

∣ 𝝅𝑣

∼ 𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗂𝖼𝖺𝗅𝐾{𝝅𝑣}, 𝝅𝑣 ∈ 𝐾−1, (1)

𝖽𝖺𝗍𝖺 ∶𝑌
(𝑣)
𝑖𝑗

∣ 𝐼
(𝑣)
𝑖

∼ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂

{
𝜃
𝑗,𝐼

(𝑣)
𝑖

}
,

independently for feature 𝑗 ∈ [𝐽], (2)

and independently for observation 𝑖 ∈ [𝑛𝑣] and leaf node
𝑣 ∈ 𝐿. Here 𝐾 is a pre-specified number of latent
classes in the context of the application, that is, 𝐾 = 2

for unobserved human and nonhuman hosts; see Sec-
tion 4.1 for a simple strategy in applications where data-
driven 𝐾 is desired. In addition, 𝐈 = {𝐼

(𝑣)
𝑖

∶ 𝑖 ∈ [𝑛𝑣]; 𝑣 ∈

𝐿} represent the latent class indicators and𝑍
(𝑣)
𝑖𝑘

= 𝟏{𝐼
(𝑣)
𝑖

=

𝑘}, 𝑘 ∈ [𝐾], where 𝟏{𝐴} is an indicator function that
equals 1 if statement 𝐴 is true and 0 otherwise; Let 𝐙 =

{𝑍
(𝑣)
𝑖𝑘

}. We have assumed observations in different leaves
have potentially different vectors of class probabilities
𝝅𝑣 = (𝜋𝑣1, … , 𝜋𝑣𝐾)

𝖳 ∈ 𝐾−1, 𝑣 ∈ 𝐿, where 𝐾−1 = {𝒓 ∈

[0, 1]𝐾 ∶
∑𝐾

𝑘=1 𝑟𝑘 = 1} is the probability simplex. 𝜃𝑗𝑘 ∈

[0, 1] is the positive response probability for feature 𝑗 ∈ [𝐽]

in class 𝑘 ∈ [𝐾]. In our motivating application, the MGEs
adapt to the unobserved type of host origin (i.e., latent
class) that can be characterized by class-specific response
probability profiles 𝜽⋅𝑘 = (𝜃1𝑘, … , 𝜃𝐽𝑘)

𝖳, 𝑘 ∈ [𝐾]; let 𝚯 =

(𝜽⋅1, … , 𝜽⋅𝐾)
𝖳. Because the latent class indicators 𝐼(𝑣)

𝑖
’s are

assumed to be unobserved, the observed data likelihood
for 𝑁 observations is

∏
𝑣∈𝐿

∏𝑛𝑣
𝑖=1

∑𝐾

𝑘=1 𝜋𝑣𝑘ℙ(𝒀
(𝑣)
𝑖

∣ 𝐼
(𝑣)
𝑖

=

𝑘, 𝜽⋅𝑘).
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F IGURE 1 Schematic representation of a hypothetical rooted weighted tree with three leaves and data generated based on the proposed
model with 𝐾 = 3 latent classes, 𝑛𝑣1

= 2, 𝑛𝑣2
= 4 and 𝑛𝑣3

= 2, 𝐽 = 8. This figure appears in color in the electronic version of this article, and
any mention of color refers to that version

Throughout this paper, we assume that we wish to
classify individuals into 𝐾 classes with the same set of
(𝜽⋅1, … , 𝜽⋅𝐾) so classes have coherent interpretation. How-
ever, we do not assume that observations are drawn from
a population with a single vector of latent class probabili-
ties. Figure 1 provides a schematic of the data generating
mechanism given 𝝅𝑣 for three leaves.

3 PRIOR DISTRIBUTION

We first specify a prior distribution for {𝝅𝑣 ∶ 𝑣 ∈ 𝐿}.
Because leaf-specific sample sizes may vary, we propose a
tree-structured prior to borrow information across nearby
leaves. The prior encourages collapsing certain parts of
the tree so that observations within a collapsed leaf group
share the same vector of latent class probabilities. In par-
ticular, we extend Thomas et al. (2019) to deal with rooted
weighted trees in an LCM setting. The prior specification
is completed by priors for the class-specific response prob-
abilities 𝚯.

Tree-structured prior for latent class probabilities 𝝅𝑣

We specify a spike-and-slab Gaussian diffusion process
prior along a rooted weighted tree based on a logistic
stick-breaking parameterization of 𝝅𝑣. We first reparam-
eterize 𝝅𝑣 with a stick-breaking representation: 𝜋𝑣𝑘 =

𝑉𝑣𝑘
∏

𝑠<𝑘(1 − 𝑉𝑣𝑠), for 𝑘 ∈ [𝐾], where 0 ≤ 𝑉𝑣𝑘 ≤ 1, for
𝑘 ∈ [𝐾 − 1] and 𝑉𝑣𝐾 = 1.
We further logit-transform 𝑉𝑣𝑘, 𝑘 ∈ [𝐾 − 1], to facil-

itate the specification of a Gaussian diffusion process
prior without range constraints. In particular, let
𝜂𝑣𝑘 = 𝜎−1(𝑉𝑣𝑘), 𝑘 ∈ [𝐾 − 1], 𝑣 ∈ 𝐿, where 𝜎(𝑥) =

1∕{1 + exp(−𝑥)} is the sigmoid function. The logistic

stick-breaking parameterization is completed by

𝜋𝑣𝑘 = {𝜎(𝜂𝑣𝑘)}
𝟏{𝑘<𝐾}

∏
𝑠<𝑘

𝜎(−𝜂𝑣𝑠), 𝑘 ∈ [𝐾], (3)

which affords simple and accurate posterior inference via
variational Bayes (see Section 4).
For a leaf 𝑣 ∈ 𝐿, let

𝜂𝑣𝑘 =
∑

𝑢∈𝑎(𝑣)

𝜉𝑢𝑘, 𝑘 ∈ [𝐾 − 1]. (4)

