Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/XXXX

RESEARCH ARTICLE

Mining Adverse events in Large Frequency Tables With Ontology,
with an Application to the Vaccine Adverse Event Reporting
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M?S}?ir;fn O Plosisties, FRVersy 0 Many statistical methods have been applied to VAERS (Vaccine Adverse Event

Reporting System) database to study the safety of COVID-19 vaccines. However,

Correspondence none of these methods considered the adverse event (AE) ontology. The AE ontol-
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ogy contains important information about biological similarities between AEs. In
this paper, we develop a model to estimate vaccine-AE associations while incorpo-
rating the AE ontology. We model a group of AEs using the zero-inflated negative
binomial model and then estimate the vaccine-AE association using the empirical
Bayes approach. This model handles the AE count data with excess zeros and allows
borrowing information from related AEs. The proposed approach was evaluated
by simulation studies and was further illustrated by an application to the Vaccine
Adverse Event Reporting System (VAERS) dataset. The proposed method is imple-
mented in an R package available at https://github.com/umich-biostatistics/zGPS.
AO.
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1 | INTRODUCTION

The Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA) conduct post-
licensure vaccine safety monitoring using the Vaccine Adverse Event Reporting System (VAERS)."2/ VAERS accepts sponta-
neous reports of suspected vaccine adverse events after administration of any vaccine licensed in the United States from 1990
to the present. As a national public health surveillance resource, VAERS is a key component in ensuring the safety of vaccines.
Numerous methods have been used to conduct safety studies with the VAERS database.* 17 In these methods, a contingency
table is generally created to display counts for all vaccine and adverse event pairs during a specified time period (see Table[AT).
In this table, there are I vaccines and J AEs. The cell count y;; is the total number of reports mentioned both vaccine i and
AE j in this time period, the column margin y; = 2{21 ¥;; 1s the total number of reports mentioned vaccine i, the row margin
V= 2[1:1 y;; is the total number of reports mentioned AE j,and y_= Y, ; Vi 1s the total number of reports in this time period.

The level of disproportional reporting of a vaccine-AE pair is commonly expressed as the ratio of the observed reporting
frequency to the expected (or control) reporting frequency. The expected frequency for the i-j-th vaccine-AE pair is defined as

M, = y’yi which is the frequency we would observe if the vaccine and the AE are independent.” The relative reporting rate
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(RR) is defined as RR;; = Ayl—’u If RR= 3.2 for a vaccine-AE pair, then this pair occurred in the data 3.2 times more frequently
than expected under the assumption of no association between the vaccine and the AE. Each cell count is commonly assumed
to have an independent Poisson distribution”; that is, y, ; ~ Poisson(M;; 4;;), where 4;; is the parameter of interest representing
the RR, with a larger value indicating the vaccine i - AE j pair is disproportionately reported in the dataset. A large RR might
indicate a potential vaccine safety problem (called a safety “signal").

All the existing methods assume that AEs are independent; however, AEs are naturally related. For example, events of retching,
dysphagia and reflux are all related to an abnormal digestive system. Explicitly bringing AE relationships into the estimation step
allows information borrowing between similar AEs, thereby improving the accuracy of detecting true AE signals amid the noise
while reducing false positives. In this paper, we use MedDRA (Medical Dictionary for Regulatory Activities) to group AEs.
MedDRA is the largest resource for AE ontology, which defines disease relationships using a multi-level hierarchy.'8 VAERS
uses the "Preferred Terms" (PT) level as a distinct descriptor for a symptom, sign, and disease. Related PTs are grouped into
higher-level HLGT terms. We define AE groups using the "High Level Group Terms" (HLGT) level of MedDRA. MedDRA
ontology data can be accessed through BioPortal https://bioportal.bioontology.org/ontologies/MEDDRA! We applied the web
scraping technique to the HTML-formatted data in BioPortal and obtained the ontology for the adverse events.

