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Abstract12

Purpose: Dual-energy computed tomography (DECT) has been widely used in many13

applications that need material decomposition. Image-domain methods directly de-14

compose material images from high- and low-energy attenuation images, and thus, are15

susceptible to noise and artifacts on attenuation images. The purpose of this study is16

to develop an improved iterative neural network (INN) for high-quality image-domain17

material decomposition in DECT, and to study its properties.18

Methods: We propose a new INN architecture for DECT material decomposition.19

The proposed INN architecture uses distinct cross-material convolutional neural net-20

work (CNN) in image refining modules, and uses image decomposition physics in image21

reconstruction modules. The distinct cross-material CNN refiners incorporate distinct22

encoding-decoding filters and cross-material model that captures correlations between23

different materials. We study the distinct cross-material CNN refiner with patch-based24

reformulation and tight-frame condition.25

Results: Numerical experiments with extended cardiac-torso phantom and clinical26

data show that the proposed INN significantly improves the image quality over several27

image-domain material decomposition methods, including a conventional model-based28

image decomposition (MBID) method using an edge-preserving regularizer, a recent29

MBID method using pre-learned material-wise sparsifying transforms, and a nonit-30

erative deep CNN method. Our study with patch-based reformulations reveals that31

learned filters of distinct cross-material CNN refiners can approximately satisfy the32

tight-frame condition.33

Conclusions: The proposed INN architecture achieves high-quality material decom-34

positions using iteration-wise refiners that exploit cross-material properties between35

different material images with distinct encoding-decoding filters. Our tight-frame study36

implies that cross-material CNN refiners in the proposed INN architecture are useful37

for noise suppression and signal restoration.38
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I Introduction74

Dual-energy CT (DECT) has been increasingly used in many clinical and industrial75

applications, including kidney stone characterization1, iodine quantification2,3, security in-76

spection4,5, and nondestructive testing6. Compared to conventional single-energy X-ray CT,77

DECT provides two sets of attenuation measurements at high and low energies. Because78

the linear attenuation coefficient is material and energy dependent, DECT can characterize79

different constituent materials in a mixture, known as material decomposition7. Decom-80

posed material images provide the elemental material compositions of the imaged object.81

Researchers have been studying material decomposition or reconstruction with spectral CT8
82

and photon-counting CT9 that can simultaneously acquire more than two spectral measure-83

ments.84

I.A Literature Review85

Model-based image decomposition (MBID) methods incorporate material composition86

physics, statistical model of measurements, and some prior information of unknown mate-87

rial images. Existing MBID methods for DECT can be classified into direct (projection-88

to-image domain)10, projection-domain11, and image-domain12 decompositions. Direct de-89

composition methods perform image decomposition and reconstruction simultaneously, and90

generate material images directly from collected high and low energy measurements. This91

type of methods can reduce the cross-talk and beam-hardening artifacts by using an accu-92

rate forward model of the DECT system along with priors. However, direct decomposition93

algorithms need large computational costs, because at each iteration, they apply computa-94

tionally expensive forward and backward projection operators. Projection-domain methods95

first decompose high- and low-energy sinograms into sinograms of materials, followed by an96

image reconstruction method such as filtered back projection (FBP) to obtain material im-97

ages. Although above two types of methods improve the decomposition accuracy compared98

to image-domain methods, they usually require accurate system calibrations that use non-99

linear models13,14. In addition, those methods require sinograms or pre-log measurements100

that are in general not readily available from commercial CT scanners. Image-domain meth-101

ods do not require projection operators and decompose readily available reconstructed high-102

and low-energy attenuation images into material images, and are more computationally ef-103

ficient than direct and projection-domain decomposition methods. However, image-domain104
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methods lack complete DECT imaging model. This may increase noise and artifacts in105

decomposed material images.106

To improve image-domain DECT material decomposition methods, incorporating ap-107

propriate prior knowledge or regularizer into decomposition algorithms is critical. Many108

MBID methods have been proposed from this perspective. Niu et al.12 proposed an iterative109

decomposition method that incorporates the noise variance of two attenuation images into110

the least-squares data-fit term. This better suppressed noise and artifacts on decomposed111

material images than a simple direct matrix inversion method. Xue et al.15 proposed an112

MBID method that uses the weighted least-squares data-fit model12 and an edge-preserving113

(EP) hyperbolar regularizer—called DECT-EP. Recently, there has been growing interest114

in data-driven methods such as MBID using pre-learned prior operators. Examples include115

learned synthesis operator/dictionary16,17 and analysis operator/transform18,19. Dictionary116

learning has been applied to image-domain DECT material decomposition17 and improved117

image decomposition compared to non-adaptive MBID methods. We proposed a data-driven118

method DECT-ST19 that uses two pre-learned sparsifying transforms (ST) in a prior model119

to better sparsify the two different materials, and improved the image decomposition accu-120

racy. We also proposed a clustering based cross-material method20 that assumes correlations121

between different materials, and followed by a generalized mixed material method21 that122

considers both individual properties (e.g., different materials have different densities and123

structures) and correlations of different material images.124

In the past few years, deep regression neural network (NN) methods have been gaining125

popularity in medical imaging applications, for example, CT image denoising22,23. Several126

deep convolutional NN (dCNN) methods have also been proposed for image-domain DECT127

material decomposition. Liao et al.24 proposed a cascaded dCNN method to obtain a ma-128

terial image from a single energy attenuation image. The first dCNN roughly maps a single129

attenuation image to a material image, followed by the other dCNN maps the material image130

to a high-quality material image. A dCNN method with two input and output channels that131

directly maps from two high- and low-energy attenuation images to two material images132

has also been proposed25 . Different from the first dCNN used in aforementioned cascaded133

dCNN method24 that obtains two material images individually, butterfly network26 decom-134

poses material images with additional CNNs between two attenuation images to perform135

information exchange. Clark et al.27 investigated the conventional U-Net architecture for136

2
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image-domain multi-material decomposition. However, the aforementioned methods have137

the high NN complexity that can increase the overfitting risk particularly when limited138

training samples are available.139

An alternative approach is a so-called iterative NN (INN), which has been successfully140

applied to diverse imaging problems28–34. This approach incorporates iteration-wise image141

refining NNs into block-wise model-based image reconstruction algorithm. INN improves142

generalization capability compared to noniterative deep NN by balancing imaging physics143

and prior information estimated via refining CNNs, particularly when training samples are144

limited30,31. ADMM-Net is a pioneer INN architecture developed by unrolling the alter-145

nating direction method of multipliers (ADMM) model-based image reconstruction (MBIR)146

algorithm34; it has been succesfully applied to highly-undersampled MRI34, low-dose CT30,147

etc. BCD-Net is an INN architecture that generalizes the block coordinate descent (BCD)148

MBIR algorithm using learned convolutional regularizers, while showing better performance149

over ADMM-Net30,32. Its original work28 uses the identical encoding-decoding architecture,150

i.e., each filter in decoder is a rotated version of that in encoder, and was successfully ap-151

plied to highly-undersampled MRI (using single coil). Subsequent works30,31 use the distinct152

encoding-decoding architecture for BCD-Net, and successfully applied modified BCD-Net to153

low-dose CT and low-count PET reconstruction. The Momentum-Net architecture general-154

izes a block-wise MBIR algorithm that uses momentum and majorizers for fast convergence155

without needing inner iterations32; it has been successfully applied to low-dose33 and sparse-156

view32 CT reconstruction. Different from the aforementioned INN methods that solve image157

reconstruction problems in low-dose or sparse-view CT, highly-undersampled MRI, and low-158

count PET, the proposed INN architecture is designed for image-domain material decompo-159

sition in DECT. The initial version of this work was presented in a conference35, where we160

used an MBID cost function for the model-based image reconstruction module of BCD-Net,161

and demonstrated that BCD-Net significantly improved image quality over DECT-EP and162

