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Summary

As biobanks become increasingly popular, access to genotypic and phenotypic datacontinues to increase in the
form of pre-computed summary statistics (PCSS). Widespread accessibility of PCSS alleviate many issues
related to biobank data, including that of data privacy and confidentiality, as well as high computational costs.
However, questions remain about how to maximally leverage PCSS for downstreamstatistical analyses. Here we
present a novel method for testing the association of anarbitrary number of SNVs on a linear combination of
phenotypes after adjusting forcovariates for common multi-marker tests (e.g., SKAT, SKAT-O) without access to
individual patient-level data (IPD). We validate exact formulas for each method, anddemonstrate their accuracy

through simulation studies and an application to fatty acid phenotypic data from the Framingham Heart Study.
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1 INTRODUCTION

The Wd accessibility of data is an exciting prospect for advancements in science — especially in
the area of Jai icalresearch. However, the utilization of individual patient-level data (IPD) raises issues of
data privamy, and in the biobank era, issues with computational cost and data processing time
(Heath &F|yOT6™ i ppertz & Holzinger 2014).

With th zation of biobanks, there has been an explosion in the magnitude of available genotypic
and phenatypic dafa, to facilitate the connection between genetics and human health. In an effort to make

biobank da accessible and usable, projects like GeneAtlas and PheWeb provide pre-computed

summary i CSS) eliminating the need for some

U

era and Angela Zigarelli contributed equally to this manuscript.

s 1o access IPD (Neale 2018; PheWeb 2018). Most often these projects have computed simple

linear regrm

results y combinations of genotypes and phenotypes and then made summary statistics like 8
and SE(B) pu vailable (Canela-Xandri, Rawlik, & Tenesa 2018; Sudlow et al. 2015). Though this process

allevia of data privacy and confidentiality, as well as high computational costs, questions are

raised about how useful PCSS can be given that the scopeof PCSS is often merely results from simple linear

regressionm

In an eﬂgre fully leverage PCSS in downstream analyses, several groups have published methods

that utiliz PCSS to perform meta-analyses, as well as multivariate methods to investigate

relationshi etween phenotypes (Cichonska et al. 2016; Liu & Lin 2018; Ray & Boehnke 2018; Stephens

2013; van der Sluis, Posthuma, & Dolan 2013; Vuckovic, Gasparini, Soranzo, & lotchkova 2015). More
recently,ﬁaskaet al. (2019) developed a method utilizing PCSS from simplelinear regression models to
regress linear comBinations of phenotypes against genotypes, with an extension by Wolf, Westra, and Tintle
(2021) for the licative phenotype case. Subsequently, Wolf et al. (2020) expanded the approach to be
able t to adjust for covariates not included in the simple linear regression models on which the
PCSS are based. Other recentdevelopments in this area include Svishcheva, Belonogova, Zorkoltseva, and
Axenovich (2019) who presented an approach which leverages simple linear regression PCSS to perform

gene-based (multi-marker) tests on a single phenotype. Despite these advances, significant gaps in the
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literature remain. In particular, methods for conducting multi-marker tests of association uti- lizing complex
(e.g., linear/multiplicative combinations) phenotypes are lacking. Furthermore, post-hoc covariate
adjustment utilizing PCSS is important and, yet, is lacking for most methods utilizing PCSS to date. While
metaSKAT (Lee, Teslovich, TM,and Lin 2013) utilizes PCSS in a multi-marker framework, this approach requires
pre-specification of phenotypes and covariates before PCSS are computed, limiting post-hoc research
exploration on different sets of phenotypes and/or covariates. Further- more, multiSKAT (D, L, M, and Lee
2019) tests for a general multivariate phenotype limiting power for research hypotheses involving pre-
specified, multivariate phenotypes.

To address these gaps, we present a method that calculates various multi-marker tests (e.g., SKAT; SKAT-

0), for a linear
combination of phenotypes using only PCSS from simple linear regression models of a single phenotype on a
single genotype.Thus, our method allows phenotypes, genotypes, and covariates from different analyses to be
combined using researcher specified linear combinations of phenotypes, genotype sets and covariates. We
provide an analytic framework for our methodology whichis validated through simulation. Finally, we apply

these methods on real data from the Framingham Heart Study.

