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An Improved Iterative Neural Network for High-Quality
Image-Domain Material Decomposition in Dual-Energy CT
— Supplementary Material

This supplement provides details for optimizing the training loss function in (P1), re-
lation between convolution-perspective and patch-based trainings for distinct cross-material
CNN refiner in (1), and additional experimental results to accompany our main manuscript®.
We use the prefix “S” for the numbers in section, proposition, equation, and figure in the

supplementary material.

S.I Optimizing (P1) with a Mini-Batch Stochastic
Gradient Method

The training loss at each mini-batch is
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where D, is the rth row of D, E, is the rth column of E, (-),, denotes the element at rth
row and bth column of the matrix. Therefore, subgradient of (P1) with respect to a at each

mini-batch is
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We can easily obtain subgradient of £ with respect to D at each mini-batch as
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At each mini-batch, the subgradient of £ with respect to r1th column of E is as follows:
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Thus, the subgradient of £ with respect to E for each mini-batch selection is
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S.II Relation between convolution-perspective and
patch-based trainings of the proposed BCD-Net-
sCNN-hc

Proposition S.1  The proposed CNN refiner in (1) can be rewritten with patch-based per-

spective as follows (we omit the iteration superscript indices (i) for simplicity):
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where X = [x] ,x5]". See other related notations in (1) and (5).

Proof. First, we have the following reformulation?:
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where P € RENXKN jg 3 permutation matrix. Considering that
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Then we obtain the following reformulation result for term Zszl di 1k * Texp (1) (€1,1,6 % X1+

€12k * X2)5
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where we use the permutation invariance of thresholding operator® and PTP = I. Similarly,
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Combining (S.2) and (S.3) gives the following result:
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Similar to (S.4), we have
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Combining the results in (S.4) and (S.5) completes the proof.
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Proposition S.2  The loss function for training the proposed CNN refiner in (1) is bounded

by its patch-based training loss function:
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where X ., and Xl(;l) are the lth high-quality and degraded images of the mth material,

respectively, forl =1,...,L and m = 1,2, )Nil,m € RN and )N(l(zl) € RN qre matrices

whose columns are vectorized patches extracted from images X, and Xl(in:l) (with a spatial

patch stride of 1 x 1), respectively. See related notations in (1), (5), and Section 11.D.

Proof. Based on Proposition S.1, we obtain the result as follows:
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Figure S.1: RMSE plot of BCD-Net-dCNN for Test #1, Test #2, and Test #3, respectively.

where X"V ¢ RE and )N(l,m,j € R are the jth column of )N(l(zl) and )N(l,m, respectively.

lym,j

Here, the inequality holds by PPT < R-1 with P := [P], .- ,PL]".
S.III Supplementary Results for Section Il

Figure S.1 shows the RMSE plots of water and bone images for BCD-Net-dCNN. BCD-
Net-dCNN becomes overfitted around 40th iteration for test slices #1 and #2.

We generated ten different noise realizations to obtain NPS images for XCAT phantom

data. We calculated the averaged NPS measure?, denoted as NPS, for each method using

P5 _ Lt [DFT{; — [P
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where f; denotes the decomposed water image from the ith noise realization, and f* de-
notes the ground truth of water image. Figure S.2 compares the magnitude of NPS from
different methods. Across all frequencies, the NPS magnitude of BCD-Net-sCNN-hc is sig-
nificantly smaller than those of direct matrix inversion, DECT-EP, DECT-ST, and dCNN.
Furthermore, BCD-Net-sCNN-hc gives fewer vertical and horizontal frequency strips with
lower intensity, compared to BCD-Net-sCNN-Ic and BCD-Net-dCNN. The aforementioned
NPS comparisons demonstrate the superiority of the proposed BCD-Net-sCNN-hc method

in removing noise and artifacts inside soft tissue regions.

