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In magnetic resonance imaging (MRI), inhomogeneity in the main magnetic field used

for imaging, referred to as off-resonance, can lead to image artifacts ranging from

mild to severe depending on the application. Off-resonance artifacts, such as signal

loss, geometric distortions, and blurring, can compromise the clinical and scientific

utility of MR images. In this review, we describe sources of off-resonance in MRI,

how off-resonance affects images, and strategies to prevent and correct for off-reso-

nance. Given recent advances and the great potential of low-field and/or portable

MRI, we also highlight the advantages and challenges of imaging at low field with

respect to off-resonance.

1 | INTRODUCTION

Magnetic resonance imaging (MRI) is an important clinical tool for diagnosis and intervention, as well as the leading modality for non-invasively

imaging the in vivo human brain. At the core of the MRI experiment is a polarizing magnetic field, referred to as the B0 field or the main magnetic

field, that aligns the magnetic spins within an object. These spins will precess at a resonant frequency linearly proportional to the external B0 field,

and in the majority of MRI experiments it is ideal to have as homogeneous a B0 field as possible so that all spins precess at the same frequency. In

practice, many factors can lead to B0 inhomogeneity, thus leading to a non-uniform precession frequency of the spins, and this is called off-reso-

nance. Off-resonance can lead to artifacts in MR images, including signal loss, geometric distortions, and blurring.

Off-resonance artifacts have been reported since the early days of clinical MRI, along with the problems they present in interpreting MR

images.1–3 Geometric distortions that warp the shape of the anatomy create challenges in many clinical applications, including stereotactic

localization,4 MRI-guided biopsy,5 and MRI-guided radiation therapy.6,7 Metal implants can lead to severe geometric distortions, and also can cre-

ate a total loss of signal around the metal object.8 In MRI-based neuroscience research, uncorrected off-resonance artifacts can lead to a loss in

quality of data, most notably in the field of functional MRI (fMRI).9,10

Because of these problems, many approaches exist in MRI workflows to mitigate off-resonance artifacts. Magnetic field shimming, where

dedicated shim coils apply additional fields to offset and cancel out main field inhomogeneity, is automated and standard from most vendors.

From a sequence perspective, one of the simplest solutions to avoid signal loss from off-resonance is to use spin-echo-based sequences,11,12

which refocus signal at the echo time (TE). The expanded use of parallel imaging13,14 has also allowed for smaller voxels in standard imaging proto-

cols. Smaller voxels reduce signal loss because the magnetic fields within the voxels have less variation in frequency, hence less signal cancellation.

There is also less B0 distortion with parallel imaging, because data can be acquired in shorter readouts with higher effective bandwidths in

k-space.

However, not all B0 artifacts can be avoided with these approaches. Inside the human body, the magnetic field off-resonance map, called a B0

fieldmap or fieldmap for short, often has spatial variations that are of much higher order than the second-order spherical harmonic shim correc-

tions available on some systems, leaving the potential for residual off-resonance in hard to shim anatomy. Additionally, certain sequences require
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gradient echo imaging with longer readouts to generate the desired image contrast or acquisition speed, and are therefore more prone to off-

resonance artifacts (e.g., echo planar imaging (EPI)15). Longer TE times are important for sequences such as blood oxygen level dependent (BOLD)

contrast fMRI,16 to allow dephasing of the spins to present as T ∗
2 contrast. Susceptibility-weighted imaging (SWI) and quantitative susceptibility

mapping (QSM) also require longer TE times to generate magnetic susceptibility contrast, and these sequences are useful tools to investigate

pathologies such as intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis.17,18 Further, even when the desired

contrast does allow for the use of spin echo imaging and most B0-induced signal loss can be avoided, geometric distortions can still be present

due to unwanted gradients that add to the imaging gradients, resulting in k-space encoding errors.

It is also important to consider off-resonance artifacts and potential correction strategies when working with MRI scanners that have more

inhomogeneous B0 fields than high-field superconducting magnets. Recently, there have been many advances in portable MRI at lower fields to

perform in vivo human imaging.19–23 These new technologies are important for increasing the accessibility of MRI,24 but they generally have less

uniform B0 fields than superconducting magnets and off-resonance correction approaches are needed. Low-field MRI scanners built with perma-

nent magnets can also experience large field drifts due to temperature-induced field changes, so dynamic tracking of the B0 field strength is some-

times needed during imaging.

This review is structured by first describing the sources of off-resonance in MRI in Section 2 and their effects on imaging in Section 3.

Section 4 details ways to estimate a B0 fieldmap using pulse sequence, hardware, and optimization-based approaches. Section 5 discusses strate-

gies to prevent and correct for B0 artifacts, and Section 6 concludes the paper. All code for the simulations shown here is available online at

https://github.com/fmrilab/B0-review-2022, including example code to perform model-based image reconstruction (MBIR)25 that incorporates a

B0 fieldmap26 using the Michigan Image Reconstruction Toolbox (MIRT).27

2 | SOURCES OF MAGNETIC FIELD OFF-RESONANCE

2.1 | Main field inhomogeneity

2.1.1 | Modern superconducting magnet homogeneity

The B0 polarizing fields of modern high-field superconducting magnets, most often at field strengths of 1.5 T or 3 T, are generally very uniform,

and after shimming with superconducting shim coils and passive shim elements are of the order of 1 ppm (parts per million) uniformity over a large

imaging volume. Because of this, artifacts from susceptibility, chemical shift, and metal implants (discussed in later sections) are the dominant

sources of B0 artifacts in high-field superconducting MRI scanners, and off-resonance artifacts from the magnet itself are minimal.

2.1.2 | New magnet designs for lower cost and portability

As more light-weight, low-cost, and portable MRI designs are being developed, permanent magnets and resistive electromagnets are being chosen

to create the polarizing fields. Both permanent and resistive magnet designs are much less expensive to produce than superconducting magnets,

and, importantly, are much less expensive and easier to operate and maintain. However, these magnets are generally less spatially homogeneous

and may require B0 field correction even for routine imaging. Permanent magnets have the advantage that they require no power or cooling

mechanism to operate, but they can be very sensitive to temperature-induced field drifts, which often need to be monitored during scanning.

Resistive magnets are not as temperature sensitive, but power consumption and cooling will need to be taken into consideration and will poten-

tially limit the field strength and homogeneity.

There are examples in both industry and academia of newer permanent magnetic designs. Currently available commercially scanners include

a 64 mT portable brain scanner (https://www.hyperfine.io), a 1 T scanner for the neonatal intensive care unit (https://www.aspectimaging.com),

and a low-field system for dedicated prostate imaging and biopsy guidance (https://promaxo.com). Academic groups have created permanent

magnet designs using cylindrical Halbach geometries,28–30 dipole magnet geometries,19,20 and single-sided designs.31 Unlike superconducting

magnets, these scanners have field homogeneities in the range of tens of ppm (for smaller field of view (FOV) extremity imaging) to hundreds or

thousands of ppm for head imaging, but have been shown to successfully image human subjects.19–22

Resistive magnets at low field have also been explored. Obungoloch et al. designed and constructed a prepolarized MRI scanner that acquired

phantom images at 2.66 mT with a polarizing field of 27 mT, and a field homogeneity of 5000 ppm, similar to the level of inhomogeneity in the

permanent magnet Halbach designs.32
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2.2 | Magnetic susceptibility

One of the largest sources of B0 inhomogeneity during routine in vivo MRI is magnetic susceptibility (Figure 1). Magnetic susceptibility (sometimes

called volume magnetic susceptibility),33 denoted as χ, is the property of a material to either strengthen (χ >0) or weaken (χ < 0) an applied mag-

netic field, based on its internal magnetic polarization,M, as follows:

χ¼M=B0: ð1Þ

Magnetic susceptibility is unitless since it is the ratio of two fields, but it is often expressed in ppm for convenience in the context of MRI.

For example, molecular oxygen, O2, has a magnetic susceptibility of roughly +1 ppm, which means that when in the presence of a 1.5 T, or

64 MHz, external magnetic field, its internal polarization will be roughly 1.5 μT, or 64 Hz.

If an object has non-uniform magnetic susceptibility, it will lead to a non-uniform magnetic field, even within the most uniform of applied

fields generated by today's modern superconducting magnets. In human imaging, most biological tissues are weakly diamagnetic (χ <0) and

oppose the applied field, but oxygen, present in the lungs, sinuses, and other air cavities, is weakly paramagnetic (χ >0) and strengthens the

applied field. This leads to spatially varying B0 fields within the body, such as the one shown in Figure 2.