Here 𝜂𝑣𝑘 is defined for leaves only and 𝜉𝑢𝑘 is defined for
all the nodes. Suppose 𝑣 and 𝑣′ are leaves and siblings in
the tree such that 𝑝𝑎(𝑣) = 𝑝𝑎(𝑣′), setting 𝜉𝑣𝑘 = 𝜉𝑣′𝑘 = 0

implies 𝜂𝑣𝑘 = 𝜂𝑣′𝑘 for 𝑘 ∈ [𝐾 − 1], and hence 𝝅𝑣 = 𝝅𝑣′ .
More generally, a sufficient condition for 𝑀 leaves 𝜂𝑣𝑘,
𝑣 ∈ {𝑣1, … , 𝑣𝑀} to fuse is to set 𝜉𝑢𝑘 = 0 for any 𝑢 that is
an ancestor of any of {𝑣1, … , 𝑣𝑀} but not common ances-
tors for all 𝑣𝑚. That is, to achieve grouping of observa-
tions that share the same vector of latent class probabil-
ities, in our model, it is equivalent to parameter fusing.
In the following, we specify a prior on the 𝜉𝑢𝑘 that a pri-
ori encourages sparsity, so that closely related observations
are likely grouped to have the same vector of class proba-
bilities. The fewer distinct ancestors two nodes have, the
more likely the parameters 𝜂𝑣𝑘 are fused, because the prior
would encourage fewer auxiliary variables 𝜉𝑢𝑘 to be set to
zero. In particular, we specify

𝜉𝑢𝑘 = 𝑠𝑢𝛼𝑢𝑘, ∀ 𝑢 ∈  , (5)

𝛼𝑢𝑘 ∼ 𝑁(0, 𝜏1𝑘𝓁𝑢𝑤𝑢),

independently for 𝑘 ∈ [𝐾 − 1], ∀𝑢 ∈  , (6)
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𝑠𝑢0 = 1, and 𝑠𝑢 ∼ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂(𝜌𝓁𝑢 ),

independently for 𝑢 ∈  ⧵ 𝑢0, (7)

𝜌𝓁 ∼ 𝖡𝖾𝗍𝖺 (𝑎𝓁, 𝑏𝓁), independently for 𝓁 ∈ [𝐿], (8)

where𝑁(𝑚, 𝑠) represents a Gaussian density functionwith
mean 𝑚 and variance 𝑠. 𝜏1𝑘𝓁 is the unit-length variance
and controls the degree of diffusion along the tree thatmay
differ by dimension 𝑘 and node level 𝓁𝑢 where 𝓁𝑢 ∈ [𝐿]

represents the “level” or “hyperparameter set indicator”
for node 𝑢. For example, in simulations and data analysis,
we will assume that the root for the diffusion process has
a prior unit-length variance distinct from other non-root
nodes. For the root 𝑢0 with 𝑠𝑢0 = 1, 𝛼𝑢0𝑘 initializes the dif-
fusion of 𝜂𝑢𝑘.
Leaf groups are formed by selecting a subset of nodes

in  :  = {𝑢 ∈  ∶ 𝑠𝑢 = 1}. Except a probability-zero set,
two leaves 𝑣 and 𝑣′ are grouped, or “fused,” if and
only if 𝑎(𝑣) ∩ = 𝑎(𝑣′) ∩ . In particular, the null set
is {𝜂𝑣𝑘 = 𝜂𝑣′𝑘, 𝑘 ∈ [𝐾 − 1]} ∩ {

∑
𝑢∈[𝑎(𝑣)∩ ]⧵[𝑎(𝑣′)∩ ] 𝛼𝑢𝑘 =∑

𝑢∈[𝑎(𝑣′)∩ ]⧵[𝑎(𝑣)∩ ] 𝛼𝑢𝑘} where the latter has probability
zero. In Section 4.1, we will estimate using the posterior
median model.

Remark 1. Equations (4)–(8) define a Gaussian diffusion
process initiated at 𝛼𝑢0𝑘:

𝜂𝑢𝑘 ∣ 𝗈𝗍𝗁𝖾𝗋𝗌 ∼ 𝑁

( ∑
𝑢′∈𝑎(𝑢)

𝜉𝑢′𝑘, 𝑠𝑢𝜏1𝑘𝓁𝑢𝑤𝑢

)
,

𝗂𝗇𝖽𝖾𝗉𝖾𝗇𝖽𝖾𝗇𝗍𝗅𝗒𝖿𝗈𝗋𝑘 ∈ [𝐾 − 1], (9)

for any nonroot node 𝑢 ≠ 𝑢0; also see the seminal formu-
lation by Felsenstein (1985). To aid the understanding of
this Gaussian diffusion prior, it is helpful to consider a
special case of 𝑠𝑢 = 1 and 𝓁𝑢 = 1, ∀𝑢 ∈  . For two leaves
𝑣, 𝑣′ ∈ 𝐿, the prior correlation between 𝜂𝑣𝑘 and 𝜂𝑣′𝑘 is

Corr(𝜂𝑣𝑘, 𝜂𝑣′𝑘) =

∑
𝑢∈𝑎(𝑣)∩𝑎(𝑣′) 𝑤𝑢{

𝑑𝑖𝑠𝑡𝑤(𝑢0, 𝑣)𝑑𝑖𝑠𝑡𝑤(𝑢0, 𝑣′)
}1∕2 . (10)

When 𝑣 and 𝑣′ have the same number of ancestors
(|𝑎(𝑣)| = |𝑎(𝑣′)|) and all edges have identical weight𝑤𝑢 =

𝑐, ∀𝑢, the prior correlation is the fraction of commonances-
tors. Note that 𝜼𝑣 fully determines 𝝅𝑣 in (3) and induces
correlations among {𝝅𝑣, 𝑣 ∈ 𝐿}.

Remark 2. One reviewer raised an important question on
the choice of encouraging prior correlation among {𝝅𝑣}

rather than among the latent class indicators {𝐼
(𝑣)
𝑖

}. In
the present prior distribution, by integrating out {𝝅𝑣}, we

have induced prior marginal correlation among {𝐼
(𝑣)
𝑖

} for
observation in nearby leaves. Additional prior correlation
among the {𝐼(𝑣)

𝑖
} can be introduced via an additional layer

of prior over the {𝐼
(𝑣)
𝑖

} conditional on {𝝅𝑣}, for example,
through clustered samples. The absence of such clustered
sampling structure in the motivating application points us
toward the former simpler strategy.

