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1. Introduction

Real-world time on treatment (rwToT), also
known as real-world time to treatment dis-
continuation (rwTTD), is defined as the
length of time observed in real-world data
(as distinct from controlled clinical trials)
from initiation of a medication to discon-
tinuation of that medication.[1,2] The end-
ing of the treatment can be caused by
adverse events, deaths, switches of treat-
ment, and loss of follow-up. Because time
to treatment discontinuation can be readily
obtained from electronic medical records,
this effectiveness endpoint is convenient
to evaluate the efficacy of a drug that is
already approved for public use.[3] It is often
used as a surrogate effectiveness endpoint,
showing a high correlation to progression-
free survival and a moderate-to-high corre-
lation to overall survival.[4,5] As rwTTD is
an important metric for drug effectiveness,
it is routinely reported during the post-
clinical trial phase.[2,4,6–8]

Calculation of rwTTD in patient popula-
tion is often equivalent to constructing a Kaplan–Meier (KM)
curve, with each point representing the proportion of patients
that are still on treatment at a specific time point.[1] Either the
entire curve, or mean rwTTD, restricted mean,[9] or the time
point at which a specific portion of the patients (e.g., 50%) drop-
ping treatment is of interest. Currently, there is no existing
machine learning scheme established to predict such a curve,
or the midpoint, as the vast majority of the machine learning
models have been focused on predicting individuals’ behavior
rather than population-level behavior. Such a machine learning
scheme, if established, has many meaningful clinical applica-
tions. For instance, given observed clinical parameters and out-
comes in clinical trials, how do we derive expected time-to-
treatment in the real world? Given the rwTTD for a drug on
one patient population, how can we predict the rwTTD when
applying this drug to another population (e.g., for a different
disease)?

This study establishes a machine learning framework to
infer population-wise rwTTD. We showed that population-wise
curve prediction differs substantially from aggregating all
individuals’ results. Our framework models the population-wise
curve and is generic to diverse base learners for predicting
rwTTD. We demonstrated the effectiveness of this framework
based on both simulated data and real-world electronic
medical records (EMR) data for pembrolizumab-treated
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Real-world time to treatment discontinuation (rwTTD) is an important endpoint
measurement of drug efficacy evaluated using real-world observational data.
rwTTD, represented as a set of metrics calculated from a population-wise curve,
cannot be predicted by existing machine learning approaches. Herein, a meth-
odology that enables predicting rwTTD is developed. First, the robust perfor-
mance of the model in predicting rwTTD across populations of similar or distinct
properties with simulated data using a variety of commonly used base learners in
machine learning is demonstrated. Then, the robust performance of the approach
both within-cohort and cross-disease using real-world observational data of
pembrolizumab for advanced lung cancer and head neck cancer is demonstrated.
This study establishes a generic pipeline for real-world time on treatment pre-
diction, which can be extended to any base machine learners and drugs.
Currently, there is no existing machine learning approach established for pre-
dicting population-wise rwTTD, despite that it is an essential metric to report real-
world drug efficacy. Therefore, we believe our study opens a new investigation
area of rwTTD prediction, and provides an innovative approach to probe this
problem and other problems involving population-wise predictions. An inter-
active preprint version of the article can be found at: https://doi.org/10.22541/
au.166065465.59798123/v1.
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cancer populations.[6,10,11] The study opens a new direction of
modeling population-level rwTTD, which has great value for
directing post-clinical stage drug administrations. This machine
learning scheme will also have meaningful implications for
population-based predictions for other problems, as machine
learning algorithms have so far been focused on predictions
for individual samples.

2. Results

2.1. A Machine Learning Framework for Predicting
Population-Wise rwTTD

Termination of a specific treatment can be considered as survival
data, where an observed termination of treatment is an event
point and otherwise the patient is censored (Figure 1a).[1]

However, existing survival models only predict individual
patient’s likelihood of survival. As shown in the following shortly,
the aggregation of individuals does not represent the profile of a
population. Therefore, we designed an approach that predicts the
termination curve of a population.