Looking at Equation (1), one can see that as the applied magnetic field B0 increases the internal polarization, M, will also increase. This means

that at higher field strengths the amount of off-resonance will increase, and therefore the susceptibility artifacts will be more severe.34 For an

in vivo fieldmap at 3 T similar to the 7 T fieldmap shown in Figure 2, as well as the 3T versus 7 T in vivo images with corresponding levels of sus-

ceptibility artifacts, we point the reader to Figure 5 of Stockmann and Wald.35 Due to the scaling with field strength, it is sometimes convenient

to describe field susceptibility in terms of ppm, where the typical fieldmap is often less than 1 ppm for most of the brain, but can grow to about

2 ppm at air–brain interfaces.

F IGURE 1 Magnetic susceptibility. Adapted from https://mriquestions.com/what-is-susceptibility.html36

F IGURE 2 B0 magnetic field in the brain at 7 T with second-order shimming. This fieldmap shows the spatially varying patterns of the B0 field
in the human brain (superimposed over an anatomical image). Even after second-order shimming has been applied to flatten the field, higher-
order field inhomogeneities persist. Arrows show that the B0 field is higher near the air-filled, and therefore paramagnetic, sinuses than in areas in
the center of the mostly diamagnetic brain tissue. (Images reused from Stockmann and Wald, 201835 with permission.)
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2.3 | Chemical shift

Another source of off-resonance is the chemical shift in resonant frequency of different tissues in the body. The most relevant source of chemical

shift is from fat, which has a shift in frequency of �3.5 ppm relative to water.37 At 1.5 T (64 MHz), this corresponds to a shift in frequency of

64 MHz � �3.5 ppm ¼ �224 Hz, and at 3 T a shift of �448 Hz. The earliest accounts of chemical shift image artifacts describe enhanced or

diminished borders of organs within the body that have tissue boundaries containing fat.38,39 This is due to the fat signal shifting within the image

because it is off-resonant compared with water (Equation 7). The directions and angles of the slice selection and frequency encoding axes can also

affect chemical shift artifacts, leading to them sometimes being present and sometimes not, which can confound diagnosis and affect treatment.40

Hood et al37 provide a good review of how chemical shift artifacts impact clinical interpretation of images. The authors also describe what are

referred to as chemical shift artifacts of the second kind, which are not shifts in image space of the voxel, but rather a cancellation of the out-of-

phase water and fat components in the voxel that leads to a loss of total signal (see Hood et al. Figure 10). These out-of-phase images at a given

TE can be compared with images with different TE values where fat is visible, allowing the clear identification of fat.

2.4 | Metal implants

While magnetic susceptibility differences drive many sources of B0 inhomogeneity as described in Section 2.2, the B0 effects of metal implants

are different, mainly due to the sheer magnitude of the B0 shifts, leading to effects that often require advanced measures to compensate. Most

metal implants in common use today are labeled as MRI conditional, which indicates that MRI scanning is acceptable provided that the specified

conditions for safe use are met.41,42 Allowable or safe use, however, does not mean that the quality of the images is not impacted by susceptibility

effects around the implant.

Reference 8 is a review of sources and artifacts due to metal implants as well as a compendium of the various approaches to mitigate the arti-

facts. Jungmann et al43 also review mitigation methods and provide numerous imaging examples. As with all susceptibility-induced B0 changes,

these effects scale with field strength. Notably, lower magnetic fields result in smaller distortions and lower-field-strength clinical scanners are

often preferred when scanning structures proximal to metal implants, as seen in Figure 3. Further, the lower resonant frequency at lower field

reduces the safety and imaging impact of RF (B1) inhomogeneity around metal implants.

3 | IMPACT ON IMAGING

3.1 | MRI signal equation incorporating off-resonance

In an MRI experiment, the magnetic spins being imaged precess at resonant frequency ω:

ω¼ γB ð2Þ

where γ is a spin's gyromagnetic ratio and B is the magnetic field strength at the spin location. For a proton (1H) in water for which γ=2π¼42:577

MHz/T, at a magnetic field strength B¼ 3T, the spins precess at roughly 128 MHz. Note that throughout this paper we may use “field” or “fre-
quency” depending on context, but the reader can convert from a precession frequency in hertz to a magnetic field in tesla or vice versa by multi-

plying or dividing by γ=2π.

To create an image in an ideal MRI experiment, first, the object is placed in a spatially uniform polarizing field, B0. The
1H spins throughout

the entire object will now be precessing at ω0. Next, spatially varying magnetic fields, Gx,Gy , and Gz, referred to as “gradient fields” or simply “gra-
dients”, are applied to linearly change the magnetic field as a function of spatial position, which therefore changes the precession frequency of

spins at different locations, i.e., ωðx,y,zÞ¼ γðB0þGxxþGyyþGzzÞ. By applying different gradient fields over time, spins at different locations can

be encoded, the most common method being Fourier space, or k-space, encoding. The MRI signal as a function of these time-varying gradients

can be described using the signal equation:

sðtÞ¼
ð
mðx,yÞe�i2π½kxðtÞxþkyðtÞy�dxdy,kαðtÞ¼ γ

2π

ðτ
0
GαðτÞdτ ð3Þ

where sðtÞ is the time-varying MRI signal, mðx,yÞ is the magnetization at location ðx,yÞ, and kxðtÞ and kyðtÞ are the k-space sampling locations. For

brevity, the equation above and the rest of the image encoding mathematics will be in 2D, but it can be extended to 3D as well by adding a third

z term to the exponent in Equation (3).
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By having a spatially uniform polarizing B0 field, the time-varying signal sðtÞ is only a function of the applied gradients. However, when B0 is

not spatially uniform, i.e., B0ðx,yÞ¼B0,idealþΔB0ðx,yÞ, we must add a term to the signal equation for the additional (and generally unwanted) spa-

tially dependent phase, ϕðx,yÞ, accrued over time t due to ΔB0ðx,yÞ:

ϕðx,y,tÞ¼ γΔB0ðx,yÞt¼Δω0ðx,yÞt¼2πΔf0ðx,yÞt: ð4Þ

The phase can now be added to the signal equation using a complex exponential of the product of the fieldmap and the time, t:

sðtÞ¼
ð
mðx,yÞe�iΔω0ðx,yÞte�i2π½kxðtÞxþkyðtÞy�dxdy: ð5Þ

This leads to a breakdown of the encoding properties of the MRI signal equation, since now there will be additional phase in the object that is

not a result of the k-space encoding. Depending on the length of the readout, the type of k-space acquisition, and other scan parameters, the

excess phase accrued due to off-resonance can lead to various types of artifact such as signal loss, distortions, and blurring.

3.1.1 | Signal loss

When spins in a voxel have different resonant frequencies due to rapid spatial variations in the B0 field, spins will dephase as seen in Figure 4

(images in Figure 4 were acquired from a healthy subject after obtaining IRB-approved written informed consent). Immediately after RF excitation

F IGURE 3 Metal artifact from 50 mT to 7 T. Here we show Figure 7 from Van Speybroek et al,44 where the “worst-case” scenario images for
four types of metal implant are demonstrated. (Images reused via open access license.)
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the spins are all aligned, but during the course of the readout the spins dephase and there is destructive interference in the voxel, referred to as

T ∗
2 decay. The most common way to deal with this signal loss is through the use of spin echoes.11 In a spin echo sequence, the spins are flipped

into the transverse plane, and then after time TE/2 a 180� RF pulse flips the spins about one of the transverse axes. After precessing for time

TE/2, the spins will refocus at the echo time, TE. Spin echoes are very robust overall, and because of this spin-echo-based sequences have been

the pulse sequence of choice for many of the academic low-field scanners,20–22,32 as well as the commercially available 64 mT portable brain

scanner.23

3.1.2 | Image encoding artifacts: distortions and blurring

Spin echoes can mitigate much of the off-resonance based signal loss; however, even using spin echo sequences, significant off-resonance arti-

facts can be present based on image encoding errors, such as distortion,45 blurring, and pile-up. Looking at Equation (5), the reduction of

intravoxel dephasing by using a spin echo leads to an apparent increase in the mðx,yÞ term, but the spatial encoding in the exponential of that

equation will still be affected by B0 effects. When there is a non-uniform fieldmap such as the one in Figure 2, there is a breakdown in the

encoding since it is not only scanner gradient k-space encoding that is contributing to a voxel's phase, but also phase accrued due to off-resonance.

