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literature. However, little is understood about how individual and collective responses to repeated 

hazards change communities and impact their preparation for future events. Individual mitigation 

actions may drive how a community's resilience evolves under repeated hazards. In this paper, we 

investigate the effect that learning by homeowners can have on household mitigation decisions and 

on how this influences a region's vulnerability to natural hazards over time, using hurricanes along 

the east coast of the U.S. as our case study. To do this, we build an agent-based model (ABM) to 

simulate homeowners’ adaptation to repeated hurricanes and how this affects the vulnerability of 

the regional housing stock. Through a case study, we explore how different initial beliefs about the 

hurricane hazard and how the memory of recent hurricanes could change a community’s 

vulnerability both under current and potential future hurricane scenarios under climate change. In 

some future hurricane environments, different initial beliefs can result in large differences in the 

region’s long-term vulnerability to hurricanes. We find that when some homeowners mitigate soon 

after a hurricane – when their memory of the event is the strongest – can help to substantially 

decrease the vulnerability of a community. 

 

 

KEY WORDS: Repeated hazards; agent-based model; hurricane mitigation; learning 

 

1. INTRODUCTION 

Natural disasters cause considerable property damage and economic loss. In 2017, three major 

hurricanes, Harvey, Irma, and Maria, made landfall, caused more than $300 billion (USD) in 

economic loss, damaged more than a million homes, and left misery in their wake (Reuters, 2017). 

Hurricane Irma caused approximately $70 billion (USD) in total economic loss, and half of that was 

due to damage to residential real estate (White, 2017). Residential building vulnerability is a critical 

component of a region’s financial vulnerability when facing disasters. Low penetration rates of flood 

insurance in most coastal communities often mean that a singular event can erase a family’s most 

valuable asset (Dixon et al., 2018; Zahran et al., 2009). Further, it can take months or even years 

after a disaster, depending on the availability of financial assistance, contractors, and post-disaster 

economic opportunities, among other factors, before displaced families return to their homes and 
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repair houses to normal, putting the long-term future of the community at risk(Hamel et al., 2018). 

While there have been studies examining building stock vulnerability to hurricanes, most either (1) 

assume that building stock is static (Jain & Davidson, 2007) or (2) exogenously impose a change to 

the building stock within a hazard simulation model (Jain et al., 2005). This ignores the potential 

endogenous individual-level learning that stems from experience with hurricanes that could 

substantially alter the building stock over time. 

Changes in building stock are part of the larger problem of estimating damage from repeated 

events. In this paper we consider repeated events to be hazards of the same type (e.g., a hurricane) 

that occur far enough apart in time that restoration, building, and post-storm mitigation changes to 

a building are completed before the next event occurs. This generally implies a separation of one 

year or more between events. Singular hazard events are well-studied, and risk analysis methods are 

well developed for these events. For example, hundreds of studies have been published on the 

aftermath of Superstorm Sandy, ranging from evacuation (Sadri et al., 2017), to nursing homes and 

elderly care (Lien et al., 2014), to hardening the New York City and the New Jersey coastline to 

reduce damage should a similar storm strike again (Smallegan et al., 2016). In contrast, relatively 

little is known about how repeated hazards may induce long-term changes to communities, and 

more specifically, how hazards change behaviors and policies which in turn influence the built 

environment. These alterations to the built environment change a community’s ability to withstand 

future events. 

To better understand how regional vulnerability can evolve, we must first better understand the 

potential contributions of individual-level learning to regional risk. This is particularly critical in 

communities exposed to repeated hazards as the effects of this learning, and the decisions that 

follow, compound over time. There is not a unified way in which individuals understand and respond 

to hazard risk and different beliefs about risk can lead to different mitigation behaviors. However, it 

is still important to understand the influence that archetypical behaviors have over time on 

community vulnerability to identify when interventions are warranted. For example, people who 

hold strong beliefs that hurricanes are infrequent and inconsequential are harder to sway even 

when their understanding of the hazard is updated by a new experience (Peacock, 2003). The impact 

of this behavior as it compounds over time differs depending on location and climate intensification. 

The role of memory can also influence behavior in a way that has compounding effects. More recent 

hazard experiences may tend to increase an individual’s risk perception and decrease their risk 

tolerance, making individuals more likely to mitigate (Chiew et al., 2020). This is an instance of 

recency bias (Phillips-Wren et al., 2019). Recency bias is a type of cognitive bias that relates to 

systematic errors in judgment (Tversky & Kahneman, 1974). 
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This study investigates two specific questions: (1) When does learning from the hazard 

environment decrease homeowners’ vulnerability to repeated hurricanes in a changing climate? and 

(2) How does the effect of recency bias influence a region’s vulnerability in the long term? We 

specifically investigate the following key hypotheses, each of which is developed from the literature 

review (Section 2). 

1. Individual-level learning can substantially change the vulnerability of the residential 

building stock over time as individuals update their beliefs about future damage based 

on damage that they experience and respond via decisions about home mitigation 

measures. 

2. Prior beliefs about the likelihood of damaging storms can have a substantial impact on 

how an individual learns from experienced events and on their propensity to take 

additional mitigation actions. 

3. Overweighting of recent events in probability updating by an individual could lead to the 

increased propensity to mitigate immediately after an event that is often seen in 

practice. 

To examine these questions and hypotheses, we developed an agent-based model (ABM) that 

focuses on the influence of individual learning on homeowner decisions and then how these 

decisions affect regional building stock vulnerability. An ABM is required to address our research 

question to understand how complex behavior may emerge from how individuals interact with a 

stochastic hazard environment. This work builds conceptually from Reilly et al. (2017b), which builds 

an ABM to explore how homeowners interact with their hazard environment, and how their 

decisions could impact their risk over time. The current work expands this by considering more 

complex decision rules grounded in utility theory, by considering different hazard environments, 

and, central to this work, by considering the role that learning has on the distribution of outcomes. 

The model specifically evaluates the influence of prior knowledge, the effects of memory, and the 

confidence that homeowners have in their own beliefs about hazard risk. In the model, homeowners 

make decisions by choosing from a set of mitigation actions (e.g., installing hurricane shutters or 

hurricane straps). The approach is place-based, and developed to represent key characteristics of 

nine coastal counties with 357,120 homeowners in the State of Maryland. However, both the 

models and insights are generalizable to other areas. 

An important note is needed on the role of the case study and intended use of the model. Our 

model is not intended to be predictive. That is, we do not and cannot make statements about how 

the vulnerability of the area used as the basis for our case study will evolve. There are too many 
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additional factors beyond those considered in this paper that would need to be considered. Instead, 

the purpose of this work is to gain more general understanding into the possible influence of 

individual-level learning on the evolution of community vulnerability to natural hazards over time. 

Our case study provides a reality-grounded example within which to develop our model, but our 

model is not intended to fully represent the full reality of the area used as the basis for developing 

our case study. We acknowledge this tension between detail and abstractness that is always present 

when developing a complicated agent-based model, and we have sought to balance this tension by 

maintaining enough realism in our model to allow generalizable insights into the role of learning 

without overcomplicating the model such that it becomes completely intractable, rendering the 

results uninterpretable. Stating this differently, our goal in this paper is to develop scientific insight 

into the underlying process (individual learning in the presence of repeated hazards), not the 

development of a model that can be used in practice to set policies or make mitigation decisions. 

The structure of this paper is as follows. We first review the literature of relevant studies as the 

construction of such models is highly interdisciplinary. We start by giving an overview of the 

literature on (1) vulnerability to and mitigation of hurricanes, (2) the use of ABMs in natural disaster 

studies, and (3) hurricanes and climate change. In Section 3, we introduce the framework of ABM, 

which includes an introduction of the case study region, a hazard model, a damage model, and 

models for individual learning and individual mitigation decisions. The details of model evaluation 

are presented in Section 5. In Section 6, we show results, including how model can be used with 

different climate scenarios, and discuss the role of learning, the impact of initial perception of 

hurricane risks, and the impact of recency bias. 

 

2. BACKGROUND 

2.1. Hurricane vulnerability and mitigation 

Systems-level research on hurricane risk typically focuses on quantifying regional damage, the 

benefits and cost effectiveness of mitigation, and how federal and local policies may induce 

homeowners to mitigate their potential damage to reduce region-wide vulnerability. We begin with 

a discussion of regional damage assessment. Many studies rely on FEMA’s HAZUS framework to 

simulate hazards and hazard impact, including estimates of economic losses from infrastructure and 

residential housing damage (Jain et al., 2005; Liu & Pang, 2014; Orooji & Friedland, 2017). HAZUS 

uses a whole-entity approach to modeling; each building class is assigned a hazard fragility curve 
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(derived from the literature, reconnaissance, and experimental testing), which is based on a 

conditional probability of damage state given a hazard intensity. For example, for a hurricane, the 

intensity measure is typically gust windspeed. This can be too simplistic, especially when considering 

an individual house in a specific location. However, on a regional-scale, it provides an approximation 

of the expected building damage given a hazard. HAZUS has additional known shortcomings, 

including out-of-date building stock, crude hurricane and flooding scenarios – mostly accredited to 

accommodating the computational limits of most users – and deterministic hazard scenario 

modeling. Despite these limitations, it offers both an easy-to-use platform for researchers and 

practitioners to test hypotheses and its ubiquity has allowed for comparison among studies. 

