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Abstract 

Transportation disruptions from flooding often reflect and exacerbate 

pre-existing socioeconomic disparities in an area. This study seeks to create an 

equity-centered model to assist with the prioritization of transportation and 

flood mitigation projects. Accessibility to life-sustaining core services was 

used as a proxy for community vulnerability. Through spatial analyses, two 

distinct methodologies were developed to formulate a novel vulnerability 

index. Vulnerability in both methods was defined as a function of sensitivity 

and adaptive capacity. While both methods used a combination of 

socioeconomic, transportation, and flood data, the way in which risk was 

defined differed among the methods. Method 1 utilized roads identified as 

highly susceptible to damage from flooding within its definition of sensitivity. 

Using a network analysis, Method 2 expanded the number of roads classified 

as 'high risk' by incorporating drivetimes to core services and how they may 

be impacted by a flood. A comparison of the methods demonstrates that 

differing definitions of risk and sensitivity to flooding can have significant 

impacts on vulnerability indices, where Method 2 yielded more areas of high 

vulnerability compared to Method 1. While this study focuses on a section of 

southeast Michigan, the methods used can be applied to other communities 

facing socioeconomic disparities in flood-prone areas. 

 

 

 



 
 

iv 
 

 

 

Table of Contents 

Introduction……………………………………………………………………1 

Background……………………………………………………………………5 

Equity, Vulnerability, and Flooding…………………………………..5 

Equity in Current Transportation Policy………………………………7 

Review of Existing Equity and Transportation Tools………………..11 

Data…………………………………………………………………………..16 

SEMCOG Flood Risk Data…………………………………………..16 

SEMCOG Equity Emphasis Data……………………………………18 

Methodology…………………………………………………………………20 

Unit of Analysis……………………………………………………...20 

Study Area…………………………………………………………...21 

Vulnerability…………………………………………………………22 

Accessibility and Calculating Drive Time…………………………...23 

Method 1: High Risk Roads………………………………………….25 

Method 2: High Risk Road Network………………………………...30 

Results………………………………………………………………………..33 



 
 

v 
 

 

General Trends……………………………………………………….33 

Hospitals……………………………………………………………..34 

Schools……………………………………………………………….34 

Grocery Stores……………………………………………………….35 

Discussion……………………………………………………………………39 

Comparison of Methods……………………………………………...39 

Use of Methods to Prioritize Transportation Projects………………..42 

Additional Analyses………………………………………………….48 

Conclusion…………………………………………………………………...49 

Bibliography…………………………………………………………………52 

Appendix……………………………………………………………………..62 

 

 

 

 

 

 

 

  



 

1 

1. Introduction 

 Global climate change projections show that floods are increasing in 

frequency and severity, especially in urban areas where impervious surfaces 

can lead to increased runoff (Abenayake et al., 2022; Atta-ur-Rahman et al., 

2016; Huong & Pathirana, 2013; Rubinato et al., 2019). Automobile transit is 

a sector that is particularly impacted by the effects of flooding (Abenayake et 

al., 2022). Flooded roads, for example, can greatly limit a community’s access 

to life-sustaining resources such as food, income, education, and healthcare. 

Further, damage and recovery in communities can vary dramatically 

depending a variety of factors including income, housing conditions, and 

access to resources (Atta-ur-Rahman et al., 2016; Chakraborty et al., 2020). 

Inequitable impacts  from flooding, such as damages, repair costs, and 

accessibility to resources, often stem from existing socioeconomic disparities 

(Burton & Cutter, 2008; Collins et al., 2013; Pallathadka et al., 2022). Similar 

to the projected increase in the number and severity of floods, the number and 

connectivity of transportation networks is also on the rise (Feng & Gauthier, 

2021; Hamidi & Ewing, 2014). Urban sprawl can be a double-edge sword as 

increasing the connectivity of cities can allow for more accessible resources, 

but the increase in impermeable surfaces can contribute to more flooding 

(Dayaratne & Perera, 2008; Greiner et al., 2020; Rubinato et al., 2019). As 

more and more people become dependent on road networks, it is crucial to 

plan for how these networks will be impacted by flooding.  
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Modeling the susceptibility of infrastructure to floods is a commonly 

employed  tool  in transportation planning. A spatial assessment of areas 

facing the greatest risk of flooding overlayed with road infrastructure data can 

assist planners in prioritizing transportation projects (Dong et al., 2020; Duy 

et al., 2019; Johnson et al., 2007; Kalantari et al., 2019; Lin et al., 2019). One 

such tool is the Flood Risk Dashboard developed by the Southeast Michigan 

Council of Governance (SEMCOG), which will be discussed in depth in later 

sections. This tool combines topological, historical flooding, and 

infrastructure data over the seven-county SEMCOG area to assign a risk score 

to transportation assets such as roads and bridges (SEMCOG Flooding Risk 

Tool Dashboard, 2023). Tools such as the Flood Risk Dashboard provide 

decision support for planners looking to assess the urgency of completing 

certain projects based on their risk score.  However, models like the Flood 

Risk Tool can be improved by addressing the possible inequities of flooding. 

Identifying where those potential inequities occur and which communities are 

impacted by them is the objective of this research.  

An equity-centered approach to flood mitigation and transportation 

planning requires defining ‘vulnerability’ in a way that incorporates both 

infrastructure and socioeconomic variables into the analysis. Several 

definitions exist within the field of flood management and these existing 

definitions range their specificity. The International Panel of Climate Change 

(IPCC) defines vulnerability as the extent to which a community is incapable 
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of managing sea-level rise and climate change effects (Nasiri et al., 2016). 

Alternatively, the United Nations (UN) defines vulnerability as the degree of 

damage to certain objects, where zero indicates no damage and one indicates 

full damage (Nasiri et al., 2016). Aspects from both the IPCC and the UN 

definitions can be valuable in this study as the IPCC incorporates community 

impacts and the UN introduces a way to quantify vulnerability. Models that 

overlap equity and transportation or equity and flooding are not uncommon; 

there are few models that integrate all three factors (Abenayake et al., 2022; 

Albano et al., 2015; Chakraborty et al., 2020, 2022; Evers et al., 2016). 

Previous studies on levee failures in California, for example, found that there 

is a disproportionate impact on minority communities and communities of 

lower income in flood prone areas (Burton & Cutter, 2008). In addition, there 

are several studies that demonstrate that green infrastructure (GI) is a viable 

method for reducing  impervious surface area and therefore, flood risk, but GI 

is often built only in affluent cities (Greiner et al., 2020; Pallathadka et al., 

2022). These cases highlight the linkages between infrastructure and climate 

injustice, but can be expanded to investigate the connection to transportation 

networks. Community-centric variables, such as demographic information, 

can have a tremendous impact on the applicability of previously mentioned 

models and studies. These factors should not only be incorporated into risk 

assessments, but they should be held at the same level of importance as 

hydrologic and infrastructure data (Borowski et al., 2021; Collins et al., 2018; 

Gutschow et al., 2021; Johnson et al., 2007). While previous studies provide 
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groundwork for equity-centered modeling, there is a need for methodologies 

that place equity at the center of transportation and flood planning. 