One recent study performed AE enrichment analysis using the AE ontology in MedDRA .1 Their method focuses on identi-
fying enriched AE groups where AEs are more likely to be disproportionately reported than AEs in other groups. However, this
enrichment analysis is done after RRs of individual AEs have been estimated. Therefore, their method can not directly improve
the accuracy of signal detection. Another challenge in analyzing VAERS data comes from excessive zero counts. MedDRA is a
dictionary containing thousands of PT terms for various symptoms and diseases. Therefore, a large number of AEs in VAERS
were never mentioned for many vaccines; For example, in VAERS data from 2002 to 2018, approximately 40% AEs were never
mentioned with the “FLU4" vaccine, resulting in 40% AEs with a zero count.™® In this paper, we propose a model allowing
information sharing between AEs within the same group while accommodating zero counts.

To incorporate the grouping structure of AEs in the estimation of RRs while accommodating excessive zero counts in VAERS
data, we consider a zero-inflated negative binomial distribution (ZINB). We assume that RR parameters, 4; j’s, in the same
AE group (defined by HLGT or SOC) are generated from a common gamma distribution. This common distribution allows
information sharing between 4;;’s in the same AE group. By parameterizing the negative binomial distribution through a gamma-
Poisson mixture distribution, we can model the AE data on both the PT (child) and a higher level (parent), allowing us to
simultaneously mine safety signals at both levels. As a simple example, suppose the respiratory system AE includes five child
AEs: pneumonia, sinusitis, asthma, bronchitis, and rhinorrhea, all of which carry weak to moderate signals. We hypothesize
that our model will not only flag each AE through information sharing between weak and moderate AEs, but will also flag the
respiratory system as a whole because the five child AEs collectively suggest that the respiratory system might be the root of
the adverse cause.

We adopt an empirical Bayes approach for parameter estimation. Our method is reproducible using the R package zGPS.AO
available at https://github.com/umich-biostatistics/zGPS.AO.

2 | METHOD
2.1 | Model

In this section, we propose a model called the zero-inflated Gamma-Poisson shrinker with AE ontology (abbreviated as
zGPS.AO). In zGPS.AO, we model each AE group separately. Suppose an AE group includes K AE terms. We assume the
following hierarchical model for modelling the count y; ; G@i=1-,ITandj=1,--,K).

yij ~ POI(MUAU)’ (1)
0 with probability p; )
Y\ T(r,p;/r) with probability 1 — p,

The mean of the Poisson distribution is expressed as the product of the expected frequency M;; times 4,;, where 4;; is the RR
of AE j for vaccine i (the key parameter of interest to identify important AEs). Here, 4;; is drawn from a mixture of 0 with
probability p; and a Gamma distribution with probability 1 — p,. I'(a, b) denotes a Gamma distribution with a shape parameter,
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a, and a scale parameter, b. In equation @ ; is the mean of the Gamma distribution. All vaccines share a common dispersion
parameter r, but they have different p,’s and y;’s.
The group-level RR of vaccine i (denoted as s,) is defined as the mean of 4,;.

§; = E(/%ij) =(1 —P,-)H,- 3)
Equations (1)) and (2) imply y,;’s are marginally ZINB-distributed.

p;+ (1= p)NBQOIr, M) ify,; =0

. )
(1= p)NB(ylr. Myp;)  if y;; >0,

ZINB(yijlr,Pi, Mijﬂi) = {
where NB denotes a negative binomial (NB) distribution. When p; is small and y; is large relative to a control value, s, is large.
That is, if the AE group has a small percentage of structural zeros and a large mean for the Poisson part, there is a high risk of
the AE group associated with vaccine i (see Appendix for mathematical details).

2.2 | AE-level Estimation

We propose an Empirical Bayes approach to estimate the AE-level RRs (4;;’s). We first use the maximum likelihood estimator
(MLE) to estimate the group-level parameters ( Dlseees Dps Hps eoos s r); see the next section on how to obtain these estimates.

