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Abstract
Micronutrient deficiency (MND), which is a form of malnutrition that can have
serious health consequences, is difficult to diagnose in early stageswithout blood
draws, which are expensive and time-consuming to collect and process. It is
even more difficult at a public health scale seeking to identify regions at higher
risk of MND. To provide data more widely and frequently, we propose an accu-
rate, scalable, low-cost, and interpretable regional-level MND prediction system.
Specifically, ourwork is the first to use satellite data, such as forest cover,weather,
and presence of water, to predict deficiency of micronutrients such as iron, Vita-
min B12, and Vitamin A, directly from their biomarkers. We use real-world,
ground truth biomarker data collected from four different regions across Mada-
gascar for training, and demonstrate that satellite data are viable for predicting
regional-level MND, surprisingly exceeding the performance of baseline predic-
tions based only on survey responses. Our method could be broadly applied to
other countrieswhere satellite data are available, and potentially create high soci-
etal impact if these predictions are used by policy makers, public health officials,
or healthcare providers.

INTRODUCTION

More than two billion people worldwide, including 340
million children Keeley, Little, and Zuehlke (2019), are
affected by micronutrient deficiencies (MNDs), or the lack
of vitamins and minerals required by the body for healthy
functioning and development Micha et al. (2020). These
MNDs, hereafter referred to as MND, further drive the
global burden of disease but remain difficult to diag-
nose since the effects often become visible only when the
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deficiency is severe von Grebmer et al. (2014). From a
public health perspective seeking to reduce MND preva-
lence throughout a population, it is important to identify
regions at risk of MND. However, due to the difficulty
of diagnosing MND, regions with MND are unclear to
public health organizations until direct measurements
are made, such as blood draws to measure biomarkers
and/or surveys/questionnaires. Unfortunately, these blood
draws and surveys are costly and time-consuming, and
furthermore, quantifying micronutrient levels in a blood
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sample requires limited, specialized laboratory equipment,
leading to infrequent data collection.
Due to the difficulty in both types of data collection, we

seek a new data source that may be more scalable, such as
satellite data (i.e., data products derived from raw satellite
imagery). This may at first seem unrelated, as MND sta-
tus is unique to an individual, pertaining to an individuals’
nutrition, disease status, and other characteristics, which
cannot be viewed by satellite. Indeed, prior work apply-
ing artificial intelligence (AI) techniques to satellite data,
for example, in estimating crop type Gadiraju et al. (2020),
often search for features directly observable by satellite.
Predicting an indirect feature such as MND prevalence
brings additional technical challenges, including choos-
ing relevant satellite data, linking a limited amount of
ground truth data from individuals to satellite data to train
machine learning models, and supporting interpretability
for public health experts.

Contributions
Through our novel system, we establish that satellite data
can be used to predictMNDat a regional level despite these
challenges. In fact, our system is the first to predict MND
froma regional level, asmeasured directly from real-world,
ground truth biomarkers, using satellite data. This involves
(i) aggregating individuals’ MND states from biomarker
data over geographic regions to align with satellite data,
(ii) using segmentation to generate custom features of
importance, specifically market locations in this case, (iii)
providing scalability with automatic feature selection (FS),
which performs comparably to expert FS, and (iv) two pre-
diction paradigms to handle the challenges that arise from
limited ground truth data: logistic regression, which also
naturally handles the pressing need for interpretability of
predictions in the field, and multilayer perceptron with
domain adaptation.Not only does this systemachieve good
accuracy, but this also results in improved performance
compared to the baseline of survey-based predictions. We
believe that this MND detection system could be broadly
applied to other countries where satellite data are avail-
able, potentially leading to more information for public
health interventions and high societal impact.

