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Abstract 
There is ample computational, but only sparse experimental data suggesting that pico-ns motions 

with 1 Å amplitude are pervasive in proteins in solution. Such motions, if present in reality, must 

deeply affect protein function and protein entropy.  Several NMR relaxation experiments have 

provided insights into motions of proteins in solution, but they primarily report on  azimuthal angle 

variations of vectors of covalently-linked atoms. As such, these measurements are not sensitive 

to distance fluctuations, and cannot but under-represent the dynamical properties of proteins. 

Here we analyze  a novel NMR relaxation experiment to measure amide proton transverse 

relaxation rates in uniformly 15N labeled proteins, and present results for protein domain GB1 at 

283 and 303K. These relaxation rates depend on fluctuations of dipolar interactions between 1HN 

and many nearby protons on both the backbone and sidechains. Importantly, they also report on 

fluctuations in the distances between these protons. 

We obtained a  large mismatch between rates computed from the crystal structure of GB1 and 

the experimental rates. But when the relaxation rates were calculated from a 200 ns molecular 

dynamics trajectory using a novel program suite,  we obtained a substantial  improvement in the 

correspondence of experimental and theoretical rates. 

As such, this work provides novel experimental  evidence of widespread motions in proteins. 

Since the improvements are substantial, but not sufficient, this approach may also present a new 

benchmark to help improve the theoretical forcefields underlying the molecular dynamics 

calculations. 
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1. Introduction. 
Computational protein molecular dynamics programs (MD) such as AMBER (1)  

GROMOS (2), GROMACS (3) or CHARMM  (4) use  non-quantum mechanical forcefields that 

are calibrated on physico-chemical parameters of ensembles of small molecules. Computations 

using such  force fields predict that pico-ns motion with at least 0.1 nm amplitudes is pervasive in 

proteins.  For instance, in Figure 1, we show AMBER MD simulated distance fluctuations between 

the amide proton of Leu6 of GB1 and several other protons. GB1 is a small domain  (56 residues) 

of the Immunoglobulin G-protein. According to the MD simulation, large distance fluctuations 

occur, even though GB1 is generally characterized as a very rigid protein (5). Such large-

amplitude motions, if they would be present in reality, cannot but  dramatically affect protein 

biochemistry (6) (7) and protein entropy (8) (9).  

 
 

Figure 1. Left: Example of the fluctuations of the Ile6 HN -HA (black), HN-HB (blue), HN-

HG (green) and Ile6 HN- Thr51 HB (red) distances in a MD trajectory for GB1 at 283K. 

Right, the impact of these distance variations on NMR relaxation rates, expressed as 

(distance)-6.  

 

 

Clearly, in Figure 1, motions as parametrized by distance fluctuations between 1HN and 

the backbone 1HA are much smaller than those extending into the sidechain (1HN-1HB), while 

longer distances fluctuate even more. Can we detect such larger motions with experimental 

techniques? 

Experimental support for the “dynamical view” of proteins at the molecular dynamics ns-

ps  timescale has mostly come from solution NMR spin relaxation experiments   (10) and a few 

solid-state NMR experiments (11).  However, these spin relaxation experiments detect only 
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azimuthal librations of covalently bound pairs of atoms, (e.g.  15NH-relaxation). It should be of no 

surprise that the NMR-detected motions using these methods  are relatively small (compare the 
1HN-1HA variations in Figure 1), especially since distance variations  in a covalent pair are 

negligible.  As such these “classic”  NMR relaxation studies, suggest that proteins in solution are 

rather static, while the MD results indicate quite the opposite.  Support for the dynamical view of 

proteins has certainly come from IR vibrational spectroscopy – but these methods are mostly 

sensitive to vibrations in covalent bonds at a timescale of < 100 fs, and less to dynamics of larger 

moieties (12). Terahertz spectroscopy detects motions of larger units and provides information on 

collective modes with < ps time scale (13). Time-dependent fluorescence experiments disclose 

protein dynamics at the < 5 ns timescale, like NMR spin relaxation,  but are limited to the aromatic 

residues (14). There are a few NMR methods available to sample ps-ns motion beyond the 

backbone:  2H and 13C relaxation of methyl groups (9) (15), but these measurements also analyze 

librations of covalently bound atom pairs  and are not sensitive to distance fluctuations. 

Nevertheless, these measurements disclose much more lively dynamics than the protein 

backbone (9). 

NMR experiments sensitive to distance fluctuations at the ns timescale do exist (NOESY 

and ROESY) but quantitative interpretation of the cross peaks in terms of actual distances is 

already difficult (16) (17) (18).  We are aware of one study that uses an dynamical ensemble of 

protein structures, that includes distance variations, to refine NOE crosspeak interpretation.(19)  

We will discuss this work later. 

Figure  1b shows, that if one could detect changes in 1H-1H distances by NMR relaxation 

methods, the impact could be large. This is because NMR relaxation is dependent on the inverse 

sixth-power of the distance, which is much more variable than the distances themselves. In the 

example, the 1HN-1HB distance varies by 7%, while the NMR relaxation due to the dipolar 

interaction between these atoms would vary by 40%.    

 

Here we set out to design and analyze an NMR relaxation experiment that is sensitive to 
1H-1H  distance fluctuations.  We show that we can precisely measure  and analyze semi-selective  

R2 (actually R1rho) NMR relaxation rates of the amide hydrogens (1HN).  These relaxation rates 

are dominated by 1HN-1HX dipolar interactions, where 1HX represent all other protons, including 

other nearby 1HN. As such, these 1HN-1HX  R2 rates provide information about dynamical 

phenomena beyond the backbone in the protein. This source of information has not been tapped 

before. The likely reasons are that the proper NMR experiment did not yet exist, and the 
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interpretation of the rates is hampered by the large number of relaxation terms   that contribute 

(see the Section 2 “Negotiating the complexity  of protein R2 
1HN-1HX NMR relaxation”). 
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We have measured the semi-selective R1rho rates for the small protein GB1 (56 residues) 

at 283 and 303 K. Several crystal structures are available for GB1; we used the hybrid solid-state 

NMR -  crystallography entry 2qmt.pdb with a resolution of 1.05 Å (20). We wrote a computer 

program to calculate theoretical theoretical R1rho rates from this structure and found the 

correspondence with experimental data very poor, even after “minimization” of the structural 

coordinates (see Results). This is not a surprise: proteins are not rigid, and dynamical variations 

in 1HN-1HX distances should greatly affect the 1HN relaxation (e.g., see Figure 1b). We proceeded  

by preparing a suite of  computer programs to calculate theoretical R1rho rates incorporating 

fluctuating distances and angles as obtained from long (200 ns) MD simulations, using the crystal 

structure as a starting point. Incorporating dynamics in the calculations provided a  significant 

improvement in the agreement with experiment, although the correlation is still not as strong as 

we would like. Nevertheless, we interpret the improvement  as a demonstration of the existence 

of extensive dynamics in the protein. As an aid to analysis, we also compute 1HN-1HX order 

parameters. these are significantly smaller than the “classical” HN-N order parameters,  which do 

not report on distance fluctuations. 

Again, why was such an NMR analysis not available before?  This is most likely due to 

the fact that the analysis of the NMR data is indeed quite complicated. In the following section, 

we will describe these complications, and how we navigated around them. This section may be 

skipped by non-NMR experts, who will nevertheless be able to appreciate the improvement in 

data fitting when we include dynamics; the latter  is presented in the Results. 
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2. Negotiating the complexity  of protein R2 1HN-1HX NMR relaxation 
 

2.1 Proton transverse (R2) relaxation in proteins is affected by many  factors (21).   These 

comprise dipole-dipole interactions with other nuclei, chemical shift anisotropy relaxation, 

interference of relaxation mechanisms (22), and conformational exchange broadening (23), 

including exchange with water and scalar couplings. This complexity has led the avoidance of 

these sorts of measurements, although labeling strategies involving partial deuteration have been 

explored, producing isolated 1H spins at significant numbers of backbone and sidechain positions  

(24).  The change in proton R2 rates as a function of a paramagnetic probe can be used to map 

electrostatic potentials near proteins (25) (26), and this application has led to some renewed 

interest in proton R2 measurements.   