We started with producing the gold standard (expected future
time) for each individual in the training population. This
expected future time is defined as the time expected until the
treatment is terminated from the point at which we are going
to make the predictions. Prior to this point, all observed clinical
data are available for making predictions. Two cases can be con-
sidered here. In the first case, if we know the termination time of
the treatment (an “event” data point), the patient’s future time is
defined as the time between the end of the observation window,
fromwhich we collect feature data used to make a prediction, and
the drug termination time. In the second case, if the termination
time of the treatment is unknown for a patient (a “censored” data
point), we infer the expected future time from the survival curve
derived from the training population. In this case, we use a pop-
ular method, KM curve, to represent the termination ratio of the
training set.[12] The expected future time is then composed of two
parts. The first part is the existing time-lapse, i.e., from the end of
the observation time window to the last contact time point,
because we know without uncertainty that the patient continued
drug treatment until the last contact time point. The second part
is the expected time after the last contact time point, which is cal-
culated as the integral of the curve beyond the last contact time
point divided by the terminated ratio at the last contact time point
(Figure 1a). Adding the first and second part together results in the
expected future time for the censored individuals. This approach
generates the gold standard for predicting the expected future time
for each individual into which any kind of base learners can be
built. Later, we will explain how a nested training scheme can
extrapolate and aggregate the predictions from individuals to infer
the terminated ratio curve for a population.

We simulated drug termination data of a population following
a survival study[13] (Figure 1b). We generated a population of total
n individuals, where the termination rate for each individual is
drawn from a population of p¼N(pmean, σ), and we force the
minimal termination rate to be zero. We hypothesize that the
probability that a patient terminates the treatment (p) on a single
day is driven by a series of (m in total) predictive features f.

These features, in reality, can be demographic information, clin-
ical measurements, or any claim data, as will be shown with the
real-world drug treatment experiment in the following. In this
simulation experiment, we let individual feature values correlates
to p by

vkj ¼ pk � f jð1þ θ � εjÞ (1)

where vkj is the value of feature j for patient k. pk is the termination
rate of Patient k. fj represents the scaling factor of a particular fea-
ture, uniformly drawn between [0, α]. Each feature j is
parameterized by noise factor εj, uniformly drawn from [0, β].
When goes up, a larger sampling range will result in less correla-
tion between the feature and the expected future time. The value of
the jth feature of the kth sample, vkj, is further parameterized by θ,
which is uniformly distributed sampled between [�0.5, 0.5].

We set the maximal allowed observation date of all individuals
to δmax. Between [0, δmax], we create a binomially distributed vec-
tor of length δk¼ B(δmax, pk) for each individual k. Thus, the
higher the pk, the more likely the individual is to be terminated
with the uncertainty defined by the binomial distribution. In this
binomially sampled sequence, the first appearance of 1 decides
the termination date tterm. Next, for each individual, we uni-
formly sampled between [0, δmax] and define the censoring date
tcensor. If tterm> tcensor, the last observation time tlast¼ tcensor,
and the status is 0 (censored point and no termination date
is observed); otherwise, the tlast¼ tterm with a status¼ 1
(termination observed and the date is defined).

We developed three metrics to evaluate the model perfor-
mance (Figure 1c–e). For the first metric, “absolute error,” we
calculated the accumulated values of the predicted curve and
the gold standard curve from day 0 to a specific date (1000 days,
if not otherwise specified in this article), and then divided the
total difference by the total number of days. Thus, if the predicted
curve is higher than the gold standard curve in the first half, but
lower in the later half, the errors could be canceled out by using
this metric. For the second metric, “cumulative error,” we accu-
mulated the absolute error on each day from day 0 to a specific
date, and then divided the total error by the total number of days.
Then, no matter positive error or negative error, the absolute
errors will aggregate. For the third metric, “Absolute date error
at 50% terminated,” we calculated when 50% of the patients are
terminated (reaching 0.5 on the y-axis on the termination curve),
what is the absolute difference in days between the gold standard
curve and the predicted curve. The three metrics capture the
important aspects of drug administration.

