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Abstract
The risks from singular natural hazards such as a hurricane have been extensively
investigated in the literature. However, little is understood about how individual and
collective responses to repeated hazards change communities and impact their prepa-
ration for future events. Individual mitigation actions may drive how a community’s
resilience evolves under repeated hazards. In this paper, we investigate the effect that
learning by homeowners can have on household mitigation decisions and on how this
influences a region’s vulnerability to natural hazards over time, using hurricanes along
the east coast of the United States as our case study. To do this, we build an agent-
based model (ABM) to simulate homeowners’ adaptation to repeated hurricanes and
how this affects the vulnerability of the regional housing stock. Through a case study,
we explore how different initial beliefs about the hurricane hazard and how the mem-
ory of recent hurricanes could change a community’s vulnerability both under current
and potential future hurricane scenarios under climate change. In some future hurri-
cane environments, different initial beliefs can result in large differences in the region’s
long-term vulnerability to hurricanes. We find that when some homeowners mitigate
soon after a hurricane—when their memory of the event is the strongest—it can help to
substantially decrease the vulnerability of a community.
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1 INTRODUCTION

Natural disasters cause considerable property damage and
economic loss. In 2017, three major hurricanes, Harvey,
Irma, and Maria, made landfall, caused more than $300
billion (USD) in economic loss, damaged more than a mil-
lion homes, and left misery in their wake (Reuters, 2017).
Hurricane Irma caused approximately $70 billion (USD) in
total economic loss, and half of that was due to damage
to residential real estate (White, 2017). Residential building
vulnerability is a critical component of a region’s finan-
cial vulnerability when facing disasters. Low penetration
rates of flood insurance in most coastal communities often
mean that a singular event can erase a family’s most valu-
able asset (Dixon et al., 2018; Zahran et al., 2009). Further,
it can take months or even years after a disaster, depend-

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Risk Analysis published by Wiley Periodicals LLC on behalf of Society for Risk Analysis.

ing on the availability of financial assistance, contractors,
and postdisaster economic opportunities, among other fac-
tors, before displaced families return to their homes and
repair houses to normal, putting the long-term future of
the community at risk (Hamel et al., 2018). While there
have been studies examining building stock vulnerability to
hurricanes, most either (1) assume that building stock is
static (Jain & Davidson, 2007) or (2) exogenously impose a
change to the building stock within a hazard simulation model
(Jain et al., 2005). This ignores the potential endogenous
individual-level learning that stems from experience with hur-
ricanes that could substantially alter the building stock over
time.

Changes in building stock are part of the larger problem
of estimating damage from repeated events. In this paper
we consider repeated events to be hazards of the same type
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(e.g., a hurricane) that occur far enough apart in time that
restoration, building, and post-storm mitigation changes to
a building are completed before the next event occurs. This
generally implies a separation of 1 year or more between
events. Singular hazard events are well-studied, and risk
analysis methods are well developed for these events. For
example, hundreds of studies have been published on the
aftermath of Superstorm Sandy, ranging from evacuation
(Sadri et al., 2017), to nursing homes and elderly care (Lien
et al., 2014), to hardening the New York City and the New Jer-
sey coastline to reduce damage should a similar storm strike
again (Smallegan et al., 2016). In contrast, relatively little
is known about how repeated hazards may induce long-term
changes to communities, and more specifically, how hazards
change behaviors and policies which in turn influence the
built environment. These alterations to the built environment
change a community’s ability to withstand future events.

To better understand how regional vulnerability can evolve,
we must first better understand the potential contributions
of individual-level learning to regional risk. This is partic-
ularly critical in communities exposed to repeated hazards
as the effects of this learning, and the decisions that follow,
compound over time. There is not a unified way in which indi-
viduals understand and respond to hazard risk and different
beliefs about risk can lead to different mitigation behaviors.
However, it is still important to understand the influence that
archetypical behaviors have over time on community vul-
nerability to identify when interventions are warranted. For
example, people who hold strong beliefs that hurricanes are
infrequent and inconsequential are harder to sway even when
their understanding of the hazard is updated by a new expe-
rience (Peacock, 2003). The impact of this behavior as it
compounds over time differs depending on location and cli-
mate intensification. The role of memory can also influence
behavior in a way that has compounding effects. More recent
hazard experiences may tend to increase an individual’s risk
perception and decrease their risk tolerance, making individ-
uals more likely to mitigate (Chiew et al., 2020). This is an
instance of recency bias (Phillips-Wren et al., 2019). Recency
bias is a type of cognitive bias that relates to systematic errors
in judgment (Tversky & Kahneman, 1974).

This study investigates two specific questions: (1) When
does learning from the hazard environment decrease home-
owners’ vulnerability to repeated hurricanes in a changing
climate? and (2) How does the effect of recency bias influ-
ence a region’s vulnerability in the long term? We specifically
investigate the following key hypotheses, each of which is
developed from the literature review (Section 2).

1. Individual-level learning can substantially change the vul-
nerability of the residential building stock over time as
individuals update their beliefs about future damage based
on damage that they experience and respond via decisions
about home mitigation measures.

2. Prior beliefs about the likelihood of damaging storms can
have a substantial impact on how an individual learns

from experienced events and on their propensity to take
additional mitigation actions.

3. Overweighting of recent events in probability updating by
an individual could lead to the increased propensity to
mitigate immediately after an event that is often seen in
practice.

To examine these questions and hypotheses, we developed
an agent-based model (ABM) that focuses on the influence
of individual learning on homeowner decisions and then how
these decisions affect regional building stock vulnerability.
An ABM is required to address our research question to
understand how complex behavior may emerge from how
individuals interact with a stochastic hazard environment.
This work builds conceptually from Reilly, Guikema et al.
(2017), which builds an ABM to explore how homeowners
interact with their hazard environment, and how their deci-
sions could impact their risk over time. The current work
expands this by considering more complex decision rules
grounded in utility theory, by considering different hazard
environments, and, central to this work, by considering the
role that learning has on the distribution of outcomes. The
model specifically evaluates the influence of prior knowledge,
the effects of memory, and the confidence that homeowners
have in their own beliefs about hazard risk. In the model,
homeowners make decisions by choosing from a set of miti-
gation actions (e.g., installing hurricane shutters or hurricane
straps). The approach is place-based, and developed to repre-
sent key characteristics of nine coastal counties with 357,120
homeowners in the State of Maryland. However, both the
models and insights are generalizable to other areas.

An important note is needed on the role of the case study
and intended use of the model. Our model is not intended
to be predictive. That is, we do not and cannot make state-
ments about how the vulnerability of the area used as the
basis for our case study will evolve. There are too many
additional factors beyond those considered in this paper that
would need to be considered. Instead, the purpose of this
work is to gain more general understanding into the possi-
ble influence of individual-level learning on the evolution of
community vulnerability to natural hazards over time. Our
case study provides a reality-grounded example within which
to develop our model, but our model is not intended to fully
represent the full reality of the area used as the basis for devel-
oping our case study. We acknowledge this tension between
detail and abstractness that is always present when develop-
ing a complicated agent-based model, and we have sought
to balance this tension by maintaining enough realism in our
model to allow generalizable insights into the role of learn-
ing without overcomplicating the model such that it becomes
completely intractable, rendering the results uninterpretable.
Stating this differently, our goal in this paper is to develop sci-
entific insight into the underlying process (individual learning
in the presence of repeated hazards), not the development of
a model that can be used in practice to set policies or make
mitigation decisions.



764 ZHAI ET AL.

The structure of this paper is as follows. We first review the
literature of relevant studies as the construction of such mod-
els is highly interdisciplinary. We start by giving an overview
of the literature on (1) vulnerability to and mitigation of hur-
ricanes, (2) the use of ABMs in natural disaster studies, and
(3) hurricanes and climate change. In Section 3, we intro-
duce the framework of ABM, which includes an introduction
of the case study region, a hazard model, a damage model,
and models for individual learning and individual mitigation
decisions. The details of model evaluation are presented in
Section 5. In Section 6, we show results, including how model
can be used with different climate scenarios, and discuss the
role of learning, the impact of initial perception of hurricane
risks, and the impact of recency bias.