DECT-ST. The initial BCD-Net work35 has a single-hidden layer or “shallow” CNN (sCNN)163

architecture, where sCNN refiner has identical encoding-decoding architecture individually164

for two different materials (e.g., water and bone). The aforementioned INNs are trained in165

a supervised manner, whereas the recent study36 applied a self-supervised image denoising166

method to an INN.167

3
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I.B Contributions168

Image-domain material decomposition methods in DECT are susceptible to noise and169

artifacts (see Section I.A). Our aim is to obtain high-quality decomposed material images170

in DECT with improved image-domain material decomposition methods. To achieve the171

goal, the paper proposes an improved BCD-Net architecture. The proposed BCD-Net uses172

iteration-wise sCNN refiners, where they use 1) distinct encoding-decoding architecture, i.e.,173

each filter in decoding convolution is distinct from that in encoding convolution, and 2)174

cross-material model that captures correlations between different material images. We refer175

to the previous BCD-Net in the earlier conference work35 as BCD-Net-sCNN-lc and the176

proposed BCD-Net in this work as BCD-Net-sCNN-hc, where lc and hc stand for low and177

high complexity, respectively. In addition, we study the proposed distinct cross-material178

CNN architecture with the patch-based perspective, empirically showing that learned fil-179

ters of distinct cross-material CNN refiners at the last BCD-Net iteration approximately180

satisfy the tight-frame condition. The patch-based reformulation reveals that the proposed181

CNN architecture has the cross-material property, and specializes to BCD-Net-sCNN-lc35
182

refiners. Our tight-frame studies imply that cross-material CNN refiners are useful for noise183

suppression and signal restoration. The quantitative and qualitative results with extended184

cardiac-torso (XCAT) phantom and clinical data show that the proposed BCD-Net-sCNN-hc185

architecture significantly improves the decomposition quality compared to the conventional186

MBID method, DECT-EP15, and the following recent image-domain decomposition meth-187

ods, a noniterative dCNN method and a MBID method, DECT-ST19, that uses a learned188

regularizer in an unsupervised way, and BCD-Net-sCNN-lc35.189

I.C Organization190

The rest of this paper is organized as follows. Section II describes the proposed BCD-191

Net architecture for DECT image-domain MBID, studies the distinct cross-material refining192

sCNN architecture with the patch-based reformulation and the tight-frame condition, and193

provides training and testing algorithms for proposed BCD-Net architectures. Section III194

reports results of various decomposition methods on XCAT phantom and clinical data, along195

with comparisons and discussions. Finally, we make conclusions of this paper, and describe196

future work in Section IV.197
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II Methods198

This section proposes the BCD-Net-sCNN-hc architecture, studies properties of its re-199

finers, introduces its variations, and describes its training and testing processes.200

II.A The Proposed BCD-Net Architecture201

Each iteration of BCD-Net for DECT material decomposition consists of an image202

refining module and an MBID module. See the architecture of the proposed BCD-Net in203

Figure 1. Each image refining module of proposed BCD-Net has a sCNN architecture that204

consists of encoding convolution, nonlinear thresholding, and decoding convolution. The205

MBID cost function uses a weighted least-squares (WLS) data-fit term that models the206

material composition physics and noise statistics in the measurements, and a regularizer (or207

a prior term) that uses refined material images from an iteration-wise image refining module.208

In DECT, decomposing high- and low-energy attenuation images into two material images209

(water and bone) is the most conventional setup37, so the section studies the proposed INN210

method with this perspective.211

II.A.1 Image Refining Module212

The first box in Figure 1 shows the architecture of proposed iteration-wise distinct cross-213

material CNNs. The ith image refining module of BCD-Net takes {x(i−1)
m ∈ RN : m = 1, 2},214

decomposed material images at the (i− 1)th iteration, and outputs refined material images215

{z(i)
m ∈ RN : m = 1, 2}, for i = 1, . . . , Iiter, where Iiter is the number of BCD-Net iterations.216

Here, {x1, z1}, and {x2, z2} denote water and bone images, respectively. We use the following217

sCNN architecture for each image refining module:218

(z
(i)
1 , z

(i)
2 ) = RΘ(i)

(
x

(i−1)
1 ,x

(i−1)
2

)
=




∑K
k=1

∑2
n=1 d

(i)
1,n,k ~ Texp(α

(i)
n,k)

(∑2
m=1 e

(i)
n,m,k ~ x

(i−1)
m

)

∑K
k=1

∑2
n=1 d

(i)
2,n,k ~ Texp(α

(i)
n,k)

(∑2
m=1 e

(i)
n,m,k ~ x

(i−1)
m

)



,

(1)219

where Θ(i) denotes a set of parameters of image refining module at the ith iteration, i.e.,220

Θ(i) = {d(i)
m,n,k, e

(i)
n,m,k, α

(i)
n,k : k = 1, . . . , K,m = 1, 2, n = 1, 2}, d

(i)
m,n,k ∈ RR and e

(i)
n,m,k ∈ RR

221

are the kth decoding and encoding filters from the nth group of the mth material at the ith222

iteration, respectively, exp(α
(i)
m,k) is the kth thresholding value for the mth material at the223

ith iteration, K is the number of filters in each encoding and decoding structure for each224

material, and R is the size of filters, ∀m,n, k, i. In (1), the element-wise soft thresholding225
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operator Ta(b) : RN → RN is defined by226

(Ta(b))j :=

{
bj − aj · sign(bj), |bj| > aj

0, |bj| ≤ aj,
(2)227

for j = 1, . . . , N . We use the exponential function to thresholding parameters {αn,k} to228

avoid thresholding values being negative30,32. We will train distinct cross-material CNNs at229

each iteration to maximize the refinement performance.230

The proposed CNN in (1) and the first box in Figure 1 consists of an individual encoding-231

decoding architecture for each material image, and crossover architectures between different232

material images. We encode or decode each feature at a hidden layer by two groups of233

encoding or decoding filters. For example, in Figure 1, input images x
(i−1)
1 and x

(i−1)
2 convolve234

with encoding filters e
(i)
1,1,K and e

(i)
1,2,K , respectively (indicated by red and green), and then235

their thresholded sum gives encoded feature T
exp(α

(i)
1,K)

(e
(i)
1,1,K∗x

(i−1)
1 +e

(i)
1,2,K∗x

(i−1)
2 ). To decode236

the feature, we convolve this feature with two decoding filters d
(i)
1,1,K and d

(i)
2,1,K (indicated237

by purple and blue). One group of encoding or decoding filters is used to capture a feature238

of each material image individually, and the other group is used to capture correlations239

between different material images. When n = m, the filters in (1) form the individual240

encoding-decoding architecture that captures individual properties of the mth material, e.g.,241

filters e
(i)
1,1,K and d

(i)
1,1,K (indicated by red and purple in Figure 1), whereas when n 6= m,242

these comprise the crossover architecture that exchanges information between two material243

images, e.g., filters e
(i)
1,2,K and d

(i)
2,1,K (indicated by green and blue in Figure 1). The crossover244

architecture is expected to be useful to remove noise and artifacts in material images.245

II.A.2 MBID Module246

The ith MBID module of BCD-Net in the second box of Figure 1 gives the decomposed247

material images, x(i) = [(x
(i)
1 )>, (x(i)

2 )>]>, by reducing their deviations from attenuation248

maps y = [(yH)>, (yL)>]> ∈ R2N and refined material images z(i) = [(z
(i)
1 )>, (z(i)

2 )>]>,∀i,249

where yH ∈ RN and yL ∈ RN are attenuation maps at high and low energy, respectively.250