We can factor out 2π and combine the exponentials into one term as follows:

sðtÞ¼
ð
mðx,yÞe�i2π½Δf0ðx,yÞtþ½kxðtÞxþkyðtÞy��dxdy: ð6Þ

If ½kxðtÞxþkyðtÞy��Δf0ðx,yÞt, sðtÞ will accurately encode the object at mðx,yÞ for k-space location ðkxðtÞ,kyðtÞÞ. However, if there is large off-

resonance (or long time t), the phase pattern associated with the encoding will be warped, as seen in Figure 5.

Figure 5 shows the ideal versus the actual encoding pattern, i.e., the phase of the complex exponential in Equation (6), to acquire the sample

at ðkx,kyÞ¼ ð0,0:426cm�1Þ. Note that Figure 5 shows the phase pattern superimposed on the object for a single point in k-space, and the encoding

error is only a function of the time since RF excitation, t, and the off-resonance fieldmap, Δf0ðx,yÞ, not the sampling trajectory used. The specific

geometric distortions in image space will be a function of what these encoding errors were across all k-space points, and will depend on the sample

ordering, with later samples having more excess phase accrued due to off-resonance. As described in more detail below, for Cartesian sequences

this encoding error normally manifests in geometric distortions, and for non-Cartesian sequences, such as spiral, this will result in both distortions

and blurring.

F IGURE 4 Signal loss from spin dephasing. A, Voxel view of spin dephasing. Spins with different off-resonances will gain different amounts
of phase during signal readout leading them to “fan out”, and eventually completely cancel each other. B, A gradient echo image is shown for two
different slices at three different echo times (TE). At the later echo times, signal loss due to dephasing is present as indicated by the arrows
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3.2 | Utility of long readouts

In an examination of Equation (4), we can see that off-resonance phase accrual is linearly dependent on the time since excitation. This can be split

into two parts: the phase accumulation to the echo time (TE) and phase accumulation during k-space scanning. The first term contributes to signal

loss in the mðx,yÞ term in gradient echo imaging. The second term contributes to k-space distortions and effects, as shown in Figure 5. Thus, long

readouts for imaging will show increased distortions. That said, there are advantages to having longer readouts in terms of signal to noise ratio

(SNR), k-space scanning efficiency, and overall acquisition speed.

3.2.1 | SNR

For a given repetition time (TR), flip angle, and spatial resolution, the SNR is proportional to the square root of the total acquisition time, TA=D,
46

at least to a first approximation. The total acquisition time here is defined as the sum of the length of all acquisitions contributing to a given image.

One can also define SNR efficiency as the SNR divided by the square root of overall time to acquire an image. Thus, as one increases the time

spent acquiring data in each TR, say by filling in dead times, the SNR efficiency also increases. This is, however, often a minor effect.

F IGURE 5 Ideal versus actual encoding phase at a single k-space location. A. Simulated off-resonance fieldmap in Hz. B. 1D plots of the
encoding fields as a function of position, where the red dotted line correspond to the dotted red line in A. C. The ideal k-space encoding phase for
ðkx,kyÞ¼ ð0,0:426cm�1Þ. D. The actual k-space encoding phase for ðkx,kyÞ¼ ð0,0:426cm�1Þ. Combined with k-space encoding errors at other
k-space sampling locations, this phase error will lead to off-resonance image artifacts
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3.2.2 | k-space scanning

Perhaps the most important advantage of a long readout is speeding up the image acquisition process, by acquiring more k-space data with each

RF excitation. In general, reduced study duration is beneficial for patient comfort and for economic reasons. Beyond this, accelerated imaging is

also enabling for many applications. While there are numerous methods to accelerate imaging, notably parallel imaging, k-space scanning with long

readouts also plays an important role in reducing scan time. For example, in dynamic imaging applications such as cardiac imaging, there may be

advantages to acquiring a larger part of k-space with each excitation so that higher-resolution images can be acquired during a breath hold. In neu-

roimaging, the ability to “freeze” motion has led to single shot k-space scanning, most commonly using EPI, being the dominant method for acquir-

ing diffusion-weighted and BOLD functional brain images. These are just a few examples where long readout and k-space scanning are useful

in MRI.

3.3 | Cartesian imaging: spin-warp and EPI

In Cartesian imaging, data is sampled in straight line segments along kx. The term “Cartesian” implies that the samples are regularly spaced, though

in practice the kx dimension is sometimes sampled along the trapezoidal gradient ramps (in addition to the plateau) for increased scan efficiency.

Since the invention of MRI, Cartesian imaging has remained the “bread and butter” MRI technique despite its relatively low scan-time efficiency

compared with non-Cartesian imaging, since (i) it allows fast and simple reconstruction using inverse fast Fourier transforms (iFFTs), (ii) image arti-

facts due to off-resonance and chemical shift are often easy to recognize and “read through”, and (iii) geometric distortions can be corrected using

fast and widely available methods.

3.3.1 | Spin-warp imaging

To understand the impact of off-resonance and chemical shift on Cartesian imaging, consider first the case of “spin-warp” imaging, where a

single line along kx is sampled after each RF excitation, with constant gradient amplitude Gx. In this case the kx-encoding term in Equation (6)

can be written as kxðtÞ¼ γ
2πGxt and (since the acquisition bandwidth along ky is effectively infinite) the exponent in Equation (6) becomes

�i2πkx½xþδx�� i2πkyðtÞy where

δx¼2πΔf0ðx,yÞ
γGx

: ð7Þ

In other words, a voxel at position x with off-resonance frequency Δf0Δf0 will appear at xþδx in the reconstructed image. For typical readout

bandwidths, δx is negligible for most tissue types at clinical field strengths, but can be on the order of a voxel width, e.g., fat. As a consequence,

the acquisition bandwidth for most clinical sequences is kept sufficiently high to avoid significant fat shift. For example, a common acquisition

bandwidth is �32 kHz (64 kHz total). With the fat chemical shift at 3 T (448 Hz), the corresponding image shift is 1.75 voxels for a 256 readout

sample. Note that Equation (7) ignores any B0 inhomogeneity within the voxel centered at location ðx,yÞ, and hence does not describe any signal

loss that may occur at a given echo time (TE).

3.3.2 | EPI

In EPI, multiple lines at different ky-encoding levels are acquired after RF excitation. This is done by playing a small y-gradient trapezoid “blip”
after the end of each kx line, and then traversing the subsequent line in reverse direction (non-flyback EPI). Assuming regular sampling along ky

with subsequent “echoes” spaced τs apart in time, and ignoring the (typically small) shift δx along the frequency-encoding direction, the exponent

in Equation (6) becomes �i2πkxx� i2πky½yþδy�, where

δy¼2πΔf0ðx,yÞ
γGy

ð8Þ

is the spatial shift (along y) in the reconstructed image. Here, Gy is the average gradient amplitude of the y blip over the echo time spacing τs,

which is much smaller than the readout gradient amplitude Gx in Equation (7). As a result, EPI can produce substantial spatial shifts along the

phase encoding (PE) direction, here ky . However if the user were to change the PE direction, the spatial shifts would also change direction, as
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these off-resonance induced spatial shifts are primarily in the PE direction. A useful way to think about these EPI distortions is to express the

average gradient in the PE direction in units of Hz/cm, as follows:

Gy,Hz=cm ¼ γGy

2π
¼1=ðτsFOV=RÞ ð9Þ

where τs = echo spacing and R = in-plane acceleration. Typical values are about 66 Hz/cm for high-resolution fMRI (2mm isotropic resolution, τs

= 0.75 ms, FOV = 20 cm, R¼1), 100 Hz/cm for low-resolution fMRI (τs = 0.50 ms, FOV = 20 cm, R¼1), and about 133 Hz/cm for diffusion ten-

sor imaging (DTI) with 2mm resolution and in-plane acceleration (τs = 0.75 ms, FOV = 20 cm, R¼2). The spatial shift along the PE direction

(Equation 8) is then found by dividing the local off-resonance Δf0 by the average gradient expressed in Hz/cm.