2 BACKGROUND

2.1 Hurricane vulnerability and mitigation

Systems-level research on hurricane risk typically focuses
on quantifying regional damage, the benefits and cost effec-
tiveness of mitigation, and how federal and local policies
may induce homeowners to mitigate their potential damage
to reduce region-wide vulnerability. We begin with a discus-
sion of regional damage assessment. Many studies rely on
FEMA’s HAZUS framework to simulate hazards and hazard
impact, including estimates of economic losses from infras-
tructure and residential housing damage (Jain et al., 2005;
Liu & Pang, 2014; Orooji & Friedland, 2017). HAZUS uses
a whole-entity approach to modeling; each building class
is assigned a hazard fragility curve (derived from the lit-
erature, reconnaissance, and experimental testing), which is
based on a conditional probability of damage state given a
hazard intensity. For example, for a hurricane, the intensity
measure is typically gust windspeed. This can be too sim-
plistic, especially when considering an individual house in a
specific location. However, on a regional scale, it provides
an approximation of the expected building damage given a
hazard. HAZUS has additional known shortcomings, includ-
ing out-of-date building stock, crude hurricane, and flooding
scenarios—mostly accredited to accommodating the com-
putational limits of most users—and deterministic hazard
scenario modeling. Despite these limitations, it offers both
an easy-to-use platform for researchers and practitioners to
test hypotheses and its ubiquity has allowed for comparison
among studies. Component-based approaches, on the other
hand, are more granular. They focus on the vulnerability of
individual building components, and the interactions among
them, providing more accurate estimates of singular build-
ing damage (Chung Yau et al., 2011; Pinelli et al., 2004;
Van De Lindt & Nguyen Dao, 2012). This approach requires
significantly more knowledge of the building stock and com-
putational resources. Our work relies on the whole-entity
approach given its ubiquity and less inputs requirements.
We do not use HAZUS directly, but we do use the build-
ing fragility curves provide by HAZUS. This allows us to

overcome problems surrounding out-of-date building stock
and crude hazard scenarios while still leveraging the HAZUS
fragility functions.

Mitigation reduces the likelihood that a building experi-
ences damage due to a hurricane. This paper focuses on
household-level mitigation, such as adding wind straps or
hurricane shutters. Not all mitigation is warranted based on
its cost and the likelihood of damage (Wang et al., 2017). For
example, Pinelli et al. (2009) studied the cost effectiveness of
various mitigation strategies using a Monte Carlo simulation
for different regions in Florida and created a map indicating
the benefit/cost effectiveness for different combinations of
housing mitigation decisions. Rose et al. (2007) contributes
to this discussion on the cost effectiveness of mitigation using
empirical data on hazard mitigation grants. They find a 4.7-
fold return-on-investment for wind mitigation from FEMA
mitigation grants—grants given to communities particularly
susceptible to high windspeeds. These studies, and others
like it, assume a static building stock and do not include the
compounding benefits from mitigation from repeated hazard
events.

Additional considerations for understanding how regional
building stock vulnerability may change include homeown-
ers’ proclivity toward mitigation and federal, state, and local
policies that influence homeowner mitigation behavior. Fed-
eral policies are also commonly evaluated with benefit-cost
analysis or survey-based approaches (English et al., 2017),
though these too are often based on a static snapshot of the
situation.

Little of this past work has explicitly investigated the
effects of repeated hurricanes—and their effects on mitiga-
tion behavior—on communities with the exception of Jain
et al. (2005) and Reilly, Tonn et al. (2017), and Reilly,
Guikema et al. (2017). Jain et al. (2005) propose a method
to consider temporal changes in building inventory when
estimating changes in expected losses from hurricanes over
time. This simulation model considers how building vul-
nerability responds to changes in building codes. In Reilly,
Guikema et al.’s (2017) model, homeowners from Anne
Arundel County, MD can increase their home’s resistance to
historical hurricanes following a set of rules defined by proba-
bilistic distributions. However, these studies do not explicitly
investigate the potential role of learning as a determinant of
long-term building stock vulnerability, and the modeling of
decision making is intuition-based. Other studies that do con-
sider the role of sequential hazards focus more on the degree
to which learning takes place, and not the impact of learning
(Colten & Sumpter, 2009). For example, Siegrist et al. (2008)
explained the importance past flooding experiences and how
they might change people’s risk perception and motivate mit-
igation behavior. Their survey results suggested that negative
experiences increase the likelihood of household mitigation
behaviors but not necessarily when people also doubt the
effectiveness of mitigation or perceive the cost as too high.
Better understanding this potential role of learning is criti-
cal in understanding repeated hazards and their impacts on
communities over time.
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2.2 Human learning and biases

Learning is an enduring change in the mechanisms of behav-
ior involving specific stimuli and/or responses that results
from prior experience with those or similar stimuli and
responses (Chance, 2013). It has been well studied in the
field of anthropology, biology, and psychology. It is one of
the critical mechanisms that produces changes in behavior.
To understand behaviors in a human-involved complex sys-
tem must include consideration of what they learn and how
they learn it.

Different types of learning have been discussed in past
studies, such as individual learning, social learning, and orga-
nizational learning. Individual learning describes when the
behavior itself is acquired by the result of the subject’s
own experience of the consequences of its actions (Feld-
man et al., 1996) . Social learning, on the other hand, might
learn from the behavior of others, while running the risk of
copying an inappropriate behavior (Feldman et al., 1996).
Reed (2010) propose three requirements for a social learning
process. It must (1) demonstrate that a change in under-
standing has taken place in the individuals involved, (2)
demonstrate that this change goes beyond the individual and
becomes situated within wider social units or communities
of practice, and (3) occur through social interactions and
processes between actors within a social network. Organiza-
tional learning describes how an organization or group can
learn internally and externally as a whole (Brandi & Elk-
jaer, 2015). They describe how the field of organizational
learning can be understood from a social learning perspective
and which social learning theories add to an understand-
ing of organizational learning that cannot be included in an
individual learning theoretical approach. In the context of
organizational learning, a learning loop framework is pro-
posed to help facilitate the understanding of organizational
learning (Johannessen et al., 2019). The framework describes
different loops of learning that trigger different levels of ret-
rospect of the context, assumptions, and actions that lead
to the results. In the context of resilience and environmen-
tal change, outer-loop learning (i.e., which focuses on more
challenging assumptions as opposed to practices and tactics)
is crucial for maintaining regional resilience when environ-
mental variability is high, such as during droughts (Yu et al.,
2016).

Another potential learning source that might drive miti-
gation decisions is based on the experiences of neighbors.
Slotter et al. (2020) used a survey approach on households’
attitudes, risk perceptions, and prior experiences to under-
stand each factor’s impact on mitigation decisions. They
found that both individual risk perception and neighbor expe-
riences have a positive relationship with mitigation intention.
However, the influence from factors, such as hazard experi-
ence and hazard understanding, remains under debate (Dillon
et al., 2014; Mileti & Darlington, 1997; Peacock, 2003; Rus-
sell et al., 2016). While Russell et al. (2016) and Peacock
et al. (2003) find a position relationship between hazard

experience and an individual’s motivation to mitigate, and
also hazard understanding and an individual’s motivation
to mitigate, Mileti and Darlington (1997) and Dillon et al.
(2014) did not. In Dillon et al. (2014), this is termed a “near
miss” and typically arises when a disaster occurs, but by
chance, the individual is unscathed, making them believe
they are less vulnerable to harm than they truly are. While
we acknowledge that all these types of learning are impor-
tant in understanding the actual mitigation actions, we focus
solely on modeling individual learning in this work, and haz-
ard understanding and hazard experience in particular, in part
because of past conflicting results.

A factor that strongly influences whether a hazard expe-
rience (or understanding) leads to mitigative action is an
individual’s degree of objectivity, and more specifically is the
degree to which new knowledge or information is accepted
and maintained over time (Underwood, 1964). One phe-
nomenon, that we later explore with depth later in our work,
is recency bias. Recency bias is a type of cognitive bias
that relates to systematic errors in judgment, whereby more
weight is given to events that occurred more recently than to
events which occurred a long time ago (Tversky & Kahne-
man, 1974). It can potentially affect how the vulnerability of
individuals evolves in a dynamic environment, such as one
exposed to hurricanes. Individuals may, in some instances, be
reactive to recent events and over-prepare compared to what
they might be inclined to do had they considered a much
longer hazard history. Past experiments and empirical evi-
dence show contradictory results whether individuals actually
are affected by recency bias (Royal, 2017; Wang et al., 2017).
The experimental design in Royal (2017), which subjected
participants to the possibility of negative income shock repet-
itively and offered insurance at the start of each round, found
less insurance uptake, not more, when shocks occurred repeti-
tively. This suggests that decisions were not biased toward the
more recent negative outcomes in a way that would reduce
vulnerability. Conversely, using surveys, Wang et al. (2017)
showed that recent experience with hurricanes make home-
owners more likely to purchase insurance. Similarly, using
an experimental set-up where participants were asked to make
mitigation decisions for a building exposed to repetitive hurri-
canes, Meyer found that mitigation investments were mainly
driven by whether a storm occurred recently or not (Meyer,
2012). Therefore, in our study, we test both findings by gener-
ating scenarios with varying degrees of recency bias (ranging
from none to strong) among the model agents.

2.3 Agent-based models and their use in
natural disaster studies

An ABM is a bottom-up modeling approach that simulates
how heterogeneous intelligent agents (e.g., homeowners)
interact with and learn from other agents and/or the envi-
ronment and how, with this knowledge, they make decisions
(Bonabeau, 2002; MacAl & North, 2010). Their deci-
sions then change the environment and/or other entities.
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Applications of ABMs span demography, the social sciences,
economics, public health, and environmental science among
other fields (Billari et al., 2006; Gorman et al., 2006).