This project seeks to fill a gap in knowledge by assessing the potential 

for using equity-centered spatial analysis methodologies to assist with the 

prioritization of flood mitigation and transportation projects. Using two 

separate geospatial analyses, a novel vulnerability index was created that is 

specific to relevant socioeconomic, flooding, and transportation data for a 

subsection of Southeast Michigan in Wayne County. This index uses a 

community’s access to life-sustaining services as a factor in the definition of 

vulnerability. Previous studies have shown that transportation interruptions to 

such services  can have a detrimental effect on community members (Collins 

et al., 2018; Feng & Gauthier, 2021; Lin et al., 2019). Accessibility can be 

used as a proxy for vulnerability as the indirect effects of flooding can have 

damages as serious as those caused by the floods themselves (Borowski et al., 

2021; Collins et al., 2018; Gutschow et al., 2021). The aftermath of Hurricane 

Katrina exemplified how socially marginalized communities often lack 

sufficient mitigation capacities for flooding. For example, accessibility issues 

from flooding resulted in the inability to return to work, difficulty evacuating 

dangerous areas, and delays in reaching health and childcare services (Collins 

et al., 2018). A high-risk of disruptions to accessing critical services, 

especially in marginalized communities, has been connected to higher levels 

of chronic stress and trauma (Gutschow et al., 2021). Based on available data 
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for the study area, the core services used in this study were schools, grocery 

stores, and hospitals. Accessibility to these services was investigated since 

ability to obtain an education, food, and heath care as central to a 

community’s wellbeing (Gutschow et al., 2021).  

2. Background  

2.1. Equity, Vulnerability, and Flooding  

In addition to a growing number of severe flood events globally, 

planners must consider underlying socioeconomic disparities and how they 

may be perpetuated by flooding. The Executive Order on Further Advancing 

Racial Equity and Support for Underserved Communities Through the Federal 

Government defines equity as the “consistent and systematic fair, just, and 

impartial treatment of all individuals,” (House, 2023). Equity can be 

categorized into several classifications. Most relevant to this study are social 

equity and geographic equity. Social equity is the distribution of impacts 

across population groups including race, income, social class, and mobility. 

Geographic equity refers to the distribution of impacts spatially and how that 

aligns with social inequities. (Bosisio & Moreno-Jiménez, 2022; Iseki, 2016). 

For this study, vulnerability is directly linked to the intersection of geographic 

and social equity and is   defined as a function of sensitivity and adaptive 

capacity. Within this definition, sensitivity refers to the susceptibility to 

flooding and adaptive capacity refers to the ability of a community to prepare 

for and recover from flooding events (Balica et al., 2013). Variables 
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describing accessibility to core services, such as community demographics 

and average driving time, are incorporated into the measurements of 

sensitivity and adaptive capacity. In determining vulnerability, it is important 

to identify areas where geographic inequities align with social inequities. 

Social factors can contribute to the overall vulnerability of geographically 

flood-prone areas by influencing the extent to which communities can 

mitigate potential flood damages(Iseki, 2016). For example, low-income, 

public transit-dependent households that are in flood zones may face more 

difficulties recovering from a flood than high-income households with private 

automobiles in the same area. Further, communities of high vulnerability and 

inequity from flooding tend to be in urban areas (Moulds et al., 2021; 

Wennink & Krapp, 2020). 

Urbanization can increase the likelihood of flooding from altered 

drainage systems, higher surface runoff levels, and an increase in impervious 

services (Bosisio & Moreno-Jiménez, 2022; Dayaratne & Perera, 2008). In 

highly urbanized areas, flooding disproportionately affects people of lower 

income (Chakraborty et al., 2020; Moulds et al., 2021; Oliver-Smith et al., 

2017). The American Planning Association found that communities of color 

and low income are more likely to be historically disadvantaged and excluded 

from transportation planning processes (Wennink & Krapp, 2020). 

Discriminatory housing practices and suburban sprawl further contribute to 

accessibility issues in urban areas as personal vehicles are typically purchased 
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by white, wealthy people in urban areas (Wennink & Krapp, 2020). Inequities 

in flood impacts and vulnerability may be a result of lower income, minority, 

and historically disadvantaged  communities being built in flood-prone areas, 

a lack of sufficient infrastructure, and an absence of policy that addresses 

social inequities (Moulds et al., 2021; Wennink & Krapp, 2020). Communities 

with overlapping social inequities and geographical inequities should be 

considered highly vulnerable, and therefore be prioritized in planning 

decisions, instead of being excluded from the planning process. 

Methodologies developed in this study aim to identify these communities so 

that their needs are better met by planners. 

2.2. Equity in Current Transportation Policy  

This study is guided by the principles and foundations of current, 

climate justice U.S. policies regarding equity and transportation. President 

Biden’s Executive Order 14008, “Tackling the Climate Crisis at Home and 

Abroad,” has resulted in many government agencies revamping their 

frameworks regarding equity and the development of numerous related 

initiatives in the form of task forces, decision support tool development, and 

monetary commitments (House, 2021). Specific to transportation, many local 

planning organizations and Departments of Transportation (DOT) at the state 

and federal level have created task forces and invested heavily into transit 

projects that address environmental justice and promote increasing equity. 

Across multiple government agencies and policies, the goal of creating 
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equitable solutions to climate injustice is being pursued with more intensity 

than before (FHWA - FAPG 23 CFR 200, Title VI Program and Related 

Statutes - Implementation and Review Procedures, 1964; House, 2021, 2023). 

Guided by this objective, an equity-lens was applied to the spatial analyses 

completed in this study. 

The signing of Executive Order 14008 led to the implementation of the 

Justice40 Initiative. The program, initiated in January 2021, aims to allot forty 

percent of Federal investments to programs that will benefit disadvantaged 

communities impacted by pollution. Categories of investments that align with 

the executive order include climate change mitigations, clean energy, and 

sustainable transit (House, 2021). The USDOT has stated that through this 

initiative, they will commit to the prioritization of projects aimed at increasing 

the affordability, equity, and safety of transportation for all communities. In 

addition, the department plans to evaluate and address the consequences of 

transportation construction and the extent to which community members are 

involved in project development. Objectives from the USDOT are 

summarized in the USDOT Equity Plan, with four focus areas. The area of 

Wealth Creation seeks to provide technical assistance to small, disadvantaged 

businesses. Power of Community addresses inequities in grants, goods, and 

services given to communities. Through Interventions, DOT aims to provide 

direct support for local planning, projects, and grant applications. The final 

focus area of Expanding Access seeks to create a measure for transit cost 
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burden at a national level. An Equity Leadership Team has been established to 

oversee these goals. The team is divided into six groups - Data and 

Assessment, Workforce Equity and Economic Justice, Mobility Justice, 

Interagency and Stakeholder Engagement, Technology and Innovation, and 

Budget (U.S. Department of Transportation Equity Action Plan | US 

Department of Transportation, 2022). The methodologies in this study relate 

to the goals of several groups within the Equity Leadership Team. 

Specifically, accessibility data produced from this study can provide insights 

into workforce equity, economic justice, and mobility justice. The potential of 

planners using these methods to identify vulnerable communities is reflective 

of the goals of the Technology and Innovation group. 

Within the USDOT, the Federal Highway Administration (FHWA) has 

also implemented an equity program. The program includes a planning guide 

directed at state DOTs, metropolitan planning organizations (MPOs), and 

public transit providers on how to integrate equity into transportation project 

development. The FHWA has traditionally used Title VI of the Civil Rights 

Act to identify equity instead of equity factors themselves (Rufat et al., 2015). 

In transportation planning, this statute requires all programs, services, and 

projects to be completed without discrimination “on the ground of race, color, 

national origin, sex, or disabilities,” (FHWA - FAPG 23 CFR 200, Title VI 

Program and Related Statutes - Implementation and Review Procedures, 
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1964). Further, the organization has developed a Screening Tool for Equity 

Analysis of Project (STEAP).  