2 METHODS

The following sections outline first a method to calculate the F-Test statistic, and second, a method to
calculate rare variant tests.Both methods use only PCSS inputs, by which we mean only the estimates and
standard errors from a simple linear regressionmodel of a single phenotype on a single genetic marker (e.g.,

single nucleotide variant; SNV).

2.1 Notation and Assumptions

Throughout this paper we use the column vectors y;, ..., ¥, to represent a collection of vectors of n X 1

measurements on m

phenotypes such that y; = [y}, ..., ¥»j] is a vector of n measurements on the j*" phenotype. We define

y = XiLigyjasn



measurements across a weighted linear combination of m phenotypes where T is an m X 1 vector of

weights corresponding to each phenotype. We use X = [x, ..., X,] to denote an n X p design matrix of n

|

o

individuals®on p variables including k SNVs for p > 1. We use y to represent the m X 1 vector of means for
each phen X to represent the p X 1 vector of means for the design matrix. We also define cov(X)

as the e-mpirical covariance matrix of X such that the i, j** entry in the matrix represents the covariance of

x; and x;.

[

Moreovgr, we as8ume that Y72, 7;¥; = Xp + £ where £ ~ N (0, a2I,) which is a standard assumption
for both the Fand rare variant tests used to derive the test statistics' sampling distributions. We also

assume tolhav@€/PCSS including the means for each phenotype, genotype, and covariate, as well as the full

S

covarianc e. cov(yq, -, ¥Ym X), which we will leverage to perform the omnibus tests of interest.

These stati e aggregated from a variety of sources including single-marker GWAS results. For

example, t covariance of a given SNV and a phenotype can be calculated by diving the GWAS

1

simple lin ion slope coefficient by the sample variance of the SNV (Wolf et al., 2021). Figure 1

proposes ork for collecting and compiling this information in practice.

d

Tho ssume to have a known covariance matrix of the phenotypes for our methods to
produce calc identical to IPD, it may be approximated using correlations of GWAS test statistics for

each p echniques proposed by Kim, Bai, and Pan (2015); Zhu et al. (2015).

r M

22 F fora Linear Model

The F-test be used to evaluate the combined effect of several linear predictors on a response. Consider

1

the de i that contains a subset of g selected attributes from the design matrix for ¢ < p. For

t

example, a collection of covariates that does not include the genetic markers of interest. Then,

the test ha thesis y = Xy + £for € ~ N(0,02I,) and has test statistic:

Al
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_ (SSRR=SSRF)/(p=q)
T SSRp/(n-p)



1) f—

which follg @ g n—p distribution under the null hypothesis. We define SSR as the sum of squared residuals

for the full 3 with p predictors including the intercept, and SSRj as the sum of squared residuals for

I .
the reducegodel ¥y = X¥ . The sum of squared residuals (SSR) can be expressed as follows (see Appendix for

details):

SSR = y"y - (X"y)"(X"X)'X"y

In order towR in terms of PCSS, we use the following from Wolf et al. (2020):

Y'Yy =The I Ty (cov(yny))(n —1) + y,y;n)

m X"y = (n - D]cov(xy, y), .., cov(x,,y)] +nxy'

X'X = (n—1) cov(X) + nxx"
where =7,cov(xy,y;) + -+ Tymeov(x,, ¥;). We can then evaluate y"y, X"y, and X" X using the

appropriate subset of X to calculate F from SSR and compare it to its null distribution to obtain a p-value under the

null hypotl‘sis.

2.3 Sriant Tests

Rare vasi including burden, SKAT, and SKAT-O also test the null hypothesis that a collection of

features h ect on a response, are useful in rarer genetic cases where the F-Test may be less

efficient (Le »2012; Li & SM 2008; Wu et al. 2011). The following sections detail how to implement
these t only PCSS inputs.