ABMs have been widely used to model natural disas-
ters and their impacts. ABMs are useful boundary objects
that are able to integrate domain knowledge from multi-
ple disciplines, making them increasingly popular (Reilly
et al., 2018). The benefits of ABMs are that they (1) enable
scenario-based sensitivity analysis (An, 2012), and (2) have
the ability to model the compounding effects of individual
actions and learning (Reilly, Tonn et al., 2017). However,
most ABM work in the hazards realm centers around short-
term actions after hazards occur to evaluate how agents
might evacuate, take shelter, or access primary care services,
and what infrastructure is needed to accommodate emergent
behaviors (Chen & Zhan, 2008; Chen et al., 2006; Pan et al.,
2007).

An ABM could also be used to model the long-term effects
of natural disasters (Abebe et al., 2018, 2019; Haer et al.,
2017, 2019; Reilly, Guikema et al., 2017; Reilly, Tonn et al.,
2017; Tonn et al., 2020; Tonn & Guikema, 2018). Reilly,
Tonn et al. (2017) built an ABM to quantify how hurricane-
induced power outages could induce particular behaviors,
and these in turn could influence a region’s power system
reliability in the long-run. Recent studies have also applied
ABM to improve community vulnerability analyses under
flood events, though the impact of individual learning has not
been focused. Haer et al. (2017) built an ABM to compare
how different economic behavioral models held by the agents
would lead to different flood risk of the community. Haer
et al. (2019) integrated different types of adaptive behavior of
governments and households for river flooding under a simi-
lar framework. Households and the government as the agents
would react to the environment under a combination of pre-
defined rules, which will impact the region’s long-term flood
risk. Their results showed the importance of dynamic adap-
tive behavior and how it would lead to different flood risks
under different climate projection. Abebe et al. (2018, 2019)
built a coupled agent-based-flood framework and applied the
model to evaluate long-term flood risk management policies.
Household agents make house plans and they build houses
with randomly sampled compliance toward different written
formal policies. The government agent represents different
levels of policy enforcement and may reduce the occurrence
of flood hazard by improving the infrastructure system. The
behavioral rules are relative ad hoc, which also leads to
undervalidated results.

2.4 Modeling individual learning in ABMs

People’s behaviors are driven, in part, by their beliefs
(Breen, 1999) and preferences (Panait & Luke, 2005). Beliefs
can change over time when individuals gain additional
information—perhaps through an experience or through
information shared others—and then update their understand-
ing of the process. Because learning affects how individuals

make decisions over time, learning can be an essential
component in an ABM framework for studying long-term
implications of hazard vulnerability (Farmer & Foley, 2009).
In ABMs, agents are considered autonomous and can inter-
act with one another, meaning they can learn from both the
environment and from other agents.

Learning can be viewed as a process in which beliefs are
updated. In reality, this process is complex and is the sub-
ject of numerous psychological studies (Johnson & Hasher,
1987). In an ABM, however, learning is modeled in a logical
structure compatible with computer coding. There are sev-
eral ways to model this process in an ABMs. The primary
methods include information modeling, Bayesian updating,
reinforcement learning, and coevolutionary algorithms. We
briefly review each below.

A common approach—information modeling or risk
modeling—uses new information about disasters and risks
perceived by the agents as the knowledge learned by the
agents. For example, Du et al. (2017) explored evacuation
processes during flooding events using an ABM. In this
study, agents learn of a flood from a news broadcast, social
media, and neighbor observations, which, when combined,
triggers decisions by agents. In other work, Tonn et al. (2018)
quantifies how different risk perception factors (i.e., flood
experiences) and coping perception factors (i.e., mitigation
behaviors) combine to estimate perceived risk factors. This
value will then be compared with a risk tolerance threshold
to determine when an agent will consider acting.

Bayesian learning or Bayesian updating is another
approach for modeling learning (Breen, 1999). This method
assumes an agent’s beliefs about future events, such as the
likelihood of a hurricane, follow specified probability distri-
butions. These distributions are updated as new information
becomes available using Bayes theorem. For example, Reilly,
Tonn et al. (2017) modeled agents as having categorically
distributed beliefs over the likelihood of zero, one, or more
power outages in a given year. This is then combined with
Dirichlet conjugate priors which are updated in a Bayesian
manner every year given the number of power outages that
occurred.

Another popular learning algorithm used in ABMs is rein-
forcement learning (Panait & Luke, 2005). In reinforcement
learning, agents receive rewards from their actions, and they
make decisions based on a new environment and the conse-
quences caused by their prior actions. Krause et al. (2006)
model the process of power suppliers submitting their bids
to the electricity market using reinforcement learning. The
agents are trying to maximize their payoffs and after each bid,
they observe their gains or losses to update their behavioral
policies or expected reward functions. As a result, they dis-
cover that after many rounds of bidding, the stable decisions
each agent made to achieve their optimal output is the same
as the existence of a unique Nash equilibrium or multiple
equilibria in the system.

For each learning method, it is possible to incorporate
learning and knowledge biases that individuals exhibit. For
example, bandwagon effect or herd behavior is a cognitive



INDIVIDUAL LEARNING AS A DRIVER 767

bias in humans that people follow what others are doing
instead of using their own information or making indepen-
dent decisions, which is commonly observed and can be
detrimental to disaster evacuations (Tsurushima, 2019). In
natural hazards research, researchers have observed that the
memory of events tends to fade over time (i.e., memory
effect), which makes individuals less likely to take prepar-
ative actions (Logan et al., 2018; Reilly, Tonn et al., 2017),
and this behavior is critical to capture in the model process.
Memory fading can be a result of time or of new people
moving into the area. In ABMs, the memory effect is often
modeled as either a decay parameter on the awareness of the
hazard (Logan et al., 2018) or as a window that allows only
those events in the window to be “remembered” by the agents
(Reilly, Tonn et al., 2017).

Among these models proposed, reinforcement learning,
and Bayesian learning are most recognized in the field with
certain limitations (Mathys et al., 2011). In this work, we
choose a Bayesian model over other models, especially rein-
forcement learning for the following reason. Reinforcement
learning is typically used under a situation to pursue for the
optimal solution or policy to the agents under uncertainty.
It requires repetitive simulations to train the agents to learn
the optimal decision rules. This is not well-suited we our use
case. Under a hurricane mitigation context, as the decision
we are modeling is a one-time upgrade, they are more likely
to be learned during actual hurricane experiences instead of
repeated hypothetical experiments. Bayesian learning, on the
other hand, is a sophisticated framework that can capture
agent learning that is consistent with existing knowledge,
particularly of the importance of the memory effect.

2.5 Modeling decisions in an ABM

The decision making component of an ABM is a critical
element for modeling emergent behavior. There are many dif-
ferent types of decision rules that can be used within ABMs.
For ABMs in the hazards field specifically, we divide behav-
ioral decision models into four groups: “if-then,” descriptive,
empirical, and prescriptive.

The first approach is “if-then” models which take the for-
mat of “if this happens, then one will do that with some
likelihood.” This approach is more ad hoc and often hard
to be validated, though it is widely used in the ABM litera-
ture. The probabilities can be populated based on observation
(i.e., empirical) or based on subject matter experts, but that is
typically not the point. The objective is to find the marginal
influence of different types of decisions on model outcomes,
and these types of models require extensive sensitivity anal-
ysis (Du et al., 2017; Reilly, Tonn et al., 2017; Tonn &
Guikema, 2018).

Descriptive decision theory attempts to explain the actual
behaviors of decisionmakers. This is often different from
their utility optimizing actions. Prospect theory is one exam-
ple of a descriptive framework. Here, individuals evaluate
outcomes based on possible gains and losses rather than

expected utility (Kahneman & Tversky, 2018). Another well-
known collection of descriptive decision theory method is
bounded rationality. Models for bounded rationality assume
individuals would be rational in their decision-making pro-
cess, except that they are limited by the information they
have, their cognitive limitations, and/or the amount of time
they have to make the decision (Friedman & Rubinstein,
1998). Various heuristics and biases have also been studied
to help explain observed actions. One example of using these
methods in the ABM literature is a model of water scarcity
management for repeated droughts (Burchfield & Gilligan,
2016).

Empirical models apply observed decision behavior (e.g.,
observed mitigation rates). The approach is reasonable when
building an ABM for a particular region using observed
data from that same region provided that the behavior is
unlikely to change in the future. Then with a well-established
dataset, statistical approaches can be applied to model agent’s
behaviors. However, individuals from different regions have
been observed making different choices under similar haz-
ards (Bouris, 2006)—likely because of different background
understanding of the hazard —meaning empirical data are at
times less relevant when applied to different regions. These
methods are also less useful for situations in which agents
must make decisions in environments they have not seen
before.