BACKGROUND AND RELATEDWORK

AI for social impact and satellite data
Existing applications ofAI related to nutrition include food
security, agriculture, food rescues, and even foodborne
illnesses Shi, Wang, and Fang (2020). Some of this litera-
ture relies on satellite and other remotely sensed images,
such as agricultural productivity assessments and plan-
ning Nakalembe (2020). Land cover mapping Poortinga

et al. (2019) and socioeconomic status prediction Ayush
et al. (2020) have also been explored. However, these
factors are arguably directly visible in satellite data, for
example, to predict socioeconomic status, Ayush et al.
(2020) search for objects directly in satellite data, such as
trucks. Dengue fever prediction in Abdur Rehman, Saif,
and Chunara (2019) is based on identifying features such
as standing water locations (mosquito habitat) and roads
(human presence). While dengue status is not directly vis-
ible, these direct causes are. MND prediction is less direct,
as itmay depend ondiseaseandnearby agriculture, forests,
and so forth.

Possible causes of MND
The causal mechanisms of MND are complex, but there
are multiple factors that likely influence MND, includ-
ing environmental (e.g., forest presence), epidemiological
(e.g., malaria), and socio-economic factors. One of the
primary environmental factors studied for its impacts on
MND is forests. Generally, research indicates that access
to forests may improve dietary diversity. Dietary diversity
is an assessment of the range of food groups consumed
over a period of time that is typically used as a proxy
for sufficient nutrient intake Steyn et al. (2006), which is
typically measured using survey responses detailing foods
consumed. Forests may directly support dietary diversity,
for example, from bushmeat and wild fruits, provide an
additional source of income, that is, through the sale of
forest products, or support crop and livestock production
Sunderland, O’Connor et al. (2020). A study on children’s
diets across 27 developing countries, including Madagas-
car, finds that close proximity to forests improved the
household prevalence of VitaminA- and iron-rich foods by
11 and 16%, respectively Rasolofoson et al. (2018). Ickowitz
et al. (2014), one of the most similar studies to ours, ana-
lyze dietary diversity, fruit and vegetable consumption, and
animal source food consumption in children using satellite
data such as tree cover, road location, climate, and urban
population information.
As an example of socioeconomic factors, Koppmair,

Kassie, and Qaim (2017) show that access (as measured by
distance) to food markets in Malawi plays an important
role in supporting dietary diversity, particularly for farm
households. Markets may directly provide food, and/or
may provide additional sources of income for local resi-
dents through agricultural and livestock production sales,
which can indirectly improve dietary diversity. Agricul-
ture, livestock, and water supply also play an important
role in health and nutrition Brown et al. (2014).
While these methods imply that satellite data can con-

tribute towards predictingMND, dietary diversity depends
only on foods consumed, whichmay be directly observable
from satellite imagery (e.g., crops or forests). Biomarkers
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F IGURE 1 Regions studied in Madagascar (left), known (center), and predicted (right) markets in these regions.

may involve further subtleties, such as individual charac-
teristics or disease. We use additional features as a result.

DATA DESCRIPTION

Ground truth data
Ground truth data were collected by Golden et al. (2020) in
2017–2018 in four distinct ecological regions in Madagas-
car, denoted as the Central Plateau (CP), Southwest (SW),
Southeast (SE), and West Coast (WCO) (see Figure 1). CP
is at a high elevation, SW is arid, SE is a mid-altitude
rainforest, and WCO is seasonally dry.
In this paper, we will focus on the survey responses and

biomarker data from blood samples that were collected
in Golden et al. (2020). Surveys were provided to indi-
viduals in households, small groups, and more. In total,
responses were collected from 6292 individuals from 1125
households within 24 communities in CP, SE, SW, and
WCO. Biomarker levels from blood draws were also col-
lected from a subset of these individuals. We denote the
set of individuals by 𝑝 ∈ {0, 1, … , 𝑃}. Each individual has
an underlying MND state, 𝑑𝑝, based on a biomarker level,
𝑚, that is thresholded by 𝑡, derived from public health
literature. In Table 1, we include the thresholds used to
define MND in this paper, though we are unable to pro-
vide raw data publicly. Therefore, individual 𝑝 has 𝑑𝑝 = 1

if𝑚 < 𝑡 and 0 otherwise. After combining data from blood
draws with surveys and household GPS locations, we have
2458 samples.
During this data collection process, Golden et al. (2020)

followed all procedures to minimize the risk to local pop-
ulations involved as subjects in the study, as detailed

TABLE 1 Micronutrient deficiency thresholds.