Similar to the USDOT, MDOT is in charge of project planning, 

construction, and maintenance of transportation, but at the state level. A draft 

of their next Five-Year Transportation Program (2023-2027) was released in 

2022. This draft integrates equity in two focus areas - Equity and Inclusion 

and Transportation Resilience. Broadly, the goals of Equity and Inclusion are 

to reduce negative impacts on health and related environmental effects in 

historically disadvantaged communities, increase involvement of said 

communities in policy, and to minimize barriers of benefits reaching minority 

and low-income populations. Projects focused on Transportation Resilience 

seek to increase safety and sustainability, while reducing the vulnerability of 

transit assets through projects that can adapt and recover rapidly from climate 

related hazards (Five-Year Transportation Program, n.d.). Results from this 

study could provide insights into the resilience of transportation specific to 

communities in Southeast Michigan. Further, these insights can directly 

influence the prioritization process of transit asset projects by placing more 

emphasis on social vulnerability. 

A leading challenge in measuring social vulnerability to hazards is for 

output metrics to better reflect the context in which vulnerability occurs. 

Through a meta-analysis of 67 flood disaster case studies (1997–2013), the 

leading drivers of social vulnerability to floods are profiled (Rufat et al., 
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2015). The results identify demographic characteristics, socioeconomic status, 

and health as the leading empirical drivers of social vulnerability to damaging 

flood events. Risk perception and coping capacity were also featured 

prominently in the case studies, yet these factors tend to be poorly reflected in 

many social vulnerability indicators. The influence of social vulnerability 

drivers varied considerably by disaster stage and national setting, highlighting 

the importance of context in understanding social vulnerability precursors, 

processes, and outcomes. To help tailor quantitative indicators of social 

vulnerability to flood contexts, the article concludes with recommendations 

that temporal context, measurability, and indicator interrelationships be 

incorporated in measuring vulnerability within policy (Rufat et al., 2015). 

2.3. Review of Existing Equity and Transportation Tools 

Several screening tools exist in the realms of transportation, flooding 

risk, and/or environmental justice. These tools allow users to quickly filter 

data to identify areas relevant to the problem they are trying to solve. The 

capabilities and spatial range of these tools are heavily dependent on who 

created them, the purpose for which they were created, and the available data. 

Most flood risk tools used by Transportation Planning Organizations (TPOs) 

have a local focus (Albano et al., 2015; Antwi-Agyakwa et al., 2023; Evers et 

al., 2016; Hagemeier-Klose & Wagner, 2009). Generally, environmental 

justice and equity tools have a broader geographic area as large, publicly 

available datasets like census data can be used. However, the extent to which 
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these tools overlap transportation, flood, and equity data vary extensively, 

with only a few integrating variables from all three sectors. Creating a model 

that effectively utilizes an equity lens for flood planning requires an 

understanding of transportation system vulnerabilities and the ability to relate 

these to socio-economic factors in a community. This section highlights four 

existing screening tools. These tools were developed with goals specific to 

equity, transportation, or flooding. However, similar spatial analysis 

techniques are used in each. This commonality shaped how methods in this 

study were developed and showcases how an equity-lens is applicable to 

transportation and flooding models. 

Developed by the Council on Environmental Quality for Justice40, the 

Climate and Economic Justice Screening Tool (CJEST) functions as a 

screening tool that identifies disadvantaged communities. It utilizes census 

tract data to evaluate twenty-two socioeconomic and environmental indicators 

to classify tracts into several categories of different types of disadvantages. 

The categories of disadvantage include climate change, clean energy and 

energy efficiency, clean transit, affordable and sustainable housing, reduction 

and remediation of legacy pollution, critical clean water and wastewater 

infrastructure, health burdens, and training and workforce development. If a 

census tract is at or above the 90th percentile for one or more environmental 

indicators and it is at or above category dependent thresholds for any socio-
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economic indicators, then it is considered disadvantaged in that category 

(Methodology & Data - Climate & Economic Justice Screening Tool, 2022). 

Like with this study, the USDOT developed a Transportation 

Disadvantaged Census Tract screening tool using the mapping software, 

ArcGIS. The tool displays a map of census tracts and highlights tracts that are 

considered disadvantaged in at least four of the following categories (Fig. 1), 

including historically disadvantaged, transportation access disadvantaged, 

health disadvantaged, economy disadvantaged, equity disadvantaged, 

resilience disadvantaged and environmental disadvantaged. A percentile 

method similar to that used in CJEST was employed in this model, with the 

difference of using averages for tracts calculated and assigned a score based 

on 50th and 75th percentiles. (Transportation Disadvantaged Census Tracts 

(Historically Disadvantaged Communities) Interim Definition Methodology | 

US Department of Transportation, 2023). As described further in the methods 

section below, I adopt this percentile approach to calculate a vulnerability 

index that integrates environmental, socioeconomic, and transportation 

indicators. Data from the Social Vulnerability Index, the Environmental 

Protection Agency, the Housing and Urban Development Location 

Affordability Index, and the Federal Emergency Management Agency is 

aggregated into a final indicator of one or zero (yes or no) for each category. 

This allows for planners to gain better locational context when deciding where 

projects and funds should be allocated.  
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Fig.1. This image is a screenshot of the USDOT Transportation Disadvantaged Census Tract screening 

tool that zoomed in on southeast Michigan. Census tracts are color-coded to represent whether the tract 

is considered disadvantaged for transportation. Gray indicates that the tract is not disadvantaged and 

yellow indicates the tract is disadvantaged (Transportation Disadvantaged Census Tracts, 2023).  

Fig. 2. This image is a screenshot from the STEAP tool. In this example, a line was drawn (dark red) to 

represent a potential transportation project. A .5 mile buffer was applied and data regarding the 

socioeconomic statistics of the communities within the buffer are later calculated (HEPGIS Title VI 

Tool, 2023).  
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As previously mentioned, the FHWA has created STEAP, an equity 

screening tool. The tool allows users to either select highways or draw lines 

that represent hypothetical transportation projects (Fig. 2). A buffer analysis is 

then performed to provide an estimate of the socio-economic data within the 

chosen buffer limit. Summarized data is taken from Title VI and various 

environmental justice related variables from the American Community Survey 

2015-2019 Five Year report (Introducing the Equity Analysis Radius Map 

Tool, 2023). Users are able to adjust the project locations and buffer sizes to 

better conceptualize what communities may be impacted by a transportation 

project there.  

The University of South Florida Center for Urban Transportation 

Research (CUTR) has developed a toolkit featuring several guidelines, forms, 

and assessments related to integrating equity into transportation planning. 

Within the toolkit, a policy brief provides a framework for local governments 

and TPOs to evaluate their communities' specific areas of need. The 

Transportation Equity Audit Tool outlines a survey for agencies and 

community members to use in identifying transportation needs and 

demographics of a location. The questions have a strong emphasis on 

accessibility, safety, and equity. The Transportation Equity Scorecard Tool 

assists with the prioritization of projects by allowing planners to rank the 

potential project’s impact on access to opportunity, health and environment, 
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safety and emergency evacuation, affordability, mobility, and burdens (Allen, 

2021).  

Justice40 has propelled a series of subsequent policies and tools aimed 

at addressing environmental justice. Although many transportation, equity, 

and flood risk tools exist, there is still a need for a tool that thoroughly 

evaluates the factors from each sector. This study seeks to develop a model 

framework that places equity at the center of its analysis. Integrating socio-

economic indicators at the forefront of the model will allow for a more 

holistic approach to project prioritization and the identification of vulnerable 

areas.  