We here show that when using a specialized R1rho experiment (27), many of the 

complexities can be avoided.  At the outset, it should be mentioned that these R1rho  relaxation 

rates cannot be interpreted without knowledge of the structure. Even then, one of the problems 

immediately presenting itself is that NMR dipole-dipole interactions are different for “like” spins 

and “unlike” spins (28). When the two interacting spins have exactly the same chemical shift, the 

interaction is “like”, while when the shifts are different beyond the linewidth, they are “unlike”.  The  

intermediate case obeys a complicated equation that also depends on the linewidths (29).  

Precise knowledge of both the NMR spectrum and the structure are thus a prerequisite to 

interpreting the relaxation rates.  All 1HN relaxation rates are also affected by (potentially 

anisotropic) rotational diffusion, and by conformational exchange broadening, including mass 

exchange with water.  

The R2 measurement is complicated by (unresolved) scalar couplings with other nuclei. 

Not only are partially resolved scalar couplings difficult to deconvolute from the true R2 rate, but 

the associated in-phase / anti-phase oscillations bring R1 relaxation of the coupled spin into 

account, which in turn can be either “selective” or “unselective” (25).  It thus may seem that protein 

R2 measurements and their interpretations are too convoluted for use.  

These complicating issues have long been realized by Bodenhausen and co-workers (21)  

(30). They developed methods in which selective pulses excite just one proton resonance at a 

time, followed by a selective low-power spinlock. During the following signal decay (R1rho), scalar 

couplings with all other spins are eliminated,  chemical exchange broadening is suppressed, and 

the dipolar interactions are all between “unlike” spins.  However, elegant and precise as it is, this 

method can hardly be used for a comprehensive  measurement of 1HN relaxation rates in proteins, 

especially larger ones. 
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2.2 Here, we extend the methods pioneered by Bodenhausen and develop a method that 

captures R2 rates for all amide protons in a protein at once. Figure S2 in the supplemental 

information shows the pulse sequence of a novel semi-selective R1rho -HSQC experiment. We 

make use of the spectral separation of amide protons and aliphatic protons to selectively excite 

all the amide protons at once.  Subsequent application of  a high-powered spinlock will just lock 

the excited spins, which, besides amide protons, also comprise aromatic protons and in principle, 

the exchangeable protons from Asn, Gln, Ser, Arg, Lys and Thr residues. The result is that all 

proton pairs that were selectively excited, have during the spinlock identical chemical  shifts (that 

of the spinlock frequency) and are thus  “like” protons (31) while all other protons are ”unlike”.  As 

the  scalar coupled 1Halpha protons are not locked (since they were not excited in the first place), 

the 3JHNHA is decoupled (for TOCSY effects, see below).  

 

The measured relaxation rate RM  is given by (32): 

  [1] 

 

Here, R1rho is the transverse relaxation rate under infinite-power spin-lock, while R1 is the 

longitudinal relaxation. The other terms in Eq [1] will be defined and discussed in the paragraphs 

below. 

 

2.3 Let us consider the first term, which is the koff  rate  of  the amide-bound proton H’  in the proton 

mass exchange process  

       [2] 

The intrinsic (unprotected) amide proton exchange rate is given by the empirical relation (33) : 

               
                      [3]                                                                      

From the experimental parameters of the spectra (pH 6.5 , 10 oC and 30o) we  calculate 0.6 and 

10 s-1 exchange rates, respectively. However, the amide protons are protected from exchange 

through hydrogen bonding and due to inaccessibility. The following relationship quantifying these 

protection factors P has been developed by (34) 

        [4] 
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Where NC is the number of “heavy” atoms surrounding the amide nitrogen within 6.5 Å, and NH 

the number of hydrogen bonds per amide proton. The coefficients were obtained by (35). 

 Applying Eq [4]  to the structure 2qmt.pdb, we obtain protection factors varying between 2.6 x1010 

and 3.8x104 . According to these equations, the amide proton exchange rates (Eq 1] are reduced 

by these  very large protection factors.   

Summarizing, the maximum rate is 10 / 3.8x104  =   2.6x10-4 s-1occurring for amides in loops at 

303 K.  Hence, the  life-time broadening of the amide proton resonances as listed as kex in Eq. [1] 

can be neglected for all amide protons. 

 

2.4  Let  us estimate the relative contributions of the second and third term of Eq [1] for our 

experiments. These terms describe resonance-offset effects, with the θ  being the angle of the 

spinlock field with respect to the locking axis: 

 

          [5] 

Here  is the offset between the spin-lock carrier and the resonance of interest, and ωrf  the 

field strength of the spinlock.  

 

For GB1, the maximum offset between the spin-lock carrier at 8.5 ppm and the amide 

resonances is 1.87 ppm, or 1120 Hz with the used 600 MHz spectrometers. We used a spinlock 

fields of 12.6-14 KHz. Hence the values for the largest offsets  are cos2θ = 0.99 and sin2θ = 0.01. 

Without other terms we have RM=0.99 R1rho for  all resonances, and the third term in Eq [1] can be 

neglected. 

 

2.5. Equation [1] also describes with the fourth term the effect of the spinlock field on a (putative) 

fast exchange broadening for an individual resonance between two frequencies ωA and ωB,  

populations pA and pB, and the (pseudo) first-order rate constants kAB and kBA. The effective 

spinlock field in this equation,  ωeff   is given by 

        [6] 

since   (see above). 

A complete suppression of the (putative) broadening will occur if   
  



9 
 

No effect of the spinlock will occur if  

Thus, we may state that all conformational exchange processes with kinetics (much) slower than 

104 s-1 will be suppressed by the spinlock.  Variation of the spinlock field strength may uncover 

exchange processes in that 104 s-1 time range.  

 

2.6 In total, we have that RM, for the vast majority of cases is given by the second term R1rho in Eq 

[1]. But we still need to make a distinction between  “like” and “unlike” spins. Classically, “like” 

spins are those who have exactly the same “natural” resonance frequency. But in a spin-lock 

experiment, all locked resonances have the same frequency, i.e., that of the spinlock. In that case 

we have: 

(27),(29) (31):  

 

    [7] 

 are the magnetic permeability of vacuum, the proton gyro-magnetic ratio and Planck’s 

constant divided by 2π, respectively.  

 are the 1HN-1HX proton distance, the rotational correlation time (assuming isotropic 

tumbling) and the proton resonance frequency, respectively. In our application,   and 

Eq. 7 becomes the “like”  R2  spin relaxation rate equation: 

 

     [8] 

 

 

The “unlike” relaxation rate is given by (27), (31): 

   [9]  

 

Which for our conditions becomes the “un-like” R2  spin relaxation rate equation (29):  

 

 

    [10] 
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2.7 The spinlock fields, employed for the purpose of suppressing the 3JHNHA scalar coupling and 

exchange broadening, may, in principle, also cause coherence transfer (TOCSY (36) or HOHAHA 

(37)) from the amide protons to the scalar coupled alpha protons, which would result in sinusoidal 

perturbations of the relaxation curves.  However, since the spinlock carrier has been placed down 

field (8.5 ppm) of both HN and HA resonances, the transfer is completely negligible (see density 

matrix calculations based on the strong-coupling spin Hamiltonian in the Appendix).  

