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Abstract: As biobanks become increasingly popular, access to genotypic and
phenotypic data continues to increase in the form of precomputed summary
statistics (PCSS). Widespread accessibility of PCSS alleviates many issues related
to biobank data, including that of data privacy and confidentiality, as well as high
computational costs. However, questions remain about how to maximally lever-
age PCSS for downstream statistical analyses. Here we present a novel method
for testing the association of an arbitrary number of single nucleotide variants
(SNVs) on a linear combination of phenotypes after adjusting for covariates
for common multimarker tests (e.g., SKAT, SKAT-O) without access to individ-
ual patient-level data (IPD). We validate exact formulas for each method, and
demonstrate their accuracy through simulation studies and an application to
fatty acid phenotypic data from the Framingham Heart Study.
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1 INTRODUCTION

The availability and accessibility of data is an exciting
prospect for advancements in science—especially in the
area of biomedical research. However, the utilization of
individual patient-level data (IPD) raises issues of data
privacy and security, and in the biobank era, issues with
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computational cost and data processing time (Heatherly,
2016; Huppertz & Holzinger, 2014).
With the popularization of biobanks, there has been an

explosion in themagnitude of available genotypic and phe-
notypic data, to facilitate the connection between genetics
and human health. In an effort to make biobank data
more accessible and usable, projects like GeneAtlas and
PheWeb provide precomputed summary statistics (PCSS)
eliminating the need for some researchers to access IPD
(Neale, 2018; PheWeb, 2018). Most often these projects

Ann Hum Genet. 2023;87:125–136. wileyonlinelibrary.com/journal/ahg 125

https://orcid.org/0000-0002-8919-8740
mailto:ntintle@uic.edu
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/ahg


126 ANGELA ZIGARELLI et al.

have computed simple linear regression results between
many combinations of genotypes and phenotypes and then
made summary statistics likeβ and SE(β) publicly available
(Canela-Xandri et al., 2018; Sudlow et al., 2015). Though
this process alleviates the issue of data privacy and confi-
dentiality, as well as high computational costs, questions
are raised about how useful PCSS can be given that the
scope of PCSS is often merely results from simple linear
regression models.
In an effort to better leverage PCSS in downstream

analyses, several groups have published methods that uti-
lize GWAS PCSS to perform meta-analyses, as well as
multivariate methods to investigate relationships between
phenotypes (Cichonska et al., 2016; Liu & Lin, 2018; Ray
& Boehnke, 2018; Stephens, 2013; van der Sluis et al.,
2013; Vuckovic et al., 2015). More recently, Gasdaska et al.
(2019) developed a method utilizing PCSS from simple
linear regression models to regress linear combinations
of phenotypes against genotypes, with an extension by
Wolf et al. (2021) for the multiplicative phenotype case.
Subsequently, Wolf et al. (2020) expanded the approach
to be able to use PCSS to adjust for covariates not
included in the simple linear regression models on which
the PCSS are based. Other recent developments in this
area include Svishcheva et al. (2019) who presented an
approachwhich leverages simple linear regression PCSS to
perform gene-based (multimarker) tests on a single phe-
notype. Despite these advances, significant gaps in the
literature remain. In particular, methods for conducting
multimarker tests of association utilizing complex (e.g.,
linear/multiplicative combinations) phenotypes are lack-
ing. Furthermore, post hoc covariate adjustment utilizing
PCSS is important and, yet, is lacking for most methods
utilizing PCSS to date. While metaSKAT (Lee et al., 2013)
utilizes PCSS in a multimarker framework, this approach
requires prespecification of phenotypes and covariates
before PCSS are computed, limiting post hoc research
exploration on different sets of phenotypes and/or covari-
ates. Furthermore, multiSKAT (Dutta et al., 2019) tests
for a general multivariate phenotype limiting power for
research hypotheses involving prespecified, multivariate
phenotypes.
To address these gaps, we present a method that cal-

culates various multi-marker tests (e.g., SKAT; SKAT-O),
for a linear combination of phenotypes using only PCSS
from simple linear regressionmodels of a single phenotype
on a single genotype. Thus, our method allows pheno-
types, genotypes, and covariates from different analyses
to be combined using researcher specified linear com-
binations of phenotypes, genotype sets, and covariates.
We provide an analytic framework for our methodology
which is validated through simulation. Finally, we apply

these methods on real data from the Framingham Heart
Study.

2 METHODS

The following sections outline first a method to calcu-
late the F-test statistic, and second, a method to calculate
rare variant tests. Both methods use only PCSS inputs, by
which we mean only the estimates and standard errors
from a simple linear regression model of a single pheno-
type on a single genetic marker (e.g., single nucleotide
variant [SNV]).

