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literature. However, little is understood about how individual and collective responses to repeated
hazards change communities and impact their preparation for future events. Individual mitigation

actions mai drive Dow a community's resilience evolves under repeated hazards. In this paper, we
investig ct that learning by homeowners can have on household mitigation decisions and

on how thi d@mces a region's vulnerability to natural hazards over time, using hurricanes along
the east coS. as our case study. To do this, we build an agent-based model (ABM) to
simulate homeowners’ adaptation to repeated hurricanes and how this affects the vulnerability of
the regign ousing stock. Through a case study, we explore how different initial beliefs about the
hurricane d how the memory of recent hurricanes could change a community’s
vulnerabiliggbotMander current and potential future hurricane scenarios under climate change. In
some futurwne environments, different initial beliefs can result in large differences in the
region’s long-term vulnerability to hurricanes. We find that when some homeowners mitigate soon
after a hurficafie -when their memory of the event is the strongest — can help to substantially

decrease th I®€rability of a community.

ted hazards; agent-based model; hurricane mitigation; learning
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1. INTRODUEE

Natural disasters cause considerable property damage and economic loss. In 2017, three major
hurricanesiarvey, Irma, and Maria, made landfall, caused more than $300 billion (USD) in

economic | aged more than a million homes, and left misery in their wake (Reuters, 2017).
Hurricane Irpaameaused approximately $70 billion (USD) in total economic loss, and half of that was
due to da psidential real estate (White, 2017). Residential building vulnerability is a critical

component ofi@Pegion’s financial vulnerability when facing disasters. Low penetration rates of flood
insurance i astal communities often mean that a singular event can erase a family’s most
valuabl ixon et al., 2018; Zahran et al., 2009). Further, it can take months or even years
after a dis;ter, dwending on the availability of financial assistance, contractors, and post-disaster

economic @pportunities, among other factors, before displaced families return to their homes and
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repair houses to normal, putting the long-term future of the community at risk(Hamel et al., 2018).
While there have been studies examining building stock vulnerability to hurricanes, most either (1)
assume that building stock is static (Jain & Davidson, 2007) or (2) exogenously impose a change to
the buiIHithin a hazard simulation model (Jain et al., 2005). This ignores the potential

endogenoug idual-level learning that stems from experience with hurricanes that could

substantia e building stock over time.

Changes in building stock are part of the larger problem of estimating damage from repeated
events.ﬂ\ E we consider repeated events to be hazards of the same type (e.g., a hurricane)
that occur h apart in time that restoration, building, and post-storm mitigation changes to
a building cofgpleted before the next event occurs. This generally implies a separation of one
yearorm betw@en events. Singular hazard events are well-studied, and risk analysis methods are
well developed for these events. For example, hundreds of studies have been published on the
aftermath @f S@perstorm Sandy, ranging from evacuation (Sadri et al., 2017), to nursing homes and
elderly car al., 2014), to hardening the New York City and the New Jersey coastline to
reduce da uld a similar storm strike again (Smallegan et al., 2016). In contrast, relatively
little is known ab how repeated hazards may induce long-term changes to communities, and

more specifically, how hazards change behaviors and policies which in turn influence the built

environmefit. These alterations to the built environment change a community’s ability to withstand

future eve
To bet stand how regional vulnerability can evolve, we must first better understand the
potential c@nt ns of individual-level learning to regional risk. This is particularly critical in

communities'exposed to repeated hazards as the effects of this learning, and the decisions that
follow,

ver time. There is not a unified way in which individuals understand and respond
to hazard risk a ifferent beliefs about risk can lead to different mitigation behaviors. However, it
is still i nt to understand the influence that archetypical behaviors have over time on
community vulnerability to identify when interventions are warranted. For example, people who
hold strong beliefs that hurricanes are infrequent and inconsequential are harder to sway even
when theirsgerstanding of the hazard is updated by a new experience (Peacock, 2003). The impact

of this behavigras it compounds over time differs depending on location and climate intensification.

