
A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Integrating Sample Similarities into Latent Class Analysis 1

2009

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting,
typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please
cite this article as doi: 10.1111/biom.13580

https://doi.org/10.1111/biom.13580
https://doi.org/10.1111/biom.13580


A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Biometrics XX, ??–?? DOI: 10.1111/XXXX

XXXX XXX

Integrating Sample Similarities into Latent Class Analysis:

A Tree-Structured Shrinkage Approach

Mengbing Li1, Daniel E. Park3, Maliha Aziz3, Cindy M. Liu3, Lance B. Price3, Zhenke Wu1,2∗

1Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA

2Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI 48109, USA

3Environmental and Occupational Health, Milken Institute School of Public Health,

The George Washington University, Washington, DC 20052, USA

*email: zhenkewu@umich.edu

Summary: This paper is concerned with using multivariate binary observations to estimate the probabilities of

unobserved classes with scientific meanings. We focus on the setting where additional information about sample sim-

ilarities is available and represented by a rooted weighted tree. Every leaf in the given tree contains multiple samples.

Shorter distances over the tree between the leaves indicate a priori higher similarity in class probability vectors. We

propose a novel data integrative extension to classical latent class models (LCMs) with tree-structured shrinkage.

The proposed approach enables 1) borrowing of information across leaves, 2) estimating data-driven leaf groups

with distinct vectors of class probabilities, and 3) individual-level probabilistic class assignment given the observed

multivariate binary measurements. We derive and implement a scalable posterior inference algorithm in a variational

Bayes framework. Extensive simulations show more accurate estimation of class probabilities than alternatives that

suboptimally use the additional sample similarity information. A zoonotic infectious disease application is used to

illustrate the proposed approach. The paper concludes by a brief discussion on model limitations and extensions.

Key words: Gaussian Diffusion; Latent Class Models; Phylogenetic Tree; Spike-and-Slab Prior; Variational Bayes;

Zoonotic Infectious Diseases.
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1. Introduction

1.1 Motivating Application

The fields of infectious disease epidemiology and microbial ecology need better tools for

tracing the transmission of microbes between humans and other vertebrate animals (i.e.,

zoonotic transmissions), especially for colonizing opportunistic pathogens (COPs). Unlike

frank zoonotic pathogens (e.g., Salmonella, SARS-CoV-2), the epidemiology of COPs, such

as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Enterococcus spp., can be

particularly cryptic due to their ability to asymptomatically colonize the human body for in-

definite periods prior to initiating an infection, transmitting to another person, or being shed

without a negative outcome (e.g., ?). Some COPs can colonize many different vertebrate hosts

and cross-species transmissions can go unrecognized. Estimating the probability of zoonotic

origin for a population of isolates and for each isolate would provide important insights into

the natural history of infections and inform more effective intervention strategies, such as

eliminating high-risk clones from livestock via vaccination.

Scientists often have two complementary sources of information: i) a phylogenetic tree

constructed based on a few single nucleotide polymorphisms (SNPs) in the core genome

shared by all isolates, where the leaves represent distinct core-genome multi-locus sequence

types (STs, ?); the tree is useful for identifying a recent common ancestor for isolates that

comprise an infectious disease outbreak; ii) presence or absence of multiple mobile genetic

elements (MGE) that provide selective advantages in particular hosts and may be lost and

gained as COPs transmit among hosts (e.g., ?).

Recent research on two COP species, E. coli and S. aureus, has demonstrated the utility of

complementing core-genome phylogenetic trees with host-associated MGEs to resolve host

origins (e.g., ?). However, in both cases only a single host-associated MGE was used. Analyses

were largely limited to visual inspection of how each element fell on the scaffold of the



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

2 Biometrics, XXXX XXX

evolutionary tree. For this approach to reach its full potential, we would need a statistical

model that can 1) integrate phylogenetic information with the presence and absence of

multiple host-associated MGEs, and 2) estimate the probability with which the isolates were

derived from a particular host in each ST-specific population and for each individual isolate.

1.2 Integrating Sample Similarities into Latent Class Analysis

Based on multivariate binary data (e.g., presence or absence of multiple MGEs), we use latent

class models (LCMs; e.g., ??) to achieve the scientific goal of estimating the probabilities of

unobserved host origins and perform individual-level probabilistic assignment of host origin.

LCMs are examples of latent variable models that assume the observed dependence among

multivariate discrete responses is induced by variation among unobserved or “latent” vari-

ables. It is well known that any multivariate discrete data distribution can be approximated

arbitrarily closely by an LCM with a sufficiently large number of classes (?, Corollary 1). The

most commonly used LCMs assume the class membership indicators for the observations are

drawn from a population with the same vector of class probabilities.

Trees or hierarchies are useful and intuitive for representing and reasoning about similarity

or relation among objects in many real-world domains. We assume known entities at the

leaves. In our context, each leaf may contain multiple observations or samples, each associated

with the multivariate binary responses which are then combined to form the rows of a binary

data matrix Y. In the motivating application, the latent class indicates the unobserved

host origin (human or non-human) to be inferred by the presence or absence of multiple

MGEs. The additional sample similarity information is represented by a maximum likelihood

phylogenetic tree (e.g., ?). The leaves represent distinct contemporary core-genome E. coli

STs.

To integrate tree-encoded sample similarity information into a latent class analysis, ad hoc

groupings of the leaves may be adopted. From the finest to the coarsest leaf grouping, one
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may 1) analyze data from distinct lineages one at a time, 2) manually form groups of at least

one leaf node and fit separate LCMs, or 3) fit all the data by a single LCM. However, all

these methods pose significant statistical challenges. First, separate latent class analyses may

have low accuracy in estimating latent class probabilities and other model parameters for

rare lineages. Second, observations of similar lineages may have similar propensities in host

jump resulting in similar host origin class probabilities. Modeling these similarities could

lead to gain in statistical efficiency. Third, approaches based on coarse ad hoc groupings

may obscure the study of the variation in the latent class probabilities across different

parts of the tree. Finally, based on a single LCM or other approaches that use ad hoc leaf

groupings, individual-specific posterior class probabilities can be averaged within in each

leaf to produce a local estimate of the πv. However, the ad hoc post-processing cannot fully

address the issue of assessment of posterior uncertainty nor data-driven grouping of leaves,

necessitating development of an integrative probabilistic modeling framework for uncertainty

quantification and adaptive formation of leaf groups.