3. Data 

3.1. SEMCOG Flood Risk Data 

While components of this study build upon principles of the 

aforementioned tools, data from SEMCOG’s Flood Risk Tool will be used 

directly in the creation of a new methodology for this project. The Flood Risk 

Tool was created as a part of the SEMCOG and MDOT 2020 Climate 

Resiliency and Flood Mitigation Study (Climate Resilience, 2020). The tool 

assigns a risk score to all transportation assets including road segments, 

bridges, culverts, and pump stations over the SEMCOG region. Assets are 

then scored on a scale of one to four, with four being the highest level of risk. 

Risk is defined as a function of criticality and vulnerability (Fig. 3). Criticality 
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is the importance of an asset to the transportation system and SEMCOG 

region and is measured independent of vulnerability. 

 

Fig. 3. Schematic representation of model used by SEMCOG in their Flood Risk Tool to determine risk 

scores for road segments. The percentages by the factors represent the weight given in the subsequent 

(from left to right) factor (Climate Resilience, 2020). The current study uses the final risk scores from 

the tool for each road to calculate a new vulnerability index. 

Variables for determining each factor in the Flood Risk tool differ for 

each asset. This study only uses data associated with road segments (Fig. 4). 

Examples of variables included in road vulnerability measures are past 

flooding experience, FEMA flood zone location, traffic volume and pavement 

condition (Climate Resilience, 2020). SEMCOG derives vulnerability from 

exposure and sensitivity and defines it as the likelihood that an asset will 

experience impacts from flooding (Climate Resilience, 2020)In this study, 

vulnerability is derived from sensitivity and adaptive capacity. Although there 

is a difference in terminology, the methods used in this study directly use 
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SEMCOG’s risk scores (which includes the vulnerability measure) to create a 

new definition of vulnerability.  

 

Fig. 4. Screenshot from SEMCOG’s Flood Risk Tool Dashboard. The colored lines represent road 

segments and their corresponding risk scores indicating how susceptible the segment is to flooding 

(green = low, orange = medium, red = high)(SEMCOG Flooding Risk Tool Dashboard, 2023).  

3.2. SEMCOG Equity Emphasis Data 

Additionally, SEMCOG has developed their own Equity Emphasis 

Areas screening tool. Like with the Flood Risk data, a subsection of the 

Equity Emphasis Areas data will be used in this study. The tool allows users 

to summarize available demographic variables of their choosing at the 

regional, county, community, and census tract level. For example, the default 

selected variables are older adults, minority, youth, persons in poverty, and 

transit dependent households. Selecting the default variables color codes a 
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corresponding map and assigns each geographic unit a number associated with 

vulnerability (Fig. 5). Numbers range from zero to four with zero being a low 

concentration and four being a high concentration of the selected factors (Fig. 

6) (SEMCOG Equity Emphasis Areas, 2023). As described in greater detail in 

the methodology section, this study will use the equity data and census 

demographics used in the Equity Emphasis Areas tool.  

 

Fig. 5. Screenshot from SEMCOG’s Equity Emphasis Tool. The area depicted is the seven-county 

region of SEMCOG at the census tract level. The variables selected in this example were older adults, 

persons in poverty, youth, and transit dependent households and a total score of 2.00 was given. The 

colors of the tracts represent the concentration of selected factors present (yellow = low, orange = 

medium, green = high) (SEMCOG Equity Emphasis Areas, 2023). 
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Fig. 6. Scoring system developed by SEMCOG for their Equity Emphasis tool. Scores are determined 

by calculating bins relative to a regional average (bin two). Bins below bin two have a low concentration 

and those above two have a high concentration. Concentration refers to the extent to which the selected 

variables are present in the area of analysis (SEMCOG Equity Emphasis Areas, 2023). 

4. Methodology 

4.1. Unit of Analysis  

The units of analysis used for this study were Transportation Analysis 

Zones (TAZs). TAZs are the standard unit used by many transportation 

planning organizations and local governments when using transit models and 

evaluating transit data (Chen et al., 2019; Levashev et al., 2023). How TAZs 

are determined can vary across different planning organizations and 

transportation departments. Generally, TAZs are relatively similar to census 

tracts, but their boundaries are often defined by major transportation variables 

(i.e. highways, roads frequently used) (Levashev et al., 2023). Each TAZ 

contains approximately 3,000 people, but routes, origin, and destination points 

are much more heavily weighted than population when determining the size. 

Census block and tract information is typically aggregated to populate TAZs 
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with socioeconomic data. TAZ data is typically created by regional 

transportation planning organizations and is mostly used internally by the 

organization. TAZ data for this study was provided by the transportation team 

at SEMCOG. In SEMCOG, there are roughly 2,800 TAZs.  

4.2. Study Area  

The study area chosen for this analysis includes seventy-four TAZs in 

Wayne County between the cities of Plymouth and Canton, MI (Fig. 7). An 

urban area was chosen as its transportation systems (e.g. roads, highways) 

may face greater impacts from flooding (Dayaratne & Perera, 2008; Greiner et 

al., 2020; Rubinato et al., 2019). Further, this area straddles a major highway, 

I-275. The study area encapsulates a range of socioeconomic conditions and 

contains a moderate number of high-risk roads identified through the 

SEMCOG Flood Risk Tool dataset. This study will be evaluating accessibility 

to core services (schools, hospitals, grocery stores), and the study area 

contains at least one of each core service being assessed.  
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Fig. 7. The study area used is highlighted in red. The area of analysis contains 74 TAZs within Wayne 

County in Southeast Michigan. The gray-highlighted area represents the seven counties within 

SEMCOG. 

4.3 Vulnerability 

  Two different geospatial analysis methods were used to create distinct 

vulnerability maps at the TAZ level. Each map assigned a vulnerability score 

of one (low), two (moderate), or three (high) to each TAZ polygon. The data 

sources used to determine vulnerability (SEMCOG’s Flood Risk Tool, Equity 

Emphasis Areas, and Fernleaf Interactive’s drivetime data) were also 

consistent throughout the methods. The distinction lies in how sensitivity and 

adaptive capacity were defined; different variables and methods of integrating 

variables from flood, transportation, and socioeconomic data were used for 

each map. Specifically, Method 1 used the proportion of high-risk roads in 
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each TAZ in its sensitivity measure, while Method 2 used the change in 

drivetime after a flood.  

4.4. Accessibility and Calculating Drive Time  

Core services investigated in this study were defined as hospitals, 

schools, and grocery stores. To quantify accessibility, drivetimes were 

calculated using an algorithm developed by Fernleaf Interactive that was 

inputted into ArcGIS. This was done for each road segment in the road 

network of the study area. A drivetime indicates the number of minutes an 

automobile would take to reach the nearest core service, assuming the vehicle 

is driving at the speed limit. Road segments were deemed either accessible or 

inaccessible based on drive time thresholds established by SEMCOG in their 

2016 Access to Core Services study (Rabhi, 2016). A ten-minute threshold 

was used to define accessibility to hospitals, schools, and grocery stores. Road 

segments with a drivetime of ten minutes or less were considered accessible 

and road segments with a drivetime of more than ten minutes were labeled 

inaccessible for this study. 

Data needed for the calculations included the TAZ boundaries of the 

study area, a road network, and point locations of the core services. Point 

locations for the core services were limited to those within the study area. To 

account for locations on or near the border of the study area, a 4,000-yard 

buffer was added. The road network used was taken from OpenStreetMaps 

and clipped in ArcGIS Pro to fit the study area. It contains 61,463 road 
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segments classified as either highways, service, or residential. A baseline 

drive time was first established to distinguish between underlying accessibility 

issues and accessibility issues stemming from flooding. Each core service 

category was evaluated separately. Without the presence of a flood, 77.76% of 

the roads for hospitals, .68% for schools, and 5.46% for grocery stores were 

outside of the ten-minute threshold (Fig. 8).  