 

2.8. According to our analysis above, the measured relaxation rates RM in Eq. 1 are to within 1% 

identical to the R2  rates in Eq. [8 and 10], extended by the dipolar relaxation of 1HN with 15N, 1HN 

with 13C and the CSA relaxation for 1HN.  But,  the expressions [8] and [10] above refer to single 

proton pairs only.  Even in small proteins, many protons interact magnetically. There are typically 

100 protons in an 8 Å sphere around an amide proton which all contribute to the 1HN relaxation.  

All  these dipolar-dipolar interactions will interfere with each other (cross correlation) (22,38,39). 

For example,  an amide proton i in dipolar interaction with two other protons k and l will exhibit 

two different relaxation rates, . (22,38,39) The amplitude of the cross-

correlation (CC)  term is dependent of the geometry of the three-spin triangle (22,38,39) and can 

vary between 0 and . Similar interference is the case for all of the many three-spin 

triangles the “center” spin i  is involved in.  

This  appears to be an impassable hurdle towards interpretation of the 1HN-1HX relaxation rates. 

Fortunately,  this is not such a big issue after all. If one fits a single exponential to the beginning 

of the relaxation curves only, the CC terms cancel since the average of 

       [11] 

for t < < 1/R2 .  

In a recent paper,  we showed that this approximation also holds when many relaxation pathways 

interfere (40).  Actually, the interference of multiple relaxation terms cancels better than for just a 

few terms.  

Thus, we have, when fitted from the beginnings of the relaxation curves,  that N other protons j 
for an amide proton i will co-add in a simple  pair-wise manner:

 
 

                      [12]
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2.8. In our computations we use a value of 9.7 ppm for the 1HN CSA, assuming axial symmetry. 

This value was taken from (41). With that, one calculates that on average the 1HN chemical shift 

anisotropy relaxation accounts for  4 % of the total amide proton R1rho (at 600 MHz).  The same 

authors also show that the 1HN CSA varies by +/- 22% (in ubiquitin) and that that variation is 

strongly correlated with the 1HN isotropic chemical shift. Such a variation in CSA will account for 

almost 50% in the 1HN CSA relaxation, since the latter depends on the square of the CSA. But 

this  amounts to just an uncertainty of  2% in the overall 1HN relaxation. We decided this difference 

is too insignificant as to incorporate a variable CSA in our calculations. However, if the R1rho 

experiments were to be carried out at higher fields (see below) one would have to bring this into 

account.  

 

 

2.9. Last, but not least, since the vectors connecting the different pairs 1HN-1HX will point in many 

different directions, the influence of anisotropic molecular diffusion (42) on the rates will be 

averaged out.   

 

In the end, our calculations suggest that  the decay of the spin-locked  1HN coherence 

(RM) is given by the dipolar 1HN-1HX interactions (on average 67% of the total rate), the dipolar 

interaction with the attached 15N (24%) ,  dipolar interaction with 13C nuclei (on average 5%) , and 

by 1HN chemical shift anisotropy relaxation ( 4 % at 600 MHz) .  

Water molecules that are bound to the protein with large residence times can also contribute, but 

we have not considered this complication here.   

 

In this work, rather than attempting to make any direct decomposition of the total rates into 

the individual terms in Eq. [12], we compute the sum from results of molecular dynamics 

simulations and explore the sorts of information that can be extracted by comparing these to the 

measured rates. 
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3. Results. 
For GB1, shown in Figure S1, we find that the R1rho-HSQC experiment (Figure S2) can 

obtain site-resolved R1rho relaxation rates for individual 1HN resonances with high precision Figure 

S3 and Table S1 and S2). Representative decay curves  are given in Figure S3.  

For GB1, the experimental R1rho data could  be fitted well with a single exponential, often 

with a RMSD of fit of less than  3% (see Figure S3).  A Table with the  obtained rates and their 

error estimations is provided in the SI. (Tables S1 and S2). In Figure S4, we compare the R1rho 

rates for two values of the spinlock power, 6 and 12 kHz. The rates are equal withing the error 

ranges, except for 8 residues , where the rate is significantly faster with the smaller spinlock field-

strength. This indicates that these HN experiences conformational exchange broadening with a 

rate around 104 s-1.  Most, but not all,  of these protons are found in loops  (see Figure S1) 

 

 Without local motion or exchange broadening, the theoretical  relaxation rates are 

dependent on just two parameters (e.g., see Equations 8, 10 and 12) : the 1HN-1HX distances as 

obtained from  the (crystal) structure, and the protein rotational correlation time . We 

experimentally determined the latter from “classical” 15N relaxation studies (R1, R2 and NOE) (43) 

(10) (44)  at 10 0C using the same sample as used for the  R1rho experiments at 10 0C.  We 

obtained an average value of  5.96 ns, taking anisotropic diffusion into account (minimum 5.62 ns  

maximum 6.63 ns). This value corresponds reasonably well  to the average value computed from 

the crystal structure 2qmt.pdb using the program HydroNMR  (42) (6.4 ns, average of the 

anisotropic eigenvalues) while the empirical equation developed by Daragan et al. yields 7.0 ns 

(45). We will proceed here by discussing the results and computations at 283K.  The experiments 

and calculations at 303K yield the  same overall picture and will be discussed later.  
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Figure 2.  Calculated vs Experimental R1rho rates (Eqs. 8,10 and 12). The calculation is 

based on the structure 2qmt.pdb and the experimental rotational correlation time, = 5.96 

ns. The black line shows y=x. 

 

When using the experimental  rotational correlation time  of 5.96 ns, the average computed 

R1rho relaxation rate at 283 K was 33.9 s-1, which is much larger than the average experimental 

rate of 25.1 s-1 (see Figure 2 and Table 1, rows 1 and 2).  It thus seems that the experimental 15N 

correlation time might be too large to be used for the 1H-1H relaxation computations. The 

difference is even larger when using the HydroNMR  correlation times. But it must be unlikely that 

the correlation times can be that far off; rather, the mismatch  is the  first indication that the 1H-1H 

relaxation dipoles are more susceptible to local motion and have smaller order parameters than 

the 15N-1H dipoles.  
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 TABLE 1 

ROW Calculation TEMP  τC AVERAGEa SCALINGb RMSDc RMSDRd PEARSON-R2 e SLOPE f R-FACTOR g 

  K ns s-1  s-1 %   % 

1 Experiment 283 5.96 25.1  0.51 2    

2 XRAY 283 5.96 33.9 1 6.65 20 0.22 0.50 35 

3 XRAY 283 5.96 25.1 0.74 4.33 17 0.22 0.37 14 

4 MINIMIZED 283 5.96 25.1 0.76 4.65 19 0.20 0.42 14 

5 
MINIMIZED 

ANISOTROPIC 283 5.96 25.1 0.76 4.64 19 0.16 0.38 15 

6 DYNAMIC AVERAGE 283 5.96 25.1 0.74 5.23 21 0.07 0.32 16 

7 FULL DYNAMIC (4A) 283 5.96 25.1 0.94 4.30 17 0.36 0.47 13 

8 FULL DYNAMIC (5A) 283 5.96 25.1 0.88 4.24 17 0.47 0.52 11 

9 FULL DYNAMIC (6A) 283 5.96 25.1 0.87 4.22 17 0.48 0.52 11 

10 FULL DYNAMIC (7A) 283 5.96 25.1 0.87 4.21 17 0.48 0.52 11 

11 FULL DYNAMIC(8A) 283 5.96 25.1 0.86 4.21 17 0.50 0.52 11 

12 FULL DYNAMIC(9A) 283 5.96 25.1 0.85 4.21 17 0.51 0.52 11 

13 FULL DYNAMIC* 303 5.96 25.1 0.88 4.27 17 0.52 0.5 11 

           

14 Experiment 303 3.6 15.1  0.14 1    

15 XRAY 303 3.6 22.1 1 4.37 20 0.51 0.89 45 

16 XRAY 303 3.6 15.1 0.65 2.19 15 0.51 0.58 11 

17 MINIMIZED 303 3.6 15.1 0.68 2.4 16 0.41 0.66 11 

18 
MINIMIZED 

ANISOTROPIC 303 3.6 15.1 0.70 2.39 16 0.38 0.63 13 

19 DYNAMIC AVERAGE 303 3.6 15.1 0.69 2.47 16 0.14 0.40 12 

20 FULL DYNAMIC (8A)  303 3.6 15.1 0.82 2.17 14 0.76 0.72 6 
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Legend to Table 1: 

Summary of experimental and calculational statistics of GB1. The row numbers are quoted in the 

text. The experiments were carried out at two temperatures. The rotational correlation time, τc  

was determined experimentally at 283K from 15N relaxation rates. The value of τc at 303K was 

extrapolated from the former using viscosity tables.   