3.3.3 | Interleaved and readout mosaic segmented EPI

EPI comes in several multishot variants that make various tradeoffs between image artifacts and scan efficiency. In addition to geometric distor-

tions as just described, another consideration is T ∗
2 decay during the echo train, which acts as a k-space filter resulting in blurring in image space.

In interleaved EPI, the area of each ky-encoding blip, and hence Gy , is increased, making each EPI train undersampled by a factor equal to the

number of segments (shots) Ns. This reduces the geometric shifts, and the time allowing for T ∗
2 decay, by this same factor Ns. Interleaved EPI is

typically implemented by shifting the start of subsequent EPI segments by a time n=τs, where n¼0,…,Ns�1 is the shot number, to avoid abrupt

phase jumps in ky-space due to off-resonance. A potential drawback of interleaved EPI is shot-to-shot variability in the acquired data, resulting

from, e.g., physiological fluctuations or subject motion.

An alternative scheme useful for diffusion MRI is readout mosaic segmented EPI, where only a portion (“blind”) of kx-space is acquired during

each shot, while sampling all desired ky locations per shot.
47,48 The advantage of this approach is that it preserves the regular sampling along ky in

the presence of shot-to-shot k-space shifts due to rotational motion in the presence of diffusion-encoding gradients.49 By introducing a small

overlap between blinds along kx, such shifts need not introduce any gaps along kx as well. A drawback of this approach is that the echo time spac-

ing is not reduced by the full segmentation factor Ns due to finite gradient rise time, and hence the reduction in geometric shift is somewhat

smaller than for interleaved EPI for a given Ns.

3.4 | Non-Cartesian acquisitions

While much of MRI carried out on clinical scanners uses Cartesian acquisitions such as spin-warp or EPI, there are numerous useful applications

that use non-Cartesian acquisitions. This is a broad class of image acquisitions that typically do not acquire data along parallel lines in k-space.

Some aspects are similar to Cartesian imaging, for example, the need to acquire data over a prescribed area in k-space for the desired spatial reso-

lution and to acquire k-space data with sufficient sample density to prevent aliasing. The nature of the off-resonance artifacts, however, is quite

different. Below, we discuss these effects for radial line and spiral imaging, but note that there are yet other non-Cartesian trajectories,

e.g., rosettes,50 that have quite complicated off-resonance behavior that is beyond the scope of this review.

3.4.1 | Radial line and spiral imaging

Radial line and spiral imaging are useful in a number of applications. For example, radial line acquisitions in 2D or 3D have substantial utility in

zero- and ultra-short-TE (ZTE and UTE) imaging,51,52 angiography,53 and contrast enhanced abdominal imaging.54 Spiral imaging has been shown

to be useful in fMRI,55 cardiac imaging,56 and brain imaging.57

Spiral and radial line imaging have off-resonance features that are similar to each other, but are quite different from spin-warp and EPI. For

each line of a radial line acquisition, there is a shift in the radial direction in the form

δr�2πΔf0ðx,yÞ
γGr

ð10Þ

where Gr is the strength of the radial gradient. Since the direction of the radial gradient is constantly changing and ultimately points in all direc-

tions, the net effect is not a single shift, but a shift in all directions. More specifically, any off-resonant point in the object maps to a ring-like

response of radius δr. This is equivalent to saying that the point spread function (PSF) or impulse response is this ring-like function, the radius of

which, δr, is proportional to the off-resonance frequency, Δf0ðx,yÞ. For a complex image, this manifests as a blur of radius δr.
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For spirals, the off-resonance response is again a radial shift in all directions, with amplitude

δrs ≈
2πΔf0ðx,yÞ

γGr
ð11Þ

where Gr is the average outward component of the spiral gradients. One can also infer the average outward component with Gr ¼2πkmax=T,

where T is the length of the spiral readout. Now, any off-resonant point in the object maps to a ring-like response of radius δrs, and as with radial

imaging this is proportional to the off-resonance frequency, Δf0ðx,yÞ. As can be seen from the alternate Gr expression, the blur is also proportional

to the length of the spiral readout, T. Again, for a complex image, this manifests as a blur of radius δrs. For spiral imaging, the relationship that the

blur is a ring of radius δrs is only approximate because the average outward component typically varies during the readout, making the actual blur

function a bit more complicated. Still, the main principle is that longer readouts make the off-resonance image blurring worse.

The off-resonance behavior also extends to three dimensions. For examples, ZTE imaging and angiography applications often use a 3D radial

line acquisition. While spirals do not extend directly to 3D, there are 3D trajectories such as 3D cones, trajectories that spiral outward while rotat-

ing along two axes (sometimes called yarn trajectories), and spiral-radial hybrids58 that have off-resonance properties similar to spirals. In these

cases, we consider induced blur to be occurring in all three dimensions, that is, the PSF or impulse response is an annular sphere with radius δr

(or δrs). Again, greater off-resonance and longer readouts increase the radius of the blurring function.

The ways in which off-resonance affects EPI and spiral images at 3 T is shown in Figure 6 (images in Figure 6 were acquired from a healthy

subject after obtaining IRB-approved written informed consent). As expected the artifacts in the spiral image are primarily blurring, and the arti-

facts in the simulated EPI image are primarily geometric distortions along the phase encode (vertical) direction. Additional details of the simulation

can be found at https://github.com/fmrilab/B0-review-2022.

3.5 | Imaging near metal implants

Though not ferromagnetic, the susceptibility differences between metals and tissues are substantially larger than the differences between tissues

and the surrounding air. These large susceptibility differences, in combination with the often large mass of these implants, lead to similar, but mag-

nified, B0 effects. For example, much of gradient echo (GRE) imaging is infeasible in close proximity to implants, except for the very shortest TE

times, meaning that most studies use spin echo (SE) or fast/turbo spin echo (FSE/TSE) acquisitions. Similarly, rapid imaging methods such as EPI

or spiral imaging with implants will typically produce artifacts that are too severe to correct. There are often severe geometric distortions in the

readout (frequency encoding) direction associated with implants, including signal voids and piling up artifacts. Another common issue is the distor-

tion of the slice profiles, where there can be spatial displacement several slice thicknesses in magnitude, distorted slice profiles such as potato

chips, and variable slice thicknesses. In both frequency encode and slice effects, the spatial distortions are proportional to the frequency offset

divided by the bandwidth per pixel (or slice thickness).

F IGURE 6 Image simulations: Cartesian versus non-Cartesian. Here we show the different off-resonance effects from EPI versus spiral
acquisition. In the EPI image, geometric distortion of the brain is visible with a distortion sensitivity of 75 Hz/cm (see Equation 9), a typical value,
resulting in the brain being stretched compared with the original Cartesian spin-warp image (blue arrows). In the spiral image, there is a large
amount of blurring, noted by the red arrow, but there is less geometric distortion than in EPI
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4 | ESTIMATING B0 FIELD INHOMOGENEITY

4.1 | MRI sequences for acquiring fieldmaps

Before correction for B0 inhomogeneity artifacts, it is often necessary to acquire and estimate the fieldmap. The simplest way to estimate a B0

fieldmap is to create a pulse sequence that acquires two sequential gradient echo images at different TE times, and then subtract their relative

phases to obtain the amount of precession at that voxel over the echo time difference ΔTE. The phase difference is then scaled byΔTE to obtain

the fieldmap:

Δϕðx,yÞ¼∠mðx,y,TE1Þ�∠mðx,y,TE2Þ ð12Þ

Δω0ðx,yÞ¼Δϕðx,yÞ
ΔTE

: ð13Þ

This is the basic idea behind B0 fieldmapping in MRI, but there are many ways to estimate a fieldmap within this general approach. The choice

of ΔTE will affect the quality of the fieldmaps, and has been quantitatively evaluated in prior work.59 Normally gradient echo images at short TE

times are used to avoid distortions in the underlying fieldmap, but for applications using EPI there has also been work in using EPI-based

fieldmaps.60 While EPI fieldmaps will be distorted given the longer TE times required, they have the advantage that they will be distorted in the

same way and also experience the same eddy currents as the EPI data used in the imaging experiment, potentially allowing for easier look-up of

the off-resonance at any voxel.