Of note, models can only generate predictions for each indi-
vidual’s expected future time in the test set when trained with a
machine learning classifier. When we aggregate the predictions,
the resulting curve is closely centered at the average expected
future time and substantially deviates from the true distribution
(Figure 2a–c). This is due to the innate properties of most
machine learning algorithms. When minimizing the squared
errors or another similar loss function, the prediction values tend
to center around the mean.

To combat such an effect, we further divided the training set
into the train set, from which the model parameters are derived,
and the validation set, from which the distribution of the predic-
tion value is obtained. The prediction value from the validation
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set and the corresponding future time is used as a reference to
interpolate the prediction results of the test set. In this study, we
used first-order interpolation and extrapolation if the test set pre-
diction values go beyond the range of the validation set. By inter-
polation, we generated a distribution resembling the observed
future time distribution of the test set. To further illustrate
the functions of the three metrics we used in this study, we
showed the illustrations of the percentage of errors using
either the absolute error or the cumulative errors using
ExtraTreeRegressor by different numbers of maximal dates con-
sidered and the absolute error date when 50% of the population
is terminated (Figure 2d,e).

2.2. Performance is Robust Across Different Simulated
Situations

We started with δmax¼ 2000, pmean¼ 0.0008, σ¼ 0.0008. β¼ 1,
α¼ 100, n¼ 5000, m¼ 100. This created a dataset with 5000
patients and 100 clinical features. Unless otherwise specified
for testing model robustness, these are the base parameters
we used. We built in three commonly used algorithms for test-
ing: ExtraTreeRegressor, linear regression, and SVM.[14]

With the above starting point, we examined the behaviors of
the model. With the increase in mean termination rate of
the population, performance stayed strong. (Figure 3b,c, S1a,

Figure 1. The machine learning and evaluation scheme of real-world time to treatment discontinuation (rwTTD) prediction. a) Calculation of future time
in a censored population. b) Simulation of rwTTD data capturing a variety of factors potentially affecting performance. c–e) Three evaluation schemes
used in the study: absolute error, cumulative error, and absolute number of error days when 50% of the population is terminated.
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Supporting Information, Figure 2, Table S2, Supporting
Information). The error rate is around 10% and overall, we
saw little variance when the termination rate of the population
changes.

With the increase of examples, there is a steady decrease in the
percent of error (Figure 3d, S1b, S3, Supporting Information).
This is expected as we have more training examples, and the
inference of the overall curve is improved. With 100 examples,
the median error using cumulative errors is around 20% for all
base learners (Table S3, Supporting Information). In contrast,
with 10 000 examples, the median error using cumulative error
is around 10%. We consider this is caused by more stable per-
formance and inference of parameters in models with more
training examples. In contrast, the number of predictive features
does not affect performance (Figure 3e, S1c, S4, Supporting
Information). Additionally, with a sufficient number of examples

(5000), the noise level on individual features does not affect model
performance (Figure 3f, S1d, S5, Supporting Information).
The above results demonstrated the overall robust performance
of the model when the patients are derived from the same
population.

2.3. Cross-Validation Across Two Distinct Populations Shows
Strong Performance

We further examined the performance by simulating two distinct
populations and examined the ability of model extrapolation
across different cohorts. Both populations were simulated by
the same approach as described in the previous section.
Then, we focused on each of the parameters and changed
this parameter through a grid search. In this case, we used

Figure 2. Interpolation resolves the discrepancy between the predicted value distribution and the true distribution of expected future time when using
ExtraTreeRegressor as the base learner. a) Using a validation set to interpolate real-world distribution. b) Interpolation resolves the discrepancy between
predicted values and the gold standard rwTTD curve. c) Comparison between the distribution of prediction values and gold standard rwTTD future time.
d) Histogram of error rates at different evaluation maximal dates. e) Absolute error dates when 50% of the population is terminated.
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ExtraTreeRegressor, which is a representative machine learning
base learner.

