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Abstract

There is ample computational, but only sparse experimental data suggesting

that pico-ns motions with 1 Å amplitude are pervasive in proteins in solution.

Such motions, if present in reality, must deeply affect protein function and

protein entropy. Several NMR relaxation experiments have provided insights

into motions of proteins in solution, but they primarily report on azimuthal

angle variations of vectors of covalently-linked atoms. As such, these measure-

ments are not sensitive to distance fluctuations, and cannot but under-

represent the dynamical properties of proteins. Here we analyze a novel NMR

relaxation experiment to measure amide proton transverse relaxation rates in

uniformly 15N labeled proteins, and present results for protein domain GB1 at

283 and 303 K. These relaxation rates depend on fluctuations of dipolar inter-

actions between 1HN and many nearby protons on both the backbone and

sidechains. Importantly, they also report on fluctuations in the distances

between these protons. We obtained a large mismatch between rates computed

from the crystal structure of GB1 and the experimental rates. But when the

relaxation rates were calculated from a 200 ns molecular dynamics trajectory

using a novel program suite, we obtained a substantial improvement in the

correspondence of experimental and theoretical rates. As such, this work pro-

vides novel experimental evidence of widespread motions in proteins. Since

the improvements are substantial, but not sufficient, this approach may also

present a new benchmark to help improve the theoretical forcefields underly-

ing the molecular dynamics calculations.
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1 | INTRODUCTION

Computational protein molecular dynamics programs
(MD) such as AMBER (Case et al., 2005) GROMOS
(Hansson et al., 2002), GROMACS (Van Der Spoel
et al., 2005); or CHARMM (Brooks et al., 2009) use non-
quantum mechanical forcefields that are calibrated on
physico-chemical parameters of ensembles of small

molecules. Computations using such force fields predict
that pico-ns motion with at least 0.1 nm amplitudes is
pervasive in proteins. For instance, in Figure 1, we show
AMBER MD simulated distance fluctuations between the
amide proton of Leu6 of GB1 and several other protons.
GB1 is a small domain (56 residues) of the Immunoglob-
ulin G-protein. According to the MD simulation, large
distance fluctuations occur, even though GB1 is generally
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characterized as a very rigid protein (Bouvignies
et al., 2006). Such large-amplitude motions, if they would
be present in reality, cannot but dramatically affect pro-
tein biochemistry (Eisenmesser et al., 2005; Kern
et al., 2005) and protein entropy (Brooks 3rd et al., 2001;
Lee et al., 2000).

Clearly, in Figure 1, motions as parametrized by dis-
tance fluctuations between 1HN and the backbone 1HA
are much smaller than those extending into the sidechain
(1HN-1HB), while longer distances fluctuate even more.
Can we detect such larger motions with experimental
techniques?

Experimental support for the “dynamical view” of
proteins at the molecular dynamics ns-ps timescale has
mostly come from solution NMR spin relaxation experi-
ments (Kay et al., 1989) and a few solid-state NMR exper-
iments (Smith et al., 2019). However, these spin
relaxation experiments detect only azimuthal librations
of covalently bound pairs of atoms, (e.g., 15NH-relaxa-
tion). It should be of no surprise that the NMR-detected
motions using these methods are relatively small (com-
pare the 1HN-1HA variations in Figure 1), especially since
distance variations in a covalent pair are negligible. As
such these “classic” NMR relaxation studies, suggest that
proteins in solution are rather static, while the MD
results indicate quite the opposite. Support for the
dynamical view of proteins has certainly come from IR
vibrational spectroscopy—but these methods are mostly
sensitive to vibrations in covalent bonds at a timescale of
<100 fs, and less to dynamics of larger moieties
(Barth, 2007). Terahertz spectroscopy detects motions of
larger units and provides information on collective modes
with < ps time scale (Mancini et al., 2022). Time-
dependent fluorescence experiments disclose protein

dynamics at the <5 ns timescale, like NMR spin relaxa-
tion, but are limited to the aromatic residues
(Demchenko, 1986). There are a few NMR methods avail-
able to sample ps-ns motion beyond the backbone: 2H
and 13C relaxation of methyl groups (Choy et al., 2003;
Lee et al., 2000), but these measurements also analyze
librations of covalently bound atom pairs and are not
sensitive to distance fluctuations. Nevertheless, these
measurements disclose much more lively dynamics than
the protein backbone (Lee et al., 2000).

NMR experiments sensitive to distance fluctuations at
the ns timescale do exist (NOESY and ROESY) but quan-
titative interpretation of the cross peaks in terms of actual
distances is already difficult (Bonvin et al., 1993;
Schleucher & Wijmenga, 2002; Vogeli, 2014). We are
aware of one study that uses an dynamical ensemble of
protein structures, that includes distance variations, to
refine NOE crosspeak interpretation (Smith et al., 2020).
We will discuss this work later.

Figure 1b shows, that if one could detect changes in
1H-1H distances by NMR relaxation methods, the impact
could be large. This is because NMR relaxation is depen-
dent on the inverse sixth-power of the distance, which is
much more variable than the distances themselves. In
the example, the 1HN-1HB distance varies by 7%, while
the NMR relaxation due to the dipolar interaction
between these atoms would vary by 40%.

Here we set out to design and analyze an NMR relax-
ation experiment that is sensitive to 1H-1H distance fluc-
tuations. We show that we can precisely measure and
analyze semi-selective R2 (actually R1rho) NMR relaxation
rates of the amide hydrogens (1HN). These relaxation
rates are dominated by 1HN-1HX dipolar interactions,
where 1HX represent all other protons, including other

FIGURE 1 Left: Example of the fluctuations of the Ile6 HN-HA (black), HN-HB (blue), HN-HG (green) and Ile6 HN-Thr51 HB (red)

distances in a MD trajectory for GB1 at 283 K. Right, the impact of these distance variations on NMR relaxation rates, expressed as

(distance)�6.
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nearby 1HN. As such, these 1HN-1HX R2 rates provide
information about dynamical phenomena beyond the
backbone in the protein. This source of information has
not been tapped before. The likely reasons are that the
proper NMR experiment did not yet exist, and the inter-
pretation of the rates is hampered by the large number of
relaxation terms that contribute (see the Section 2 “Nego-
tiating the complexity of protein R2

1HN-1HX NMR
relaxation”).

We have measured the semi-selective R1rho rates for
the small protein GB1 (56 residues) at 283 and 303 K.
Several crystal structures are available for GB1; we used
the hybrid solid-state NMR—crystallography entry 2qmt.
pdb with a resolution of 1.05 Å (Schmidt et al., 2007). We
wrote a computer program to calculate theoretical theo-
retical R1rho rates from this structure and found the corre-
spondence with experimental data very poor, even after
“minimization” of the structural coordinates (see
Results). This is not a surprise: proteins are not rigid, and
dynamical variations in 1HN-1HX distances should
greatly affect the 1HN relaxation (e.g., see Figure 1b). We
proceeded by preparing a suite of computer programs to
calculate theoretical R1rho rates incorporating fluctuating
distances and angles as obtained from long (200 ns) MD
simulations, using the crystal structure as a starting
point. Incorporating dynamics in the calculations pro-
vided a significant improvement in the agreement with
experiment, although the correlation is still not as strong
as we would like. Nevertheless, we interpret the improve-
ment as a demonstration of the existence of extensive
dynamics in the protein. As an aid to analysis, we also
compute 1HN-1HX order parameters. These are signifi-
cantly smaller than the “classical” HN-N order parame-
ters, which do not report on distance fluctuations.

Again, why was such an NMR analysis not available
before? This is most likely due to the fact that the analy-
sis of the NMR data are indeed quite complicated. In the
following section, we will describe these complications,
and how we navigated around them. This section may be
skipped by non-NMR experts, who will nevertheless be
able to appreciate the improvement in data fitting when
we include dynamics; the latter is presented in the
Results.

2 | NEGOTIATING THE
COMPLEXITY OF PROTEIN R2
1HN-1HX NMR RELAXATION

Proton transverse (R2) relaxation in proteins is affected
by many factors (Boulat & Bodenhausen, 1993). These
comprise dipole–dipole interactions with other nuclei,
chemical shift anisotropy relaxation, interference of

relaxation mechanisms (Vold & Vold, 1978), and confor-
mational exchange broadening (Abergel & Palmer, 2004),
including exchange with water and scalar couplings. This
complexity has led the avoidance of these sorts of mea-
surements, although labeling strategies involving partial
deuteration have been explored, producing isolated 1H
spins at significant numbers of backbone and sidechain
positions (Hansen et al., 2012). The change in proton R2

rates as a function of a paramagnetic probe can be used
to map electrostatic potentials near proteins (Iwahara
et al., 2007; Toyama et al., 2022), and this application has
led to some renewed interest in proton R2 measurements.