2.1 Notation and assumptions

Throughout this paper we use the column vectors
𝑦1, … , 𝑦𝑚 to represent a collection of vectors of 𝑛 × 1mea-
surements on𝑚 phenotypes such that 𝑦𝑗 = [𝑦1𝑗, … , 𝑦𝑛𝑗]

is a vector of 𝑛 measurements on the jth phenotype.
We define 𝑦 =

∑𝑚

𝑗 = 1
𝜏𝑗𝑦𝑗 as 𝑛 measurements across a

weighted linear combination of 𝑚 phenotypes where 𝜏 is
an 𝑚 × 1 vector of weights corresponding to each pheno-
type. We use 𝑋 = [𝑥1, … , 𝑥𝑝] to denote an 𝑛 × 𝑝 design
matrix of 𝑛 individuals on 𝑝 variables including 𝑘 SNVs
for 𝑝 > 1. We use 𝑦̄ to represent the𝑚 × 1 vector of means
for each phenotype and 𝑥̄ to represent the 𝑝 × 1 vector of
means for the design matrix. We also define cov(𝑋) as the
empirical covariance matrix of 𝑋 such that the 𝑖, 𝑗th entry
in the matrix represents the covariance of 𝑥𝑖 and 𝑥𝑗 .

Moreover, we assume that
𝑚∑

𝑗 = 1

𝜏𝑗 𝑦𝑗 = 𝑋𝛽 + 𝜀 where

𝜀 ∼ 𝑁(0, 𝜎2𝐼𝑛) which is a standard assumption for both
the F and rare variant tests used to derive the test statis-
tics’ sampling distributions. We also assume to have PCSS
including the means for each phenotype, genotype, and
covariate, as well as the full covariance matrix, that
is, cov(𝑦1, … , 𝑦𝑚, 𝑋), which we will leverage to perform
the omnibus tests of interest. These statistics can be aggre-
gated from a variety of sources including single-marker
GWAS results. For example, the sample covariance of a
given SNV and a phenotype can be calculated by diving
the GWAS simple linear regression slope coefficient by the
sample variance of the SNV (Wolf et al., 2021). Figure 1
proposes one framework for collecting and compiling this
information in practice.
Though we will assume to have a known covariance

matrix of the phenotypes for our methods to produce cal-
culations identical to IPD, it may be approximated using
correlations of GWAS test statistics for each phenotype by
techniques proposed by Kim et al. (2015) and Zhu et al.
(2015).
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F IGURE 1 Workflow for an omnibus test using only precomputed summary statistics. Abbreviations: DHA, docosahexaenoic acid; EPA,
eicosapentaenoic acid; GWAS, genome-wide association study; MAF, minor allele frequency; PhysAct, physical activity; SNV,
single-nucleotide variant

2.2 F-tests for a linear model

The F-test can be used to evaluate the combined effect of
several linear predictors on a response. Consider the design
matrix 𝑋̃ that contains a subset of 𝑞 selected attributes
from the design matrix for 𝑞 < 𝑝. For example, 𝑋̃ could be
a collection of covariates that does not include the genetic
markers of interest. Then, the test has null hypothesis
𝑦 = 𝑋̃ 𝛄 + 𝜀 for 𝜀 ∼ 𝑁(0, 𝜎2𝐼𝑛) and has test
statistic:

𝐹 =
(SSR𝑅 − SSR𝐹) ∕ (𝑝 − 𝑞)

SSR𝐹∕ (𝑛 − 𝑝)
(1)

which follows an 𝐹𝑝−𝑞,𝑛−𝑝 distribution under the null
hypothesis. We define SSR𝐹 as the sum of squared residu-
als for the full model 𝑦̂ = 𝑋𝛽 with 𝑝 predictors including
the intercept, and 𝑆𝑆𝑅𝑅 as the sum of squared residuals
for the reduced model 𝑦̂ = 𝑋̃ 𝛄̂ . The sum of squared resid-
uals (SSR) can be expressed as follows (see Appendix for
details):

SSR = 𝑦𝑇𝑦 −
(
𝑋𝑇𝑦

)𝑇(
𝑋𝑇𝑋

)−1
𝑋𝑇𝑦 (2)

In order to express SSR in terms of PCSS, we use the
following fromWolf et al. (2020):

𝑦𝑇𝑦 =

𝑚∑
ℎ=1

𝑚∑
𝑗=1

𝜏ℎ𝜏𝑗
(
cov

(
𝑦ℎ, 𝑦𝑗

)
(𝑛 − 1) + 𝑦̄ℎ𝑦̄𝑗𝑛

)
(3)

𝑋𝑇𝑦 = (𝑛 − 1)
[
cov (𝑥1, 𝑦) , … , cov

(
𝑥𝑝, 𝑦

)]𝑇
+ 𝑛𝑥̄𝑦̄𝑇𝜏

(4)

𝑋𝑇𝑋 = (𝑛 − 1) cov (𝑋) + 𝑛𝑥̄𝑥̄𝑇 (5)

where cov (𝑥𝑖, 𝑦) = 𝜏1 cov(𝑥1, 𝑦𝑗) +⋯+ 𝜏𝑚cov(𝑥𝑝, 𝑦𝑗).
We can then evaluate 𝑦𝑇𝑦,𝑋𝑇𝑦, and𝑋𝑇𝑋 using the appro-
priate subset of 𝑋 to calculate 𝐹 from 𝑆𝑆𝑅 and compare it
to its null distribution to obtain a p-value under the null
hypothesis.

