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Many statistical methods have been applied to VAERS (vaccine adverse event
reporting system) database to study the safety of COVID-19 vaccines. However,
none of these methods considered the adverse event (AE) ontology. The AE
ontology contains important information about biological similarities between
AEs. In this paper, we develop a model to estimate vaccine-AE associations while
incorporating the AE ontology. We model a group of AEs using the zero-inflated
negative binomial model and then estimate the vaccine-AE association using
the empirical Bayes approach. This model handles the AE count data with
excess zeros and allows borrowing information from related AEs. The proposed
approach was evaluated by simulation studies and was further illustrated by an
application to the Vaccine Adverse Event Reporting System (VAERS) dataset.
The proposed method is implemented in an R package available at https://
github.com/umich-biostatistics/zGPS.AO.
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1 INTRODUCTION

The Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA) conduct
post-licensure vaccine safety monitoring using the Vaccine Adverse Event Reporting System (VAERS).1,2 VAERS accepts
spontaneous reports of suspected vaccine adverse events after administration of any vaccine licensed in the United States
from 1990 to the present. As a national public health surveillance resource, VAERS is a key component in ensuring
the safety of vaccines. Numerous methods have been used to conduct safety studies with the VAERS database.3-17 In
these methods, a contingency table is generally created to display counts for all vaccine and adverse event pairs during a
specified time period (see Table 1). In this table, there are I vaccines and J AEs. The cell count yij is the total number
of reports mentioned both vaccine i and AE j in this time period, the column margin yi. =

∑J
j=1yij is the total number of

reports mentioned vaccine i, the row margin y
.j =

∑I
i=1yij is the total number of reports mentioned AE j, and y

..

=
∑

ij yij
is the total number of reports in this time period.

The level of disproportional reporting of a vaccine-AE pair is commonly expressed as the ratio of the observed reporting
frequency to the expected (or control) reporting frequency. The expected frequency for the i-jth vaccine-AE pair is defined
as Mij =

yi.y.j
y
..

,which is the frequency we would observe if the vaccine and the AE are independent.3 The relative reporting
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T A B L E 1 An example of the contingency table.

Vaccine⧵AE AE1 AE2 … AEJ

VAX1 y11 y12 … y1J

VAX2 y21 y22 … y2J

… … … … …

VAXI yI1 yI2 … yIJ

rate (RR) is defined as RRij =
yij

Mij
. If RR= 3.2 for a vaccine-AE pair, then this pair occurred in the data 3.2 times more

frequently than expected under the assumption of no association between the vaccine and the AE. Each cell count is
commonly assumed to have an independent Poisson distribution;3 that is, yij ∼ Poisson(Mij𝜆ij),where 𝜆ij is the parameter
of interest representing the RR, with a larger value indicating the vaccine i - AE j pair is disproportionately reported in
the dataset. A large RR might indicate a potential vaccine safety problem (called a safety “signal”).

All the existing methods assume that AEs are independent; however, AEs are naturally related. For example, events
of retching, dysphagia and reflux are all related to an abnormal digestive system. Explicitly bringing AE relationships
into the estimation step allows information borrowing between similar AEs, thereby improving the accuracy of detecting
true AE signals amid the noise while reducing false positives. In this paper, we use MedDRA (Medical Dictionary for
Regulatory Activities) to group AEs. MedDRA is the largest resource for AE ontology, which defines disease relationships
using a multi-level hierarchy.18 VAERS uses the “Preferred Terms” (PT) level as a distinct descriptor for a symptom,
sign, and disease. Related PTs are grouped into higher-level HLGT terms. We define AE groups using the “High Level
Group Terms” (HLGT) level of MedDRA. MedDRA ontology data can be accessed through BioPortal https://bioportal.
bioontology.org/ontologies/MEDDRA. We applied the web scraping technique to the HTML-formatted data in BioPortal
and obtained the ontology for the adverse events.