Consider the partition of our covariate space X = [G, Z] where G = [g4, ..., k] is an n X k genotype matrix,

gj is an n X 1 column vector of minor allele counts at the jt* variant, Z = [z,, ..., z.] is an n X ¢ matrix of

covariates, and z; is an n X 1 vector for the It" covariate. Similar to the F-test, the null hypothesis of the

This article is protected by copyright. All rights reserved.
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rare variant tests assumes that y = Za + € and € ~ N(0, 02I,,) The test statistics can be obtained by first
calculating a site-specific score statistic for each SNV in G and then combining the score statistics into one
statistic. We use g to represent the k X 1 vector of means for each SNV and Z to represent the ¢ X 1 vector
of means for each covariate. For the null model y = Za + &, let y = Z@ be the n X 1 vector of the fitted

values.

2.3.1 Score Statistic Framework

A site score statistic that captures how much the minor alleles at variant j empirically contribute to increases

in a continuousphenotype as referenced in Wu et al. (2011) is

S;=g;(y—y)/6* (6)

where 62 is the unbiased estimator of 62 under the null model. This can be expressed using PCSS inputs as

follows (see Appendix for derivation):

— 1 <
S = (n62 ) (cov(g]-,y) - Z @ cov(g]-,zl)> (7)

=1

where
a=(Z"2) 7"y (8)

is the vector of slope coefficients under the covariate-only model, which can be computed by calculating
Z"y and Z"Z using Equations 4 and 5 above. We note that 42 = SSR/(n — q) using SSR from the covariate

only model. If there is no covariate adjustment in the null model, the expression can be simplified to

S; = (n - 1) cov(g;, y)/67.



2.3.2  Calculating the Unified Score Test Statistic

The site-specific score statistics can then be aggregated to assess the overall contribution of all k SNVs

g wj5~2 and Qpurden = (Z?:1 ijj)2 where w is a vector of weights (Lee et al. 2012; Li &

with Qsgar = Ji

SM 2008; 011). A common set of weights w are the suggested weights as proposed in Wu et al.

(2011) givengasgtfiggsquare root of the density of a beta(2, 25) distribution evaluated at MAF; The unified

score statihs Qskar and Qgyuraen to appeal to advantages of both test statistics, and may be written

for the en set ariants as referenced in Lee et al. (2012):

Qp = pQpurdgen + (1 = p)Qskar (9)

for some

US

[0,1]. The optimized SKAT (SKAT-O) test statistic is a special case of the unified score

Q, such t eight p yields the minimum p-value. The weight p* can be calculated numerically or

I

analyticall s Lee et al. (2012), and the SKAT-O test statistic is written as

Qskar-0 = P Qpuraen + (1 — p)Qsgar (10)

d

We note den and SKAT test statistics are also special cases of the unified score statistic ¢, that occur

when sone and zero, respectively.

M

The test itatistic's null distribution follows a mixture of independent x?(1) distribution such that

under th ) Qp~ ;?=1 Aj;gjz.(l) (Lee et al. 2013). We derive an expression for the weights for this null

distributio ms of PCSS.

Treating thiS as a meta-analysis for one cohort and following the framework proposed by Lee et al. (2013),

n

we ref llowing expression where @ is the k X k between-variant relationship matrix (Lee et al.

2013):

ut

®=(6"6-(Z"6)"(Z"2)"276) /5" (11)

A

We find that ZT G can be expressed using PCSS as
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Z"G = (n — 1)cov(Z, G) + nzg" (12)

where cov(Z, G) represents the ¢ X k covariance matrix of Z and G such that cov(Z, G); j, = cov(z;, g)-
Thus, ® and VA

can be expressed using only PCSS inputs, and we solve for the matrix @, which is defined as Lee et al. (2013):

®, = LTWOWL, (13)

where L, is the Cholesky decomposition of the k X k compound symmetric matrix R, = 1 -=p+p117 and W
is a diagonal matrix with weights wy, w,, ..., wy, corresponding to the column order of G (Lee et al., 2013).
Then the weights 4, 4, .., 4, are the nonzero eigenvalues of ®@,. To find the optimal p*, we calculate Q,
for each p over a grid and use the corresponding weights to calculate the associated p-values using Davies
method. Then, we choose p* such that the p-value is minimized to findthe SKAT-O score statistic Qsgxar—o

(Lee et al. 2013).

