Precision and Bias in ADC Measurements on Pre-Clinical MRIs Using a Standardized DWI Phantom and Procedure

Thomas L. Chenevert* on behalf of CIRP IADP DWI Phantom Round-Robin Project Participants

* Department of Radiology
University of Michigan
tlchenev@med.umich.edu

Background & Motivation

- Prior work indicates reasonable repeatability ($\approx 3\%$) and reproducibility ($\approx 6\%$) of ADC measurements on pre-clinical MRIs, though inferior relative to clinical MRIs
- Pre-clinical MRIs exhibited significant absolute bias (≈15%)

phantom. J Magn Reson Imaging, 2013. 37(5): p. 1238-46.

Objectives

- Investigate apparent discrepancy of ADC measurement on clinical vs pre-clinical systems
- Assess ADC repeatability and reproducibility on pre-clinical MRIs
- Measure absolute bias, spatial uniformity, and SNR_{DWI}
- Generate multi-vendor DWI/ADC data in vendor-native format
- Assess sites' ITK-compatible format of same multi-vendor data
- Compare site- vs central-lab ADC measurements on common datasets

Experiment Design

Round-robin of ice water-based DWI phantom

Detailed phantom preparation instructions

• Standardized (simple) 3 bvalue DWI protocol

Acquire test-retest data for short- & long-

term repeatability

CIRP / IADP Participation Summary

- 10 systems
- 7 sites
- 3 vendors
- 6 field strengths (3 14T)

CIRP / IADP Workgroup DWI Phantom Round-Robin												
						Dayl Day2		ıy2				
Sys	Site	Vendor	Magnetic Field (T)	SW version	Scanl	Scan2	Scanl	Scan2	Site ROIs	Central ROIs	Vendor Format	ITK Format
1	UMICH	Bruker	7	PV7.0.0	✓	✓	✓	✓	✓		✓	MHD
2	UPENN	Bruker	9.4	PV6.0.1	✓	✓	✓	✓	✓	✓	✓	MHD & DICOM
3	MDACC	Bruker	7	PV6.0.1	✓	✓	✓	✓	✓	✓	✓	DICOM
4	WUSTL	Bruker	9.4	PV360 v2.0	✓	✓	✓	✓		✓	✓	DICOM
5	WUSTL	Agilent	11.74	VnmrJ4. 2 revA	✓	✓	✓	✓		✓	✓	DICOM
6	UCSF	Bruker	3	PV6.0.1	✓	✓	✓	✓	✓	✓	✓	DICOM
7	BAYLOR	Bruker	9.4	PV360 v3.0	✓	✓	✓	✓	✓	✓	✓	NIFTI
8	UWASH	Bruker	4.7	PV6.0.1	✓		✓		✓	✓	✓	DICOM
9	UWASH	Bruker	14	PV5.1	✓		✓		✓	✓	✓	DICOM
10	UMICH	MR Solutions	3	v4.0.2.4	✓	✓	✓	√	√		✓	MHD & DICOM

Data Processing Workflow

DICOM Format DWI

Native Vendor Format
DWI (b=0, 1k, 2k)
(2dseq; fdf; sur)

Matlab Scripts

Matlab Scripts
'Iscov' least-sq linear fit
of log(S) vs b-value

Low-b DWI High-b DWI ADC map

ROI

each

slice

Туре	Index	Count	Volume mm^3		Volume cc	Min	Max	Mean	StdDev	
0	0	113580	56790.0		56.79	-0.626823544502 1.88733768463		nan	nan	
1	1	3782	1891.0	Inde	pende	nt stats ea	nan	nan		
2	2	50	25.0		0.025	-0.08130776882	0.400735706091	0.0481575447321	0.0970932294324	
3	3	51	25.5		0.0255	-0.09765338897	0.3997631073	0.0501125334698	0.107839443327	

Z (mm)	Index	Count	Volume n	Volume c	Min	Max	ROI mean ADC	ROIStdev	Include ROI	ADC (um^2/ms)	StdDev S
-28.0	1	3782	1891	1.891	-0.396	0.4709	nan	nan	N	#N/A	#N/A
-26.0	2	50	25	0.025	-0.081	0.4007	0.048157545	0.097093229	N	#N/A	#N/A
-24.0	3	51	25.5	0.0255	-0.098	0.3998	0.050112533	0.107839443	N	#N/A	#N/A
-22.0	4	49	24.5	0.0245	-0.041	0.6088	nan	nan	N	#N/A	#N/A
-20.0	5	50	25	0.025	0	1.1279	0.829172775	0.290736272	Y	0.829172775	0.2907
-18.0	6	50	25	0.025	0.8555	1.308	1.052811496	0.092321762	Y	1.052811496	0.0923
-16.0	7	50	25	0.025	_			9755	Y	1.083415822	0.0436
-14.0	8	52	26	0.026	Exp	ort t	o CSV / e	excel 0796	Υ	1.095817536	0.0252
-12.0	9	52	26	0.026				3172	Y	1.097620318	0.0131
-10.0	10	52	26	0.026	1.0747	1.1402	1.105769428	0.015011503	Υ	1.105769428	0.015
-8.0	11	52	26	0.026	1.0884	1.1408	1.111513711	0.011947366	Υ	1.111513711	0.0119
-6.0	12	52	26	0.026	1.0903	1.1358	1.113322095	0.009936806	Υ	1.113322095	0.0099
-4.0	13	52	26	0.026	1.0972	1.1369	1.11549457	0.008090819	Υ	1.11549457	0.0081
-2.0	14	51	25.5	0.0255	1.0923	1.1326	1.115408009	0.010001895	Υ	1.115408009	0.01
0.0	15	52	26	0.026	1.0916	1.1312	1.11375949	0.009930045	Υ	1.11375949	0.0099
2.0	16	51	25.5	0.0255	1.0894	1.145	1.117525105	0.010295895	Υ	1.117525105	0.0103

Results: Individual System Bias vs at Magnet Isocenter

Individual System Bias vs at Magnet Isocenter

Prior Study

Individual System Bias vs Z-location

Bias & Cross-System Reproducibility vs Z-location

Bias & Inter-Exam (long-term) Repeatability vs Z-location

Bias & Intra-Exam (short-term) Repeatability vs Z-location

System SNR Estimation

• Two-scan method: pixelwise average and difference of identical scans

$$M = \frac{[scan_1 + scan_2]}{2}; D = [scan_1 - scan_2]$$
$$SNR_{ROI} = \sqrt{2} \frac{ROI\ Mean\ (M)}{ROI\ Stdev\ (D)}$$

- Identical receiver gain confirmed on only 3 of 10 systems
- Background noise method: estimate noise from background (slice1)

$$SNR_{ROI} = \sqrt{(2 - \frac{\pi}{2})} \frac{ROI Mean (scan_i)}{Stdev (background_i)}$$

System SNR Estimation

• Based on estimated SNR & simulations, noise should not contribute to bias on any of these systems (iso-center \pm 15mm)

Site vs Central Lab ADC Measurement

Summary & Conclusions

- Main objectives met
- ADC reproducibility, repeatability *AND* bias of pre-clinical MRIs is comparable to clinical MRIs at isocenter two outlier systems identified: ave bias < 5% at isocenter; excl outliers ave bias < 2%
- Increased bias and poorer reproducibility / repeatability with distance from isocenter
- SNR estimates indicate noise is not a contributor to bias
- Spatial pattern of bias is consistent with gradient non-linearity
- Sources of site- vs central-lab ADC measurement discrepancies:
 - ADC fit routine
 - improper interpretation of DICOM intensity scaling

Thank You!