The most important factor affecting the results we observed
was the termination rates. When fixing the training set termina-
tion rate, the best performance is achieved when the test
population is most similar to the training set, and deviates grad-
ually when the two termination rates differ (Figure 4a, S6, S7,
Supporting Information). For example, when the training set
average termination rate is 0.0008, the model achieved an error
rate of 5.464% for both metrics when the test set termination rate
is also 0.0008. The error rate becomes higher at both tails when
the test set termination error differs from the training set termi-
nation error: when the test set termination rate is 0.0002, the
model achieved an error rate of 9.18% for absolute error and
9.29% for cumulative error. When the test set termination rate
is 0.0012, the model achieved an error rate of 18.82% for both
absolute error and cumulative error. This observation is
expected, as if the termination rates of the two populations differ
too much, and corresponding feature distributions (derived
from the termination rate) do not overlap between the two pop-
ulations, then it would be challenging to predict the patterns.
Nevertheless, the error is much lower than directly using the
training curve, for which we would expect a 50% error when
trained with a 0.0008 termination rate and tested with a
0.0012 termination rate.

The other factors affected little on the performance. When the
training set and test set were drawn from the same population,
when increasing the number of training examples, the perfor-
mance steadily improves, while the number of testing examples
mainly affects the breadth of the performance (Figure 4b, S8, S9,

Supporting Information). Noise level on individual features does
not affect overall performance on population-wise rwTTD
(Figure 4c, S10, S11, Supporting Information). We then altered
the scaling factor of the features. This alteration would result in
feature values distributed at different scales, and thus addressing
record disparities across cohorts. As expected, when the training
and testing feature scales are similar, the model showed relatively
low errors. As the two distributions deviate, the percentage of
error increases. However, even when the training set feature
scale is 1, and the test set feature scale is 1000, the overall popu-
lation error was moderate (0.13481 for both metrics) (Figure 4d,
S12, S13, Supporting Information). The above results point to a
stable performance of the model across two distinct populations
against a variety of factors.

2.4. Predicting Population-Level rwTTD for Lung Cancer and
Advanced Head and Neck Cancer Treatment Using
Pembrolizumab

We tested the above algorithm in the context of lung cancer treat-
ment and head and neck cancer treatment using pembrolizumab
(for cohort selection please see Experimental Section). rwTTD,
the duration between the first dosing to the last administration
is defined by the following three criteria: 1) switch to a different
treatment: This is an event point, and rwTTD is defined between
the first dosing to the last available administration. 2) death: This
is also an event point, and rwTTD is defined between the first
dosing to the death date. 3) With a gap ≥120 days between
the last known administration and last known activity: This is

Figure 3. Performance of rwTTD prediction in homogeneous population during cross-validation. a) Example terminated ratio curve at 0.0008 termination
rate. b) Comparison between predicted curve and gold standard curve by different base learners at different termination rates. c) Cumulative error at
different termination rates. d) Cumulative error with different numbers of training examples. e) Cumulative error with different numbers of predictive
features. f ) Cumulative error with different feature noise levels.
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an event point, and rwTTD is defined between the first dose to
the last known available administration. If none of the above hap-
pens, the data point is considered as censored (no data after the
last administration date or the gap is <120 days).

We carried out three evaluation experiments (Figure S14,
Supporting Information). The first two experiments used
advanced lung cancer data and examined the performance of pre-
diction rwTTD in this homogeneous population. In the first
experiment, we randomly selected the cutoff time between the
first dose time and the last contact time point (let it be censoring
time or termination time), and uniformly and randomly selected
a time in between as the cutoff time. All information prior to the
cutoff date (observation window) is used to extract feature data
(see Experimental Section). The time between the cutoff time
and the last contact time point is the time used to calculate
the rwTTD curve. Here we are evaluating the ability of predicting
rwTTD given a random length of observations. In the second
experiment, the cutoff date is consistently 30 days after the first
dose. Thus, we are evaluating how well we can predict given
30 days of observation data. The third experiment was trained
with lung cancer data with a random cutoff and tested with head
and neck cancer. Under these three scenarios, we evaluated the
performance of predicting the rwTTD curve.