Prescriptive decision theory models focus on identifying
the “best” decisions by using expected utility maximization.
This model assumes that a rational decisionmaker lists the
actions or alternatives available to him or her, identifies the
possible outcomes associated with each action along with the
likelihood of occurrence of these outcomes, and finally quan-
tifies the desirability of each outcome using a utility function.
The alternative with the highest expected utility is selected.
While attractive for improving individual decision making,
utility theory is not necessarily a descriptive approach that
captures the actual decision process people use (Rubinstein,
1988).

In this paper we use a utility-based model with subjective
information for agent decision making. Given that the deci-
sion that the agents are making are both expensive and are
associated with long-term changes to their homes, the agents
are likely to consider costs and benefits in depth, analyzing
their options. Though with certain limitations, utility-based
models are well practiced in modeling decisions. It is also
compatible with the Bayesian learning framework.

2.6 Climate change and hurricanes

Climate change is likely to alter the pattern of hurricane
occurrence in the next century (Walsh et al., 2015; Meehl
& Tebaldi, 2004). While there is uncertainty in how climate
change will affect hurricane frequency and intensity, it is
likely that hurricanes will become less frequent though more
intense in the Atlantic basin (Mendelsohn et al., 2012). On
the other hand, climate change will also cause sea level rise,
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which will inundate coastal regions and result in flooding of
areas that might have never seen storm surge in the past. In
addition, greenhouse gas-induced warming may lead to grad-
ually increasing risk of the occurrence of highly destructive
category-5 storms (Knutson & Tuleya, 2004). Similar to Staid
et al. (2014), we use a scenario-driven simulation approach
and repeatedly perturb the hurricane intensity and frequency
parameters for the region to better understand how individ-
ual behavior interacts with different hurricane environments
to influence community vulnerability over time.

3 METHODS

3.1 Overview of model structure

Our agents are individual homeowners, modeled as one
homeowner per land parcel and we focus on the impact of
hurricane wind hazard. The model is initialized by assigning
each agent attributes of their house (i.e., their house’s con-
struction type, also known as [a.k.a], building class, and the
house’s ability to resist wind forcing, a.k.a., resistance level)
and a wealth (approximated by their house’s improved value).
The agents make mitigation decisions on an annual basis.
Decisions are driven by an agent’s perception of the risks
from hurricanes. Our agents share the same alternatives in
terms of mitigation actions as Reilly, Guikema et al. (2017)
. We simulate how the region could evolve over 100-year
periods in various hurricane scenarios. We choose 100-year
as it is a sufficiently long period to allow us to see the
results of individual behavior in a setting in which events hap-
pen relatively infrequently. The goal is to find the marginal
contribution of decision-making related to mitigation on the
vulnerability of the regional building stock. It is not to predict
the building stock or its quality in 100-years. We acknowl-
edge that 100 years exceeds the length of time for which an
individual homeowner would reside in the area. We use this
longer time frame to gain a more generic understanding of the
potential role of learning. In the results section we highlight
the results for the first 30 years to represent a more typical
time span for which a homeowner would live in the area and
hold a mortgage on their home.

We compare different scenarios and analyze the level of
vulnerability of the community and discuss the importance of
learning and initial knowledge of the agents to their decisions.
Figure 1 provides an overview of the model used in this study.
We first give an overview of this structure, and the subsections
below provide more detail on the model’s components.

We create different hurricane climate scenarios by con-
trolling the frequency and intensity of synthetic hurricanes
used in our analysis. Then we run a number of replications
of the entire 100-year history using a simulation model that
can be divided in to four components: the hurricane sam-
pling model, the building damage model, the learning model,
and the mitigation decision model. Many of these compo-
nents have multiple steps to compute that are described in
later subsections. The general process is that in a given time

step (i.e., year), we sample the number and intensity of hurri-
canes to occur (zero hurricanes is a possibility in a given year)
from distributions initially parameterized to reflect the con-
ditions of the study area. The hurricane(s) that most closely
matches the intensities are selected from a large library of
synthetic but possible storms. This process is described in
Section 3.3. Each house is probabilistically assigned damage
(i.e., a damage level) based on the intensity of the hurricane,
the downscaled 3-s 10-m peak wind gust at the parcel, and the
construction type and resistance level of each home (which
together, have their vulnerabilities represented by fragility
curves). This process is described in Section 3.3. Agents then
learn from this experience (which could include no hurricanes
or no damage even if there is a hurricane) and then make mit-
igation decisions. This process is described in Section 3.4.
This entire process repeated for 100-years under different cli-
mate scenarios. The model purposefully excludes numerous
confounding factors, including recovery, insurance, disas-
ter policy, and relocation, to isolate the impacts of learning
from disasters for various climate scenarios to answer the
fundamental question of what can be achieved with the learn-
ing from homeowners under climate changing. Future work
could explore these effects.

The number of replications needed for stochastic conver-
gence is determined by replicating the entire 100-year time
until it meets our convergence criteria. We use the coefficient
(cV =

𝜎

𝜇
) to calculate the output from the ABM (Lee et al.,

2015). We then use Equation (1) to find the minimum num-
ber of replications, nmin, needed to achieve desired level of
convergence, E, between the coefficient of variation from n
replications and m replications, where m is a large number.
cn

V and cm
V are the corresponding coefficient of variation for n

replications and m replications. We pick the potential number
of iterations from a set of values, for example, 50, 100, 500,
1000, 5000, 10000. We calculate the coefficient of variation
of each preselected number of iterations and select the sam-
ple size nmin when the convergence condition (e.g., E = 0.01)
met for any other m greater than nmin. As a result, we deter-
mined that when the number of iterations exceeds 1000 the
convergence criteria is met for our output measure.

nmin = argmaxn
|||cn

V − cm
V
||| ⟨E, ∀m⟩ n (1)

3.2 Case study

Our case study is based on nine counties in the state of
Maryland—Anne Arundel, Calvert, St. Mary, Dorchester,
Talbot, Queen Anne’s, Wicomico, Somerset, and Worces-
ter. These counties have coastlines along the Chesapeake
Bay or the Atlantic Ocean (Figure 2). There are 357,120
single-family houses in this region. We identify 11 building
classes based on FEMA’s residential building designations.
The most common building class is two-story wood-framed
single-family houses. Then for each type of building, differ-
ent mitigations, such as installing hurricane straps or change
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F I G U R E 1 Overview of the computational flow of the ABM

F I G U R E 2 Map of region. Counties in light gray are used in the study

roof shapes, can be invested to improve the building’s resis-
tance level. A detailed description of all mitigation strategies
can be found in Reilly, Guikema et al. (2017). Publicly
available tax assessor data are used to spatially-locate each
house and to assign each house a value (Maryland Depart-
ment of Planning, 2016). The value (i.e., “improved value”
from tax assessor data) combined with the building’s fragility
and the hurricane windspeed provide an estimate of the loss.
Anne Arundel County is the most populated and is mostly
suburban. Ocean City, in Worcester County, also has dense
housing. The remainder of the region is either suburban or
rural.

Because we do not know either income or wealth at the
household level, we use the improved value as a proxy for
wealth (capital) to support mitigation decisions. This is an
imperfect measure. However, those with higher values are
arguably more likely to have access to capital for mitiga-

tion through loans using their home’s improved value as
collateral. Also, this assumption can be replaced provided
more detailed information on household wealth becoming
available.

The case study area experiences a hurricane every 8 years
on average. Most storms are Category 1 strength or below by
the time they make impact in the region. The hurricane inten-
sity tends to be greatest in the southern-most counties, such
as Somerset and Worcester Counties. As the region is not as
heavily influenced by hurricanes as southern states are (e.g.,
Florida, Louisiana), the overall hurricane resistance level is
expected to be low given the current climate conditions. This
provides sufficient room for the agents to learn and adapt to
more intense and frequent hurricane climate scenarios.

We are not attempting to model this region in all of its
detail. That is, we are not trying to model all details from
these nine counties in order to support specific policy rec-
ommendations for this location. Rather, we used building
stock data and historical hurricane impacts from this region
to parameterize our model to provide a reasonable degree
of reality and complexity to gain broader insights on the
interactions among hazard frequency, damage experience,
mitigation, and regional vulnerability over time.

3.3 Hurricane sampling model

A synthetic library of possible hurricanes to affect the region,
generated using the work of Staid et al. (2014a) is ini-
tially created (Reilly, Tonn et al., 2017). The library contains
36,399 synthetic storm tracks that could affect the study area,
and these synthetic storms range in intensity from Tropi-
cal Depressions to Category 5 hurricanes. For each synthetic
track, we then apply a hurricane wind field model to com-
pute the 3-s 10-m peak wind gust at the centroid of each
building (Holland, 1980). Next, baseline hurricane frequency
and intensity distributions (Poisson and Weibull distributions,
respectively) are fitted with the region’s historic yearly hurri-
cane frequency and maximum hurricane windspeeds to create
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the baseline hurricane climate scenario. The fitted parame-
ters are later perturbed for different climate change scenarios
(e.g., the rate parameter for the climate scenario with 25%
more hurricanes is multiplied by 1.25). Once the simulation
begins, in each simulated year, we sample from the intensity
and frequency distributions to identify how many hurricanes
affect the region that year (0 or more) and how intense each
hurricane is. The hurricane in the synthetic library that is clos-
est in intensity to the sampled intensity is selected. A more
detailed description of this model is provided in Appendix
A. Again, we are not aiming to model the precise future
hurricane environment of the case study location under spe-
cific future climate scenarios. We are instead trying to gain
a more general understanding of the potential role of indi-
vidual learning in shaping a region’s vulnerability over time
under different possible future hazard scenarios.