One recent study performed AE enrichment analysis using the AE ontology in MedDRA.19 Their method focuses on
identifying enriched AE groups where AEs are more likely to be disproportionately reported than AEs in other groups.
However, this enrichment analysis is done after RRs of individual AEs have been estimated. Therefore, their method can-
not directly improve the accuracy of signal detection. Another challenge in analyzing VAERS data comes from excessive
zero counts. MedDRA is a dictionary containing thousands of PT terms for various symptoms and diseases. Therefore, a
large number of AEs in VAERS were never mentioned for many vaccines; For example, in VAERS data from 2002 to 2018,
approximately 40% AEs were never mentioned with the “FLU4” vaccine, resulting in 40% AEs with a zero count.19 In
this paper, we propose a model allowing information sharing between AEs within the same group while accommodating
zero counts.

To incorporate the grouping structure of AEs in the estimation of RRs while accommodating excessive zero counts
in VAERS data, we consider a zero-inflated negative binomial distribution (ZINB). We assume that RR parameters, 𝜆ij’s,
in the same AE group (defined by HLGT or SOC) are generated from a common gamma distribution. This common
distribution allows information sharing between 𝜆ij’s in the same AE group. By parameterizing the negative binomial
distribution through a gamma-Poisson mixture distribution, we can model the AE data on both the PT (child) and a
higher level (parent), allowing us to simultaneously mine safety signals at both levels. As a simple example, suppose the
respiratory system AE includes five child AEs: pneumonia, sinusitis, asthma, bronchitis, and rhinorrhea, all of which
carry weak to moderate signals. We hypothesize that our model will not only flag each AE through information sharing
between weak and moderate AEs, but will also flag the respiratory system as a whole because the five child AEs collectively
suggest that the respiratory system might be the root of the adverse cause.

We adopt an empirical Bayes approach for parameter estimation. Our method is reproducible using the R package
zGPS.AO available at https://github.com/umich-biostatistics/zGPS.AO.

2 METHOD

2.1 Model

In this section, we propose a model called the zero-inflated Gamma-Poisson shrinker with AE ontology (abbreviated as
zGPS.AO). In zGPS.AO, we model each AE group separately. Suppose an AE group includes K AE terms. We assume the
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following hierarchical model for modelling the count yij (i = 1, … , I and j = 1, … ,K).

yij ∼ Poi(Mij𝜆ij), (1)

𝜆ij ∼

{
0 with probability pi

Γ(r, 𝜇i∕r) with probability 1 − pi
. (2)

The mean of the Poisson distribution is expressed as the product of the expected frequency Mij times 𝜆ij, where 𝜆ij is the
RR of AE j for vaccine i (the key parameter of interest to identify important AEs). Here, 𝜆ij is drawn from a mixture of 0
with probability pi and a Gamma distribution with probability 1 − pi. Γ(a, b) denotes a Gamma distribution with a shape
parameter, a, and a scale parameter, b. In equation (2), 𝜇i is the mean of the Gamma distribution. All vaccines share a
common dispersion parameter r, but they have different pi’s and 𝜇i’s.

The group-level RR of vaccine i (denoted as si) is defined as the mean of 𝜆ij.

si = E(𝜆ij) = (1 − pi)𝜇i. (3)

Equations (1) and (2) imply yij’s are marginally ZINB-distributed.

ZINB(yij|r, pi,Mij𝜇i) =

{
pi + (1 − pi)NB(0|r,Mij𝜇i) if yij = 0,
(1 − pi)NB(yij|r,Mij𝜇i) if yij > 0,

(4)

where NB denotes a negative binomial (NB) distribution. When pi is small and 𝜇i is large relative to a control value, si is
large. That is, if the AE group has a small percentage of structural zeros and a large mean for the Poisson part, there is a
high risk of the AE group associated with vaccine i (see the Appendix for mathematical details).

2.2 AE-level estimation

We propose an Empirical Bayes approach to estimate the AE-level RRs (𝜆ij’s). We first use the maximum likelihood
estimator (MLE) to estimate the group-level parameters (p1, … , pI , 𝜇1, … , 𝜇I , r); see the next section on how to obtain
these estimates. Then we plug the estimates into the model to obtain the posterior distribution of 𝜆ij, which is given by

𝜋(𝜆ij|yij) =
⎧
⎪
⎨
⎪
⎩

�̂�ij𝛿(𝜆ij) + (1 − �̂�ij)Γ
(
𝜆ij|r,

𝜇i
r+Mij𝜇i

)
if yij = 0,

Γ
(
𝜆ij|r + yij,

𝜇i
r+Mij𝜇i

)
if yij > 0,

where �̂�ij =
pi

pi + (1 − pi)
(

r
r+Mij𝜇i

)r . (5)