In particular, we reduce the deviation of model-based decomposition x(i) from attenuation251

maps y, using decomposition physics and noise statistics in y. We formulate the MBID cost252

function by combining a WLS data-fit term and a regularizer using z(i):253

x(i) = argmin
x∈R2N

1

2
‖y −Ax‖2

W + G(x), G(x) =
β

2
‖x− z(i)‖2

2. (P0)254
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The mass attenuation coefficient matrix A ∈ R2N×2N is a Kronecker product of A0 and255

identity matrix IN , i.e., A = A0 ⊗ IN , and the matrix A0 ∈ R2×2 is defined as19:256

A0 :=

[
ϕ1H ϕ2H

ϕ1L ϕ2L

]
, (3)257

in which ϕmH and ϕmL denote the mass attenuation coefficient of the mth material at high258

and low energy, respectively. In practice, these four values in matrix A0 can be calibrated259

in advance by ϕmH = µmH/ρm and ϕmL = µmL/ρm, where ρm denotes the density of the260

mth material (we use theoretical values 1 g/cm3 for water and 1.92 g/cm3 for bone in261

our experiments), and µmH and µmL denote the linear attenuation coefficient of the mth262

material at high and low energy, respectively. To obtain µmH and µmL, we manually select263

a uniform area in yH and yL (e.g., water region and bone region) respectively and compute264

the average pixel value in this area12. The weight matrix W ∈ R2N×2N represented as265

W = W0 ⊗ IN is block-diagonal by assuming the noise in each attenuation image are266

independent and identically distributed (i.i.d.) over pixels15. This noise assumption is267

widely used in practice15,38–40. Here, W0 is a 2 × 2 diagonal weight matrix with diagonal268

elements being the inverse of noise variance at high and low energies. The regularization269

parameter β > 0 controls the trade-off between noise and resolution in decompositions.270

Based on the structures of matrices A and W above, we can separate the x-update271

problem in (P0) into N subproblems. Then we obtain the following practical closed-form272

solution of x at each pixel j:273

x
(i)
j = (A>0 W0A0 + βI2)−1(A>0 W0yj + βz

(i)
j ), (4)274

where x
(i)
j = (x

(i)
1,j, x

(i)
2,j)
> and z

(i)
j = (z

(i)
1,j, z

(i)
2,j)
> denote the water and bone density values of275

decomposed material images x(i) and refined material images z(i) at the jth pixel, respec-276

tively, and yj = (yH,j, yL,j)
> denotes the high- and low-energy linear attenuation coefficients277

at the jth pixel, j = 1, . . . , N . Due to small dimensions of matrices A>0 W0A0 and I2, the278

matrix inversion in (4) is efficient; the cost to compute {x(i)
j : ∀j} scales as O(N). Permuting279

{x(i)
j : ∀j} gives the decomposed material images x(i) = (x

(i)
1,1, . . . , x

(i)
1,N , x

(i)
2,1, . . . , x

(i)
2,N)>.280

II.B Properties of the Proposed CNN Refiner281

This section studies some properties of the proposed CNN (1) with the patch perspective.282

We rewrite (1) with the patch perspective as follows (we omit the iteration superscript indices283

7
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(i) for simplicity):284

RΘ(x) in (1) =
1

R

N∑

j=1

P̄>j DTexp(α)(EP̄jx), (5)285

where, P̄j = Pj ⊕ Pj, Pj ∈ RR×N is the patch extraction operator for the jth pixel,286

j = 1, . . . , N , ⊕ denotes the matrix direct sum, D ∈ R2R×2K and E ∈ R2K×2R are decoding287

and encoding filter matrices defined by:288

D :=




D1,1 D1,2

D2,1 D2,2


 and E :=




E1,1 E1,2

E2,1 E2,2


 , (6)289

where Dm,n and En,m are formed by grouping filters {dm,n,k} and {en,m,k}, respectively, i.e.,290

Dm,n := [dm,n,1, dm,n,2, . . . ,dm,n,K ] ,

En,m := [en,m,1, en,m,2, . . . , en,m,K ]> , m, n = 1, 2,
291

and α = [α1,1, . . . , α1,K , α2,1, . . . , α2,K ]> ∈ R2K is a vector containing 2K thresholding pa-292

rameters. We derived (5) using the convolution-to-patch reformulation technique32; see293

Proposition S.1 for more details.294

Both of encoding and decoding filter matrices, E and D, are composed of four smaller295

block matrices. The refiner of BCD-Net-sCNN-lc35 uses only block matrices E1,1 and E>1,1 as296

encoding and decoding filters, respectively, for water images, and E2,2 and E>2,2 as the encod-297

ing and decoding filters, respectively, for bone images. Different from this, the proposed re-298

finer of BCD-Net-sCNN-hc not only uses distinct encoding-decoding filters, but also addition-299

ally uses off-diagonal block matrices {D1,2,D2,1,E1,2,E2,1} to exploit correlations between300

the different material images. The crossover architecture captured via {D1,2,D2,1,E1,2,E2,1}301

models shared structures between water and bone images at the same spatial locations. When302

trained with some image denoising loss, the crossover architecture with thresholding oper-303

ator (2) in BCD-Net-sCNN-hc is expected to better refine material images by exchanging304

shared noisy features between them, compared to the individual encoding-decoding case in305

BCD-Net-sCNN-lc.306

We study the tight-frame property41 of the proposed cross-material CNN refiners, since307

learned filters satisfying the tight-frame condition are useful to compact energy of input image308

and remove unwanted noise and artifacts via thresholding18,42. The tight-frame condition309
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for (5) is given by310

DE = I2R. (7)311

This is implied as follows. Using the patch-perspective reformulation (5), convolutional312

encoding in (1) can be rewritten as follows:
√

1/R[(EP̄1)>, . . . ,
(
EP̄N

)>
]>x. The tight-frame313

condition for a refiner that uses this as both encoder and decoder, i.e., (8) in Section II.C, is314

given as follows18,42: ‖x‖2 = x>
∑N

j=1 P̄>j E>EP̄jx/R, ∀x. This condition is identical to315

E>E = I2R considering that
∑N

j=1 P̄>j P̄j = RI2N with the periodic boundary condition and316

sliding parameter 1. If a decoding filter matrix is different from an encoding filter matrix,317

e.g., (1), then the tight-frame condition can become (7). In Figure 2, we empirically observed318

for DECT material decomposition that sCNN-hc refiners of BCD-Net at the last iteration319

approximately satisfy the tight-frame condition.320

Figure 3 shows learned filters of BCD-Net-sCNN-lc and BCD-Net-sCNN-hc refiners that321

use the identical encoding-decoding architecture, i.e., D = E> in (5), where we display them322

with four groups, E1,1, E1,2, E2,1, and E2,2 in (6). Filters in diagonal block matrices on323

the left in Figure 3 include both (short) first-order finite differences and elongated features.324

In addition, E1,1 includes more elongated structures than E2,2, while E2,2 includes more325

first-order finite difference like kernels than E1,1 (there are 16 and 23 first-order finite differ-326

ence like structures in E1,1 and E2,2, respectively). This is potentially because water image327

includes diverse low-contrast edge features from different soft-tissues, while bone image in-328

cludes relatively simple high-contrast edge features from bone and air. Many structured329

kernels in E1,1,E1,2,E2,1, and E2,2, on the right in Figure 3 are like first-order finite differ-330

ence: specifically, E1,1, E1,2, E2,1, and E2,2 have about 10, 17, 17, and 24 first-order finite331

difference like kernels. Interestingly, the number of first-order finite difference like kernels of332

E1,2 and E2,1 is intermediate between those of E1,1 and E2,2. This might imply using the333

conjecture above that cross-materials have less and more diverse edge features than water334

image and bone image, respectively. What is more, we observed some filters in E1,2 capture335

similar features as those in E1,1, e.g., filters indicated by red boxes, while some filters in E1,2336

capture different features from those in E1,1, e.g., filters indicated by yellow boxes. We also337

observed similar behavior between E2,1 and E2,2.338
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II.C Variations of (1)339