Component-based approaches, on the other hand, are more granular. They focus on the 

vulnerability of individual building components, and the interactions among them, providing more 

accurate estimates of singular building damage (Chung Yau et al., 2011; Pinelli et al., 2004; Van De 

Lindt & Nguyen Dao, 2012). This approach requires significantly more knowledge of the building 

stock and computational resources. Our work relies on the whole-entity approach given its ubiquity 

and less inputs requirements. We do not use HAZUS directly, but we do use the building fragility 

curves provide by HAZUS. This allows us to overcome problems surrounding out-of-date building 

stock and crude hazard scenarios while still leveraging the HAZUS fragility functions. 

Mitigation reduces the likelihood that a building experiences damage due to a hurricane. This 

paper focuses on household-level mitigation, such as adding wind straps or hurricane shutters. Not 

all mitigation is warranted based on its cost and the likelihood of damage (Wang et al., 2017). For 

example, Pinelli et al. (2009) studied the cost effectiveness of various mitigation strategies using a 

Monte Carlo simulation for different regions in Florida and created a map indicating the benefit/cost 

effectiveness for different combinations of housing mitigation decisions. Rose et al. (2007) 

contributes to this discussion on the cost effectiveness of mitigation using empirical data on hazard 

mitigation grants. They find a 4.7-fold return-on-investment for wind mitigation from FEMA 

mitigation grants – grants given to communities particularly susceptible to high windspeeds. These 

studies, and others like it, assume a static building stock and do not include the compounding 

benefits from mitigation from repeated hazard events. 

Additional considerations for understanding how regional building stock vulnerability may 

change include homeowners’ proclivity toward mitigation and federal, state, and local policies that 

influence homeowner mitigation behavior. Federal policies are also commonly evaluated with 

benefit-cost analysis or survey-based approaches (English et al., 2017), though these too are often 

based on a static snapshot of the situation. 
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Little of this past work has explicitly investigated the effects of repeated hurricanes – and their 

effects on mitigation behavior - on communities with the exception of Jain et al. (2005) and Reilly et 

al. (2017a, 2017b). Jain et al. (2005) propose a method to consider temporal changes in building 

inventory when estimating changes in expected losses from hurricanes over time. This simulation 

model considers how building vulnerability responds to changes in building codes. In Reilly et al.’s 

model (2017b), homeowners from Anne Arundel County, MD can increase their home’s resistance to 

historical hurricanes following a set of rules defined by probabilistic distributions. However, these 

studies do not explicitly investigate the potential role of learning as a determinant of long-term 

building stock vulnerability, and the modeling of decision-making is intuition-based. Other studies 

that do consider the role of sequential hazards focus more on the degree to which learning takes 

place, and not the impact of learning (Colten & Sumpter, 2009). For example, Siegrist et al. (2008) 

explained the importance past flooding experiences and how they might change people’s risk 

perception and motivate mitigation behavior. Their survey results suggested that negative 

experiences increase the likelihood of household mitigation behaviors but not necessarily when 

people also doubt the effectiveness of mitigation or perceive the cost as too high. Better 

understanding this potential role of learning is critical in understanding repeated hazards and their 

impacts on communities over time. 

 

2.2. Human learning and biases  

Learning is an enduring change in the mechanisms of behavior involving specific stimuli and/or 

responses that results from prior experience with those or similar stimuli and responses (Chance, 

2013). It has been well studied in the field of anthropology, biology, and psychology. It is one of the 

critical mechanisms that produces changes in behavior. To understand behaviors in a human-

involved complex system must include consideration of what they learn and how they learn it. 

Different types of learning have been discussed in past studies, such as individual learning, social 

learning, and organizational learning. Individual learning describes when the behavior itself is 

acquired by the result of the subject’s own experience of the consequences of its actions(Feldman et 

al., 1996) . Social learning, on the other hand, might learn from the behavior of others, while running 

the risk of copying an inappropriate behavior (Feldman et al., 1996). Reed (2010) propose three 

requirements for a social learning process. It must (1) demonstrate that a change in understanding 

has taken place in the individuals involved; (2) demonstrate that this change goes beyond the 
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individual and becomes situated within wider social units or communities of practice; and (3) occur 

through social interactions and processes between actors within a social network. Organizational 

learning describes how an organization or group can learn internally and externally as a whole 

(Brandi & Elkjaer, 2015). They describe how the field of organizational learning can be understood 

from a social learning perspective and which social learning theories add to an understanding of 

organizational learning that cannot be included in an individual learning theoretical approach. In the 

context of organizational learning, a learning loop framework is proposed to help facilitate the 

understanding of organizational learning (Johannessen et al., 2019). The framework describes 

different loops of learning that trigger different levels of retrospect of the context, assumptions, and 

actions that lead to the results. In the context of resilience and environmental change, outer-loop 

learning (i.e., which focuses on more challenging assumptions as opposed to practices and tactics) is 

crucial for maintaining regional resilience when environmental variability is high, such as during 

droughts (Yu et al., 2016). 

Another potential learning source that might drive mitigation decisions is based on the 

experiences of neighbors. Slotter et al. (2020) used a survey approach on households’ attitudes, risk 

perceptions, and prior experiences to understand each factor’s impact on mitigation decisions. They 

found that both individual risk perception and neighbor experiences have a positive relationship 

with mitigation intention. However, the influence from factors, such as hazard experience and 

hazard understanding, remains under debate (Dillon et al., 2014; Mileti & Darlington, 1997; Peacock, 

2003; Russell et al., 2016). While Russell et al. (2016) and Peacock et al. (2003) find a position 

relationship between hazard experience and an individual’s motivation to mitigate, and also hazard 

understanding and an individual’s motivation to mitigate, Mileti and Darlington (1997) and Dillon et 

al. (2014) did not. In Dillon et al. (2014), this is termed a “near miss” and typically arises when a 

disaster occurs, but by chance, the individual is unscathed, making them believe they are less 

vulnerable to harm than they truly are. While we acknowledge that all these types of learning are 

important in understanding the actual mitigation actions, we focus solely on modeling individual 

learning in this work, and hazard understanding and hazard experience in particular, in part because 

of past conflicting results. 

A factor that strongly influences whether a hazard experience (or understanding) leads to 

mitigative action is an individual’s degree of objectivity, and more specifically is the degree to which 

new knowledge or information is accepted and maintained over time (Underwood, 1964). One 

phenomenon, that we later explore with depth later in our work, is recency bias. Recency bias is a 

type of cognitive bias that relates to systematic errors in judgment, whereby more weight is given to 

events that occurred more recently than to events which occurred a long time ago (Tversky & 

Kahneman, 1974). It can potentially affect how the vulnerability of individuals evolves in a dynamic 
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environment, such as one exposed to hurricanes. Individuals may, in some instances, be reactive to 

recent events and over-prepare compared to what they might be inclined to do had they considered 

a much longer hazard history. Past experiments and empirical evidence show contradictory results 

whether individuals actually are affected by recency bias (Royal, 2017; Wang et al., 2017). The 

experimental design in Royal (2017), which subjected participants to the possibility of negative 

income shock repetitively and offered insurance at the start of each round, found less insurance 

uptake, not more, when shocks occurred repetitively. This suggests that decisions were not biased 

toward the more recent negative outcomes in a way that would reduce vulnerability. Conversely, 

using surveys, Wang et al. (2017) showed that recent experience with hurricanes make homeowners 

more likely to purchase insurance. Similarly, using an experimental set-up where participants were 

asked to make mitigation decisions for a building exposed to repetitive hurricanes, Meyer found that 

mitigation investments were mainly driven by whether a storm occurred recently or not (Meyer, 

2012). Therefore, in our study, we test both findings by generating scenarios with varying degrees of 

recency bias (ranging from none to strong) among the model agents. 

 

2.3. Agent-based models and their use in natural disaster studies 

An ABM is a bottom-up modeling approach that simulates how heterogeneous intelligent agents 

(e.g., homeowners) interact with and learn from other agents and/or the environment and how, 

with this knowledge, they make decisions(Bonabeau, 2002; MacAl & North, 2010). Their decisions 

then change the environment and/or other entities. Applications of ABMs span demography, the 

social sciences, economics, public health and environmental science among other fields(Billari et al., 

2006; Gorman et al., 2006). 