can also influence behavior in a way that has compounding effects. More recent

hazard exp may tend to increase an individual’s risk perception and decrease their risk
tolerance, individuals more likely to mitigate (Chiew et al., 2020). This is an instance of
recency biag (Phillips-Wren et al., 2019). Recency bias is a type of cognitive bias that relates to

systematic errors Ii judgment (Tversky & Kahneman, 1974).
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This study investigates two specific questions: (1) When does learning from the hazard
environment decrease homeowners’ vulnerability to repeated hurricanes in a changing climate? and

(2) How does the effect of recency bias influence a region’s vulnerability in the long term? We
specific te the following key hypotheses, each of which is developed from the literature

review (SeQ
1. evel learning can substantially change the vulnerability of the residential

B EBEIEIRE stock over time as individuals update their beliefs about future damage based
Sn damage that they experience and respond via decisions about home mitigation
easures.
2. §Prior bgliefs about the likelihood of damaging storms can have a substantial impact on
individual learns from experienced events and on their propensity to take

al mitigation actions.
3. rw@ighting of recent events in probability updating by an individual could lead to the

i d propensity to mitigate immediately after an event that is often seen in
practis.

To exami e questions and hypotheses, we developed an agent-based model (ABM) that
focuses onfthe influence of individual learning on homeowner decisions and then how these

decisions a onal building stock vulnerability. An ABM is required to address our research
question t and how complex behavior may emerge from how individuals interact with a
stochastic vironment. This work builds conceptually from Reilly et al. (2017b), which builds
an ABM to explore how homeowners interact with their hazard environment, and how their

impact their risk over time. The current work expands this by considering more
complex decisi les grounded in utility theory, by considering different hazard environments,
ork, by considering the role that learning has on the distribution of outcomes.
The model specifically evaluates the influence of prior knowledge, the effects of memory, and the
confidenceshat homeowners have in their own beliefs about hazard risk. In the model, homeowners

make deci hoosing from a set of mitigation actions (e.g., installing hurricane shutters or

hurricane s he approach is place-based, and developed to represent key characteristics of
nine coast: @ s with 357,120 homeowners in the State of Maryland. However, both the

models and s are generalizable to other areas.

An imgrtant note is needed on the role of the case study and intended use of the model. Our
model i ed to be predictive. That is, we do not and cannot make statements about how

the vuln he area used as the basis for our case study will evolve. There are too many
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additional factors beyond those considered in this paper that would need to be considered. Instead,
the purpose of this work is to gain more general understanding into the possible influence of
individual-level learning on the evolution of community vulnerability to natural hazards over time.
Our casﬁides a reality-grounded example within which to develop our model, but our

ed to fully represent the full reality of the area used as the basis for developing

cknowledge this tension between detail and abstractness that is always present
when developing a complicated agent-based model, and we have sought to balance this tension by
maintaiHneﬂoug realism in our model to allow generalizable insights into the role of learning
without ov, icating the model such that it becomes completely intractable, rendering the
results uni

ble. Stating this differently, our goal in this paper is to develop scientific insight
into the un@erlyingiprocess (individual learning in the presence of repeated hazards), not the
development of 3 model that can be used in practice to set policies or make mitigation decisions.
The stm this paper is as follows. We first review the literature of relevant studies as the
constructi models is highly interdisciplinary. We start by giving an overview of the
literature on (1) vdlnerability to and mitigation of hurricanes, (2) the use of ABMs in natural disaster
studies, an ricanes and climate change. In Section 3, we introduce the framework of ABM,
which incl troduction of the case study region, a hazard model, a damage model, and
models foml learning and individual mitigation decisions. The details of model evaluation
are presented in Section 5. In Section 6, we show results, including how model can be used with
different c narios, and discuss the role of learning, the impact of initial perception of
hurricane risks, the impact of recency bias.