2.3 Rare variant tests

Rare variant tests including burden, SKAT, and SKAT-O
also test the null hypothesis that a collection of features
have no effect on a response, are useful in rarer genetic
cases where the F-test may be less efficient (Lee et al.,
2012; Li & SM, 2008; Wu et al., 2011). The following sec-
tions detail how to implement these tests using only PCSS
inputs.
Consider the partition of our covariate space 𝑋 =

[𝐺, 𝑍]where 𝐺 = [𝑔1, … , 𝑔𝑘] is an 𝑛 × 𝑘 genotype matrix,
𝑔𝑗 is an 𝑛 × 1 column vector of minor allele counts at the
𝑗th variant, 𝑍 = [𝑧1, … , 𝑧𝑐] is an 𝑛 × 𝑐 matrix of covari-
ates, and 𝑧𝑙 is an 𝑛 × 1 vector for the 𝑙th covariate. Similar
to the F-test, the null hypothesis of the rare variant tests
assumes that 𝑦 = 𝑍𝛂 + 𝜀 and 𝜀 ∼ 𝑁(0, 𝜎2𝐼𝑛) The test
statistics can be obtained by first calculating a site-specific
score statistic for each SNV in 𝐺 and then combining the
score statistics into one statistic. We use 𝑔̄ to represent the
𝑘 × 1 vector of means for each SNV and 𝑧̄ to represent the
𝑐 × 1 vector ofmeans for each covariate. For the nullmodel
𝑦 = 𝑍𝛂 + 𝜀, let 𝑦̂ = 𝑍𝛼̂ be the 𝑛 × 1 vector of the fitted
values.

2.3.1 Score statistic framework

A site score statistic that captures how much the minor
alleles at variant j empirically contribute to increases in a
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F IGURE 2 The plots depict the difference between score statistics (left) and log transformed p-values (right) on our method using
precomputed summary statistics (PCSS) compared to individual patient-level data (IPD) as applied to a nested F-test adjusted for age and sex
(example 1). These figures illustrate our method’s high accuracy on simulated data

F IGURE 3 The plots depict the difference between score statistics (left) and log transformed p-values (right) on our method using
precomputed summary statistics (PCSS) compared to individual patient-level data (IPD) as applied to a nested F-test adjusted for sex
(example 2). These figures illustrate our method’s high accuracy on simulated data

F IGURE 4 The plots depict the difference between score statistics (left) and log transformed p-values (right) on our method using
precomputed summary statistics (PCSS) compared to individual patient-level data (IPD) as applied to the SKAT-O test for the full model,
featuring three single nucleotide variants (SNVs), age, and sex. These figures illustrate our method’s high accuracy on simulated data
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F IGURE 5 The plots depict the difference between score statistics (left) and log transformed p-values (right) on our method using
precomputed summary statistics (PCSS) compared to individual patient-level data (IPD) as applied to the SKAT-O test for the reduced model,
featuring three single nucleotide variants (SNVs) and sex. These figures illustrate our method’s high accuracy on simulated data

F IGURE 6 The plots depict the difference between score statistics (left) and log transformed p-values (right) on our method using
precomputed summary statistics (PCSS) compared to individual patient-level data (IPD) as applied to the SKAT test for the full model,
featuring three single nucleotide variants (SNVs), age, and sex. These figures illustrate our method’s high accuracy on simulated data

F IGURE 7 The plots depict the difference between score statistics (left) and log transformed p-values (right) on our method using
precomputed summary statistics (PCSS) compared to individual patient-level data (IPD) as applied to the SKAT test for the reduced model,
featuring three single nucleotide variants (SNVs) and sex. These figures illustrate our method’s high accuracy on simulated data
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continuous phenotype as referenced in Wu et al. (2011) is

𝑆𝑗 = 𝑔𝑇
𝑗 (𝑦 − 𝑦̂) ∕𝜎̂2 (6)

where 𝜎̂2 is the unbiased estimator of 𝜎2 under the null
model. This can be expressed using PCSS inputs as follows
(see Appendix for derivation):

𝑆𝑗 =
(𝑛 − 1)

𝜎̂2

(
cov

(
𝑔𝑗, 𝑦

)
−

c∑
𝑙 = 1

𝛼̂𝑙 cov(𝑔𝑗, 𝑧𝑙)

)
(7)

where

𝛼̂ = (𝑍𝑇𝑍)−1𝑍𝑇𝑦 (8)

is the vector of slope coefficients under the covariate-only
model, which can be computed by calculating 𝑍𝑇𝑦 and
𝑍𝑇𝑍 using Equations 4 and 5 above. We note that 𝜎̂2 =
SSR∕(𝑛 − 𝑞) using 𝑆𝑆𝑅 from the covariate only model. If
there is no covariate adjustment in the null model, the
expression can be simplified to