Here, 𝛿(⋅) is the Dirac delta function,20 denoting the p.d.f. of the degenerated random variable at 0. If yij = 0, the posterior
distribution of 𝜆ij is a mixture of 0 and a gamma distribution. The weight �̂�ij is the posterior probability that yij = 0 is from
the structural zero part. The posterior mean is

̂

𝜆ij = E(𝜆ij|yij) =
⎧
⎪
⎨
⎪
⎩

(1 − �̂�ij)
𝜇ir

r+Mij𝜇i
if yij = 0,

𝜇i(r+yij)
r+Mij𝜇i

if yij > 0.
(6)

2.3 Group-level estimation

In addition to estimating the RR for individual AEs, we can also estimate the RR for each AE group. The MLE of the
group-level parameters (p1, … , pI , 𝜇1, … , 𝜇I , r) can be obtained by fitting a ZINB regression model.
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Let Y represent a vector of stacked counts for all AE-vaccine pairs in a group. If there are K AEs in the group and I
vaccines, the dimension of Y is K × I. The corresponding vector of expected frequencies is denoted by M. The mean vector
𝜼 of the non-zero component of ZINB is expressed as

ln 𝜼 = X𝝋 + ln M, (7)

where X is a binary design matrix with I × K rows and I columns, indicating the vaccine product for each count, and
𝝋 = (ln 𝜇1, … , ln 𝜇I)T is a vector of regression coefficients for the I vaccines.

The vector of probabilities p for the structural zero part is expressed as:

logit p = X𝜶,

where 𝜶 = (logit p1, … , logit pI)T .
The ZINB regression method can be implemented using zeroinfl function in the pscl R package.21 The function esti-

mates (�̂�, �̂�, r̂) using the Broyden–Fletcher–Goldfarb–Shanno algorithm. Due to the invariance property of MLE, we have
(�̂�1, … , �̂�I)T = exp(�̂�) and (p̂1, … , p̂I)T = exp(�̂�)∕(1 + exp(�̂�)).

2.4 Statistical significance

As we test associations for many pairs of vaccine and AE groups, it is important to control for multiple comparisons.
Adjustment methods can be used to control for the false discovery rate based on the p-values generated from these asso-
ciation tests.22 In this paper, we use the maxS = maxi,l sil (i = 1, … , I; l = 1, … ,L) as the test statistics (the maximum
is taking over all vaccines and all AE groups). We define the adjusted p-value (ie, q-value) of the RR for a particular
vaccine-AE group combination to be quantile of the observed s in the null distribution of maxS. By using this maximum
statistics, the method is conservative in detecting multiple signals and controls the overall Type I error at the pre-specified
level.23,24

The distribution of maxS under the null hypothesis (H0: 𝜆ij = 1 for all vaccine - AE pairs) is not analytically tractable
and is obtained using the permutation test. For the VAERS dataset, the permutation test needs to account for the correla-
tion between AEs mentioned in the same report. For this reason, we consider AEs observed on the same report as a single
set and reshuffle the AE sets in the permutation test. As a simple example with two reports, if one report mentions one
vaccine denoted by V1 and three AEs, a, b, c, and the other report mentions two vaccines, V2 and V3 and two AEs, e and
f , by reshuffling the AE sets, (a, b, c) might be linked to vaccine (V1,V2 ) and (e, f ) linked to vaccine V1. By permuting the
AE sets, we can shuffle the data while maintaining the correlation between AEs on the same report.

For each permuted dataset, we compute a value of maxS. By generating N permuted datasets (N is generally large, say
5000), we obtain an empirical null distribution of N + 1 maxS values (including the maxS value from the observed dataset).
Let R denote the rank of the observed s in the null distribution of maxS, then the adjusted p-value of that vaccine-AE group
combination is 1 − R∕(N + 1). A small adjusted p-value indicates a strong association between the vaccine and AE group.
Similarly, we can obtain adjusted p-value of RR for all individual AEs, by using the maximum of 𝜆 (here, the maximum
is taking over all vaccines and all AEs) as the test statistics.