Then we plug the estimates into the model to obtain the posterior distribution of 4;;, which is given by

#,;6(4) + (1= 2,)0(Aylr, ——) if y,; =0

M..u
(A |y) = , reMn
ijlij F(/lij|r+y,-j, r+1\lj[‘ ”_) ]fyij >0 (5)
where 7%, = ! b —
Pt (1= p) ()

Here, §(-) is the Dirac delta function,? denoting the p.d.f. of the degenerated random variable at 0. If y, ; = 0, the posterior
distribution of 4;; is a mixture of 0 and a gamma distribution. The weight 7;; is the posterior probability that y;; = 0 is from the
structural zero part. The posterior mean is

(I = fiy) i ify; =0

R +M;;u; /

Aij = E(L‘j'yij) =) mlrtyy) e ify..>0 ©
r+M;;p; yij

2.3 | Group-level estimation

In addition to estimating the RR for individual AEs, we can also estimate the RR for each AE group. The MLE of the group-level
parameters (pl, s Dps Mo oo M r) can be obtained by fitting a ZINB regression model.

Let Y represent a vector of stacked counts for all AE-vaccine pairs in a group. If there are K AEs in the group and I vaccines,
the dimension of Y is K X I. The corresponding vector of expected frequencies is denoted by M. The mean vector 7 of the
non-zero component of ZINB is expressed as

Inm=Xe+InM, @)
where X is a binary design matrix with I X K rows and I columns, indicating the vaccine product for each count, and ¢ =
(In py, ..., In up)T is a vector of regression coefficients for the I vaccines.

The vector of probabilities p for the structural zero part is expressed as:
logitp=Xa,

where a = (logit py, ..., logit p;)T.

The ZINB regression method can be implemented using zeroinfl function in the pscl R package.2!! The function esti-
mates (@, &, #) using the Broyden—Fletcher—Goldfarb—Shanno algorithm. Due to the invariance property of MLE, we have
(s s AT = exp(@) and By, ... p)T = exp(@)/(1 + exp(@)).
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2.4 | Statistical significance

As we test associations for many pairs of vaccine and AE groups, it is important to control for multiple comparisons. Adjustment
methods can be used to control for the false discovery rate based on the p-values generated from these association tests.?2 In this
paper, we use the maxS = max;; s, (i = 1,---,I;1 =1,-, L) as the test statistics (the maximum is taking over all vaccines
and all AE groups). We define the adjusted p-value (i.e, g-value) of the RR for a particular vaccine-AE group combination to
be quantile of the observed s in the null distribution of max.S. By using this maximum statistics, the method is conservative in
detecting multiple signals and controls the overall Type I error at the pre-specified level. 224

The distribution of max.S under the null hypothesis (H,: 4;; = 1 for all vaccine - AE pairs) is not analytically tractable and is
obtained using the permutation test. For the VAERS dataset, the permutation test needs to account for the correlation between
AEs mentioned in the same report. For this reason, we consider AEs observed on the same report as a single set and reshuffle
the AE sets in the permutation test. As a simple example with two reports, if one report mentions one vaccine denoted by V;
and three AEs, a, b, ¢, and the other report mentions two vaccines, V, and V; and two AEs, e and f, by reshuffling the AE sets,
(a, b, c) might be linked to vaccine (V}, V, ) and (e, f) linked to vaccine V. By permuting the AE sets, we can shuffle the data
while maintaining the correlation between AEs on the same report.

For each permuted dataset, we compute a value of max.S. By generating N permuted datasets (N is generally large, say
5,000), we obtain an empirical null distribution of N + 1 max.S values (including the max.S value from the observed dataset).
Let R denote the rank of the observed s in the null distribution of max.S, then the adjusted p-value of that vaccine-AE group
combination is 1 — R/(N + 1). A small adjusted p-value indicates a strong association between the vaccine and AE group.
Similarly, we can obtain adjusted p-value of RR for all individual AEs, by using the maximum of A (here, the maximum is taking
over all vaccines and all AEs) as the test statistics.