In this paper, we focus on integrating the tree-encoded sample similarity information into

latent class analysis. We assume the tree information is given and not computed from the

multivariate binary measurements. Observations in nearby leaves are assumed to have a

priori similar propensities of being members of a particular class as characterized by the

latent class probabilities. For example, higher similarities are indicated by shorter pairwise

distances between observations. More generally, classical covariate-dependent latent class

models (e.g., ??) let the latent class probabilities vary explicitly as functions of observed

covariates so that observations with more similar covariate values are assumed to have more

similar latent class probabilities. Fully probabilistic tree-integrative methods have appeared

in machine learning literature (e.g., ???) or in statistics for modeling hierarchical topic

annotations (e.g., ?) or hierarchical outcome annotations based on given trees (e.g., ?). In
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epidemiology, ? proposed a two-stage approach to link patient clusters estimated from the

tree and by the LCM results, which however remains ad hoc. However, current literature

does not address probabilistic tree-integrative latent class analysis or adaptive formation of

leaf groups for dimension reduction.

1.3 Primary Contributions

In this paper, we propose an unsupervised, tree-integrative LCM framework to 1) discover

groups of leaves where multivariate binary measurements in distinct leaf groups have distinct

vectors of latent class probabilities; And observations nested in any leaf group may belong to

a pre-specified number of latent classes; 2) accurately estimate the latent class probabilities

for each discovered leaf group and assign probabilities of an individual sample belonging

to the latent classes; 3) leverage the relationship among the observations as encoded by

the tree to boost the accuracy of the estimation of latent class probabilities. Without pre-

specifying the leaf groups, the automatic data-driven approach enjoys robustness by avoiding

potential mis-specification of the grouping structure. On the other hand, the discovered data-

driven leaf groups dramatically reduce the dimension of leaves into fewer subgroups of leaves

hence improving interpretation. In addition, the proposed approach shows better accuracy

in estimating the latent class probabilities in terms of root mean squared errors, indicating

the advantage of the shrinkage. On posterior computation, we derive a scalable inference

algorithm based on variational inference (VI).

The rest of the paper is organized as follows. Section ?? defines tree-related terminologies

and formulates LCMs. Section ?? proposes the prior for tree-structured shrinkage in LCMs.

Section ?? derives a variational Bayes algorithm for inference. Section ?? compares the per-

formances of the proposed and alternative approaches via simulations. Section ?? illustrates

the approach by analyzing an E. coli data set. The paper concludes with a brief discussion.
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2. Model

We first introduce necessary terminologies and notations to describe a rooted weighted tree.

LCMs are then formulated for data on the leaves of the tree.

2.1 Rooted Weighted Trees

A rooted tree is a graph T = (V , E) with node set V and edge set E where there is a root

u0 and each node has at most one parent node. Let p = |V| represent the total number of

leaf and non-leaf nodes. Let VL ⊂ V be the set of leaves, and pL = |VL| < p. We typically

use u to denote any node (u ∈ V) and v to denote any leaf (v ∈ VL). Each edge in a rooted

tree defines a clade: the group of leaves below it. Splitting the tree at an edge creates a

partition of the leaves into two groups. For any node u ∈ V , the following notations apply:

c(u) is the set of offspring of u, pa(u) is the parent of u, d(u) is the set of descendants of u

including u, and a(u) is the set of ancestors of u including u. In Figure ??, if u = 2, then

c(u) = {6, 7, 8} , pa(u) = {1}, d(u) = {2, 6, 7, 8}, and a(u) = {1, 2}. The phylogenetic tree

in our motivating application is a nested hierarchy of 133 STs for N = 2, 663 observations,

where the pL = |VL| = 133 leaves represent distinct STs and the p− pL = 132 internal (non-

leaf) nodes represent ancestral E. coli strains leading up to the observed leaf descendants.

Edge-weighted graphs appear as a model for numerous problems where nodes are linked

with edges of different weights. In particular, the edges in T are attached with weights where

w : E → R+ is a weight function. Let Tw = (T , w) be a rooted weighted tree. A path in a

graph is a sequence of edges which joins a sequence of distinct vertices. For a path P in the

tree connecting two nodes, w(P ) is defined as the sum of all the edge weights along the path,

often referred to as the “length” of P . The distance between two vertices u and u′, denoted

by distTw(u, u′) is the length of a shortest (with minimum length) (u, u′)-path. distTw is a

distance: it is symmetric and satisfies the triangle inequality. In our motivating application,

the edge length represents the number of nucleotide substitutions per position; the distance
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between two nodes provides a measurement of the similarity or divergence between any two

core-genome sequences of the input set. In this paper, we use wu to represent the edge length

between a node u and its parent node pa(u). wu is fully determined by Tw. For the root u0,

there are no parents, i.e. pa(u0) = ∅; we set wu0 = 1.

2.2 Latent Class Models for Data on the Leaves

Although LCMs can deal with multiple categorical responses in general, for simpler presen-

tations in this paper, we focus on presenting the model and algorithm using multivariate

binary responses and their application to the motivating data.

Notations. Let Y
(v)
i = (Y

(v)
i1 , . . . , Y

(v)
iJ )T ∈ {0, 1}J be the vector of binary responses for

observation i ∈ [nv] that is nested within leaf node v ∈ VL, where nv is the number of observa-

tions in leaf v. Throughout this paper, let [Q] := {1, . . . , Q} denote the set of positive integers

smaller than or equal to Q, where Q is a positive integer. Let Y(v) =
(
Y

(v)
1 , . . . ,Y

(v)
nv

)T
be

the data from observations in leaf v. Let Y =
((

Y(1)
)T
, . . . ,

(
Y(pL)

)T)T
represent the binary

data matrix with N =
∑

v∈VL nv rows and J columns. Let L = (v1, . . . , vN)T be the “sample-

to-leaf indicators” that map every row of data Y into a leaf in Tw. Sample similarities are

then characterized by between-leaf distances in Tw. In this paper, we assume L and Tw are

given and focus on incorporating (L, Tw) into a statistical model for Y.