 

Fig. 8. Baseline drive time results for accessibility to core service. Road segments highlighted in beige 

are deemed accessible because they are within a ten-minute drive time to each corresponding core 

service. The inaccessible roads are highlighted in red and the core services are represented by a white 

dot. These maps were developed by Fernleaf Interactive.  

 Once a baseline drivetime map for each core service category was 

established, corresponding maps including the impacts of floods were created 

by Fernleaf. The same data and methods from the baseline analysis were used 

to do so, with the addition of barriers in the road network. Barriers in the 

analysis were defined as any road segment that had a flood risk score of three 
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or higher from the Flood Risk Tool data (SEMCOG Flooding Risk Tool 

Dashboard, 2023). These road segments were recognized as complete 

obstructions, indicating that a vehicle cannot drive through or around the road 

during a flood event. Vehicles were then rerouted to alternate paths without 

high-risk segments present. With the flood data integrated, the number of 

inaccessible road segments for hospitals increased by 5.92%, 5.12% for 

schools, and 9.74% for grocery stores (Fig. 9). 

 

Fig. 9. Flood-impacted drive times to core services. Accessible (under a ten-minute drivetime) roads are 

colored beige, inaccessible (greater than a ten-minute drivetime) are colored red, and the high-risk roads 

from flooding (score of three or higher from the Flood Risk Tool) are colored blue. These maps were 

developed by Fernleaf Interactive.  

4.5. Method 1: High Risk Roads  

 The first method used to calculate vulnerability utilized socioeconomic 

indicators and high-risk roads to assign vulnerability score to each TAZ. The 

data used for Method 1 of the analysis was taken from SEMCOG’s TAZ 
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demographics dataset, their Flood Risk dashboard, and the drivetime data 

previously calculated (SEMCOG Equity Emphasis Areas, 2023; SEMCOG 

Flooding Risk Tool Dashboard, 2023). Like the drivetime calculations, each 

core service category was evaluated individually. Socioeconomic indicators 

used to define sensitivity were chosen to reflect groups that would be most 

dependent on the core service being analyzed. For hospitals, these indicators 

were households with children and households with elderly people (Fig. 10).  

Schools used the number of households with children and the number of 

households with people who work in education in its analysis (Fig. 11). 

Finally, sensitivity for grocery stores was impacted the proportion of the TAZ 

that was in a food desert (Fig.12). To identify food desert locations, a one-

mile buffer was applied to all grocery stores in the study area. This radius was 

based on the USDA distance benchmark for food deserts in urban areas 

(USDA ERS - Documentation, 2022). In addition to socioeconomic factors 

that were specific to each given core service, all analysis on Method 1 used 

the proportion of high-risk roads in a TAZ as another factor in the sensitivity 

score.  

The proportion of high-risk roads was found by dividing the number of 

high-risk road segments (road segments with a score of three or higher) 

intersecting the TAZ by the total number of road segments in that TAZ. To 

find the number of high-risk road segments for each TAZ, a selection by 

attribute was done in ArcGIS Pro. After the proportion of high-risk roads was 
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calculated, percentile averages for the entire SEMCOG region were used to 

rank the socioeconomic and high-risk road proportions for each TAZ. 

Sensitivity scores ranged from one to three, with one being low sensitivity, 

two being moderate sensitivity, and three being high sensitivity. If a TAZ’s 

combined sensitivity indicators fell below twenty-five percent, it would be 

assigned a one. If its indicators fell between the twenty-fifth and seventy-fifth 

percentiles, a two would be assigned. Lastly, a three would be assigned if the 

indicators were above the seventy-fifth percentile.  

Adaptive capacity was found using the indicators of the number of 

low-income households in a TAZ and the number of households without 

access to a car. As with the sensitivity scores, the adaptive capacity scores 

used percentile averages from the seven counties in SEMCOG to score the 

TAZs. Adaptive capacity scores reversed the order from sensitivity scores, so 

that one would indicate high adaptive capacity, two represented moderate 

adaptive capacity, and  three indicates low adaptive capacity. Sensitivity and 

adaptive capacity scores for each TAZ were combined following a matrix, 

through which low vulnerability is represented by a one, moderate 

vulnerability is represented by a two, and high vulnerability is represented by 

a three (Fig. 13). Layers were created in ArcGIS Pro for each core service 

category that contained all demographic information, drivetime data, 

sensitivity scores, adaptive capacity scores, and vulnerability scores.  



 

28 
 

 
 

 

Drivetime data was used to create an additional layer that depicts roads 

that have a higher chance of facing accessibility issues than others. Another 

selection by attribute was conducted in ArcGIS Pro to capture any road 

segments that had a drivetime greater than ten minutes to any of the core 

services in either the baseline or flood scenarios. To investigate the magnitude 

of impact a flood event could have on the roads, roads with a change in 

drivetime greater than or equal to five minutes were selected. The selected 

road segments for both attributes were saved in a separate layer and overlaid 

with the vulnerability maps.  

 Fig. 10. Workflow representing Method 1 for calculating a vulnerability index for access to hospitals. 

Percentile rankings were used to assign sensitivity and adaptive capacity scores, then they were 

combined to calculate a final vulnerability score. The schematic to the right represents the workflow for 

identifying inaccessible roads that can be overlaid on the vulnerability map. 
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Fig. 11. Workflow representing Method 1 for calculating a vulnerability index for access to schools. 

Percentile rankings were used to assign sensitivity and adaptive capacity scores, then they were 

combined to calculate a final vulnerability score. The schematic to the right represents the workflow for 

identifying inaccessible roads that can be overlaid on the vulnerability map. 

 

 

 

 

Fig. 12. Workflow representing Method 1 for calculating a vulnerability index for access to grocery 

stores. Percentile ranking was used to assign sensitivity scores. Adaptive capacity scores were based on 

the proximity of a road to the nearest grocery store. The scores were combined for the final vulnerability 

index. The schematic to the right represents the workflow for identifying inaccessible roads that can be 

overlaid on the vulnerability map. 
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Fig. 13. Matrix used to combine sensitivity and adaptive capacity scores to calculate a final vulnerability 

score for both Method 1 and Method 2.  

4.6. Method 2: High Risk Road Network 

 The major difference between Method 1 and Method 2 is that Method 

2 expands on the number of roads considered to be at high-risk from Method 1 

(Fig. 14). Specifically, Method 1 used the high-risk roads from SEMCOG’s 

Flood Risk Tool in the sensitivity score (SEMCOG Flooding Risk Tool 

Dashboard, 2023). In addition to these road segments, Method 2 also includes 

the drivetime data in the calculations for sensitivity. In Method 1, drivetime 

data is included as a separate layer to overlay on top of the vulnerability map, 

but it is not used in the index itself. Socioeconomic variables from the first 

method were also included in the sensitivity measurements. The proportion of 

high-risk roads was replaced with the average change in drivetime from a 

flood event. The average baseline drivetime was subtracted from the average 
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flood impacted drivetime to calculate the average change in drivetime for each 

TAZ.  

 

 

Fig. 14. Maps highlight the road segments used in the calculations for sensitivity to flooding in Method 

1 (left) and Method 2 (right).  

When the drivetime algorithm assigned a road segment a drivetime in 

a flood-impacted scenario, some segments were given a time of zero minutes. 