We here show that when using a specialized R1rho

experiment (Brüschweiler, 1991), many of the complexi-
ties can be avoided. At the outset, it should be mentioned
that these R1rho relaxation rates cannot be interpreted
without knowledge of the structure. Even then, one of
the problems immediately presenting itself is that NMR
dipole–dipole interactions are different for “like” spins
and “unlike” spins (Abragam, 1961). When the two inter-
acting spins have exactly the same chemical shift, the
interaction is “like”, while when the shifts are different
beyond the linewidth, they are “unlike”. The intermedi-
ate case obeys a complicated equation that also depends
on the linewidths (Goldman, 1988). Precise knowledge of
both the NMR spectrum and the structure are thus a pre-
requisite to interpreting the relaxation rates. All 1HN
relaxation rates are also affected by (potentially aniso-
tropic) rotational diffusion, and by conformational
exchange broadening, including mass exchange with
water.

The R2 measurement is complicated by (unresolved)
scalar couplings with other nuclei. Not only are partially
resolved scalar couplings difficult to deconvolute from
the true R2 rate, but the associated in-phase/anti-phase
oscillations bring R1 relaxation of the coupled spin into
account, which in turn can be either “selective” or “unse-
lective” (Iwahara et al., 2007). It thus may seem that pro-
tein R2 measurements and their interpretations are too
convoluted for use.

These complicating issues have long been realized
by Bodenhausen and co-workers (Boulat &
Bodenhausen, 1993; Segawa & Bodenhausen, 2013).
They developed methods in which selective pulses excite
just one proton resonance at a time, followed by a selec-
tive low-power spinlock. During the following signal
decay (R1rho), scalar couplings with all other spins are
eliminated, chemical exchange broadening is sup-
pressed, and the dipolar interactions are all between
“unlike” spins. However, elegant and precise as it is, this
method can hardly be used for a comprehensive mea-
surement of 1HN relaxation rates in proteins, especially
larger ones.
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Here, we extend the methods pioneered by Boden-
hausen and develop a method that captures R2 rates for
all amide protons in a protein at once. Figure S2 in the
supplemental information shows the pulse sequence of a
novel semi-selective R1rho-HSQC experiment. We make use
of the spectral separation of amide protons and aliphatic
protons to selectively excite all the amide protons at once.
Subsequent application of a high-powered spinlock will
just lock the excited spins, which, besides amide protons,
also comprise aromatic protons and in principle, the
exchangeable protons from Asn, Gln, Ser, Arg, Lys and Thr
residues. The result is that all proton pairs that were selec-
tively excited, have during the spinlock identical chemical
shifts (that of the spinlock frequency) and are thus “like”
protons (Bothner-By et al., 1984) while all other protons
are” unlike”. As the scalar coupled 1Halpha protons are not
locked (since they were not excited in the first place), the
3JHNHA is decoupled (for TOCSY effects, see below).

The measured relaxation rate RM is given by Davis
et al. (1994)):

RM ¼ kex þR1rho cos2θþR1 sin
2θ

þ cos2θ
pApB ωA�ωBð Þ2 kABþkBAð Þ

kABþkBAð Þ2þω2
eff

þRHN�N
2

þ RHN�CSA
2 þRHN�C

2

ð1Þ

Here, R1rho is the transverse relaxation rate under
infinite-power spin-lock, while R1 is the longitudinal
relaxation. The other terms in Equation (1) will be
defined and discussed in the paragraphs below.

Let us consider the first term, which is the koff rate of
the amide-bound proton H0 in the proton mass exchange
process

H0NþHOH !kof f HNþHOH0 ð2Þ
The intrinsic (unprotected) amide proton exchange

rate is given by the empirical relation (Englander
et al., 1972):

kex ¼ ln2
200

10pH�3þ103�pH
� ��100:05T ð3Þ

where T is the temperature in degrees Celsius. From the
experimental parameters of the spectra (pH 6.5, 10�C and
30�C) we calculate 0.6 and 10 s�1 exchange rates, respec-
tively. However, the amide protons are protected from
exchange through hydrogen bonding and due to inacces-
sibility. The following relationship quantifying these pro-
tection factors P has been developed by Vendruscolo
et al. (2003))

P¼ exp 0:34NCð Þ� exp 1:9NHð Þ ð4Þ

where NC is the number of “heavy” atoms surrounding
the amide nitrogen within 6.5 Å, and NH the number of
hydrogen bonds per amide proton. The coefficients were
obtained by Best and Vendruscolo (2006)).

Applying Equation (4) to the structure 2qmt.pdb, we
obtain protection factors varying between 2.6 � 1010 and
3.8 � 104. According to these equations, the amide pro-
ton exchange rates (Equation (1)) are reduced by these
very large protection factors.

Summarizing, the maximum rate is
10/3.8 � 104 = 2.6 � 10�4 s�1occurring for amides in
loops at 303 K. Hence, the life-time broadening of the
amide proton resonances as listed as kex in Equation (1)
can be neglected for all amide protons.

Let us estimate the relative contributions of the sec-
ond and third term of Equation (1) for our experiments.
These terms describe resonance-offset effects, with the θ
being the angle of the spinlock field with respect to the
locking axis

θ¼ tan�1Δω
ωrf

ð5Þ

Here Δω is the offset between the spin-lock carrier and
the resonance of interest, and ωrf the field strength of the
spinlock.

For GB1, the maximum offset between the spin-lock
carrier at 8.5 ppm and the amide resonances is 1.87 ppm,
or 1120 Hz with the used 600 MHz spectrometers. We
used a spinlock fields of 12.6–14 KHz. Hence the values
for the largest offsets are cos2θ = 0.99 and sin2θ = 0.01.
Without other terms we have RM = 0.99 R1rho for all
resonances, and the third term in Equation (1) can be
neglected.

Equation (1) also describes with the fourth term the
effect of the spinlock field on a (putative) fast exchange
broadening for an individual resonance between two fre-
quencies ωA and ωB, populations pA and pB, and the
(pseudo) first-order rate constants kAB and kBA. The
effective spinlock field in this equation, ωeff is given by

ωeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
rf þΔω2

q
ffiωrf ð6Þ

since ωrf > >Δω (see above).
A complete suppression of the (putative) broadening

will occur if

ωrf > > kABþkBA
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No effect of the spinlock will occur if kABþ
kBA �ωrf ffi 6x104rad:s�1.

Thus, we may state that all conformational exchange
processes with kinetics (much) slower than 104 s�1 will
be suppressed by the spinlock. Variation of the spinlock
field strength may uncover exchange processes in that
104 s�1 time range.

In total, we have that RM, for the vast majority of
cases is given by the second term R1rho in Equation (1).
But we still need to make a distinction between “like”
and “unlike” spins. Classically, “like” spins are those
who have exactly the same “natural” resonance fre-
quency. But in a spin-lock experiment, all locked reso-
nances have the same frequency, that is, that of the
spinlock. In that case we have (Bothner-By et al., 1984;
Brüschweiler, 1991; Goldman, 1988):

R1ρ ¼ 1
20

μ0
4π

γHγHℏ
r3HH

� �2

� 9τc
1þω2

eff τ
2
c
þ 15τc
1þω2

Hτ
2
c

8<
:

þ 6τc
1þ 2ωHð Þ2τ22

9=
;

ð7Þ

μ0,γH ,ℏ are the magnetic permeability of vacuum, the
proton gyro-magnetic ratio and Planck's constant divided
by 2π, respectively.

rHH ,τc,ωH are the 1HN-1HX proton distance, the rota-
tional correlation time (assuming isotropic tumbling) and
the proton resonance frequency, respectively. In our
application, ω2

eff τ
2
c < <1 and Equation (7) becomes the

“like” R2 spin relaxation rate equation:

R2 ¼ 1
20

μ0
4π

γHγHℏ
r3HH

� �2

� 9τcþ 15τc
1þω2

Hτ
2
c
þ 6τc
1þ 2ωHð Þ2τ2c

( )

ð8Þ

The “unlike” relaxation rate is given by Brüschweiler
(1991)) and Bothner-By et al. (1984)):

R1ρ ¼ 1
20

μ0
4π

γHγHℏ
r3HH

� �2

� 5τc
1þω2

eff τ
2
c
þ 9τc
1þω2

Hτ
2
c

8<
:

þ 6τc
1þ 2ωHð Þ2τ2c

9=
;

ð9Þ

which for our conditions becomes the “un-like” R2 spin
relaxation rate Equation (29):

R2 ¼ 1
20

μ0
4π

γHγHℏ
r3HH

� �2

� 5τcþ 9τc
1þω2

Hτ
2
c
þ 6τc
1þ 2ωHð Þ2τ2c

( )

ð10Þ

The spinlock fields, employed for the purpose of sup-
pressing the 3JHNHA scalar coupling and exchange broad-
ening, may, in principle, also cause coherence transfer
[TOCSY (Schweiger et al., 1985) or HOHAHA
(Bax, 1989)] from the amide protons to the scalar coupled
alpha protons, which would result in sinusoidal perturba-
tions of the relaxation curves. However, since the spin-
lock carrier has been placed down field (8.5 ppm) of both
HN and HA resonances, the transfer is completely negli-
gible (see density matrix calculations based on the
strong-coupling spin Hamiltonian in the Appendix).