LCM for Data on the Leaves. The LCM is specified in two steps:

class indicator : I
(v)
i | πv ∼ CategoricalK {πv} ,πv ∈ SK−1, (1)

data : Y
(v)
ij | I(v)

i ∼ Bernoulli
{
θ
j,I

(v)
i

}
, independently for feature j ∈ [J ], (2)

and independently for observation i ∈ [nv] and leaf node v ∈ VL. Here K is a pre-specified

number of latent classes in the context of the application, e.g., K = 2 for unobserved

human and non-human hosts; see Section ?? for a simple strategy in applications where

data-driven K is desired. In addition, I = {I(v)
i : i ∈ [nv]; v ∈ VL} represent the latent
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class indicators and Z
(v)
ik = 1{I(v)

i = k}, k ∈ [K], where 1{A} is an indicator function

which equals 1 if statement A is true and 0 otherwise; Let Z = {Z(v)
ik }. We have as-

sumed observations in different leaves have potentially different vectors of class probabilities

πv = (πv1, . . . , πvK)T ∈ SK−1, v ∈ VL, where SK−1 = {r ∈ [0, 1]K :
∑K

k=1 rk = 1} is the

probability simplex. θjk ∈ [0, 1] is the positive response probability for feature j ∈ [J ] in class

k ∈ [K]. In our motivating application, the MGEs adapt to the unobserved type of host origin

(i.e., latent class) which can be characterized by class-specific response probability profiles

θ·k = (θ1k, . . . , θJk)
T, k ∈ [K]; let Θ = (θ·1, . . . ,θ·K)T. Because the latent class indicators

I
(v)
i ’s are assumed to be unobserved, the observed data likelihood for N observations is

∏
v∈VL

∏nv

i=1

∑K
k=1 πvkP

(
Y

(v)
i | I(v)

i = k,θ·k
)

.

Throughout this paper, we assume that we wish to classify individuals into K classes with

the same set of (θ·1, . . . ,θ·K) so classes have coherent interpretation. However, we do not

assume that observations are drawn from a population with a single vector of latent class

probabilities. Figure ?? provides a schematic of the data generating mechanism given πv for

three leaves.
[Figure 1 about here.]

3. Prior Distribution

We first specify a prior distribution for {πv : v ∈ VL}. Because leaf-specific sample sizes may

vary, we propose a tree-structured prior to borrow information across nearby leaves. The

prior encourages collapsing certain parts of the tree so that observations within a collapsed

leaf group share the same vector of latent class probabilities. In particular, we extend ? to

deal with rooted weighted trees in an LCM setting. The prior specification is completed by

priors for the class-specific response probabilities Θ.

Tree-structured prior for latent class probabilities πv. We specify a spike-and-slab Gaus-

sian diffusion process prior along a rooted weighted tree based on a logistic stick-breaking
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parameterization of πv. We first reparameterize πv with a stick-breaking representation:

πvk = Vvk
∏

s<k(1− Vvs), for k ∈ [K], where 0 6 Vvk 6 1, for k ∈ [K − 1] and VvK = 1.

We further logit-transform Vvk, k ∈ [K − 1], to facilitate the specification of a Gaussian

diffusion process prior without range constraints. In particular, let ηvk = σ−1(Vvk), k ∈

[K − 1], v ∈ VL, where σ(x) = 1/{1 + exp(−x)} is the sigmoid function. The logistic stick-

breaking parameterization is completed by

πvk = {σ(ηvk)}1{k<K}
∏

s<k

σ(−ηvs), k ∈ [K], (3)

which affords simple and accurate posterior inference via variational Bayes (see Section ??).

For a leaf v ∈ VL, let

ηvk =
∑

u∈a(v)

ξuk, k ∈ [K − 1]. (4)

Here ηvk is defined for leaves only and ξuk is defined for all the nodes. Suppose v and v′

are leaves and siblings in the tree such that pa(v) = pa(v′), setting ξvk = ξv′k = 0 implies

ηvk = ηv′k for k ∈ [K − 1], and hence πv = πv′ . More generally, a sufficient condition

for M leaves ηvk, v ∈ {v1, . . . , vM} to fuse is to set ξuk = 0 for any u that is an ancestor

of any of {v1, . . . , vM} but not common ancestors for all vm. That is, to achieve grouping

of observations that share the same vector of latent class probabilities, in our model, it is

equivalent to parameter fusing. In the following, we specify a prior on the ξuk that a priori

encourages sparsity, so that closely related observations are likely grouped to have the same

vector of class probabilities. The fewer distinct ancestors two nodes have, the more likely the

parameters ηvk are fused, because the prior would encourage fewer auxiliary variables ξuk to

be set to zero. In particular, we specify

ξuk = suαuk,∀ u ∈ V , (5)

αuk ∼ N(0, τ1k`uwu), independently for k ∈ [K − 1],∀ u ∈ V , (6)

su0 = 1, and su ∼ Bernoulli(ρ`u), independently for u ∈ V \ u0, (7)
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ρ` ∼ Beta(a`, b`), independently for ` ∈ [L], (8)

where N(m, s) represents a Gaussian density function with mean m and variance s. τ1k` is

the unit-length variance and controls the degree of diffusion along the tree which may differ

by dimension k and node level `u where `u ∈ [L] represents the “level” or “hyperparameter

set indicator” for node u. For example, in simulations and data analysis, we will assume

that the root for the diffusion process has a prior unit-length variance distinct from other

non-root nodes. For the root u0 with su0 = 1, αu0k initializes the diffusion of ηuk.

Leaf groups are formed by selecting a subset of nodes in V : U = {u ∈ V : su = 1}. Except

a probability-zero set, two leaves v and v′ are grouped, or “fused”, if and only if a(v) ∩ U =

a(v′) ∩ U . In particular, the null set is {ηvk = ηv′k, k ∈ [K − 1]} ∩ {∑u∈[a(v)∩U ]\[a(v′)∩U ] αuk =

∑
u∈[a(v′)∩U ]\[a(v)∩U ] αuk} where the latter has probability zero. In Section ??, we will estimate

U using the posterior median model.