MND Biomarker Values
Irona Ferritin < 30 ng/mL
Vitamin Ab Retinol < 0.20055mg/L
Vitamin B12c B12 < 300 pmol/L

ahttps://www.who.int/vmnis/indicators/serum_ferritin.pdf
bhttps://apps.who.int/iris/bitstream/handle/10665/44110/9789241598019_eng.
pdf
cUSDA

in our approved IRB protocol from the Harvard T.H.
Chan School of Public Health (IRB16-0166). This included
gaining informed consent for all study-related protocols,
including the future cross-referencing of biological data
with remotely sensed data products to improve the tar-
geting of public health responses. To briefly summarize
this process, a community meeting was held to explain
the study using speeches. The research team then visited
sampled households to invite individuals to participate.
The prospective participants were provided more infor-
mation if they expressed interest. Furthermore, data are
de-identified to limit the risk of breaches of confidentiality,
and we follow Harvard IRB protocols to further minimize
risk. Gaining informed consent does not automatically
alleviate concern of data misuse and inadvertent conse-
quences; nevertheless, we took all necessary precautions
to protect human subjects in the study. Please see Golden
et al. (2020) for further details.

Satellite data
Based on the causes of MND in Related Work, we select
publicly available satellite data, much of which is derived
from raw satellite imagery, for example, using machine

https://www.who.int/vmnis/indicators/serum_ferritin.pdf
https://apps.who.int/iris/bitstream/handle/10665/44110/9789241598019_eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/44110/9789241598019_eng.pdf


AI MAGAZINE 33

TABLE 2 Satellite data sources, collection time, and
availability on Google Earth Engine.

Feature
Collection
time

Google
EE

Livestock population density
Robinson et al. (2014)

2010

Crop cover Xiong et al. (2017) 2015
Elevation NASA JPL (2020) 2000 ✓

Fire Giglio and LANCE
FIRMS (2016)

2016 ✓

Fishing hours Kroodsma et al. (2018) 2016 ✓

Forest cover Shimada et al. (2014) 2017 ✓

Forest change Hansen et al. (2013) 2017 ✓

Landcover Buchhorn et al. (2020) 2017 ✓

Nighttime lights Elvidge et al. (2017) 2017 ✓

Population density CIESIN (2017) 2015 ✓

Presence of water Pekel et al. (2016) 1984–2019 ✓

Weather McNally et al. (2017); NASA
GSFC HSL (2018)

2017 ✓

Crop production International
Food Policy Research Institute
(2020)

2017

Markets Golden et al. (2020) 2017–2018
Healthcare sites Humanitarian Data
Exchange (2020)

2020

learning. In particular, we used the data shown in Table 2.
We acknowledge the use of data and/or imagery from
NASA’s Fire Information for Resource Management Sys-
tem (FIRMS) (https://earthdata.nasa.gov/firms), part of
NASA’s Earth Observing System Data and Information
System (EOSDIS).
Once we collect these features (in the form of images)

at the sites of clinical data collection, we resample the
images to a uniform resolution of about 25 × 25 m for one
pixel, at a size of 308 × 308 pixels. This provides us with
23 images total with 86 features each (as image bands).
After collecting all satellite data, we normalize each fea-
ture to within [0, 1], regardless of whether it was binary,
categorical, or continuous. We then do imputation by tak-
ing thenearest neighbor if there are anymissing data in the
feature.

PROBLEMDESCRIPTION AND
AGGREGATION

Given the values from satellite data for a pixel as input, our
goal is to predict MND presence (classification) or preva-
lence (regression) in that pixel as the output. Ground truth
labels are derived from biomarkers in blood samples.