𝑆𝑗 = (𝑛 − 1) cov
(
𝑔𝑗, 𝑦

)
∕𝜎̂2

2.3.2 Calculating the unified score test
statistic

The site-specific score statistics can then be aggregated to
assess the overall contribution of all k SNVs with 𝑄SKAT =∑𝑘

𝑗=1
𝑤𝑗𝑆

2
𝑗
and 𝑄Burden = (

∑𝑘

𝑗 = 1
𝑤𝑗𝑆𝑗)

2 where w is a
vector of weights (Lee et al., 2012; Li & SM, 2008; Wu
et al., 2011). A common set of weights w are the suggested
weights as proposed in Wu et al. (2011) given as the square
root of the density of a beta(2, 25) distribution evaluated at
MAF𝑗 Theunified score statisticmerges𝑄SKAT and𝑄Burden
to appeal to advantages of both test statistics, and may be
written for the entire set of variants as referenced in Lee
et al. (2012):

𝑄𝜌 = 𝜌𝑄Burden + (1 − 𝜌)𝑄SKAT (9)

for some weight 𝜌 ∈ [0, 1]. The optimized SKAT (SKAT-
O) test statistic is a special case of the unified score𝑄𝜌 such
that the weight 𝜌 yields the minimum p-value. The weight
𝜌∗ can be calculated numerically or analytically as seen is
Lee et al. (2012), and the SKAT-O test statistic is written as

𝑄SKAT−O = 𝜌∗ 𝑄Burden + (1 − 𝜌∗)𝑄SKAT (10)

We note that burden and SKAT test statistics are also spe-
cial cases of the unified score statistic 𝑄𝜌 that occur when
𝜌 equals one and zero, respectively.

The test statistic’s null distribution follows a mixture of
independent 𝜒2(1) distribution such that under the null,
𝑄𝜌 ∼

∑𝑘

𝑗 = 1
𝜆𝑗𝜒

2
𝑗
(1) (Lee et al., 2013).Wederive an expres-

sion for the weights for this null distribution 𝑄𝜌 in terms
of PCSS.
Treating this as a meta-analysis for one cohort and fol-

lowing the framework proposed by Lee et al. (2013), we
reference the following expression where Φ is the k × k
between-variant relationship matrix:

Φ = (𝐺𝑇𝐺 − (𝑍𝑇𝐺)𝑇
(
𝑍𝑇𝑍)−1𝑍𝑇𝐺

)
∕𝜎̂2 (11)

We find that ZT G can be expressed using PCSS as

𝑍𝑇𝐺 = (𝑛 − 1) cov (𝑍, 𝐺) + n𝑧̄𝑔̄𝑇 (12)

where cov(Z, G) represents the c × k covariance matrix of
Z and G such that cov(Z, G)(i,j) = cov(zi, gj). Thus, Φ and
𝑍𝑇𝐺 can be expressed using only PCSS inputs, andwe solve
for the matrix Φ𝜌, which is defined as Lee et al. (2013):

Φ𝜌 = 𝐿𝑇𝜌 𝑊Φ𝑊𝐿𝜌 (13)

where 𝐿𝜌 is the Cholesky decomposition of the k × k com-
pound symmetric matrix 𝑅𝜌 = (1 − 𝜌) 𝐼 + 𝜌11𝑇 andW is a
diagonal matrix with weights 𝑤1, 𝑤2, . . . , 𝑤𝑘 correspond-
ing to the column order of G (Lee et al., 2013). Then the
weights 𝜆1, 𝜆2, . . . , 𝜆𝑘 are the nonzero eigenvalues of Φ𝜌.
To find the optimal 𝜌∗, we calculate 𝐐𝜌 for each 𝜌 over
a grid and use the corresponding weights to calculate the
associated p-values using Davies method. Then, we choose
𝜌∗ such that the p-value is minimized to find the SKAT-O
score statistic 𝑄𝑆𝐾𝐴𝑇−𝑂 (Lee et al., 2013).

2.4 Simulation

To evaluate the accuracy of our proposed method we
performed a large simulation study. We simulated three
correlated SNVs across 2000 subjects and generated minor
allele frequency (MAF) using a beta(1, 4) (divided by four
in order to simulate rare variants). The correlation matrix
was sampled uniformly from the set of all possible 3 × 3
correlation matrices given these MAFs. Subjects’ age and
sex were generated independently from a Poisson distribu-
tion and aBernoulli distribution, respectively. Each subject
had three phenotypes: 𝑦1, 𝑦2, and 𝑦3 which were gener-
ated from a multiple linear regression with coefficients
age, sex, and the three SNVs. Error terms were gener-
ated from a multivariate normal distribution with mean
0 and covariance Σ where Σ was randomly generated in
each simulation using correlations for each pair of phe-
notypes drawn from a uniform(−0.5, 0.5) distribution, to
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TABLE 1 The accuracy of our methods to estimate the nested F-test statistic for the reduced model adjusting for covariates using
precomputed summary statistics (PCSS). Errors were minimal with low variance in all cases