3 | SIMULATION

3.1 | Simulation I

We first conducted small simulation studies to investigate the performance of the zGPS.AO model when the group size is
different, the expected counts (M;;’s) have different magnitudes, and the data is not over-dispersed. Specifically, we selected
one large AE group from MedDRA and three vaccines with the most frequent report numbers from VAERS. M,;’s were
determined from the contingency table (i.e., row total times column total and divided by the total count), and true group-
level parameters were determined by fitting the ZINB model to 3 AE groups of the largest size in VAERS data. That is,
(M1s Has p3) = (0.569,0.829,0.482), (py, p,, p3) = (0.067,0.260,0.207), and r = 3.3. In each simulation, we generated 4;;’s
for all individual AEs based on formula @) and then generated y;;’s based on formula (E[) We named this simulation setup as
“Standard". Built on this standard setup, we considered two other scenarios: (1) multiply the expected counts by 5 (called this
setup "Larger controls"), (2) generate count data from a zero-inflated Poisson (ZIP) model (called this setup as "No-dispersion"),
which is equivalent to setting » = co while keeping all other parameters the same. We varied the group size with K = 10, 20, 40,
or 80 in each of the above three scenarios to test the impact of group size on the model performance.

To evaluate the model performance, we considered two commonly used metrics, bias (i.e., the difference between the RR
estimates and the true RR values) and the mean squared error (MSE) (i.e., averaged squared difference between the RR estimates
and the true RR values). These metrics were measured on both the group-level and the AE-level RRs. A good model should
have a bias close to zero and a small MSE.

Figure [I] shows that our method accurately estimate the group-level RRs (s’s). Both a larger group size and larger control
counts reduced the bias and MSE, as a larger group allows more AEs to share information and larger control counts yield richer
information available on each AE. Figure 2] shows the simulation results of the RR estimates for individual AEs. The accuracy
increases when the group size increases from 10 to 20, as we have more information to share between As. When the size reaches
20, we do not see further improvement in accuracy, which is likely due to diminishing returns. Furthermore, both Figure [I]and
demonstrate that our method is able to handle data without over-dispersion. In this case, ZINB automatically reduces to ZIP
by a large 7.
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FIGURE 1 Bias (left) and MSE (right) of group-level RR estimates under three simulation setup (Standard, No-dispersion, and
Large controls), each with 1000 simulated datasets.
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FIGURE 2 Bias (left) and MSE (right) of AE - level RR estimates in three simulation studies (Standard, No-dispersion, and
Large controls), each with 1000 simulated datasets.

3.2 | Simulation II

We conducted an extensive simulation study to mimic the real data in section @] We generated the count data for a 10 x 1477
contingency table (i.e., 10 vaccines and 1477 AEs); see details in Study I. The expected counts M,;’s were calculated as row
total times the column total and divided by the total counts (see Introduction). In this simulation, we compared zGPS.AO
with an existing method called the Gamma-Poisson Shrinker (GPS) model.?# GPS assumes that cell counts in the contingency
table follow Poisson distributions with rate parameters (RR) representing AE-vaccine associations. The model assumes that
RR are drawn from a mixture of two gamma distributions. One gamma distribution has values of RRs clustered at or below
one (non-signals), and the other gamma distribution have values of RRs clustered at a rate above one (signals). GPS allows
information borrowing between AEs with similar values of RRs rather than with similar disease biology (defined by MedDRA)
as in zGPS.AO.

We designed three scenarios. In the first scenario, 1477 AEs were mapped to 42 AE groups based on the HLGT terms in
MedDRA. Then 4; j’s were generated from equation @) with p; ~ Unif(0,0.2), y; ~ I'(5,0.4), and r = 5. Finally, y, j’s were
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FIGURE 3 Simulation results of MSE and AUC from the three scenarios.

simulated from equation (I)). Parameters in these distributions were determined by applying the ZINB model to the VAERS
data, and the produced count data was similar to the real data with approximately 26% zero counts. We applied two zGPS.AO
models, one used HLGT terms in MedDRA to define the groups (AE group structure was correctly specified), and one used a
randomly generated group structure (AE group structure was mis-specified; denoted as zGPS.AO%).

In the second scenario, each AE was simulated independently from a different gamma distribution (parameters were the same
as in the first scenario); therefore, no group structure was imposed on the data. We used the HLGT terms to define AE groups
in zGPS.AOQO. Therefore, the group structure was also mis-specified.