Define grid with satellite data
More specifically, we represent the input, that is, the satel-
lite data, via a multidimensional image array, 𝑆. There are
23 𝑆 in our dataset, as the ecological regions are large.
Therefore, we add an overall image index, 𝑆𝑙,𝑟, where 𝑟
represents the current region, and 𝑙 represents the image
index within that region. Each 𝑆𝑙,𝑟 is indexed by 𝑖 for rows
(y-axis), 𝑗 for columns (x-axis), and 𝑘 (z-axis) for features,
that is, the individual satellite data features such as forest
cover, weather, and presence of water.

Aggregation to link data
To link the two data sources, we rely on locations. Each 𝑝
(individual, see Data Description) is associated with some
𝑔𝑝, a geographic coordinate. Each 𝑆

𝑙,𝑟
𝑖,𝑗
is associated with a

set of geographic coordinates,𝐺𝑙,𝑟
𝑖,𝑗
.Wemaynow find the set

of individuals, 𝑃𝑙,𝑟
𝑖,𝑗
, whose locations fall within each pixel,

such that 𝑔𝑝 ∈ 𝐺
𝑙,𝑟
𝑖,𝑗
. We find their underlying MND states,

𝑑𝑝, to calculate MND prevalence, the percentage of indi-
viduals who have MND as defined by biomarker levels.
This prevalence, 𝑣𝑙,𝑟

𝑖,𝑗
, is our label:

𝑣
𝑙,𝑟
𝑖,𝑗
=

∑
𝑝∈𝑃

𝑙,𝑟
𝑖,𝑗

𝑑𝑝

||𝑃𝑙,𝑟𝑖,𝑗||
, (1)

where |𝑃𝑙,𝑟
𝑖,𝑗
| = ∑

𝑝∈𝑃
𝑙,𝑟
𝑖,𝑗

1 is the cardinality of set 𝑃𝑙,𝑟
𝑖,𝑗
. We

may threshold 𝑣
𝑙,𝑟
𝑖,𝑗

for a classification task, or predict
the explicit value directly as a regression task. Please see
Figure 2 for an illustration. In our dataset, this leads to
300–500 pixel labels, which is only about 0.02% of pixels.
Formally, our goal is to train a region-specificMLmodel

𝑓𝑟𝜔(⋅) parameterized by 𝜔 for each of the four ecologi-
cal regions, where given input training data 𝑆

𝑙,𝑟
𝑖,𝑗

in the
training set, the model is optimized to minimize the dis-
crepancy between prediction 𝑣𝑙,𝑟

𝑖,𝑗
= 𝑓𝑟𝜔(𝑆

𝑙,𝑟
𝑖,𝑗
) (see Figure 2)

and the ground truth label 𝑣𝑙,𝑟
𝑖,𝑗
: min𝜔 𝔼𝑆𝑙,𝑟

𝑖,𝑗
∈𝑆𝑟𝑡𝑟

𝐷(𝑣
𝑙,𝑟
𝑖,𝑗
, 𝑣

𝑙,𝑟
𝑖,𝑗
)

where 𝐷(𝑣
𝑙,𝑟
𝑖,𝑗
, 𝑣

𝑙,𝑟
𝑖,𝑗
) could be, for example, mean squared

error (MSE) for regression, or cross-entropy (CE) for clas-
sification. 𝔼

𝑆
𝑙,𝑟
𝑖,𝑗
∈𝑆𝑟𝑡𝑟

is an expectation taken over all pixels in

the training set 𝑆𝑟𝑡𝑟 in region 𝑟, for each micronutrient. We
assume that the data are i.i.d.

PREDICTIONMETHODOLOGY

Market detection
As discussed in Related Work, the presence of markets is
an important factor for MND.We would consequently like
to add markets as an extra feature on top of the existing

https://earthdata.nasa.gov/firms
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F IGURE 2 Illustration of using satellite data, which is first normalized and registered, as features to predict MND. Compare to
pixel-level labels derived from individual MND statuses. In this illustration, both predictions are correct. MND, micronutrient deficiency.