Figure S.3 and Figure S.4 show another two test slices comparisons. DCNN improves
decomposition quality compared to DECT-EP and DECT-ST in terms of reducing noise and
artifacts, but it still retains some streak artifacts. Compared to DCNN, BCD-Net-sCNN-hc

further removes noise and artifacts, and improves the sharpness of edges in soft tissue.
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(a)

Figure S.2: (a) Five selected ROIs indicated for NPS calculation for the decomposed water
image of XCAT phantom. (b) Left to right: NPS measured within ROIs of decomposed
water images obtained by direct matrix inversion, DECT-EP, DECT-ST, dCNN, BCD-Net-
dCNN, BCD-Net-sCNN-lc, and BCD-Net-sCNN-hec. The first to the fifth rows in (b) show
the NPS of the first to fifth ROIs, respectively, with display windows [0 0.6] g2/cmS.
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Figure S.3: Comparison of decomposed images from different methods (XCAT phantom test
slice #2). Water and bone images are shown with display windows [0.7 1.3] g/cm?® and [0
0.8] g/cm?, respectively.
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Figure S.4: Comparison of decomposed images from different methods (XCAT phantom
test slice #3). Water and bone images are displayed with windows [0.7 1.3] g/cm?® and [0
0.8] g/cm3, respectively.
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We ran additional three-material (fat, muscle, and bone) decomposition experiments
with the proposed architecture, BCD-Net-sCNN-hc. We obtained the three initial decom-
posed images from high- and low-energy attenuation images, by using a Tikhonov-regularized
direct matrix inversion method, i.e., x© = (A’A + A\I) "' A’y (three-material decomposition
in dual-energy CT is an under-determined inverse problem). Figure S.5 compares #1 mate-
rial density images from regularized direct matrix inversion, BCD-Net-sCNN-hc, and ground
truth. The regularized direct matrix inversion method suffers from severe noise and artifacts,
and does not decompose fat and muscle images. BCD-Net-sCNN-hc achieves significantly
better three-material decomposition performance over the regularized direct matrix inversion
method. Figure S.6 shows the RMSE convergence behavior of BCD-Net-sCNN-hc: similar
to the RMSE convergence behavior in dual-material decomposition (see Figure 6), it de-
creases monotonically. Figure S.7 compares decomposed bone images and their error maps
from dual- and three-material decomposition BCD-Net-sCNN-he. (Note that ground-truth
bone images are identical between the dual- and three-material decomposition cases.) The
dual-material decomposition BCD-Net architecture achieves smaller errors and clearer image
edges and structures, compared to the three-material decomposition BCD-Net method; see
error maps and zoom-ins in bone images. This is natural because the initial decomposed
images from the dual-material decomposition case are more accurate than those from the
three-material decomposition case, and Ay in (P0) in dual-material decomposition is better

conditioned than the counterpart in three-material decomposition in DECT.




page 10

Zhipeng Li

Regularized
direct matrix inversion

RMSE = 234.0 mg/cm?

Fat

RMSE = 254.8 mg/cm?

Muscle

RMSE = 81.4 mg/cm?

Bone

BCD-Net-sCNN-hc Ground truth

RMSE = 44.0 mg/cm?

RMSE = 48.6 mg/cm?

& -
S

RMSE = 34.4 mg/cm?

Figure S.5: Comparison of three decomposed images from regularized direct matrix inversion
(A =1 x 107°), BCD-Net-sCNN-hc, and ground truth. Fat, muscle, and bone images are
shown with display windows [0 2] g/cm?, [0 2] g/cm?, and [0 0.5] g/cm?, respectively.
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Figure S.6: RMSE convergence behaviors of three-material decomposition BCD-Net-sCNN-
he.
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Figure S.7: Comparisons of decomposed bone images (display window [0 0.5] g/cm?) and
their error maps (display window [0 0.3] g/cm?) from dual- and three-material decomposition

BCD-Net-sCNN-hc architectures.
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