ABMs have been widely used to model natural disasters and their impacts. ABMs are useful 

boundary objects that are able to integrate domain knowledge from multiple disciplines, making 

them increasingly popular (Reilly et al., 2018). The benefits of ABMs are that they 1) enable scenario-

based sensitivity analysis(An, 2012), and 2) have the ability to model the compounding effects of 

individual actions and learning(Reilly et al., 2017a). However, most ABM work in the hazards realm 

centers around short-term actions after hazards occur to evaluate how agents might evacuate, take 

shelter, or access primary care services, and what infrastructure is needed to accommodate 

emergent behaviors(Chen et al., 2006; Chen & Zhan, 2008; Pan et al., 2007). 

 An ABM could also be used to model the long-term effects of natural disasters (Abebe et al., 

2018, 2019; Haer et al., 2017, 2019; Reilly et al., 2017(a); Reilly, et al., 2017(b); Tonn et al., 2020; 
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Tonn & Guikema, 2018). Reilly et al. (2017a) built an ABM to quantify how hurricane-induced power 

outages could induce particular behaviors, and these in turn could influence a region's power system 

reliability in the long-run. Recent studies have also applied ABM to improve community vulnerability 

analyses under flood events, though the impact of individual learning hasn’t been focused. Haer et 

al. (2017) built an ABM to compare how different economic behavioral models held by the agents 

would lead to different flood risk of the community. Haer et al. (2019) integrated different types of 

adaptive behavior of governments and households for river flooding under a similar framework. 

Households and the government as the agents would react to the environment under a combination 

of pre-defined rules, which will impact the region’s long-term flood risk. Their results showed the 

importance of dynamic adaptive behavior and how it would lead to different flood risks under 

different climate projection. Abebe et al. (2018, 2019) built a coupled agent-based-flood framework 

and applied the model to evaluate long-term flood risk management policies. Household agents 

make house plans and they build houses with randomly sampled compliance towards different 

written formal policies. The government agent represents different levels of policy enforcement and 

may reduce the occurrence of flood hazard by improving the infrastructure system. The behavioral 

rules are relative ad-hoc, which also leads to under-validated results. 

 

2.4. Modeling individual learning in ABMs 

People’s behaviors are driven, in part, by their beliefs (Breen, 1999) and preferences (Panait & 

Luke, 2005). Beliefs can change over time when individuals gain additional information – perhaps 

through an experience or through information shared others – and then update their understanding 

of the process. Because learning affects how individuals make decisions over time, learning can be 

an essential component in an ABM framework for studying long-term implications of hazard 

vulnerability (Farmer & Foley, 2009). In ABMs, agents are considered autonomous and can interact 

with one another, meaning they can learn from both the environment and from other agents. 

Learning can be viewed as a process in which beliefs are updated. In reality, this process is 

complex and is the subject of numerous psychological studies (Johnson & Hasher, 1987). In an ABM, 

however, learning is modeled in a logical structure compatible with computer coding. There are 

several ways to model this process in an ABMs. The primary methods include information modeling, 

Bayesian updating, reinforcement learning, and coevolutionary algorithms. We briefly review each 

below. 



 

 

 

 

This article is protected by copyright. All rights reserved. 

 

This article is protected by copyright. All rights reserved. 

11 

 

A common approach – information modeling or risk modeling – uses new information about 

disasters and risks perceived by the agents as the knowledge learned by the agents. For example, Du 

et al. (2017) explored evacuation processes during flooding events using an ABM. In this study, 

agents learn of a flood from a news broadcast, social media, and neighbor observations, which, 

when combined, triggers decisions by agents. In other work, Tonn et al. (2018) quantifies how 

different risk perception factors (i.e., flood experiences) and coping perception factors (i.e., 

mitigation behaviors) combine to estimate perceived risk factors. This value will then be compared 

with a risk tolerance threshold to determine when an agent will consider acting. 

Bayesian learning or Bayesian updating is another approach for modeling learning (Breen, 1999). 

This method assumes an agent’s beliefs about future events, such as the likelihood of a hurricane, 

follow specified probability distributions. These distributions are updated as new information 

becomes available using Bayes theorem. For example, Reilly et al. (2017a) modeled agents as having 

categorically distributed beliefs over the likelihood of zero, one, or more power outages in a given 

year. This is then combined with Dirichlet conjugate priors which are updated in a Bayesian manner 

every year given the number of power outages that occurred. 

Another popular learning algorithm used in ABMs is reinforcement learning (Panait & Luke, 

2005). In reinforcement learning, agents receive rewards from their actions, and they make 

decisions based on a new environment and the consequences caused by their prior actions. Krause 

et al. (2006) model the process of power suppliers submitting their bids to the electricity market 

using reinforcement learning. The agents are trying to maximize their payoffs and after each bid, 

they observe their gains or losses to update their behavioral policies or expected reward functions. 

As a result, they discover that after many rounds of bidding, the stable decisions each agent made to 

achieve their optimal output is the same as the existence of a unique Nash equilibrium or multiple 

equilibria in the system. 

For each learning method, it is possible to incorporate learning and knowledge biases that 

individuals exhibit. For example, bandwagon effect or herd behavior is a cognitive bias in humans 

that people follow what others are doing instead of using their own information or making 

independent decisions, which is commonly observed and can be detrimental to disaster evacuations 

(Tsurushima, 2019). In natural hazards research, researchers have observed that the memory of 

events tends to fade over time (i.e., memory effect), which makes individuals less likely to take 

preparative actions (Logan et al., 2018; Reilly et al., 2017a), and this behavior is critical to capture in 

the model process. Memory fading can be a result of time or of new people moving into the area. In 

ABMs, the memory effect is often modeled as either a decay parameter on the awareness of the 
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hazard (Logan et al., 2018) or as a window that allows only those events in the window to be 

‘remembered’ by the agents (Reilly et al., 2017a). 

Among these models proposed, reinforcement learning, and Bayesian learning are most 

recognized in the field with certain limitations (Mathys et al., 2011). In this work, we choose a 

Bayesian model over other models, especially reinforcement learning for the following reason. 

Reinforcement learning is typically used under a situation to pursue for the optimal solution or 

policy to the agents under uncertainty. It requires repetitive simulations to train the agents to learn 

the optimal decision rules. This is not well-suited we our use case. Under a hurricane mitigation 

context, as the decision we are modeling is a one-time upgrade, they are more likely to be learned 

during actual hurricane experiences instead of repeated hypothetical experiments. Bayesian 

learning, on the other hand, is a sophisticated framework that can capture agent learning that is 

consistent with existing knowledge, particularly of the importance of the memory effect. 

 

2.5. Modeling decisions in an ABM 

The decision-making component of an ABM is a critical element for modeling emergent 

behavior. There are many different types of decision rules that can be used within ABMs. For ABMs 

in the hazards field specifically, we divide behavioral decision models into four groups: ‘if-then’, 

descriptive, empirical, and prescriptive. 

The first approach is “if-then” models which take the format of “if this happens, then one will do 

that with some likelihood.” This approach is more ad-hoc and often hard to be validated, though it is 

widely used in the ABM literature. The probabilities can be populated based on observation (i.e., 

empirical) or based on subject matter experts, but that is typically not the point. The objective is to 

find the marginal influence of different types of decisions on model outcomes, and these types of 

models require extensive sensitivity analysis (Du et al., 2017; Reilly et al., 2017a; Tonn & Guikema, 

2018). 

Descriptive decision theory attempts to explain the actual behaviors of decision-makers. This is 

often different from their utility optimizing actions. Prospect theory is one example of a descriptive 

framework. Here, individuals evaluate outcomes based on possible gains and losses rather than 

expected utility (Kahneman & Tversky, 2018). Another well-known collection of descriptive decision 

theory method is bounded rationality. Models for bounded rationality assume individuals would be 
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rational in their decision-making process, except that they are limited by the information they have, 

their cognitive limitations, and/or the amount of time they have to make the decision (Friedman & 

Rubinstein, 1998). Various heuristics and biases have also been studied to help explain observed 

actions. One example of using these methods in the ABM literature is a model of water scarcity 

management for repeated droughts (Burchfield & Gilligan, 2016). 

Empirical models apply observed decision behavior (e.g., observed mitigation rates). The 

approach is reasonable when building an ABM for a particular region using observed data from that 

same region provided that the behavior is unlikely to change in the future. Then with a well-

established dataset, statistical approaches can be applied to model agent’s behaviors. However, 

individuals from different regions have been observed making different choices under similar 

hazards (Bouris, 2006) – likely because of different background understanding of the hazard – 

meaning empirical data are at times less relevant when applied to different regions. These methods 

are also less useful for situations in which agents must make decisions in environments they have 

not seen before. 