Priors for class-specific response probabilities
Let 𝛾𝑗𝑘 = log{𝜃𝑗𝑘∕(1 − 𝜃𝑗𝑘)}. We specify

𝛾𝑗𝑘 ∼ 𝑁(0, 𝜏2𝑗𝑘),

independently for feature 𝑗 ∈ [𝐽] and class 𝑘 ∈ [𝐾]. (11)

Joint distribution
Let 𝜷 = (𝐙, 𝒔, 𝜸, 𝜶, 𝝔) collect all the unknown parameters
where

𝒔 = {𝑠𝑢 ∶ 𝑢 ∈ },
𝜸 = {𝛾𝑗𝑘, 𝑗 ∈ [𝐽]; 𝑘 ∈ [𝐾]},

𝜶 = {𝛼𝑢𝑘 ∶ 𝑢 ∈  , 𝑘 ∈ [𝐾 − 1]},

𝝔 = (𝜌1, … , 𝜌𝐿)
𝖳, 𝒂 = (𝑎1, … , 𝑎𝐿)

𝖳,

and 𝒃 = (𝑏1, … , 𝑏𝐿)
𝖳. Hereafter we use pr(𝐴 ∣ 𝐵) to denote

a probability density or mass function of quantities in
𝐴 with parameters 𝐵; when 𝐵 represents hyperparame-
ters or given information in this paper, we simply use
pr(𝐴), for example, we will use pr(𝐘, 𝜷) to represent
pr(𝐘, 𝜷 ∣ 𝝉1, 𝝉2, 𝒂, 𝒃, 𝑤,). The joint distribution of data
and unknown quantities can thus be written as

pr(𝐘 ∣ 𝜷)pr(𝜷) =
∏
𝑣∈𝐿

𝑛𝑣∏
𝑖=1

𝐾∏
𝑘=1

[
{𝜎(𝜂𝑣𝑘)}

𝟏{𝑘<𝐾}
∏
𝑠<𝑘

× {1 − 𝜎(𝜂𝑣𝑠)}

𝐽∏
𝑗=1

𝜎
(
𝑋
(𝑣)
𝑖𝑗

𝛾𝑗𝑘

)]
𝑍
(𝑣)
𝑖𝑘 (12)

×
∏
𝑢∈

𝐾−1∏
𝑘=1

(
1√

2𝜋𝜏1𝑘𝓁𝑢𝑤𝑢

exp

{
−

1

2𝜏1𝑘𝓁𝑢𝑤𝑢
𝛼2
𝑢𝑘

})

×

𝐽∏
𝑗=1

𝐾∏
𝑘=1

(
1√

2𝜋𝜏2𝑗𝑘
exp

{
−

1

2𝜏2𝑗𝑘
𝛾2
𝑗𝑘

})
×
∏
𝑢∈

𝜌
𝑠𝑢
𝓁𝑢

× (1 − 𝜌𝓁𝑢)
1−𝑠𝑢 ⋅

𝐿∏
𝓁=1

1

𝖡𝖾𝗍𝖺(𝑎𝓁, 𝑏𝓁)
𝜌
𝑎𝓁−1

𝓁
(1 − 𝜌𝓁)

𝑏𝓁−1,

(13)
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F IGURE 2 The directed acyclic graph (DAG) representing the structure of the model likelihood and priors. The quantities in squares are
either data or hyperparameters; the unknown quantities are shown in the circles. The arrows connecting variables indicate that the parent
parameterizes the distribution of the child node (solid lines) or completely determines the value of the child node (double-stroke arrows). The
rectangular “plates” where the variables are enclosed indicate that a similar graphical structure is repeated over the index; The index in a
plate indicate nodes, hyperparameter levels, leaves, subjects, classes, and features. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version

where 𝑋
(𝑣)
𝑖𝑗

= 2𝑌
(𝑣)
𝑖𝑗

− 1. Tree information 𝑤 enters the
joint distribution in the definition of 𝜼𝑣 (Equations 4);
sample-to-leaf indicators  choose among {𝜼𝑣, 𝑣 ∈ 𝐿} for
every observation in Equation (12). By setting 𝑠𝑢 = 0 for
all the nonroot nodes in Equation (5), the classical LCM
with a single 𝝅 = 𝝅𝑢0 results. Figure 2 shows a directed
acyclic graph (DAG) that represents the model likelihood
and prior specifications.

4 VARIATIONAL INFERENCE
ALGORITHM

Calculating a posterior distribution often involves
intractable high-dimensional integration over the
unknowns in the model. Traditional sequential sam-
pling approaches such as Markov chain Monte Carlo
(MCMC) remains a widely used inferential tool based
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on approximate samples from the posterior distribution.
They can be powerful in evaluating multidimensional
integrals. However, they do not guarantee closed-form
posterior distributions. Variational inference (VI) is a pop-
ular alternative to MCMC for approximating the posterior
distribution and has beenwidely used inmachine learning
and gaining interest in statistics (e.g., Ormerod andWand,
2010; Blei et al., 2017). In particular, VI has also been used
for fitting the classical LCMs (e.g., Grimmer, 2011). VI
requires a user-specified family of distributions that can be
expressed in tractable forms while being flexible enough to
approximate the true posterior; the approximating distri-
butions and their parameters are referred to as “variational
distributions” and “variational parameters”, respectively.
VI algorithms find the best variational distribution that
minimizes the Kullback–Leibler (KL) distance between
the variational family and the true posterior distribution.
VI has been widely applied in Gaussian (Titsias and
Lázaro-Gredilla, 2011; Carbonetto and Stephens, 2012)
and binary likelihoods (e.g., Jaakkola and Jordan, 2000;
Thomas et al., 2019). Also see Blei et al. (2017) for a detailed
review. We use VI because it is fast, bypasses infeasible
analytic integration or data augmentation that is other-
wise needed for MCMC under Dirac spike components
and prior-likelihood nonconjugacy (Tüchler, 2008), and
enables data-driven selection of hyperparameters via
approximate empirical Bayes (Equation (S8), Supporting
Information). These advantages of VI are achieved at a
cost of slight variance–covariance under-estimation, the
degree of which we assess in Section 5.
We use VI algorithm to conduct inference using varia-

tional distributions factorized as

𝑞(𝜷) = 𝑞(𝜸) ⋅
∏
𝑢∈

𝑞(𝑠𝑢, 𝜶𝑢)