3 SIMULATION

3.1 Simulation I

We first conducted small simulation studies to investigate the performance of the zGPS.AO model when the group size
is different, the expected counts (Mij’s) have different magnitudes, and the data is not over-dispersed. Specifically, we
selected one large AE group from MedDRA and three vaccines with the most frequent report numbers from VAERS. Mij’s
were determined from the contingency table (ie, row total times column total and divided by the total count), and true
group-level parameters were determined by fitting the ZINB model to 3 AE groups of the largest size in VAERS data. That
is, (𝜇1, 𝜇2, 𝜇3) = (0.569, 0.829, 0.482), (p1, p2, p3) = (0.067, 0.260, 0.207), and r = 3.3. In each simulation, we generated 𝜆ij’s
for all individual AEs based on formula (2), and then generated yij’s based on formula (1). We named this simulation
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F I G U R E 1 Bias (left) and MSE (right) of group-level RR estimates under three simulation setup (Standard, No-dispersion, and Large
controls), each with 1000 simulated datasets.

setup as “Standard”. Built on this standard setup, we considered two other scenarios: (1) multiply the expected counts
by 5 (called this setup “Larger controls”), (2) generate count data from a zero-inflated Poisson (ZIP) model (called this
setup as “No-dispersion”), which is equivalent to setting r = ∞ while keeping all other parameters the same. We varied
the group size with K = 10, 20, 40, or 80 in each of the above three scenarios to test the impact of group size on the model
performance.

To evaluate the model performance, we considered two commonly used metrics, bias (ie, the difference between the
RR estimates and the true RR values) and the mean squared error (MSE) (ie, averaged squared difference between the RR
estimates and the true RR values). These metrics were measured on both the group-level and the AE-level RRs. A good
model should have a bias close to zero and a small MSE.

Figure 1 shows that our method accurately estimate the group-level RRs (s’s). Both a larger group size and larger
control counts reduced the bias and MSE, as a larger group allows more AEs to share information and larger control counts
yield richer information available on each AE. Figure 2 shows the simulation results of the RR estimates for individual
AEs. The accuracy increases when the group size increases from 10 to 20, as we have more information to share between
𝜆s. When the size reaches 20, we do not see further improvement in accuracy, which is likely due to diminishing returns.
Furthermore, both Figure 1 and 2 demonstrate that our method is able to handle data without over-dispersion. In this
case, ZINB automatically reduces to ZIP by a large r̂.

3.2 Simulation II

We conducted an extensive simulation study to mimic the real data in section 4. We generated the count data for a
10 × 1477 contingency table (ie, 10 vaccines and 1477 AEs); see details in Study I. The expected counts Mij’s were
calculated as row total times the column total and divided by the total counts (see Introduction). In this simulation,
we compared zGPS.AO with an existing method called the Gamma-Poisson Shrinker (GPS) model.3,4 GPS assumes that
cell counts in the contingency table follow Poisson distributions with rate parameters (RR) representing AE-vaccine
associations. The model assumes that RR are drawn from a mixture of two gamma distributions. One gamma distribution
has values of RRs clustered at or below one (non-signals), and the other gamma distribution have values of RRs clustered
at a rate above one (signals). GPS allows information borrowing between AEs with similar values of RRs rather than with
similar disease biology (defined by MedDRA) as in zGPS.AO.

We designed three scenarios. In the first scenario, 1477 AEs were mapped to 42 AE groups based on the HLGT terms
in MedDRA. Then 𝜆ij’s were generated from equation (2) with pi ∼ Unif (0, 0.2), 𝜇i ∼ Γ(5, 0.4), and r = 5. Finally, yij’s
were simulated from equation (1). Parameters in these distributions were determined by applying the ZINB model to the
VAERS data, and the produced count data was similar to the real data with approximately 26% zero counts. We applied two
zGPS.AO models, one used HLGT terms in MedDRA to define the groups (AE group structure was correctly specified),
and one used a randomly generated group structure (AE group structure was mis-specified; denoted as zGPS.AO*).
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F I G U R E 2 Bias (left) and MSE (right) of AE-level RR estimates in three simulation studies (Standard, No-dispersion, and Large
controls), each with 1000 simulated datasets.

In the second scenario, each AE was simulated independently from a different gamma distribution (parameters
were the same as in the first scenario); therefore, no group structure was imposed on the data. We used the HLGT terms
to define AE groups in zGPS.AO. Therefore, the group structure was also mis-specified.