In the third scenario, 4;;s were stimulated from a two-component gamma mixture model: I'(S, 0.2) with probability 0.95 and
I'(5,0.6) with probability 0.05. Under this setup, 95% AEs have RRs centered around 1 and 5% centered around 3 (signal AEs).
In this scenario, the data generating model is the same as the GPS model.

We compared zGPS.AO with GPS. GPS enhances the simple use of the separate Poisson model by allowing “shrinkage”
of similar 4,;s towards each other. Compared to zGPS.AO, GPS does not use the AE ontology. We applied both models to
each simulated data, and simulation results were averaged over 100 simulated datasets. Since GPS can not estimate group-level
parameters, we only compared the RR estimates, ii ;'s, for individual AEs. We calculated the mean square error (MSE) and the
area under the curve (AUC), to evaluate the accuracy of the parameter estimates and the signal detection, respectively. The MSE
was defined as the squared difference of the estimator ii ; and the truth 4;; averaged over all vaccine-AE pairs. For the AUC, we
defined an AE j to be a true signal for vaccine i if 4;; > 2, and we used 4;; to construct the ROC curve.

Figure [3 shows the simulation results under the three scenarios. As shown in this figure, zGPS.AO performed significantly
better than GPS in the scenario I and II, as demonstrated by the smaller MSE and larger AUC. The improved performance
was likely due to information borrowing between similar AEs and appropriately handling the zero counts. When the ontology
structure was mis-specified, the performance of zGPS.AO was reduced (zGPS.AO versus zGPS.AO%*), but it was still better
than GPS (zGPS.AO* versus GPS). The poor performance of GPS was likely due to its ignorance of the excessive zero counts.
This finding highlights the importance of accommodating excessive zero counts in the model. In the last scenario, as expected,
the GPS performed better than zGPS.AO with regard to MSE. However, to our surprise, the zZGPS.AO and GPS demonstrated
a very similar ability for signal detection, as evidenced by comparable AUCs.
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4 | ANALYSIS OF VAERS DATASET

Study I. We used reports received from year 2005 to 2018 and restricted the age of the vaccine recipients between 2 to 49. We
investigated AEs for 10 vaccines of interest, including FLU (inactivated influenza vaccine; trivalent or quadrivalent), FLUN (live
attenuated influenza; trivalent or quadrivalent), HEP (Hepatitis B vaccines), HEPA (Hepatitis A vaccines), HEPAB (Hepatitis
A + Hepatitis B), HPV4 (human papillomavirus 4-valent vaccine), HPV9 (human papillomavirus 9-valent vaccine), MMR
(measles, mumps and rubella virus vaccine, live), TDAP (tetanus toxoid, reduced diphtheria toxoid and acellular pertussis
vaccine, adsorbed), and VARCEL (Varivax-Varicella Virus, live). Those vaccines were selected from 84 types of vaccines based
on their high report frequencies in the dataset and high level of public attention. All AEs were mapped to the “Preferred Terms"
(PT) level of MedDRA, and we used the High Level Group Terms (HLGT) level of MedDRA to define AE groups. We removed
AEs with a total frequency less than 20. If they were mentioned fewer than 20 times in the VARES database in 14 years, they
were unlikely to be related to any vaccine. We also removed AE groups containing less than 15 AEs. Finally, we had 169,538
reports, 1477 AEs, and 42 AE groups.

The next step was to compute the count for each vaccine-AE pair. A traditional way to create the data pair is to get all vaccine-
AE combinations in each report, regardless of the number of vaccines. If a report mentions two vaccines, A and B, and an AE
of fever, the current strategy creates two pairs of data: A-fever and B-fever. However, with the presence of vaccine B, the link
might not exist between vaccine A and fever, and likewise for the link between vaccine B and fever. We adopted a weighting
strategy to handle the report with multiple vaccines.?” Specifically, we assign a weight to each vaccine-AE pair. If there was a
single vaccine in the report, the weight is one. If there were multiple vaccines, we weighted each vaccine-AE pair by the inverse
of the number of vaccines mentioned in the report, assuming that the AE is linked to each vaccine with equal probability. To
compute the count for a vaccine-AE pair, we summed over the weights and then rounded it to the nearest integer.