⏟⎴⎴⏟⎴⎴⏟
𝑞(𝒔,𝜶)

⋅
∏
𝑣∈𝐿

𝑛𝑣∏
𝑖=1

𝑞(𝒁
(𝑣)
𝑖

)

⏟ ⎴⎴⎴⏟⎴⎴⎴⏟
𝑞(𝐙)

⋅

𝐿∏
𝓁=1

𝑞(𝜌𝓁)

⏟⎴⏟⎴⏟
𝑞(𝝔)

,

(14)

where 𝑞(𝒁
(𝑣)
𝑖

) is a multinomial distribution with varia-
tional parameters 𝒓(𝑣)

𝑖
= (𝑟

(𝑣)
𝑖1

, … , 𝑟
(𝑣)
𝑖𝐾

)𝖳, and 𝑟(𝑣)
𝑖𝑘

represents
the approximate posterior probability of observation 𝑖 in
leaf 𝑣 belonging to class 𝑘 and

∑𝐾

𝑘=1 𝑟
(𝑣)
𝑖𝑘

= 1. Importantly,
we make no other assumptions about the particular para-
metric form of variational distributions, which by the VI
updating rules can be shown to take familiar distributional
forms (see Section A1, Supporting Information).
VI finds 𝑞 that minimizes the KL distance between

the variational family and the true posterior distribu-
tion: KL(𝑞(𝜷)||pr(𝜷 ∣ 𝐘)) = − ∫ 𝑞(𝜷) log{

pr(𝜷∣𝐘)
𝑞(𝜷)

}𝑑𝜷. How-
ever, the KL distance depends on the intractable posterior
distribution is not easily computed. Fortunately, based on

a well-known equality, log pr(𝐘) = (𝑞) + KL(𝑞(𝜷)‖pr(𝜷 ∣

𝐘)), where (𝑞) = ∫ 𝑞(𝜷) log
pr(𝐘,𝜷)
𝑞(𝜷)

𝑑𝜷 is referred to as
evidence lower bound (ELBO) because log pr(𝐘) ≥ (𝑞).
Because pr(𝐘) is a constant, minimizing the KL diver-
gence is equivalent to maximizing (𝑞). The VI algorithm
updates each component of 𝑞(𝜷) in turn while holding
other components fixed. However, because of the nonlin-
ear sigmoid functions in Equation (12), generic VI updat-
ing algorithms for 𝑞(𝑠𝑢, 𝜶𝑢) and 𝑞(𝜸) involve integrating
over random variables in the sigmoid function hence lack
closed forms. To make the updates analytically tractable,
we replace Equation (12) with an analytically tractable
lower bound. In particular, we use a technique introduced
by Jaakkola and Jordan (2000) that bounds the sigmoid
function from below by a Gaussian kernel with a tun-
ing parameter, hence affords closed-form VI updates; also
see Durante et al. (2019) for a modern view of this tech-
nique as a bona fide mean-field approximation with Pòlya
Gamma data augmentation. In particular, we will use the
inequality

𝜎(𝑥) ≥ 𝜎(𝜓) exp{(𝑥 − 𝜓)∕2 − 𝑔(𝜓)(𝑥2 − 𝜓2)} ∶= ℎ(𝑥, 𝜓),

(15)

with 𝑔(𝜓) =
1

2𝜓
[𝜎(𝜓) −

1

2
] where 𝜓 is a tuning parameter.

We approximate ELBO (𝑞) by ∗(𝑞):

∗(𝑞) ∶= ∫ 𝑞(𝜷) log

×
ℎ∗(𝐗, 𝝍, 𝜸, 𝐙)ℎ∗∗(𝝓, 𝒔, 𝜶, 𝐙)pr(𝒔, 𝜸, 𝜶, 𝝔)

𝑞(𝜷)

d𝜷 ≤ (𝑞), (16)

where

ℎ∗(𝐗, 𝝍, 𝜸, 𝐙) =
∏
𝑣∈𝐿

𝑛𝑣∏
𝑖=1

𝐾∏
𝑘=1

{
𝐽∏

𝑗=1

ℎ
(
𝑋
(𝑣)
𝑖𝑗

𝛾𝑗𝑘, 𝜓𝑗𝑘

)}𝑍
(𝑣)
𝑖𝑘

,

and

ℎ∗∗(𝝓, 𝒔, 𝜶, 𝐙) =
∏
𝑣∈𝐿

𝑛𝑣∏
𝑖=1

𝐾∏
𝑘=1

{{
ℎ
(
𝜂𝑣𝑘; 𝜙

(𝑣)
𝑘

)}𝟏{𝑘<𝐾}

×
∏
𝑚<𝑘

ℎ
(
−𝜂𝑣𝑚; 𝜙

(𝑣)
𝑚

)}𝑍
(𝑣)
𝑖𝑘

.

The VI algorithm iterates until convergence to find
the optimal variational distribution 𝑞 that maximizes
∗(𝑞). Because ∗(𝑞) ≤ log 𝜋(𝐘), it can be viewed as an
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approximation to the marginal likelihood. We maximize
over 𝝍 and 𝝓 to obtain the best approximation. In addition,
we adopt an approximate empirical Bayes approach by
optimizing the VI objective function ∗(𝑞) over the hyper-
parameters 𝝉1 and 𝝉2. Relative to specifying weakly infor-
mative but often nonconjugate hyperprior for the variance
parameters, optimizing hyperparameter is more practi-
cally convenient (e.g., Thomas et al., 2019). Because updat-
ing the hyperparameters changes the prior, we need to
update 𝑞, 𝝍, and 𝝓 again. This leads to an algorithm that
alternates between maximizing ∗(𝑞) in (𝑞, 𝝍, 𝝓) and in
(𝝉1, 𝝉2) until convergence.We update the hyperparameters
every 𝑑 complete VI iterations. Pseudocode in Algorithm 1
outlines theVI updates; SectionA1 in the Supporting Infor-
mation details the exact updating formula.