According to our analysis above, the measured relaxa-
tion rates RM in Equation (1) are to within 1% identical to
the R2 rates in Equations (8) and (10), extended by the
dipolar relaxation of 1HN with 15N, 1HN with 13C and the
CSA relaxation for 1HN. But, the expressions Equa-
tions (8) and (10) above refer to single proton pairs only.
Even in small proteins, many protons interact magneti-
cally. There are typically 100 protons in an 8 Å sphere
around an amide proton which all contribute to the 1HN
relaxation. All these dipolar-dipolar interactions will
interfere with each other (cross correlation) (Fischer
et al., 1998; Goldman, 1984; Vold & Vold, 1978). For
example, an amide proton i in dipolar interaction with
two other protons k and l will exhibit two different relax-
ation rates, Ri,k

2 þRi,l
2 �CCik,il

DD (Fischer et al., 1998;
Goldman, 1984; Vold & Vold, 1978). The amplitude of
the cross-correlation (CC) term is dependent of the geom-
etry of the three-spin triangle (Fischer et al., 1998;
Goldman, 1984; Vold & Vold, 1978) and can vary
between 0 and Ri,k

2 þRi,l
2 . Similar interference is the case

for all of the many three-spin triangles the “center” spin i
is involved in.

This appears to be an impassable hurdle toward inter-
pretation of the 1HN-1HX relaxation rates. Fortunately,
this is not such a big issue after all. If one fits a single
exponential to the beginning of the relaxation curves
only, the CC terms cancel since the average of

ðexp � R2þCCð Þtð Þþ exp � R2�CCð Þtð ÞÞ=2ffi exp �R2tð Þ
ð11Þ

for t < < 1/R2 .
In a recent paper, we showed that this approximation

also holds when many relaxation pathways interfere
(Zuiderweg, 2022). Actually, the interference of multiple
relaxation terms cancels better than for just a few terms.
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Thus, we have, when fitted from the beginnings of
the relaxation curves, that N other protons j for an amide
proton i will co-add in a simple pair-wise manner:

Ri�total
2 ¼

Xj¼N

j≠ i

Rij
2 ð12Þ

In our computations we use a value of 9.7 ppm for the
1HN CSA, assuming axial symmetry. This value was taken
from (Loth et al., 2005). With that, one calculates that on
average the 1HN chemical shift anisotropy relaxation
accounts for 4% of the total amide proton R1rho

(at 600 MHz). The same authors also show that the 1HN
CSA varies by ± 22% (in ubiquitin) and that that variation
is strongly correlated with the 1HN isotropic chemical shift.
Such a variation in CSA will account for almost 50% in the
1HN CSA relaxation, since the latter depends on the square
of the CSA. But this amounts to just an uncertainty of 2%
in the overall 1HN relaxation. We decided this difference is
too insignificant as to incorporate a variable CSA in our
calculations. However, if the R1rho experiments were to be
carried out at higher fields (see below) one would have to
bring this into account.

Last, but not least, since the vectors connecting the
different pairs 1HN-1HX will point in many different
directions, the influence of anisotropic molecular diffu-
sion (de la Torre et al., 2000) on the rates will be
averaged out.

In the end, our calculations suggest that the decay of
the spin-locked 1HN coherence (RM) is given by the dipolar
1HN-1HX interactions (on average 67% of the total rate),
the dipolar interaction with the attached 15N (24%), dipolar
interaction with 13C nuclei (on average 5%), and by 1HN
chemical shift anisotropy relaxation (4% at 600 MHz) .

Water molecules that are bound to the protein with
large residence times can also contribute, but we have
not considered this complication here.

In this work, rather than attempting to make any
direct decomposition of the total rates into the individual
terms in Equation (12), we compute the sum from results
of molecular dynamics simulations and explore the sorts
of information that can be extracted by comparing these
to the measured rates.

3 | RESULTS

For GB1, shown in Figure S1, we find that the R1rho-
HSQC experiment (Figure S2) can obtain site-resolved
R1rho relaxation rates for individual 1HN resonances with
high precision Figure S3 and Tables S1 and S2). Repre-
sentative decay curves are given in Figure S3.

For GB1, the experimental R1rho data could be fitted
well with a single exponential, often with a RMSD of fit
of less than 3% (see Figure S3). A Table with the obtained
rates and their error estimations is provided in the
SI. (Tables S1 and S2). In Figure S4, we compare the
R1rho rates for two values of the spinlock power, 6 and
12 kHz. The rates are equal withing the error ranges,
except for 8 residues, where the rate is significantly faster
with the smaller spinlock field-strength. This indicates
that these HN experience conformational exchange
broadening with a rate around 104 s�1. Most, but not all,
of these protons are found in loops (see Figure S1).

Without local motion or exchange broadening, the
theoretical relaxation rates are dependent on just two
parameters (e.g., see Equations (8), (10) and (12)): the
1HN-1HX distances as obtained from the (crystal) struc-
ture, and the protein rotational correlation time τc.
We experimentally determined the latter from “classical”
15N relaxation studies (R1, R2, and NOE) (Lipari &
Szabo, 1982a) (Cavanagh et al., 1996; Kay et al., 1989) at
10�C using the same sample and instrument as used for
the R1rho experiments at 10�C. We obtained an average
value of 5.96 ns, taking anisotropic diffusion into account
(minimum 5.62 ns maximum 6.63 ns). This value corre-
sponds reasonably well to the average value computed
from the crystal structure 2qmt.pdb using the program
HydroNMR (de la Torre et al., 2000) (6.4 ns, average of
the anisotropic eigenvalues) while the empirical equation
developed by Daragan et al. yields 7.0 ns (Daragan &
Mayo, 1997). We will proceed here by discussing the
results and computations at 283K. The experiments and
calculations at 303K yield the same overall picture and
will be discussed later.

When using the experimental rotational correlation
time τc of 5.96 ns, the average computed R1rho relaxation
rate at 283K was 33.9 s�1, which is much larger than the
average experimental rate of 25.1 s�1 (see Figure 2 and
Table 1, rows 1 and 2). It thus seems that the experimen-
tal 15N correlation time might be too large to be used for
the 1H-1H relaxation computations. The difference is
even larger when using the HydroNMR correlation times.
But it must be unlikely that the correlation times can be
that far off; rather, the mismatch is the first indication
that the 1H-1H relaxation dipoles are more susceptible to
local motion and have smaller order parameters than the
15N-1H dipoles.

In order to fit to the experimental average, we
reduced all computational rates by a factor of 0.74 (i.e., a
simple approach to obtain an average 1HN-1HX order
parameter). The result is shown in Figure 3 and is listed
in Table 1, row 3. We improved the fit by multiplying
R1rho values due to 1HN-methyl protons interactions by
0.5, in an attempt to account for fast methyl rotation. A
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justification for this approach is shown in Figure S5,
where actual order parameters for such interaction were
calculated from a MD trajectory: the average order
parameters of short 1HN-CH3 interactions is 0.5. While
order parameters for more distant 1HN-CH3 pairs will be
larger, we argue that the distant pairs contribute less to
the overall R1rho to make the error negligible.

In our computations we experimented with how to
treat the interactions of the 1HN with the exchangeable
protons. Which exchangebles are spinlocked, and which
ones are not? Calculations with different assumptions
made no significant difference (results not shown), and
we opted for a common-sense approach to treat interac-
tions with exchanging hydroxyl protons, Lys E-NH3, Arg
guanidinium protons, which exchange faster with water
than the timescale of the spinlock and which are invisible
in the NMR spectrum, as “unlike” interactions, while the
sidechain 1HD of Arg, and sidechain NH2 of Asn and
Gln, typically visible in the NMR spectrum, were treated
as “like” interactions. As the NMR experiments were car-
ried out with a sample in a 95/5% H2O/D2O solution, we
reduced all 1HN-1H-N and 1HN-1HX exchangeable rates
by 5%. Despite all of this care, we obtain a Pearson R2 of
just 0.22 and a slope of the fitting line of 0.37 (which
should be 1 for a perfect fit). Extensive minimization of
the crystal structure coordinates using the AMBER pro-
gram did not change the quality of the fit (see Table 1
and Figure 3), neither did the explicit incorporation of
rotational anisotropy as obtained from HydroNMR affect-
ing the 1HN-N relaxation rates (Table 1, rows 3, 4 and
5 at 283 K, 11, 12, and 13 at 303 K).