2.4 Simulation

To evaluate the accuracy of our proposed method we performed a large simulation study. We simulated
three correlated SNVsacross 2,000 subjects and generated minor allele frequency (MAF) using a beta(1, 4)
(divided by four in order to simulate rare variants). The correlation matrix was sampled uniformly from the set
of all possible 3 X 3 correlation matrices given these MAFs. Subjects’ age and sex were generated
independently from a Poisson distribution and a Bernoulli distribution, respectively. Each subject had three

phenotypes: ¥4, ¥,, and y; which were generated from a multiple linear regression with coefficients age, sex, and



the three SNVs. Error terms were generated from a multivariate normal distribution with mean 0 and
covariance X where X was randomly generated in each simulation using correlations for each pair of

phenotyHom a uniform(-0.5, 0.5) distribution, to simulate positive and negative relationships

between p and error variances held fixed at one for eachphenotype. Coefficients for the SNVs and

covariates Were gene
I
We held thsntercept at a constant value of zero across all simulations to represent an arbitrary intercept.

We then comthe linear combination 7,y + 7y, + 73¥5 as the primary response for all of our analyses

where arbitr ights 7; were independently generated from a uniform(0.5, 5) distribution.

)
-

ed to simulate both negative and positive linear relationshipswith the phenotypes.

2.4.1 est Simulation

To assess method’s accuracy compared to an IPD-computed F-Test, we calculated SSR using the
simulated IPB a SS for the full model using all predictors, and a reduced model excluding both SNV1 and
SNV2. performed a nested F-Test using only PCSS, calculated the F-Test statistic and the
corres p-value for the linear combination of phenotypes, and evaluated bias in our methods by

comparing our result to the F-Test statistic using IPD.
2.4.2 i:: fariant Test Simulation
To ass riant tests, we calculated the test statistic Qp* that combined all Sj across the region

using the*ula!e! IPD and PCSS using the suggested weights as proposed in Wu et al. (2011). To assess the

potential effect OE ivariates in the model, we also calculated a p-value using
0

est on the IPD. We note that by calculating the SKAT-O score statistic, SKAT and

=
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2.5 Real Data Example

Several groups have investigated the relationship between SNPs and fatty acid levels in the blood using data
from the FraminghamHeart Study (Kalsbeek et al. 2018; Tintle et al. 2015; Veenstra et al. 2017; Wolf et al.
2020). We applied our method to an unrelated subset of Generation 3 and Offspring cohorts from the
Framingham Heart Study using the sequence data on 1,212 subjects across 20 genes with common variants
associated with omega 3 fatty acids as indicated by the GWAS catalog. We tested if the rare variants in these
genes had an effect on the omega 3 index (EPA + DHA) adjusting for age and sex. We used dbGene(NLM n.d.)
for the start and end points of each gene referencing human genome build 38, and all variants in the minor
allele frequency window between 0.01 and 0.05. When examining the nested F-test, we used all variants
with minor allele frequency greater than 0.05 for the SKAT-O test, and an absolute correlation less than 0.9

compared to all other SNPs in the subset.

After calculating basic summary statistics for our phenotypes (EPA, DHA, age, and sex) and all
genotypes, we used the

summary statistics to calculate the SKAT-O score statistics and p-value. We then compared our results to
those found using IPDand the meta analysis null distribution. For the nested F-test, we compared a model

with all SNPs, age, and sex to a model withonly age and sex.

3 RESULTS

The following sections detail our results from our simulation and real data application to the Framingham
Heart Study.

3.1 Simulation F-Test Statistic Results

We performed two nested F-Tests with 3 SNVs: one full model adjusting for age and sex, and one full model
adjusting only forsex. Table 1 shows the accuracy of our results for both nested F-Test simulations averaged
across 100,000 iterations. We showthe precision of our method with respect to calculated test statistics and
the associated p-values in Figures 2 and 3. In short, ourmethod to describe covariate-adjusted models with

multiple SNVs on a linear combination of phenotypes with a nested F-Testproved to be exact to rounding



errors. As expected, due to the exactness of the method, simulation shows maintenance of the type | error

rate and power as compared to the IPD method (detailed results not shown).