We specialize (1) to have simpler components. BCD-Net-sCNN-lc is a simpler convo-340

lutional encoding-decoding architecture proposed in our recent conference work35; it uses341

following CNN refiner that has identical encoding-decoding architecture independently for342

two different material images:343

z(i)
m = R

Θ
(i)
m

(x(i−1)
m ) =

K∑

k=1

ē
(i)
m,m,k ~ Texp (α

(i)
m,k)

(
e

(i)
m,m,k ~ x(i−1)

m

)
, m = 1, 2, (8)344

where (̄·) rotates a filter (e.g., it rotates 2D filters by 180◦). (1) specializes to (8) by setting345

d
(i)
m,n,k as ē

(i)
n,m,k, and e

(i)
n,m,k = d

(i)
m,n,k = 0 for m 6= n. One can also use dCNNs instead of the346

sCNN refiners in (1) and (8). We refer to this method as BCD-Net-dCNN. We investigate347

the performance of BCD-Net-dCNN (that replaces the refining module in (1) and (8) with348

a dCNN); see Section III.B.3 later for details of BCD-Net-dCNN.349

II.D Training BCD-Net-sCNNs350

The training process at the ith iteration requires L input-output image pairs. Input351

labels are decomposed material images via MBID module, {x(i−1)
l,m : l = 1, · · · , L}, and352

output labels are high-quality reference material images, {xl,m : l = 1, · · · , L}. We use the353

patch-based training loss of (1/L)
∑L

l=1 ‖xl − RΘ(x
(i−1)
l )‖2

2, where we derived their bound354

relation in Proposition S.2 using the convolution-to-patch loss reformulation techniques in355

a recent work32. Patch-based training first extracts reference and noisy material patches356

from {xl,m : l = 1, · · · , L} and {x(i−1)
l,m : l = 1, · · · , L} and constructs reference and noisy357

material data matrices X̃m ∈ RR×P and X̃
(i−1)
m ∈ RR×P , respectively, where P = LN .358

(For {x(0)
l,m : ∀l,m}, we used rough estimates of decomposed images obtained via the direct359

matrix inversion method (see Section III.A.1).) Then we construct paired multi-material360

data matrices X̃ ∈ R2R×P and X̃(i−1) ∈ R2R×P , where each column is formed by stacking361

vectorized two-dimensional (2D) patches extracted from the same spatial location in different362

material images. i.e., X̃ = [X̃>1 , X̃
>
2 ]> and X̃(i−1) = [(X̃

(i−1)
1 )>, (X̃(i−1)

2 )>]>.363

The training loss of BCD-Net-sCNN-hc at the ith iteration is364

L(D, E, α) :=
1

P
‖X̃−DTexp(α)(EX̃(i−1))‖2

F, (P1)365

where ‖ · ‖F denotes the Frobenius norm of a matrix. The subgradients of L(D, E, α) with366
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Algorithm 1 Training BCD-Net-sCNN-hc

Require: {xl,m,x(0)
l,m,yl,Al,Wl : l = 1, . . . , L,m = 1, 2}, β > 0, Iiter > 0

for i = 1, 2, · · · , Iiter do
Train Θ(i) via (P1) using {xl,m,x(i−1)

l,m : ∀l,m}
for l = 1, . . . , L do

Refining: (z
(i)
l,1, z

(i)
l,2) = RΘ(i)(x

(i−1)
l,1 , x

(i−1)
l,2 ) in (1).

MBID: Obtain {x(i)
l,m : ∀l,m} by solving (P0) with (4).

end for
end for

respect to D, E, and α for each mini-batch selection are as follows:367

∂L(D, E, α)

∂D
= − 2

B

(
X−DZ(i−1)

)
Z(i−1)> (9)368

369

∂L(D, E, α)

∂E
= − 2

B
D>

(
X−DZ(i−1)

)
� 1|EX(i−1)|>exp (α1′) ·X(i−1)> (10)370

371

∂L(D, E, α)

∂α
=

2

B

{
D>

(
X−DZ(i−1)

)
� exp(α1′)� sign

(
Z(i−1)

)}
1, (11)372

where X, X(i−1) ∈ R2R×B are mini-batch in which columns are randomly selected from X̃ and373

X̃(i−1), respectively, Z(i−1) = Texp(α1′)(EX(i−1)), andB is the mini-batch size. Here, 1 ∈ RB×1
374

denotes a column vector of ones, 1(·) is the indicator function (value 0 when condition is375

violated and 1 otherwise), and � is the element-wise multiplication. The derivation details376

of (9)–(11) are in Section S.I. Once we obtain the learned filters and thresholding values,377

we apply them to refine material images. These refined images are then fed into the MBID378

module. Algorithm 1 shows the training process of BCD-Net-sCNN-hc.379

Training BCD-Net-sCNN-lc only involves submatrices E
(i)
1,1 and E

(i)
2,2, i.e., E

(i)
1,2 = E

(i)
2,1 =380

D
(i)
1,2 = D

(i)
2,1 = 0, D

(i)
1,1 = E

(i)
1,1

>
, and D

(i)
2,2 = E

(i)
2,2

>
in (P1), and we train it using image381

pair (X̃m, X̃
(i−1)
m ), ∀m, i. See subgradients for training BCD-Net-sCNN-lc in our earlier382

conference work35.383

II.E Testing Trained BCD-Nets384

At the ith iteration of BCD-Net-sCNN-hc, we apply learned filters and thresholding385

parameters Θ(i) to noisy material images {x(i−1)
m : m = 1, 2} to obtain refined material386

images z(i) = RΘ(i)(x
(i−1)
1 , x

(i−1)
2 ), where the definition of z(i) is given in Section II.A.2. We387

then feed these refined images into the MBID module to obtain decomposed material images388
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Algorithm 2 Testing Trained BCD-Net-sCNN-hc

Input: {x(0)
m : m = 1, 2},y,A,W, {Θ(i) : i = 1, . . . , Iiter}, β > 0

Output: {x(Iiter)
m : m = 1, 2}

for i = 1, 2, · · · , Iiter do
Refining: (z

(i)
1 , z

(i)
2 ) = RΘ(i)(x

(i−1)
1 , x

(i−1)
2 ) in (1).

MBID: Obtain {x(i)
m : m = 1, 2} by solving (P0) with (4).

end for

{x(i)
m : m = 1, 2}. After some fixed iterations (where Iiter is chosen in training), BCD-Net-389

sCNN-hc gives the final decomposed images {x(Iiter)
m : m = 1, 2}. Algorithm 2 summarizes390

the test process of learned BCD-Net-sCNN-hc. The test process of BCD-Net-sCNN-lc and391

BCD-Net-dCNN are similar to that of BCD-Net-sCNN-hc.392

III Results and Discussions393

This section describes experimental setup and reports comparison results with XCAT394

phantom43 and clinical DECT head data. We compared the performances of three BCD-Net395

methods (BCD-Net-sCNN-lc35, BCD-Net-sCNN-hc, and BCD-Net-dCNN), the conventional396

direct matrix inversion method, MBID methods using data-driven and conventional non-397

data-driven regularizers, DECT-ST19 and DECT-EP15, and a (noniterative) dCNN method.398

III.A Methods for Comparisons399

This section describes methods compared with the proposed BCD-Net methods. We400

will describe their parameters in the next section.401

III.A.1 Direct Matrix Inversion402

This conventional method solves (P0) with G(x) = 0 by matrix inversion, i.e., A−1y.403

We use direct matrix inversion results as initial material decomposition to DECT-EP and404

BCD-Nets, i.e., {x(0) = A−1y}, and noisy input material images to dCNN denoiser.405