At this point it is clear that the static structure in the
2qmt crystal cannot account for the observed relaxation

rates. We thus decided to incorporate dynamics into our
modeling. We used the AMBER package, with the ff19SB
forcefield (Tian et al., 2020), to compute 200 ns trajecto-
ries of GB1 in OPC water (Anandakrishnan et al., 2013)
at 283 and 303 K, with the 2qmt.pdb structure as initial
condition (see the Section 6 for details.) We also com-
puted average structures from these trajectories, but they
yielded worse results than the crystal structure (see
DYMAMIC AVERAGE” in Table 1, row 6 and 19). Obvi-
ously, using a dynamically averaged structure is not the
correct way to handle a dynamic ensemble. Thus, we
extended our dynamic calculations toward extracting
order parameters, and use these order parameters to
reduce the computed relaxation rates (see Section 6).

A very substantial change in quality of the fitting
occurs when incorporating protein dynamics in this way
in the computations. We analyzed a 200 ns AMBER tra-
jectory of GB1 in OPC water, using the ff19SB forcefield.
First, the overall molecular motion was eliminated by
superposing the MD frames. We calculated the autocorre-
lation functions (AC) of the angular (azimuthal libra-
tions) (as P2cos) and (as [r�3]2) distance (radial)
variations of the dipole–dipole vectors between individ-
ual 1HN and individual- 1HX, as in Equation (9) below.
As detailed in the Section 6, the Fourier transform of the
sum auto correlation function is proportional to the sum
of the individual HN-HX relaxation rates.

The sum AC in Figure 4 shows a fast initial decay
within 100 ps, followed by a decay with a time constant
of a few nano seconds before a plateau is reached. The
plateau value is the major determinant of the R1rho relax-
ation rates: the relaxation rate is reduced to by S2HN-HX
(the plateau value) due to local motion. Motions with a

FIGURE 2 Calculated versus

experimental R1rho rates

(Equations (8), (10) and (12)). The

calculation is based on the structure

2qmt.pdb and the experimental

rotational correlation time,

τc= 5.96 ns. The black line

shows y= x.
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time constant in the nano-second region increase the
relaxation rate by a small amount (see Equations (21)
and (23)). The ps-time scale motions do not contribute to
R1rho relaxation rates. For each sum correlation function,
we fitted to the plateau value and to the amplitude and
correlation time of the slow decay, as is shown in
Figure 4, and use these values in the relaxation equations
(see Section 6). Local motions slower than the molecular

rotational correlation time are masked by the latter and
cause no additional relaxation. We avoided including
such motions in our calculations by evaluating the AC
functions in MD trajectories for 6 ns only (but averaged
over 200 ns).

The results of the dynamic calculations are shown in
Figure 5. The Pearson R2 of just 0.21 has jumped to 0.36–
0.50 while the slope of the least-square fit improved from

TABLE 1 Calculated and Experimental R1rho rates

Row Calculation Temp τc Averagea Scalingb RMSDc RMSDRd
Pearson-
R2e Slopef R-factorg

K ns s�1 s�1 % %

1 Experiment 283 5.96 25.1 0.51 2

2 X-ray 283 5.96 33.9 1 6.65 20 0.22 0.50 35

3 X-ray 283 5.96 25.1 0.74 4.33 17 0.22 0.37 14

4 Minimized 283 5.96 25.1 0.76 4.65 19 0.20 0.42 14

5 Minimized anisotropic 283 5.96 25.1 0.76 4.64 19 0.16 0.38 15

6 Dynamic average 283 5.96 25.1 0.74 5.23 21 0.07 0.32 16

7 Full dynamic (4A) 283 5.96 25.1 0.94 4.30 17 0.36 0.47 13

8 Full dynamic (5A) 283 5.96 25.1 0.88 4.24 17 0.47 0.52 11

9 Full dynamic (6A) 283 5.96 25.1 0.87 4.22 17 0.48 0.52 11

10 Full dynamic (7A) 283 5.96 25.1 0.87 4.21 17 0.48 0.52 11

11 Full dynamic(8A) 283 5.96 25.1 0.86 4.21 17 0.50 0.52 11

12 Full dynamic(9A) 283 5.96 25.1 0.85 4.21 17 0.51 0.52 11

13 Full dynamic* 303 5.96 25.1 0.88 4.27 17 0.52 0.5 11

14 Experiment 303 3.6 15.1 0.14 1

15 X-ray 303 3.6 22.1 1 4.37 20 0.51 0.89 45

16 X-ray 303 3.6 15.1 0.65 2.19 15 0.51 0.58 11

17 Minimized 303 3.6 15.1 0.68 2.4 16 0.41 0.66 11

18 Minimized anisotropic 303 3.6 15.1 0.70 2.39 16 0.38 0.63 13

19 Dynamic average 303 3.6 15.1 0.69 2.47 16 0.14 0.40 12

20 Full dynamic (8A) 303 3.6 15.1 0.82 2.17 14 0.76 0.72 6

Note: Summary of experimental and calculational statistics of GB1. The row numbers are quoted in the text. The experiments were carried out at two

temperatures. The rotational correlation time, τc was determined experimentally at 283 K from 15N relaxation rates. The value of τc at 303 K was extrapolated
from the former using viscosity tables. The calculations “X-ray” are from the static coordinates 2QMT.pdb (Schmidt et al., 2007), and are the sum of the
1HN-15N, 1HN-CSA, 1HN-13C rates, 1HN-1HX R1rho (R2) relaxation rates. The calculations “minimized” are from the static coordinates 2QMT.pdb, energy
minimized with the AMBER 1ff19SB forcefield (Tian et al., 2020). The calculations “minimized anisotropic” correct the 1HN-15N, 1HN-CSA rates for rotational
diffusion anisotropy, as calculated from HydroNMR (de la Torre et al., 2000). The calculations “full dynamic” are the sum of the static values of isotropic
1HN-15N, 1HN-CSA multiplied with 1HN-N order parameters, static values of 1HN-13C multiplied with 1HN-13C sum-order parameters, and the dynamical
1HN-1HX R1rho relaxation rates. The value in parenthesis indicates the radius of the sphere limiting the selection of 1HN-1HX distances for to be extracted from
the MD simulations. The relaxation rates were extracted from a 200 ns MD trajectory at the indicated temperatures. The calculation “Full dynamic*” compares
the experimental values at 283 K with a computation a rotational correlation time of 5.96 ns, belonging to the 283 K temperature, but used order parameters
and dynamical dynamical 1HN-1HX R1rho relaxation rates from the 303 K MD trajectory.
aAverages over residues 4–53.
bThe scaling factor used to obtain the best correspondence between the average of the calculated rates and the experimental rates.
cRoot-Mean Square Deviations; for the experiments these are the averages of the experimental uncertainties (See SI); for the calculations these are the standard
deviation of the differences between experimental and calculated values.
dRatio of RMSD and the average.
eSquare of the Pearson correlation coefficient.
fslope of the linear least-squares fit.
gR-factor as commonly used in the crystallographic literature (Morris et al., 1992).
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0.37 to 0.42–0.52, depending on the radius of the sphere
limiting the selection of 1HN-1HX distances to be consid-
ered for the computations (Table 1, rows 7–12). From the
values in the Table 1 one sees that the computations con-
verge around a selection sphere of 8 Å.

From these dramatic improvements it is abundantly
clear that the local motion, such as calculated by the MD
simulations is indeed detected by the 1HN-1HX relaxation
rates. Nevertheless, the R2 of 0.50 is not a very good fit.
While dynamics definitely improved matters, there must

be other (non-accounted-for) factors that reduce the (cal-
culated) relaxation rates. These will be discussed later.

The effect of incorporating dynamics in the calcula-
tions is depicted in a different way in Figure 6. Most of
the up-down patterns are well-reproduced for both the
rigid and dynamic calculation, indicating that the relaxa-
tion rates are dominated by the rigid structure. The
exception is the helix (residues 25–36): the “phase” of the
pattern is off for the rigid computation but is recovered
for the dynamic computations. In this figure one also

FIGURE 3 Calculated versus experimental R1rho rates. The calculations are based on the structure 2qmt.pdb which were scaled down

by 75% to obtain the same average rate as the average experimental rate. In blue, the 2qmt.pdb crystal structure (protons attached through

Molprobity (Williams et al., 2018). In green, after minimization by the AMBER ff19SB forcefield (Tian et al., 2020).