Another consideration when calculating fieldmaps is phase wrap. A longer ΔTE is desirable because it will increase the SNR of the phase dif-

ference measurement. However, when ΔTE is increased, more phase wrap can occur. Fortunately, many tools such as FSL61 include phase

unwrapping algorithms that are useful when calculating off-resonance field maps, such as the automated method introduced by Jenkinson in

2003.62

There have also been recent approaches to rapidly acquire B0 fieldmaps along with transmit coil patterns (Bþ
1 ), receive coil sensitivity (B�

1 ),

and eddy current maps in as little as 11 s at 1�2�2mm3 resolution at 3 T.63 This kind of approach is especially useful for model-based image

reconstructions that incorporate B0 (see Section 5.4), since B�
1 maps are often needed as well.

There are requirements that the fieldmaps be reasonably accurate and not too noisy. As a general rule, the error/noise level should be below

the level of observable degradation of the PSF. One rule of thumb is for the error and noise levels to be below 0.25 cycle of phase over the read-

out. For example, if you want to correct the field effects for a 25 ms readout, 40 Hz offset will produce one cycle of phase over the readout and

thus we would want worst case errors to be below 10 Hz. Often, the fieldmaps are smoothly varying except for small air/tissue boundaries. As

such, it is often expedient to collect fieldmaps at lower spatial resolution (2–3 mm) than the images to be corrected (1–2 mm).

4.2 | Hardware methods

In addition to measuring a fieldmap using a sequence, it is possible to employ external hardware and/or built-in scanner hardware to monitor

changes in off-resonance. Generally these types of hardware tracking method will be used for dynamic B0 correction (see Section 5.5) after an ini-

tial B0 map has been measured using a fieldmapping sequence. One option is to use NMR field probes,64–66 which measure the changes in phase

of the MRI signal within small external samples. These probes are now commercially available (https://skope.swiss/) and have been used in appli-

cations such as diffusion MRI, fMRI, and ultra-high-field imaging. Another approach is to use free induction decay (FID) measurements from a

multicoil receive array, which can encode changes in signal based on the different spatial locations of the coils. By combining with a reference

image from each coil, Wallace et al. showed that FIDs can be used to dynamically track up to second-order field changes.67

4.3 | Optimization and smoothing methods

After multi-TE data has been acquired, Equation (13) is the simplest way to calculate a fieldmap, but the maps are often improved by using some

form of smoothing or regularization due to the difficulty of obtaining B0 values near the edges of the anatomy. In the original TOPUP paper,68 a

smoothed version of the fieldmap that is based on polynomial fitting was used. The work by Hutton et al,59 in addition to examining ΔTE, also

quantitatively evaluates how the amount of smoothing used affects fieldmap estimates.

There are also optimization-based approaches that use a multiterm objective function, where the phase differences between multiple TE

values is a data fit term and another regularization term penalizes rapidly varying and sudden field changes.69 This method has been expanded to
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incorporate a more efficient optimization algorithm and the ability to input multicoil data.70 Additionally, it is possible to jointly optimize for a

fieldmap and an image, and these approaches are described in Section 5.4 on model-based image reconstruction.

5 | CORRECTION STRATEGIES

In this section we discuss strategies to correct for off-resonance artifacts in MRI. Many of the methods described could fit into multiple catego-

ries, but we have broadly categorized them to help in describing the different options available to MRI users, as outlined in Figure 7.

5.1 | Artifact prevention and reduction

5.1.1 | Hardware-based artifact mitigation

The most straightforward way to prevent B0 artifacts is to have as uniform a field as possible before starting a scan, and the process of refining

the uniformity of the B0 field is referred to as shimming.72 Shimming can be done either by improving the static B0 field hardware (i.e., with sup-

erconducting shim magnets or ferrous passive elements) or by actively changing the currents in the scanner's electro-shim coils, which include the

gradient coils. An example of passive shimming at low field is the work of Liu et al., where on their 50mT scanner they originally had a 2000 ppm

peak-to-peak uniformity over a 24 cm diameter spherical volume (DSV) within their SmCo dipole magnet, but after adding smaller passive shim

magnets their uniformity was increased to 250 ppm.20 Automated shimming is a standard part of a clinical MRI pre-scan calibration (at least for

the constant linear shim terms) and for most users this will be automatic, but for certain types of acquisition, such as MRS that requires a very uni-

form field,73 the user may need to carry out manual shimming as well.

In addition to shimming, using a lower magnetic field is a direct way to reduce B0 artifacts. As was discussed in Section 2, B0 field changes

that are attributable to susceptibility and chemical shift scale with field strength, so these artifacts are generally worse at higher field. There are

some B0 artifact mitigation strategies that are harder at low field due to decreased SNR, but in general going to lower field will reduce signal loss

and encoding artifacts from an inhomogeneous field.

5.1.2 | Sequence-based artifact mitigation

When designing an MRI sequence, parameters can be adjusted to reduce the effects of off-resonance. Using a short readout time (high acquisition

bandwidth) will limit the amount of extra phase accrued due to off-resonance and therefore reduce artifacts. The use of parallel imaging tech-

niques13,74 is an effective way to reduce the readout length of a single-shot acquisition (such as EPI or single-shot spiral), by allowing the user to

collect less k-space data each shot. If using longer readouts, spin echoes and spin echo trains will refocus spins and avoid much of the T ∗
2 signal

loss.11,12 Chemical shift artifacts can be avoided by using a short-time inversion recovery (STIR) sequence that nulls recovering fat signal, inserting

fat saturation modules before water excitation (an RF excitation at the fat frequency and then a large crusher gradient), or by using a spectrally

selective RF pulse centered around the water resonant frequency.75 Further, while this generally has the downside of longer scan time due to

F IGURE 7 Common B0 artifact mitigation strategies
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additional encoding, using smaller voxels will decrease the possible signal loss due to a more local neighborhood of spins being averaged in each

voxel. Parallel imaging and simultaneous multislice imaging14 are effective strategies to reduce voxel size without increasing scan time.

5.2 | EPI

Several methods for correcting geometric and intensity distortions in EPI have been proposed (see, e.g., References 76,77 for recent overviews),

and here we focus on three of the more popular ones: image-based correction using an acquired B0 map, image-based correction using two refer-

ence scans with opposite phase-encode blip directions, and the PSF mapping approach. These have all proven to be useful for EPI distortion cor-

rection in fMRI and diffusion imaging.

5.2.1 | Fieldmap-based correction

One popular approach is based on the separate acquisition of an undistorted B0 map (e.g., using spin-warp 3D GRE), that is used to calculate the

shift δy (Equation 8) for each spatial location.68 The pixel values in the reconstructed (distorted) image are then shifted along the phase-encode

direction by �δy. This is followed by an intensity correction step based on the spatial gradient of δy.68 Potential drawbacks of this approach

include inaccurate correction near object edges due to inaccurate B0 estimates (partial-volume effects), and inability to resolve overlapping pixels.

5.2.2 | Opposite phase-encoding scans

Another widely used approach that also operates on magnitude images is TOPUP (Figure 8),71 that uses as input two EPI images that differ only

in the sign of the phase-encoding blips (i.e., traversing ky in the positive and negative, or bottom-up and top-down, directions). The TOPUP model is

fþ,i

f�,i

� �
¼ Kþ,i

K�,i

� �
xi ð14Þ

where xi is the ith column (along y) of the undistorted true image x, fþ and f� are the distorted bottom-up and top-down images, respectively,

and Kþ,i and K�,i are real-valued square matrices that map the pixel locations in the true image column xi to the observed image columns fþ=�,i. In

the absence of B0 inhomogeneity, Kþ,i and K�,i would be the identity matrix I.

With knowledge of B0 (which determines Kþ,i and K�,i), Equation (14) can be inverted to obtain a least-squares estimate x̂ of the true image,

with the benefit that pixels that overlap in one of the images (causing either Kþ,i or K�,i to be singular) are separated in the other, which enables

the underlying true image to be resolved.