(a) Averages over residues 4-53. (b) The scaling factor used to obtain the best correspondence 

between the average of the calculated rates and the experimental rates.  

(c) Root-Mean Square Deviations; for the experiments these are the averages of the experimental 

uncertainties (See SI); for the calculations these are the standard deviation of the differences 

between experimental and calculated values. (d) Ratio of RMSD and the average. (e) Square of 

the Pearson correlation coefficient (f) slope of the linear least-squares fit. (g) R-factor as 

commonly used in the crystallographic literature (46) 

The calculations “XRAY” are from the static coordinates 2QMT.pdb (47) , and are the sum of the 
1HN-15N, 1HN-CSA, 1HN-13C rates, 1HN-1HX R1rho (R2) relaxation rates. The calculations 

“MINIMIZED” are from the static coordinates 2QMT.pdb, energy minimized with the AMBER 

1ff19SB forcefield (48). The calculations “MINIMIZED ANISOTROPIC”  correct the 1HN-15N, 1HN-

CSA rates for rotational diffusion anisotropy, as calculated from HydroNMR (42). The calculations 

DYNAMIC are the sum of the static values of isotropic 1HN-15N, 1HN-CSA multiplied with 1HN-N 

order parameters, static values of 1HN-13C multiplied with  1HN-13C sum-order parameters, and 

the dynamical  1HN-1HX R1rho relaxation rates. The value in parenthesis indicates the radius of the 

sphere limiting the selection of 1HN-1HX distances for to be extracted from the  MD simulations. 

The  relaxation rates were extracted from a 200 ns MD trajectory at the indicated temperatures.  

The calculation “DYNAMIC*”  compares the experimental values at 283 K with a computation a 

rotational  correlation time of 5.96 ns, belonging to the 283K temperature, but used order 

parameters and dynamical dynamical  1HN-1HX R1rho relaxation rates from the 303K MD trajectory. 

 

 

 

 

In order to fit to the experimental average, we reduced all computational  rates by a factor of 0.74 

(i.e., a simple approach to obtain an average  1HN-1HX order parameter). The result  is shown in 

Figure 3  and are listed in Table 1, row 3. We improved the fit  by multiplying R1rho values due to  
1HN -methyl protons interactions by 0.5, in an attempt to account for fast methyl rotation. A 
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justification for this approach is shown in Figure S5, where actual order parameters for such 

interaction were calculated from a MD trajectory: the average order parameters of short  1HN-CH3 

interactions is  0.5. While order parameters for more distant 1HN-CH3 pairs will be larger, we argue 

that the distant pairs contribute less to the overall  R1rho to make the error negligible.  

 
Figure 3.  Calculated vs Experimental R1rho rates. The calculations are based on the structure 

2qmt.pdb which were scaled down by 75% to obtain the same average rate as the average 

experimental rate. In blue, the 2qmt.pdb crystal structure (protons attached through Molprobity 
(49). In green, after minimization by the AMBER ff19SB forcefield (48).  

 

 

In our computations we experimented with how to treat the interactions of the 1HN with 

the exchangeable protons. Which exchangebles are spinlocked, and which ones are not? 

Calculations with different assumptions made  no significant difference (results not shown) , and 

we opted for a common-sense  approach to treat interactions with exchanging hydroxyl protons, 

Lys E-NH3, Arg guanidinium  protons, which exchange faster with water than the timescale of 

the spinlock and which are invisible in the NMR spectrum,   as “unlike” interactions, while the 

sidechain 1HD of Arg, and  sidechain NH2 of Asn and Gln, typically visible in the NMR spectrum,  
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were treated as “like” interactions. As the NMR experiments were carried out with a sample in a 

95/5 % H2O/D2O solution, we reduced all 1HN-1H-N and 1HN-1HX exchangeable  rates by 5%. 

Despite all of this care, we obtain a Pearson R2 of just 0.22  and a slope of the fitting line of 0.37 

(which should be 1 for a perfect fit). Extensive minimization of the crystal  structure coordinates 

using the AMBER program did not change the quality of the fit (see Table 1 and Figure 3), 

neither did the explicit incorporation of rotational anisotropy as obtained from HydroNMR 

affecting the 1HN-N relaxation rates (Table 1, rows 3, 4 and 5 at 283K, 11,12 and 13 at 303K).  

 

At this point it is clear that the static structure in the 2qmt crystal cannot account for the 

observed relaxation rates. We thus decided to incorporate dynamics into our modelling. We used 

the AMBER package, with the ff19SB forcefield (48), to compute 200 ns trajectories of GB1 in 

OPC water (50)  at 283 and 303 K, with the 2qmt.pdb structure as initial condition (see the 

Methods section for details.)  We also computed average structures from these trajectories, but 

they yielded worse results than the crystal structure  (see DYMAMIC AVERAGE” in Table 1, row 

6 and 19).  Obviously, using a dynamically averaged structure  is not the correct way to handle  a 

dynamic ensemble. Thus, we extended our dynamic calculations towards extracting order 

parameters, and use these order parameters to reduce the computed  relaxation  rates (see 

Methods). 

 

 A very substantial change in quality of the fitting occurs when incorporating protein 

dynamics in this way in the computations. We analyzed a 200 ns AMBER trajectory of GB1 in 

OPC water, using the ff19SB forcefield. First, the overall molecular motion was eliminated by 

superposing the MD frames. We calculated the autocorrelation functions (AC) of the angular 

(azimuthal librations)  (as P2cos) and (as (r-3)2) distance (radial) variations of the dipole-dipole 

vectors between  individual 1HN and individual- 1HX, as in Eq. [9] below. As detailed in the 

Methods Section, the Fourier transform of the sum auto correlation function is proportional to the 

sum of the individual HN-HX relaxation rates.  
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Figure 4. Example of a calculated (sum) autocorrelation function for the unlike interactions 

involving HN of E15 (Black) and the fitted function (RED) which is Y=A∞+As x exp(-τ/τ1) (see 

Methods)  Left: not normalized; right: normalized to unity at zero time. 

 

 

 

 

The sum AC in Figure 4 shows a fast initial decay within 100 ps, followed by a decay with 

a time constant of a few nano seconds before a plateau is reached. The plateau value is the major 

determinant of the  R1rho relaxation rates: the relaxation rate is reduced to by  S2HN-HX (the 

plateau value) due to local motion. Motions with a time constant in the nano-second region 

increase the relaxation rate by a small amount (see Eqs.  21 and 23).   The ps-time scale motions 

do not contribute to R1rho relaxation rates. For each sum correlation function, we fitted to the 

plateau value and to the amplitude and correlation time of the slow decay, as is shown in Figure 

4, and use these values in the relaxation equations (see methods). Local motions slower than the 

molecular rotational correlation time are masked by the latter and cause no additional relaxation. 