Omnibus statistic Full model Reduced model Mean error Variance
F-test statistic SNV1, SNV2, SNV3, Age, Sex Age, sex 3.59 × 10−16 9.48 × 10−27

p-Value SNV1, SNV2, SNV3, Age, Sex Age, sex 1.03 × 10−17 7.68 × 10−28

F-test statistic SNV1, SNV2, SNV3, Sex Sex −3.82 × 10−17 4.13 × 10−27

p-Value SNV1, SNV2, SNV3, Sex Sex 3.48 × 10−17 4.15 × 10−28

TABLE 2 The accuracy of our methods to estimate the rare variant test statistics for SKAT-O, SKAT, and burden tests using precomputed
summary statistics (PCSS) are depicted below

Full model (Age) Reduced model (No age)
Omnibus Statistic Mean error Variance Mean error Variance
SKAT-O Score statistic 7.84 × 10−14 4.40 × 10−22 −1.62 × 10−14 4.05 × 10−22

SKAT-O p-Value 3.23 × 10−18 2.87 × 10−31 3.01 × 10−18 1.96 × 10−31

SKAT Score statistic 6.23 × 10−14 2.08 × 10−22 4.33 × 10−14 1.40 × 10−22

SKAT p-value 3.56 × 10−18 2.44 × 10−31 8.46 × 10−19 1.90 × 10−31

Burden score statistic 1.09 × 10−13 5.63 × 10−22 −5.11 × 10−14 6.78 × 10−22

Burden p-value −7.02 × 10−19 7.70 × 10−31 1.60 × 10−18 5.49 × 10−31

Note: Errors were minimal with low variance in all cases.

F IGURE 8 The plots depict the difference between score statistics (left) and log transformed p-values (right) on our method using
precomputed summary statistics (PCSS) compared to individual patient-level data (IPD) as applied to the Burden test for the full model,
featuring three single nucleotide variants (SNVs), age, and sex. These figures illustrate our method’s high accuracy on simulated data

simulate positive and negative relationships between phe-
notypes, and error variances held fixed at one for each
phenotype. Coefficients for the SNVs and covariates were
generated to simulate both negative and positive linear
relationships with the phenotypes. We held the inter-
cept at a constant value of zero across all simulations
to represent an arbitrary intercept. We then considered
the linear combination 𝜏1𝑦1 + 𝜏2𝑦2 + 𝜏3𝑦3 as the primary
response for all of our analyses where arbitrary weights
𝜏𝑗 were independently generated from a uniform(0.5, 5)
distribution.

2.4.1 F-test simulation

To assess our F-test method’s accuracy compared to an
IPD-computed F-test, we calculated SSR using the simu-
lated IPD and PCSS for the full model using all predictors,
and a reduced model excluding both SNV1 and SNV2. We
then performed a nested F-test using only PCSS, calculated
the F-test statistic and the corresponding p-value for the
linear combination of phenotypes, and evaluated bias in
our methods by comparing our result to the F-test statistic
using IPD.
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F IGURE 9 The plots depict the difference between score statistics (left) and log transformed p-values (right) on our method using
precomputed summary statistics (PCSS) compared to individual patient-level data (IPD) as applied to the Burden test for the reduced model,
featuring three single nucleotide variants (SNVs) and sex. These figures illustrate our method’s high accuracy on simulated data

2.4.2 Rare variant test simulation

To assess our rare variant tests, we calculated the test statis-
tic 𝑄𝜌∗ that combined all 𝑆𝑗 across the region using the
simulated IPD and PCSS using the suggested weights as
proposed inWu et al. (2011). To assess the potential effect of
covariates in the model, we also calculated a p-value using
a standard SKAT-O test on the IPD. We note that by cal-
culating the SKAT-O score statistic, SKAT and burden are
trivial extensions.

2.5 Real data example

Several groups have investigated the relationship between
SNPs and fatty acid levels in the blood using data from
the Framingham Heart Study (Kalsbeek et al., 2018; Tin-
tle et al., 2015; Veenstra et al., 2017; Wolf et al., 2020).
We applied our method to an unrelated subset of Gener-
ation 3 and Offspring cohorts from the FraminghamHeart
Study using the sequence data on 1212 subjects across 20
genes with common variants associated with omega 3 fatty
acids as indicated by the GWAS catalog. We tested if the
rare variants in these genes had an effect on the omega 3
index (EPA + DHA) adjusting for age and sex. We used
dbGene (NLM, n.d.) for the start and end points of each
gene referencing human genome build 38, and all vari-
ants in the minor allele frequency window between 0.01
and 0.05. When examining the nested F-test, we used all
variants with minor allele frequency greater than 0.05 for
the SKAT-O test, and an absolute correlation less than 0.9
compared to all other SNPs in the subset.
After calculating basic summary statistics for our phe-

notypes (EPA, DHA, age, and sex) and all genotypes, we
used the summary statistics to calculate the SKAT-O score

statistics and p-value. We then compared our results to
those found using IPD and the meta-analysis null distri-
bution. For the nested F-test, we compared a model with
all SNPs, age, and sex to a model with only age and sex.