2. BAC}E

2.1, Hurricse vulnerability and mitigation

Syste % esearch on hurricane risk typically focuses on quantifying regional damage, the
benefits an@co fectiveness of mitigation, and how federal and local policies may induce

igate their potential damage to reduce region-wide vulnerability. We begin with

d hazard impact, including estimates of economic losses from infrastructure and
resident“damage (Jain et al., 2005; Liu & Pang, 2014; Orooji & Friedland, 2017). HAZUS

uses a whoﬁapproach to modeling; each building class is assigned a hazard fragility curve
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(derived from the literature, reconnaissance, and experimental testing), which is based on a
conditional probability of damage state given a hazard intensity. For example, for a hurricane, the
intensity measure is typically gust windspeed. This can be too simplistic, especially when considering
an indivYHin a specific location. However, on a regional-scale, it provides an approximation
ilding damage given a hazard. HAZUS has additional known shortcomings,

e building stock, crude hurricane and flooding scenarios — mostly accredited to
accommodating the computational limits of most users — and deterministic hazard scenario
modelir%. Ehese limitations, it offers both an easy-to-use platform for researchers and
practitione hypotheses and its ubiquity has allowed for comparison among studies.

pproaches, on the other hand, are more granular. They focus on the

idual building components, and the interactions among them, providing more

accurate estimates of singular building damage (Chung Yau et al., 2011; Pinelli et al., 2004; Van De

Lindt & Ngliye

stock and ¢ ional resources. Our work relies on the whole-entity approach given its ubiquity

and less ingirements. We do not use HAZUS directly, but we do use the building fragility
vide b

, 2012). This approach requires significantly more knowledge of the building

curves pro IAZUS. This allows us to overcome problems surrounding out-of-date building
stock and crude hazard scenarios while still leveraging the HAZUS fragility functions.

Mitiga@ces the likelihood that a building experiences damage due to a hurricane. This

paper focuses on household-level mitigation, such as adding wind straps or hurricane shutters. Not
all mitigatiM‘anted based on its cost and the likelihood of damage (Wang et al., 2017). For
example, Piel I. (2009) studied the cost effectiveness of various mitigation strategies using a
Monte i ion for different regions in Florida and created a map indicating the benefit/cost
effectivene ifferent combinations of housing mitigation decisions. Rose et al. (2007)

contribut discussion on the cost effectiveness of mitigation using empirical data on hazard

mitigati ey find a 4.7-fold return-on-investment for wind mitigation from FEMA

mitigation grants — grants given to communities particularly susceptible to high windspeeds. These
studies, an;others like it, assume a static building stock and do not include the compounding

benefits fr tion from repeated hazard events.

Additid derations for understanding how regional building stock vulnerability may
change includéomeowners’ proclivity toward mitigation and federal, state, and local policies that

influence er mitigation behavior. Federal policies are also commonly evaluated with
benefit- is or survey-based approaches (English et al., 2017), though these too are often

based on aItatic s'apshot of the situation.
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Little of this past work has explicitly investigated the effects of repeated hurricanes — and their
effects on mitigation behavior - on communities with the exception of Jain et al. (2005) and Reilly et
al. (20173, 2017b). Jain et al. (2005) propose a method to consider temporal changes in building
inventoFHmating changes in expected losses from hurricanes over time. This simulation
model consi
model (20
historical hurricanes following a set of rules defined by probabilistic distributions. However, these
studies Eo Mplcitly investigate the potential role of learning as a determinant of long-term
building sthrability, and the modeling of decision-making is intuition-based. Other studies

that do cowrole of sequential hazards focus more on the degree to which learning takes
t the

w building vulnerability responds to changes in building codes. In Reilly et al.’s

eowners from Anne Arundel County, MD can increase their home’s resistance to

place, and pact of learning (Colten & Sumpter, 2009). For example, Siegrist et al. (2008)
explained the importance past flooding experiences and how they might change people’s risk
perceptionfan ivate mitigation behavior. Their survey results suggested that negative

r

experience e the likelihood of household mitigation behaviors but not necessarily when

people als e effectiveness of mitigation or perceive the cost as too high. Better
understanding thigipotential role of learning is critical in understanding repeated hazards and their

impacts on communities over time.

2.2, Humam and biases

Lear issan enduring change in the mechanisms of behavior involving specific stimuli and/or
responses t Its from prior experience with those or similar stimuli and responses (Chance,
2013). | ell studied in the field of anthropology, biology, and psychology. It is one of the

critical mechanisms that produces changes in behavior. To understand behaviors in a human-
involved C(gplex system must include consideration of what they learn and how they learn it.