III.A.2 DECT-EP406

This conventional method solves (P0) with a material-wise edge-preserving regular-407

izer that is defined as GEP(x) =
∑2

m=1 βmGm(xm), where the mth material regularizer is408

Gm(xm) =
∑N

j=1

∑
k∈S ψm(xm,j−xm,k), and S is a list of indices that correspond to neighbor-409

ing pixels of a pixel xm,j with |S| = REP, ∀m, j, where REP denotes the number of neighbors410

for each pixel. Here, the potential function is ψm(t) , δ2m
3

(
√

1 + 3(t/δm)2 − 1) with the mth411

material EP parameter, δm. We chose βm and δm for different materials separately to achieve412
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the desired boundary sharpness and strength of smoothness.413

III.A.3 DECT-ST414

This data-driven method solves (P0) with a regularizer that uses two square material-415

wise sparsifying transforms trained in an unsupervised way. The regularizer GST(x) is defined416

as417

GST(x), min
{zm,j}

2∑

m=1

N∑

j=1

βm
{
‖ΩmPm,jx−zm,j‖2

2+γ2
m‖zm,j‖0

}
,418

where Ω1 ∈ RRST×RST and Ω2 ∈ RRST×RST are pre-learned transforms for water and bone, re-419

spectively, Pm,jx and zm,j denote the jth patch of the mth material image and corresponding420

sparse vector, respectively, and RST is the number of pixels in each patch.421

III.A.4 dCNN denoiser422

The (noniterative) image denoising dCNN method uses two input and output channels;423

specifically, it takes noisy water and bone images and provides denoised water and bone424

images. The architecture that maps from noisy material images to true material images425

corresponds to the second CNN architecture of the cascaded dCNN24, and that uses two426

input and two output channels corresponds to the setup of a modified U-Net method27.427

III.B Experimental Setup428

III.B.1 Imaging setup for XCAT phantom experiments429

We used 1024 × 1024 material images with pixel size 0.49 × 0.49 mm2 of the XCAT430

phantom in our imaging simulation. We generated noisy (Poisson noise) sinograms of size431

888 (radial samples) × 984 (angular views) using GE LightSpeed X-ray CT fan-beam system432

geometry corresponding to a poly-energetic source at 80 kVp and 140 kVp with 1.86×105 and433

1×106 incident photons per ray, respectively. We used FBP method to reconstruct 2D high-434

and low-energy attenuation images of size 512×512 with a coarser pixel size 0.98×0.98 mm2
435

to avoid an inverse crime. Figure 4 displays the attenuation images for a test slice.436

III.B.2 Data construction437

We separated each 1024×1024 slice of the original XCAT phantom into water and bone438

images according to the table of linear attenuation coefficients for organs provided for the439

XCAT phantom. We manually grouped fat, muscle, water, and blood into the water density440

images, and rib bone and spine bone into bone density images. We then downsampled these441

material density images to size 512 × 512 by linear averaging to generate ground truths442
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of the decomposed material images. We chose 13 slices from the XCAT phantom, among443

which L = 10 slices were used for training the proposed BCD-Net-sCNNs, and remaining 3444

slices were used for testing. Testing phantom images are sufficiently different from training445

phantom images; specifically, they are at a minimum ≈ 1.5 cm away, i.e., 25 slices. For446

dCNN, we used L = 20 slices of XCAT phantom that includes the 10 slices chosen for447

training the proposed BCD-Net-sCNNs. In general, dCNNs need many training samples, so448

we used more image pairs to train dCNN compared to BCD-Net-sCNN-lc and BCD-Net-449

sCNN-hc.450

In addition, using the clinical data, we evaluated the proposed methods and compared451

them to the methods in Section III.A. The clinical data experiments decomposed a mixture452

into two constituent materials, water and bone, in each pixel. The patient head data was453

obtained by Siemens SOMATOM Definition flash CT scanner using dual-energy CT imaging454

protocols. The protocols of this head data acquisition are listed in Table 1. For dual-energy455

data acquisition, the dual-energy source were set at 140 kVp and 80 kVp. Figure 8 shows456

attenuation images of head data. FBP method was used to reconstruct these attenuation457

images.458

III.B.3 Methods setup and parameters459

We first obtained the low-quality material images from high- and low-energy attenuation460

images using direct matrix inversion method, and used these results to initialize DECT-461

EP method. We used the 8-neighborhood system, REP = 8. To ensure convergence, we462

ran DECT-EP with 500 iterations. For XCAT phantom, we set {βm, δm : m = 1, 2} as463

{28, 0.01} and {28.5, 0.02} for water and bone, respectively; for patient head data, we set464

them as {210.5, 0.008} and {211, 0.015} for water and bone, respectively.465

We pre-learned two sparsifying transform matrices of size R2
ST = 642 with ten slices466

(same slices as used in training BCD-Net-sCNNs) of true water and bone images of the467

XCAT phantom, using the suggested algorithm and parameter set (including number of it-468

erations, regularization parameters, transform initialization, etc.) in the original paper19.469

We initialized DECT-ST using decomposed images obtained by DECT-EP method. We470

tuned the parameters {β1, β2, γ1, γ2} and set them as {50, 70, 0.03, 0.04} for XCAT phan-471

tom, and {150, 200, 0.012, 0.024} for patient head data.472

For the denoising dCNN architecture, we set the number of layers and number of features473
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in hidden layers as 4 and 64, respectively. We did not use batch normalization and bias474

because the pixel values of different training/testing images are of the same scale. We learned475

the dCNN denoiser R with the standard loss in image denoising, L(R) = 1
L

∑L
l=1 ‖xl −476

R(x
(0)
l )‖2

2, with Adam using 200 epochs and batch size 1. We observed with the clinical data477

that selected dCNN architecture gives better decomposed image quality, compared to its478

variants with 8 layers and/or the different mode that maps high- and low-energy attenuation479

images to two material images (this mode corresponds to a series of papers25–27).480

We trained a 100-iteration BCD-Net-sCNN-hc and a 100-iteration BCD-Net-sCNN-lc481

with image refining CNN architectures in (1) and (8), respectively. For BCD-Net-sCNN-hc,482

we trained cross-material CNN refiners in (1) with about 1 × 106 paired stacked multi-483

material patches. We trained 8K = 512 filters of size R = 8 × 8 at each iteration. For484

BCD-Net-sCNN-lc, we trained convolutional refiners in (8) for each material with about485

1 × 106 paired patches. We trained K = 64 filters of size R = 8 × 8 for each material at486

each iteration. We initialized all filters with values randomly generated from a Gaussian487

distribution with a zero mean and standard deviation of 0.1. We found in training that488

thresholding value initialization is important to ensure stable performances. For BCD-Net-489

sCNN-lc, we set initial thresholding parameters before applying the exponential function as490

log(0.88) and log(0.8) for water and bone, respectively; for BCD-Net-sCNN-hc, we set them491

as log(0.88). The regularization parameter β balances data-fit term and the prior estimate492

from image refining module. To achieve the best image quality and decomposition accuracy,493

we set β as 600 and 6400 for BCD-Net-sCNN-lc and BCD-Net-sCNN-hc, respectively (note494

that different BCD-Net architectures have different refining performance). We train NNs of495

BCD-Net-sCNN-hc and BCD-Net-sCNN-lc with Adam44 using the default hyper-parameters496

and tuned learning rate of 3 × 10−4. We applied the learning rate schedule that decreases497

learning rates by a ratio of 90% every five epochs. We set batch size and number of epochs498

as B = 10000 and 50, respectively. For patient head data, we used the learned filters and499

thresholding values with XCAT phantom. The attenuation maps of XCAT phantom and500

clinical head data were generated by different energy spectrum and dose, and the clinical501

head data is much more complex than the XCAT phantom (see Figures 4 and 8). We502

thus set different regularization parameter β for the patient head data to achieve the best503

image quality; specifically, we set β as 3000 and 12000 in testing BCD-Net-sCNN-lc and504