Remark 1: Equations (??)-(??) define a Gaussian diffusion process initiated at αu0k:

ηuk | others ∼ N


 ∑

u′∈a(u)

ξu′k, suτ1k`uwu


 , independently for k ∈ [K − 1], (9)

for any non-root node u 6= u0; also see the seminal formulation by ?. To aid the understanding

of this Gaussian diffusion prior, it is helpful to consider a special case of su = 1 and `u = 1,

∀u ∈ V . For two leaves v, v′ ∈ VL, the prior correlation between ηvk and ηv′k is

Corr(ηvk, ηv′k) =

∑
u∈a(v)∩a(v′)wu

{distTw(u0, v)distTw(u0, v′)}1/2
, (10)

When v and v′ have the same number of ancesters (|a(v)| = |a(v′)|) and all edges have

identical weight wu = c,∀u, the prior correlation is the fraction of common ancestors. Note

that ηv fully determines πv in (??) and induces correlations among {πv, v ∈ VL}.

Remark 2: One reviewer raised an important question on the choice of encouraging prior

correlation among {πv} rather than among the latent class indicators {I(v)
i }. In the present
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prior distribution, by integrating out {πv}, we have induced prior marginal correlation

among {I(v)
i } for observation in nearby leaves. Additional prior correlation amongst the

{I(v)
i } can be introduced via an additional layer of prior over the {I(v)

i } conditional on {πv},

e.g., through clustered samples. The absence of such clustered sampling structure in the

motivating application points us towards the former simpler strategy.

Priors for class-specific response probabilities. Let γjk = log {θjk/(1− θjk)}. We specify

γjk ∼ N(0, τ2jk), independently for feature j ∈ [J ] and class k ∈ [K]. (11)

Joint distribution. Let β = (Z, s,γ,α,%) collect all the unknown parameters where

s = {su : u ∈ V}, γ = {γjk, j ∈ [J ]; k ∈ [K]}, α = {αuk : u ∈ V , k ∈ [K − 1]},

% = (ρ1, . . . , ρL)T, a = (a1, . . . , aL)T, and b = (b1, . . . , bL)T. Hereafter we use pr(A | B)

to denote a probability density or mass function of quantities in A with parameters B; when

B represents hyperparameters or given information in this paper, we simply use pr(A), e.g.,

we will use pr(Y,β) to represent pr(Y,β | τ1, τ2,a, b, Tw,L). The joint distribution of data

and unknown quantities can thus be written as:

pr(Y | β)pr(β) =
∏

v∈VL

nv∏

i=1

K∏

k=1

[
{σ(ηvk)}1{k<K}

∏

s<k

{1− σ(ηvs)}
J∏

j=1

σ
(
X

(v)
ij γjk

)]Z
(v)
ik

(12)

×
∏

u∈V

K−1∏

k=1

(
1√

2πτ1k`uwu
exp

{
− 1

2τ1k`uwu
α2
uk

})
×

J∏

j=1

K∏

k=1

(
1√

2πτ2jk

exp

{
− 1

2τ2jk

γ2
jk

})

×
∏

u∈V
ρsu`u (1− ρ`u)1−su ·

L∏

`=1

1

Beta(a`, b`)
ρa`−1
` (1− ρ`)b`−1, (13)

where X
(v)
ij = 2Y

(v)
ij − 1. Tree information Tw enters the joint distribution in the definition

of ηv (Equations (??)); sample-to-leaf indicators L choose among {ηv, v ∈ VL} for every

observation in Equation (??). By setting su = 0 for all the non-root nodes in Equation (??),

the classical LCM with a single π = πu0 results. Figure ?? shows a directed acyclic graph

(DAG) that represents the model likelihood and prior specifications.
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[Figure 2 about here.]

4. Variational Inference Algorithm

Calculating a posterior distribution often involves intractable high-dimensional integration

over the unknowns in the model. Traditional sequential sampling approaches such as Markov

chain Monte Carlo (MCMC) remains a widely used inferential tool based on approximate

samples from the posterior distribution. They can be powerful in evaluating multidimensional

integrals. However, they do not guarantee closed-form posterior distributions. Variational

inference (VI) is a popular alternative to MCMC for approximating the posterior distribution

and has been widely used in machine learning and gaining interest in statistics (e.g., ??).

In particular, VI has also been used for fitting the classical LCMs (e.g., ?). VI requires a

user-specified family of distributions that can be expressed in tractable forms while being

flexible enough to approximate the true posterior; the approximating distributions and

their parameters are referred to as “variational distributions” and “variational parameters”,

respectively. VI algorithms find the best variational distribution that minimizes the Kullback-

Leibler (KL) distance between the variational family and the true posterior distribution. VI

has been widely applied in Gaussian (??) and binary likelihoods (e.g., ??). Also see ? for

a detailed review. We use VI because it is fast, bypasses infeasible analytic integration or

data augmentation that is otherwise needed for MCMC under Dirac spike components and

prior-likelihood non-conjugacy (?), and enables data-driven selection of hyperparameters via

approximate empirical Bayes (Equation (S8), Supporting Information). These advantages of

VI are achieved at a cost of slight variance-covariance under-estimation, the degree of which

we assess in Section ??.

We use VI algorithm to conduct inference using variational distributions factorized as:

q(β) = q(γ) ·
∏

u∈V
q(su,αu)

︸ ︷︷ ︸
q(s,α)

·
∏

v∈VL

nv∏

i=1

q(Z
(v)
i )

︸ ︷︷ ︸
q(Z)

·
L∏

`=1

q(ρ`)

︸ ︷︷ ︸
q(%)

, (14)
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where q(Z
(v)
i ) is a multinomial distribution with variational parameters r

(v)
i =

(
r

(v)
i1 , . . . , r

(v)
iK

)T
,

and r
(v)
ik represents the approximate posterior probability of observation i in leaf v belonging

to class k and
∑K

k=1 r
(v)
ik = 1. Importantly, we make no other assumptions about the particular

parametric form of variational distributions, which by the VI updating rules can be shown

to take familiar distributional forms (see Appendix A).

VI finds q that minimizes the Kullback-Leibler (KL) distance between the variational

family and the true posterior distribution: KL(q(β)||pr(β | Y)) = −
∫
q(β) log

{
pr(β|Y)
q(β)

}
dβ.