Overall, we found strong performance for rwTTD in both
homogeneous population and cross-disease prediction tasks
(Figure 5a–c, S15–S17, Supporting Information). There is a
small discrepancy between the predicted curve, which is steep,
and the observed curve. This is caused by the loss of recorded

death or end-of-treatment dates which we are unable to recover.
We observed an average of 14.12% 13.15%, and 31.59% percent
absolute error rate for random cutoff cross-validation, 30-day cut-
off cross-validation, and cross-disease prediction, respectively.
The cumulative error rates are 23.78%, 18.43%, and 34.15%,
respectively (Figure 5d). Of note, cross-disease errors are
expected to be higher as the patient populations are distinct
and can respond to the drug differently. We further examined
the performance at 6, 12, 18, and 24months, and error rates
remained stable within this range (Figure 5e). In particular,
we observed a very low average 50% terminated ratio date
prediction, for only 82.90, 105.33, 81.90 for random cutoff
cross-validation, 30 day cutoff cross-validation, and cross-disease,
respectively (Figure 5f ). These results support strong perfor-
mance in real-world data even when the model is delivered to
data derived from a different population but share certain
similarities in the EMR data that was collected.

3. Discussion

In this study, we developed a strategy to incorporate machine
learning into predicting real-world time-on-treatment curves.
To this end, we generalized the problem into predicting the
expected future time on treatment and then stratified the distri-
bution of the predicted time. We showed strong performance of
this approach in predicting rwTTD across a variety of influencing
factors using simulated data. We showed its flexibility to be

Figure 4. Performance of rwTTD prediction across heterogeneous populations. a) Performance of different test set termination rates, when the training set
is at 0.0008 termination rate. b) Performance of different training set examples, when the number of test set examples is fixed at 5000. c) Performance of
different test set noise levels, when the training set noise level is 0.1. d) Performance of different test set feature scales when the training set feature scale is 1.
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applied to any machine learning base classifiers. We then
showed its robustness when trained and tested on different pop-
ulations. Lastly, we demonstrated its robust performance using
real-world lung cancer and head and neck cancer data treated
with pembrolizumab.

Although rwTTD is a critical metric in monitoring the efficacy
of a treatment in real-world patient populations, no study has yet
attempted to establish machine learning models to predict
rwTTD. The key obstacle is that rather than predicting individual
scores, we are required to predict a curve. This notion and strat-
egy is new, and will spur the field of curve prediction in many
other research fields. Of note, we demonstrated that the aggre-
gation of individuals does not reflect the overall profile of the pop-
ulation, which is an important rationale behind the approach we
presented in this study.

There are several potential limitations of the study. First, we
observed a deviation in the predicted population profiles versus
the real-world profiles for the pembrolizumab studies. This is
likely caused by incomplete records in the clinical trial database,
where some terminations of the treatment were not recorded.
Second, time on treatment is often used as a surrogate to
real-world treatment failure, as termination of cancer treatment
drugs is often caused by death or switch to other drugs. While
this is a widely accepted approximation, this is entirely not true
for all cases, because drugs can be terminated by successful treat-
ment and/or clinicians’ choices as well. Deviations from
this assumption could therefore lead to inaccuracy of the
population-wise curve modeling.

This study opens the possibility of many follow-up directions.
For example, can suchmodels be applied to clinical trial data, and

using the generated model to predict real-world populations?
Can models be well generalized from one demographic group
to another? Can this approach be extended to combinatorial drug
prediction when only single drug observations are available?
While we touched on these aspects using simulated data and
real-world pembrolizumab data, it will be of interest to test in
other diseases and drugs as well. How does the interpolation
function affect the performance of the model? How do other base
learners such as deep learning, and Gaussian progress regres-
sion work with this model? Our approach allows the incorpo-
ration of any supervised base learner which can be tested in
future studies concerning other diseases and therapeutics.
Finally, this study opens the possibility of population-wise pre-
dictions, which is distinguished from individual-wise prediction.
This will have enormous applications in the future in all research
areas whose current focus is on individual predictions.