In averaging roads at the TAZ level and then finding the change in drivetime, 

these values resulted in a negative change for some TAZs. An assignment of 

zero minutes for a road segment in this case does not indicate a drivetime less 

than one minute, but rather that driving on the road is not possible. Because of 

this, the change in drivetime was evaluated in relation to zero minutes, as the 

algorithm used to determine time recognized high-risk roads as complete 

obstructions. TAZs with a change in drive time equivalent to zero were 

deemed as low sensitivity. A change in drivetime greater than zero minutes 

was assigned as moderately sensitive, as these TAZs on average face a delay 

in travel time. TAZs with a change in drivetime less than zero minutes were 
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labeled as highly sensitive, since a flood event would make rerouting transit 

extremely near impossible. The average change in drivetime was combined 

with the same socioeconomic indicators in Method 1 for each core service 

(Figs. 15-16). 

 

Fig. 15. Workflow representing Method 2 for calculating a vulnerability index for access to hospitals. 

Percentile rankings were used to assign sensitivity (based on the average change in drivetime for the 

area) and adaptive capacity scores, then they were combined to calculate a final vulnerability score. 

 

Fig. 16. Workflow representing Method 2 for calculating a vulnerability index for access to schools. 

Percentile rankings were used to assign sensitivity (based on the average change in drivetime for the 

area) and adaptive capacity scores, then they were combined to calculate a final vulnerability score. 
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Fig. 17. Workflow representing Method 2 for calculating a vulnerability index for access to grocery 

stores. A percentile ranking based on the average change in drivetime was used to assign a sensitivity 

score. Adaptive capacity scores were based on the proximity of a road to the nearest grocery store. The 

scores were combined to calculate a final vulnerability score.  

5. Results   

5.1 General Trends 

A comparison of results from both methods of evaluating vulnerability 

to transportation disruptions show that while the general spatial distribution of 

vulnerability scores is similar, Method 2 tends to have a greater number of 

highly vulnerable TAZs across all core service analyses (Figs. 18-22). On 

average, Method 2 assigned a high vulnerability score (three) to more TAZs 

than Method 1 (8.11% or approximately 5.67 TAZs) across all core services. 

TAZs with high vulnerability were concentrated on the eastern side of I-275 

for both methods. The majority of the western side of the highway is 

moderately vulnerable, with a concentration of low vulnerability in the 

southern half. Results for hospitals and schools between the two methods 
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display similar trends in vulnerability scores. Comparatively, the maps for 

grocery stores have a higher number of low vulnerability TAZs than the other 

core services. Figure 20 displays maps for each core service and highlights 

TAZs that have consistent scores between the methods. Figure 21 shows the 

TAZs that have consistent scores for all core services for each method. Two 

TAZs from Method 1 and six TAZs from Method 2 were identified as having 

high vulnerability for all core services. Method 1 had 20 TAZs that were low 

vulnerability and ten that were moderate, while Method 2 had 17 TAZs for 

low and ten for moderate.  

5.2 Hospitals 

Method 1 for evaluating vulnerability regarding accessibility to 

hospitals resulted in 18 highly vulnerable TAZs, compared to Method 2 

resulting in 21 TAZs. Method 1 had 23 TAZs with low vulnerability and 33 

with moderate vulnerability. Method 2 had 23 TAZs with low vulnerability 

and 30 with moderate vulnerability. The first map in Fig. 20 depicts TAZs that 

have identical scores from Method 1 and 2 for the hospital analysis. Between 

the two methods, there were 16 TAZs that were ranked highly vulnerable in 

both methods, 27 that were ranked moderately vulnerable, and 22 that were 

ranked low vulnerability.  Nine TAZs had different scores from the methods 

for hospitals. 

5.3 Schools 
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When evaluating the vulnerability of transportation disruptions in 

relation to schools, Method 1 returned 15 highly vulnerable TAZs and Method 

2 returned 22. For moderate and low vulnerability, Method 1 had 36 and 23 

TAZs, and Method 2 had 30 and 22 TAZs, respectively. When comparing the 

results from both methods, there were 13 TAZs identified as highly vulnerable 

in both, 26 identified as moderately vulnerable, and 21 identified as low 

vulnerability (Fig. 20). 14 TAZs had different scores for the school analyses 

between the methods. 

5.4 Grocery Stores  

 For transportation vulnerabilities related to grocery stores, there were 

seven highly vulnerable TAZs from Method 1 and 14 from Method 2. TAZs 

with low vulnerability amounted to 39 in Method 1 and 33 in Method 2. For 

moderate vulnerability, Method 1 had 28 TAZs and Method 2 had 27. The 

total number of TAZs with equivalent scores from Methods 1 and 2 were six 

for high vulnerability, 17 for moderate vulnerability, and 30 for low 

vulnerability (Fig. 20). 21 TAZs had differing vulnerability scores from the 

two methods.  
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Fig. 18. Vulnerability maps using Methods 1 (left) and 2 (right) for accessibility to hospitals. A hospital 

is represented by a black dot. High-risk road segments (roads with a score of three or greater from 

SEMCOG’s Flood Risk Tool) are highlighted in blue. TAZs in green have low vulnerability, orange 

TAZs are moderately vulnerable, red TAZs have high vulnerability.  

 

 

Fig. 19. Vulnerability maps using Methods 1 (left) and 2 (right) for accessibility to schools. Schools are 

represented by a black dot. High-risk road segments (roads with a score of three or greater from 

SEMCOG’s Flood Risk Tool) are highlighted in blue. TAZs in green are considered to have low 

vulnerability, orange TAZs are moderately vulnerable, red TAZs have high vulnerability.  
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Fig. 20. Vulnerability maps using Methods 1 (left) and 2 (right) for accessibility to grocery stores. 

Stores are represented by a black dot. High-risk road segments (roads with a score of three or greater 

from SEMCOG’s Flood Risk Tool) are highlighted in blue. TAZs in green are considered to have low 

vulnerability, orange TAZs are moderately vulnerable, red TAZs have high vulnerability.  
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Fig. 21. Maps (from left to right) for hospitals, schools, and grocery store analyses in which the scores 

for both methods are equivalent. Core services are represented by black dots and the high-risk roads are 

blue. TAZs with a low vulnerability from both methods are in green, TAZs with a moderate 

vulnerability from both methods are orange, and TAZs with high vulnerability from both methods are 

red. 
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Fig. 22. Maps for Method 1 (left) and Method 2 (right) depict TAZs that have consistent scores across 

all core services. TAZs with low vulnerability in accessibility to hospitals, schools, and grocery stores 

are green, moderately vulnerable TAZs for all services are orange, and highly vulnerable TAZs for all 

services are red.  

6. Discussion 

6.1 Comparison of Methods 

The difference between Methods 1 and 2 lies within how vulnerability 

is defined. Specifically, the variables used to assess transportation and 

flooding were evaluated differently in the sensitivity component of 

vulnerability. Both methods held the same variables constant for adaptive 

capacity and the same socioeconomic variables relevant to the core service 

being analyzed. Method 1 incorporates transportation and flooding data by 

using the proportion of high-risk roads as a measure of sensitivity, along with 

the socio-economic variables. Method 2 utilizes the change in drivetime 

between baseline and flood scenarios instead of the proportion of high-risk 
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roads directly. The proportion of high-risk roads is still accounted for in this 

method, as it was used as a barrier in network analysis to calculate the 

drivetime. The preliminary results of drivetime data indicated that there were 

areas facing accessibility issues at the baseline level. This was especially true 

for hospitals, in which the majority of the study area had road segments 

outside of the ten-minute threshold. After running both methods, the maps for 

hospitals and schools appeared to share the same spatial patterns for 

vulnerability. Moreover, the high amount of accessibility inequities in the 

preliminary results for hospitals was not reflected to the same extent in the 

vulnerability maps. A possible explanation for this discrepancy and the 

similarity to the school vulnerability scores is that both core services used the 

number of households with children as a variable for sensitivity.  