Prescriptive decision theory models focus on identifying the “best” decisions by using expected 

utility maximization. This model assumes that a rational decision-maker lists the actions or 

alternatives available to him or her, identifies the possible outcomes associated with each action 

along with the likelihood of occurrence of these outcomes, and finally quantifies the desirability of 

each outcome using a utility function. The alternative with the highest expected utility is selected. 

While attractive for improving individual decision-making, utility theory is not necessarily a 

descriptive approach that captures the actual decision process people use (Rubinstein, 1988). 

In this paper we use a utility-based model with subjective information for agent decision-

making. Given that the decision that the agents are making are both expensive and are associated 

with long-term changes to their homes, the agents are likely to consider costs and benefits in depth, 

analyzing their options. Though with certain limitations, utility-based models are well practiced in 

modeling decisions. It is also compatible with the Bayesian learning framework.   

 

2.6. Climate change and hurricanes 

Climate change is likely to alter the pattern of hurricane occurrence in the next century (Meehl & 

Tebaldi, 2004). While there is uncertainty in how climate change will affect hurricane frequency and 
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intensity, it is likely that hurricanes will become less frequent though more intense in the Atlantic 

basin (Mendelsohn et al., 2012). On the other hand, climate change will also cause sea level rise, 

which will inundate coastal regions and result in flooding of areas that might have never seen storm 

surge in the past. In addition, greenhouse gas-induced warming may lead to gradually increasing risk 

of the occurrence of highly destructive category-5 storms (Knutson & Tuleya, 2004). Similar to Staid 

et al. (2014a), we use a scenario-driven simulation approach and repeatedly perturb the hurricane 

intensity and frequency parameters for the region to better understand how individual behavior 

interacts with different hurricane environments to influence community vulnerability over time. 

 

3. METHODS 

3.1. Overview of model structure 

Our agents are individual homeowners, modeled as one homeowner per land parcel and we 

focus on the impact of hurricane wind hazard. The model is initialized by assigning each agent 

attributes of their house (i.e., their house’s construction type, a.k.a., building class, and the house’s 

ability to resist wind forcing, a.k.a., resistance level) and a wealth (approximated by their house’s 

improved value). The agents make mitigation decisions on an annual basis. Decisions are driven by 

an agent’s perception of the risks from hurricanes. Our agents share the same alternatives in terms 

of mitigation actions as Reilly et al. (2017b) . We simulate how the region could evolve over 100-year 

periods in various hurricane scenarios. We choose 100-year as it is a sufficiently long period to allow 

us to see the results of individual behavior in a setting in which events happen relatively 

infrequently. The goal is to find the marginal contribution of decision-making related to mitigation 

on the vulnerability of the regional building stock. It is not to predict the building stock or its quality 

in 100-years. We acknowledge that 100 years exceeds the length of time for which an individual 

homeowner would reside in the area. We use this longer time frame to gain a more generic 

understanding of the potential role of learning. In the results section we highlight the results for the 

first 30 years to represent a more typical time span for which a homeowner would live in the area 

and hold a mortgage on their home. 

We compare different scenarios and analyze the level of vulnerability of the community and 

discuss the importance of learning and initial knowledge of the agents to their decisions. Fig. 1 

provides an overview of the model used in this study. We first give an overview of this structure, and 

the subsections below provide more detail on the model’s components. 
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Fig. 1. Overview of the computational flow of the ABM. 

We create different hurricane climate scenarios by controlling the frequency and intensity of 

synthetic hurricanes used in our analysis. Then we run a number of replications of the entire 100-

year history using a simulation model that can be divided in to four components: the hurricane 

sampling model, the building damage model, the learning model, and the mitigation decision model. 

Many of these components have multiple steps to compute that are described in later subsections. 

The general process is that in a given time step (i.e., year), we sample the number and intensity of 

hurricanes to occur (zero hurricanes is a possibility in a given year) from distributions initially 

parameterized to reflect the conditions of the study area. The hurricane(s) that most closely matches 

the intensities are selected from a large library of synthetic but possible storms. This process is 

described in Section 3.3. Each house is probabilistically assigned damage (i.e., a damage level) based 

on the intensity of the hurricane, the downscaled 3-sec 10-m peak wind gust at the parcel, and the 

construction type and resistance level of each home (which together, have their vulnerabilities 

represented by fragility curves). This process is described in Section 3.3. Agents then learn from this 

experience (which could include no hurricanes or no damage even if there is a hurricane) and then 

make mitigation decisions. This process is described in Section 3.4. This entire process repeated for 
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100-years under different climate scenarios. The model purposefully excludes numerous 

confounding factors, including recovery, insurance, disaster policy, and relocation, to isolate the 

impacts of learning from disasters for various climate scenarios to answer the fundamental question 

of what can be achieved with the learning from homeowners under climate changing. Future work 

could explore these effects. 

The number of replications needed for stochastic convergence is determined by replicating the 

entire 100-year time until it meets our convergence criteria. We use the coefficient (   
 

 
) to 

calculate the output from the ABM (Lee et al., 2015). We then use equation (1) to find the minimum 

number of replications,     , needed to achieve desired level of convergence,  , between the 

coefficient of variation from n replications and m replications, where m is a large number.   
  and   

  

are the corresponding coefficient of variation for n replications and m replications. We pick the 

potential number of iterations from a set of values, e.g., 50, 100, 500, 1,000, 5,000, 10,000. We 

calculate the coefficient of variation of each preselected number of iterations and select the sample 

size      when the convergence condition (e.g., E = 0.01) met for any other   greater than     . As 

a result, we determined that when the number of iterations exceeds 1,000 the convergence criteria 

is met for our output measure. 

            |  
    

 |                            (1) 

 

3.2. Case study 
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Our case study is based on nine counties in the state of Maryland, U.S. - Anne Arundel, Calvert, 

St. Mary, Dorchester, Talbot, Queen Anne’s, Wicomico, Somerset, and Worcester. These counties 

have coastlines along the Chesapeake Bay or the Atlantic Ocean (Fig. 2). There are 357,120 single-

family houses in this region. We identify 11 building classes based on FEMA’s residential building 

designations. The most common building class is two-story wood-framed single-family houses. Then 

for each type of building, different mitigations, such as installing hurricane straps or change roof 

shapes, can be invested to improve the building’s resistance level. A detailed description of all 

mitigation strategies can be found in Reilly et al. (2017b). Publicly available tax assessor data are 

used to spatially-locate each house and to assign each house a value (Maryland Department of 

Planning, 2016). The value (i.e., “improved value” from tax assessor data) combined with the 

building’s fragility and the hurricane windspeed provide an estimate of the loss. Anne Arundel 

County is the most populated and is mostly suburban. Ocean City, in Worcester County, also has 

dense housing. The remainder of the region is either suburban or rural. 

Because we do not know either income or wealth at the household level, we use the improved 

value as a proxy for wealth (capital) to support mitigation decisions. This is an imperfect measure. 

However, those with higher values are arguably more likely to have access to capital for mitigation 

through loans using their home’s improved value as collateral. Also, this assumption can be replaced 

provided more detailed information on household wealth becoming available. 

Fig. 2. Map of region. Counties in light gray are used in the study.  
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The case study area experiences a hurricane every 8 years on average. Most storms are Category 

1 strength or below by the time they make impact in the region. The hurricane intensity tends to be 

greatest in the southern-most counties, such as Somerset and Worcester Counties. As the region is 

not as heavily influenced by hurricanes as southern states are (e.g., Florida, Louisiana), the overall 

hurricane resistance level is expected to be low given the current climate conditions. This provides 

sufficient room for the agents to learn and adapt to more intense and frequent hurricane climate 

scenarios.  

We are not attempting to model this region in all of its detail. That is, we are not trying to model 

all details from these nine counties in order to support specific policy recommendations for this 

location. Rather, we used building stock data and historical hurricane impacts from this region to 

parameterize our model to provide a reasonable degree of reality and complexity to gain broader 

insights on the interactions among hazard frequency, damage experience, mitigation, and regional 

vulnerability over time. 