Differenttypes of learning have been discussed in past studies, such as individual learning, social
learning, a zational learning. Individual learning describes when the behavior itself is
acquired b
al., 1996) .
the risk of
requirements for asocial learning process. It must (1) demonstrate that a change in understanding
has takeHE

-
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e individuals involved; (2) demonstrate that this change goes beyond the
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individual and becomes situated within wider social units or communities of practice; and (3) occur
through social interactions and processes between actors within a social network. Organizational
learning describes how an organization or group can learn internally and externally as a whole
(Brandi W2015). They describe how the field of organizational learning can be understood
from a soci aring perspective and which social learning theories add to an understanding of
organizati that cannot be included in an individual learning theoretical approach. In the
context of organizational learning, a learning loop framework is proposed to help facilitate the
understgnﬂganizational learning (Johannessen et al., 2019). The framework describes
different |

actions thajglea
learning (i.&, whicly focuses on more challenging assumptions as opposed to practices and tactics) is

arning that trigger different levels of retrospect of the context, assumptions, and
the results. In the context of resilience and environmental change, outer-loop

ining regional resilience when environmental variability is high, such as during

016).

ial learning source that might drive mitigation decisions is based on the

experiencejvbors. Slotter et al. (2020) used a survey approach on households’ attitudes, risk
ns, and

crucial for main

perceptio or experiences to understand each factor’s impact on mitigation decisions. They
found that both individual risk perception and neighbor experiences have a positive relationship
with mitigjon intention. However, the influence from factors, such as hazard experience and

hazard un g, remains under debate (Dillon et al., 2014; Mileti & Darlington, 1997; Peacock,
2003; Russ 2016). While Russell et al. (2016) and Peacock et al. (2003) find a position
relationshig b n hazard experience and an individual’s motivation to mitigate, and also hazard

understanding an individual’s motivation to mitigate, Mileti and Darlington (1997) and Dillon et
Dillon et al. (2014), this is termed a “near miss” and typically arises when a
by chance, the individual is unscathed, making them believe they are less

important in understanding the actual mitigation actions, we focus solely on modeling individual
learning in this work, and hazard understanding and hazard experience in particular, in part because
of past cor\mesults.

A factor that strongly influences whether a hazard experience (or understanding) leads to

mitigative
new knowlé

events tha occurrid more recently than to events which occurred a long time ago (Tversky &

Kahnem ¥t can potentially affect how the vulnerability of individuals evolves in a dynamic

-
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environment, such as one exposed to hurricanes. Individuals may, in some instances, be reactive to
recent events and over-prepare compared to what they might be inclined to do had they considered
a much longer hazard history. Past experiments and empirical evidence show contradictory results
whethe“ actually are affected by recency bias (Royal, 2017; Wang et al., 2017). The

experimen in Royal (2017), which subjected participants to the possibility of negative

income sha afitively and offered insurance at the start of each round, found less insurance
uptake, not more, when shocks occurred repetitively. This suggests that decisions were not biased
toward% %cent negative outcomes in a way that would reduce vulnerability. Conversely,
using survu et al. (2017) showed that recent experience with hurricanes make homeowners

more likely, ase insurance. Similarly, using an experimental set-up where participants were

ation decisions for a building exposed to repetitive hurricanes, Meyer found that
mitigation investments were mainly driven by whether a storm occurred recently or not (Meyer,
2012). Thefef our study, we test both findings by generating scenarios with varying degrees of
g from none to strong) among the model agents.

2.3. Agent-;odels and their use in natural disaster studies

An AB
(e.g., home
with this ko
then change

1

tom-up modeling approach that simulates how heterogeneous intelligent agents
interact with and learn from other agents and/or the environment and how,

, they make decisions(Bonabeau, 2002; MacAl & North, 2010). Their decisions
environment and/or other entities. Applications of ABMs span demography, the

social s S, economics, public health and environmental science among other fields(Billari et al.,
2006; Gorman , 2006).