3.4 Building damage model

For each hurricane, the 3-s 10-m peak wind gust at the cen-
troid of each parcel is computed (Holland, 1980). If more
than one hurricane occurs in a year, the hurricane that is most
intense is used. That is, damage from subsequent storms does
not compound. Then, each house is assigned a damage state
by combining building’s fragility curve with the downscaled
windspeed at the parcel’s location.

HAZUS fragility curves are used to model each house’s
fragility. Each parcel is assigned to a building class based
in its characteristics (e.g., number of stories, construction
material). Each building class has distinct possible resis-
tance levels, depending on the possible ways mitigation can
be conducted (e.g., wind straps). As a house is mitigated,
its resistance level improves. Each resistance level has five
fragility curves, one for each of the possible damage states.
These are as follows: Damage State 0, (DS0, no damage),
Damage State 1 (DS 1, minor damage or 10% or less of the
building sustained damage), Damage State 2 (DS2, moder-
ate damage or about 25% of the building sustained damage),
Damage State 3 (DS3, severe damage or about 50% of the
building sustained damage), and Damage State 4 (DS4, com-
pletely destroyed) (Vickery et al., 2006). Fragility curves
produce a probability that a house of a specific type and resis-
tance level will be in one of five damage states conditioned on
the windspeed.

The damage model randomly samples a number between
0 and 1 and a damage state is selected in proportion to the
likelihood of being in a specific damage state given a wind-
speed. The losses are quantified by multiplying the improved
value of the parcel by the fraction of sustained damage.
Given the simplicity of these fragility curves, criticism exists
(Reilly, Guikema et al., 2017). Our study is not dependent
on this model and alternate fragility curves can easily be
incorporated as long as they give similar output.

After a hurricane, we assume that any agents which expe-
rienced damage (from one or multiple hurricanes) would
recover in a single year. That is, we do not focus on the imme-

diate poststorm recovery process. Additionally, some or all
agents may decide to mitigate. A wood-framed home, which
constitutes the vast majority of the houses in our study area,
could be upgraded by installing roof-wall straps, applica-
tion of secondary water resistance, installing storm shutters,
strengthening the roof deck attachment, or by changing the
shape of the roof. Part of this decision depends on the cost of
mitigation. We estimated the cost for individual homeown-
ers to make house upgrading decisions using the RS Means
cost pricing database (Plotner & R.S. Means Company.,
2017).

3.5 Agent learning and mitigation decision
models

Mitigation decisions are essential components of how a com-
munity’s vulnerability evolves. These decisions are partially
controlled by an individual’s personal beliefs about the risk
a hazard poses (Siegrist & Gutscher, 2008). By observing a
hazard and the damage it causes, or the lack thereof, indi-
viduals may update their beliefs about the risks posed by the
hazard, and potentially change future mitigation decisions.

After each hurricane season in a simulated year, agents
learn from their experience and may take mitigatory action.
For instance, they may believe that the likelihood of a hur-
ricane in any given year is now greater especially if they
recently experienced a hurricane. These beliefs are combined
with damage probabilities for each of the mitigation strate-
gies and are used as inputs for a decision model on whether
to mitigate.

The ABM is initialized by assigning each agent partial
information or “knowledge” about the hazardscape. Specif-
ically, each agent holds an initial belief about the frequency
of each category of hurricane (including no hurricane). This is
updated annually given their experiences. In each year of the
ABM run, regardless if hurricane or damage occurs, agents
“learn” from their experience by updating their beliefs about
their risk and then decide whether to act. Based on this knowl-
edge, agents may choose to mitigate, which, in turn, may
change the vulnerability of their homes to damage in future
hurricanes.

3.5.1 Agent learning model

We model agent learning using a Bayesian updating frame-
work. Learning in this model focuses on how likely agents
believe hurricane force winds of varying magnitudes are to
occur on their parcel in a given year. For example, an agent
could believe that there is an 80% likelihood of no hurricane
occurring in a given year, a 19% likelihood that their parcel
experiences tropical storm force winds, and a 1% likelihood
that a Category 1 or stronger storm would occur. If this agent
were to experience Category 2 force winds, their beliefs about
their chances of experiencing a Category 1 storm or greater
would likely change.
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We use a categorical distribution to describe each agent’s
belief for both hurricane frequency and intensity. We define
X as a categorical random variable

X ∼ Cat (p1, p2, … p7) (2)

where p1 through p7 correspond to the probability of no hur-
ricane, a tropical storm, and Category 1–5 hurricanes. While
each of these divisions has a wide range of windspeeds, we
select them because an individual is unlikely to know the
exact windspeed they experienced, but rather an approximate
windspeed such as the intensity of the storm on the Saffir–
Simpson scale. The Dirichlet distribution is the categorical
distribution’s conjugate prior. 𝛼1, 𝛼2, … , 𝛼7 are the Dirichlet’s
support parameters and represent the number of observations
for each of the windspeed divisions. Thus,

p1, p2, … p7 ∼ Dir (𝛼1, 𝛼2, … , 𝛼7) (3)

If we treat the categorical distribution parameters as
random variables, we can leverage each new windspeed
observation, Xnew, to update these parameters using Bayes
rule and the Dirichlet distribution. The posterior distribution
will still be a Dirichlet distribution with parameter 𝛼′ given
by,

𝛼′i = 𝛼i + I(Xnew = i), i = 1, 2, … , 7 (4)

where II is the indicator function. The posterior predictive
distribution for this model is given by Equation (6).

f (X = i|𝛼) =
𝛼′i∑
𝛼i
′
, i = 1, 2, … , 7 (5)

Before the ABM is run, priors—meaning initial beliefs
over the intensity and frequency of hurricanes, p1, … p7—
need to be assigned for each agent. We iteratively assign
different starting priors in different ABM runs to test how
initial beliefs influence the agents’ decision process and the
long-term vulnerability of the region.

We also consider the impact of recency bias in the learning
models. Recency bias is a cognitive bias that occurs when
an individual weighs more recent events in decision making
(Phillips-Wren et al., 2019). We model the recency bias using

𝛼′i = 𝛼i ∗ w + I(Xnew = i), (6)

where w is the weight of the long-term memory of the agents.
w < 1 represents a decay of the long-term memory of the
agent. More specifically when w decreases, it forces less
weight on prior experiences and more weight on the agent’s
experience in that year.

As an example, consider two agents with different pri-
ors: (1,1,0,0,0,0,0) and (100,100,0,0,0,0,0), respectively.
Although both indicate the agents believe there is a 50%
probability of having no hurricanes and 50% probability of

having a tropical storm in a given year, the underlying con-
fidence for these two agents is distinct. Saying in the next
year, both agents experienced a category 5+ hurricane, the
two agents will update their beliefs by incorporating the
new observations to update the underlying Dirichlet distri-
butions’ hyperparameters. If we do not consider the recency
bias effect, the new beliefs will be computed with the
updated distribution with hyperparameters (1,1,0,0,0,0,1) and
(100,100,0,0,0,0,1). If we consider the recency bias effect
with a weight of 0.9, then the hyperparameter will be updated
to be (0.9, 0.9,0,0,0,0,1) and (90,90,0,0,0,0,1).

In this work, we consider the initial beliefs an agent held
when making decisions by leveraging the parameters that
support the Dirichlet distribution. An individual who has
significant experience may be more likely to act than an
individual who has much less (Siegrist & Gutscher, 2008).
Table 1 shows the priors we use and what each prior implies
about their beliefs. Partially uninformative priors describe
agents who hold a minimum understanding of the environ-
ment. They could be, for example, agents who move to the
region and thus lack knowledge of the regional risks. Partially
strong priors describe agents who have lived in the region for
a while, though the region is assumed to have been spared
a strong hurricane for a long time. This may change at the
start of the simulation, where the impact of climate change on
hurricanes might make them occur more frequently or with
more intensity. Wrong prior describes agents with potentially
extreme experiences from previous hurricanes, who might be
considered most likely to mitigate. We do not consider the
effect of recency bias in these scenarios.

Similarly, recency bias also likely impacts mitigation deci-
sions. Therefore, we modify the weight of the long-term
memory (w) to represent different levels of recency biases,
with a value of 1 representing no recency bias and a value
close to 0 representing that they have no memory. Our
hypothesis is that the loss of long-term mild and extreme hur-
ricane experiences make recent events more meaningful for
mitigation decision-making.