However, the KL distance depends on the intractable posterior distribution is not easily com-

puted. Fortunately, based on a well-known equality log pr(Y) = E(q) + KL(q(β)‖pr(β | Y)),

where E(q) =
∫
q(β) log pr(Y,β)

q(β)
dβ is referred to as evidence lower bound (ELBO) because

log pr(Y) > E(q). Because pr(Y) is a constant, minimizing the KL divergence is equivalent

to maximizing E(q). The VI algorithm updates each component of q(β) in turn while holding

other components fixed. However, because of the nonlinear sigmoid functions in Equation

(??), generic VI updating algorithms for q(su,αu) and q(γ) involve integrating over random

variables in the sigmoid function hence lack closed forms. To make the updates analytically

tractable, we replace Equation (??) with an analytically tractable lower bound. In particular,

we use a technique introduced by ? which bounds the sigmoid function from below by a

Gaussian kernel with a tuning parameter, hence affords closed-form VI updates; also see ?

for a modern view of this technique as a bona fide mean-field approximation with Pòlya

Gamma data augmentation. In particular, we will use the inequality

σ(x) > σ(ψ) exp{(x− ψ)/2− g(ψ)(x2 − ψ2)} := h(x, ψ), (15)

with g(ψ) = 1
2ψ

[σ(ψ)− 1
2
] where ψ is a tuning parameter.

We approximate ELBO E(q) by E∗(q):

E∗(q) :=

∫
q(β) log

h∗(X,ψ,γ,Z)h∗∗(φ, s,α,Z)pr(s,γ,α,%)

q(β)
dβ 6 E(q), (16)
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where h∗(X,ψ,γ,Z) =
∏

v∈VL
∏nv

i=1

∏K
k=1

{∏J
j=1 h

(
X

(v)
ij γjk, ψjk

)}Z(v)
ik

, and h∗∗(φ, s,α,Z) =

∏
v∈VL

∏nv

i=1

∏K
k=1

{
{h(ηvk;φ

(v)
k )}1{k<K}∏m<k h(−ηvm;φ

(v)
m )
}Z(v)

ik

. The VI algorithm iterates

until convergence to find the optimal variational distribution q that maximizes E∗(q). Be-

cause E∗(q) 6 log π(Y), it can be viewed as an approximation to the marginal likelihood.

We maximize over ψ and φ to obtain the best approximation. In addition, we adopt an

approximate empirical Bayes approach by optimizing the VI objective function E∗(q) over

the hyperparameters τ1 and τ2. Relative to specifying weakly informative but often non-

conjugate hyperprior for the variance parameters, optimizing hyperparameter is more prac-

tically convenient (e.g., ?). Because updating the hyperparameters changes the prior, we need

to update q, ψ and φ again. This leads to an algorithm that alternates between maximizing

E∗(q) in (q,ψ,φ) and in (τ1, τ2) until convergence. We update the hyperparameters every d

complete VI iterations. Pseudocode in Algorithm ?? outlines the VI updates; Appendix A1

details the exact updating formula.

4.1 Posterior Summaries

Two sets of point and interval estimates for {πv : v ∈ VL} are available from the VI algorithm:

1) data-driven grouped (“fused”) estimates (π̂dgrp
v ) that are formed by setting a subset of s to

one and the rest to zero, and 2) leaf-specific estimates (π̂leaf
v ). For 1), we select the posterior

median model by setting su = 1 for nodes in Û = {u : Eqt [su] > 0.5} (see Step 1b, Appendix

A1). For leaves v and v′, π̂dgrp
v = π̂dgrp

v′ if and only if a(v) ∩ Û = a(v′) ∩ Û . Because no

closed-form posterior distributions for πv are readily available under logistic stick-breaking

representation, we compute the approximate posterior mean and approximate 95% credible

intervals (CrIs) by a Monte Carlo procedure after convergence of Algorithm ??. For u ∈ Û ,

we first draw B = 105 random independent samples of αuk from N(Eqt [αuk | su = 1], Vqt [αuk |

su = 1]), for k ∈ [K − 1]. We then compute B corresponding πv vectors based on Equations

(??) to (??) with su = 1{u ∈ Û} in (??). Finally, we compute the empirical means and 95%
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CrIs marginally for πvk, k ∈ [K]. The above Monte Carlo procedure is extremely fast given

only independent Gaussian samples are drawn. As a comparison, for 2), we define leaf-specific

estimates π̂leaf
v by the mean of (??) where ηuk

d∼ N(
∑

u∈a(v)Eqt [suαuk],
∑

u∈a(v) Vqt [suαuk]),

for k ∈ [K]. We also use Monte Carlo simulation to approximate the posterior means and

95% CrIs. In general, π̂leaf
v differ across the leaves. In contrast, the data-driven grouped

estimates {π̂dgrp
v } induce dimension reduction.

Prediction. The out-of-sample predictive probability of class k for a new observation

nested in leaf v is r
(v)
i′k := pr(I

(v)
i′ = k | Y (v)

i′ ,D), where D = (Y, Tw,L,a, b, τ1, τ2). We have

r
(v)
i′k =

∫
pr(I

(v)
i′ = k | θ·k,πv, Y (v)

i′ ,D)︸ ︷︷ ︸
(i)

pr(θ·k,πv | Y (v)
i′ ,D)︸ ︷︷ ︸

(ii)

dθ·kdπv. (17)

We approximate (??) by plug-in estimators: r̂
(v)
i′k ∝ pr(Y

(v)
i′ | I

(v)
i′ = k, θ̂·k, Tw) · π̂vk, k ∈ [K].

This can be seen by noting that term (i) ∝ pr(Y
(v)
i′ | I(v)

i′ = k,θ·k, Tw) · πvk, and term

(ii) ≈ pr(θ·k,πv | D) which we approximate by a Dirac measure at (θ̂·k, π̂v). Here π̂v = π̂dgrp
v .

Choice of K. In applications where data-driven selection of K is more desirable, we may

follow ? and use criterion E∗K(q) + log(K!) where E∗K(q) is the lower bound of log marginal

data likelihood for a K-class model and the correction term is to make different models

comparable (e.g., ?, Section 5.2).