FIGURE 4 Example of a calculated (sum) autocorrelation function for the unlike interactions involving HN of E15 (Black) and the

fitted function (RED) which is Y = A∞ + As x exp(�τ/τ1) (see Section 6).Left: not normalized; right: normalized to unity at zero time.
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perceives that the large increase in Pearson R2 occurring
when considering dynamics is due to the big change for
the loop around residue 11.

Figure 7 shows that, especially for the unlike spin pairs,
the calculated 1HN-1HX order parameters are (much) smal-
ler than the calculated 1HN-N order parameters, which
correspond to the classical 15NH order parameters.

Figure 8 shows several correlation functions, separat-
ing the distance-dependent (radial) and angular auto-
correlation functions, for several residues.

The figure shows that the relative contribution of
axial and radial motion to the correlation function, and
thus relaxation, is different dependent on the 1HN-1HX
vector considered: In the top panel, the angular order

FIGURE 5 Calculated versus

experimental R1rho rates. In red,

R1rho calculated from auto

correlation functions extending to

6 ns, averaged over a 200 ns MD

calculation. The dashed red line is

the least square fit y = 0.53x + 11.7,

with R2 = 0.50. Experimental and

simulation temperature are at

283 K. The black line is y = x.

FIGURE 6 Calculated and experimental R1rho rates as function of protein sequence. Experimental R1rho (black) 283 K. In blue, R1rho for

the rigid structure in Figure 3. In red, R1rho from the dynamic ensemble (Figure 5). The blue and red patterns were scaled to yield the same

average rate as the experimental data (see discussion).The GB1 secondary structure is indicated at the bottom.
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parameters, which correspond to the plateau values of
the auto correlation functions, are smaller than the radial
ones, while both are quite large, indicating little motion.
This interaction involves atoms on the backbone (K31
HN-Q 32 HA). The middle panel shows that the radial
order parameter can be smaller than the angular order
parameter, while in the bottom panel the reverse is the
case. The latter two interactions involve sidechain pro-
tons, and the motion is quite large. In both latter cases,
the overall order parameter for 1HN-1HX comes out sig-
nificantly lower than the angular order parameters alone.
Hence, fluctuations in the interproton distances can con-
tribute greatly to the reduction of the overall relaxation
rates.

The fact that product of the angular and radial AC's
(blue) in the bottom panel is smaller than the product
AC (Black) indicates that, in that case, the angular and
distance fluctuations are not statistically independent.
When the blue and black curves coincide, such fluctua-
tions are independent. In all cases we use <P2(t)/
(r3(t) P2(t + τ)/r3(t + τ) > in our computations.

The experiments were also carried out at 303 K. In
the calculations we used a rotational correlation time of
3.6 ns, extrapolated from the value at 283 following vis-
cosity tables. Without taking dynamics into account, the
computed R1rho rates were also much larger than the
experimental ones (Table 1, row 15). But the Pearson R2

for the rigid structure was already significantly better
(R2 = 0.51) (see Figure 9a, Table 1, rows 15, 16) than at
283 K (Figure 3, Table 1 Row 3), and improved further
(R2 = 0.76) by including dynamics, extracted from a MD
trajectory at 303 K (Figure 9B, Table 1, row 20). The slope
of the linear regression line is also better (0.72).

The improvement is also apparent when inspecting
Figure 10, where the calculated and experimental rates
are depicted versus the protein sequence (compare
with Figure 6). Just like at 283 K, of the up-down pat-
terns are well-reproduced for both the rigid and
dynamic calculations. And, again, the exception is the
helix (residues 25–36): the “phase” of the pattern is off
for the rigid computation but is recovered in the
dynamic computations.

The distribution of the order parameters for 303 K is
found in Figure S5. The distribution is very much like the
one at 283 K.

4 | DISCUSSION

For a rigid structure, the theoretical 1HN R2 relaxation
rates are just function of the rotational correlation time
and the (crystal) structure of the protein (Equations (8)
and (10)). The rotational correlation time was deter-
mined experimentally from 15N relaxation measure-
ments. The latter compares favorably with values
computed by the program HydroNMR (de la Torre
et al., 2000) from the crystal structure. However, the
theoretical 1HN-R2 relaxation rates based on this corre-
lation time are 30% too large as compared to the experi-
ment. (Table 1, rows 2 and 15). In analogy to classical
15N relaxation, these results immediately suggest that
local motions with time constants faster than the rota-
tional correlation time, expressed as “modelfree” order
parameters, reduce the rates (Lipari & Szabo, 1982b).
However, the experimental 1HN R1rho rates are subject
to so many technical and physical complications, that

FIGURE 7 The classical S2NH

order parameters (computed)

versus the sum S2HN-HX order

parameters for like (yellow) and

unlike (Red) interactions. In blue

are the sum S2HN-C order

parameters. The black line is y = x.

T = 283 K.
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even while we think address all of them (see Section 3),
there remains a gnawing feeling that not all has been
covered. But, if a relaxation mechanism was

overlooked (say, e.g., dipolar interactions with [bound]
waters), the calculated relaxation rates would become
even larger than they already are.

FIGURE 8 Auto correlation functions as

computed from a 200 ns MD trajectory (283 K).

Top, K31HN-Q32HA; middle, K31HN-K31HG2;

bottom, T11HN-L12HG. Note the difference in

vertical scale of the panels. In red, <P2(t)P2(t + τ)
>; in green, <1/(r3(t)r3(t + τ)>; in blue, <P2(t)

P2(t + τ) > <1/(r3(t)r3(t + τ)>; in black, <P2(t)/

(r3(t) P2(t + τ)/r3(t + τ) > (used in the

computations).
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What does convince us that we are truly measuring
dynamical phenomena, is the fact that a dramatic
increase in the R2 of fit occurs when computing R1rho

from a dynamical MD ensemble (Table 1 rows 7–12 and
20), and that the radius of the sphere of protons taken
into account for the dynamic calculations affects the R2

factor (see Table 1, rows 7–12).

Figures 7 and S6 show that “unlike” 1HN-1HX vec-
tors, which predominantly correspond to amide-
aliphatic vectors are especially dynamic, with order
parameters as low as 0.5. Here one should be aware
that the 1HN-1HX order parameters report on both
angular as well as distance fluctuations (radial order
parameters). The “unlike” order parameters are

FIGURE 9 (a) In blue, experimental R1rho versus R1rho computed from the crystal structure 2qmt.pdb with protons added by Molprobity

(Blue). T = 303 K. In green, after minimization by AMBER. The black line is y = x. The blue trendline (Xray) is y = 0.65x + 6.2 with

R2 = 0.41. The green trendline (Minimized) is y = 0.59x + 6.2 with R2 = 0.51. (b) In red, R1rho calculated from auto correlation functions

extending to 6 ns, averaged over a 200 ns MD calculation. Experimental and simulation temperature is 303 K. The red trendline is y = 0.72x

+ 4.3 with R2 = 0.71.

FIGURE 10 Experimental R1rho (black) at 303 K. In blue, R1rho for the rigid structure in Figure 9a. In red, R1rho from the dynamic

ensemble calculated for 303 K (Figure 9b). The GB1 secondary structure is indicated at the bottom. Both static and dynamic rates have been

scaled so that their mean matches the experimental mean.

ZUIDERWEG and CASE 13 of 21

http://bioinformatics.org/firstglance/fgij//fg.htm?mol=2qmt


especially low, because many are affected by interac-
tions with fast rotating methyls.

In Figure 8 we separated out the angular and radial
autocorrelation functions for a few interactions. One
observes very low order parameters (plateau values) for
interactions not involving methyl groups as well. Sum-
marizing, we find that the 1HN-1HX R1rho relaxation rates
are sensitive to both angular and radial fluctuations, and,
in some cases, can be dominated by the radial
fluctuations.

The question of how protein dynamics influences
homonuclear dipolar relaxation rates is an old one, going
back to early days of molecular dynamics simulations,
[reviewed, for example in Ref. (Brüschweiler &
Case, 1994)]. Most of these studies addressed the effects
of motion on individual NOESY or ROESY peaks and
used a “static” reference model with the H-H distance
taken as the average value from the simulation. With that
reference, distance fluctuations increase relaxation rates,
rather than decrease them. But, for relaxation, it is not
the average distance, but 1

r6 tð Þ
D E

(i.e., AC(0)) that maybe
more relevant. With the latter definition, distance fluctu-
ations lead to a reduction of of the relaxation rates, as is
required for a better fit with the experiment. Since there
is no single structure whose distances all match either
<r> or< r�6 >�1/6, the division between “structural” and
“dynamical” contributions to relaxation will inevitably be
somewhat arbitrary. The approach used here, using
<r�6 >�1/6 as the reference distance, treats radial and
angular fluctuations on an equal footing (see Figure 8).