In the absence of B0 inhomogeneity, x̂i is simply the average of fþ,i and f�,i. Furthermore, the TOPUP model can be used to estimate B0 from

the two EPI scans (obviating the need for a separately acquired B0 map), by enforcing consistency between the observed images fþ,� and the

predicted images f̂þ,� created by distorting x̂ using Equation (14):

bbi ¼ argminbi j fþ,i

f�,i

h i
� Kþ,iðbiÞ

K�,iðbiÞ

h i
x̂iðbiÞj22 ð15Þ

where bi parametrizes the displacements (using the notation from71), and we have made the dependence of x̂i on bi explicit. Knowledge of bi

yields an estimate of the fieldmap B0, which can then be used to create an undistorted image using the approach described above. Advantages of

this approach include estimation of δy (Equation 8) from fast EPI scans, and avoiding potential inaccuracy issues in the directly acquired B0 maps.

However, like fieldmap-based correction, TOPUP cannot easily correct for signal pile-up in regions with severe B0 inhomogeneity. While there

are some limits to how much correction is possible, this approach has the important practical advantage that it can operate on magnitude images

after simultaneous multislice reconstruction and coil combination.

5.2.3 | PSF mapping

Another way to obtain δyðrÞ is based on measuring the PSF along y.78–80 This can be done by performing a calibration prescan wherein one adds

an additional ky encoding blip prior to the EPI readout, and repeats the measurement with different blip areas. For a 2D EPI acquisition, this
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additional “constant-time” encoding yields a 3D dataset where the spatial profile in the constant-time encoding dimension is the PSF.78 The pixel

shift can then be obtained as the center (peak) of the PSF.80 An advantage of this approach is that the shift is estimated with the same EPI read-

out as the imaging sequence to be corrected, and hence experiences and accounts for the same eddy currents and concomitant gradients.

5.3 | Non-Cartesian

Off-resonance effects lead to blurring and other distortions for non-Cartesian acquisitions, and this is often more objectionable than the geometric

distortions seen in Cartesian imaging. Thus, it is often necessary to make some sort of off-resonance correction in order to produce clinically useful

images. This section describes common approaches for this correction that are applicable to radial line, spiral, and related k-space trajectories.

F IGURE 8 Illustration of EPI distortion correction using Equation (14). A, Ground-truth (undistorted) object; B, fieldmap. C, D, Kþ,i and K�,i

for the dashed lines in E, F. E, F, Distorted images fþ and f�. G, Distortion correction attempt using only fþ. H, Successful distortion correction
using Equation (14). (Images reused from Andersson et al., 200371 with permission.)
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5.3.1 | Direct/analytical methods

Conjugate phase (CP) reconstruction

In the absence of off-resonance, the signal equation in Equation (6) can be seen as a simple Fourier transform and a good image reconstruc-

tion will be simply an iFFT. For a non-Cartesian acquisition, one can implement an approximate iFFT as

m̂ðx,yÞ¼ 1
M

X
i

wi yi e
i2πðkx,ixþky,iyÞ ≈ F�1fyðtÞg ð16Þ

where i is the index over M k-space samples yi ¼ yðtiÞ at k-space locations ðkx,i,ky,iÞ, and wi is the sample density compensation term that accounts

for uneven distribution of k-space samples common in non-Cartesian methods. In practice, this expression is commonly implemented by some

sort of interpolation in the k-domain to a Cartesian grid (known as gridding) followed by iFFT operators or by using integrated functions such as

the NUFFT.81

When considering off-resonance effects, a good image reconstruction may be to compensate for the off-resonance phase accumulation in

the image reconstruction at every time point and for each location ðx,yÞ82,83 as shown here:

m̂ðx,yÞ¼ 1
N

X
i

wi yi e
i2πðΔf0ðx,yÞtiþkx,ixþky,iyÞ ð17Þ

where the Δf0ðx,yÞti term is known as the CP correction for the off-resonance (see Figure 9 for an image example).

There are limitations to the CP reconstruction, notably in that it is not a true inverse, but rather an approximation.

In particular, this approach fails to give high-quality image reconstructions when the magnetic field (Δf0ðx,yÞ) varies rapidly in space and there-

fore the ring-like PSF will also vary rapidly in space. If two PSFs overlap in space and these PSF functions are different, then this approach cannot

fully correct for both blurring functions. An alternate way to think about this is that rapidly varying Δf0 corresponds to a local gradient, and there-

fore the k-space is distorted for locations with large local gradients.85 The distorted local k-space limits the effectiveness of the CP reconstruction.

Model-based image reconstruction, described below, is more robust to address rapid variations in the field map.

Efficient approximations

While Equation (16) has fast implementations with gridding or the NUFFT, Equation (17) is no longer an inverse Fourier transform due to the

Δf0ðx,yÞt term. Still, there are computationally efficient implementations that result from decomposing this term into a sum of terms that vary only

in space and terms that vary only in time. The exponential can be modeled as a summation of basis functions86,87:

ei2πΔf0ðx,yÞt ≈
XL
l¼1

blðtÞclðx,yÞ ð18Þ

where bl and cl represent the basis functions for the time and image space, respectively. Note that frequency, Δf0ðx,yÞ, varies only with space.

The first such implementation was the so-called time-segmented approximation88 to the CP correction term, where bl ¼ blðt� tlÞ is a family of

time-varying weighting functions centered at tl and cl ¼ ei2πΔf0ðx,yÞtl is a spatially varying phase function corresponding to tl. This approximation to

Equation (17) is

m̂ðx,yÞ≈
XL

l¼1

F�1fblðt� tlÞyðtÞgei2πΔf0ðx,yÞtl ð19Þ

where F�1 is the gridding or NUFFT inverse transform of windowed segments of yðtÞ. A related form is known as the multifrequency interpolation

(MFI) method,89,90 which modulates the acquired data at frequencies fl using bl ¼ ei2πfl t and interpolates between modulated images using clðx,yÞ.
This approximation to the CP reconstruction is

m̂ðx,yÞ≈
XL

l¼1

F�1fe�i2πfl t yðtÞgclðΔf0ðx,yÞ� flÞ: ð20Þ

Observe that L Fourier transforms are implemented in both of these approximations, so while they are about L times slower than Equation (16)

they are still substantially faster than the discrete Fourier transform implementation of Equation (17).

The time-segmented approximation and the MFI methods perform similarly and can be viewed as low-rank approximations to the ei2πΔf0ðx,yÞt

term. The interpolation functions can be selected optimally according to different optimality criteria.86,90
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Deblurring with deconvolution

While the above approaches implement off-resonance correction as part of the image reconstruction, this can also be implemented in the image

domain using deconvolution.91 Provided the spatial extent of the PSF or blurring function is small, one can deblur the images using a space variant

deconvolution, where the deconvolution kernel is guided by the acquired fieldmap. Ahunbay et al91 showed that in some circumstances the

deconvolution kernel is separable into x and y, which can greatly reduce the computational burden.

Simulated phase evolution rewinding (SPHERE)

An alternate approach to field correction that is similar to the CP approach is to apply the CP correction to the forward Fourier transform rather

than the inverse transform. This general approach is known as SPHERE.92 The approach starts with a reconstruction (iFFT) that does not apply an

off-resonance phase correction, e.g., Equation (16), and follows it with a forward transform back to the k-domain; however, during the forward

Fourier transform, the CP correction is applied:

ycorrðtÞ¼
X
x,y

m̂ðx,yÞe�i2πðΔf0ðx,yÞtþ½kxðtÞxþkyðtÞy�Þ ð21Þ

where the sign of the complex exponent �Δf0ðx,yÞ is the opposite of that in the signal equation, Equation (6), thus applying the CP to compensate

for the off-resonance phase accumulation. This is followed by a simple iFFT to produce the final image. As with the CP reconstruction, the

Δf0ðx,yÞt term means that the forward transform is no longer a Fourier transform, but the time-segmented approximations and the MFI can be

used to implement this in a computationally efficient manner. Schomberg's review93 provides a detailed mathematical analysis of CP and SPHERE

methods, along with fast implementation strategies and timing comparisons of the different approaches.