 

3.3. Hurricane sampling model 

A synthetic library of possible hurricanes to affect the region, generated using the work of Staid 

et al. (2014a) is initially created (Reilly et al., 2017a). The library contains 36,399 synthetic storm 

tracks that could affect the study area, and these synthetic storms range in intensity from Tropical 

Depressions to Category 5 hurricanes. For each synthetic track, we then apply a hurricane wind field 

model to compute the 3-second 10-meter peak wind gust at the centroid of each building (Holland, 

1980). Next, baseline hurricane frequency and intensity distributions (Poisson and Weibull 

distributions, respectively) are fitted with the region’s historic yearly hurricane frequency and 

maximum hurricane windspeeds to create the baseline hurricane climate scenario. The fitted 

parameters are later perturbed for different climate change scenarios (e.g., the rate parameter for 

the climate scenario with 25% more hurricanes is multiplied by 1.25). Once the simulation begins, in 

each simulated year, we sample from the intensity and frequency distributions to identify how many 

hurricanes affect the region that year (0 or more) and how intense each hurricane is. The hurricane 

in the synthetic library that is closest in intensity to the sampled intensity is selected. A more 

detailed description of this model is provided in Appendix A. Again, we are not aiming to model the 

precise future hurricane environment of the case study location under specific future climate 

scenarios. We are instead trying to gain a more general understanding of the potential role of 
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individual learning in shaping a region’s vulnerability over time under different possible future 

hazard scenarios. 

 

3.4. Building damage model 

For each hurricane, the 3-second 10-meter peak wind gust at the centroid of each parcel is 

computed (Holland, 1980). If more than one hurricane occurs in a year, the hurricane that is most 

intense is used. That is, damage from subsequent storms does not compound. Then, each house is 

assigned a damage state by combining building’s fragility curve with the downscaled windspeed at 

the parcel’s location. 

HAZUS fragility curves are used to model each house’s fragility. Each parcel is assigned to a 

building class based in its characteristics (e.g., number of stories, construction material). Each 

building class has distinct possible resistance levels, depending on the possible ways mitigation can 

be conducted (e.g., wind straps). As a house is mitigated, its resistance level improves. Each 

resistance level has five fragility curves, one for each of the possible damage states. These are: 

Damage State 0, (DS0, no damage), Damage State 1 (DS 1, minor damage or 10% or less of the 

building sustained damage), Damage State 2 (DS2, moderate damage or about 25% of the building 

sustained damage), Damage State 3 (DS3, severe damage or about 50% of the building sustained 

damage), and Damage State 4 (DS4, completely destroyed) (Vickery et al., 2006). Fragility curves 

produce a probability that a house of a specific type and resistance level will be in one of five 

damage states conditioned on the windspeed. 

The damage model randomly samples a number between 0 and 1 and a damage state is selected 

in proportion to the likelihood of being in a specific damage state given a windspeed. The losses are 

quantified by multiplying the improved value of the parcel by the fraction of sustained damage. 

Given the simplicity of these fragility curves, criticism exists (Reilly et al., 2017b). Our study is not 

dependent on this model and alternate fragility curves can easily be incorporated as long as they 

give similar output. 

After a hurricane, we assume that any agents which experienced damage (from one or multiple 

hurricanes) would recover in a single year. That is, we do not focus on the immediate post-storm 

recovery process. Additionally, some or all agents may decide to mitigate. A wood-framed home, 

which constitutes the vast majority of the houses in our study area, could be upgraded by installing 
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roof-wall straps, application of secondary water resistance, installing storm shutters, strengthening 

the roof deck attachment, or by changing the shape of the roof. Part of this decision depends on the 

cost of mitigation. We estimated the cost for individual homeowners to make house upgrading 

decisions using the RS Means cost pricing database (Plotner & R.S. Means Company., 2017). 

 

3.5. Agent learning and mitigation decision models 

Mitigation decisions are essential components of how a community's vulnerability evolves. 

These decisions are partially controlled by an individual’s personal beliefs about the risk a hazard 

poses (Siegrist & Gutscher, 2008). By observing a hazard and the damage it causes, or the lack 

thereof, individuals may update their beliefs about the risks posed by the hazard, and potentially 

change future mitigation decisions. 

After each hurricane season in a simulated year, agents learn from their experience and may 

take mitigatory action. For instance, they may believe that the likelihood of a hurricane in any given 

year is now greater especially if they recently experienced a hurricane. These beliefs are combined 

with damage probabilities for each of the mitigation strategies and are used as inputs for a decision 

model on whether to mitigate. 

The ABM is initialized by assigning each agent partial information or “knowledge” about the 

hazardscape. Specifically, each agent holds an initial belief about the frequency of each category of 

hurricane (including no hurricane). This is updated annually given their experiences. In each year of 

the ABM run, regardless if hurricane or damage occurs, agents “learn” from their experience by 

updating their beliefs about their risk and then decide whether to act. Based on this knowledge, 

agents may choose to mitigate, which, in turn, may change the vulnerability of their homes to 

damage in future hurricanes. 

 

3.5.1. Agent learning model 

We model agent learning using a Bayesian updating framework. Learning in this model focuses 

on how likely agents believe hurricane force winds of varying magnitudes are to occur on their 
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parcel in a given year. For example, an agent could believe that there is an 80% likelihood of no 

hurricane occurring in a given year, a 19% likelihood that their parcel experiences tropical storm 

force winds, and a 1% likelihood that a Category 1 or stronger storm would occur. If this agent were 

to experience Category 2 force winds, their beliefs about their chances of experiencing a Category 1 

storm or greater would likely change. 

We use a categorical distribution to describe each agent’s belief for both hurricane frequency 

and intensity. We define 𝑋 as a categorical random variable, 

𝑋      (         )        (2) 

where    through    correspond to the probability of no hurricane, a tropical storm, and Category 1-

5 hurricanes. While each of these divisions has a wide range of windspeeds, we select them because 

an individual is unlikely to know the exact windspeed they experienced, but rather an approximate 

windspeed such as the intensity of the storm on the Saffir-Simpson scale. The Dirichlet distribution is 

the categorical distribution’s conjugate prior.            are the Dirichlet’s support parameters 

and represent the number of observations for each of the windspeed divisions. Thus, 

              (          )     (3) 

If we treat the categorical distribution parameters as random variables, we can leverage each new 

windspeed observation, 𝑋   , to update these parameters using Bayes rule and the Dirichlet 

distribution. The posterior distribution will still be a Dirichlet distribution with parameter 𝛂′ given by, 

  
       (𝑋     )                (4) 

where   is the indicator function. The posterior predictive distribution for this model is given by 

equation (6). 

 (𝑋   | )   
  

 

∑   
           (5) 

Before the ABM is run, priors – meaning initial beliefs over the intensity and frequency of 

hurricanes,        – need to be assigned for each agent. We iteratively assign different starting 

priors in different ABM runs to test how initial beliefs influence the agents’ decision process and the 

long-term vulnerability of the region. 
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We also consider the impact of recency bias in the learning models. Recency bias is a cognitive 

bias that occurs when an individual weighs more recent events in decision making (Phillips-Wren et 

al., 2019). We model the recency bias using 

  
        (𝑋     )  (6) 

where   is the weight of the long-term memory of the agents.     represents a decay of the 

long-term memory of the agent. More specifically when   decreases, it forces less weight on prior 

experiences and more weight on the agent’s experience in that year. 

As an example, consider two agents with different priors: (1,1,0,0,0,0,0) and (100,100,0,0,0,0,0), 

respectively. Although both indicate the agents believe there is a 50% probability of having no 

hurricanes and 50% probability of having a tropical storm in a given year, the underlying confidence 

for these two agents is distinct. Saying in the next year, both agents experienced a category 5+ 

hurricane, the two agents will update their beliefs by incorporating the new observations to update 

the underlying Dirichlet distributions’ hyperparameters. If we don’t consider the recency bias effect, 

the new beliefs will be computed with the updated distribution with hyperparameters (1,1,0,0,0,0,1) 

and (100,100,0,0,0,0,1). If we consider the recency bias effect with a weight of 0.9, then the 

hyperparameter will be updated to be (0.9, 0.9,0,0,0,0,1) and (90,90,0,0,0,0,1).  

In this work, we consider the initial beliefs an agent held when making decisions by leveraging 

the parameters that support the Dirichlet distribution. An individual who has significant experience 

may be more likely to act than an individual who has much less (Siegrist & Gutscher, 2008). Table I 

shows the priors we use and what each prior implies about their beliefs. Partially uninformative 

priors describe agents who hold a minimum understanding of the environment. They could be, for 

example, agents who move to the region and thus lack knowledge of the regional risks. Partially 

strong priors describe agents who have lived in the region for a while, though the region is assumed 

to have been spared a strong hurricane for a long time. This may change at the start of the 

simulation, where the impact of climate change on hurricanes might make them occur more 

frequently or with more intensity. Wrong prior describes agents with potentially extreme 

experiences from previous hurricanes, who might be considered most likely to mitigate. We don’t 

consider the effect of recency bias in these scenarios. 