N

AB
boundary objects that are able to integrate domain knowledge from multiple disciplines, making

n widely used to model natural disasters and their impacts. ABMs are useful

them incre@singly popular (Reilly et al., 2018). The benefits of ABMs are that they 1) enable scenario-

I

based sens alysis(An, 2012), and 2) have the ability to model the compounding effects of
d learning(Reilly et al., 2017a). However, most ABM work in the hazards realm

individual 3 m
centers aro@ad sh@rt-term actions after hazards occur to evaluate how agents might evacuate, take

shelter, or a imary care services, and what infrastructure is needed to accommodate
emergent Behaviors(Chen et al., 2006; Chen & Zhan, 2008; Pan et al., 2007).

fi

An ABWI couldialso be used to model the long-term effects of natural disasters (Abebe et al.,
2018, 2019 Haer et al., 2017, 2019; Reilly et al., 2017(a); Reilly, et al., 2017(b); Tonn et al., 2020;

U
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Tonn & Guikema, 2018). Reilly et al. (2017a) built an ABM to quantify how hurricane-induced power
outages could induce particular behaviors, and these in turn could influence a region's power system
reliability in the long-run. Recent studies have also applied ABM to improve community vulnerability
analyseH events, though the impact of individual learning hasn’t been focused. Haer et

al. (2017) b

would leac

adaptive behavior of governments and households for river flooding under a similar framework.
Househad na !He government as the agents would react to the environment under a combination
of pre-defiL

importanc dyilmamic adaptive behavior and how it would lead to different flood risks under
different c@jection. Abebe et al. (2018, 2019) built a coupled agent-based-flood framework
and applied the model to evaluate long-term flood risk management policies. Household agents
make houmm they build houses with randomly sampled compliance towards different
written for pdlities. The government agent represents different levels of policy enforcement and
may reduc3urrence of flood hazard by improving the infrastructure system. The behavioral

BM to compare how different economic behavioral models held by the agents

ent flood risk of the community. Haer et al. (2019) integrated different types of

, Which will impact the region’s long-term flood risk. Their results showed the

rules are relative a@l-hoc, which also leads to under-validated results.

2.4. Modegidual learning in ABMs

Peoplemors are driven, in part, by their beliefs (Breen, 1999) and preferences (Panait &
Luke, 2 can change over time when individuals gain additional information — perhaps
throughane ience or through information shared others —and then update their understanding
of the pr PBecause learning affects how individuals make decisions over time, learning can be
an esse ent in an ABM framework for studying long-term implications of hazard
vulnerability (Farmer & Foley, 2009). In ABMs, agents are considered autonomous and can interact
with one aSther, meaning they can learn from both the environment and from other agents.

Lo
however, lea g is modeled in a logical structure compatible with computer coding. There are

several waf8'to model this process in an ABMs. The primary methods include information modeling,
Bayesia ingareinforcement learning, and coevolutionary algorithms. We briefly review each

Learni e viewed as a process in which beliefs are updated. In reality, this process is

complex a subject of numerous psychological studies (Johnson & Hasher, 1987). In an ABM,

below.
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A common approach —information modeling or risk modeling — uses new information about
disasters and risks perceived by the agents as the knowledge learned by the agents. For example, Du
et al. (2017) explored evacuation processes during flooding events using an ABM. In this study,
agents IHod from a news broadcast, social media, and neighbor observations, which,
when combi

different ri &

mitigation behaviors) combine to estimate perceived risk factors. This value will then be compared

iggers decisions by agents. In other work, Tonn et al. (2018) quantifies how

ption factors (i.e., flood experiences) and coping perception factors (i.e.,

with a rEk erance threshold to determine when an agent will consider acting.

ing or Bayesian updating is another approach for modeling learning (Breen, 1999).

s an agent’s beliefs about future events, such as the likelihood of a hurricane,
obability distributions. These distributions are updated as new information
becomes ay@il sing Bayes theorem. For example, Reilly et al. (2017a) modeled agents as having
categoricaw_ned beliefs over the likelihood of zero, one, or more power outages in a given
year. This i mbined with Dirichlet conjugate priors which are updated in a Bayesian manner
every year given the number of power outages that occurred.