3 RESULTS

The following sections detail our results from our simu-
lation and real data application to the Framingham Heart
Study.

3.1 Simulation F-test statistic results

We performed two nested F-tests with 3 SNVs: one full
model adjusting for age and sex, and one full model adjust-
ing only for sex. Table 1 shows the accuracy of our results
for both nested F-test simulations averaged across 100,000
iterations. We show the precision of our method with
respect to calculated test statistics and the associated p-
values in Figures 2 and 3. In short, our method to describe
covariate-adjusted models with multiple SNVs on a linear
combination of phenotypes with a nested F-test proved to
be exact to rounding errors. As expected, due to the exact-
ness of the method, simulation shows maintenance of the
type I error rate and power as compared to the IPDmethod
(detailed results not shown).

3.2 Simulation rare variant test statistic
results

We tested the full model with three SNVs adjusting
for age and sex, and the reduced model removing age.
Table 2 shows the flexibility of our results for the SKAT-O
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simulations averaged across 100,000 iterations, as well
as results for SKAT and burden test for completeness,
noting that these results are trivial after showing the accu-
racy of the SKAT-O test. We show the precision of our
method with respect to calculated test statistics and the
associated p-values for each of the three tests in Figures 4
and 5 for the SKAT-O test. Similarly, Figures 6 and 7 for
SKAT and Figures 8 and 9 for burden tests are included
in the Appendix, as they are trivial extensions. Again, our
method to describe covariate adjusted models with multi-
ple SNVs with a SKAT-O test statistic proved to be exact to
rounding errors. As expected, due to the exactness of the
method, simulation shows maintenance of the type I error
rate and power as compared to the IPD method (detailed
results not shown).

3.3 Real data results

As indicated in Appendix Tables C1 and C2, the results
from our PCSS methods using the Generation 3 and Off-
spring cohorts from the Framingham Heart Study are
equal to IPD methods to rounding errors. No gene p-value
was less than the Bonferroni corrected cut off of 0.0025.
Small bias is due to rounding error and missing data and
the bias is similar across a varied number of different
SNVs.

4 CONCLUSIONS

We have developed and demonstrated exact methods for
F-tests and common rare variant tests on a linear combi-
nation of continuous phenotypes regressed on an arbitrary
number of SNVs and covariates using only PCSS. We pro-
vided themathematical framework behind thesemethods,
and validated them through simulation and a real data
application using the Framingham heart study.
Since the method we have developed is mathematically

exact, limitations due to methodological approximations
are limited. There are, however, some limitations worth
noting. For example, the rare variant tests we have derived
here are only robust for continuous phenotypes. Exten-
sions of themethod as shown to binary or other categorical
variables may not be robust and is an area of future
research. We note that while we simulated the variance of
the SNVs under the assumption of Hardy Weinberg equi-
librium using the minor allele frequency. In practice, if
the variance of the SNVs is known, the HWE assumption
becomes unnecessary.
We have applied the method to a well-studied genome

wide dataset (Framingham) and shown that the method
provides exact solutions in this context as well. However,

future research is needed in order to more fully vet the
method on real data to explore its robustness to larger
amounts of missing data, skewness and outliers, and situ-
ations that arise when some PCSS are not available for the
cohort of interest.
Finally, we note that estimating the covariance matrix

of the phenotypes using the correlation matrix of slope
coefficients and each individual genotype has been shown
by Kim et al. (2015) and Zhu et al. (2015) and can be uti-
lized if needed. Earlier work on combined phenotypes
(Gasdaska et al., 2019) using this approach showed unbi-
ased behavior with some power loss due to an increase
in variability. In the case where correlations or values are
estimated and investigators wish to evaluate the sensitivity
of their findings to these estimated quantities, we recom-
mend rerunning the method using different estimates of
these quantities to qualitatively understand the sensitivity
of their findings to the estimated values. Future simula-
tion studies should continue to explore the sensitivity of
this approach and other PCSS-based methods to estimated
and incorrect PCSS inputs.
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APPENDIX 1
A SSR DERIVATION
For a linear model of the form 𝑦̂ = 𝑋β̂ fit via least squares,
we can simplify the sum of squared residuals such that
it can be computed using only summary statistics by the

following:

𝑆𝑆𝑅 = (𝑦 − 𝑋β̂)𝑇
(
𝑦 − 𝑋𝛽

)
= 𝑦𝑇 𝑦 − 2𝑦𝑇𝑋β̂ + β̂𝑇𝑋𝑇𝑋𝛽

= 𝑦𝑇 𝑦 − 2𝑦𝑇𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑦 + 𝑦𝑇𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑦

= 𝑦𝑇 𝑦 − 2𝑦𝑇𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑦 + 𝑦𝑇𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑋𝑇𝑦