4.1 Posterior summaries

Two sets of point and interval estimates for {𝝅𝑣 ∶ 𝑣 ∈ 𝐿}

are available from the VI algorithm: (1) data-driven
grouped (“fused”) estimates (𝝅𝖽𝗀𝗋𝗉

𝑣 ) that are formed by
setting a subset of 𝒔 to one and the rest to zero, and
(2) leaf-specific estimates (𝝅𝗅𝖾𝖺𝖿

𝑣 ). For (1), we select the
posterior median model by setting 𝑠𝑢 = 1 for nodes in
̂ = {𝑢 ∶ 𝐸𝑞𝑡 [𝑠𝑢] > 0.5} (see Step 1b, Section A1, Support-
ing Information). For leaves 𝑣 and 𝑣′, with probability
one, 𝝅𝖽𝗀𝗋𝗉

𝑣 = 𝝅
𝖽𝗀𝗋𝗉

𝑣′
if and only if 𝑎(𝑣) ∩ ̂ = 𝑎(𝑣′) ∩ ̂ .

Because no closed-form posterior distributions for 𝝅𝑣 are
readily available under logistic stick-breaking represen-
tation, we compute the approximate posterior mean and
approximate 95% credible intervals (CrIs) by a Monte
Carlo procedure after convergence of Algorithm 1. For
𝑢 ∈ ̂ , we first draw 𝐵 = 105 random independent sam-
ples of 𝛼𝑢𝑘 from 𝑁(𝐸𝑞𝑡 [𝛼𝑢𝑘 ∣ 𝑠𝑢 = 1], 𝑉𝑞𝑡 [𝛼𝑢𝑘 ∣ 𝑠𝑢 = 1]),
for 𝑘 ∈ [𝐾 − 1]. We then compute 𝐵 corresponding 𝝅𝑣

vectors based on Equations (3)–(5) with 𝑠𝑢 = 𝟏{𝑢 ∈ ̂ }

in (5). Finally, we compute the empirical means and
95% CrIs marginally for 𝜋𝑣𝑘, 𝑘 ∈ [𝐾]. The above Monte
Carlo procedure is extremely fast given only independent
Gaussian samples are drawn. As a comparison, for (2),
we define leaf-specific estimates 𝝅𝗅𝖾𝖺𝖿

𝑣 by the mean of (3)
where 𝜂𝑣𝑘

𝑑
∼ 𝑁(

∑
𝑢∈𝑎(𝑣) 𝐸𝑞𝑡 [𝑠𝑢𝛼𝑢𝑘],

∑
𝑢∈𝑎(𝑣) 𝑉𝑞𝑡 [𝑠𝑢𝛼𝑢𝑘]),

for 𝑘 ∈ [𝐾]. We also use Monte Carlo simulation to
approximate the posterior means and 95% CrIs. In
general, 𝝅𝗅𝖾𝖺𝖿

𝑣 differ across the leaves. In contrast, the
data-driven grouped estimates {𝝅𝖽𝗀𝗋𝗉

𝑣 } induce dimension
reduction.

Prediction
The out-of-sample predictive probability of class 𝑘 for a
new observation nested in leaf 𝑣 is 𝑟

(𝑣)
𝑖′𝑘

∶= pr(𝐼(𝑣)
𝑖′

= 𝑘 ∣

𝑌
(𝑣)
𝑖′

,), where = (𝐘, 𝑤,, 𝒂, 𝒃, 𝝉1, 𝝉2). We have

𝑟
(𝑣)

𝑖′𝑘
= ∫ pr

(
𝐼
(𝑣)

𝑖′
= 𝑘 ∣ 𝜽⋅𝑘,𝝅𝑣,𝑌

(𝑣)

𝑖′
,)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
(𝑖)

pr(𝜽⋅𝑘,𝝅𝑣 ∣ 𝑌
(𝑣)

𝑖′
,)

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
(𝑖𝑖)

d𝜽⋅𝑘d𝝅𝑣.

(17)

We approximate (17) by plug-in estimators: 𝑟̂(𝑣)
𝑖′𝑘

∝ pr(𝑌(𝑣)
𝑖′

∣

𝐼
(𝑣)
𝑖′

= 𝑘, 𝜽⋅𝑘, 𝑤) ⋅ 𝜋𝑣𝑘, 𝑘 ∈ [𝐾]. This can be seen by noting
that term (𝑖) ∝ pr(𝑌(𝑣)

𝑖′
∣ 𝐼

(𝑣)
𝑖′

= 𝑘, 𝜽⋅𝑘, 𝑤) ⋅ 𝜋𝑣𝑘, and term
(𝑖𝑖) ≈ pr(𝜽⋅𝑘, 𝝅𝑣 ∣ ) that we approximate by a Dirac mea-
sure at (𝜽⋅𝑘, 𝝅𝑣). Here 𝝅𝑣 = 𝝅

𝖽𝗀𝗋𝗉
𝑣 .

Choice of 𝐾
In applications where data-driven selection of 𝐾 is more
desirable, we may follow Bishop (2006) and use criterion
∗
𝐾(𝑞) + log(𝐾!), where ∗

𝐾(𝑞) is the lower bound of log
marginal data likelihood for a 𝐾-class model and the cor-
rection term is to make different models comparable (e.g.,
Grimmer, 2011, section 5.2).

5 SIMULATION

5.1 Design and performance metrics

We conducted a simulation study to evaluate the perfor-
mance of the proposed tree-integrative LCM. We compare
our model to a few alternatives with ad hoc grouping of
observations in terms of accuracy in estimating {𝝅𝑣, 𝑣 ∈

𝑉𝐿}. Data were generated under two scenarios with dif-
ferent class-specific response profiles 𝚯. Section A2 in the
Supporting Information details the true parameter settings
of the simulations. Figure 3(a) visualizes the tree 𝑤 with
equal edge weights and true leaf groups used in the simu-
lation with 𝑝𝐿 = 11 leaves and 𝐺 = 3 groups.
We simulated 𝑅 = 200 independent replicate data sets

for different total sample sizes (𝑁 = 1000, 4000). For each
𝑁, we set 𝑛𝑣 ≈ 𝑁∕𝑝𝐿 for 𝜈 ∈ 𝐿 (with rounding where
needed) to investigate balanced leaves and set 𝑛𝑣 to be
approximately 1