T

Q.

3.2 %imion Rare Variant Test Statistic Results

We tested f odel with three SNVs adjusting for age and sex, and the reduced model removing age.

Table 2 sh exibility of our results for the SKAT-O simulations averaged across 100,000 iterations, as

well as reMAT and burdentest for completeness, noting that these results are trivial after showing

the accuracy of the SKAT-O test. We show the precisionof our method with respect to calculated test statistics

and the associated@-values for each of the three tests in Figures 4 and 5 forthe SKAT-O test. Similarly, Figures 6

and 7 for Figures 8 and 9 for burden tests are included in the appendix, as they are trivial
extension i r method to describe covariate adjusted models with multiple SNVs with a SKAT-O test
statistic pr e exact to rounding errors. As expected, due to the exactness of the method, simulation
shows maintén of the type | error rate and power as compared to the IPD method (detailed results not

shownJ:

3.3 Ruhta Results

As indicate@es C1 and C2, the results from our PCSS methods using the Generation 3 and Offspring
cohortmmingham Heart Study are equal to IPD methods to rounding errors. No gene p-value
was le nferroni corrected cut off of 0.0025. Small bias is due to rounding error and missing
data an#amssimilar across a varied number of different SNVs. CONCLUSIONS

-

We have develgged and demonstrated exact methods for F-Tests and common rare variant tests on a

linear ion of continuous phenotypes regressed on an arbitrary number of SNVs and covariates

using only PC e provided the mathematical framework behind these methods, and validated them

through simulation and a real data application using the Framingham heartstudy.

This article is protected by copyright. All rights reserved.



Since the method we have developed is mathematically exact, limitations due to methodological
approximations are limited.There are, however, some limitations worth noting. For example, the rare variant
tests we have derived here are only robust forcontinuous phenotypes. Extensions of the method as shown
to binary or other categorical variables may not be robust and is anarea of future research. We note that
while we simulated the variance of the SNVs under the assumption of Hardy Weinberg Equilibrium using
the minor allele frequency. In practice, if the variance of the SNVs is known, the HWE assumption becomes

unnecessary.

We have applied the method to a well-studied genome wide dataset (Framingham) and shown that the
method provides exactsolutions in this context as well. However, future research is needed in order to more
fully vet the method on real data to explore its robustness to larger amounts of missing data, skewness and

outliers, and situations that arise when some PCSS are not available for the cohort of interest.

Finally, we note that estimating the covariance matrix of the phenotypes using the correlation matrix of
slope coefficients andeach individual genotype has been shown by Kim et al. (2015); Zhu et al. (2015) and
can be utilized if needed. Earlier work on combined phenotypes (Gasdaska et al. 2019) using this approach
showed unbiased behavior with some power loss due to anincrease in variability. In the case where
correlations or values are estimated and investigators wish to evaluate the sensitivity of their findings to
these estimated quantities, we recommend re-running the method using different estimates of these
guantities to qualitatively understand the sensitivity of their findings to the estimated values. Future
simulation studies should continue to explore the sensitivity of this approach and other PCSS-based

methods to estimated and incorrect PCSS inputs.
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TABLES AND FIGURES

FIGURE 1 Workflow for an omnibus test using only pre-computed summary statistics.!

Multimarker Omnibus Test
EPA + DHA = aq + 0, PhysAct + 3

Test Hy : ﬂ] =i = .nlj‘,l_- =0

Cov(EPA,SNV;)

GWAS 2 2 ,
DHA = fy + 1SNV, +¢ Coxl A SNV

GWAS 3 - .
PhysAct = 8o + BNV, + € Cov(PhysAct, SNV;)

Cov(SNV,, SNV} ‘ Cov(EPA, DHA, PhysAct) ]

Existing Literature

TABLE 1 The accuracy of our methods to estimate the nested F-Test statistic for the reduced model
adjusting for covariatesusing PCSS. Errors were minimal with low variance in all cases.