satellite data products. Yet, it is difficult to know where
all markets are located in Madagascar. We only know
of those specifically mentioned during the focus group
surveys conducted in Golden et al. (2020).
To add this, we, therefore, start by comparing the

known market locations from the survey data responses
with satellite data, and infer that the number of buildings
within town clusters and the proximity to roads may be
used as predictors of market presence in Madagascar.
Specifically, we determine empirically that 20 buildings
and one road within about 0.8 km2 are highly indicative
of market presence.
In order to apply these thresholds in an automatic mar-

ket detection pipeline, we first have to locate roads and
buildings. While OpenStreetMap (OSM)1 provides build-
ing and road segmentation data, it is not always complete.
This is especially true in our regions of interest. As a result,
we train a satellite image-based segmentation model.
For ground truth data to train this segmentation model,

we use nearby OSM building labels where they are more
complete. In particular, for each of the four regions in
Madagascar, we automatically identify the closest densely
clustered OSM building labels to the known market loca-
tions. These labels are saved to the building segmentation
training set, along with high-resolution images from the
Google Maps Static API2. For each region, the training
dataset contains roughly 100–200 training images and at
least 500 corresponding OSM building labels across all
images. Each individual image has 600 × 600 pixels, with
a 0.46-m resolution.
For the building segmentation model, we use a U-Net

convolutional network Ronneberger, Fischer, and Brox
(2015) with a ResNet-34 encoder pretrained on ImageNet.
The U-Net architecture, originally developed for biomed-
ical image segmentation, is commonly used for satellite
image segmentation, and is particularly useful for training
on smaller training sets such as the sparse OSM building
label data. The satellite image training set is augmented

with random flips, rotations, and resizes. Binary CE is used
as the loss function, and we use the Adam optimizer with
a learning rate of 1e−2. The model is trained using a batch
size of 16. Results are shown in Figure 1. The building seg-
mentationmodel and thresholding achieves 0.86 precision
in detecting the ground-truth markets from survey data.
We include these as features in our data by drawing radii
of multiple distances around each market, so that pixels in
this layer represent the number ofmarkets within a certain
radius.We create these radiimasks given healthcare center
coordinates Humanitarian Data Exchange (2020) as well,
bringing us to 90 total features. While we focus onmarkets
here, this segmentation process could be applied to generate
other satellite image-based features that do not already exist,
such as custom landcover maps.

K-medoids-based FS
It is helpful to have many features, but not all features are
necessarily informative. The risk of overfitting when using
all 90 features can be large when dealing with limited data.
A straightforward idea is to use knowledge from domain
experts to select only features that are most important
for predicting MND in a particular region. However, this
introduces two more issues. First, the feature importance
of different regions may vary drastically due to different
ecologies. In Madagascar, for example, certain agriculture,
such as pulses, are only present and predictive of MND
in some regions. It would require a significant amount of
manual work to specify the set of important features for
each area. Second, the causal mechanisms behind MND
are not fully understood. Therefore, it is critical to come
up with an automatic FS procedure that effectively filters
out uninformative features with minimal manual effort.
We start by removing any features that are always 0

throughout the full dataset (i.e., 𝑆𝑖,𝑗,𝑘 = 0, ∀𝑖, 𝑗), leading
to 69 features. We then use the K-medoids clustering
method Park and Jun (2009) to group highly correlated fea-
tures shown in Figure 3. Each point in our space is a vector
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F IGURE 3 Comparison feature selection methods, including
removing any features without data, human expert feature selection,
and our K-medoids method, all in region WCO. WCO, West Coast.

of individual pixel values in an image (representing a fea-
ture), such that the dimension of the space is the number
of pixels. We use Pearson’s correlation coefficient as the
distancemetric between features. Similar to K-means clus-
tering, K-medoids clustering also aims at partitioning the
data points (i.e., features) into different clusters. Bothmin-
imize the sum of distances between points labeled to be in
the same cluster and a point designated to be the center of
that cluster. However, K-means uses the central position
(centroids) as the designated point, while K-medoids uses
a point that actually exists in the set of data points (i.e.,
an existing satellite data feature). As such, we are able to
use themedoid feature to represent the group of correlated
features, preserving interpretability.
We post-process the image data, selecting the 300–500

(0.02%) ground truth pixels to form a feature matrix.