5. Simulation

5.1 Design and Performance Metrics

We conducted a simulation study to evaluate the performance of the proposed tree-integrative

LCM. We compare our model to a few alternatives with ad hoc grouping of observations in

terms of accuracy in estimating {πv, v ∈ VL}. Data were generated under two scenarios with

different class-specific response profiles Θ. Appendix A2 details the true parameter settings

of the simulations. Figure ?? visualizes the tree Tw with equal edge weights and true leaf

groups used in the simulation with pL = 11 leaves and G = 3 groups.
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We simulated R = 200 independent replicate data sets for different total sample sizes

(N = 1000, 4000). For each N , we set nv ≈ N/pL for ν ∈ VL (with rounding where needed)

to investigate balanced leaves and set nv to be approximately 1
5
N/pL or 4

5
N/pL with equal

chance for mimicking unbalanced observations across leaves. For observations in a leaf v, we

simulate Y
(v)
i according to an LCM with class probabilities πv and class-specific response

probabilities Θ. We simulated data for different dimensions J = 21, 84, for K = 3 classes.

For each simulated data set, we fitted the proposed model, based on which we compute π̂dgrp
v

and π̂leaf
v (see Section ??). Our primary interest is in {π̂dgrp

v }; {π̂leaf
v } are for comparisons.

In addition, we also tested a few approaches based on ad hoc leaf node groupings: 1) True

grouping analysis (fit separate LCMs to obtain estimates in each of the true groups); 2)

Single group LCM analysis (omit sample-to-leaf indicators L, hence the tree information);

3) Ad hoc grouping 1 (manual grouping coarser than the true grouping); 4) Ad hoc grouping

2: classical LCMs for data on each leaf. All analyses assume Θ does not vary by leaves.

We used three model performance metrics. First, we computed the root mean squared

errors (RMSE) for an estimate π̂v where RMSE(π̂ν) =
√

(KpL)−1
∑K

k=1

∑
v∈VL{π̂vk − πvk}2.

Second, we compared the true and the estimated leaf groupings via adjusted Rand Index

(ARI, ?). ARI is a chance-corrected index that takes value between −1 and 1 with values

closer to 1 indicating better agreement. Finally, we estimated the coverage probability of the

approximate 95% CrIs. For each true group g, we compute the frequency of the approximate

95% CrI (computed along with π̂dgrp
v ) containing the truth, conditional on the event that an

estimated partition of the leaf nodes includes g.

5.2 Simulation Results

Figure ?? shows comparisons among the RMSEs for different models under different scenar-

ios. For sample sizes N = 1000 and N = 4000, the proposed methods with data-driven

grouping (π̂dgrp
v ) produced similar or better RMSE than analyses based on ad hoc leaf
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groupings, which restrict leaves into incorrect groupings that are coarser (single LCM and

ad hoc grouping 1) or finer (ad hoc grouping 2) than the truth. The proposed approach

(π̂dgrp
v ) achieved similar RMSE as π̂leaf

v , indicating little accuracy was lost in exchange for

dimension reduction. The RMSEs of π̂dgrp
v were similar to estimates of πv, v ∈ VL obtained

from analyses based on the true leaf grouping. Indeed, the accuracy of group discovery

increased with sample sizes with other settings fixed. Average ARIs across replications for

each scenario were high (0.94 to 0.99) indicating good recovery of the true leaf groups.

Although the groups discovered were not perfect, the comparable RMSEs suggest desirable

adaptability of the proposed approach in effective collapsing of the leaves. The RMSE for

π̂dgrp
v was smaller than analyses based on a refined leaf-level grouping: smaller sample sizes

in the leaves resulted in loss of efficiency in separate estimations of πv across leaves. RMSEs

were further reduced under a larger J or balanced sample sizes in the leaves. However, we

again observed similar relative advantage of the proposed π̂dgrp
v . The relative comparisons

of RMSEs under less discrepant true class-specific response profiles remained similar (see

Appendix Figure S2).

The observed coverage rates of the approximate 95% CrIs achieved the nominal level

satisfactorily (see Appendix Figure S1). Slight under-coverage occurred under smaller N ,

unbalanced sample sizes, smaller J and leaf groups with smaller number of observations.

This is partially a consequence of VI as an inner approximation to the posterior distribution

which may underestimate the posterior uncertainty (e.g., Chapter 10, ?).

Finally, we also considered scenarios where only a single group of leaves is present in

truth for which the classical LCM is perfectly appropriate. Appendix Figure S3 shows, by

learning the posterior node-specific slab-versus-spike selection probabilities, the proposed

model produces similar RMSEs as the classical LCM.

[Figure 3 about here.]
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6. E. Coli Data Application

6.1 Background and Data

E. coli infections cause millions of urinary tract infections (UTIs) in the US each year

(e.g., ?). Many studies have shown that extraintestinal pathogenic E. coli (ExPEC) strains

routinely colonize food animals and contaminate the food supply chain serving as a likely

link between food-animal E. coli and human UTIs (e.g., ?). The scientific team adopted

a novel strategy of augmenting fine-scale core-genome phylogenetics with interrogation of

accessory host-adaptive MGEs (see Section ??). The scientific goal is to accurately estimate

the probabilities of E. coli isolates with human and non-human host-origins across genetically

diverse but related E. coli sequence types (STs).

We restrict our analysis to N = 2, 663 E. coli isolates in a well-defined collection from

humans and retail meat obtained over a 12-month period in Flagstaff, Arizona, US. Each

isolate belongs to one of pL = 133 different STs (leaves in the phylogenetic tree) that are

identified via a multilocus sequence typing scheme based on short-read DNA sequencing. A

total of J = 17 MGEs were curated and associated with functional annotations. Each ST was

represented by at least four isolates. We constructed rooted, maximum-likelihood phylogenies

using core-genome SNP data for the 133 STs. Figure ?? shows the estimated phylogenetic

tree for the STs where the edge lengths represents the substitution rate in the conserved core

genome. Every ST is overlaid in the same row with the empirical frequencies of 1) J = 17

MGEs and 2) the observed sources (human clinical or meat samples) which may differ from

the true host origin. The observed frequencies of the MGEs vary greatly across lineages.