BCD-Net-sCNN-hc, respectively.505
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We trained a 100-iteration BCD-Net-dCNN, where we replaced image refining CNN506

architecture of BCD-Net-sCNN-hc with the aforementioned denoising dCNN architecture.507

We used the same training dataset used in training the non-iterative dCNN method. We also508

used Adam optimization and identical settings (learning rate and regularization parameter509

β) as those of BCD-Net-sCNN-hc. We set batch size and number of epochs as 1 and 10,510

respectively. We observed with three test phantom samples that BCD-Net-dCNN becomes511

overfitted around 40th iteration; see Figure S.1. We thus used the results at the 40th iteration512

for test phantom samples. For the patient head data, we used 40-iteration BCD-Net-dCNN513

learned with XCAT phantom. We set β as 2400 after fine tuning to achieve the best image514

quality.515

III.B.4 Evaluation metrics516

In the quantitative evaluations with the XCAT phantom, we computed root-mean-517

square error (RMSE) for decomposed material images within a region of interest (ROI). We518

set the ROI as a circle region that includes all the phantom tissue. For a decomposed material519

density image x̂m, the RMSE in density (g/cm3) is defined as
√∑NROI

j=1 (x̂m,j − x?m,j)2/NROI,520

where x?m,j denotes the true density value of the mth material at the jth pixel location, and521

NROI is the number of pixels in a ROI. The ROI is indicated in red circle in Figure 5(a).522

For the patient head data, we evaluated each method with 1) contrast-to-noise ratio523

(CNR) that measures the contrast between tissue of interest (TOI) and local background524

region, and 2) noise power spectrum (NPS)45 that measures noise properties, in decomposed525

water images. CNR is defined as CNR = (µTOI−µBKG)/σBKG, where µTOI and µBKG are mean526

values in a TOI and local background region, respectively, and σBKG is standard deviation527

between pixel values in a local background region. We selected three TOI-local background528

sets in muscle and fat areas; see red and blue regions in Figure 5(b). The NPS is defined529

as NPS = |DFT{f}|2, where f denotes the noise of a ROI of decomposed water image (the530

patient head data does not have the ground-truth, so we subtract the mean value from the531

pixel values to approximate noise45), and DFT{·} applies the 2D discrete Fourier transform532

(DFT) to 2D image. We selected three ROIs with uniform intensity and of size 30 × 30 in533

decomposed water image, and measured NPS within these ROIs; see the positions of three534

ROIs in Figure 5(c).535

We used the most conventional measures for image quality assessment in tomography536
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research. In XCAT phantom experiments with available ground-truth material images, we537

calculated RMSE values for each method. In clinical data experiments, we used the CNR538

measure that is the most widely-used alternative to RMSE in tomography research particu-539

larly when ground-truths are unavailable.540

III.C Comparisons Between Different Methods with XCAT Phan-541

tom Data542

Table 2 summarizes the RMSE values of material images decomposed by different543

methods for three different test slices. BCD-Net-sCNN-lc significantly decreases RMSE544

for material images compared to direct matrix inversion, DECT-EP, and DECT-ST. For545

all test samples, BCD-Net-sCNN-hc achieves significantly lower RMSE values compared to546

BCD-Net-sCNN-lc, implying the superiority of the distinct cross-material CNN architec-547

ture in (1) over the identical encoding-decoding architecture in (8). BCD-Net-sCNN-hc548

and dCNN methods achieve comparable errors: BCD-Net-sCNN-hc achieves an average549

0.4 × 10−3 g/cm3 improvement for water images over dCNN, while dCNN achieves an av-550

erage 0.2 × 10−3 g/cm3 improvement for bone images over BCD-Net-sCNN-hc. Compared551

to BCD-Net-dCNN, BCD-Net-sCNN-hc gives higher average RMSE for bone images, and552

the same average RMSE for water images. Compared to dCNN, BCD-Net-dCNN achieves553

RMSE improvements for both water and bone images, implying that dCNN denoisers com-554

bined with MBID modules in an iterative way can further decrease RMSE values. Figure 6555

shows the RMSE convergence behavior of BCD-Net-sCNN-hc: it decreases monotonically.556

(See its fixed point convergence guarantee in the work32.)557

Figure 7 shows the #1 material density images of direct matrix inversion, DECT-EP,558

DECT-ST, dCNN, BCD-Net-sCNN-lc, BCD-Net-sCNN-hc, BCD-Net-dCNN, and ground559

truth. DECT-EP reduces severe noise and artifacts in direct matrix inversion decomposi-560

tions. DECT-ST, dCNN, and BCD-Net-sCNN-lc significantly improve the image quality561

compared to DECT-EP, but still have some obvious artifacts. Compared to dCNN, BCD-562

Net-dCNN further reduces noise and artifacts and shows better recovery of the areas at563

the boundaries of water and bone; however, BCD-Net-dCNN still blurs soft-tissue regions.564

Compared to DECT-ST, dCNN, BCD-Net-sCNN-lc, and BCD-Net-dCNN, BCD-Net-sCNN-565

hc shows significantly better noise and artifacts reduction while improving the sharpness of566

edges in soft-tissue regions. These improvements are clearly noticeable in the zoom-ins of567
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water images. Decomposed material images for another two test slices are included in Fig-568

ures S.3–S.4.569

III.D Comparisons Between Different Methods with Patient Data570

Figure 8 shows decomposed material density images by different methods and high-571

and low-energy attenuation images for clinical head data. DECT-EP reduces severe noise572

and artifacts in direct matrix inversion results, but it is difficult to distinguish edges in573

many soft tissue regions. DECT-ST and dCNN suppress noise and improve the edges in soft574

tissues compared to DECT-EP, but both still have poor contrast in many soft tissue regions.575

BCD-Net-sCNN-lc and BCD-Net-dCNN further improve the contrast in soft tissue regions576

compared to DECT-ST and dCNN. However, BCD-Net-sCNN-lc has bright artifacts—see577

the bottom-right zoom-in in water image—and BCD-Net-dCNN leads to indistinguishable578

bone marrow structures—see the bottom-left zoom-ins in water and bone images. BCD-Net-579

sCNN-hc better removes noise and artifacts, provides clearer image edges and structures,580

and recovers subtle details, compared to the other methods aforementioned. One clearly581

noticeable improvement is captured in the bottom-right zoom-ins in water images, where582

BCD-Net-sCNN-hc not only improves edge sharpness and contrast in soft tissue, but also583

suppresses bright artifacts. Inside the red circle 1 in water images, BCD-Net-sCNN-hc and584

BCD-Net-dCNN preserve a “dark spot” that exists in attenuation images, whereas DECT-585

EP, DECT-ST, dCNN, and BCD-Net-sCNN-lc all missed it. The structure of the dark spot is586

an artery that contains diluted iodine solution caused by angiogram. The linear attenuation587

coefficient of iodine is much closer to bone than soft-tissue. During decomposition, most of588

the iodine is grouped into the bone image, while in the water image there are only some589

pixels with tiny values, thus it is a dark spot. Moreover, the marrow structures obtained by590

BCD-Net-sCNN-hc have sharper edges (inside red circle 2) than the other methods.591

Table 3 summaries the CNR values for the three different TOI-local background sets592

in the decomposed water images via different methods. BCD-Net-sCNN-hc achieves signif-593

icantly higher CNR compared to the other methods for all the three TOI-local background594

sets, and the performance degrades in the following order: BCD-Net-dCNN, BCD-Net-595

sCNN-lc, dCNN, DECT-ST, DECT-EP, direct matrix inversion. In particular, BCD-Net-596

sCNN-hc achieves 1.70 improvement in CNR in average over BCD-Net-dCNN, and BCD-597