Omnibus Statistic Full Model Reduced Model Mean Error Variance
F-Test Statistic SNV1, SNV2, SNV3, Age, SexSNV1, Age, Sex 3.59 x 10716 9.48 x 10727
P-Value SNV2, SNV3, Age, SexSNV1, SNV2, Age, Sex

SNV3, Sex 1.03 x 1077 7.68 x 10728

F-Test Statistic Sex



-3.82x 1071 4.13 x 107%

P-Value SNV1, SNV2, SNV3, Sex Sex 3.48x 107V 4.15 x

10—28

Author Manuscript

!Abbreviations: GWAS: genome-wide association study, SNV: single-nucleotide variant, MAF: minor allele frequency, EPA:
eicosapentaenoic acid, DHA:docosahexaenoic acid, PhysAct: physical activity
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FIGURE 2 The below plots depict the difference between score statistics (left) and log transformed p-values
(right) on our method using PCSS compared to IPD as applied to a nested F-Test adjusted for age and sex
(example 1). These figures illustrateour method’s high accuracy on simulated data.

Example 1: Comparison of PCSS and IPD nested F-test statistics and p-values
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FIGURE 3 The below plots depict the difference between score statistics (left) and log transformed p-values
(right) on our method using PCSS compared to IPD as applied to a nested F-Test adjusted for sex (example
2). These figures illustrate our method’s high accuracy on simulated data.

Example 2: Comparison of PCSS and IPD nested F-test statistics and p-values
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TABLE 2 Tt accuracy of our methods to estimate the rare variant test statistics for SKAT-O, SKAT, and

burden tests SS are depicted below. Errors were minimal with low variance in all cases.

— - E—
Modg (No Age) Omnibus Statistic Mean Error Variance
SKAT-QgStor&8tatistic 7.84x 10714 4,40 x 10722 -1.62 x 10714

4.05 x 10722
SKAT-QP-V; 3.23x 10718 2.87 x 10731 3.01x 10718

1.96 x 1073
SKAT S stic 6.23x 10714 2.08x 10722 4.33x 1071

1.40 x 10722
SKAT P, 3.56x 10718 2.44x 10731 8.46 x 10719

1.90 x 10731
Burde tistic 1.09x 10713 5.63 x 10722 -5.11x 10714

6.78 x 10722
Bu -7.02x 1071 7.70 x 10731 1.60 x 10718

5.49 x 10731

M

(right) on od using PCSS compared to IPD as applied to the SKAT-O test for the full model,
featuring th s, age, and sex. These figures illustrate our method’s high accuracy on simulated data.

FIGURE 4 !e below plots depict the difference between score statistics (left) and log transformed p-values
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IPD SKAT-O score statistic

Full model: Comparison of PCSS and IPD SKAT-O score statistics and p-values
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FIGURE 5 The below plots depict the difference between score statistics (left) and log transformed p-values
(right) on our method using PCSS compared to IPD as applied to the SKAT-O test for the reduced model,
featuring three SNVs and sex. Thesefigures illustrate our method’s high accuracy on simulated data.

Reduced model: Comparison of PCSS and IPD SKAT-O score statistics and p-values
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FIGURE 6 The below plots depict the difference between score statistics (left) and log transformed p-values
(right) on our method using PCSS compared to IPD as applied to the SKAT test for the full model, featuring

three SNVs, age, and sex. Thesefigures illustrate our method’s high accuracy on simulated data.
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Re!uced model: Comparison of PCSS and IPD SKAT score statistics and p-values
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FIGURE 7 w plots depict the difference between score statistics (left) and log transformed p-values
(right) on o od using PCSS compared to IPD as applied to the SKAT test for the reduced model,
featuri and sex. Thesefigures illustrate our method’s high accuracy on simulated data.
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FIGURE 8 The below plots depict the difference between score statistics (left) and log transformed p-values
(right) on our method using PCSS compared to IPD as applied to the Burden test for the full model, featuring
three SNVs, age, and sex. Thesefigures illustrate our method’s high accuracy on simulated data.