We avoided including such motions in our calculations by evaluating the AC functions in MD 

trajectories for 6 ns only (but averaged over 200 ns). 

 The results of the dynamic calculations are shown in Figure 5. The Pearson R2 of just 0.21 

has jumped to 0.36-0.50 while the slope of the least-square fit improved from  0.37 to 0.42 - 0.52, 

depending on the radius of the sphere limiting the selection of 1HN-1HX distances to be considered 
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for the computations (Table 1, rows 7-12). From the values in the Table 1 one sees that the 

computations converge around a selection sphere of 8Å.  

 

 

Figure 5.  Calculated vs. Experimental R1rho rates.  In red, R1rho calculated from auto 

correlation functions extending to 6 ns, averaged over a 200 ns MD calculation. The dashed 

red line is the least square fit y=0.53x+11.7, with R2= 0.50. Experimental and simulation 

temperature are at 283K. The black line is y=x. 

 

 

From these dramatic improvements it is abundantly clear that the local motion, such as 

calculated by the MD simulations is indeed detected by the 1HN-1HX relaxation rates. 

Nevertheless, the R2 of 0.50 is not a very good fit. While dynamics definitely improved matters, 

there must be other (non-accounted-for) factors that reduce the (calculated) relaxation rates. 

These will be discussed later. 
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Figure 6. Calculated and Experimental R1rho rates as function of protein sequence. 

Experimental R1rho (black) 283K.In blue, R1rho for the rigid structure in Figure 3. In red, R1rho 

from the dynamic ensemble (Figure 5). The blue and red patterns were scaled to yield the 

same average rate as the experimental data (see discussion).The GB1 secondary structure 

is indicated at the bottom. 

 

 

The effect of incorporating dynamics in the calculations is depicted in a different way  in 

Figure 6. Most of the  up-down patterns are well-reproduced for  both the rigid and dynamic 

calculation, indicating that the relaxation rates are dominated by the rigid structure. The exception 

is  the helix (residues 25-36): the “phase” of the pattern is off for the rigid computation but is 

recovered for the dynamic computations. In this figure one also perceives that the  large increase 

in Pearson R2 occurring when considering dynamics is due to the big change for the loop around 

residue 11.   
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Figure 7. The classical S2NH order parameters (computed) vs the sum  S2HN-HX order 

parameters for like (yellow) and unlike (Red) interactions. In blue are the sum  S2HN-C order 

parameters. The black line is y=x. T=283K. 

 

Figure 7 shows that, especially for the unlike spin pairs, the calculated 1HN-1HX order 

parameters are (much) smaller than the calculated 1HN-N order parameters, which correspond to 

the classical 15NH order parameters.  

Figure 8 shows several correlation functions, separating the distance-dependent (radial) 

and angular auto-correlation functions, for several residues. 
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Figure 8. Auto correlation functions as computed from a 200 ns MD trajectory (283K). Top, 

K31HN-Q32HA; middle, K31HN-K31HG2; bottom, T11HN-L12HG. Note the difference in 

vertical scale of the panels.  

In red, <P2(t)P2(t+τ)>; in green, <1/(r3(t)r3(t+τ)> ;  

in blue, <P2(t)P2(t+τ)><1/(r3(t)r3(t+τ)>;  in black, <P2(t)/(r3(t) P2(t+τ)/r3(t+τ)> (used in the 

computations) 

 

The figure shows that the relative contribution of axial and radial motion to the correlation 

function, and thus relaxation, is different dependent on the 1HN-1HX vector considered: In the top 

panel, the angular order parameters, which correspond to the plateau values  of the auto 

correlation functions, are smaller than the radial ones, while both are quite large, indicating little 

motion. This interaction involves atoms on the backbone (K31 HN-Q 32 HA). The middle panel 

shows that the radial order parameter can be smaller than the angular order parameter, while in 

the bottom panel the reverse is the case.  The latter two interactions involve sidechain protons, 

and the motion is quite large. In both latter cases, the overall order parameter for 1HN-1HX comes 

out significantly lower than the angular order parameters alone. Hence, fluctuations in the 

interproton distances can contribute greatly to the reduction of the overall relaxation rates.  



25 
 

The fact that product of the angular and radial AC’s (blue) in the bottom panel is smaller 

than the product AC (Black) indicates that, in that case, the angular and distance fluctuations are 

not statistically independent. When the blue and black curves coincide, such fluctuations are 

independent.  In all cases we use <P2(t)/(r3(t) P2(t+τ)/r3(t+τ)> in our computations. 

The experiments were also carried out at 303K.  In the calculations we  used a rotational 

correlation time of 3.6 ns, extrapolated from the value at 283 following viscosity tables. Without 

taking dynamics into account, the computed R1rho rates were also much larger than the 

experimental ones (Table 1, row 15). But the Pearson R2 for the rigid structure was already 

significantly better (R2=0.51) (see Figure 9a, Table 1, rows 15,16 )  than at 283K (Figure 3, Table 

1 Row 3), and improved further (R2=0.76) by including dynamics, extracted from a MD trajectory 

at 303 K (Figure 9B, Table 1, row 20).  The slope of the linear regression line is also better (0.72). 

The improvement is also apparent when inspecting Figure 10, where the calculated and 

experimental rates are depicted versus the protein sequence (compare with Figure 6). Just like 

at 283K, of the  up-down patterns are well-reproduced for  both the rigid and dynamic calculations.  

And, again, the exception is  the helix (residues 25-36): the “phase” of the pattern is off for the 

rigid computation but is recovered in the dynamic computations.   
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Figure 9a. 

In blue, experimental R1rho vs R1rho 

computed from the crystal structure 

2QMT.pdb with protons added by Molprobity  
(Blue). T=303K. In green, after minimization 

by  AMBER. The black line is y=x. 

The blue trendline (Xray) is y=0.65x+6.2 

with R2=0.41. The green trendline 

(Minimized) is y=0.59x+6.2 with R2=0.51 

 

 

 

Figure 9b. 

In red, R1rho calculated from auto correlation 

functions extending to 6 ns, averaged over a 

200 ns MD calculation. Experimental and 

simulation temperature is 303K. 

The red trendline is y=0.72x+4.3 with 

R2=0.71. 

 

 

The distribution of the order parameters for 303K  is  found in Figure S5. The distribution  is very 

much like the one at 283K. 
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Figure 10. 

Experimental R1rho (black) at 303K. In blue, R1rho for the rigid structure in Figure 9a.  In red, 
R1rho from the dynamic ensemble calculated for 303K (Figure 9b). The GB1 secondary 
structure is indicated at the bottom. Both static and dynamic rates have been scaled so that 
their mean matches the experimental mean. 
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4. Discussion. 
 

4.1 For a rigid structure,  the theoretical 1HN R2 relaxation rates are just function of the 

rotational correlation time and the (crystal) structure of the protein (Eqs. [8] and [10]). The 

rotational correlation time was determined experimentally from 15N relaxation measurements. The 

latter compares favorably with values computed by the program HydroNMR (42) from the crystal 

structure. However, the theoretical 1HN-R2 relaxation rates based on this correlation time are 30% 

too large as compared to the experiment. (Table 1, rows 2 and 15).  In analogy to classical 15N 

relaxation, these results immediately suggest that local motions with time constants faster than 

the rotational correlation time, expressed as “modelfree” order parameters, reduce the rates (51). 

However, the experimental 1HN R1rho rates are subject to so many technical and physical 

complications, that even while we think address all of them (see results and theory sections) , 

there remains a gnawing feeling that not all has been covered.  But, if a relaxation mechanism 

was overlooked (say, e.g., dipolar interactions with (bound) waters), the calculated relaxation 

rates would become even larger than they already are. 

