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An Improved Iterative Neural Network for High-Quality
Image-Domain Material Decomposition in Dual-Energy CT

– Supplementary Material

This supplement provides details for optimizing the training loss function in (P1), re-

lation between convolution-perspective and patch-based trainings for distinct cross-material

CNN refiner in (1), and additional experimental results to accompany our main manuscript1.

We use the prefix “S” for the numbers in section, proposition, equation, and figure in the

supplementary material.

S.I Optimizing (P1) with a Mini-Batch Stochastic

Gradient Method

The training loss at each mini-batch is
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where Dr is the rth row of D, Er is the rth column of E, (·)rb denotes the element at rth

row and bth column of the matrix. Therefore, subgradient of (P1) with respect to α at each

mini-batch is
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We can easily obtain subgradient of L with respect to D at each mini-batch as
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At each mini-batch, the subgradient of L with respect to r1th column of E is as follows:
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Thus, the subgradient of L with respect to E for each mini-batch selection is
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S.II Relation between convolution-perspective and

patch-based trainings of the proposed BCD-Net-

sCNN-hc

Proposition S.1 The proposed CNN refiner in (1) can be rewritten with patch-based per-

spective as follows (we omit the iteration superscript indices (i) for simplicity):
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where x = [x>1 ,x
>
2 ]>. See other related notations in (1) and (5).

Proof. First, we have the following reformulation2:
en,m,1 ∗ u

...
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where P ∈ RKN×KN is a permutation matrix. Considering that
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ẼH
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where we use the permutation invariance of thresholding operator3 and P>P = I. Similarly,
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Combining (S.2) and (S.3) gives the following result:
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Similar to (S.4), we have
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Combining the results in (S.4) and (S.5) completes the proof.

3



page 4 Zhipeng Li

Proposition S.2 The loss function for training the proposed CNN refiner in (1) is bounded
by its patch-based training loss function:
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where xl,m and x
(i−1)
l,m are the lth high-quality and degraded images of the mth material,

respectively, for l = 1, . . . , L and m = 1, 2, X̃l,m ∈ RR×N and X̃
(i−1)
l,m ∈ RR×N are matrices

whose columns are vectorized patches extracted from images xl,m and x
(i−1)
l,m (with a spatial

patch stride of 1× 1), respectively. See related notations in (1), (5), and Section II.D.

Proof. Based on Proposition S.1, we obtain the result as follows:
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Figure S.1: RMSE plot of BCD-Net-dCNN for Test #1, Test #2, and Test #3, respectively.

where X̃
(i−1)
l,m,j ∈ RR and X̃l,m,j ∈ RR are the jth column of X̃

(i−1)
l,m and X̃l,m, respectively.

Here, the inequality holds by P̃P̃> � R · I with P̃ := [P>1 , · · · ,P>N ]
>

.

S.III Supplementary Results for Section III

Figure S.1 shows the RMSE plots of water and bone images for BCD-Net-dCNN. BCD-

Net-dCNN becomes overfitted around 40th iteration for test slices #1 and #2.

We generated ten different noise realizations to obtain NPS images for XCAT phantom

data. We calculated the averaged NPS measure4, denoted as NPS, for each method using

NPS =

∑10
i=1 |DFT{fi − f ∗}|2

10
,

where fi denotes the decomposed water image from the ith noise realization, and f ∗ de-

notes the ground truth of water image. Figure S.2 compares the magnitude of NPS from

different methods. Across all frequencies, the NPS magnitude of BCD-Net-sCNN-hc is sig-

nificantly smaller than those of direct matrix inversion, DECT-EP, DECT-ST, and dCNN.

Furthermore, BCD-Net-sCNN-hc gives fewer vertical and horizontal frequency strips with

lower intensity, compared to BCD-Net-sCNN-lc and BCD-Net-dCNN. The aforementioned

NPS comparisons demonstrate the superiority of the proposed BCD-Net-sCNN-hc method

in removing noise and artifacts inside soft tissue regions.