In the third scenario, 𝜆ijs were stimulated from a two-component gamma mixture model: Γ(5, 0.2) with probability
0.95 and Γ(5, 0.6) with probability 0.05. Under this setup, 95% AEs have RRs centered around 1 and 5% centered around
3 (signal AEs). In this scenario, the data generating model is the same as the GPS model.

We compared zGPS.AO with GPS. GPS enhances the simple use of the separate Poisson model by allowing “shrinkage”
of similar 𝜆ijs towards each other. Compared to zGPS.AO, GPS does not use the AE ontology. We applied both models
to each simulated data, and simulation results were averaged over 100 simulated datasets. Since GPS cannot estimate
group-level parameters, we only compared the RR estimates, ̂𝜆ij’s, for individual AEs. We calculated the mean square
error (MSE) and the area under the curve (AUC), to evaluate the accuracy of the parameter estimates and the signal
detection, respectively. The MSE was defined as the squared difference of the estimator ̂𝜆ij and the truth 𝜆ij averaged over
all vaccine-AE pairs. For the AUC, we defined an AE j to be a true signal for vaccine i if 𝜆ij > 2, and we used ̂

𝜆ij to construct
the ROC curve.

Figure 3 shows the simulation results under the three scenarios. As shown in this figure, zGPS.AO performed sig-
nificantly better than GPS in the scenario I and II, as demonstrated by the smaller MSE and larger AUC. The improved
performance was likely due to information borrowing between similar AEs and appropriately handling the zero counts.
When the ontology structure was mis-specified, the performance of zGPS.AO was reduced (zGPS.AO versus zGPS.AO*),
but it was still better than GPS (zGPS.AO* versus GPS). The poor performance of GPS was likely due to its ignorance of
the excessive zero counts. This finding highlights the importance of accommodating excessive zero counts in the model.
In the last scenario, as expected, the GPS performed better than zGPS.AO with regard to MSE. However, to our surprise,
the zGPS.AO and GPS demonstrated a very similar ability for signal detection, as evidenced by comparable AUCs.

4 ANALYSIS OF VAERS DATASET

Study I. We used reports received from year 2005 to 2018 and restricted the age of the vaccine recipients between 2 to 49.
We investigated AEs for 10 vaccines of interest, including FLU (inactivated influenza vaccine; trivalent or quadrivalent),
FLUN (live attenuated influenza; trivalent or quadrivalent), HEP (Hepatitis B vaccines), HEPA (Hepatitis A vaccines),
HEPAB (Hepatitis A + Hepatitis B), HPV4 (human papillomavirus 4-valent vaccine), HPV9 (human papillomavirus
9-valent vaccine), MMR (measles, mumps and rubella virus vaccine, live), TDAP (tetanus toxoid, reduced diphtheria tox-
oid and acellular pertussis vaccine, adsorbed), and VARCEL (Varivax-Varicella Virus, live). Those vaccines were selected
from 84 types of vaccines based on their high report frequencies in the dataset and high level of public attention. All AEs
were mapped to the “Preferred Terms” (PT) level of MedDRA, and we used the High Level Group Terms (HLGT) level of
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AUC, Scenario I AUC, Scenario II AUC, Scenario III

MSE, Scenario I MSE, Scenario II MSE, Scenario III

zGPS.AO zGPS.AO* GPS zGPS.AO GPS zGPS.AO GPS

zGPS.AO zGPS.AO* GPS zGPS.AO GPS zGPS.AO GPS
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F I G U R E 3 Simulation results of MSE and AUC from the three scenarios.

MedDRA to define AE groups. We removed AEs with a total frequency less than 20. If they were mentioned fewer than
20 times in the VARES database in 14 years, they were unlikely to be related to any vaccine. We also removed AE groups
containing less than 15 AEs. Finally, we had 169,538 reports, 1477 AEs, and 42 AE groups.