Anothe r learning algorithm used in ABMs is reinforcement learning (Panait & Luke,
2005). In r@inforcement learning, agents receive rewards from their actions, and they make
decisions new environment and the consequences caused by their prior actions. Krause

et al. (2006 delthe process of power suppliers submitting their bids to the electricity market
using reinf@kce Q learning. The agents are trying to maximize their payoffs and after each bid,
they observe their gains or losses to update their behavioral policies or expected reward functions.
discover that after many rounds of bidding, the stable decisions each agent made to

achieve their | output is the same as the existence of a unique Nash equilibrium or multiple
em.

For each learning method, it is possible to incorporate learning and knowledge biases that
individualsShibit. For example, bandwagon effect or herd behavior is a cognitive bias in humans
that people follow what others are doing instead of using their own information or making

. Memory fading can be a result of time or of new people moving into the area. In

ABMs, t effect is often modeled as either a decay parameter on the awareness of the
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hazard (Logan et al., 2018) or as a window that allows only those events in the window to be
‘remembered’ by the agents (Reilly et al., 2017a).

AmWodels proposed, reinforcement learning, and Bayesian learning are most

recognized ingdhe field with certain limitations (Mathys et al., 2011). In this work, we choose a

Bayesian r other models, especially reinforcement learning for the following reason.

Reinforce : g is typically used under a situation to pursue for the optimal solution or
policy t&itHESaEE@R®S under uncertainty. It requires repetitive simulations to train the agents to learn

ecision rules. This is not well-suited we our use case. Under a hurricane mitigation

ne experiences instead of repeated hypothetical experiments. Bayesian
learning, on er hand, is a sophisticated framework that can capture agent learning that is

consistent mting knowledge, particularly of the importance of the memory effect.

U

2.5. Mode sions in an ABM

N

The de
behavior. Th

king component of an ABM is a critical element for modeling emergent
many different types of decision rules that can be used within ABMs. For ABMs

in the hazagds @ specifically, we divide behavioral decision models into four groups: ‘if-then’,

descriptive, empifical, and prescriptive.

The firs ch is “if-then” models which take the format of “if this happens, then one will do
that with
widely

elihood.” This approach is more ad-hoc and often hard to be validated, though it is

V]

BM literature. The probabilities can be populated based on observation (i.e.,
empirical) or based on subject matter experts, but that is typically not the point. The objective is to
find the mafginal influence of different types of decisions on model outcomes, and these types of

I

models re nsive sensitivity analysis (Du et al., 2017; Reilly et al., 2017a; Tonn & Guikema,
2018). Q

Descript cision theory attempts to explain the actual behaviors of decision-makers. This is
often diffe their utility optimizing actions. Prospect theory is one example of a descriptive

N

framew, individuals evaluate outcomes based on possible gains and losses rather than

expected ugility (Kahneman & Tversky, 2018). Another well-known collection of descriptive decision

t

theory method is bounded rationality. Models for bounded rationality assume individuals would be
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rational in their decision-making process, except that they are limited by the information they have,
their cognitive limitations, and/or the amount of time they have to make the decision (Friedman &
Rubinstein, 1998). Various heuristics and biases have also been studied to help explain observed
actions.Hﬂe of using these methods in the ABM literature is a model of water scarcity

managemmted droughts (Burchfield & Gilligan, 2016).
Empiri pply observed decision behavior (e.g., observed mitigation rates). The

approadh iSiEaseMable when building an ABM for a particular region using observed data from that

same regi rovided that the behavior is unlikely to change in the future. Then with a well-

establishe taset, statistical approaches can be applied to model agent’s behaviors. However,
individualsffrom different regions have been observed making different choices under similar
hazards (Bo 06) — likely because of different background understanding of the hazard —
meaning enfpi ata are at times less relevant when applied to different regions. These methods
are also Iemor situations in which agents must make decisions in environments they have

not seen b

Prescribision theory models focus on identifying the “best” decisions by using expected

utility maximizagien. This model assumes that a rational decision-maker lists the actions or
alternative§lavailable to him or her, identifies the possible outcomes associated with each action

along with hood of occurrence of these outcomes, and finally quantifies the desirability of
each outc a utility function. The alternative with the highest expected utility is selected.
While attragti improving individual decision-making, utility theory is not necessarily a

descriptive approach that captures the actual decision process people use (Rubinstein, 1988).