We apply the proposed tree-integrative LCM to 1) estimate the probabilities of unobserved

human and non-human host-origins for all E. coli STs with data-driven groupings of the STs

for dimension reduction; and 2) to produce isolate-level probabilistic host-origin assignment.

The context of the study restricts us to assume the host origin of each isolate is in one of



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

18 Biometrics, XXXX XXX

two unobserved class of human vs food animals. A subset of preliminary data is analyzed

in this paper for illustrating the proposed method. Inclusion of additional samples and/or

MGEs may change findings. The final results and the detailed workflow of MGE discovery

will be reported elsewhere.

[Figure 4 about here.]

6.2 Data Results

The proposed approach produces estimated class-specific response profiles (θ̂·k, k = 1, 2) that

exhibit differential enrichment of MGEs (Figure ??). For example, MGEs 3, 10 to 17 are

estimated with probability of between 0.15 and 0.71 being present in class 1, with log odds

ratios (LORs; class 1 vs class 2: LOR(θ̂j1, θ̂j2)) greater than one. The functional annotations

of these MGEs reveal that class 1 is likely associated with food-animal hosts. In contrast,

MGEs 4 to 9 are estimated to be present in class 2 with probability between 0.35 to 0.82 with

LORs greater than one relative to the corresponding estimated response probabilities in class

1. The results suggest the MGEs are highly associated with different types of host-origins.

[Figure 5 about here.]

The proposed approach discovered 21 ST leaf groups, for which distinct estimated vectors of

the latent class probabilities π̂dgrp
v are shown in Figure ??. For many estimated ST groups, the

class probabilities are almost entirely dominated by one type of host-origin. For example, the

estimated ST Group 1 (38 leaves; 649 samples; class 1 probability 0.98, 95% CrI: (0.97, 0.99))

and Group 3 (31 leaves; 422 samples; class 1 probability 0.97, 95% CrI: (0.96, 0.98)) showed

high probabilities of non-human (class 1) host-origin of E. coli. The results suggest recent

cross-species transmissions were rare among multiple nearby lineages.

We also compared against results based on two fixed and more restrictive leaf groups, (a)

classical LCM (one leaf group); (b) four leaf groups selected by the scientific team (Appendix

Figure S4). The single LCM (a) estimated the probability of class 1 to be 0.60, 95% CrI :

(0.58, 0.62). The ad hoc leaf grouping (b) produced coarser estimates relative to the proposed
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π̂dgrp
v which identified four local leaves (ST1141, ST10, ST744 and ST5996) comprising 116

samples that have estimated probability of class 1: 0.74 (0.66, 0.82)). This highlights the

inability of potentially misspecified leaf groups to uncover subtle local variations in the

latent class probabilities. We compared these models via 10-fold cross-validation based on

the mean predictive log-likelihood (MPL) of the test data, which is computed by plugging in

the estimated latent class probabilities and response probability profiles. Of note, because of

small sample sizes in some leaves, a naive cross-validation may by chance result in a training

set without any observation in some leaves. We therefore randomly keep two observations per

leaf and use one random fold of the remaining samples as test data. The proposed approach

(with posterior median node selection) achieves the highest MPL (−2015.48) compared to

(a) (−2030.15) and (b)(−2162.45). The estimates of response probability profiles are similar.

On an individual isolate level, the proposed model can estimate the probability that an

isolate was derived from a particular host. For example, by incorporating additional observed

sample source information, we can compute “posterior concordance probability (PCP)”

for each observation. In particular, PCP, r
(v)

i,S
(v)
i

, is defined as the approximate posterior

probability of the true host origin agreeing with the observed sample source category S
(v)
i of

the same E. coli isolate (e.g., S
(v)
i = 1 for meat and 2 for human clinical samples). Figure

?? shows the histogram of PCPs for all the isolates. Small PCPs, e.g., below a user-specified

threshold of 0.5, indicate likely recent host jumps which may subject to further examination

to estimate the timing of host transmissions based on in vitro stability data of each MGE.

7. Discussion

In this paper, we proposed a tree-integrative LCM for analyzing multivariate binary data. We

formulated the motivating scientific question in terms of inferring latent class probabilities

that may vary in different parts of a tree. We proposed a Gaussian diffusion prior for logistic

stick-breaking parameterized latent class probabilities and designed a scalable approximate
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algorithm for posterior inference. Our E. coli data analysis revealed that multiple MGEs

are disproportionately associated with specific host origins. Combined with external sample

source information, the model can help identify isolates that underwent recent host jump,

paving the way for further isolate-level host origin validation.

Our study has some limitations. First, the MGE data we analyzed may represent a fraction

of the host-associated accessory elements. By design, additional accessory elements identified

in future studies can be readily integrated and evaluated in the proposed framework. Second,

host-associated accessory elements are lost and gained over time as E. coli strains transition

across hosts. For infections that were zoonotic in nature, we did not observe how much

time had lapsed between the cross-species host jump and the actual infection. Our model

partly accounted for these uncertainties by the imperfect positive response probabilities.

However, the timings may drive the presence or absence of multiple MGEs, resulting in

potential statistical dependence given the true class of host-origin. Deviations from local

independence assumption may impact model-based inference (e.g., ??). In practice, a subset

of samples with ascertained host-origins may provide critical information to estimate the

conditional dependence structure.

Further model extensions may improve model applicability. First, when a subset of obser-

vations is not mapped in the tree at random, the algorithm can add additional unobserved

leaf indicators to be inferred along with other parameters. Second, it is important to note

that the tree integrated into LCM in general is estimated with uncertainty in the topological

structure. Methods that use an additional layer of prior over the tree space centered around

the estimated tree may account for the upstream uncertainty (e.g., ?). Third, E. coli isolates

may vary in additional factors such as the hosts’ clinical characteristics. Regression extensions

may refine the understanding of variation in latent class probabilities and positive response

probabilities that are driven by covariates (e.g., ?). Fourth, LCM is an example of probability
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tensor decomposition methods (e.g., ?), the tree-integrative LCM motivates extensions to

general graph-guided probability tensor decomposition methods. Finally, the truncated stick-

breaking formulation in Equation (3) motivates connections to a broader class of covariate-

indexed dependent process priors as K approaches infinity (e.g., ??). Extensions along this

line may also relax the present assumption of identical number of realized classes at additional

computational cost.