= 𝑦𝑇 𝑦 − 𝑦𝑇𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑦

=
(
𝑦𝑇𝑦

)
− (𝑋𝑇𝑦)𝑇(𝑋𝑇𝑋)−1𝑋𝑇𝑦

TABLE C1 The accuracy of our methods to perform nested F-tests using PCSS from the Framingham Heart Study

With covariate adjustment (age)
Without covariate
adjustment (no age)

Gene
Num
SNVs F Stat p-Value Bias F‡

Bias
p-value‡ F Stat p-Value Bias F‡

Bias
p-value ‡

ADRA1D 51 0.664 0.967 -2.08 × 10−10 1.01 × 10−10 0.638 0.978 1.62 × 10−10 -5.75× 10−11
AHI1 74 1.364 0.025 -1.24 × 10−11 3.41 × 10−12 1.501 0.005 1.28 × 10−11 -

7.97× 10−13
AMIGO2 4 0.987 0.413 -2.34 × 10−11 1.28 × 10−11 1.083 0.363 -2.50 × 10−11 1.24 × 10−11
CCDC141 219 1.045 0.329 5.86 × 10−12 -1.94 × 10−11 1.058 0.287 2.13 × 10−10 -

6.56× 10−10
CD96 70 1.007 0.464 -2.06 × 10−11 4.67 × 10−11 1.164 0.174 -1.88 × 10−11 2.49 × 10−11
CR1L 77 0.853 0.811 -6.31 × 10−12 1.15 × 10−11 0.878 0.763 -1.51 × 10−11 3.07 × 10−11
DSPP 68 1.090 0.293 -2.83 × 10−11 5.18 × 10−11 1.088 0.297 1.02 × 10−11 -1.88× 10−11
ELOVL1 3 0.474 0.700 1.55 × 10−11 -1.09 × 10−11 0.626 0.598 -2.92 × 10−12 1.87 × 10−12
ELOVL2 27 1.569 0.032 1.58 × 10−11 -3.07 × 10−12 1.621 0.024 -5.00 × 10−12 7.31 × 10−13
EPHA2 37 0.972 0.518 -7.15 × 10−12 1.23 × 10−11 1.044 0.398 1.77 × 10−12 -

2.79× 10−12
FADS1 3 4.292 0.005 -3.59 × 10−11 2.51 × 10−13 4.550 0.004 -1.94 × 10−12 9.50 × 10−15
FADS2 63 1.223 0.117 -1.44 × 10−11 1.35 × 10−11 1.261 0.086 -6.46 × 10−12 4.72 × 10−12
FADS3 21 1.479 0.075 -1.11 × 10−11 3.88 × 10−12 1.646 0.033 6.41 × 10−12 -

1.09× 10−12
FFAR4 24 0.619 0.924 8.86 × 10−12 -6.05 × 10−12 0.703 0.852 9.59 × 10−13 -

9.65× 10−13
FILNC1 81 1.159 0.165 3.54 × 10−11 -4.85 × 10−11 1.202 0.114 8.67 × 10−12 -

9.01× 10−12
LRRC3B 92 1.208 0.096 1.35 × 10−11 -1.31 × 10−11 1.257 0.057 -1.02 × 10−11 6.43 × 10−12
ME1 111 1.023 0.421 3.20 × 10−11 -8.74 × 10−11 1.021 0.427 -9.26 × 10−12 2.54 × 10−11
POLR1D 47 1.145 0.236 -5.45 × 10−11 7.26 × 10−11 1.141 0.241 -1.20 × 10−11 1.62 × 10−11
PTGS2 7 1.697 0.106 2.57 × 10−11 -6.14 × 10−12 1.756 0.093 1.99 × 10−12 -

4.23× 10−13
SCFD1 63 1.104 0.273 -1.03 × 10−11 1.75 × 10−11 1.077 0.322 1.09 × 10−12 -

2.02× 10−12
TMEM258 2 2.239 0.107 -1.21 × 10−10 1.29 × 10−11 2.657 0.071 3.67 × 10−12 -

2.58× 10−13
WDR70 343 0.901 0.872 -1.13 × 10−10 2.88 × 10−10 0.880 0.917 -6.04 × 10−11 1.14 × 10−10

‡ Bias was calculated as the difference of the PCSS estimate and the individual patient-level data (IPD) estimate.
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TABLE C2 The accuracy of our methods to estimate SKAT-O test statistics using PCSS from the Framingham Heart Study. SKAT-O test
statistics have been scaled by 108 for readability

With covariate adjustment (age)
Without covariate
adjustment (no age)