In this pap use a utility-based model with subjective information for agent decision-

i at the decision that the agents are making are both expensive and are associated
with long-term changes to their homes, the agents are likely to consider costs and benefits in depth,
analyzing their options. Though with certain limitations, utility-based models are well practiced in
modeling (&isions. It is also compatible with the Bayesian learning framework.

2.6. CIinr and hurricanes

Climatgichanggis likely to alter the pattern of hurricane occurrence in the next century (Meehl &
Tebaldi, 254;. While there is uncertainty in how climate change will affect hurricane frequency and

-
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intensity, it is likely that hurricanes will become less frequent though more intense in the Atlantic
basin (Mendelsohn et al., 2012). On the other hand, climate change will also cause sea level rise,
which will inundate coastal regions and result in flooding of areas that might have never seen storm
surge in ¥R addition, greenhouse gas-induced warming may lead to gradually increasing risk

D

of the occug f highly destructive category-5 storms (Knutson & Tuleya, 2004). Similar to Staid
et al. (2014

intensity and

Se a scenario-driven simulation approach and repeatedly perturb the hurricane
requency parameters for the region to better understand how individual behavior

interacts w; Ifferent hurricane environments to influence community vulnerability over time.
3. METHODS
3.1. Overvmodel structure

Our ag ndividual homeowners, modeled as one homeowner per land parcel and we

focus on thel of hurricane wind hazard. The model is initialized by assigning each agent
attributes gtheir house (i.e., their house’s construction type, a.k.a., building class, and the house’s
ability to r

improved v lhe agents make mitigation decisions on an annual basis. Decisions are driven by
an agent’s n of the risks from hurricanes. Our agents share the same alternatives in terms
of mitigation actions as Reilly et al. (2017b). We simulate how the region could evolve over 100-year

periods Ious hurricane scenarios. We choose 100-year as it is a sufficiently long period to allow
us to see ther of individual behavior in a setting in which events happen relatively

forcing, a.k.a., resistance level) and a wealth (approximated by their house’s

infrequ al is to find the marginal contribution of decision-making related to mitigation
on the vulnerability of the regional building stock. It is not to predict the building stock or its quality
in 100-years. We acknowledge that 100 years exceeds the length of time for which an individual
homeownehreside in the area. We use this longer time frame to gain a more generic
understandipg
first 30 yes

and hold a

he potential role of learning. In the results section we highlight the results for the

esent a more typical time span for which a homeowner would live in the area
gage on their home.

We compare different scenarios and analyze the level of vulnerability of the community and
discuss nce of learning and initial knowledge of the agents to their decisions. Fig. 1
provideM of the model used in this study. We first give an overview of this structure, and

the subsecﬁw provide more detail on the model’s components.
< This article is protected by copyright. All rights reserved.
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intensity [ | agents prior [ 1

inli knowledge —
multiplier £ Building stock
updating
—

Fig. 1. Overview of the computational flow of the ABM.

We cre ent hurricane climate scenarios by controlling the frequency and intensity of
syntheti i used in our analysis. Then we run a number of replications of the entire 100-
year histo g a simulation model that can be divided in to four components: the hurricane
sampling m e building damage model, the learning model, and the mitigation decision model.
Many o onents have multiple steps to compute that are described in later subsections.

The general process is that in a given time step (i.e., year), we sample the number and intensity of
hurricaness occur (zero hurricanes is a possibility in a given year) from distributions initially
parameter flect the conditions of the study area. The hurricane(s) that most closely matches

the intensiti selected from a large library of synthetic but possible storms. This process is

described 3.3. Each house is probabilistically assigned damage (i.e., a damage level) based

on the intensity of the hurricane, the downscaled 3-sec 10-m peak wind gust at the parcel, and the
constrzﬂnd resistance level of each home (which together, have their vulnerabilities
repres ility curves). This process is described in Section 3.3. Agents then learn from this
experie ouId include no hurricanes or no damage even if there is a hurricane) and then
make mitigation deC|5|ons This process is described in Section 3.4. This entire process repeated for

-
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100-years under different climate scenarios. The model purposefully excludes numerous
confounding factors, including recovery, insurance, disaster policy, and relocation, to isolate the
impacts of Iearnini from disasters for various climate scenarios to answer the fundamental question

of what eved with the learning from homeowners under climate changing. Future work
could expl effects.