Net-dCNN achieves 3.14 improvement in CNR in average over dCNN.598
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Figure 9 compares the magnitude of NPS from different methods. Across all frequencies,599

the NPS magnitude of BCD-Net-sCNN-hc is significantly smaller than that of direct matrix600

inversion, DECT-EP, DECT-ST, and dCNN. The overall low-frequency noise of BCD-Net-601

sCNN-hc is also significantly less than that of the aforementioned methods. What is more,602

BCD-Net-sCNN-hc achieves fewer vertical and horizontal frequency strips with lower inten-603

sity compared to BCD-Net-sCNN-lc and BCD-Net-dCNN, especially in the ROI #1 and #3.604

The aforementioned NPS comparisons demonstrate the superiority of the proposed BCD-605

Net-sCNN-hc in removing noise and artifacts inside soft tissue regions. We observed similar606

trends in averaged NPS measures using multiple noise realizations; see Figure S.2.607

Similar to XCAT phantom results, the dCNN denoiser and BCD-Net-dCNN give less ap-608

pealing material images of the clinical head data, compared to the proposed BCD-Net-sCNN-609

hc. We conjecture that the following reasons may limit the dCNN denoising performance:610

lack of considering decomposition physics and/or limited training samples and diversity. Al-611

though BCD-Net-dCNN incorporates decomposition physics, due to too high NN complexity612

(compared to the diversity of the training data), the image quality for both phantom and613

patient head data are still unsatisfactory. The proposed method, BCD-Net-sCNN-hc, re-614

solves the issues of dCNN and BCD-Net-dCNN by using both MBID cost minimization and615

shallow CNN refiner at each iteration. The clinical head data shows that the proposed BCD-616

Net-sCNN-hc successfully reduces noise/artifacts and preserves subtle details that exist in617

attenuation images in Figure 8.618

III.E Computational Complexity Comparisons619

The computational cost of DECT-EP, DECT-ST, and the proposed BCD-Net-sCNNs620

scale as O(REPNIEP), O((RST)2NIST), and O(RKNIiter), respectively, where IEP and IST621

are the number of iterations for DECT-EP and DECT-ST, respectively. The computa-622

tional cost of the chosen dCNN architecture in Section III.A.4 and BCD-Net-dCNN scale623

as O(RdCNNKdCNNN((C − 2)KdCNN + 4)) and O(RdCNNKdCNNN((C − 2)KdCNN + 4)IdCNN),624

respectively, where RdCNN, KdCNN, and C are kernel size, the number of features, and the625

number of convolutional layers of dCNN denoiser, respectively, and IdCNN is the number626

of BCD-Net-dCNN iterations. In all experiments, we used REP = 8 and IEP = 500 for627

DECT-EP, RST = 64 and IST = 1000 for DECT-ST, RdCNN = 32, KdCNN = 64, and C = 4628

for dCNN denoiser, IdCNN = 40 for BCD-Net-dCNN, and R = K = 82 and Iiter = 100 for629
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the proposed BCD-Net-sCNN-hc. The big-O analysis reveals that the computational cost630

of 100-iteration of the proposed BCD-Net-sCNN-hc is larger than 500-iteration DECT-EP631

and the chosen dCNN denoiser, 87% cheaper than that of 40-iteration BCD-Net-dCNN, and632

90% cheaper than that of 1000-iteration DECT-ST.633

III.F Discussions for Generalization Performance of dCNN, BCD-634

Net-dCNN, and BCD-Net-sCNN-hc635

To study the generalization performance of dCNN, BCD-Net-dCNN, and BCD-Net-636

sCNN-hc, we calculated the average RMSE values from training and test samples, and637

their difference. Table 4 reports the RMSE gap between decomposed images in train-638

ing and test via dCNN, BCD-Net-dCNN, and BCD-Net-sCNN-hc. BCD-Net-dCNN has639

smaller RMSE gap for both water and bone images, compared to dCNN that lacks decom-640

position physics. We conjecture that including MBID modules in an iterative way can641

improve the generalization performance of dCNN denoisers. This result is well aligned642

with the recent work46 demonstrating that combining deep NNs, imaging physics, and643

sparisty-promoting regularizer gives the stable performance against perturbations. BCD-644

Net-sCNN-hc has smaller RMSE gap for both water and bone images, compared to BCD-645

Net-dCNN. At each BCD-Net iteration, the number of trainable parameters are 2K(4R+ 1)646

and RdCNNKdCNN((C − 2)KdCNN + 4) for BCD-Net-sCNN-hc and BCD-Net-dCNN, respec-647

tively; specifically, they are 32,896 and 76,032 using the parameter sets in Section III.E. We648

conjecture that sCNN-hc refiner with lower NN complexity can improve the generalization649

performance over dCNN refiner.650

IV Conclusions651

Image-domain decomposition methods are readily applicable to commercial DECT scan-652

ners, but susceptible to noise and artifacts on attenuation images. To improve MBID perfor-653

mance, it is important to incorporate accurate prior knowledge into sophisticatedly designed654

MBID. The proposed INN architecture, BCD-Net-sCNN-hc, successfully achieves accurate655

MBID by providing accurate prior knowledge via its iteration-wise refiners that exploit corre-656

lations between different material images with distinct encoding-decoding filters. Our study657

with patch-based reformulation reveals that learned filters of distinct cross-material CNN658

refiners can approximately satisfy the tight-frame condition and useful for noise suppression659

and signal restoration. On both XCAT phantom and patient head data, the proposed BCD-660
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Net-sCNN-hc reduces the artifacts at boundaries of materials and improves edge sharpness661

and contrast in soft tissue, compared to a conventional MBID method, DECT-EP, a recent662

unsupervised MBID method, DECT-ST, and a noniterative dCNN method. We also show663

that BCD-Net-sCNN-hc improves the image quality over BCD-Net-dCNN, especially for pa-664

tient head data, potentially due to its lower refiner complexity over that of BCD-Net-dCNN.665

For choosing refiner architecture in BCD-Net, we suggest considering the number of trainable666

parameters with the size/diversity of training data.667

There are a number of avenues for future work. Our first future work is to investigate668

a three-material decomposition BCD-Net architecture in DECT; see its potential benefit in669

Section S.III and Figures S.5–S.7. Second, to further improve the MBID model, we plan to670

train the weight matrix W0 in (P0) in a supervised way with proper loss function designs,671

rather than statistically estimating it. By extending the patch-perspective interpretations,672

we will develop an “explainable” deeper refiner that might further improve the MBID perfor-673

mance of BCD-Net. Third, to accommodate the non-trivial tuning process of β in (P0), we674

plan to learn it from training datasets. Finally, to further improve the generalization capabil-675

ity of the proposed INN architecture, we will additionally incorporate a sparsity-promoting676

regularizer into the proposed framework, similar to the recent work46.677
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Figure 1: The proposed BCD-Net architecture at the ith iteration, for i = 1, . . . , Iiter.
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Figure 2: D(100)E(100) of BCD-Net-sCNN-hc.
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water

bone

water cross-material

cross-material bone

Figure 3: Left and right are learned filters of BCD-Net-sCNN-lc and BCD-Net-sCNN-hc
at the last iteration that uses identical encoding-decoding architecture (i.e., D = E>), re-
spectively. Top-left, top-right, bottom-left, and bottom-right correspond to E1,1, E1,2, E2,1,
and E2,2, respectively. Four pairs of filters (indicated by four different colors) are selected
as examples to show similar or different structures between off-diagonal and diagonal blcok
matrices; filters indicated by red or green boxes show similar structures, while blue or yellow
boxes show different structures.
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Figure 4: The attenuation images (zoomed-in) for a test slice at high and low energies,
respectively.
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Figure 5: (a) ROI used for RMSE calculation for XCAT phantom data. (b) Three selected
TOIs in muscle (indicated by red rectangles) and corresponding local background regions in
fat (indicated by blue rectangles) on the decomposed water image of head data. (c) Three
selected ROIs for NPS calculation for the decomposed water image of head data.
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Figure 6: RMSE convergence behaviors of BCD-Net-sCNN-hc (averaged RMSE values across
three test slices of XCAT phantom).
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Figure 7: Comparison of decomposed images from different methods (XCAT phantom test
slice #1). Water and bone images are shown with display windows [0.7 1.3] g/cm3 and [0
0.8] g/cm3, respectively.
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Figure 8: Comparison of decomposed images from different methods (clinical head data).
Water and bone images are displayed with windows [0.5 1.3] g/cm3 and [0.05 0.905] g/cm3,
respectively. High- and low-energy attenuation images are displayed with window [0.1
0.35] cm−1.
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Figure 9: Left to right: NPS measured within ROIs of decomposed water images obtained by
direct matrix inversion, DECT-EP, DECT-ST, dCNN, BCD-Net-dCNN, BCD-Net-sCNN-lc,
and BCD-Net-sCNN-hc. The first to the third rows show the NPS of the first to third ROI
in Figure 5(c), respectively, with display windows [0 1.5] g2/cm6.