Full model: Comparison of PCSS and IPD Burden score statistics and p-values

2 o’ =
g g .
L < o .
E o~ g
w =
-] © @7
g Z. 8
o 8
5 g | : g
o 8 @ _? h
= :
S & (m)
m | o o _|
D —
o
© . o .
T T T T T T T T
0 1,000,000 2,000,000 0 10 20 30 40
PCSS Burden score statistic PCSS -logyg p-value

FIGURE 9 The below plots depict the difference between score statistics (left) and log transformed p-values
(right) on our method using PCSS compared to IPD as applied to the Burden test for the reduced model,
featuring three SNVs and sex. Thesefigures illustrate our method’s high accuracy on simulated data.



Reduced model: Comparison of PCSS and IPD Burden score statistics and p-values
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ASSR

Ma

For a linear model of the form y = XG fit via least squares, we can simplify the sum of squared residuals

such that ifican be computed using only summary statistics by the following:

[

SSR = (y — XP)"(y — XB)

= y'y — 2y"XB + B X"XB

=y'y—2y"X(X"X)"'X"y

+yTX(XTX)IXTX(XTX)"1XTy

=yTy - 2yTX(XTX)"1XTy + yTX(X"X)"1X"XTy

Autho

=y'y—y'XX"X)"'X"y

=0"y) - XX X)Xy

This article is protected by copyright. All rights reserved.



B S; DERIVATION

Given a null model y = Za + € and least squares estimate y = Zd, the contribution to the score statistic

from any one SNV,
g;, can be expressed as: 2
S;=g;(y—9/6
=Yi=1 9 —9)/6
= (= Dcov(gyy =) + 4, Bt vi = 1) /3
= (n— Deov(g;,y - 3)/6
= (n—1)(cov(g;,y) — cov(g;,))/é

=(n- 1)(cov(gj,y) —Xi-1 @zCOV(gj;Zl))/ﬁ



|pt

assumln hat the null model includes an intercept term so the residuals, y; —

CREAL

@’

RESULTS

ﬁi, sum to zero

TABLE C1 The accuracy of our methods to perform nested F-Tests using PCSS from

the Framingham Heart Study.

With Covariate Adjustment (Age)

Clthout Covariate Adjustment (No Age) Gene Num

SNVs Stat P-Value Bias F* Bias P-Valuet F

Stat m P-Value Bias Ft Bias P-Value?

ADRA1D 0.664 0.967 -2.08x10710 1.01x1071° 0.638 0.978
AHI1 1.364 0.025 -1.24x10°11 3.41x10712 1.501 0.005
AMIG 0.987 0.413 -2.34x10°11 1.28x10711 1.083 0.363
CCDC141 219 1.045 0.329 5.86x10712 -1.94x10711 1.058 0.287
CD96 L 70 1.007 0.464 -2.06x10°11 4.67x10°11 1.164 0.174
CR1L O 77 0.853 0.811 -6.31x10712 1.15x10711 0.878 0.763
DSPP 68 1.090 0.293 -2.83x10711 5.18x10711 1.088 0.297
ELOVL1 s 3 0.474 0.700 1.55x10711 -1.09x10°11 0.626 0.598
ELOVL 27 1.569 0.032 1.58x10°11 -3.07x10712 1.621 0.024
EPHA2 : 37 0.972 0.518 -7.15x10712 1.23x10711 1.044 0.398
FADS1 3 4.292 0.005 -3.59x10711 2.51x10713 4.550 0.004
FADS2 < 63 1.223 0.117 -1.44x10711 1.35x10711 1.261 0.086
FADS3 21 1.479 0.075 -1.11x10711 3.88x10712 1.646 0.033
FFAR4 24 0.619 0.924 8.86x10712 -6.05x10712 0.703 0.852
FILNC1 81 1.159 0.165 3.54x10°11 -4.85x10711 1.202 0.114
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LRRC3B 92 1.208 0.096 1.35x10711 -1.31x10711 1.257 0.057
ME1 111 1.023 0.421 3.20x10°11 -8.74x10711 1.021 0.427
POLR1D 47 1.145 0.236 -5.45x10711 7.26x10°11 1.141 0.241
PTGS2 7 1.697 0.106 2.57x10711 -6.14x10712 1.756 0.093
SCFD1 63 1.104 0.273 -1.03x10°11 1.75x10711 1.077 0.322
TMEM258 2 2.239 0.107 -1.21x10710 1.29x10711 2.657 0.071
WDR70 343 0.901 0.872 -1.13x10°10 2.88x10710 0.880 0.917

Bias was calculated as the difference of the PCSS estimate and the individual patient-level data (IPD)

estimate

TABLE C2 The accuracy of our methods to estimate SKAT-O test statistics using PCSS from the Framingham
Heart Study. SKAT-O test statistics have been scaled by

108 for readability.