5
𝑁∕𝑝𝐿 or 4

5
𝑁∕𝑝𝐿 with equal chance for

mimicking unbalanced observations across leaves. For
observations in a leaf 𝑣, we simulate 𝒀(𝑣)

𝑖
according to an

LCMwith class probabilities𝝅𝑣 and class-specific response
probabilities 𝚯. We simulated data for different dimen-
sions 𝐽 = 21, 84, for 𝐾 = 3 classes.
For each simulated data set, we fitted the proposed

model, based on which we compute 𝝅
𝖽𝗀𝗋𝗉
𝑣 and 𝝅𝗅𝖾𝖺𝖿

𝑣 (see
Section 4.1). Our primary interest is in {𝝅𝖽𝗀𝗋𝗉

𝑣 }; {𝝅𝗅𝖾𝖺𝖿
𝑣 } are for

comparisons. In addition, we also tested a few approaches
based on ad hoc leaf node groupings: (1) True grouping
analysis (fit separate LCMs to obtain estimates in each
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ALGORITHM 1 Pseudocode for Variational Algorithm to Integrate Sample Similarities into Latent Class Analysis

Tree-Encoded Information and Data:
(a) A weighted rooted tree Tw = (T = (V , E), w): leaves VL ⊂ V, edge lengths w = (wu)u∈V ;
(b) The leaf id for each observation L;
(c) Multivariate binary data Y (organize the observations with the same leaf id into

consecutive rows: a total of nv observations in leaf v, v ∈ VL; The leaf in the s-th row of
Y is vs, s ∈ [N ].)

Fixed Hyperparameters:

(a′) The number of classes K 2; levels �u ∈ [L] for all nodes u ∈ V;
(b′) Hyperparameters for the prior probability of su = 1: (a�, b�), � ∈ [L].

Initialize:

(a′′) t ←− 0; Initialize qt(s,α,γ) // (see Step 0 in Supporting Information A1)
(b′′) Set an initial ELBO E∗

0 ←− 0

1 t ←− 1; E∗
1 ←− E∗

0 + 2ε
2 while |E∗

t − E∗
t−1| > ε do

3 qt(s,α,γ) ←− qt−1(s,α,γ)
4 φ(t) ←− φ(t−1); ψ(t) ←− ψ(t−1)

5 τ
(t)
1 ←− τ

(t−1)
1 ; τ

(t)
2 ←− τ

(t−1)
2

6 for v ∈ VL do
7 for i ∈ [nv] do
8 for k ∈ [K] do

9 r
(v),(t)
ik ←− argmax

r
(v)
ik

E∗
t (q) // (See Step 1a in Supporting Information A1)

10 qt(γ) ←− argmaxqt( ) E∗
t (q) // (see Step 1b in Supporting Information A1)

11 for u ∈ V do
12 qt(su,αu) ←− argmaxqt(su, u) E∗

t (q) // (see Step 1b in Supporting Information A1)

13 for � ∈ [L] do
14 qt(ρ�) ←− argmaxqt(ρ�)

E∗
t (q) // (see Step 1c in Supporting Information A1)

15 for k ∈ [K] do
// update local variational parameters for tighter lower bounds

16 for v ∈ VL do

17 φ
(v),(t)
k ←− argmax

φ
(v)
k

E∗
t (q)

18 for j ∈ [J ] do

19 ψ
(t)
jk ←− argmaxψjk

E∗
t (q) // (see Step 2 in Supporting Information A1)

20 if t mod d = 0 then
21 for k ∈ [K] do
22 for � ∈ [L] do

23 τ
(t)
1kl ←− argmaxτ1kl

E∗
t (q)

24 for j ∈ [J ] do

25 τ
(t)
2jk ←− argmaxτ2jk

E∗
t (q) // (see Step 3 in Supporting Information A1)

26 E∗
t ←− ELBO(qt) // (see Step 4 in Supporting Information A1)

27 t ←− t + 1

Return: qt−1(γ), qt−1(s,α), {qt−1(Z
(v)
i )}, qt−1(�), {E∗

1 , . . . , E∗
t−1}
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of the true groups); (2) Single group LCM analysis (omit
sample-to-leaf indicators , hence the tree information);
(3) Ad hoc grouping 1 (manual grouping coarser than the
true grouping); 4) Ad hoc grouping 2: classical LCMs for
data on each leaf. All analyses assume 𝚯 does not vary
by leaves.
We used three model performance metrics.

First, we computed the root mean squared errors
(RMSE) for an estimate 𝝅𝑣 where 𝖱𝖬𝖲𝖤(𝝅𝜈) =√

(𝐾𝑝𝐿)−1
∑𝐾

𝑘=1

∑
𝑣∈𝑉𝐿

{𝜋𝑣𝑘 − 𝜋𝑣𝑘}2. Second, we com-
pared the true and the estimated leaf groupings via
adjusted Rand Index (ARI, Hubert and Arabie, 1985). ARI
is a chance-corrected index that takes value between −1

and 1 with values closer to 1 indicating better agreement.
Finally, we estimated the coverage probability of the
approximate 95% CrIs. For each true group 𝑔, we compute
the frequency of the approximate 95% CrI (computed
along with 𝝅

𝖽𝗀𝗋𝗉
𝑣 ) containing the truth, conditional on

the event that an estimated partition of the leaf nodes
includes 𝑔.