Griesinger and co-workers are interested in protein
structural fluctuations at all time scales. In a recent paper
(Smith et al., 2020), they assume that (all) dynamically
accessible states of ubiquitin in solution are represented
by an ensemble of 117 static structures available in the
Protein Data Bank. The different 1H-1H distances in these
structures contribute to a single NOE cross peak inten-
sity. Rather than just optimizing the populations of these
structures and averaging the relevant distances (with the
problems as discussed above), they assign interconversion
rates between the structures. From these proposed rates,
the calculate auto correlation functions relevant to NOE
cross peak build-up. They proceed by optimizing the
interconversion rates over a large time span (τc ±3 orders
of magnitude) to obtain a best (collective) fit to the NOE
cross peak volumes. The key finding is this dynamic/
kinetic approach yields a better fit to the experimental
NOE data, than a single structure, or a population opti-
mized non-interconverting (static) ensemble.

Our work, using another approach, thus further con-
firms the above conclusion that 1H NMR relaxation data
(NOE is also relaxation) can disclose underlying protein
proton dynamics. Our work is much less detailed than

theirs but does not depend on the availability of many
(crystal) structures, or high-quality NOE data. Our
method can point to an area in the protein where dynam-
ical processes are active (rather than individual proton
pairs).

While including dynamics does improve the R2, one
still needs a scaling factor of 0.85 for a best fit to the aver-
age relaxation rates (see Table 1). Is the protein more
dynamical than captured in the MD calculations? We
investigated if order parameters belonging to a 303 K
simulation would improve the fit to the 283 K data. One
indeed does perceive some improvement, (compare
Table 1, rows 11 and 16, but it is not sufficient to make a
decisive statement at this time.

Together, the improvements on the correlation
between experimental and calculated R1rho rates while
including dynamics as obtained from MD calculations
with the Amber ff19SB forcefield, indicates that that for-
cefield is a reasonable representation of physical reality.

Our work is closely related to reference (Schleucher &
Wijmenga, 2002). There, it is demonstrated that one can
experimentally detect motion of individual 1H-1H vectors
by comparing the intensities of ROESY and NOESY cross
peaks (actually in a series of off-resonance ROESYs). In
three ways their approach is superior to ours: (1) they
detect motion without depending on computation;
(2) the information pertains to individual relaxation vec-
tors; (3) no isotope labeling is needed. However, by using
cross peaks intensities, one runs into the complication of
spin-diffusion. The latter can be circumvented by using
very short NOE/OE mixing times, where NOE/ROE cross
peak heights are approximately proportional to the cross-
relaxation rates. Regretfully, such short mixing time spec-
tra are not very sensitive, and the approach is limited to
very small proteins with very high concentrations
(a 10 mM sample of BPTI was used).

Our approach is less elegant but can be applied to
samples with lower concentrations (we used 1 mM). Our
experiment is not affected by spin-diffusion (i.e., we
quantitate what corresponds to the “diagonal” of the
ROESY). In order to circumvent our problem with cross-
correlated R2 relaxation, we actually use the most sensi-
tive experiments (short relaxation times) for our analysis.
Last, and not least, our experiment, combined with calcu-
lation, is sensitive to radial motions (distance variations)
whereas theirs is not (because they use the ratio of
NOESY and ROESY intensity, which have the same dis-
tance dependencies).

In Figure S8 we compare experimental and calculated
1H-15N rates from a 200 ns MD trajectory. One sees that
the correspondence for these rates is excellent (given the
experimental uncertainties). The one computed point
that lies outside the experimental error range, belongs to
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Gly38, in a loop. Apparently the current forcefield pre-
dicts too much motion for this loop.

The 1HN-15N dipolar + 1HN CSA relaxation comprise
a full 32% of the total 1HN relaxation rates. According to
the HydroNMR calculations, these relaxation rates are
affected by anisotropic rotational diffusion with a varia-
tion of 6% (See also Figure S6). These variations should
thus correspond to 1.6% of the total 1HN relaxation rates.
One would thus expect that one maybe just detect the
effect of these variations in our computations. However,
including anisotropic diffusion makes the fit with experi-
ment worse (see Table 1, rows 4, 5 and rows 17, 18). It is
possible that the anisotropic (angular) diffusion of the
1HN-1HX vectors may compensate for the anisotropic
effects of the 1HN-N vectors. Taking into account aniso-
tropic diffusion for the thousands of 1HN-1HX vectors is
in principle possible by referring to the diffusion tensor
as computed from HydroNMR. However, at this stage,
we decided that the possible improvement is too small to
warrant the effort.

Why is the rigid fit for R1rho at 283 K is so much
worse (R2 = 0.22) than at 303 K (R2 = 0.51)? The differ-
ence cannot be due to the precision of the experiments,
which have average uncertainties of 2 and 1% respec-
tively (see Table 1, rows 1 and 8). We offer the follow-
ing possible explanation. According to the MD
simulations, there are fluctuations with a time scale of
around 1 ns (e.g., see Figure 4). Motions at that time-
scale are likely to be statistically independent of the
overall motion (τc = 5.96 ns at 283K). They do contrib-
ute up to 10% to 1HN NMR relaxation. It may be that
neglecting these motions in the rigid calculations at
283 K contributes to the low R2 of 0.2. Including them
(as well as overall order parameters) thus makes a dra-
matic difference (R2 � 0.5) At 303 K, these motions are
physically difficult to distinguish from the overall rota-
tional diffusion (τc = 3.6 ns) and couple and merge
with the latter. Not including them in the rigid calcula-
tion is then less of a problem (R2 = 0.5). The improve-
ment by including local motion than results in a
smaller change in R2.

How can it be that the rigid calculations have the
“helical phase” wrong (see Figures 6 and 10), while the
dynamical calculations do approach the experimental
“phase”? The rigid “phase” is determined by the number
of 1HN-1HX interactions. These are smaller for HN at the
solution side of the helix as compared to the inside side
of the helix. Including dynamics in the calculations likely
breaks this simple pattern.

What can be improved? While inclusion of dynamics
in the R1rho calculations significantly increases the corre-
lation with experimental data, there is clear room for
improvement. At first one would suggest including

anisotropic rotational diffusion in the calculation. How-
ever, including orientation dependent τc values for the
1H-15N dipoles (which vary by 10%, see Figure S8) makes
correspondence between experiment and calculations
worse (see Table 1, row 5). Because the 1HN-1HX vectors
point in many different directions, the effect of orienta-
tional anisotropy on the sum of the relaxation rates is
averaged out. It has not been included in the computa-
tions. While the slope of the correlation for the 303 K
data with the calculation is reasonable (see Figure 9b), it
is badly off for the 283 K data (Figure 5). True, only a few
points above 30 s�1 drive the slope down (L5, I6 and F52,
from left to right). These same outliers also occur in the
rigid case (Figure 3) and thus the forcefield cannot be at
fault. The large experimental rates are not erroneously
large because relaxation cross correlation has been
neglected. As is shown in (Zuiderweg, 2022) fitting single
exponentials to a multi-exponential relaxation curve will
yield rates that are rather too low than too high. At pre-
sent we can just offer one explanation: the amides of L5,
I6 and F52 are less than 4 Å from each other; possibly
they are affected by a common very fast conformational
exchange broadening which has not been suppressed by
the 10 kHz spinlock.

Motions slower than the rotational correlation time
(ns) will not contribute to the decay of the auto correla-
tion function. However, conformational changes, even if
they do not directly contribute to exchange broadening
(i.e., 105 < kAB, kBA < 109 s�1; see Equation (1) and dis-
cussion thereof), will change distances in the molecule
and therefore change the amplitude of the relaxation
driving term (see the distance dependence in,
e.g., Equation (8)). In reality, such exchange processes
will result in averaging of different relaxation rates
belonging to the different conformations. In case of MD
trajectories, one can try to capture those variations by
averaging the 5 ns AC function (i.e., the length of the
rotational correlation time) over an extended MD run.
We used a 200 ns run and should thus be sensitive con-
formational changes with time scales up to �100 ns.