We applied both zGPS.AO and GPS to the final dataset. The RR estimates from both methods are highly correlated, and the
Pearson correlation coefficient was 0.91. Next, we compared detected AE signals from both methods. In zGPS.AO, we defined
an AEF as a safety signal if the RR estimate was larger than 3 and g-value < 0.01, while in GPS, we required the lower bound of
the 99% confidence interval to be larger than 3 (GPS doesn’t provide a p-value or g-value). Based on the above decision rules,
zGPS.AO and GPS detected 281 and 194 AE signals, respectively, among the 10 studied vaccines. Of them, 167 AE signals
were detected by both methods. The full list of these AEs and their RR estimates can be found in the supplementary document.

Figure [4] shows RR estimates from zGPS.AO for all vaccine - AE group combinations. It visually helps us to identify
headline-grabbing vaccine safety issues. For example, it seems that the HEPAB vaccine is associated with more Haematology
investigations, and FLUN vaccine is associated with more respiratory system disorders. To further quantify the association, we
defined an AE group having a safety problem if g-value < 0.01 and RR > 3. Based on this criteria, we detected three AE groups
associated with FLUN (see Table[A2). All the three groups are related to the respiratory system, while none of these groups
are associated with FLU. Therefore, the nasal spray vaccine, relative to injection vaccine, is associated with an increased risk
of respiratory system disorders. The individual AEs, Rhinitis, Nasal congestion, Sinus disorder, have been reported before, 20H25
whereas Epistaxis and Croup infectious might be new signals that need attention and validation in large healthcare databases.
We also compared the AE profile with the combination of hepatitis A and B vaccine (HEPAB) to the monovalent hepatitis A
(HEPA) and B vaccine (HEP) alone. Our method detected one signaled AE group (i.e., Hepatobiliary investigations) with the
combination vaccine (see Table [A3), whereas this AE group was not associated with the HEPA or HEP alone. This finding
might indicate an increased risk when Hepatitis A and B vaccines are combined, which needs further attention and validation
in large healthcare databases. We have developed an interactive web app Rshiny|to visualize results from study 1.

Study II. We did another study comparing the risk of COVID-19 vaccines with FLU and FLUN. The purpose of this study
is the compare the three types of COVID-19 vaccines, the BNT162b2 (Pfizer—BioNTech), the mRNA-1273 (Moderna), and
the Ad26.COV2.S (Johnson & Johnson—Janssen, abbreviated as J & J), to influenza vaccines (FLU and FLUN). We collected
VAERS reports received from January 1, 2019 to March 15, 2022, with recipients aged above 18. We removed AEs with a
frequency of less than 20 and groups containing less than 15 AEs. The final dataset for analysis has a total of 714,330 reports and
3209 AEs, which were classified into 80 AE groups. We computed the counts for all vaccine-AE pairs using the same strategy
as described in study I, and applied our zGPS.AO model to the finial dataset.

We applied both zGPS.AO and GPS to the final dataset. The RR estimates from both methods were highly correlated, and
the Pearson correlation coefficient was 0.85. Based on the decision rules described in Study I, zZGPS.AO and GPS detected 116
and 156 AE signals, respectively, among the three types of COVID-19 vaccines. Of them, 111 AE signals were detected by both
methods. The full list of these AEs and their RR estimates can be found in the supplementary materials.
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FIGURE 4 The RR heatmap of study I. Rows represent vaccines and columns represent AE groups. A brighter color represents

a larger RR (i.e., a stronger association between the vaccine and the AE group).

Figure [3] shows the group-level RR’s for study II. With the criteria of RR > 2 and g-value < 0.01, six AE groups were
associated with FLU and FLUN, and one AE group was associated with COVID-19 vaccines. The AE group of Embolism and

thrombosis (RR

2.14, g-value < 0.001) is associated with the Johnson & Johnson—Janssen vaccine. This group of AEs has

already caught public attention and official scrutiny.2?2? We did not find an AE group associated with Pfizer—BioNTech and

Moderna vaccines.