Figure S.3 and Figure S.4 show another two test slices comparisons. DCNN improves

decomposition quality compared to DECT-EP and DECT-ST in terms of reducing noise and

artifacts, but it still retains some streak artifacts. Compared to DCNN, BCD-Net-sCNN-hc

further removes noise and artifacts, and improves the sharpness of edges in soft tissue.
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Figure S.2: (a) Five selected ROIs indicated for NPS calculation for the decomposed water
image of XCAT phantom. (b) Left to right: NPS measured within ROIs of decomposed
water images obtained by direct matrix inversion, DECT-EP, DECT-ST, dCNN, BCD-Net-
dCNN, BCD-Net-sCNN-lc, and BCD-Net-sCNN-hc. The first to the fifth rows in (b) show
the NPS of the first to fifth ROIs, respectively, with display windows [0 0.6] g2/cm6.
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Figure S.3: Comparison of decomposed images from different methods (XCAT phantom test
slice #2). Water and bone images are shown with display windows [0.7 1.3] g/cm3 and [0
0.8] g/cm3, respectively.
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Figure S.4: Comparison of decomposed images from different methods (XCAT phantom
test slice #3). Water and bone images are displayed with windows [0.7 1.3] g/cm3 and [0
0.8] g/cm3, respectively.
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We ran additional three-material (fat, muscle, and bone) decomposition experiments

with the proposed architecture, BCD-Net-sCNN-hc. We obtained the three initial decom-

posed images from high- and low-energy attenuation images, by using a Tikhonov-regularized

direct matrix inversion method, i.e., x(0) = (A′A+ λI)−1A′y (three-material decomposition

in dual-energy CT is an under-determined inverse problem). Figure S.5 compares #1 mate-

rial density images from regularized direct matrix inversion, BCD-Net-sCNN-hc, and ground

truth. The regularized direct matrix inversion method suffers from severe noise and artifacts,

and does not decompose fat and muscle images. BCD-Net-sCNN-hc achieves significantly

better three-material decomposition performance over the regularized direct matrix inversion

method. Figure S.6 shows the RMSE convergence behavior of BCD-Net-sCNN-hc: similar

to the RMSE convergence behavior in dual-material decomposition (see Figure 6), it de-

creases monotonically. Figure S.7 compares decomposed bone images and their error maps

from dual- and three-material decomposition BCD-Net-sCNN-hc. (Note that ground-truth

bone images are identical between the dual- and three-material decomposition cases.) The

dual-material decomposition BCD-Net architecture achieves smaller errors and clearer image

edges and structures, compared to the three-material decomposition BCD-Net method; see

error maps and zoom-ins in bone images. This is natural because the initial decomposed

images from the dual-material decomposition case are more accurate than those from the

three-material decomposition case, and A0 in (P0) in dual-material decomposition is better

conditioned than the counterpart in three-material decomposition in DECT.
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Figure S.5: Comparison of three decomposed images from regularized direct matrix inversion
(λ = 1 × 10−5), BCD-Net-sCNN-hc, and ground truth. Fat, muscle, and bone images are
shown with display windows [0 2] g/cm3, [0 2] g/cm3, and [0 0.5] g/cm3, respectively.
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Figure S.6: RMSE convergence behaviors of three-material decomposition BCD-Net-sCNN-
hc.
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Figure S.7: Comparisons of decomposed bone images (display window [0 0.5] g/cm3) and
their error maps (display window [0 0.3] g/cm3) from dual- and three-material decomposition
BCD-Net-sCNN-hc architectures.

11



page 12 Zhipeng Li

References
1 Z. Li, Y. Long, and I. Y. Chun, An Improved Iterative Neural Network for High-Quality

Image-Domain Material Decomposition in Dual-Energy CT, submitted (2021).

2 I. Y. Chun and J. A. Fessler, Convolutional analysis operator learning: Acceleration and

convergence, IEEE Trans. Im. Proc. 29, 2108–2122 (2020).

3 I. Y. Chun, Z. Huang, H. Lim, and J. A. Fessler, Momentum-Net: Fast and convergent

iterative neural network for inverse problems, early access in IEEE Trans. Pattern Anal.

Mach. Intell. (2020), DOI: 10.1109/TPAMI.2020.3012955.

4 K. Li, J. Tang, and G. H. Chen, Statistical model based iterative reconstruction (MBIR)

in clinical CT systems: experimental assessment of noise performance, Med. Phys. 41,

041906 (2014).

12


	Optimizing (P1) with a Mini-Batch Stochastic Gradient Method
	Relation between convolution-perspective and patch-based trainings of the proposed BCD-Net-sCNN-hc
	Supplementary Results for Section III
	References