Can the approach be extended to larger proteins? The
experiments were carried out for the small protein GB1.
The experiments and computational results are of value
to the fundamentals of protein science. However, can
these experiments and data analysis also be extended to
larger proteins which may be of greater biological impor-
tance? Provided that 200 μM samples can be made, the
sensitivity of the R1rho experiment is likely sufficient, but
one still needs a well-resolved 15N-1H HSQC to analyze
the data. The latter limits protein size to about 20 kDa,
maybe 30 kDa at very high field. There are, of course,
many proteins of biochemical interest that fall under this
20 kDa limit.
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If one resorts to perdeuteration of the aliphatics
(Kay & Gardner, 1997) to improve the 15N-HSQC or
TROSY, extra complications occur in the interpretation
of the data. The perdeuteration needs to be virtually
100% complete, because a few 1H instead of 2H here and
there will dominate the relaxation of the 1HN. TROSY
also gives yields additional complications as the
unknown variability of the 1HN CSA tensor orientation
will affect the 1HN cross-correlated R2 rate in
unknown ways.

It is thus reasonable to project that a 20–30 kDa 15N
labeled protein, using an ultra-high field spectrometer
can yield sufficiently sensitive with a R1rho-HSQC relaxa-
tion data. Of course—a high resolution (crystal) structure
needs to be available as well for the analysis of the results
in terms of dynamics.

Focusing on Methyl TROSY, the “goto” experiment
for very large proteins (Tugarinov et al., 2005), will not
help much either—imperfections in perdeuteration will
also be a dominant problem in relaxation and
interpretation.

One possibility is to extend the experiment to aro-
matic protons, using a 13C-1H HSQC as a read-out. Exper-
imentally this is feasible, but complications arise in the
interpretation because aromatic protons are difficult to
assign, while micro-second ring flips, if present, will aver-
age the 1H-environment of the “equivalent” ring protons,
complicating analysis.

5 | CONCLUSION

The dramatic improvement in both the average rate and
the R2 of fit for computed and experimental 1HN R1rho

rates for GB1 when incorporating dynamics, cannot prove
that protein dynamics is pervasive, but strongly points in
that direction. Taking the static structure to be either the
crystal structure or an average from the simulation yields
average relaxation rates that are about 30% higher than
experiment (at 283 K), whereas including the conforma-
tional fluctuations from the simulation cuts this deviation
about in half, to 16%. The corresponding overestimates of
rates at 303 K are 54% for the static structures and 22%
when fluctuations are included. The variation of rates
among amide protons (as measured by the correlation
coefficient) is also much better reproduced by calcula-
tions including the effects of conformational fluctuations
than from the static structures we have examined. Our
NMR experiment and data interpretation/calculation
probes coordinate fluctuations between backbone and
sidechain spins that are not sensed by other NMR relaxa-
tion experiments (except NOESY which is difficult to
analyze, especially for larger proteins). As such, this work

provides novel insight into the nature of conformational
fluctuations that are present in even small globular pro-
teins. The work also suggests that the atomic fluctuations
as produced by AMBER, using the ff19SB forcefield, must
be a reasonable representation of physical reality. Per-
haps one can use this comparison between experimental
and computational data to improve future forcefields.

6 | MATERIALS AND METHODS

6.1 | NMR measurements and data
fitting

The 1HN R1rho—15N-1H HSQC relaxation experiments on
GB1 (see Figure S2) were carried out at 303 K on a Bru-
ker 600 MHz instrument at the Canberra NMR Facility,
Australia, remotely operated by the author, using a sam-
ple of 1 mM 15N-13C labeled GB1 as provided by
Dr. G. Otting. The sample temperature was set at 30�C.
The 1HN were selectively excited with a Q5 Gauss Cas-
cade of 1.33 ms, centered at 8.5 ppm, with 14 kHz peak
amplitude, exciting ±1.2 ppm. A spinlock with 14 kHz
was applied for 5, 10, 15, and 20 ms. The complete NMR
spectral parameters for these experiments are reported in
the SI. The same parameters were chosen to record the
283 K data at the 600 MHz Bruker instrument at the
Magnetic Resonance Research Center in Nijmegen, the
Netherlands, using a sample of 20 mg/mL GB1 13C/15N
in H2O, 20 mM NaPi, pH 7.0., purchased from Cortecnet
Europe, 91,940 Les Ulis, France. We used a spinlock
fields of 6 kHz and 12 kHz, which locking times of 3, 5,
7, 10, 13, and 20 ms. The 15N relaxation experiments (15N
R1, 15N-R2-CPG, and

1H-15N NOE) were also collected at
the Nijmegen Center, and analyzed with a modelfree
software package.

The experimental R1rho relaxation data were fitted to
a single exponential—double exponentials did not
improve the fit. Several examples are shown in the
SI. The error of fit was determined using a jack-knife pro-
cedure by repeatedly fitting the experimental data in
which single data points were omitted at random. The
reported error of fit is the RMSD of the fitted relaxation
rates. A Table with complete relaxation data are provided
in the SI.

6.2 | MD calculations

The GB1 molecular dynamics calculations were carried
out using the program AMBER 19 with the ff19SB pro-
tein forcefield (Tian et al., 2020). The protein, based on
the crystal structure coordinates 2qmt.pdb (resolution
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1.1 Å) was embedded in an octahedral box of 5534 water
molecules, described with the OPC model
(Anandakrishnan et al., 2013). Equilibration for 120 ns
using a Langevin thermostat and Monte Carlo barostat
brought the system to the desired average temperature
and a pressure of 1 atm, with a final density of
1.014 gm/cm3. This was followed by 250 ns of NVE simu-
lation, using a time step of 2 fs and the SHAKE proce-
dure to constrain bond distances to hydrogens. The final
200 ns were used for relaxation analysis, with snapshots
saved every 0.005 ns, for a total of 40,000 frames. An MD
frame was selected that had the lowest heavy-atom coor-

dinate RMSD as compared to a non-physical average
structure, computed by averaging Cartesian coordinates
after removal of overall translation and rotation. These
frames were dubbed “DYNAMIC AVERAGE” in Table 1.

6.3 | Computational auto correlation
functions and relaxation rates

We make the assumption that the dipolar autocorrelation
function can be factored into an overall isotropic rota-
tional diffusion with rotational correlation time τc, as
obtained from 15N relaxation measurements, and a local
motional contribution determined from the MD trajec-
tory (Lipari & Szabo, 1982b). While the (anisotropic) rota-
tional correlation time can in principle also be
determined from extended MD trajectories, we opted to
use the experimental time because MD estimates of pro-
tein diffusion tensors are generally not all that accurate
yet (Wong & Case, 2008). Furthermore, even “perfect”
simulations are carried out at infinite dilution in protein
in a pure solvent, which fails to adequately account for
the hydrodynamic environment in actual experiments.
Accordingly, we separate overall on local motion by
superposing the frames of the MD calculations by mini-
mizing the RMSD between the CA positions for residues
10–40. For the calculations we took all 40,000 frames of
the 200 ns simulations into account.

A simple program was written to select, for each
amide proton, all surrounding protons in a sphere of a
certain radius to be selected for the calculations. Calcu-
lations with different radii were compared (Table 1,

rows 7–12), and we decided that 8 Å is a good choice,
yielding on average 100 protons in each sphere. The
selection was made using a single reference frame and
was applied to all frames. Hence some of the tracked
protons could move in or out of the “interaction
sphere”. The inter-proton vector identifications were
written to a file readable by the AMBER cpptraj routines
(Case et al., 2005).

The local autocorrelation functions (AC) were subse-
quently obtained from the MD run using the AMBER
cpptraj routines (Case et al., 2005) that use an integration
to evaluate the correlation function for the spin pair ij:

where μ
!

HN�HX tð Þ is the instantaneous unit vector con-
necting HN and HX. The angular brackets indicate a time
average. This AC is not normalized, and its initial value
is given by:

ACij 0ð Þ¼ 1
r3HNi�HXj tð Þ

1
r3HNi�HXj tð Þ

* +
ð14Þ

The calculated ACij τð Þ show a fast initial decays τFij
(typical time constant <10 ps), a slower decay τSij (typical
time constant �1 ns, amplitude AS), with a plateau (A∞).
(e.g., see Figure 8).

Together with an isotropic overall rotational auto cor-
relation time τc, one may model such a ACij τð Þ as

ACij τð Þ¼ exp �τ=τCð Þ�ACij 0ð Þ� A∞
ij

h
þAS

ij exp �τ=τSij
� �þ 1�A∞

ij �AS
ij

	 

exp �τ=τFij

� �i
ð15Þ

In the following, we keep describing spin pair ij but
drop for legibility all indices (which will later return):

AC τð Þ¼ exp �τ=τCð Þ�AC 0ð Þ� A∞þAS exp �τ=τSð Þ
h

þ 1�A∞�ASð Þexp �τ=τFð Þ
i ð16Þ

We can associate the plateau value A∞ with an order
parameter S2 1HN�1HX for the local motion of vector ij.
The amplitude As and correlation time τS describe the
motions at a 1 ns time scale.