5.2 Simulation results

Figure 3 shows comparisons among the RMSEs for dif-
ferent models under different scenarios. For sample sizes
𝑁 = 1000 and𝑁 = 4000, the proposed methods with data-
driven grouping (𝝅𝖽𝗀𝗋𝗉

𝑣 ) produced similar or better RMSE
than analyses based on ad hoc leaf groupings, which
restrict leaves into incorrect groupings that are coarser
(single LCM and ad hoc grouping 1) or finer (ad hoc
grouping 2) than the truth. The proposed approach (𝝅𝖽𝗀𝗋𝗉

𝑣 )
achieved similar RMSE as 𝝅𝗅𝖾𝖺𝖿

𝑣 , indicating little accuracy
was lost in exchange for dimension reduction. The RMSEs
of 𝝅𝖽𝗀𝗋𝗉

𝑣 were similar to estimates of 𝝅𝑣, 𝑣 ∈ 𝐿 obtained
from analyses based on the true leaf grouping. Indeed,
the accuracy of group discovery increased with sample
sizeswith other settings fixed. AverageARIs across replica-
tions for each scenario were high (0.94 to 0.99) indicating
good recovery of the true leaf groups. Although the groups
discovered were not perfect, the comparable RMSEs sug-
gest desirable adaptability of the proposed approach in
effective collapsing of the leaves. The RMSE for 𝝅𝖽𝗀𝗋𝗉

𝑣 was
smaller than analyses based on a refined leaf-level group-
ing: smaller sample sizes in the leaves resulted in loss
of efficiency in separate estimations of 𝝅𝑣 across leaves.
RMSEs were further reduced under a larger 𝐽 or balanced
sample sizes in the leaves. However, we again observed
similar relative advantage of the proposed 𝝅

𝖽𝗀𝗋𝗉
𝑣 . The rel-

ative comparisons of RMSEs under less discrepant true
class-specific response profiles remained similar (see Fig-
ure S2, Supporting Information).

The observed coverage rates of the approximate 95%CrIs
achieved the nominal level satisfactorily (see Figure S1,
Supporting Information). Slight under-coverage occurred
under smaller 𝑁, unbalanced sample sizes, smaller 𝐽 and
leaf groups with smaller number of observations. This is
partially a consequence of VI as an inner approximation to
the posterior distribution that may underestimate the pos-
terior uncertainty (e.g., Bishop, 2006, chapter 10).
Finally, we also considered scenarioswhere only a single

group of leaves is present in truth for which the classical
LCM is perfectly appropriate. Figure S3 in the Supporting
Information shows, by learning the posterior node-specific
slab-versus-spike selection probabilities, the proposed
model produces similar RMSEs as the classical LCM.

6 E. COLI DATA APPLICATION

6.1 Background and data

E. coli infections cause millions of urinary tract infections
(UTIs) in the United States each year (e.g., Johnson and
Russo, 2002).Many studies have shown that extraintestinal
pathogenic E. coli (ExPEC) strains routinely colonize food
animals and contaminate the food supply chain serving as
a likely link between food-animal E. coli and human UTIs
(e.g., Johnson et al., 2005). The scientific team adopted a
novel strategy of augmenting fine-scale core-genome phy-
logenetics with interrogation of accessory host-adaptive
MGEs (see Section 1.1). The scientific goal is to accurately
estimate the probabilities of E. coli isolates with human
and nonhuman host-origins across genetically diverse but
related E. coli sequence types (STs).
We restrict our analysis to 𝑁 = 2663 E. coli isolates in

a well-defined collection from humans and retail meat
obtained over a 12-month period in Flagstaff, Arizona,
United States. Each isolate belongs to one of 𝑝𝐿 = 133

different STs (leaves in the phylogenetic tree) that are
identified via a multilocus sequence typing scheme based
on short-read DNA sequencing. A total of 𝐽 = 17 MGEs
were curated and associated with functional annotations.
Each ST was represented by at least four isolates. We con-
structed rooted, maximum-likelihood phylogenies using
core-genome SNP data for the 133 STs. Figure 4 shows the
estimated phylogenetic tree for the STs where the edge
lengths represents the substitution rate in the conserved
core genome. Every ST is overlaid in the same row with
the empirical frequencies of (1) 𝐽 = 17 MGEs and (2) the
observed sources (human clinical or meat samples) that
may differ from the true host origin. The observed frequen-
cies of theMGEs vary greatly across lineages. We apply the
proposed tree-integrative LCM to (1) estimate the proba-
bilities of unobserved human and non-human host-origins
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F IGURE 4 The empirical frequencies for 𝐽 = 17MGEs within each ST mapped in the core-genome phylogenetic tree. The red scale bar
represents the substitution rate in the conserved core genome. The bars on the right indicate the total number isolates of each ST; the gray and
blue bars represent the number of isolates obtained from apparent nonhuman and human sources, respectively. The core-genome
phylogenetic tree on the left margin maps 𝑁 = 2663 E. coli isolates into 𝑝𝐿 = 133 STs (leaves). This figure appears in color in the electronic
version of this article, and any mention of color refers to that version



276 LI et al.

for all E. coli STs with data-driven groupings of the STs for
dimension reduction; and (2) to produce isolate-level prob-
abilistic host-origin assignment. The context of the study
restricts us to assume the host origin of each isolate is in
one of two unobserved class of human versus food ani-
mals. A subset of preliminary data is analyzed in this paper
for illustrating the proposed method. Inclusion of addi-
tional samples and/or MGEs may change findings. The
final results and the detailed workflow of MGE discovery
will be reported elsewhere.

6.2 Data results

The proposed approach produces estimated class-specific
response profiles (𝜽⋅𝑘, 𝑘 = 1, 2) that exhibit differential
enrichment of MGEs (Figure 5b). For example, MGEs 3, 10
to 17 are estimatedwith probability of between 0.15 and 0.71
being present in class 1, with log odds ratios (LORs; class
1 vs. class 2: 𝐿𝑂𝑅(𝜃𝑗1, 𝜃𝑗2)) greater than 1. The functional
annotations of theseMGEs reveal that class 1 is likely asso-
ciated with food-animal hosts. In contrast, MGEs 4–9 are
estimated to be present in class 2 with probability between
0.35 to 0.82 with LORs greater than 1 relative to the corre-
sponding estimated response probabilities in class 1. The
results suggest the MGEs are highly associated with differ-
ent types of host-origins.
The proposed approach discovered 21 ST leaf groups, for

which distinct estimated vectors of the latent class proba-
bilities 𝝅𝖽𝗀𝗋𝗉

𝑣 are shown in Figure 5(a). For many estimated
ST groups, the class probabilities are almost entirely dom-
inated by one type of host-origin. For example, the esti-
mated ST Group 1 (38 leaves; 649 samples; class 1 prob-
ability 0.98, 95% CrI: (0.97, 0.99)) and Group 3 (31 leaves;
422 samples; class 1 probability 0.97, 95% CrI: (0.96, 0.98))
showed high probabilities of nonhuman (class 1) host-
origin of E. coli. The results suggest recent cross-species
transmissions were rare among multiple nearby lineages.
We also compared against results based on two fixed

and more restrictive leaf groups, (a) classical LCM (one
leaf group); (b) four leaf groups selected by the scientific
team (Figure S4, Supporting Information). The single LCM
(a) estimated the probability of class 1 to be 0.60, 95%CrI ∶
(0.58, 0.62). The ad hoc leaf grouping (b) produced coarser
estimates relative to the proposed 𝝅𝖽𝗀𝗋𝗉