32



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

An INN for DECT Material Decomposition : Printed January 20, 2022 page 33

Table 1: Data acquisition parameters applied in head data acquisition.

Scanner
Head Data

High-energy Low-energy

Peak Voltage (kVp) 140 80

X-ray Tube Current (mA) 364 648

Exposure Time (s) 0.285

Current-exposure Time Product (mAs) 103.7 184.7

Noise STD (mm−1) 1.57× 10−4 3.61× 10−4

Helical Pitch 0.7

Gantry Rotation Speed (circle/second) 0.28

Table 2: RMSE of decomposed material density images obtained by different methods for
three different test slices of XCAT phantom. The unit for RMSE is 10−3 g/cm3.

Methods
Test #1 Test #2 Test #3 Average

water bone water bone water bone water bone

Direct matrix
inversion

91.2 89.0 70.4 69.9 119.2 111.9 93.6 90.3

DECT-EP 60.0 68.5 59.5 63.3 69.9 75.9 63.1 69.2

DECT-ST 54.2 60.3 52.1 54.1 62.5 66.3 56.3 60.2

dCNN 21.9 24.3 19.8 20.8 24.9 30.2 22.2 25.1

BCD-Net-sCNN-lc 44.4 39.1 37.0 33.4 47.2 48.8 42.9 40.4

BCD-Net-sCNN-hc 23.0 25.3 20.2 23.2 22.2 27.6 21.8 25.3

BCD-Net-dCNN 22.7 23.4 22.0 22.6 20.7 22.0 21.8 22.7
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Table 3: CNR of decomposed water density images obtained by different methods for clinical
head data.

TOI-local

BKG #1

TOI-local

BKG #2

TOI-local

BKG #3
Average

Direct matrix inversion -0.05 -0.21 0.05 -0.06

DECT-EP 0.14 -0.28 0.63 0.16

DECT-ST 1.97 0.18 3.44 1.86

dCNN 5.08 4.92 4.46 4.82

BCD-Net-sCNN-lc 6.83 8.45 5.39 6.89

BCD-Net-sCNN-hc 10.01 11.48 7.49 9.66

BCD-Net-dCNN 8.16 9.44 6.29 7.96

Table 4: RMSE of decomposed density images from training and test samples via dCNN,
BCD-Net-dCNN, and BCD-Net-sCNN-hc. RMSE gap is the difference between test RMSE
and training RMSE. The unit for RMSE is 10−3 g/cm3.

Methods dCNN BCD-Net-dCNN BCD-Net-sCNN-hc

water bone water bone water bone

RMSE

Training 18.4 21.6 18.7 19.4 21.5 22.8

Test 22.2 25.1 21.8 22.7 21.8 25.4

Gap 3.8 3.5 3.1 3.3 0.3 2.6
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List of Figures:808

• Figure 1: The proposed BCD-Net architecture at the ith iteration, for809

i = 1, . . . , Iiter.810

• Figure 2: D(100)E(100) of BCD-Net-sCNN-hc.811

• Figure 3: Left and right are learned filters of BCD-Net-sCNN-lc and812

BCD-Net-sCNN-hc at the last iteration that uses identical encoding-813

decoding architecture (i.e., D = E>), respectively. Top-left, top-right,814

bottom-left, and bottom-right correspond to E1,1, E1,2, E2,1, and E2,2,815

respectively. Four pairs of filters (indicated by four different colors) are816

selected as examples to show similar or different structures between off-817

diagonal and diagonal blcok matrices; filters indicated by red or green818

boxes show similar structures, while blue or yellow boxes show different819

structures.820

• Figure 4: The attenuation images (zoomed-in) for a test slice at high821

and low energies, respectively.822

• Figure 5: (a) ROI used for RMSE calculation for XCAT phantom data.823

(b) Three selected TOIs in muscle (indicated by red rectangles) and cor-824

responding local background regions in fat (indicated by blue rectangles)825

on the decomposed water image of head data. (c) Three selected ROIs826

for NPS calculation for the decomposed water image of head data.827

• Figure 6: RMSE convergence behaviors of BCD-Net-sCNN-hc (averaged828
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• Figure 7: Comparison of decomposed images from different methods830

(XCAT phantom test slice #1). Water and bone images are shown with831

display windows [0.7 1.3] g/cm3 and [0 0.8] g/cm3, respectively.832

• Figure 8: Comparison of decomposed images from different methods833

(clinical head data). Water and bone images are displayed with windows834

[0.5 1.3] g/cm3 and [0.05 0.905] g/cm3, respectively. High- and low-835

energy attenuation images are displayed with window [0.1 0.35] cm−1.836
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• Figure 9: Left to right: NPS measured within ROIs of decomposed837

water images obtained by direct matrix inversion, DECT-EP, DECT-838

ST, dCNN, BCD-Net-dCNN, BCD-Net-sCNN-lc, and BCD-Net-sCNN-839

hc. The first to the third rows show the NPS of the first to third ROI840

in Figure 5(c), respectively, with display windows [0 1.5] g2/cm6.841

• Figure S.1: RMSE plot of BCD-Net-dCNN for Test #1, Test #2, and842

Test #3, respectively.843

• Figure S.2: (a) Five selected ROIs indicated for NPS calculation for the844

decomposed water image of XCAT phantom. (b) Left to right: NPS845

measured within ROIs of decomposed water images obtained by direct846

matrix inversion, DECT-EP, DECT-ST, dCNN, BCD-Net-dCNN, BCD-847

Net-sCNN-lc, and BCD-Net-sCNN-hc. The first to the fifth rows in848

(b) show the NPS of the first to fifth ROIs, respectively, with display849

windows [0 0.6] g2/cm6.850

• Figure S.3: Comparison of decomposed images from different methods851

(XCAT phantom test slice #2). Water and bone images are shown with852

display windows [0.7 1.3] g/cm3 and [0 0.8] g/cm3, respectively.853

• Figure S.4: Comparison of decomposed images from different methods854

(XCAT phantom test slice #3). Water and bone images are displayed855

with windows [0.7 1.3] g/cm3 and [0 0.8] g/cm3, respectively.856

• Figure S.5: Comparison of three decomposed images from regularized857

direct matrix inversion (λ = 1× 10−5), BCD-Net-sCNN-hc, and ground858

truth. Fat, muscle, and bone images are shown with display windows [0859

2] g/cm3, [0 2] g/cm3, and [0 0.5] g/cm3, respectively.860

• Figure S.6: RMSE convergence behaviors of three-material decomposi-861

tion BCD-Net-sCNN-hc.862

• Figure S.7: Comparisons of decomposed bone images (display window863

[0 0.5] g/cm3) and their error maps (display window [0 0.3] g/cm3)864

from dual- and three-material decomposition BCD-Net-sCNN-hc archi-865
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