Method 2 consistently identified more TAZs as highly vulnerable than 

Method 1 throughout the analyses for all core services. One explanation for 

this is that by using the average change in drivetime for each TAZ, outliers 

skewed the sensitivity score and consequently, the overall vulnerability score. 

Additionally, using the average change in drivetime did not account for the 

differences in road length. While Method 1 uses a proportion to attempt to 

normalize the data, road length is still not addressed. The vast number of road 

segments in each TAZ compared to the relatively small number of high-risk 

roads may have led to this factor having a smaller impact on the sensitivity 

score compared to the change in drivetime used in Method 2. In future 
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iterations of this project, it may be worthwhile to obtain road length and lane 

miles per road to better normalize the data.  

A potential benefit to using Method 2 is that it may capture a more 

accurate picture of the impacts of flooding to a transportation network as a 

whole. Only using high-risk road segments in Method 1 may overlook the 

routes directly connected. The high-risk roads represent a small portion of a 

larger path. Incorporating drivetime into the vulnerability measure allows the 

connectivity of flooded roadways to be analyzed. This connectivity is 

extremely important in planning for transportation projects and flood 

mitigation as evaluates accessibility in a more realistic way. Evaluating the 

routes to core services in their entirety (using changes in drivetime), aligns 

more with origin-destination frameworks used in transportation modeling 

(Aerde et al., 2003; Bera & Rao, 2011).  

 To further investigate the differences between Method 1 and Method 

2,  paired t-tests were conducted. T-tests were conducted comparing the 

vulnerability scores of the two methods for each core service separately (see 

Appendix A). The results from the t-test for hospitals indicated that there is no 

significant difference between Method 1 and Method 2 for evaluating the 

vulnerability for accessibility to hospitals, as it had a p-value of .3206. The p-

value for the schools t-test was .0315, indicating there is a significant 

difference between Methods 1 and 2 in determining vulnerability for 
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accessibility to schools. The results for grocery stores were also significant at 

a p-value of .0039.  

6.2 Use of Methods to Prioritize Transportation Projects 

 The methods developed in this study could be used to improve existing 

tools and models relating to transportation and flood planning. By applying an 

explicit equity-lens in both methods, these analyses align with the objectives 

outlined in Justice40. The Department of Transportation has approached 

Justice40 with the goal of identifying and prioritizing projects that would 

improve the lives of disadvantaged communities (House, 2021). Additionally, 

SEMCOG is planning to complete a major update to their Flood Risk Tool. 

The organization also has goals to interconnect their existing data from 

different departments. This section will provide an example of how elements 

from both methods from this study can be used to achieve these various goals. 

The example was completed in ArcGIS Pro.  

 If a transportation planner had funds to allot to transportation projects 

and was seeking an equitable way to prioritize where the funds were 

rewarded, they could use approaches from Methods 1 and 2 to do so. Since 

this is an equity-centered approach, the practitioner would first select for 

vulnerability. The vulnerability index from Method 2 is used here. In Figure 

23, the TAZs highlighted are TAZs that have consistent scores across all core 

services. Planners with specific goals can filter further to meet the needs of 

their community. For example, if a planner knew their community had 
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accessibility issues specific to food, they could choose to view only highly 

vulnerable TAZs within the category of grocery store accessibility. This 

example will look at TAZs with high vulnerability in accessibility to all core 

services. 

 

 

 

 

 

Fig. 23. Map of study area filtered to show vulnerability scores that are consistent across all core 

services for Method 2. The red TAZs will be the areas of highest concern as they have high vulnerability 

in accessibility to hospitals, grocery stores, and schools.  

Next, the high-risk roads layer can be applied to view road segments 

that are highly susceptible to damages from flooding. To include issues that 

may arise from connectivity to these high-risk roads, the roads that were 

deemed inaccessible in Method 1 can be added. These road segments are 

highlighted in bright blue (Fig. 24).  
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Fig. 24. Map of study area filtered to show vulnerability scores that are consistent across all core 

services for Method 2 and the inaccessible roads layer from Method 1. 

 Planners can then zoom into an area they believe needs to be 

prioritized. Using an equity-lens and the available socioeconomic, 

transportation, and flooding data, this would be areas in a red TAZ (highly 

vulnerable TAZ), near/intersecting a black line (high-risk road segment), and 

near/intersecting a blue line (inaccessible road segment). Figure 25 is a TAZ 

in which these statements are all true. This TAZ is also a viable choice 

because it is located near the busy highway of I-275.  



 

45 
 

 
 

 

 

Fig. 25. A close-up of the selected TAZ. This TAZ is highly vulnerable in accessibility to all core 

services, contains a high proportion of high-risk roads, and a high proportion of inaccessible roads. 

 To select a specific road project to prioritize, planners should focus on 

identifying roads that are high-risk, inaccessible, and intersecting a highly 

vulnerable TAZ. Zooming in further and temporarily removing geographic 

labels allows better visibility to identify such areas. Figure 26 shows three 

points that fit the previous description. Figure 27 replaces the geographic 

labels to allow for identification of road names. From this, planners with the 

goal of equitably prioritizing projects can conclude that the points on Joy 

Road and Koppernick Road should be prioritized. 
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Fig. 26. Map showing the selected TAZ. Points of intersection between the highly vulnerable TAZ, 

high-risk roads, and inaccessible roads are labeled as A, B, and C.  

 

A 

B 
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Fig. 27. Map showing the selected TAZ. Points of intersection between the highly vulnerable TAZ, 

high-risk roads, and inaccessible roads are labeled as A, B, and C. These areas of concern are along Joy 

Road and Koppernick Road. 

 Selecting the points of intersection along Joy and Koppernick Road 

allows the planner to view specific road data, vulnerability data, and flooding 

data (Fig. 28). Some of the relevant information that can be viewed includes 

the Flood Risk Tool risk score, traffic volume, the vulnerability score of the 

B 

A 
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intersecting TAZ, average income, and the drivetimes associated with 

accessibility to core services at a baseline and flood-impacted level. These 

factors can be helpful understanding why the selected area is vulnerable and 

allows the practitioner to better form a strategic approach to the planning 

process. 

 

Fig. 28. Close-up of selected road segment. Selecting the road segment allows the user to view specific 

transportation data, vulnerability data, and flooding data.  

6.3 Additional Analyses 

 As previously mentioned, future iterations of this study should include 

road data in a more precise manner. This could be done by using road length 

or lane miles in addition to the number of roads in a TAZ. Another 

improvement would be to expand the definition of a core service. Locations 

such as community centers and churches that can be used as shelter during a 

flood event may be included. Expanding the list of grocery store locations to 
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include non-traditional food sources such as farmers markets, dollar stores, 

and gas stations could also give insight into accessibility inequities (Dong et 

al., 2020). Perhaps the most valuable expansion of this study would be to 

complete a similar analysis for pedestrian and public transportation, as access 

to a private automobile is an equity issue within itself (Litman, 2022; Sandt et 

al., 2016; Zuo et al., 2020). Public transportation is often a central method of 

transportation in historically disadvantaged areas and for community members 

who are of low income and/or who are minorities (Litman, 2022). Further, 

walkability and the ability to bike to public transit stations needs to be 

considered in expanding the definition of accessibility (Zuo et al., 2020). 

7. Conclusion 

 The simultaneous increase in the severity and frequency of floods and 

the rise of urban sprawl has created a need for models and tools to assist in 

flood mitigation and transportation planning. Spatial models can allow 

planners to better understand how flood events disrupt accessibility to core 

services. Identifying where these disruptions take place and the communities 

that experience them can give insight into why inequities exist in relation to 

flooding. However, if the objective is to minimize inequity and work towards 

climate justice, variables reflective of socioeconomic conditions need to be at 

the center of models and tools. Transportation, flood, and equity data should 

be weighed equally in the frameworks created. Employing an equity-lens 
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allows planners to explicitly address disparities and begin to strategize ways 

to minimize them. 