The next step was to compute the count for each vaccine-AE pair. A traditional way to create the data pair is to get all
vaccine-AE combinations in each report, regardless of the number of vaccines. If a report mentions two vaccines, A and
B, and an AE of fever, the current strategy creates two pairs of data: A-fever and B-fever. However, with the presence of
vaccine B, the link might not exist between vaccine A and fever, and likewise for the link between vaccine B and fever.
We adopted a weighting strategy to handle the report with multiple vaccines.25 Specifically, we assign a weight to each
vaccine-AE pair. If there was a single vaccine in the report, the weight is one. If there were multiple vaccines, we weighted
each vaccine-AE pair by the inverse of the number of vaccines mentioned in the report, assuming that the AE is linked to
each vaccine with equal probability. To compute the count for a vaccine-AE pair, we summed over the weights and then
rounded it to the nearest integer.

We applied both zGPS.AO and GPS to the final dataset. The RR estimates from both methods are highly correlated,
and the Pearson correlation coefficient was 0.91. Next, we compared detected AE signals from both methods. In zGPS.AO,
we defined an AE as a safety signal if the RR estimate was larger than 3 and q-value < 0.01, while in GPS, we required the
lower bound of the 99% confidence interval to be larger than 3 (GPS doesn’t provide a p-value or q-value). Based on the
above decision rules, zGPS.AO and GPS detected 281 and 194 AE signals, respectively, among the 10 studied vaccines. Of
them, 167 AE signals were detected by both methods. The full list of these AEs and their RR estimates can be found in
the Supplementary Material.

Figure 4 shows RR estimates from zGPS.AO for all vaccine—AE group combinations. It visually helps us to identify
headline-grabbing vaccine safety issues. For example, it seems that the HEPAB vaccine is associated with more Haema-
tology investigations, and FLUN vaccine is associated with more respiratory system disorders. To further quantify the
association, we defined an AE group having a safety problem if q-value < 0.01 and RR > 3. Based on this criteria, we
detected three AE groups associated with FLUN (see Table 2). All the three groups are related to the respiratory system,
while none of these groups are associated with FLU. Therefore, the nasal spray vaccine, relative to injection vaccine, is
associated with an increased risk of respiratory system disorders. The individual AEs, Rhinitis, Nasal congestion, Sinus
disorder, have been reported before,26-28 whereas Epistaxis and Croup infectious might be new signals that need attention
and validation in large healthcare databases. We also compared the AE profile with the combination of hepatitis A
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F I G U R E 4 The RR heatmap of study I. Rows represent vaccines and columns represent AE groups. A brighter color represents a larger
RR (ie, a stronger association between the vaccine and the AE group).

and B vaccine (HEPAB) to the monovalent hepatitis A (HEPA) and B vaccine (HEP) alone. Our method detected one
signaled AE group (ie., Hepatobiliary investigations) with the combination vaccine (see Table 3), whereas this AE group
was not associated with the HEPA or HEP alone. This finding might indicate an increased risk when Hepatitis A and B
vaccines are combined, which needs further attention and validation in large healthcare databases. We have developed
an interactive web app Rshiny to visualize results from study I.

Study II. We did another study comparing the risk of COVID-19 vaccines with FLU and FLUN. The purpose of
this study is the compare the three types of COVID-19 vaccines, the BNT162b2 (Pfizer–BioNTech), the mRNA-1273
(Moderna), and the Ad26.COV2.S (Johnson & Johnson–Janssen, abbreviated as J & J), to influenza vaccines (FLU and
FLUN). We collected VAERS reports received from January 1, 2019 to March 15, 2022, with recipients aged above 18.
We removed AEs with a frequency of less than 20 and groups containing less than 15 AEs. The final dataset for analysis
has a total of 714,330 reports and 3209 AEs, which were classified into 80 AE groups. We computed the counts for all
vaccine-AE pairs using the same strategy as described in study I, and applied our zGPS.AO model to the finial dataset.

We applied both zGPS.AO and GPS to the final dataset. The RR estimates from both methods were highly correlated,
and the Pearson correlation coefficient was 0.85. Based on the decision rules described in Study I, zGPS.AO and GPS
detected 116 and 156 AE signals, respectively, among the three types of COVID-19 vaccines. Of them, 111 AE signals were
detected by both methods. The full list of these AEs and their RR estimates can be found in the Supplementary Material.