Computation time. Our method has been implemented to take advantage of parallel processing. It took approximately 2
hours (1 minute for the parameter estimation and two hours for bootstrapping 1000 times) for studies I and II, running on a

six-core AMD Ryzen 5 3600X 3.80 GHz 16 GB RAM x64 computer.
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FIGURE 5 The RR heatmap of study II. Rows represent vaccines and columns represent AE groups. A brighter color represents

a larger RR (i.e., a stronger association between the vaccine and the AE group).
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VAERS has many limitations including i) reporting bias, ii) inconsistent data quality and completeness, iii) lack of an unvacci-

nated comparison group, and iv) the inability to assess if a vaccine caused an AE. However, due to its national scope, VAERS

continues to serve as the nation’s frontline post-licensure vaccine safety monitoring system.

In this article, we have developed a method to detect vaccine-associated AE signals while incorporating the AE ontology and

accommodating excess zeroes (commonly seen in VAERS data). Our simulation studies have shown that zGPS.AO improves the

accuracy of parameter estimation and signal detection. The AE ontology defines the similarity between AEs based on disease

biology, allowing information borrowing between similar AEs. In this paper, we used MeddRA to define AE ontology. MedDRA
is the largest dictionary for disease and symptoms, covering a large number of potential adverse events. A different AE ontology,

containing different AE terms and different AE relationships, can be used when available. The ZINB distribution was used to

model AE count data with excess zeros, which significantly improved the model fitting. Intuitively, the zero counts have two

sources 1) structural zeros for the vaccine-AE pair that can never occur (e.g, an AE at the injection site for a vaccine given orally),

and ii) zeros from the random sampling of the Poisson distribution for the vaccine-AE pair that is possible but has not been

reported yet.

Given the large number of AEs in the passive reporting database, such as VAERS, existing methods of performing hypothesis

testing for thousands of AEs are likely to identify hundreds of AE signals, which are hard to interpret in a biological context.

Our method not only detects safety issues of individual AEs but also identifies AE groups of concern, which can provide one

way to understand the mechanisms behind occurrences of AEs.
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Our method has some limitations. First, zGPS.AO uses a two-level AE hierarchical structure in MedDRA. Further work will
utilize a three-level hierarchy in MedDRA. To include the PT-HLGT-SOC hierarchy in the model, we can create an intercon-
nected network for the HLGT AEs based on their relationships with the SOC AE:s; that is, two HLGT terms are connected if
they have the same SOC AEs. We can convert the relationship network into a graphical prior and assign it to the parameters in
the negative binomial distributions. Using this graph prior, we can incorporate the three-level ontology structure into the sig-
nal detection method. Second, a single gamma distribution may not be sufficient to model AEs in a large group. In this paper,
we defined AE groups using AE terms on the HLGT level, typically containing 20-40 AEs per group. For studies using the
SOC-level to define groups, typically containing hundreds of AEs, a more flexible distribution, such as the mixture Gamma dis-
tribution,? can be considered. Thirdly, in reprocessing the VAERS data, we removed AEs which were mentioned less than 20
times in 14 years as we believe that these AEs are likely reporting errors. The use of 20 is subjective. A slightly smaller or larger
threshold can be used, although it is unlike to change the results.

Although this paper focuses on the VAERS database, the proposed methods generally apply to other databases which rely on
passive reporting, such as FDA Adverse Events Reporting System (FAERS) and the Adverse Drug Reactions (ADR) database
for conducting post-marketing drug safety surveillance.

ACKNOWLEDGMENTS

Thanks to Dr. Kirsten Herold for proofreading the article and Michael Kleinsasser for assistance on developing the R package.

FUNDING

Research reported in this publication was supported by the National Institute Of Allergy And Infectious Diseases of the National
Institutes of Health under Award Number RO1AI158543. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

FINANCIAL DISCLOSURE

None reported.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

DATA AVAILABILITY

The authors confirm that the data supporting the findings are publicly available. VAERS data is publicly available at https:
/Ivaers.hhs.gov/data.html. MedDRA data is publicly available at https://www.meddra.org/. The data is also available from the
corresponding author upon reasonable request.