 Methods used in this study seek to reflect an equity-centered 

framework. Both methods approach vulnerability through an equity-lens by 

using accessibility to core services as proxy. Variables chosen for each 

analysis were directly relevant to the core service being analyzed by 

identifying groups most dependent on the service. The vulnerability index can 

be broken down to explore how vulnerability manifests in communities. For 

example, in an area with high  vulnerability of accessibility to schools, it 

could be useful to examine how many people in the area work hourly 

education jobs. A flood event could be detrimental to such employees as they 

could face delays or complete impediments to earning their income. Having 

this type of data integrated and available in transportation and flood planning 

gives planners a greater opportunity to create solutions that best meet the 

specific needs of their communities.  

The difference between Methods 1 and 2 demonstrates that the way 

the integration occurs, and the order of operations matters. Comparisons of the 

methods show that Method 2 tends to identify more TAZs as highly 

vulnerable than Method 1. This is likely because the way transportation data is 

evaluated in Method 2 recognizes the connectivity of road networks and how 

segments along a route can have a cascading impact on one another. Despite 

the statistically significant difference between Methods 1 and 2 for schools 
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and grocery stores, elements from both methods can be used to in the 

prioritization process of transportation projects. As demonstrated in the 

practitioner example, overlaying the inaccessible roads layer from Method 1 

on the vulnerability layers from Method 2 allows planners to precisely 

pinpoint areas of concern in terms of equity, transportation, and susceptibility 

to flooding.  

 The methods created in this study provide an equitable approach to 

flood mitigation and transportation planning. Possible iterations of this project 

could include expanding the modes of transportation to include public and 

pedestrian transit, expanding the area of study, broadening the definition of a 

‘core service’, and developing a model that assigns demographic data to the 

road segments themselves rather than aggregated at the TAZ scale. This 

model and its many related predecessors clearly show that climate injustice 

exists. In improving models and tools, it is crucial to consider how their 

results can either compound inequities or help to minimize them. Intentionally 

placing equity at the center of analyses can help ensure that the latter occurs. 

Research should be expanded to explicitly assess transportation networks 

disparities in relation to flooding. 
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Appendix: T-Test Code Comparing Method 1 and Method 2 

Code for Hospital T-test 

## Hospitals  
 
#Null: Methods 1 and 2 are not different in determining vulner
ability in accessibility to hospitals. 
#Alt: Methods 1 and 2 are different in determining vulnerabili
ty in accessibility to hospitals. 
 
# Read in Data 
hosp_t <- read.csv("/Users/19526/Downloads/thesis_ttest1.csv") 
head(hosp_t) 

##    method hosp_vul sch_vul groc_vul 
## 1 method1        3       2        1 
## 2 method1        2       1        2 
## 3 method1        2       1        2 
## 4 method1        2       2        1 
## 5 method1        3       3        2 
## 6 method1        2       2        2 

# Subset 
hosp_test <- hosp_t[1:2] 
head(hosp_test) 

##    method hosp_vul 
## 1 method1        3 
## 2 method1        2 
## 3 method1        2 
## 4 method1        2 
## 5 method1        3 
## 6 method1        2 

boxplot(hosp_vul~method, data=hosp_test) 
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# Normality Test 
method1 <- subset(hosp_test,method=='method1') 
method2 <- subset(hosp_test,method=='method2') 
diff <- method2$hosp_vul - method1$hosp_vul 
shapiro.test(diff) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  diff 
## W = 0.47247, p-value = 7.303e-15 

library(car) 

## Loading required package: carData 

qqPlot(diff) 
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## [1] 3 7 

t.test(hosp_vul~method, data=hosp_test, paired = TRUE) 

##  
##  Paired t-test 
##  
## data:  hosp_vul by method 
## t = -1, df = 73, p-value = 0.3206 
## alternative hypothesis: true difference in means is not equ
al to 0 
## 95 percent confidence interval: 
##  -0.12133772  0.04025664 
## sample estimates: 
## mean of the differences  
##             -0.04054054 

# Accept null hypothesis (p-val >.05) at a 95% confidence leve
l.The mean vulnerability score for hospital accessibility for 
Method 2 is lower than Method 1 by .04. 

Code for School T-test 
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# Schools 
#Null: Methods 1 and 2 are not different in determining vulner
ability in accessibility to schools. 
#Alt: Methods 1 and 2 are different in determining vulnerabili
ty in accessibility to schools. 
 
# Subset 
sch_t <- hosp_t[c(1,3)] 
head(sch_t) 

##    method sch_vul 
## 1 method1       2 
## 2 method1       1 
## 3 method1       1 
## 4 method1       2 
## 5 method1       3 
## 6 method1       2 

boxplot(sch_vul~method, data=sch_t) 

 

# Normality Test 
sch_method1 <- subset(sch_t,method=='method1') 
sch_method2 <- subset(sch_t,method=='method2') 
sch_diff <- sch_method2$sch_vul - sch_method1$sch_vul 
shapiro.test(sch_diff) 
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##  
##  Shapiro-Wilk normality test 
##  
## data:  sch_diff 
## W = 0.57499, p-value = 2.608e-13 

qqPlot(sch_diff) 

 

## [1] 36 53 

t.test(sch_vul~method, data=sch_t, paired = TRUE) 

##  
##  Paired t-test 
##  
## data:  sch_vul by method 
## t = -2.1924, df = 73, p-value = 0.03154 
## alternative hypothesis: true difference in means is not equ
al to 0 
## 95 percent confidence interval: 
##  -0.206383923 -0.009832293 
## sample estimates: 
## mean of the differences  
##              -0.1081081 
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# Reject null hypothesis (p-val <.05) at a 95% confidence leve
l. The mean vulnerability score for school accessibility for M
ethod 2 is lower than Method 1 by .11. 

Code for Hospital T-test 

 

# Grocery Stores 
#Null: Methods 1 and 2 are not different in determining vulner
ability in accessibility to grocery stores. 
#Alt: Methods 1 and 2 are different in determining vulnerabili
ty in accessibility to grocery stores. 
 
# Subset 
groc_t <- hosp_t[c(1,4)] 
head(groc_t) 

##    method groc_vul 
## 1 method1        1 
## 2 method1        2 
## 3 method1        2 
## 4 method1        1 
## 5 method1        2 
## 6 method1        2 

boxplot(sch_vul~method, data=sch_t) 
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# Normality Test 
groc_method1 <- subset(groc_t,method=='method1') 
groc_method2 <- subset(groc_t,method=='method2') 
groc_diff <- groc_method2$groc_vul - groc_method1$groc_vul 
shapiro.test(groc_diff) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  groc_diff 
## W = 0.67622, p-value = 1.724e-11 

qqPlot(groc_diff) 
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## [1]  7 41 

t.test(groc_vul~method, data=groc_t, paired = TRUE) 

##  
##  Paired t-test 
##  
## data:  groc_vul by method 
## t = -2.9846, df = 73, p-value = 0.003861 
## alternative hypothesis: true difference in means is not equ
al to 0 
## 95 percent confidence interval: 
##  -0.29298659 -0.05836476 
## sample estimates: 
## mean of the differences  
##              -0.1756757 

# Reject null hypothesis (p-val <.05) at a 95% confidence leve
l. The mean vulnerability score for school accessibility for M
ethod 2 is lower than Method 1 by .18 

 

 