F IGURE 9 CP and MB reconstruction at 50 mT. Compared with a standard iFFT reconstruction, CP and MB reconstructions both correct for
geometric distortions due to off-resonance, especially in the right side of the brain where the magnetic field off-resonance is stronger. MB also
shows more uniform signal intensity. (Images reused from Koolstra et al., 202184 via open access license.)
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5.3.2 | Autofocusing

One unique aspect of non-Cartesian imaging is that the PSF may allow for autodetection of off-resonance based on features of the image. Con-

ceptually, it is like an autofocus camera where different parts of the image have different off-resonance corrections to produce a fully deblurred

image. This is done by examining image features rather than through the use of a fieldmap. In Reference,94 a multifrequency reconstruction was

used, in which non-Cartesian images were reconstructed to produce a family of images where different parts of each image are unblurred. An

image metric based on a measure of how closely the phase of low-spatial-frequency images aligned with the phase of high spatial frequencies

was used to determine, for each voxel ðx,yÞ, which modulated image was sharpest. This measure works well for spiral imaging because the low

spatial frequencies are acquired earlier than high spatial frequencies, and off-resonance will lead to these components being out of phase. In

recent work,95 real time speech MRI with spiral readouts was automatically deblurred using a sharpness metric of features in the vocal tract. Inter-

estingly, these autofocus methods can produce a fieldmap based on the selected image.

Machine learning

One challenge to autofocusing is the selection of an appropriate measure of image sharpness. Because of the predictable and reproducible nature

of the off-resonance effects in non-Cartesian imaging, it is possible to train a neural network to learn and remove image blurs. In Reference 96,

body imaging with 3D cones trajectories and long readouts was deblurred by a convolutional neural network (CNN) that directly maps blurred

images to unblurred images acquired with shorter readouts (but an overall longer scan time). This type of approach has also been applied to

speech MRI, where a longer-readout image was deblurred using a CNN, allowing for longer k-space readouts and therefore higher temporal visu-

alization of speech in the hard-to-correct areas around the mouth and sinuses.97 In another approach, a CNN is trained to estimate the fieldmap

directly, and then uses the fieldmap within a model-based image reconstruction to produce unblurred images.98

5.4 | Model-based image reconstruction incorporating B0

As the use of techniques such as parallel imaging and compressed sensing has grown, performing MRI reconstruction using model-based image

reconstruction (MBIR)25 has grown in popularity. MBIR has the advantage that it can incorporate additional operations into a model of the MRI

system beyond standard Fourier encoding, and many groups have found that incorporating a fieldmap into their imaging model can greatly aid in

the reduction of B0 artifacts. MBIR can also serve as the foundation for hybrid physics+machine learning approaches that combine an imaging

physics model with learned parameters, often referred to as “unrolled” algorithms.99

In MBIR, a so-called “forward model” is created that mathematically describes the transform from an image in vector form, denoted as x, to

acquired data, y, using a matrix that here we will denote as A. This can be thought of as a linear algebra representation of Equation (3) where data

from all timepoints has been combined into a single vector y, and can be written as

y¼Ax: ð22Þ

Note that we have changed the letters representing the image and data from Equation (3) to align with common linear algebra nomenclature.

In the simplest optimization approach, once we have a forward model, we can then optimize for the image using a linear least squares fit (since

the dominant noise in MRI is Gaussian) as follows:

x̂¼ arg min
x

1
2
kAx�yk22þλRðxÞ ð23Þ

where RðxÞ is a regularizer chosen by the user, and λ is a tuning parameter to balance between the data fit term and the regularization. A common

choice of regularizer in MRI is a total variation (TV) term, but there are many different options for regularizers and alternative optimization algo-

rithms to linear least squares, as discussed in a recent overview by Fessler.25

In MRI, the simplest possible forward model would be to have A equal to a discrete Fourier transform matrix. Additional common terms that

are added include multicoil sensitivity maps and undersampling operators. The addition of an off-resonance field map is more complex, as the way

the off-resonance affects the encoding forward model changes with time, as is shown in the first exponential term in Equation (5), and it requires

approximating the full forward model and applying corresponding optimization algorithms to leverage the efficiencies of these models. Solving a

minimization problem of the form shown in this section, as well as the direct methods discussed in Section 5.3.1, are often referred to as “inverse
problems”, and there are extensive prior work and tools available for these types of problem that can be applied to MRI.
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5.4.1 | Efficient approximation of an expanded B0 forward model

To fully model the off-resonance exponential term in Equation (5) in matrix form would be computationally prohibitive, but lower-order approxi-

mations of the exponential can be made to efficiently model off-resonance.26 As described in prior work86,87 and Equation (18), the exponential

can be modeled as a summation of basis functions. Using discretized versions of the L basis functions (bil and clj), the matrix vector multiplication

of Ax at row i (i.e., k-space data point i) now becomes

½AðωÞx�i≈
XL
l¼1

bil
XN
j¼1

ðxjcljÞe�i2πðki 	rjÞ
" #

ð24Þ

where xj is the magnetization (image value) at voxel index j,N is the number of voxels, ki 	 rj is the inner product of the ith k-space sampling location

with the image space location of the jth voxel index, and AðωÞ denotes that A now contains the fieldmap. Here, AðωÞ is implemented efficiently

with L NUFFTs. Additionally one can expand this to jointly optimize for the image and the fieldmap, assuming there is enough temporal variation

in the k-space samples:

x̂,ω̂¼ argminx,ω
1
2
kAðωÞx�yk22þλ1RðxÞþλ2RðωÞ: ð25Þ

Sutton et al. performed this type of joint optimization using a spiral-in/spiral-out k-space trajectory100 to calculate the fieldmap at every time-

point in an fMRI timeseries, allowing for dynamic B0 correction of respiration-induced phase oscillations. Recent work has also incorporated

multicoil information to aid in the joint reconstruction of the fieldmap and image using undersampled spiral-out and EPI trajectories.101

Other works have expanded the forward model AðωÞ to allow for a more accurate imaging model. Joint optimization of the fieldmap and R ∗
2

values has been performed to acquire quantitative BOLD information.102 The imaging model can also be expanded to describe the differences in

signal between water and fat, and to jointly optimize for water images, fat images, and the B0 map.103 More recently, a method to model through-

voxel dephasing has been presented, which uses the gradient of the fieldmap within each voxel to estimate dephasing and recover lost signal.104

In addition to joint optimization, it is also possible to incorporate information from external sensors such as NMR probes to dynamically model

the B0 changes that occur during an MRI scan.105 This dynamic B0 tracking approach has recently allowed the acquisition of 0.8mm � 0.8mm res-

olution brain imaging with a 23 cm FOV at 7T by using field probes during the 57ms long single-shot spiral readouts,106 which would produce

severe artifacts without B0 modeling.

Even with fast approximations, it should be noted that MBIR generally takes longer to run than direct approaches such as CP due to its itera-

tive nature, and can also be more complex to implement. That said, the potential improvement can be substantial, and the utility of MBIR's

improved accuracy will depend on the application and requirements of the imaging protocol (i.e., reconstruction time).

5.4.2 | Model-based reconstruction for low field

MBIRs have also proven valuable at low field, including recently published results showing improved in vivo human brain images from a portable

low-field scanners using MBIR.21,84 In the work of Koolstra et al., the forward model includes a B0 fieldmap in a CP reconstruction as well as in an

MB reconstruction (see Figure 9). Additionally, they model gradient nonlinearities. While not the focus of this paper, gradient nonlinearities can

be important to incorporate at low field, and these are actually the terms that are modeled in the MBIR of the low-field work by Cooley et al,21

not the B0 field itself. Inclusion of gradient nonlinearities in the model will affect the k-space encoding term in equation 24, and shows the flexibil-

ity of the MBIR approach and the benefits of using it at low field.

5.5 | Dynamic correction and motion considerations

Dynamic off-resonance correction models the time-varying changes in the B0 field during a scan, modeling the temporal updates using either a

low-rank spatial representation of the field (i.e., spherical harmonics) or an entire fieldmap. Dynamic B0 correction can be done either prospec-

tively, where the B0 field is updated during the scan (this is often referred to as dynamic shimming), or retrospectively, where different frames

(e.g., individual frames in an fMRI timeseries or diffusion images at different b-values) are reconstructed assuming a different fieldmap.