[


https://vaers.hhs.gov/data.html
https://vaers.hhs.gov/data.html
https://www.meddra.org/

AUTHOR ONE ET AL 11

APPENDIX
A MATHEMATICAL DETAILS
A.1 Model Setup
The NB distribution as a Poisson-gamma mixture,
y ~ Pois(4) (AD)
A~T(r,u/r)

where the parameters are r (the dispersion parameter) and u (the mean parameter), and the A is a the latent random variable.
The mean and variance of NB distribution is given by,

E(y)=EEYIAD)=EXN)=u
Var(y) = Var(E(y|A) + E(Var(y|4))
= Var(A) + E()

=pu+u’/r
The marginal p.d.f of y can be obtained by integrating out 4 in the joint p.d.f of (y, 4):

f(ylr,u)=/f(y,/1lr,u)d/1
0

o0

_ [/
—/ 5 T0 A exp(—rifpu)d A

_LeEy roon
yi'(r) u+r" u+r
:= NB(y|r, p)

To extend[AT|to ZINB distribution, we add the zero part probability p to the model, and also an offset M. (The offset is treated
as a constant)

y ~ Pois(M 1)
0 with probability p (A2)
[(r, u/r) with probability 1 — p

Under this formulation, the marginal p.m.f of y is

(1 =p)NB(y|r, M ) if y >0,
:=ZINB(y|r,p, M u)

p+(1—=p NBQO|r,Mu) ify=0
fOlrp, ) =

A.2 Appendix: Derive the Posterior Distribution of AE - level RRs

We can write the p.d.f of A as the following.
n(A) = ps(A) + (1 = p)L'Alr, u/r) (A3)

If y > 0, the A is from the non-zero part, and the posterior distribution of A is a Gamma distribution.

)

7(Aly) & AP Lexp(

r+Mpy
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which is, u
Aly ~T(r+y,
ly~T(r+y r+MM)
Therefore, ( )
A ur+y
A=E@y) = ———
r+Mupu

In the case of y = 0, the posterior distribution is

7(Aly = 0) « f(y = 0[)z(4)

where

. . u
=70 1-2z)

#50)+ (1= AL Gl — )
N 14
T = r

P+ (=P

is the posterior probability that y = O comes from the zero component. This shows 4|y = 0 is a gamma - zero mixture, and the
posterior mean is as the following.

ur
r+Mu

A=E@ly=0)=(-#)
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TABLE A1 An example of the contingency table
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AE group

RR (g-value)

top 5 significant AEs

RR (g-value)

Croup infectious

9.52 (<0.001)

Influenza 8.95 (<0.001)
Respiratory tract infections 4.56 (<0.001) Rhinitis 6.41 (<0.001)
Pneumonia 6.33 (<0.001)
Atypical pneumonia  6.10 (<0.001)
Epistaxis 8.44 (<0.001)
Nasal congestion 7.10 (<0.001)
Upper respiratory tract disorders (excl infections)  4.26 (0.002) Nasal oedema 6.19 (<0.001)
Paranasal sinus 5.53 (<0.001)
Sinus disorder 5.22 (<0.001)
Nasal discomfort 9.24 (<0.001)
Rhinorrhoea 7.29 (<0.001)
Respiratory tract signs and symptoms 3.26 (0.008) Sneezing 6.48 (<0.001)
Sinus headache 5.65 (<0.001)
Rhinalgia 5.01 (<0.001)

TABLE A2 AE groups associated with FLUN, along with top 5 significant AEs within each group.
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AE group s (g-value) top 5 significant AEs RR (g-value)
Aspartate aminotransferase increased 4.81 (<0.001)
Hepatic enzyme increased 4.81 (<0.001)

Hepatobiliary investigations  4.76 (0.001) Liver function test abnormal 4.79 (<0.001)
Alanine aminotransferase increased 4.78 (<0.001)
Bilirubin urine 4.78 (<0.001)

TABLE A3 AE groups associated with HEPAB, along with top 5 significant AEs within each group.
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