𝑣 that identified four
local leaves (ST1141, ST10, ST744 and ST5996) compris-
ing 116 samples that have estimated probability of class 1:
0.74(0.66, 0.82)). This highlights the inability of potentially
misspecified leaf groups to uncover subtle local variations
in the latent class probabilities. We compared these mod-
els via 10-fold cross-validation based on the mean predic-
tive log-likelihood (MPL) of the test data, which is com-
puted by plugging in the estimated latent class probabili-

ties and response probability profiles. Of note, because of
small sample sizes in some leaves, a naive cross-validation
may by chance result in a training set without any obser-
vation in some leaves. We therefore randomly keep two
observations per leaf and use one random fold of the
remaining samples as test data. The proposed approach
(with posterior median node selection) achieves the high-
est MPL (−2015.48) compared to (a) (−2030.15) and (b)
(−2162.45) (Figure S6, Supporting Information). The esti-
mates of response probability profiles are similar.
On an individual isolate level, the proposed model can

estimate the probability that an isolate was derived from
a particular host. For example, by incorporating addi-
tional observed sample source information, we can com-
pute “posterior concordance probability (PCP)” for each
observation. In particular, PCP, 𝑟(𝑣)

𝑖,𝑆
(𝑣)
𝑖

, is defined as the

approximate posterior probability of the true host origin
agreeing with the observed sample source category 𝑆(𝑣)

𝑖
of

the same E. coli isolate (e.g., 𝑆(𝑣)
𝑖

= 1 for meat and 2 for
human clinical samples). Figure 5(c) shows the histogram
of PCPs for all the isolates. Small PCPs, for example, below
a user-specified threshold of 0.5, indicate likely recent host
jumps that may subject to further examination to estimate
the timing of host transmissions based on in vitro stability
data of each MGE.

7 DISCUSSION

In this paper, we proposed a tree-integrative LCM for
analyzing multivariate binary data. We formulated the
motivating scientific question in terms of inferring latent
class probabilities that may vary in different parts of a
tree. We proposed a Gaussian diffusion prior for logistic
stick-breaking parameterized latent class probabilities and
designed a scalable approximate algorithm for posterior
inference. Our E. coli data analysis revealed that multiple
MGEs are disproportionately associated with specific host
origins. Combined with external sample source informa-
tion, the model can help identify isolates that underwent
recent host jump, paving the way for further isolate-level
host origin validation.
Our study has some limitations. First, the MGE data we

analyzed may represent a fraction of the host-associated
accessory elements. By design, additional accessory ele-
ments identified in future studies can be readily integrated
and evaluated in the proposed framework. Second, host-
associated accessory elements are lost and gained over
time as E. coli strains transition across hosts. For infec-
tions that were zoonotic in nature, we did not observe
howmuch time had lapsed between the cross-species host
jump and the actual infection. Ourmodel partly accounted
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F IGURE 5 (a) Data results with estimated leaf groups and latent class probabilities by group. ST names (ST_#_isolates) are aligned to
the tips of the circular tree, which are colored by discovered leaf groups. The scale bar represents the substitution rate in the conserved core
genome. The circular heatmap shows the estimated latent class probabilities (𝝅𝖽𝗀𝗋𝗉

𝑣 , 𝑣 ∈ 𝐿); (b) and (c) see the captions of the subfigures.
This figure appears in color in the electronic version of this article, and any mention of color refers to that version



278 LI et al.

for these uncertainties by the imperfect positive response
probabilities. However, the timings may drive the pres-
ence or absence of multiple MGEs, resulting in poten-
tial statistical dependence given the true class of host-
origin. Deviations from local independence assumption
may impact model-based inference (e.g., Albert and Dodd,
2004; Pepe and Janes, 2006). In practice, a subset of
samples with ascertained host-origins may provide criti-
cal information to estimate the conditional dependence
structure.
Further model extensions may improve model applica-

bility. First, when a subset of observations is not mapped
in the tree at random, the algorithm can add additional
unobserved leaf indicators to be inferred along with other
parameters. Second, it is important to note that the tree
integrated into LCM in general is estimated with uncer-
tainty in the topological structure. Methods that use an
additional layer of prior over the tree space centered
around the estimated tree may account for the upstream
uncertainty (e.g., Willis and Bell, 2018). Third, E. coli iso-
lates may vary in additional factors such as the hosts’
clinical characteristics. Regression extensions may refine
the understanding of variation in latent class probabili-
ties and positive response probabilities that are driven by
covariates (e.g.,Huang andBandeen-Roche, 2004). Fourth,
LCM is an example of probability tensor decomposition
methods (e.g., Johndrow et al., 2017), the tree-integrative
LCM motivates extensions to general graph-guided prob-
ability tensor decomposition methods. Finally, the trun-
cated stick-breaking formulation in Equation (3)motivates
connections to a broader class of covariate-indexed depen-
dent process priors as 𝐾 approaches infinity (e.g., Ren
et al., 2011; Rodriguez and Dunson, 2011). Extensions along
this line may also relax the present assumption of iden-
tical number of realized classes at additional computa-
tional cost.
On computation, without relying on prior-likelihood

conjugacy, neuronized priors for Bayesian sparse linear
regression has been proposed (Shin and Liu, 2021). Com-
parative studies against spike-and-slab priors are war-
ranted. In addition, one known drawback of themean field
VI is that it tends to underestimate the marginal posterior
variances of parameters. In our simulations, we showed
near nominal coverages of the true𝝅 with slight undercov-
erages happening mostly for leaf groups with very small
sample sizes. It is an interesting line of work to incorpo-
rate the methods of Giordano et al. (2015) to correct the
variance–covariance matrices used in the component vari-
ational distributions.We leave these topics for futurework.
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