3.5.2 Mitigation decision model

After agents learn, they decide whether and how to act. A
detailed mathematical description of our decision model with
an example of how agent learn and behave is presented in
Appendix B. A brief overview follows. The agents choose
from the following alternatives in each year that the model is
run, for example, installing roof-wall straps, installing storm
shutters, improving the roof deck attachment, installing sec-
ond level water resistance, changing the shape of the roof,
or simply doing nothing. Each option corresponds to a spe-
cific resistance level. Houses that are mitigated have a lower
probability of being damaged when they are upgraded which
is represented by differing fragility curves. However, the
degree of improvement and the mitigation costs vary consid-
erably based on the intervention. We assume agents know the
probability of their house being damaged for each category
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TA B L E 1 Initial knowledge explanations

Priors name Priors (No Hurr – Cat 5+ Hurr) Implication

Partially Uninformative 1 (Baseline Prior) (1,1,0,0,0,0,0) Little knowledge for hurricanes events stronger than tropical
storm

Partially Uninformative 2 (1,1,1,0,0,0,0) Little knowledge for events stronger than category one storms

Partially Uninformative 3 (1,1,1,1,0,0,0) Little knowledge for events stronger than category two storms

Partially Uninformative 4 (1,1,1,1,1,0,0) Little knowledge for events stronger than category three storms

Partially Strong 1 (10,10,0,0,0,0,0) Moderately strong belief that there will be no events stronger
than tropical storm

Partially Strong 2 (100,100, 0,0,0,0,0) Strong beliefs that there will be no events stronger than tropical
storm

Wrong Prior (Severe Hurricanes) (1,1,1,1,100,100,100) Strong belief in intense hurricane events

of hurricane and for all housing mitigation options. Future
iterations of the work could explore relaxing this assumption.

In each simulated year, we calculate each agent’s expected
utility for each mitigation alternative by combining the
agent’s probability distributions over hurricane frequency and
intensity and the likelihood of damage for each mitigation
option together with the costs of the options and the agent’s
utility function. An exponential risk averse utility function is
used (Anand, 1993). The agent then chooses the alternative
that maximizes their expected utility.

4 MEASURE OF COMMUNITY
VULNERABILITY

To compare different scenarios, it is helpful to have a measure
of the overall vulnerability of the region to see the effect of
different scenarios more simply. We do this through an addi-
tional calculation outside of the ABM. That is, we assessed
the vulnerability of each household to six different intensities
of tropical storms in that year and integrated these vulnerabil-
ities into an overall vulnerability score for our study region.
This score does not feed back to the ABM in any way. Instead,
this was an extra assessment done only to provide an inte-
grated picture of the overall vulnerability of the houses in the
community. This section provides the details of how this was
done.

In each simulated year, we record the state of each house
in terms of its resistance level (i.e., its degree of mitiga-
tion). Then, separate from the ABM, that is, not providing
any feedback into the ongoing ABM, we uniformly applied
six different windspeeds (the median windspeed of each hur-
ricane category) to each house and calculated the expected
damage (in dollar value) for each house and for each wind-
speed. We then summed the expected damage across all of
the houses to get di, the aggregate vulnerability measure for
windspeed i.

Given that there is an upper limit of the achievable resis-
tance of houses to hurricane winds, we also calculate the
maximum and minimum expected damage, dmax

i and dmin
i ,

which describe the most and the least damage a commu-

nity could experience under windspeed level i. The maximum
expected damage, dmax

i , corresponds to all houses being in
the lowest resistance level (i.e., no mitigation has been con-
ducted). Similarly, the minimum expected damage, dmin

i ,
corresponds to all houses being in the highest resistance level
(i.e., no mitigation has been conducted). We then normalize
and aggregate according to Equation (7):

VI =
1
6

∑
i∈wind level

di − dmin
i

dmax
i − dmin

i

(7)

Equation (7) normalizes the range of vulnerability measure
to be between 0 and 1. For example, the vulnerability in Year
1 is 1, which assumes that no households have conducted
mitigation and are in their initial resistance levels. If every
household in the system chooses to mitigate their house to
the fullest extent, the community vulnerability index will be
0. This does not mean houses are invulnerable, but they reach
the max hurricane resistance as defined in the paper. The nor-
malization is for the purpose of a better representation of the
results. This value is not a representation of risk as it does
not consider the likelihood of each level of storm occurring;
it is a simplified measure of aggregate vulnerability. It is also
not comparable across different regions or across individual
buildings. The simulation for each replication of the full his-
tory always starts with no house upgrades. The Table 2 below
shows the maximum and minimum damage (in U.S. dollars)
for the case study region.

We use VI over time as our set of overall community vul-
nerability measures. The VI is not intended to reflect risk
directly, as the likelihood of the hurricanes are considered
only in the scenarios, but rather reflect regional building stock
vulnerability conditioned on a particular scenario occurring.

5 RESULTS

This section presents the results of our analysis. We start with
the influence of hurricane frequency and intensity given weak
priors (i.e., low confidence of their assessment of the hazard).
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TA B L E 2 Average community damages in U.S. dollars from each windspeed

Windspeed level 50 mph (∼TS) 85 mph (∼Cat 1) 103 mph (∼Cat 2) 120 mph (∼Cat 3) 143 mph (∼Cat 4) 160 mph (Cat 5+)

dmax ($) 1.04 × 106 8.50 × 108 7.96 × 109 2.67 × 1010 4.87 × 1010 5.37 × 1010

dmin ($) 1.43 × 105 4.18 × 108 2.61 × 109 7.76 × 109 1.94 × 1010 3.04 × 1010

In the second subsection, we then vary the intensity of the
priors. The priors are varied by iteratively perturbing the sup-
port parameters of the Dirichlet distribution that reflect each
agent’s knowledge and level of confidence when each run
of the ABM is initialized. This helps us to isolate the influ-
ence of individuals who learn and gain confidence in their
knowledge on regional vulnerability verses those who learn
little from their experience. Similarly, we iteratively perturb
the recency bias weight parameter to quantify the effect that
an emphasis on more recent events has in forming beliefs on
mitigation decisions.

5.1 Influence of hurricane intensity and
frequency

In this section, we first show how community vulnerabil-
ity evolves in our model under different hurricane climate
scenarios. We selected 100-years to understand the limit of
learning and how vulnerability could decay over long periods
of time for different scenarios. However, it is unreasonable to
expect that homeowner would reside in a house for that length
of time. To address this, blue vertical lines after the passage
of 30-years are added to understand what the impact of learn-
ing may be for each scenario over a typical U.S. mortgage.
We tested multiple intensities and frequencies of hurricanes.
The intensity and frequency are modeled as 0.75, 1, 1.25,
1.5, and 1.75 times the historical fitted hurricane frequency
and intensities. Either intensity or frequency is modified in
each scenario. Again, we make no claims that these changes
reflect an actual future climate scenario. Instead, we are using
these discrete changes to examine potential changes in how
learning influences vulnerability as a function of different
hazard environments. We initialized the agents with a weak
prior of (1,1,0,0,0,0,0), which assumes the agents have little
knowledge with the environment, and that they believe they
are equally likely to experience a tropical storm as a Cate-
gory 1 storm. This is later referred to as the “baseline” priors.
These priors are unlikely to induce mitigation before an agent
observes additional hurricanes because an agent holding these
beliefs does not believe a hurricane with force significant
enough to cause substantial damage their house will occur.
The results of this initial analysis are shown in Figure 3.

In Figure 3, for both plots, the x-axis is the year within sim-
ulation, and the y-axis is the vulnerability index (VI). I0.75
means hurricane intensity is 0.75 times the intensity gener-
ated from the current and baseline climate, and F0.75 means
the frequency is 0.75 times the frequency in the baseline
climate. The green lines for both plots are the same base-

line scenario with intensity and frequency matching historical
observations. Each line represents the median vulnerability
index across all replications in each simulation year. We see
that the community vulnerability decreases over time. This
occur because we start the agents with no mitigation and
any mitigation decision the agents are making will reduce the
probability of damaged if a hurricane occurs. We also see that
the intensity and frequency of hurricanes also substantially
affect how community vulnerability evolves. As the intensity
or frequency of hurricanes increases, community vulnerabil-
ity to a storm of a given intensity decreases, and the higher the
increase in intensity or frequency, the greater the reduction in
vulnerability. This is because more mitigation takes place in
response to more realized damage and this mitigation occurs
sooner, meaning the benefits compound.

Based on the rate of change over time in the VI, the agents
are more responsive to intensity changes than frequency
changes. That is, for a given level of increase intensity, there
is a greater reduction in vulnerability than for the same level
of change in frequency. Furthermore, for the I1.75 scenario,
the vulnerability of the region asymptotically approaches
the minimum vulnerability (most resistant to hurricanes)
over time. Hurricanes that are more intense tend to stim-
ulate substantially more mitigations and reduce community
vulnerability than more frequent but mild hurricanes.