Prediction with logistic regression
We first use a simple but effective logistic regressionmodel.
We choose logistic regression as one of the underlying
ML models in this paper, due to its following advantages.
First, it has fewer weights compared to other models such
as deep neural networks, and therefore is less prone to
overfitting. This is particularly important given the limited
amount of data we have and the high-dimensional fea-
ture space. Second, it is interpretable by itself (as shown in
experiments, e.g., Figure 4), where the weights 𝜔 of differ-
ent features directly indicate the importance of the features
in determining the prediction outcome. Moreover, com-
pared to post hoc model-free explanation methods such as
LIMERibeiro, Singh, andGuestrin (2016) and SHAPLund-
berg and Lee (2017), which only provide instance-level
explanations, the weights of logistic regression models
imply feature importance at an aggregated level, which we
show could provide important insights to public health
experts. We primarily focus on region-specific prediction

F IGURE 4 Logistic regression weights (x-axis) for Vitamin A,
region SE. Positive numbers mean positive correlation with MND.
Medoid feature names provided (SM). MND, micronutrient
deficiency; SE, Southeast; SM, soil moisture.

for tailored interpretation and results, but we also train
using all regions’ training data combined and predict on
each regions’ test set, which we call Naively Combined.

Prediction with multilayer perceptron and domain
adaptation
Another strategy to address limited training data is domain
adaptation Huang et al. (2006), which allows us to use
data from all four ecological regions as follows: The target
domain is the region of Madagascar in which we are mak-
ing our predictions. The source domains are the other three
regions, which we would like to use for augmentation. We
project all four into a domain-invariant latent representa-
tion with a single hidden layer (five neurons) and the loss
function:

𝑙 = 𝛼 ∗ 𝑙𝑠𝑟𝑐 + 𝑙𝑡𝑔𝑡 + 𝜆 ∗ 𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 (2)

where 𝑙𝑠𝑟𝑐 and 𝑙𝑡𝑔𝑡 are the binary CE loss in the source and
target domains. 𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is the CORAL loss Sun, Feng, and
Saenko (2016) between the source and target domains. 𝛼
and 𝜆 are hyperparameters, and are tuned to be 0.1 and
0.01, respectively, out of {0.01, 0.1, 1, 10}. Finally, we predict
on the target domain test set.

RESULTS

We present experimental results using four-fold cross-
validation (i.e., data from one region are broken into four
folds). Due to the limited amount of data, it is imprac-
tical to have more folds. We primarily report area under
the curve-receiver operating characteristics (AUC-ROC, or
AUC in short) to evaluate the MND classification tasks.
Note that we only report the mean AUC values averaged
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F IGURE 5 Comparing AUC of a logistic regression model
trained by naively combining training data from all regions, a
multilayer perceptron with domain adaptation, and a region-specific
logistic regression model, all in CP. CP, Central Plateau.

over the four folds as the standard deviation becomes
trivial for only four folds. All data collection and exper-
imentation rely on the default, free resources on Google
Colab3, and training for all four folds takes less than 1
min in general for both logistic regression and domain
adaptation shown in Figure 5.

(a) Is our prediction accurate?
We compare with predictions made by survey data only, as
is similar to prior work such as Ickowitz et al. (2014). The

F IGURE 6 Comparison of survey-based (with or without feature selection) and satellite data-based MND prediction by regions. MND,
micronutrient deficiency.