ΑCij τð Þ¼ 1
r3HNi�HXj tð Þ

1
r3HNi�Hxj tþ τð ÞP2 cos μ

!
HNi�HXj tð Þ:μ!HNi�HXj tþ τð Þ

	 
* +
ð13Þ
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We formally obtain, by integration, from the auto correla-
tion function [Eq. 16], the spectral density function

Jω ¼ 2
5

A∞τC
1þω2τ2C

þ ASτ1
1þω2τ21

þ 1�A∞�ASð Þτ2
1þω2τ22

� �
�AC 0ð Þ

ð17Þ

where

1=τ1 ¼ 1=τCþ1=τS
1=τ2 ¼ 1=τCþ1=τF ffi 1=τF

ð18Þ

since

τF < τS < < τC ð19Þ

the amplitude 1�A∞�ASð Þ and correlation time τF
describe the motions at a ns-ps time scale which will not
make a significant contribution to relaxation. We may
write

Jω ¼ 2
5

A∞τC
1þω2τ2C

þ ASτ1
1þω2τ21

� �
�AC 0ð Þ ð20Þ

So, to evaluate the effect of local motion on 1HN-1HX
relaxation rates, we only need to obtain A∞, AS, τ1 from
the individual ACs, by nonlinear fitting, while τC has
been experimentally determined (or obtained from
HYDRONMR).

These spectral density functions can be directly
inserted in the 1H-1H R1rho relaxation rate equations for a
like (spin-locked) spin ij, for example:

Rlike
1τ ¼D2 9J ωrf

� �þ15J ωHð Þþ6J 2ωHð Þ� ��AC 0ð Þ
ffiD2 9J 0ð Þþ15J ωHð Þþ6J 2ωHð Þf g�AC 0ð Þ

ð21Þ

with

D2 ¼ 1
8

μ0γHγHℏ
4π

� �2

ð22Þ

Here, μ0,γH ,ℏ are the magnetic permeability of vac-
uum, the proton gyro-magnetic ratio and Planck's con-
stant divided by 2π, respectively.

Or, for unlike 1HN-1HX pairs we have

Runlike
1ρ ¼D2 5J ωrf

� �þ9J ωHð Þþ6J 2ωHð Þ� ��AC 0ð Þ
ffiD2 5J 0ð Þþ9J ωHð Þþ6J 2ωHð Þf g�AC 0ð Þ

ð23Þ

We will now expand the unlike-spins relaxation equation
using the spectral density function model (Equation (20)):

Runlike
1ρ ¼ D2 5A∞τC

1
þ5ASτ1

1


 �8<
:

þ 9A∞τC
1þω2

Hτ
2
C
þ 9ASτ1
1þω2

Hτ
2
1


 �

þ 6A∞τC
1þ4ω2

Hτ
2
C
þ 6ASτ1
1þ4ω2

Hτ
2
1


 �9=
;�AC 0ð Þ

ð24Þ

For the following estimation of relative significance of
these terms, we label the six terms in square brackets
Equation (24) as C1,C2,C3,C4,C5, and C6. We assume that
A∞ and As are 0.5, that τC= 6 ns, τ1= 1 ns. The calcula-
tion was made for a 600MHz proton frequency.

We obtain C1 = 1.5 � 10�8, C2 = 2.5 � 10�9,
C3 = 5.3 � 10�11, C4 = 3 � 10�10, C5 = 29.8 � 10�12,

C6 = 5.2 � 10�11 (s�1).
We may thus safely neglect all terms beyond C2 and

obtain:

Runlike
1ρ ffiD2 5A∞τCþ5ASτ1½ 	�AC 0ð Þ ð25Þ

Finally, the total unlike R1rho rate for amide proton
i is the sum over all R1rho rates ij

Runlike
1ρ ið Þ¼

X
j

D2 5A∞
ij τCþ5AS

ijτ1ij
h i

�ACij 0ð Þ ð26Þ

where we have reintroduced the subscripts as in
Equation (15).

Similarly,

Rlike
1ρ ið Þ¼

X
j

D2 9A∞
ij τCþ9AS

ijτ1ij
h i

�ACij 0ð Þ ð27Þ

Since Equations (26) and (27) are linear, one may also
obtain the R1rho rate for amide proton i also from fitting
to the sum of the autocorrelation functions ij. This
improves the time of the computation by a factor of 100.
We have implemented the latter in the computer code
and checked the results against the sum of the fits.

These calculations were programmed in Fortran-90. The
computations were carried out an Apple iMac with a 3.6 GHz
Quad-Core Intel Core i7, running MacOS 11.6 (Big Sur).

6.4 | Statistics of data comparisons

We characterize the quality of fit between experimental
values xi and the calculated values yi by three criteria:

1. Relative RMSD (RMSDR) between the experimental
values xi and the calculated values yi
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RMSDR¼ 1
< y>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

xi� yið Þ2

N�1

vuuut
ð28Þ

2. Pearson correlation coefficient between the experi-
mental values xi and the calculated values yi

R2 ¼
PN

i¼1 xi� < x >ð Þ yi� < y>ð Þ
	 
2

PN
i¼1 xi� < x >ð Þ2�PN

i¼1 yi� < y>ð Þ2 ð29Þ

Note that R2 is invariant to changes in the scale of the x
and y values.
3. Slope of the least-squares linear trend line.

Slope¼
PN

i¼1 xi� < x >ð Þ yi� < y>ð ÞPN
i¼1 xi� < x >ð Þ2 ð30Þ

4. “Crystallographic” R factor (Morris et al., 1992)

R¼
PN
i¼1

jxi� yij
PN
i¼1

jxij
ð31Þ
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APPENDIX A

Evaluation of scalar coupling-mediated TOCSY coherence
transfer from amide to alpha protons using a constant
phase spin-lock field.

For this effect, also known as homo-nuclear cross
polarization, TOCSY or HOHAHA, we have the follow-
ing Hamiltonian in the lab frame:

H¼ Iz ωIð ÞþSz ωSð ÞþπJI:S

þω1exp �iIzωRFð ÞIxexp þiIzωRFð Þ
þω1exp �iSzωRFð ÞSxexp þiSzωRFð Þ

ð32Þ

where ωI, frequency I (radius); ωS, frequency S (radius); J,
scalar coupling (Hz); ωRF, frequency of spinlock field
(radians/s); ω1, amplitude of spinlock field (radians/s).

The Hamiltonian in the rotating frame of the r.f. fre-
quency is written as

H¼ Iz ωI �ωRFð ÞþSz ωS�ωRFð Þ
þω1 exp �iIzphiIð ÞIx exp þiIzphiIð Þ
þ ω1 exp �iSzphiSð ÞSx exp þiSsphiSð Þ
þ πJ exp �iIzphiIð ÞIx exp þiIzphiIð Þ
�exp �iSzphiSð ÞSx exp þiSzphiSð Þ
þ πJ exp �iIzphiIð ÞIy exp þiIzphiIð Þ
�exp �iSzphiSð ÞSy exp þiSzphiSð ÞþπJIzSz

ð33Þ

where phiI is the acquired phase angle between I and r.f. dur-
ing the integration interval and phiS is the acquired phase
angle between I and r.f. during the integration interval.

We wrote a numerical integration program for the
Liouville-von Neumann equation:

dσ tð Þ
dt

¼�i H tð Þ,σ tð Þ½ 	 ð34Þ

Using the Hamiltonian in Equation (33). The simula-
tions ran for 0.1 s.

The simulation conditions were:

J ¼ 10Hz
ω1

2π
¼ 10000Hz

with

ρ 0ð Þ¼ Ix

ð35Þ

When placing the spinlock field carrier between two
resonances 1200 Hz apart

ωI �ωRFð Þ
2π

¼�600Hz

ωS�ωRFð Þ
2π

¼þ600Hz
ð36Þ

On obtains, by numerical integration of Equation (34),
full transfer Ix to Sx in 0.1 s, as expected.

If one instead sets

ωI �ωRFð Þ
2π

¼�600Hz

ωS�ωRFð Þ
2π

¼þ700Hz
, ð37Þ

one obtains 90% Ix, and 10% Sx in 0.1 s.
If one instead sets for the actual settings as used at

the instrument (amides at 7.5 ppm, alphas at 4.5 ppm,
spinlock carrier at 8.5 ppm)

ωI �ωRFð Þ
2π

¼þ600Hz

ωS�ωRFð Þ
2π

¼þ2400Hz
, ð38Þ

one obtains 99.9% Ix, and 0.1% Sx.
One concludes that there is no significant TOCSY

transfer between amides and Ha with a 10 kHz the spin-
lock field at 8.5 ppm.
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