5.2 Impact of initial knowledge on the
evolution of community vulnerability under
different climate scenarios

To examine the effect of initial beliefs held by agents on the
evolution of community vulnerability under different hurri-
cane environments, we tested different sets of initial priors
that all the agents hold at the beginning of the simulation.
We compare the results from starting with each prior with
the results from starting with the baseline-priors (provided in
Table 1) to examine the effects of initial knowledge under
each climate scenario.

The baseline evolution of vulnerability is shown in Figure 3
(with baseline climate and baseline prior) and is used to
compare with each different prior scenario under the same
climate. As before, we changed the intensity or the frequency,
but not both together. We also controlled the hurricane
records input for each hurricane climate scenario (e.g., a
certain frequency or intensity comparing to the baseline
scenario) with common random numbers to reduce the vari-
ance and make the results comparable for each scenario.
That means the area will always be impacted by the same
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F I G U R E 3 The baseline evolution of community vulnerability over a century under different hurricane scenarios. The agents are initialized with a
(1,1,0,0,0,0,0) prior. Each solid line represents the median vulnerability index across all replications in each simulation year. Dashed line with the same color
with ‘+’ sign are the 85% upper bound of the output samples. Dashed line with the same color with ‘-’ sign are the 15% lower bound of the output samples

hurricanes over 100 years in each replication for each initial
knowledge priors. The common random number approach
helps decrease the variance and reduce the number of repli-
cations needed for convergence when comparing different
scenarios (Nelson & Matejcik, 1995).

Figure 4(A and B) shows the difference between the
median VI from the baseline-priors case and the mean median
for a scenario using modified priors (but the same intensity-
frequency combination). Also shown are the 95% confidence
intervals that are constructed by bootstrapping of all VI out-
puts from each replication in that scenario. The x-axis of each
plot is time (years), and the y-axis is the difference between
the mean VI for the baseline-priors case and the mean VI
for a scenario using modified priors. When this difference
is positive (negative), it means that this case resulted in a
more (less) vulnerable community than the baseline-priors
scenario. Sometimes, this difference is substantial. Using the
difference with respect to the baseline helps us to exam-
ine how they are different from each other and explain the
sensitivity.

Initial beliefs can influence agents’ behaviors and com-
munity vulnerability substantially in the early years. For
example, we found that under the climate scenario with hur-
ricanes of intensity 1.75 times the initial climatic conditions,
the largest difference between any two priors was more than
0.2, which is a large difference in the outcome when fac-
ing a same hurricane. When the climate intensity increases
from the initial climatic conditions, cases with different ini-
tial priors begin to converge to a similar vulnerability level
given a sufficient amount of time. The vulnerability indices
initially diverge in earlier years and start to converge after
the agents have experienced sufficient events to learn from

the environment. That is, we see the effects of learning over
time. Stronger hurricanes speed up the effect of learning and
sway the effect of initial beliefs and led the entire community
toward similar actions.

Another interesting finding is that holding strong beliefs
about intense hurricanes initially (i.e., the “wrong priors
case”) does not necessarily imply the least vulnerability
compared to other initial beliefs. The reason is that strong
hurricane beliefs make the agents realize that, according to
their beliefs, no matter what mitigation they undertake, dam-
age is inevitable and cannot be reduced by much given the
mitigation options we modeled. Their investment on house
upgrades then would not be worth the cost. On the other
hand, holding a very strong beliefs about less intense hurri-
canes (i.e., the “Partially Strong 2 case”) impedes mitigation
as well. This is because even an additional experience of a
strong hurricane makes it difficult for agents to overcome
their strongly held prior belief that hurricanes in the region
are usually not intense. Only when the agents hold more neu-
tral beliefs, that is, Partially Uninformative 3 and 4 cases does
the community become more hurricane resistant.

Different hurricane frequency scenarios have similar rank-
ings for different priors as the rankings for different hurricane
intensities (Figure 4B). However, the differences between
the “best” prior as measured by the vulnerability index (i.e.,
Partially strong 2) and the worst prior (i.e., Partially unin-
formative 4) increases as the frequency multiplier increases
(note that the range on the y-axis differs among scenar-
ios so that we can zoom-in and show differentiation among
some results). The reason is that when hurricanes strike the
area more frequently, regions that had been less likely to
be impacted are more likely to be influenced at some point.



INDIVIDUAL LEARNING AS A DRIVER 775

F I G U R E 4 Differences in vulnerability for different initial priors compared with the baseline initial knowledge scenario over 100 years. (A) Hurricane
intensity scenario changes from 0.75, 1.00, until 1.75 times the baseline climate while frequency remains baseline. (B) Hurricane frequency scenario changes
from 0.75, 1.00, until 1.75 times the baseline climate while intensity remains baseline



776 ZHAI ET AL.

F I G U R E 5 The evolution of community vulnerability under 1.25 intensity scenario (left) and 1.25 frequency scenario (right) with different recency bias
weight parameter. Each solid line represents a different recency bias weight parameter. Dashed line with the same color with “+” sign are the 85% upper
bound of the output samples. Dashed line with the same color with “-” sign are the 15% lower bound of the output samples

Thus, agents with little prior understanding of the risk (e.g.,
Partially uninformative) become likely to mitigate, because
the chance that no hurricanes occur drops significantly and
their perceived risk increases. On the other hand, for agents
with strong priors, more frequent (though not necessar-
ily more intense) hurricanes are unable to overcome their
strongly held beliefs of low perceived risk and they continu-
ously choose not to mitigate. Thus, over time, they experience
more damage and their vulnerability index increases. In the
frequency cases, initial knowledge held by the agents takes
on a more significant role in determining the patterns of evo-
lution of vulnerability over time relative to the cases in which
intensity was varied. The initial differences in beliefs create a
divergence in community vulnerability that does not converge
by Year 100 when changes to frequency are considered.

5.3 Impact of recency bias on the evolution
of community vulnerability under different
climate scenarios

Finally, we model the memory effects of agents as a weight
on long-term events on their past experiences as discussed
above. We chose the recency bias weight to be 1 (no weight-
ing), 0.9, 0.8, 0.7, and 0.6. Such a process can be regarded as
a result of long-term memory fading or generation replace-
ment. This process limits the agents to make decisions based
on partial information from recent events instead of using
a more complete record of events. As a result, we find that
this recency bias always promotes more mitigation and a less
vulnerable community for any climate scenario. An example
of this is shown in Figure 5. The results for other frequency

and intensity scenarios are highly similar and are omitted for
brevity. The blue line in both plots is corresponding to the
baseline scenario in Figure 3. We are using the same partially
uninformative prior as the baseline scenario as well.

We see in Figure 5 that the stronger an agent’s recency
bias is (or the faster the agents’ long-term memory decays,
reflected in a lower recency bias weight, w), the more mit-
igation that occurs and less vulnerable the community is.
The explanation for this phenomenon is that while hurricanes
usually do not occur, when they do, the agents’ risk percep-
tion is weighted more heavily toward the existence of storms
(and the fact that hurricanes usually do not occur is, to some
degree, ignored). This, in turn, can dramatically increase their
perceived risk of hurricane and damage, increasing the appeal
of mitigation actions. That is, with the effect of recency bias,
agents are much more sensitive to recent hurricanes. This
emphasizes the importance of better understanding the degree
to which limited memory is a factor in learning from the
effects of past hazards.

6 CONCLUSIONS

In this paper, we demonstrate how learning, initial knowl-
edge, and the effect of recency bias alter the evolution of
community vulnerability under different climate scenarios
using an ABM. We found that individual-level learning can
substantially change the vulnerability of the residential build-
ing stock over time as individuals update their beliefs about
future damage based on past experience and respond via deci-
sions about home mitigation measures. Prior beliefs about the
likelihood of damaging storms can have a substantial impact
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on how an individual learns from experienced events and on
their propensity to take additional mitigation actions; strong
prior beliefs that may be wrong can increase the vulnerabil-
ity compared to weaker prior beliefs. Lastly, overweighting
recent events could lead to the increased propensity to miti-
gate immediately after an event that is often seen in practice.
Incorporating the effect of learning is critical when simulat-
ing how community vulnerability may evolve under different
adaptation and climate scenarios.

In our model, more intense and frequent hurricane sce-
narios stimulated more mitigation and resulted in a less
vulnerable community overall. Different initial knowledge
held by the agents had an important role in affecting the
region’s vulnerability, especially in early years. Limited
memory can also induce more mitigation because agents
are more sensitive to recent experiences. A better under-
standing of the learning process of individual homeowners
will lead to a better understanding of their behaviors, which
will benefit decisionmakers and policymakers in long-term
community vulnerability mitigation decisions. For exam-
ple, when a community is anchored in their beliefs of
few storms (i.e., partially strong priors—the blue line) they
are more vulnerable. Getting people to realize that their
prior beliefs are wrong through interventions like informa-
tion campaigns about hurricane frequency, intensity, and
damages—admittedly a challenging task—may be useful
in reducing vulnerability. Homeowners are most likely to
choose to mitigate if they’ve recently experienced a hurricane
and have sufficient resources. Government subsidies offered
after a storm can help to encourage mitigation.