Gene
Num
SNVs F Stat p-Value Bias F‡

Bias
p-value‡ F Stat p-Value Bias F‡

Bias
p-Value‡

ADRA1D 58 64.49 0.196 3.89 × 10−04 -6.99 × 10−15 69.04 0.172 -1.70 × 10−04 3.00 × 10−15
AHI1 419 95.40 0.233 5.89 × 10−04 -2.00 × 10−14 100.88 0.176 -2.00 × 10−04 6.00 × 10−15
AMIGO2 3 0.43 0.368 2.40 × 10−06 -6.00 × 10−15 0.40 0.375 -7.97 × 10−07 2.00 × 10−15
CCDC141 328 57.80 0.437 3.40 × 10−04 -4.80 × 10−14 52.61 0.527 -1.10 × 10−04 1.70 × 10−14
CD96 110 3.22 0.891 5.30 × 10−05 -7.99 × 10−15 58.61 0.553 -1.39 × 10−04 3.00 × 10−15
CR1L 182 24.84 0.477 1.50 × 10−04 -2.30 × 10−14 26.28 0.407 -5.01 × 10−05 6.00 × 10−15
DSPP 55 0.84 0.837 -3.40 × 10−06 6.00 × 10−15 0.38 0.889 -6.03 × 10−07 9.99 × 10−16
ELOVL1 5 0.57 0.417 2.60 × 10−06 -3.00 × 10−15 0.89 0.429 -1.80 × 10−06 6.99 × 10−15
ELOVL2 67 14.92 0.203 9.01 × 10−05 -3.90 × 10−14 13.84 0.251 -3.00 × 10−05 1.30 × 10−14
ELOVL3 3 0.40 0.521 2.50 × 10−06 -1.40 × 10−14 0.52 0.390 -1.30 × 10−06 6.99 × 10−15
EPHA2 51 13.91 0.056 8.01 × 10−05 -1.13 × 10−14 15.07 0.041 -3.00 × 10−05 2.60 × 10−15
FADS1 12 1.85 0.569 1.10 × 10−05 -2.20 × 10−14 1.05 0.525 -2.00 × 10−06 9.99 × 10−16
FADS2 89 16.35 0.276 1.00 × 10−04 -2.80 × 10−14 18.22 0.171 -4.01 × 10−05 6.99 × 10−15
FADS3 10 3.42 0.116 2.10 × 10−05 -9.99 × 10−15 3.04 0.073 -6.97 × 10−06 3.79 × 10−15
FFAR4 41 16.73 0.511 7.01 × 10−05 -2.00 × 10−15 6.00 0.562 -1.20 × 10−05 7.99 × 10−15
FILNC1 98 21.16 0.173 1.30 × 10−04 -2.50 × 10−14 20.54 0.165 -5.01 × 10−05 7.99 × 10−15
LRRC3B 176 966.21 0.119 6.90 × 10−03 -6.99 × 10−15 1270.36 0.068 -2.99 × 10−03 1.80 × 10−15
ME1 316 58.06 0.450 3.50 × 10−04 -3.50 × 10−14 54.61 0.477 -1.11 × 10−04 1.40 × 10−14
POLR1D 54 26.39 0.062 1.40 × 10−04 -4.91 × 10−15 59.55 0.091 -1.20 × 10−04 2.19 × 10−15
PTGS2 10 40.39 0.023 2.40 × 10−04 -2.30 × 10−15 44.28 0.016 -8.96 × 10−05 5.00 × 10−16
SCFD1 270 90.74 0.061 5.19 × 10−04 -7.00 × 10−15 75.25 0.106 -1.50 × 10−04 4.00× 10−15
TMEM258 3 0.19 0.624 1.70 × 10−06 -9.99 × 10−15 0.70 0.339 -1.19 × 10−06 9.99 × 10−16
WDR70 455 18.01 0.838 1.30 × 10−04 -3.00 × 10−15 70.15 0.720 -1.40 × 10−04 2.70 × 10−14

‡ Bias was calculated as the difference of the PCSS estimate and the individual patient-level data (IPD) estimate.

B 𝑆𝐽 DERIVATION
Given a null model 𝑦 = 𝑍𝛼 + 𝜀 and least squares estimate
𝑦̂ = 𝑍𝛂̂, the contribution to the score statistic from any one
SNV,
𝑔𝑗 , can be expressed as (assuming that tshe null model

includes an intercept term so the residuals, 𝑦𝑖 − 𝑦̂𝑖 , sum to
zero):

𝑆𝑗 = 𝑔𝑇
𝑗 (𝑦 − 𝑦̂) ∕σ̂

=
∑𝑛

𝑖=1
𝑔𝑖𝑗 (𝑦𝑖 − 𝑦̂) ∕𝜎̂

=
(
(𝑛 − 1) cov

(
𝑔𝑗, 𝑦 − 𝑦̂

)
+ 𝑔̄𝑗

∑𝑛

𝑖=1
𝑦𝑖 − 𝑦̂𝑖

)
∕𝜎̂

= (𝑛 − 1) cov
(
𝑔𝑗, 𝑦 − 𝑦̂

)
∕𝜎̂

= (𝑛 − 1)
(
cov

(
𝑔𝑗, 𝑦

)
− cov

(
𝑔𝑗, 𝑦̂

))
∕𝜎̂

= (𝑛 − 1)
(
cov

(
𝑔𝑗, 𝑦

)
−
∑𝑐

𝑙 = 1
𝛼̂𝑙cov

(
𝑔𝑗, 𝑧𝑙

))
∕𝜎̂

C REAL DATA RESULTS
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