What does convince us that we are truly measuring dynamical phenomena, is the fact that 

a dramatic increase in the R2 of fit occurs when computing R1rho from a dynamical MD ensemble 

(Table 1 rows 7-12 and 20), and that the radius of the sphere of protons taken into account for 

the dynamic calculations affects the R2 factor (see Table 1, rows 7-12). 

Figures 7 and  S6 show that “unlike” 1HN-1HX vectors, which predominantly correspond 

to amide-aliphatic vectors are especially dynamic, with order parameters as low as 0.5.   Here 

one should be aware that the 1HN-1HX order parameters report on both angular as well as 

distance fluctuations (radial order parameters).  The “unlike”  order parameters are especially low, 

because many are affected by interactions with fast rotating methyls.  

In Figure 8 we separated out the angular and radial autocorrelation functions for a few 

interactions.  One observes very low order parameters (plateau values) for interactions not  

involving methyl groups as well.    Summarizing, we find that the 1HN-1HX R1rho relaxation rates 

are sensitive to both angular and radial fluctuations, and, in some cases, can be dominated by 

the radial fluctuations.  

The question of how protein dynamics influences homonuclear dipolar relaxation rates is 

an old one, going back to early days of molecular dynamics simulations, (reviewed, for example 

in  (52)). Most of these studies addressed the effects of motion on individual NOESY or ROESY 

peaks and used a "static" reference model with the H-H distance taken as the average value from 

the simulation.  With that reference, distance fluctuations increase relaxation rates, rather then 
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decrease them. But, for relaxation, it is not the average distance, but  (i.e., AC(0)) that 

maybe more  relevant. With the latter definition, distance fluctuations  lead to a reduction of of the 

relaxation rates, as is required for a better fit with the experiment.  Since there is no single 

structure whose distances all match either <r> or <r-6>-1/6, the division between “structural” and 

“dynamical” contributions to relaxation will inevitably be somewhat arbitrary.  The approach used 

here, using <r-6>-1/6 as the reference distance, treats radial and angular fluctuations on an equal 

footing (see Figure 8) . Griesinger and co-workers are interested in protein structural fluctuations 

at all time scales. In a recent paper (19), they assume that (all) dynamically accessible states of 

ubiquitin in solution are represented by an ensemble of 117 static structures available in the 

Protein Data Bank. The different  1H-1H distances in these structures contribute to  a single NOE 

cross peak intensity. Rather than just optimizing the populations of these structures and averaging 

the relevant distances (with the problems as discussed above),  they assign interconversion rates 

between the structures. From these proposed rates, the calculate auto correlation functions 

relevant to NOE cross peak build-up. They proceed by optimizing the interconversion rates over 

a large time span (tc +/- 3 orders of magnitude) to obtain a best (collective) fit to the NOE cross 

peak volumes. The key finding is this dynamic / kinetic approach yields a better fit to the 

experimental NOE data, than a single structure, or a population optimized non-interconverting 

(static)  ensemble.   

Our work, using another approach,  thus further confirms the above conclusion that 1H 

NMR relaxation data (NOE is also relaxation) can disclose underlying protein proton dynamics. 

Our work is much less detailed than theirs but does not depend on the availability of many (crystal) 

structures, or high-quality NOE data. Our  method can point to an area in the protein where 

dynamical processes are active (rather than individual proton pairs).  

 

While including dynamics does improve the R2,  one still needs a scaling factor of 0.85 for 

a best fit to the average relaxation rates (see Table 1). Is the protein more dynamical than 

captured in the MD calculations? We investigated if order parameters belonging to a 303K 

simulation would improve the fit to the 283K data. One  indeed does perceive some improvement, 

(compare Table 1, rows 11 and 16, but it is not sufficient to make a decisive statement at this 

time. 

Together, the improvements on the correlation between experimental and calculated R1rho 

rates while including dynamics as obtained from MD calculations with the Amber ff19SB forcefield, 

indicates that that forcefield is a reasonable representation of physical reality.  
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4.2 Our work is closely related to reference (18). There, it is demonstrated that one can 

experimentally detect  motion of individual 1H-1H vectors by comparing the intensities of ROESY 

and NOESY cross peaks (actually in a series of off-resonance ROESYs). In three ways their 

approach is superior to ours: (1) they detect motion without depending on computation; (2) the 

information pertains to individual relaxation vectors; (3) no isotope labeling is needed.  However, 

by using cross peaks intensities, one runs into the complication of spin-diffusion.  The latter can 

be  circumvented  by using very short NOE/OE mixing times, where the NOE/ROE cross peak 

heights are approximately proportional to the cross-relaxation rates. Regretfully, such short mixing 

time spectra are not very sensitive, and the approach is limited to very small proteins with very 

high concentrations (a 10 mM sample of BPTI was used).  

Our approach is less elegant but can be applied to samples with lower concentrations (we used 

1 mM). Our experiment is not affected by spin-diffusion (i.e., we quantitate what corresponds to 

the “diagonal” of the ROESY). In order to circumvent our problem with cross-correlated R2 

relaxation, we actually use the most sensitive experiments (short relaxation times) for our 

analysis. Last, and not least, our experiment, combined with calculation, is sensitive to radial 

motions (distance variations) whereas theirs is not (because they use the ratio of NOESY and 

ROESY intensity, which have the same distance dependencies). 

 

4.3 In Figure S8 we compare experimental and calculated 1H-15N rates from a 200 ns MD 

trajectory.  One sees that the correspondence for these rates is excellent (given the experimental 

uncertainties). The one computed point that lies outside the experimental error range, belongs to 

Gly38, in a loop. Apparently the current forcefield  predicts too much motion for this loop.  

 

4.4 The 1HN-15N dipolar + 1HN CSA relaxation comprise a full 32% of the total 1HN 

relaxation rates. According to the HydroNMR calculations, these relaxation rates are affected by 

anisotropic rotational diffusion with a variation of 6% (See also Figure S6). These variations 

should thus correspond to 1.6% of the total 1HN relaxation rates. One would thus expect that one 

maybe just detect the effect of these variations in our computations. However, including 

anisotropic diffusion  makes the fit with experiment worse (see Table 1, rows 4,5 and rows 17,18). 

It is possible that the anisotropic (angular) diffusion of the 1HN-1HX vectors  may compensate for 

the anisotropic effects of the 1HN-N vectors.  Taking into account anisotropic diffusion for the 

thousands of  1HN-1HX vectors is in principle possible by referring to the diffusion tensor as 
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computed from HydroNMR. However, at this stage, we decided that the possible improvement is 

too small to warrant the effort.   

 

4.5 Why is the rigid fit for R1rho at 283K is so much worse (R2=0.22) than at 303K 

(R2=0.51)?   The difference cannot be due to the precision of the experiments, which have 

average uncertainties of  2 and 1% respectively (see Table 1, rows 1 and 8).  We offer the 

following possible explanation. According to the MD simulations, there are fluctuations with a time 

scale of around 1 ns (e.g., see Figure 4).  Motions at that timescale are likely to be statistically 

independent of the overall motion (τc=5.96 ns). They do contribute up to 10% to 1HN NMR 

relaxation. It may be  that neglecting these motions in the rigid calculations at 283K contributes 

to the low R2 of 0.2. Including them (as well as overall order parameters) thus makes a dramatic 

difference (R2~0.5)   At 303K, these motions are physically difficult to distinguish from the overall 

rotational diffusion (τc=3.6 ns) and couple and merge with the latter. Not including them in the 

rigid calculation is then less of a problem (R2=0.5). The improvement by including local motion 

than results in a smaller change in R2.   