Similarly, recency bias also likely impacts mitigation decisions. Therefore, we modify the weight 

of the long-term memory ( ) to represent different levels of recency biases, with a value of 1 

representing no recency bias and a value close to 0 representing that they have no memory. Our 
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hypothesis is that the loss of long-term mild and extreme hurricane experiences make recent events 

more meaningful for mitigation decision-making. 

Table I. Initial knowledge explanations 

Priors Name Priors  

(No Hurr – Cat 5+ Hurr) 

Implication 

Partially Uninformative 1 

(Baseline Prior) 

(1,1,0,0,0,0,0) Little knowledge for hurricanes events stronger 

than tropical storm 

Partially Uninformative 2 (1,1,1,0,0,0,0) Little knowledge for events stronger than 

category one storms 

Partially Uninformative 3 (1,1,1,1,0,0,0) Little knowledge for events stronger than 

category two storms 

Partially Uninformative 4 (1,1,1,1,1,0,0) Little knowledge for events stronger than 

category three storms 

Partially Strong 1 (10,10,0,0,0,0,0) Moderately strong belief that there will be no 

events stronger than tropical storm 

Partially Strong 2 (100,100, 0,0,0,0,0) Strong beliefs that there will be no events 

stronger than tropical storm 

Wrong Prior 

(Severe Hurricanes) 

(1,1,1,1,100,100,100) Strong belief in intense hurricane events 

 

 

3.5.2. Mitigation decision model 

After agents learn, they decide whether and how to act. A detailed mathematical description of 

our decision model with an example of how agent learn and behave is presented in Appendix B. A 

brief overview follows. The agents choose from the following alternatives in each year that the 
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model is run, e.g., installing roof-wall straps, installing storm shutters, improving the roof deck 

attachment, installing second level water resistance, changing the shape of the roof, or simply doing 

nothing. Each option corresponds to a specific resistance level. Houses that are mitigated have a 

lower probability of being damaged when they are upgraded which is represented by differing 

fragility curves. However, the degree of improvement and the mitigation costs vary considerably 

based on the intervention. We assume agents know the probability of their house being damaged 

for each category of hurricane and for all housing mitigation options. Future iterations of the work 

could explore relaxing this assumption. 

In each simulated year, we calculate each agent’s expected utility for each mitigation alternative 

by combining the agent’s probability distributions over hurricane frequency and intensity and the 

likelihood of damage for each mitigation option together with the costs of the options and the 

agent’s utility function. An exponential risk averse utility function is used (Anand, 1993). The agent 

then chooses the alternative that maximizes their expected utility. 

 

4. MEASURE OF COMMUNITY VULNERABILITY 

To compare different scenarios, it is helpful to have a measure of the overall vulnerability of the 

region to see the effect of different scenarios more simply. We do this through an additional 

calculation outside of the ABM. That is, we assessed the vulnerability of each household to six 

different intensities of tropical storms in that year and integrated these vulnerabilities into an overall 

vulnerability score for our study region. This score does not feed back to the ABM in any way. 

Instead, this was an extra assessment done only to provide an integrated picture of the overall 

vulnerability of the houses in the community. This section provides the details of how this was done. 

In each simulated year, we record the state of each house in terms of its resistance level (i.e., 

its degree of mitigation). Then, separate from the ABM, i.e., not providing any feedback into the 

ongoing ABM, we uniformly applied six different windspeeds (the median windspeed of each 

hurricane category) to each house and calculated the expected damage (in dollar value) for each 

house and for each windspeed. We then summed the expected damage across all of the houses to 

get   , the aggregate vulnerability measure for windspeed i. 

Given that there is an upper limit of the achievable resistance of houses to hurricane winds, we 

also calculate the maximum and minimum expected damage,   
    and   

   , which describe the 
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most and the least damage a community could experience under windspeed level  . The maximum 

expected damage,   
   , corresponds to all houses being in the lowest resistance level (i.e., no 

mitigation has been conducted). Similarly, the minimum expected damage,   
   , corresponds to all 

houses being in the highest resistance level (i.e., no mitigation has been conducted). We then 

normalize and aggregate according to equation (7): 

   
 

 
 ∑

     
   

  
      

                (7) 

Equation (7) normalizes the range of vulnerability measure to be between 0 and 1. For example, 

the vulnerability in Year 1 is 1, which assumes that no households have conducted mitigation and 

are in their initial resistance levels. If every household in the system chooses to mitigate their house 

to the fullest extent, the community vulnerability index will be 0. This does not mean houses are 

invulnerable, but they reach the max hurricane resistance as defined in the paper. The normalization 

is for the purpose of a better representation of the results. This value is not a representation of risk 

as it does not consider the likelihood of each level of storm occurring; it is a simplified measure of 

aggregate vulnerability. It is also not comparable across different regions or across individual 

buildings. The simulation for each replication of the full history always starts with no house 

upgrades. The Table II below shows the maximum and minimum damage (in U.S. dollars) for the 

case study region. 

 

Table II. Average Community Damages in U.S. dollars from each windspeed 

Windspeed  

Level 

50 mph 

(~TS) 

85 mph 

(~Cat 1) 

103 mph 

(~Cat 2) 

120 mph 

(~Cat 3) 

143 mph 

(~Cat 4) 

160 mph 

(Cat 5+) 

     ($)                                                          

     ($)                                                         

 

We use VI over time as our set of overall community vulnerability measures. The VI is not intended 

to reflect risk directly, as the likelihood of the hurricanes are considered only in the scenarios, but 

rather reflect regional building stock vulnerability conditioned on a particular scenario occurring. 

 

5. RESULTS 
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This section presents the results of our analysis. We start with the influence of hurricane 

frequency and intensity given weak priors (i.e., low confidence of their assessment of the hazard). In 

the second subsection, we then vary the intensity of the priors. The priors are varied by iteratively 

perturbing the support parameters of the Dirichlet distribution that reflect each agent’s knowledge 

and level of confidence when each run of the ABM is initialized. This helps us to isolate the influence 

of individuals who learn and gain confidence in their knowledge on regional vulnerability verses 

those who learn little from their experience. Similarly, we iteratively perturb the recency bias weight 

parameter to quantify the effect that an emphasis on more recent events has in forming beliefs on 

mitigation decisions. 

 

5.1 Influence of hurricane intensity and frequency 

In this section, we first show how community vulnerability evolves in our model under different 

hurricane climate scenarios. We selected 100-years to understand the limit of learning and how 

vulnerability could decay over long periods of time for different scenarios. However, it is 

unreasonable to expect that homeowner would reside in a house for that length of time. To address 

this, blue vertical lines after the passage of 30-years are added to understand what the impact of 

learning may be for each scenario over a typical U.S. mortgage. We tested multiple intensities and 

frequencies of hurricanes. The intensity and frequency are modeled as 0.75, 1, 1.25, 1.5, and 1.75 

times the historical fitted hurricane frequency and intensities. Either intensity or frequency is 

modified in each scenario. Again, we make no claims that these changes reflect an actual future 

climate scenario. Instead, we are using these discrete changes to examine potential changes in how 

learning influences vulnerability as a function of different hazard environments. We initialized the 

agents with a weak prior of (1,1,0,0,0,0,0), which assumes the agents have little knowledge with the 

environment, and that they believe they are equally likely to experience a tropical storm as a 

Category 1 storm. This is later referred to as the “baseline” priors. These priors are unlikely to induce 

mitigation before an agent observes additional hurricanes because an agent holding these beliefs 

does not believe a hurricane with force significant enough to cause substantial damage their house 

will occur. The results of this initial analysis are shown in Fig. 3. 
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Fig. 3. The baseline evolution of community vulnerability over a century under different hurricane scenarios. The agents 
are initialized with a (1,1,0,0,0,0,0) prior. Each solid line represents the median vulnerability index across all replications 
in each simulation year. Dashed line with the same color with ‘+’ sign are the 85% upper bound of the output samples. 
Dashed line with the same color with ‘-’ sign are the 15% lower bound of the output samples. 

In Fig. 3, for both plots, the x-axis is the year within simulation, and the y-axis is the vulnerability 

index (VI). I0.75 means hurricane intensity is 0.75 times the intensity generated from the current and 

baseline climate, and F0.75 means the frequency is 0.75 times the frequency in the baseline climate. 

The green lines for both plots are the same baseline scenario with intensity and frequency matching 

historical observations. Each line represents the median vulnerability index across all replications in 

each simulation year. We see that the community vulnerability decreases over time. This occur 

because we start the agents with no mitigation and any mitigation decision the agents are making 

will reduce the probability of damaged if a hurricane occurs. We also see that the intensity and 

frequency of hurricanes also substantially affect how community vulnerability evolves. As the 

intensity or frequency of hurricanes increases, community vulnerability to a storm of a given 

intensity decreases, and the higher the increase in intensity or frequency, the greater the reduction 

in vulnerability. This is because more mitigation takes place in response to more realized damage 

and this mitigation occurs sooner, meaning the benefits compound. 