Figure 5 shows the group-level RR’s for study II. With the criteria of RR > 2 and q-value < 0.01, six AE groups were
associated with FLU and FLUN, and one AE group was associated with COVID-19 vaccines. The AE group of Embolism
and thrombosis (RR= 2.14, q-value< 0.001) is associated with the Johnson & Johnson–Janssen vaccine. This group of AEs
has already caught public attention and official scrutiny.29,30 We did not find an AE group associated with Pfizer–BioNTech
and Moderna vaccines.
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T A B L E 2 AE groups associated with FLUN, along with top 5 significant AEs within each group.

AE group RR (q-value) Top 5 significant AEs RR (q-value)

Respiratory tract
infections

4.56 (<0.001) Croup infectious 9.52 (<0.001)

Influenza 8.95 (<0.001)

Rhinitis 6.41 (<0.001)

Pneumonia 6.33 (<0.001)

Atypical pneumonia 6.10 (<0.001)

Upper respiratory tract
disorders (excl
infections)

4.26 (0.002) Epistaxis 8.44 (<0.001)

Nasal congestion 7.10 (<0.001)

Nasal oedema 6.19 (<0.001)

Paranasal sinus 5.53 (<0.001)

Sinus disorder 5.22 (<0.001)

Respiratory tract signs
and symptoms

3.26 (0.008) Nasal discomfort 9.24 (<0.001)

Rhinorrhoea 7.29 (<0.001)

Sneezing 6.48 (<0.001)

Sinus headache 5.65 (<0.001)

Rhinalgia 5.01 (<0.001)

T A B L E 3 AE groups associated with HEPAB, along with top 5 significant AEs within each group.

AE group s (q-value) Top 5 significant AEs RR (q-value)

Hepatobiliary investigations 4.76 (0.001) Aspartate aminotransferase increased 4.81 (<0.001)

Hepatic enzyme increased 4.81 (<0.001)

Liver function test abnormal 4.79 (<0.001)

Alanine aminotransferase increased 4.78 (<0.001)

Bilirubin urine 4.78 (<0.001)

Computation time. Our method has been implemented to take advantage of parallel processing. It took approxi-
mately 2 hours (1 minute for the parameter estimation and two hours for bootstrapping 1000 times) for studies I and II,
running on a six-core AMD Ryzen 5 3600X 3.80 GHz 16 GB RAM x64 computer.

5 DISCUSSION

VAERS has many limitations including (i) reporting bias, (ii) inconsistent data quality and completeness, (iii) lack of an
unvaccinated comparison group, and (iv) the inability to assess if a vaccine caused an AE. However, due to its national
scope, VAERS continues to serve as the nation’s frontline post-licensure vaccine safety monitoring system.

In this article, we have developed a method to detect vaccine-associated AE signals while incorporating the AE ontol-
ogy and accommodating excess zeroes (commonly seen in VAERS data). Our simulation studies have shown that zGPS.AO
improves the accuracy of parameter estimation and signal detection. The AE ontology defines the similarity between AEs
based on disease biology, allowing information borrowing between similar AEs. In this paper, we used MeddRA to define
AE ontology. MedDRA is the largest dictionary for disease and symptoms, covering a large number of potential adverse
events. A different AE ontology, containing different AE terms and different AE relationships, can be used when available.
The ZINB distribution was used to model AE count data with excess zeros, which significantly improved the model fit-
ting. Intuitively, the zero counts have two sources (i) structural zeros for the vaccine-AE pair that can never occur (eg, an
AE at the injection site for a vaccine given orally), and (ii) zeros from the random sampling of the Poisson distribution for
the vaccine-AE pair that is possible but has not been reported yet.
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F I G U R E 5 The RR heatmap of study II. Rows represent vaccines and columns represent AE groups. A brighter color represents a
larger RR (ie, a stronger association between the vaccine and the AE group).

Given the large number of AEs in the passive reporting database, such as VAERS, existing methods of performing
hypothesis testing for thousands of AEs are likely to identify hundreds of AE signals, which are hard to interpret in a
biological context. Our method not only detects safety issues of individual AEs but also identifies AE groups of concern,
which can provide one way to understand the mechanisms behind occurrences of AEs.