With Covariate Adjustment (Age)

Without Covariate Adjustment (No Age)

Gene Num SNVs F Stat P-Value Bias F¥ BiasP-Value# F Stat
P-Value Bias F1 Bias P-Valuel
ADRA1D 58 64.49 0.196 3.89x10704 -6.99x10715
69.04  0.172 -1.70x107%4 3.00x1071°
AHI1 419 95.40 0.233 5.89x10704 -2.00x10714
100.88  0.176 -2.00x107% 6.00x1071°
AMIGO2 3 0.43 0.368 2.40%x1070¢ -6.00x10715
0.40 0.375 -7.97x10797 2.00x1071°
CCDC141 328 57.80 0.437 3.40x107%4 -4.80x10714
52.61 0.527 -1.10x10794 1.70x10°14
CD96 110 3.22 0.891 5.30x10705 -7.99x10715
58.61 0.553 -1.39x10794 3.00x10°1°
CR1L 182 24.84 0.477 1.50x107%4 -2.30x10714
26.28 0.407 -5.01x10795 6.00x10°15
DSPP 55 0.84 0.837 -3.40%x1070¢ 6.00x10715
0.38 0.889 -6.03x10797 9.99x10°16
ELOVL1 5 0.57 0.417 2.60x10706 -3.00x10715
0.89 0.429 -1.80x1079¢ 6.99x10°15



ELOVL2 67 14.92 0.203 9.01x10795 -3.90x10714
13.84  0.251 -3.00x10795 1.30x10714

ELOVLSH 3 0.40 0.521 2.50x107% -1.40x1071*
0.52 0.390 -1.30x1079 6,.99x10°15

EPHA2 Q 51 13.91 0.056 8.01x10705 -1.13x10714
15.07  0.041 -3.00x10795 2.60x10°15

N

FADS1 s 12 1.85 0.569 1.10x10795 -2.20x10714
1.05 0.525 -2.00x1079¢ 9.99x10"16

FADS2 O 89 16.35 0.276 1.00x107%* -2.80x107*
18.22  0.171 -4.01x10795 6.99x10°1°

FADS3 m 10 3.42 0.116 2.10x107% -9.99x1071°
3.04 0.073 -6.97x10796 3.79x10715

FFAR4 : 41 16.73 0.511 7.01x107% -2.00x10715
6.00 0.562 -1.20x10795 7.99x10715

FILNC1 C 98 21.16 0.173 1.30x107%* -2.50x1071*
20.54  0.165 -5.01x10795 7.99x10715

LRRC3B m 176 966.21 0.119 6.90x107%3 -6.99x10715
1270.36 0.068 -2.99x10793 1.80x1071°

ME1 316 58.06 0.450 3.50x107%4 -3.50x10714
54.61 0.477 -1.11x10794 1.40x10°14

POLR1D 54 26.39 0.062 1.40x107%4 -4.91x10715
s 59.55  0.091 -1.20x10794 2.19x10°15

PTGS2 10 40.39 0.023 2.40x107%4 -2.30x10715
O 4428  0.016 -8.96x10795 5.00x10°16

SCFD1 270 90.74 0.061 5.19x107%4 -7.00x10715
C 75.25 0.106 -1.50x10794 4.00x10°15

TMEM258 3 0.19 0.624 1.70x107%¢ -9.99x10715
H 070  0.339 -1.19x107%6 9.99x10-16

WDR70 s 455 18.01 0.838 1.30x107%4 -3.00x10715
70.15 0.720 -1.40x10794 2,70x10714

*Bias ted as the difference of the PCSS estimate and the individual patient-level data (IPD)

estimate.
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