Based on the rate of change over time in the VI, the agents are more responsive to intensity 

changes than frequency changes. That is, for a given level of increase intensity, there is a greater 

reduction in vulnerability than for the same level of change in frequency. Furthermore, for the I1.75 

scenario, the vulnerability of the region asymptotically approaches the minimum vulnerability (most 
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resistant to hurricanes) over time. Hurricanes that are more intense tend to stimulate substantially 

more mitigations and reduce community vulnerability than more frequent but mild hurricanes. 

 

5.2 Impact of initial knowledge on the evolution of community vulnerability under different 

climate scenarios 

To examine the effect of initial beliefs held by agents on the evolution of community 

vulnerability under different hurricane environments, we tested different sets of initial priors that all 

the agents hold at the beginning of the simulation. We compare the results from starting with each 

prior with the results from starting with the baseline-priors (provided in Table I) to examine the 

effects of initial knowledge under each climate scenario. 

The baseline evolution of vulnerability is shown in Fig. 3 (with baseline climate and baseline 

prior) and is used to compare with each different prior scenario under the same climate. As before, 

we changed the intensity or the frequency, but not both together. We also controlled the hurricane 

records input for each hurricane climate scenario (e.g., a certain frequency or intensity comparing to 

the baseline scenario) with common random numbers to reduce the variance and make the results 

comparable for each scenario. That means the area will always be impacted by the same hurricanes 

over 100 years in each replication for each initial knowledge priors. The common random number 

approach helps decrease the variance and reduce the number of replications needed for 

convergence when comparing different scenarios (Nelson & Matejcik, 1995).  

Fig. 4 (a) and (b) show the difference between the median VI from the baseline-priors case and 

the mean median for a scenario using modified priors (but the same intensity-frequency 

combination). Also shown are the 95% confidence intervals that are constructed by bootstrapping of 

all VI outputs from each replication in that scenario. The x-axis of each plot is time (years), and the y-

axis is the difference between the mean VI for the baseline-priors case and the mean VI for a 

scenario using modified priors. When this difference is positive (negative), it means that this case 

resulted in a more (less) vulnerable community than the baseline-priors scenario. Sometimes, this 

difference is substantial. Using the difference with respect to the baseline helps us to examine how 

they are different from each other and explain the sensitivity. 

Initial beliefs can influence agents’ behaviors and community vulnerability substantially in the 

early years. For example, we found that under the climate scenario with hurricanes of intensity 1.75 

times the initial climatic conditions, the largest difference between any two priors was more than 
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0.2, which is a large difference in the outcome when facing a same hurricane. When the climate 

intensity increases from the initial climatic conditions, cases with different initial priors begin to 

converge to a similar vulnerability level given a sufficient amount of time. The vulnerability indices 

initially diverge in earlier years and start to converge after the agents have experienced sufficient 

events to learn from the environment. That is, we see the effects of learning over time. Stronger 

hurricanes speed up the effect of learning and sway the effect of initial beliefs and led the entire 

community towards similar actions. 
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Figure 4. Differences in vulnerability for different initial priors compared with the baseline initial knowledge scenario over 
100 years. (a) Hurricane intensity scenario changes from 0.75, 1.00, until 1.75 times the baseline climate while frequency 
remains baseline. (b) Hurricane frequency scenario changes from 0.75, 1.00, until 1.75 times the baseline climate while 
intensity remains baseline. 
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Another interesting finding is that holding strong beliefs about intense hurricanes initially (i.e., 

the “wrong priors case”) does not necessarily imply the least vulnerability compared to other initial 

beliefs. The reason is that strong hurricane beliefs make the agents realize that, according to their 

beliefs, no matter what mitigation they undertake, damage is inevitable and cannot be reduced by 

much given the mitigation options we modeled. Their investment on house upgrades then would not 

be worth the cost. On the other hand, holding a very strong beliefs about less intense hurricanes 

(i.e., the “Partially Strong 2 case”) impedes mitigation as well. This is because even an additional 

experience of a strong hurricane makes it difficult for agents to overcome their strongly held prior 

belief that hurricanes in the region are usually not intense. Only when the agents hold more neutral 

beliefs, i.e. Partially Uninformative 3 and 4 cases does the community become more hurricane-

resistant. 

Different hurricane frequency scenarios have similar rankings for different priors as the rankings 

for different hurricane intensities (Fig. 4 (b)). However, the differences between the “best” prior as 

measured by the vulnerability index (i.e., Partially strong 2) and the worst prior (i.e., Partially 

uninformative 4) increases as the frequency multiplier increases (note that the range on the y-axis 

differs among scenarios so that we can zoom-in and show differentiation among some results). The 

reason is that when hurricanes strike the area more frequently, regions that had been less likely to 

be impacted are more likely to be influenced at some point. Thus, agents with little prior 

understanding of the risk (e.g., Partially uninformative) become likely to mitigate, because the 

chance that no hurricanes occur drops significantly and their perceived risk increases. On the other 

hand, for agents with strong priors, more frequent (though not necessarily more intense) hurricanes 

are unable to overcome their strongly held beliefs of low perceived risk and they continuously 

choose not to mitigate. Thus, over time, they experience more damage and their vulnerability index 

increases. In the frequency cases, initial knowledge held by the agents takes on a more significant 

role in determining the patterns of evolution of vulnerability over time relative to the cases in which 

intensity was varied. The initial differences in beliefs create a divergence in community vulnerability 

that does not converge by Year 100 when changes to frequency are considered. 

 

5.3 Impact of recency bias on the evolution of community vulnerability under different climate 

scenarios 

Finally, we model the memory effects of agents as a weight on long-term events on their past 

experiences as discussed above. We chose the recency bias weight to be 1 (no weighting), 0.9, 0.8, 

0.7, and 0.6. Such a process can be regarded as a result of long-term memory fading or generation 
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replacement. This process limits the agents to make decisions based on partial information from 

recent events instead of using a more complete record of events. As a result, we find that this 

recency bias always promotes more mitigation and a less vulnerable community for any climate 

scenario. An example of this is shown in Fig. 5. The results for other frequency and intensity 

scenarios are highly similar and are omitted for brevity. The blue line in both plots is corresponding 

to the baseline scenario in Fig. 3. We are using the same partially uninformative prior as the baseline 

scenario as well. 

We see in Fig. 5 that the stronger an agent’s recency bias is (or the faster the agents’ long-term 

memory decays, reflected in a lower recency bias weight, w), the more mitigation that occurs and 

less vulnerable the community is. The explanation for this phenomenon is that while hurricanes 

usually do not occur, when they do, the agents’ risk perception is weighted more heavily toward the 

existence of storms (and the fact that hurricanes usually do not occur is, to some degree, ignored). 

This, in turn, can dramatically increase their perceived risk of hurricane and damage, increasing the 

appeal of mitigation actions. That is, with the effect of recency bias, agents are much more sensitive 

to recent hurricanes. This emphasizes the importance of better understanding the degree to which 

limited memory is a factor in learning from the effects of past hazards. 

 

Fig. 5. The evolution of community vulnerability under 1.25 intensity scenario (left) and 1.25 frequency scenario (right) 
with different recency bias weight parameter. Each solid line represents a different recency bias weight parameter. 
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Dashed line with the same color with ‘+’ sign are the 85% upper bound of the output samples. Dashed line with the 
same color with ‘-’ sign are the 15% lower bound of the output samples. 

 

6. CONCLUSIONS 

 

In this paper, we demonstrate how learning, initial knowledge, and the effect of recency bias 

alter the evolution of community vulnerability under different climate scenarios using an ABM. We 

found that individual-level learning can substantially change the vulnerability of the residential 

building stock over time as individuals update their beliefs about future damage based on past 

experience and respond via decisions about home mitigation measures. Prior beliefs about the 

likelihood of damaging storms can have a substantial impact on how an individual learns from 

experienced events and on their propensity to take additional mitigation actions; strong prior beliefs 

that may be wrong can increase the vulnerability compared to weaker prior beliefs. Lastly, 

overweighting recent events could lead to the increased propensity to mitigate immediately after an 

event that is often seen in practice. Incorporating the effect of learning is critical when simulating 

how community vulnerability may evolve under different adaptation and climate scenarios. 