Without relying on prior-likelihood conjugacy, neuronized priors for Bayesian sparse linear

regression has been proposed (?). Comparative studies against spike-and-slab priors are

warranted. One known drawback of mean field VI is that it tends to underestimate the

marginal posterior variances of parameters. In our simulations, we showed near nominal

coverages of the true π with slight undercoverages happening mostly for leaf groups with

very small sample sizes. It is an interesting line of work to incorporate the methods of ? to

correct the variance-covariance matrices used in the component variational distributions. We

leave these topics for future work.
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Algorithm 1: Pseudocode for Variational Algorithm to Integrate Sample Similarities
into Latent Class Analysis

Tree-Encoded Information and Data:
(a) A weighted rooted tree Tw = (T = (V , E), w): leaves VL ⊂ V , edge lengths w = (wu)u∈V ;
(b) The leaf id for each observation L;
(c) Multivariate binary data Y (organize the observations with the same leaf id into

consecutive rows: a total of nv observations in leaf v, v ∈ VL; The leaf in the s-th row of
Y is vs, s ∈ [N ].)

Fixed Hyperparameters:

(a′) The number of classes K > 2; levels `u ∈ [L] for all nodes u ∈ V ;
(b′) Hyperparameters for the prior probability of su = 1: (a`, b`), ` ∈ [L].

Initialize:

(a′′) t←− 0; Initialize qt(s,α,γ) // (see Step 0 in Appendix A1)
(b′′) Set an initial ELBO E∗0 ←− 0

1 t←− 1; E∗1 ←− E∗0 + 2ε
2 while |E∗t − E∗t−1| > ε do
3 qt(s,α,γ)←− qt−1(s,α,γ)
4 φ(t) ←− φ(t−1); ψ(t) ←− ψ(t−1)

5 τ
(t)
1 ←− τ (t−1)

1 ; τ
(t)
2 ←− τ (t−1)

2
6 for v ∈ VL do
7 for i ∈ [nv] do
8 for k ∈ [K] do

9 r
(v),(t)
ik ←− argmax

r
(v)
ik
E∗t (q) // (See Step 1a in Appendix A1)

10 qt(γ)←− argmaxqt(γ) E∗t (q) // (see Step 1b in Appendix A1)

11 for u ∈ V do
12 qt(su,αu)←− argmaxqt(su,αu) E∗t (q) // (see Step 1b in Appendix A1)

13 for ` ∈ [L] do
14 qt(ρ`)←− argmaxqt(ρ`) E∗t (q) // (see Step 1c in Appendix A1)

15 for k ∈ [K] do
// update local variational parameters for tighter lower bounds

16 for v ∈ VL do

17 φ
(v),(t)
k ←− argmax

φ
(v)
k
E∗t (q)

18 for j ∈ [J ] do

19 ψ
(t)
jk ←− argmaxψjk

E∗t (q) // (see Step 2 in Appendix A1)

20 if t mod d = 0 then
21 for k ∈ [K] do
22 for ` ∈ [L] do

23 τ
(t)
1kl ←− argmaxτ1kl E∗t (q)

24 for j ∈ [J ] do

25 τ
(t)
2jk ←− argmaxτ2jk E∗t (q) // (see Step 3 in Appendix A1)

26 E∗t ←− ELBO(qt) // (see Step 4 in Appendix A1)
27 t←− t+ 1

Return: qt−1(γ), qt−1(s,α), {qt−1(Z
(v)
i )}, qt−1(%), {E∗1 , . . . , E∗t−1}
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model_structure.pdf

Figure 1: Schematic representation of a hypothetical rooted weighted tree with
three leaves and data generated based on the proposed model with K = 3 latent
classes, nv1 = 2, nv2 = 4 and nv3 = 2, J = 8. This figure appears in color in the
electronic version of this article, and any mention of color refers to that version.
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tree_lcm_model_structure.pdf

Figure 2: The directed acyclic graph (DAG) representing the structure of the model
likelihood and priors. The quantities in squares are either data or hyperparameters; the
unknown quantities are shown in the circles. The arrows connecting variables indicate
that the parent parameterizes the distribution of the child node (solid lines) or completely
determines the value of the child node (double-stroke arrows). The rectangular “plates”
where the variables are enclosed indicate that a similar graphical structure is repeated over
the index; The index in a plate indicate nodes, hyperparameter levels, leaves, subjects, classes
and features. This figure appears in color in the electronic version of this article, and any
mention of color refers to that version.
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small_simu_tree.pdf

(a) Tree with true leaf groups

rmse_strong.pdf

(b) RMSE comparisons across multiple models and scenarios

Figure 3: Simulation studies show the proposed model produces grouped estimates π̂dgrp
v

with similar or smaller RMSEs compared to alternatives (see Section ??). This figure appears
in color in the electronic version of this article, and any mention of color refers to that version.
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thetree_EL_abundance_root.pdf

Figure 4: The empirical frequencies for J = 17 MGEs within each ST mapped in the core-
genome phylogenetic tree. The red scale bar represents the substitution rate in the conserved
core genome. The bars on the right indicate the total number isolates of each ST; the gray and
blue bars represent the number of isolates obtained from apparent non-human and human
sources, respectively. The core-genome phylogenetic tree on the left margin maps N = 2, 663
E. coli isolates into pL = 133 STs (leaves). This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.
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ecoli_results.pdf

(a) Estimated groups and class probabilities; class 1 - non-human host; class 2 - human host

ecoli_results_response_rates.pdf

(b) The estimated class-specific response probabilities

ecoli_concord_prob.pdf

(c) Histogram of host-source posterior concordance proba-
bility (PCP)

Figure 5: a) Data results with estimated leaf groups and latent class probabilities by group.
ST names (ST # isolates) are aligned to the tips of the circular tree, which are colored by
discovered leaf groups. The scale bar represents the substitution rate in the conserved core
genome. The circular heatmap shows the estimated latent class probabilities (π̂dgrp

v , v ∈ VL);
b) and c): see the captions of the subfigures. This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.