 

4.6  How can it be that the rigid calculations have the “helical phase” wrong (see Figures 

6 and 10) , while the dynamical  calculations do approach the experimental “phase”? The rigid 

“phase” is determined by the number of 1HN-1HX interactions. These are smaller for HN at the 

solution side of the helix as compared to the inside side of the helix.  Including dynamics in the 

calculations likely breaks this simple pattern. 

  

 

4.7  
What can be improved? While inclusion of dynamics in the R1rho calculations significantly 

increases the correlation with experimental data, there is clear room for improvement. At first one 

would suggest including anisotropic rotational diffusion in the calculation. However, including 

orientation dependent τc values for the 1H-15N dipoles (which vary by 10%, see Figure S8) makes 

correspondence between experiment and calculations worse (see Table 1, row 5).   Because the 
1HN-1HX vectors point in many different directions, the effect of orientational anisotropy on the 

sum of the relaxation rates is averaged out. It has not been included in the computations. While 

the slope of the correlation for the 303K data with the  calculation is reasonable (see Figure 9b), 

it is badly off for the 283K data (Figure 5). True, only a few points above 30 s-1 drive the slope 

down (L5, I6 and F52, from left to right). These same outliers also occur in the rigid case (Figure 
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3) and thus  the forcefield cannot be at fault.   The large experimental rates are not erroneously 

large because relaxation cross correlation has been neglected. As is shown in (40), fitting single 

exponentials to a multi-exponential relaxation curve will yield rates that are rather too low than  

too high. At present we can just offer one explanation: the amides of L5, I6 and F52 are less than 

4 Å from each other; possibly they are affected by a common very fast conformational exchange 

broadening which has not been suppressed by the 10 kHz spinlock.    

 

4.8 Motions slower than the rotational correlation time (ns) will  not contribute to the decay of the 

auto correlation function. However, conformational changes, even if they do not directly contribute 

to exchange broadening (i.e., 105 < kAB, kBA  < 109 s-1 ; see equation Equation 1 and discussion 

thereof),  will change distances in the molecule and therefore change the amplitude of the 

relaxation driving term (see the distance dependence in, e.g., Eq 8). In reality, such exchange 

processes will result in averaging of different relaxation rates belonging to the different 

conformations.  In case of MD trajectories, one can try to capture those variations by averaging 

the 5 ns AC function (i.e., the length of the rotational correlation time) over an extended MD run. 

We used a 200 ns run and should thus be sensitive conformational changes with time scales up 

to ~100 ns.  

 

4.9 Can the approach be extended to larger proteins?  The experiments were carried out 

for the small protein GB1. The experiments and computational results are of value to the 

fundamentals of protein science. However, can these experiments and data analysis also be 

extended to larger proteins which may be of greater biological importance?  Provided that 200 

µM samples can be made, the sensitivity of the R1rho experiment is likely sufficient, but one still 

needs a well-resolved 15N-1H HSQC to analyze the data. The latter limits protein size to about 20 

kDa, maybe 30 kDa at very high field. There are, of course, many proteins of biochemical interest 

that fall under this 20 kDa limit. 

If one resorts to perdeuteration of the aliphatics (53) to improve the 15N - HSQC or TROSY, 

extra complications occur in the interpretation of the data. The perdeuteration needs to be virtually 

100% complete, because a few 1H instead of  2H  here and there will dominate the relaxation of 

the 1HN.  TROSY also gives yields additional complications as the unknown variability of the 1HN 

CSA tensor orientation  will  affect the 1HN cross-correlated R2 rate in unknown ways.  

It is thus reasonable to project that a 20-30 kDa 15N labeled protein, using an ultra-high 

field spectrometer can yield sufficiently sensitive with a R1rho-HSQC relaxation data. Of course 
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– a high resolution (crystal) structure needs to be available as well for the analysis of the results 

in terms of dynamics. 

Focusing on Methyl TROSY, the “goto” experiment for very large proteins (54),  will not 

help much either – imperfections in perdeuteration will also be a dominant problem in relaxation 

and interpretation.  

One possibility is to extend the experiment to aromatic protons, using a 13C-1H HSQC as 

a read-out. Experimentally this is feasible, but complications arise in the interpretation because 

aromatic protons are difficult to assign, while micro-second ring flips, if present,  will average the 
1H-environment of the “equivalent” ring protons, complicating analysis. 

 

5 Conclusion. 
The dramatic improvement in both the average rate and  the R2 of fit for computed and 

experimental 1HN R1rho rates for GB1 when incorporating dynamics,  cannot  prove that protein 

dynamics is pervasive, but strongly points in that direction. Taking the static structure to be either 

the crystal structure or an average from the simulation yields average relaxation rates that are 

about 30% higher than experiment (at 283K), whereas including the conformational fluctuations 

from the simulation cuts this deviation about in half, to 16%.  The corresponding overestimates of 

rates at 303K are 54% for the static structures and 22% when fluctuations are included.  The 

variation of rates among amide protons (as measured by the correlation coefficient) is also much 

better reproduced by calculations including the effects of conformational fluctuations than from 

the static structures we have examined.  Our NMR experiment and data interpretation / calculation 

probes coordinate fluctuations between backbone and sidechain spins that are not sensed by 

other NMR relaxation experiments (except NOESY which is difficult to analyze, especially for 

larger proteins). As such, this work provides novel  insight into the nature of conformational 

fluctuations that are present in even small globular proteins. The work also suggests that the 

atomic fluctuations as produced by AMBER, using the ff19SB forcefield, must be a reasonable 

representation of physical reality. Perhaps one can use this comparison between experimental 

and computational data  to improve future forcefields. 

 

 

6.Methods and Materials: 
6.1 NMR Measurements and data fitting. 
The 1HN R1rho – 15N-1H HSQC relaxation experiments on GB1 (see Figure S2) were carried 

out at 303K on a Bruker 600 MHz instrument at the Canberra NMR Facility, Australia, remotely 
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operated by the author, using a sample of 1 mM 15N-13C labelled GB1 as provided by Dr. G. Otting. 

The sample temperature was set at 30 0C. The 1HN were selectively excited with a Q5 Gauss 

Cascade of 1.33 ms, centered at 8.5 ppm, exciting +/- 1.2 ppm.  A spinlock with 14 kHz was  

applied for  5, 10, 15 and 20 ms.  The complete NMR spectral parameters for these experiments 

are reported in the SI.  The same parameters were chosen to record the 283K data at the 600 

MHz Bruker instrument at the Magnetic Resonance  Research Center in Nijmegen, the 

Netherlands, using a sample of 20 mg/mL GB1 13C/15N in H2O, 20 mM NaPi, pH 7.0., purchased 

from Cortecnet Europe, 91940 Les Ulis, France. We used a spinlock fields of 6 kHz and 12 kHz, 

which locking times of 3, 5, 7, 10, 13 and 20  ms. The 15N relaxation experiments (15N R1, 15N-R2-

CPG and 1H-15N NOE)  were also collected at the Nijmegen Center, and analyzed with a 

MODELFREE software package.  

The experimental R1rho relaxation data were fitted to a single exponential – double 

exponentials did not improve the fit. Several examples are shown in the SI. The error of fit was 

determined using a jack-knife procedure by repeatedly fitting the experimental data in which single 

data points were omitted at random . The reported error of fit is the RMSD of the fitted relaxation 

rates. A Table with complete relaxation data is provided in the SI. 

  
6.2 MD calculations 

The GB1 molecular dynamics calculations were carried out using the program AMBER 19 with 

the ff19SB protein forcefield (48). The protein, based on the crystal structure coordinates 

2qmt.pdb  (resolution 1.1 Å)  was embedded in an octahedral box of 5534 water molecules, 

described with the OPC model (50). Equilibration for 120 ns using a Langevin thermostat and 

Monte Carlo barostat brought the system to the desired average temperature and a pressure of 

1 atm, with a final density of 1.014 gm/cm3.  This was followed by 250 ns of NVE simulation, using 

a time step of 2 fs and the SHAKE procedure to constrain bond distances to hydrogens. The final 

200 ns were used for relaxation analysis, with snapshots saved every 0.005 ns, for a total of 

40,000 frames. An MD frame was selected that had the lowest heavy-atom coordinate RMSD as 

compared to a non-physical average structure, computed by averaging Cartesian coordinates 

after removal of overall translation and rotation. These frames were dubbed “DYNAMIC 

AVERAGE”  in Table 1.  