In our model, more intense and frequent hurricane scenarios stimulated more mitigation and 

resulted in a less vulnerable community overall. Different initial knowledge held by the agents had 

an important role in affecting the region’s vulnerability, especially in early years. Limited memory 

can also induce more mitigation because agents are more sensitive to recent experiences. A better 

understanding of the learning process of individual homeowners will lead to a better understanding 

of their behaviors, which will benefit decision-makers and policy-makers in long-term community 

vulnerability mitigation decisions. For example, when a community is anchored in their beliefs of few 

storms (i.e., partially strong priors – the blue line) they are more vulnerable. Getting people to 

realize that their prior beliefs are wrong through interventions like information campaigns about 

hurricane frequency, intensity, and damages – admittedly a challenging task – may be useful in 

reducing vulnerability. Homeowners are most likely to choose to mitigate if they’ve recently 

experienced a hurricane and have sufficient resources. Government subsidies offered after a storm 

can help to encourage mitigation. 

There are a number of limitations to this study, and additional research is needed. We explicitly 

did not attempt to develop a model that would predict vulnerability evolution for a real situation. 

Instead, we focused on develop an abstract but reality-grounded case study to better understand 
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the potential influence of learning on the evolution of community vulnerability. Developing a model 

to provide accurate predictions of vulnerability evolution would require consideration of far more 

factors and processes. This would have to include at least land use change induced by non-hazard 

drivers, changes made in homes for reasons other than hazards, and the influence of social 

networks, government subsidies and programs, and neighbors on homeowner decisions. This is not 

the intention of this work. Future research into these and other aspects of this problem would be 

beneficial. We would also need to consider learning amongst peer groups and social networks, and 

intergenerational learning. 

The results in this paper highlight the importance of understanding and modeling learning at an 

individual level when conducting a vulnerability assessment or risk analysis for a community facing 

the potential for repeated hazard events. Individual actions can substantially alter community 

vulnerability and learning from events is a critical part of this. Ignoring this learning effect can lead to 

substantial mis-estimation of future risk.  
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Appendix A: Synthetic Hurricane Generation 

 

Synthetic hurricanes are generated outside of the ABM using the four-step process developed in 

Staid et al.(2014a). These steps are: 
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 a. Choose an initial windspeed and location for landfall: The US coastline is divided into 50 km 

bins and the bins are populated by the number of hurricanes to make landfall within its boundaries. 

The initial location at landfall is randomly selected from these bins in proportion to historic landfall 

occurrences. The windspeed is sampled from the historical record; 

 b. Using the initial windspeed and location, generate a hurricane track from a non-parametric 

random forest model trained on the suite of historical US hurricane tracks(Staid et al., 2014b). 

The track reports the location of the center of the hurricane in six-hour increments; 

c. Compute the peak 3-second 10-m peak wind gust at the center of each parcel in the study 

area using a parametric hurricane wind field and decay model(Han et al., 2009); 

d.  Discard any hurricane that does not impact the study region. 

 This is repeated until a library of 36,399 synthetic storms to impact the study region is 

generated. The storms range in intensity from tropical storms to Category 5 hurricanes. 

Next, the case study area’s historic hurricane intensity and frequency records are fitted to 

Poisson and Weibull distributions, respectively, to form baseline hurricane scenarios as shown in 

equations (1) and (2): 

          (  ) (1) 

            (    ) ( ) 

Here    is the number of hurricanes that impact the case study area in year  ,   is the historical 

annual frequency with which hurricanes make landfall in the study region and equals      , and   is 

the multiplier that controls hurricane frequency.       implies the baseline case.      is the 

maximum windspeed for each sampled hurricane. The parameters   and   describe a two-

parameter Weibull distribution fitted using historical maximum hurricane windspeed in this region, 

where         and       .   is the multiplier that controls hurricane intensity by changing the 

scale parameter.       implies a baseline case. These distributions are used in the ABM to sample 

both the number of hurricanes that occur in a year and the intensity of each hurricane. The synthetic 

track in the library with the maximum 3-second peak wind gust closest to the sampled hurricane 

landfall windspeed is selected. 

 

Appendix B: Decision Model 
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For the decision-making model, we use a decision tree to enumerate all possible alternatives 

that an agent can choose given their previous upgrade history. In each simulated year with at least 

one hurricane, each agent chooses from a set of alternatives that increases the wind resistance of 

their house or do nothing. We use utility theory to model each agent’s preference. 

In the simulation, each agent’s parcel is initially assigned a building type, which is extracted from 

the Maryland Department of Planning4. There are 11 building types, defined by the building 

materials and number of stories. Examples of these are a single-story wood-framed homes and a 

two-story unreinforced masonry homes. For each building type, different upgrading options to 

reduce wind damages are available (e.g., adding roof-to-wall straps). For each type of building and 

given upgrade alternative (if any) selected, we use the fragility curve which estimates the 

probabilities of that building being in each of the possible damage states (i.e., damage states 1-4) 

from a given windspeed from HAZUS. Each agent incorporates this fragility function with their 

probabilistic beliefs about the frequency and intensity of hurricanes to calculate the expected utility 

of each alternative and then choose the alternative with the highest expected utility. Each upgrade 

can only be applied once, and we assume the reliability of the upgrade does not decay as time 

progresses in the simulation. A detailed description of build stock information can be found in Reilly 

et al. (2017b). 

We define the current state of a house as   , which is the combination of its building type and 

upgrades previously done to that house. The potential future states of the house are denoted as 

        , where   is the number of different alternatives the homeowner has for upgrading 

their house. A cost          is associated with each choice. After a storm, the house can either 

be not damaged or in one of four different damage states (from minor damage to completely 

destroyed) with damage costs    ,    ,    ,    ,     equal to 0, 0.05,0.2,0.45, and 0.99 times the 

house improved value  . 

The agent updates their estimates of the probability of occurrence of each category of 

hurricanes written as         , corresponding to the probability of no hurricane, a tropical 

storm, and Category 1-5 hurricanes. This is updated each year based on new observations by the 

agent in each simulated year. The probability of being in each damage state  ,       , given the 

average windspeed for each category of hurricanes and the potential damage state of the house is 

                                                           

4
 http://planning.maryland.gov/OurProducts/downloadFiles.shtml 

http://planning.maryland.gov/OurProducts/downloadFiles.shtml
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defined as  (  |         ),      . We assume the agent knows these probabilities when 

making mitigation decisions. We use a risk averse exponential utility function shown in equation (1) 

to quantify the preference over outcomes 

 ( )          (1) 

where R is the risk aversion factor. In the model we select R to be        where   is the wealth 

of each agent. We use the house’s improved value as a proxy for wealth because we lack household-

level net worth information. As a result, wealthy people can afford more expensive upgrades and to 

be more risk seeking than less wealthy people. 

The agents also consider the long-term return from their investment on house upgrades, i.e., 

what is their return over the next   years with a discount factor  .      and        in our 

model. Here the return on their investment is defined based on how much damage is reduced if they 

take that action given their assessment of the risk. Hence, we can calculate the expected utility 

considering long-term return using equation (2). 

  (  |  )  ∑  ( ) ∑  (  |    )  (      )               (2) 

Where   (  |  ) is the expected utility for a house in state    to upgrade to   , and   (      ) is 

the long-term utility if the house is in damage state   

  (      )   (         )  ∑  ((     )  
 

(   ) 
) 

     (3) 

 (         ) is the utility value when implementing the upgrade in the current year, and 

∑  ((     )  
 

(   ) 
) 

    is the utility with this upgrade over the next T years. At the end of each 

year, based on the agents perception of hurricane occuring, each agent identifies the state    that 

gives them the best long-term return and upgrades their house accordingly. 

To help better understand the learning and decision making model, we provide an example 

running the ABM with 4 agents (locations and their Agent IDs shown in Fig. 6) for 5 replications, with 

3 different intensity multipliers. Agents are assumed to hold the same initial knowledge with priors 

(1,1,0,0,0,0,0), and their wealth varies. The same replication under different intensity scenarios has 

the same number of hurricanes occurring during the same years, though the tracks and intensity will 

be different. In the meantime, different replications have hurricanes arriving at different years. 

Results are shown in Fig. 7. Each line represents the mitigation process for each of the five 
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replications. When two lines are overlap, it means it is at the same resistance level as another 

replication during that period of time. Note that the cost of the same mitigation activities are 

different for different houses. 

We find that agents tend to mitigate more and earlier with higher intensity scenarios. All 

resistance levels (or mitigation options) are adapted by agents at some point in the simulation. 

Agents tend to mitigate more if they hold more wealth. Agents living in different regions mitigate 

differently as they have different hurricane experiences. Agents 14 and 356,911 hold limited wealth, 

preventing them from mitigating as effectively even with more intense hurricanes. Agent 163,525 

lives inland, which means they have fewer hurricane observations, leading to less mitigation overall. 

 

Fig. 6. Selected agents and their locations. Map created with QGIS with OpenStreetMap as the basemap. 
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Fig. 7. The upgrade progress of selected agents under different hurricane scenarios. Five replications are shown in this 
figure. 
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