There are a number of limitations to this study, and addi-
tional research is needed. We explicitly did not attempt
to develop a model that would predict vulnerability evo-
lution for a real situation. Instead, we focused on develop
an abstract but reality-grounded case study to better under-
stand the potential influence of learning on the evolution
of community vulnerability. Developing a model to provide
accurate predictions of vulnerability evolution would require
consideration of far more factors and processes. This would
have to include at least land use change induced by nonhaz-
ard drivers, changes made in homes for reasons other than
hazards, and the influence of social networks, government
subsidies and programs, and neighbors on homeowner deci-
sions. This is not the intention of this work. Future research
into these and other aspects of this problem would be bene-
ficial. We would also need to consider learning among peer
groups and social networks, and intergenerational learning.

The results in this paper highlight the importance of
understanding and modeling learning at an individual level
when conducting a vulnerability assessment or risk analy-
sis for a community facing the potential for repeated hazard
events. Individual actions can substantially alter commu-
nity vulnerability and learning from events is a critical part
of this. Ignoring this learning effect can lead to substantial
misestimation of future risk.
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A P P E N D I X A : S Y N T H E T I C
H U R R I C A N E G E N E R AT I O N
Synthetic hurricanes are generated outside of the ABM using
the four-step process developed in Staid et al. (2014). These
steps are:

a. Choose an initial windspeed and location for landfall: The
U.S. coastline is divided into 50 km bins and the bins are
populated by the number of hurricanes to make landfall
within its boundaries. The initial location at landfall is ran-
domly selected from these bins in proportion to historic
landfall occurrences. The windspeed is sampled from the
historical record.

b. Using the initial windspeed and location, generate a hur-
ricane track from a non-parametric random forest model
trained on the suite of historical U.S. hurricane tracks
(Staid et al., 2014). The track reports the location of the
center of the hurricane in 6-h increments.

c. Compute the peak 3-second 10-m peak wind gust at the
center of each parcel in the study area using a parametric
hurricane wind field and decay model (Han et al., 2009).

d. Discard any hurricane that does not impact the study
region.

This is repeated until a library of 36,399 synthetic storms
to impact the study region is generated. The storms range in
intensity from tropical storms to Category 5 hurricanes.

Next, the case study area’s historic hurricane intensity and
frequency records are fitted to Poisson and Weibull distribu-
tions, respectively, to form baseline hurricane scenarios as
shown in Equations (1) and (2):

Ni ∼ Poisson (cF) (1)

vmax ∼ Weibull
(
𝛼I, 𝛽

)
(2)

Here Ni is the number of hurricanes that impact the case
study area in year i, c is the historical annual frequency
with which hurricanes make landfall in the study region and
equals 0.137, and F is the multiplier that controls hurri-
cane frequency. F = 1.0 implies the baseline case. vmax is
the maximum windspeed for each sampled hurricane. The
parameters 𝛼 and 𝛽 describe a two-parameter Weibull distri-
bution fitted using historical maximum hurricane windspeed
in this region, where 𝛼 = 67.76 and 𝛽 = 3.64. I is the multi-
plier that controls hurricane intensity by changing the scale

parameter. I = 1.0 implies a baseline case. These distribu-
tions are used in the ABM to sample both the number of
hurricanes that occur in a year and the intensity of each hurri-
cane. The synthetic track in the library with the maximum
3-second peak wind gust closest to the sampled hurricane
landfall windspeed is selected.

A P P E N D I X B : D E C I S I O N M O D E L
For the decision-making model, we use a decision tree to
enumerate all possible alternatives that an agent can choose
given their previous upgrade history. In each simulated year
with at least one hurricane, each agent chooses from a set of
alternatives that increases the wind resistance of their house
or do nothing. We use utility theory to model each agent’s
preference.

In the simulation, each agent’s parcel is initially assigned a
building type, which is extracted from the Maryland Depart-
ment of Planning1. There are 11 building types, defined by
the building materials and number of stories. Examples of
these are a single-story wood-framed homes and a two-story
unreinforced masonry homes. For each building type, differ-
ent upgrading options to reduce wind damages are available
(e.g., adding roof-to-wall straps). For each type of building
and given upgrade alternative (if any) selected, we use the
fragility curve which estimates the probabilities of that build-
ing being in each of the possible damage states (i.e., damage
states 1–4) from a given windspeed from HAZUS. Each agent
incorporates this fragility function with their probabilistic
beliefs about the frequency and intensity of hurricanes to cal-
culate the expected utility of each alternative and then choose
the alternative with the highest expected utility. Each upgrade
can only be applied once, and we assume the reliability of
the upgrade does not decay as time progresses in the simula-
tion. A detailed description of build stock information can be
found in Reilly, Guikema et al. (2017).

We define the current state of a house as s0, which is
the combination of its building type and upgrades previously
done to that house. The potential future states of the house
are denoted as si, 0 ≤ i ≤ n, where n is the number of dif-
ferent alternatives the homeowner has for upgrading their
house. A cost ci, 0 ≤ i ≤ n is associated with each choice.
After a storm, the house can either be not damaged or in one
of four different damage states (from minor damage to com-
pletely destroyed) with damage costs cd0, cd1, cd2, cd3, cd4
equal to 0, 0.05,0.2,0.45, and 0.99 times the house improved
value W.

The agent updates their estimates of the probability of
occurrence of each category of hurricanes written as pj, 1 ≤

j ≤ 7, corresponding to the probability of no hurricane, a trop-
ical storm, and Category 1–5 hurricanes. This is updated each
year based on new observations by the agent in each simu-
lated year. The probability of being in each damage state k,
0 ≤ k ≤ 4, given the average windspeed for each category
of hurricanes and the potential damage state of the house is
defined as p(dk|si,Hurr j), 1 ≤ j ≤ 7. We assume the agent
knows these probabilities when making mitigation decisions.

https://doi.org/10.1111/risa.13955
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F I G U R E 6 Selected agents and their locations. Map created with QGIS with OpenStreetMap, 2022 as the basemap

F I G U R E 7 The upgrade progress of selected agents under different hurricane scenarios. Five replications are shown in this figure
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We use a risk averse exponential utility function shown in
Equation (1) to quantify the preference over outcomes

U (x) = 1 − e−x∕R (1)

where R is the risk aversion factor. In the model we select
R to be 0.05 ∗ W where W is the wealth of each agent. We
use the house’s improved value as a proxy for wealth because
we lack household-level net worth information. As a result,
wealthy people can afford more expensive upgrades and to
be more risk seeking than less wealthy people.

The agents also consider the long-term return from their
investment on house upgrades, that is, what is their return
over the next T years with a discount factor 𝛾. T = 10 and
𝛾 = 0.03 in our model. Here the return on their investment
is defined based on how much damage is reduced if they
take that action given their assessment of the risk. Hence,
we can calculate the expected utility considering long-term
return using Equation (2).

EU (si|s0) =
∑

j∈[1,7]

p (j)
∑

k∈[0,4]

p (dk|si, j) LU (ci, cdk) (2)

Where EU(si|s0) is the expected utility for a house in state
s0 to upgrade to si, and LU(ci, cdk) is the long-term utility if
the house is in damage state k

LU (ci, cdk) = U (w − cdk − ci ) +
T∑

t=1

U

(
(w − cdk) ∗

1

(1 + 𝛾)t

)
. (3)

U(w − cdk − ci) is the utility value when implementing the

upgrade in the current year, and
∑T

t=1 U((w − cdk) ∗
1

(1+𝛾)t )

is the utility with this upgrade over the next T years. At the
end of each year, based on the agents perception of hurricane
occuring, each agent identifies the state si that gives them the
best long-term return and upgrades their house accordingly.

To help better understand the learning and decision-making
model, we provide an example running the ABM with four
agents (locations and their Agent IDs shown in Figure 6) for 5
replications, with three different intensity multipliers. Agents
are assumed to hold the same initial knowledge with priors
(1,1,0,0,0,0,0), and their wealth varies. The same replica-
tion under different intensity scenarios has the same number
of hurricanes occurring during the same years, though the
tracks and intensity will be different. In the meantime, dif-
ferent replications have hurricanes arriving at different years.
Results are shown in Figure 7. Each line represents the mit-
igation process for each of the five replications. When two
lines are overlap, it means it is at the same resistance level as
another replication during that period of time. Note that the
cost of the same mitigation activities are different for different
houses.

We find that agents tend to mitigate more and earlier with
higher intensity scenarios. All resistance levels (or mitiga-
tion options) are adapted by agents at some point in the
simulation. Agents tend to mitigate more if they hold more
wealth. Agents living in different regions mitigate differently
as they have different hurricane experiences. Agents 14 and
356,911 hold limited wealth, preventing them from mitigat-
ing as effectively even with more intense hurricanes. Agent
163,525 lives inland, which means they have fewer hurricane
observations, leading to less mitigation overall.
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