For prospective correction, dynamic shimming can be done either in a volumetric approach, where the shim is updated during the scan to

optimize homogeneity over the whole region of interest (this will require real time measurement of the B0 field changes), or in a slice-by-slice
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manner, where the optimal shims for each slice are determined, and then the shims are updated during the scan depending on which slice is being

acquired (one can measure and dynamically update slice shims in real time, or optimal slice shims are determined prior to the experiment). Pro-

spective correction without spatial information can also be useful to dynamically measure and update the center B0 frequency in real time, for

example in applications such as interventional MRI107 and oscillating steady state imaging (OSSI) fMRI,108 which has been shown to be very

B0 sensitive.109

In terms of hardware to update the shims, one option is to use built-in scanner shim coils (separate from the gradient coils), which generally

shim up to first or second order but can go up to third order on some ultra-high-field systems. When using built-in shim coils, eddy currents

should be taken into consideration as those can cause artifacts, and there are also potentially limits on the speed at which the shims can be

updated using those coils. There are also more recent methods that dynamically shim using multicoil receive arrays that can also generate a DC

current,110,111 one of which by Stockmann et al. is aptly named an “AC/DC” coil. These methods take advantage of the higher-order shim fields

generated from a multicoil array, due to it being located much closer to the object than scanner shim coils and having more elements to fine tune

a desired field shape.

Retrospective approaches have also proven useful, and are helpful when dealing with motion during a scan. When a subject moves within the

scanner, it will often result in a change of the B0 fieldmap, requiring dynamic distortion correction. In diffusion MRI, techniques have been devel-

oped to correct for both motion changes and distortion changes during data acquisition.112,113 Dynamic distortion correction is also important in

fMRI experiments, and many groups have shown the benefits of estimating B0 dynamically, using either raw k-space data100 or phase measure-

ments from the images themselves114,115 or from multicoil FID measurements,116 and then using the information in the reconstruction. Addition-

ally, the potential clinical benefit of dynamic off-resonance correction has been shown in the application of presurgical fMRI at 7 T.117

Dynamic B0 correction is also relevant in low-field imaging, especially in permanent magnet designs where there can be field drift during a

scan.19,22,28 In these approaches, a field probe or other methods are used to monitor drift during the acquisition, and then these measurements

are used during the image reconstruction. At the other end of the field spectrum, dynamic B0 correction has proven useful at ultra-high field,

where there are large susceptibility artifacts.35,118,119

In MRS, which is very sensitive to off-resonance artifacts,73 dynamic shimming is also very helpful. Spinal cord fMRI, including combined

brain + spinal cord fMRI, can also benefit from dynamic shimming, because the effects of respiratory-induced magnetic susceptibility changes are

much more severe when imaging closer to the lungs.120,121 Finally, in applications such as speech MRI, where the data is inherently time varying,

dynamic B0 correction is important, since the B0 field pattern will change as a subject speaks during the examination.95,97,122

5.6 | Correction for metal artifacts

As described above, the source of B0 distortions around metal implants is largely the same as other sources of susceptibility-induced B0 shifts, but

larger in magnitude. Most imaging around implants uses spin echo (and variants) and traditional spin-warp-type acquisitions. This has the benefit

of there being no geometric distortion in the PE direction, but still leaves artifacts in the readout and slice selection directions. The first step to

minimize artifacts is to maximize the bandwidth per resolution element in each case, by increasing the receiver bandwidth for frequency encoding

readouts and increasing the RF pulse bandwidth. While both have costs, these are useful strategies for reducing distortions. Similarly, one can use

geometric distortion correction methods, such as fieldmap-based methods and others described above in Section 5.2.1, but these are ineffective

for many of the larger distortions seen with metal implants.

5.6.1 | View angle tilting (VAT)

One clever approach for reducing in-plane distortions in the frequency direction is VAT.123 Note that slices are shifted during the slice excitation,

and shifted in the slice direction by an amount proportional to the B0-induced frequency shift. Similarly, during frequency encoding the voxels are

shifted in the readout direction proportional to this frequency shift. The VAT works by applying the slice select gradient again during frequency

encoding. If the slice gradient is of the same amplitude as that used during excitation, then spins will be centered at the slice resonant frequency

and not the original frequency shift. As a result, the frequency encoding sees the correct frequency associated with each spatial location along

the read direction and distortions are removed. While effective, this approach is somewhat limited in that the frequency encoding should be about

the same length as the RF pulse, which unfortunately makes the readouts very short at the expense of SNR. One could use a longer (narrow-band-

width) RF pulse, but this leads to the slices being shifted by even larger amounts, so generally high-bandwidth RF pulses and frequency encoding

are used. The main limitation of VAT is the residual and uncorrected distortion in the slice direction.
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5.6.2 | Robust methods for distortion correction

The extreme challenge of large B0 shifts around metal implants has led to several new methods for encoding images and the frequency offsets at

the same time. One popular method is called multiacquisition variable-resonance image combination (MAVRIC),124 in which slices are not excited

at all, but rather narrow frequency bands are excited. Since there is no slice selection, 3D encoding is required to prevent aliasing in slice and PE

directions. This is usually combined with fast spin echo/turbo spin echo methods to improve acquisition speed. Because a narrow band of fre-

quency is excited, there is limited distortion of the images, governed by the readout bandwidth per pixel. To fill in the image holes, many (often

overlapping) frequency bands must be excited and for each the exact shift correction for the frequency offset is applied. This creates many 3D

volumes, which are then combined to create a volume that is undistorted in all three dimensions. The disadvantage of this approach is that it has

poor SNR efficiency because shifted frequency bands do not improve the SNR of other frequency bands.

As mentioned above, the main issue with VAT is that the slice distortions are not corrected. Another comprehensive approach for distortion

correction that addresses this issue is called slice encoding for metal artifact correction (SEMAC),125 in which 2D slices are excited, but for each a

3D acquisitions is acquired so the distorted 3D profile of each excited slice can be visualized. VAT is used to correct for in-plane distortion and

the 3D shifts are spliced together into a fully corrected 3D volume. As with MAVRIC, the SNR efficiency of this method is poor. Figure 10 demon-

strates how regular spin echo images are badly distorted in both in-plane and slice directions, how VAT mostly corrects for the in-plane distortions

but not the slice direction effects, and that SEMAC corrects for both in-plane and slice distortions. There are MAVRIC–SEMAC hybrid

approaches126 as well that can improve image quality and efficiency.

F IGURE 10 Comparison of standard spin echo imaging (top row), VAT (middle), and SEMAC (bottom row) methods for a patient with a spinal
implant. The right-hand column is reformatted so that slice direction is along the horizontal axis. The spin echo image is badly distorted in both
frequency and slice directions and the VAT images are partially corrected in the frequency direction with substantial slice distortion, while the
SEMAC image is corrected in both directions. (Images reused from Reference 125 with permission.)

20 of 24 HASKELL ET AL.



6 | CONCLUSIONS

Off-resonance artifacts are widespread in MRI, but fortunately there are many strategies to reduce and correct for them. Here we have described

how off-resonance can originate from a variety of sources, such as inherent B0 magnet inhomogeneity, magnetic susceptibility of tissue, chemical

shift, and metallic implants. The effects of these inhomogeneities depend on the type of sequence used (spin echo versus gradient echo, Cartesian

versus non-Cartesian) and therefore the correction strategies must be different as well. We have outlined the most common strategies for B0 cor-

rection in Cartesian sequences (e.g., EPI), including fieldmap-based, TOPUP, and PSF approaches, as well as common strategies for non-Cartesian

sequences (e.g., spiral), including direct (e.g., conjugate phase) and autofocusing methods. The effects and correction strategies for metallic

implants also require a special approach, because of the very large magnetic susceptibility difference between metal and surrounding tissue. We

have also discussed how model-based image reconstruction (MBIR) and dynamic correction can be used to correct for off-resonance in multiple

types of sequence and application. Throughout, we have highlighted the ways in which low-field MRI can be easier to work with in terms of off-

resonance effects (less magnetic susceptibility and chemical shift effects), how it can be more challenging (non-uniform B0 field), and the substan-

tial progress that has been made in correcting for B0 effects at low field. Overall, the type of off-resonance artifact reduction and/or correction

strategy will depend on the application, and future developments in the field of off-resonance correction will continue to enable new applications

and use cases for MRI.
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