(A) (B) (C)

F IGURE 7 Regression results comparison between satellite imagery-based and survey-based predictions. All elements are the same as
Figure 6 except that y-axis now means MAE of the regression task. Note that in this figure, lower bars imply better results.

results are shown in Figure 6. For survey data, we tested
two versions, the original, full amount of data, and a ver-
sion with one simple level of FS. In this case, we selected
features which we believed could reasonably be seen or
inferred from satellite data. When comparing both survey-
based predictionswith our satellite data-based predictions,
we can see that satellite data-based prediction is better in
(i) all four regions for iron, (ii) three out of four regions for
VitaminB12, and (iii) two out of four regions forVitaminA.
Where it does not outperform survey-based predictions, it
performs comparably with significantly lower cost. Across
all of the four regions and all of the three types of nutrients,
theAUCvalue is higher than 0.6 in 104 cases, and is close to
0.5 for the other two cases. Meanwhile, the F1 scores of our
predictions are on average 0.6 (ranging up to 0.9) and are
also comparable to those based on surveys. Recall is also
important, as false negatives may lead to resources allo-
cated away from people who truly have MND. Generally,
recall is comparable to AUC for these data. However, it is
higher in some cases. For example, for iron deficiency in
region SE, recall is nearly 0.9.
Furthermore, satellite data-based regression results are

comparable to survey-based regression. We also report
the regression results in Figure 7. We can see that the
satellite imagery-based regression results are still com-
parable to the two versions of survey-based regression.
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TABLE 3 Frequency of each feature appearing in either the top
three positive or negative coefficients.

Feature description Frequency
Chicken population density 9
Cattle population density 8
Net shortwave radiation flux 7
Presence of market within 7.5 km 6
Soil moisture in 100–200-cm underground 6
Soil temperature in 10–40-cm underground 5
Near surface wind speed 4
Surface pressure 4
Fire (temperature of pixel) 4
Presence of market within 3.75 km 3

The 10 (out of 21) features with the highest appearance frequencies are shown.

In particular, MAE of our method ranges 0.16–0.19 in
iron, 0.18–0.35 in Vitamin B12, and 0.19–0.29 in Vitamin
A, which are reasonable considering the range of the
regression task is [0,1] and the means are 0.21, 0.36, and
0.20, respectively. The AUC, F1-score, and MAE results all
together demonstrate that our predictions are reasonably
accurate as well.

(b) Which features are important for MND prediction?
As logistic regression is considered an inherently inter-
pretable model, we focus our analysis on the weights of
each variable, particularly those whose absolute values
are largest. First, we build an “important features” list.
For each region-specific model and eachmicronutrient (in
total 3 × 4 = 12 cases), we record the features with the
top three highest positive weights and negative weights.
We aggregated statistics on the number of times that
each feature appears in these “important features” lists in
Table 3. From this, we observe thatmarket features are very
important, with market presence within 7.5 km with six
appearances, and within 3.75 km with three appearances.
We also observe other interesting trends, including that
more forest fires are linked to greater rates of Vitamin A
and B12 deficiency in the SE region (rainforest), but not in
other regions that are less reliant on forest products, which
may be a useful insight for public health experts. Figure 4
illustrates this pattern for Vitamin A in SE.
Furthermore, we included multiple correlates to socio-

economic status, such as nighttime lights, that is, images
of Earth at night, where it is expected that highly populous
and resourced areas have more light. We found that the
correlation coefficient between nighttime lights data and
ground truth iron deficiency is 0.127, implying that alone,
itmay not be highly correlated. The individual featurewith
the greatest correlation is the sugarcane crop, with 0.147. If
we predict solely with sugarcane, we achieve an AUC of
0.428, which is less than our findings of about 0.6 for iron

deficiency. This implies that we need the other factors as
well in order to predict MND.

(c) How does the automatic FS perform?
To evaluate the performance of automatic FS, we com-
pare with two baselines. First, we consider the case where
there is no FS apart from removing features which are
completely zero (i.e., no data) (satellite remove 0 FS). We
also compare with expert FS, in which a public health
expert examines the features we propose, and groups them
based on their knowledge5. They also select a representa-
tive feature for each of their groups (satellite expert FS).
Finally, we consider the performance of our correlation
and K-medoids-based algorithm (satellite auto FS). We
show results for one of the regions (WCO) due to space
limitation, but trends in other regions are similar. We can
see that both expert FS and auto FS are better than the case
where no FS is used, especially for Vitamin B12. In all three
cases, auto FS always performs comparably to expert FS,
as it does in other examples that are not included here, but
auto FS is more scalable.
We also compare the groups that are found by auto FS

and expert FS. Very interestingly, we find that in the two
methods, eight out of 21 group centers overlap: banana,
cattle, chicken, goat, maize, presence of markets within
7.5 km, surface pressure, and wind speed. This shows that
our method is choosing features deemed important by a
human expert as well. The above results well demonstrate
that our proposed automatic FS method is an effective
while scalable alternative to expert FS.
(d) How do different prediction paradigms compare?