4. Experimental Section

Base Learner Implementation and Parameters: For the simulation
experiment, four base learners were tested: ExtraTreeRegressor, linear
regression, support vector machine (SVM), and deep learning. For
ExtraTreesRegressor, 1000 trees with a maximal depth of 3, squared error
as the criterion of split, minimal number of examples as 2 in a split, and
minimal number of examples in a node as 1 were used. For SVM, support
vector regressor (SVR) implemented in sklearn, with C¼ 1.0, and ε¼ 0.2,
was used. For linear regression, ridge penalization with α¼ 1.0 was used.
For deep learning, four dense layers with sizes [256, 128, 64, 1] were used
to progressively extract information from training data. Mean squared
error was used as the loss function, initial learning rate of 0.001, and
decay¼ 1e�6 with Adam optimizer.

Figure 5. Performance of rwTTD models in real-world lung cancer and advanced head and neck cancer treatment using pembrolizumab. a) Comparison
of the predicted curve and the gold standard curve with random cutoffs in lung cancer (fold 1). b) Comparison of the predicted curve and the gold
standard curve with 30-day cutoff after treatment starts in lung cancer (fold 1). c) Training with lung cancer data and testing with head and neck data
(fold 1). d) Percentage error up to 1000 days for random cutting, 30-day cut cross-validation and cross-disease predictions. e) Percentage error at 6, 12, 18,
and 24months, respectively. f ) Absolute date error when 50% of the patients are terminated.
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Selection of Cohorts from Flatiron Health Database: We used the
following criteria to select advanced NSCLC Patients and advanced
head and neck patients from nationwide de-identified electronic health
record-derived Flatiron Health database. The Flatiron Health database is
a longitudinal database, comprising de-identified patient-level structured
and unstructured data, curated via technology-enabled abstraction.
During the study period, the de-identified data originated from approxi-
mately 280* US cancer clinics (�800 sites of care)[15,16] 1) The patient
should be ≥18 years of age at advanced diagnosis. 2) There should be
some kind of activity (in drug administration or visit table) within 90 days
of the advanced diagnosis. 3) The patient should have at least 1 record of
systemic anti-cancer drugs. 4) Exclude drug records that are part of clin-
ical trials. This resulted in 4,784 NSCLC patients and 422 advanced
head and neck cancer patients included in this study. The demographic
profiles for these patients are described in Table S1, Supporting
Information.

Processing of Feature Data: The following data tables were used for fea-
ture extraction before the cutoff date for predicting future time: ECOG,
enhanced biomarkers, demographics, diagnosis code, visit code, telemed-
icine code, medication administration code, insurance, lab results, medi-
cation order, vitals, and practice.

Feature data can be largely separated into two categories. One set is
static data, which does not change over the observation time course,
including age, gender, race, etc. The other set is dynamic data, including
lab, medication, visit, vitals, diagnosis, etc., which are collected before the
cutoff date. For this set of data, diverse meta-features were used. First, the
most frequent 100 concept IDs in each of the above Flatiron data tables
were selected, and the last eight points of records were binarized (if not
originally a continuous value) to generate 800 features, with 1 representing
the appearance of the concept ID at that data point, and 0 otherwise.
Additionally, if the concept ID represents a real-valued feature, the mean
value and the standard deviation of each selected concept ID before the
cutoff time were included. Using these mean and the standard deviation,
normalized values for the initial 800 features for each table were gener-
ated, and the time difference between each record and the previous
one was recorded. Lastly, a binary indicator was included for each original
feature whether it comes from a missing record (8 values for each Flatiron
data table) or an existing record. This matrix will be flattened into a single
feature vector, concatenated with the static features, and input into
lightGBM.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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