 
6.3. Computational auto correlation functions and relaxation rates  
We make the assumption that the dipolar autocorrelation function can be factored into an 

overall isotropic rotational diffusion with rotational correlation time τC, as obtained from 15N 
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relaxation measurements, and a local motional contribution determined from the MD trajectory  

(51).  While  the (anisotropic) rotational correlation time can in principle also be determined from 

extended MD trajectories, we opted to use the experimental time because : MD estimates of 

protein diffusion tensors are generally not all that accurate yet (55). Furthermore, even "perfect" 

simulations are carried out at infinite dilution in protein in a pure solvent, which fails to adequately 

account for the hydrodynamic environment in actual experiments.  Accordingly, we separate 

overall on local motion by superposing  the frames of the MD calculations by minimizing the RMSD 

between the CA positions for residues 10 - 40.   For the calculations we took all 40,000 frames of 

the 200 ns simulations into account. 

 

A simple program was written to select, for each amide proton, all surrounding protons in 

a sphere of a certain radius to be selected for the calculations. Calculations with different radii 

were compared (Table 1, rows 7-12), and we decided that 8 Å is a good choice, yielding on 

average 100 protons in each sphere. The selection was made using a single reference frame and 

was applied to all frames. Hence some of the tracked protons could move in or out of the 

“interaction sphere”. The inter-proton vector identifications were written to a file readable by the 

AMBER cpptraj routines (1). 

 

The local autocorrelation functions (AC)  were subsequently obtained from the MD run 

using the AMBER cpptraj routines (1) that use an integration to evaluate the correlation function 

for the spin pair ij:  

 

    [13] 

 

Where  is the instantaneous unit vector connecting HN and HX. The angular brackets 

indicate a time average. This AC is not normalized, and its initial value is given by: 

 

      [14] 

 

The calculated 𝐴𝐴𝐶𝐶𝑖𝑖𝑖𝑖 (𝜏𝜏)   show a fast initial decays τFij (typical time constant < 10 ps), a slower 

decay  τSij (typical time constant ~ 1 ns, amplitude AS),  with a  plateau (A∞). (e.g., see Figure 8). 
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Together with an isotropic overall rotational auto  correlation time 𝜏𝜏𝑅𝑅 , one may model such a 

𝐴𝐴𝐶𝐶𝑖𝑖𝑖𝑖 (𝜏𝜏) as 

 

                   [15] 

 

In the following, we keep describing spin pair ij but drop for legibility all indices (which will later 

return):  

 

                    [16] 

 

We can associate the plateau value  A∞  with an order parameter S2  1HN-1HX for the local motion 

of vector ij.  The amplitude As and correlation time 𝜏𝜏𝑆𝑆  describe the motions at a 1 ns time scale.  

 

 

We formally obtain, by integration,  from the auto correlation function [12],  the  spectral 

density function 

 

     [17] 

 

where  

        [18] 

 

since 

 .         [19] 

 

the amplitude and correlation time 𝜏𝜏𝐹𝐹 describe the motions at a ns-ps time scale 

which will not make a significant contribution to relaxation. We may write  

      [20] 

 



37 
 

So, to evaluate the effect of local motion on 1HN-1HX relaxation rates, we only need to obtain 𝐴𝐴∞, 

AS, 𝜏𝜏1 from the individual ACs, by non-linear fitting, while 𝜏𝜏𝐶𝐶 has been experiemntally determined 

(or obtained from Hydronmr). 

These spectral density functions can be directly inserted in the 1H-1H R1rho relaxation rate 

equations for a like (spin-locked) spin ij, e.g.: 

 

       [21] 

 

with 

 

         [22] 

 

 

Here,  are the magnetic permeability of vacuum, the proton gyro-magnetic ratio and 

Planck’s constant divided by 2π, respectively.  

 

Or,  for unlike 1HN – 1HX pairs  we have 

      [23] 

 

We will now expand the unlike-spins relaxation equation using the spectral density function model 

(eq. 20):  

 

   [24] 

 

For the following estimation of relative significance of these terms, we label the six terms in square 

brackets Eq 24  as C1,C2,C3,C4,C5 and C6. We assume that 𝐴𝐴∞ and As are 0.5, that τC=6 ns, τ1 

=1ns.  The calculation was made for  a 600 MHz proton frequency.  

We obtain C1=1.5x10-8 , C2=2.5x10-9 , C3=5.3x10-11, C4=3X10-10, C5=29.8x10-12, 

 C6=5.2x10-11 (s-1).  
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We may thus safely neglect all terms beyond C2 and obtain: 

       [25] 

 

Finally, the  total unlike  R1rho rate for amide proton i is the sum over all R1rho rates ij 

      [26] 

Where we have reintroduced the subscripts as in Eq (15).  

Similarly, 

      [27] 

Since equations (26)  and (27) are linear, one may also obtain the R1rho rate for amide proton i 

also from fitting to the sum of the autocorrelation functions ij. This improves the time of the 

computation by a factor of 100. We have implemented the latter in the computer code and 

checked the results against the sum of the fits.  

These calculations were  programmed in Fortran-90. The computations were carried out an Apple 

iMac with a 3.6 GHz Quad-Core Intel Core i7, running MacOS 11.6 (Big Sur).  
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6.4.Statistics of data comparisons 
We characterize the quality of fit between experimental values xi  and the calculated values yi by 

three criteria:  

(1) Relative RMSD (RMSDR) between the experimental values xi  and the calculated values 

yi  

 

      [28] 

(2) Pearson Correlation coefficient between the experimental values xi  and the calculated 

values yi  

 

      [29] 

 

Note that R2 is invariant to separate changes in the location or scale of the x and y values.  

 

(3) Slope of the least-squares linear trend line.  

      [30] 

 

(4) “Crystallographic” R factor (46) 

        [31] 
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APPENDIX 
 

Evaluation of scalar coupling-mediated TOCSY coherence transfer from amide to alpha protons 

using a constant phase spin-lock field. 

 

For this effect, also known as homo-nuclear cross polarization, TOCSY or HOHAHA, we have the 

following  Hamiltonian in the lab frame: 

 

       [32] 

 

where  

 

 
 

The Hamiltonian in the rotating frame of the r.f.  frequency  is written as 

 

 

     [33] 

 

where 
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We wrote a numerical integration program for the Liouville-von Neumann equation: 

 

        [34] 

 

 

Using the Hamiltonian in equation [33].  The simulations ran for 0.1 second. 

 

 The simulation conditions were:  

 

 

         [35] 

 

When placing the spinlock field carrier between two resonances 1200 Hz apart 

 

        [36] 

On obtains, by numerical integration of Eq 34, full transfer Ix to  Sx  in 0.1 sec , as expected.  
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If one instead sets  

 

        [37] 

 

,  one obtains 90 % Ix, and 10% Sx in 0.1 second. 

 

 

 

If one instead sets for the actual settings as used at the instrument (amides at 7.5 ppm, alphas at 

4.5 ppm, spinlock carrier at 8.5 ppm)  

 

           [38] 

 

, one obtains 99.9% Ix, and 0.1% Sx 

 

 

One concludes that  there is no significant TOCSY transfer between amides and Ha with a 10 

kHz  the spinlock field at 8.5 ppm. 
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