Our method has some limitations. First, zGPS.AO uses a two-level AE hierarchical structure in MedDRA. Further
work will utilize a three-level hierarchy in MedDRA. To include the PT-HLGT-SOC hierarchy in the model, we can create
an interconnected network for the HLGT AEs based on their relationships with the SOC AEs; that is, two HLGT terms
are connected if they have the same SOC AEs. We can convert the relationship network into a graphical prior and assign
it to the parameters in the negative binomial distributions. Using this graph prior, we can incorporate the three-level
ontology structure into the signal detection method. Second, a single gamma distribution may not be sufficient to model
AEs in a large group. In this article, we defined AE groups using AE terms on the HLGT level, typically containing 20-40
AEs per group. For studies using the SOC-level to define groups, typically containing hundreds of AEs, a more flexible
distribution, such as the mixture Gamma distribution,3 can be considered. Thirdly, in reprocessing the VAERS data, we
removed AEs which were mentioned less than 20 times in 14 years as we believe that these AEs are likely reporting
errors. The use of 20 is subjective. A slightly smaller or larger threshold can be used, although it is unlike to change
the results.

Although this paper focuses on the VAERS database, the proposed methods generally apply to other databases which
rely on passive reporting, such as FDA Adverse Events Reporting System (FAERS) and the Adverse Drug Reactions (ADR)
database for conducting post-marketing drug safety surveillance.
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APPENDIX A. MATHEMATICAL DETAILS

A.1 Model setup
The NB distribution as a Poisson-gamma mixture,

y ∼ Pois(𝜆),
𝜆 ∼ Γ(r, 𝜇∕r), (A1)

where the parameters are r (the dispersion parameter) and 𝜇 (the mean parameter), and the 𝜆 is a the latent random
variable.

The mean and variance of NB distribution is given by,

E(y) = E(E(y|𝜆)) = E(𝜆) = 𝜇,

Var(y) = Var(E(y|𝜆)) + E(Var(y|𝜆))
= Var(𝜆) + E(𝜆)
= 𝜇 + 𝜇2∕r.

The marginal p.d.f of y can be obtained by integrating out 𝜆 in the joint p.d.f of (y, 𝜆):

f (y|r, 𝜇) = ∫
∞

0
f (y, 𝜆|r, 𝜇)d𝜆

= ∫
∞

0

e−𝜆𝜆y

y!
(r∕𝜇)r

Γ(r)
𝜆

r−1exp(−r𝜆∕𝜇)d𝜆

=
Γ(r + y)
y!Γ(r)

(
r

𝜇 + r

)r(
𝜇

𝜇 + r

)y

∶= NB(y|r, 𝜇).
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To extend A1 to ZINB distribution, we add the zero part probability p to the model, and also an offset M. (The offset is
treated as a constant)

y ∼ Pois(M𝜆),

𝜆 ∼

{
0 with probability p,
Γ(r, 𝜇∕r) with probability 1 − p.

(A2)

Under this formulation, the marginal p.m.f of y is

f (y|r, p, 𝜇) =

{
p + (1 − p)NB(0|r,M𝜇) if y = 0,
(1 − p)NB(y|r,M𝜇) if y > 0,

∶= ZINB(y|r, p,M𝜇).

A.2 Appendix: Derive the posterior distribution of AE-level RRs
We can write the p.d.f of 𝜆 as the following.

𝜋(𝜆) = p𝛿(𝜆) + (1 − p)Γ(𝜆|r, 𝜇∕r). (A3)

If y > 0, the 𝜆 is from the non-zero part, and the posterior distribution of 𝜆 is a Gamma distribution.

𝜋(𝜆|y) ∝ 𝜆r+y−1exp

(
−𝜆
𝜇

r+M𝜇

)

which is,

𝜆|y ∼ Γ
(

r + y, 𝜇

r +M𝜇

)

.

Therefore,

̂

𝜆 = E(𝜆|y) =
𝜇(r + y)
r +M𝜇

.

In the case of y = 0, the posterior distribution is

𝜋(𝜆|y = 0) ∝ f (y = 0|𝜆)𝜋(𝜆)

= �̂�𝛿(𝜆) + (1 − �̂�)Γ
(

𝜆|r, 𝜇

r +M𝜇

)

,

where

�̂� =
p

p + (1 − p)
(

r
r+M𝜇

)r

is the posterior probability that y = 0 comes from the zero component. This shows 𝜆|y = 0 is a gamma—zero mixture,
and the posterior mean is as the following.

̂

𝜆 = E(𝜆|y = 0) = (1 − �̂�) 𝜇r
r +M𝜇

.
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