We compare the region-specific logistic regression mod-
els (satellite auto FS), the logistic regressionmodel version
that combines training data from all of the regions (naively
combined), and multilayer perceptron with domain adap-
tation (domain adaptation).We present results from region
CP. Here, and overall, we find that Vitamin B12 and
Iron achieve better performance using domain adaptation,
while Vitamin A achieves better performance using the
logistic regression-based satellite auto FS or naively com-
bined. This may be because each micronutrient differs
slightly in its relevant factors, and factors may vary region-
ally (e.g., some regions are forested). Clearly, each method
works well with limited amounts of data, but we acknowl-
edge the tradeoffs in interpretability, and a potential lack
of robustness in the model due to limited samples.

CONCLUSION AND DISCUSSION

In conclusion, satellite data are viable to use for MND
prediction at a public health scale. We presented a sys-
tem relying on the aggregation of individual MND states



38 AI MAGAZINE

over geographic regions, a search for relevant features,
such as markets, automatic FS, which performs compa-
rably to human expert FS, and domain adaptation and
logistic regression prediction models. This system worked
well even with limited ground truth biomarker data.

Deployment considerations
While our system has not yet been deployed, we would
like to emphasize several deployment considerations. This
methodologywould not replace surveys and blood samples
collected among communities. Rather, we believe it should
be used to cover gaps in that data collection, for example,
where data could not be collected, or in between collec-
tions. To do this, public health officials, policymakers,
healthcare workers, or individuals can load publicly avail-
able, current satellite data and apply the existing model,
without any survey or blood sample data. We can then
update these models when another data collection occurs.
This also applies for deployment in other countries. We
plan to develop a web application to load satellite data
at the desired time and location, and the current pro-
posed model, to provide predictions. We plan to iterate on
this with potential users, including officials from Catholic
Relief Services, Médecins Sans Frontières, and the Min-
istry of Health in Madagascar. In the meantime, code and
satellite data are available6, while ground truth data are
withheld for privacy.

Future work
We began preliminary experiments into sparse segmen-
tation and spatial aggregation to further include spatial
patterns in the prediction step, but they require fur-
ther refinement before deployment. We also encourage
the use of custom features, as illustrated with mar-
kets. Most importantly, we believe that there is ample
room for further research, and a great deal of promise
for broad application to inform future public health
interventions.

ACKNOWLEDGMENTS
We are grateful for the support from the United States
Agency for International Development (USAID) (Grant
AID-FFP-A-14-00,008) implemented by Catholic Relief
Services (CRS) in consortium with four local implement-
ing partners in Madagascar; the Ren Che Foundation; the
ARO under Grant Number: W911NF-18-1-0208; and the
Harvard Center for Research on Computation and Soci-
ety (CRCS). The views and opinions expressed in this
paper are those of the authors and not necessarily the
views and opinions of USAID, nor should be interpreted
as representing the official policies, either expressed or
implied, of ARO or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright
notation herein. Thanks to Akshaya Annapragada for data
imputation support.

CONFL ICT OF INTEREST STATEMENT
The authors declare that there is no conflict.

ORCID
ElizabethBondi-Kelly https://orcid.org/0000-0002-
8459-8403

ENDNOTES
1www.openstreetmap.org
2developers.google.com/maps/documentation/maps-static
3https://colab.research.google.com
4Please note that some of these statistics may slightly fluctuate, for
example, nine instead of 10 cases sometimes.

5Expert chose 21, which led us to select 𝐾 = 21
6https://github.com/exb7900/mnd-iaai2022
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