The nu ications needed for stochastic convergence is determined by replicating the
entire 180 until it meets our convergence criteria. We use the coefficient (¢, = %) to
calculate t from the ABM (Lee et al., 2015). We then use equation (1) to find the minimum
number of geblidagions, n,,i,, Needed to achieve desired level of convergence, E, between the

coefficient'@f varialion from n replications and m replications, where m is a large number. ¢;} and cj*
are the corresponding coefficient of variation for n replications and m replications. We pick the
iterations from a set of values, e.g., 50, 100, 500, 1,000, 5,000, 10,000. We
calculate th cient of variation of each preselected number of iterations and select the sample

size Nyip v\sconvergence condition (e.g., E = 0.01) met for any other m greater than ny;,. As

potential

a result, we detergiined that when the number of iterations exceeds 1,000 the convergence criteria

is met for our output measure.
— n m
: Nmin = argmaxy|cy —cyt| < E,Yym >n (1)

3.2. Casez
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Delaware

‘Washington
D.el

Fig. 2. Map of region. Counties in light gy are used in the study.

Our case stuéSs based on nine counties in the state of Maryland, U.S. - Anne Arundel, Calvert,
St. Mary, Dorchester, Talbot, Queen Anne’s, Wicomico, Somerset, and Worcester. These counties
have coastfines along the Chesapeake Bay or the Atlantic Ocean (Fig. 2). There are 357,120 single-
family housessimmthis region. We identify 11 building classes based on FEMA’s residential building
ost common building class is two-story wood-framed single-family houses. Then
for each tyg@e @ & ding, different mitigations, such as installing hurricane straps or change roof

s can be found in Reilly et al. (2017b). Publicly available tax assessor data are
ate each house and to assign each house a value (Maryland Department of

building’s fragility and the hurricane windspeed provide an estimate of the loss. Anne Arundel
County is the most populated and is mostly suburban. Ocean City, in Worcester County, also has
dense hou@remainder of the region is either suburban or rural.

Becau not know either income or wealth at the household level, we use the improved
value as a wealth (capital) to support mitigation decisions. This is an imperfect measure.
However, tho ith higher values are arguably more likely to have access to capital for mitigation
through log@hs using their home’s improved value as collateral. Also, this assumption can be replaced
iled information on household wealth becoming available.

< This article is protected by copyright. All rights reserved.
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The case study area experiences a hurricane every 8 years on average. Most storms are Category
1 strength or below by the time they make impact in the region. The hurricane intensity tends to be
greatest in the souihern-most counties, such as Somerset and Worcester Counties. As the region is

notash nced by hurricanes as southern states are (e.g., Florida, Louisiana), the overall
hurricane rggiStaRge level is expected to be low given the current climate conditions. This provides
sufficient r@o gthe agents to learn and adapt to more intense and frequent hurricane climate
scenarios.

H I

We ar
all details fr

ot attempting to model this region in all of its detail. That is, we are not trying to model
se nine counties in order to support specific policy recommendations for this
location. Rather, used building stock data and historical hurricane impacts from this region to

parameteri odel to provide a reasonable degree of reality and complexity to gain broader

insights on ghe actions among hazard frequency, damage experience, mitigation, and regional
vulnerabili e e.
3.3. Hurricﬂpling model

ary of possible hurricanes to affect the region, generated using the work of Staid

ally created (Reilly et al., 2017a). The library contains 36,399 synthetic storm
tracks that could affect the study area, and these synthetic storms range in intensity from Tropical
Depres gory 5 hurricanes. For each synthetic track, we then apply a hurricane wind field
model to comp he 3-second 10-meter peak wind gust at the centroid of each building (Holland,
1980). aseline hurricane frequency and intensity distributions (Poisson and Weibull
distributions, respectively) are fitted with the region’s historic yearly hurricane frequency and
maximum hurricane windspeeds to create the baseline hurricane climate scenario. The fitted
parameter r perturbed for different climate change scenarios (e.g., the rate parameter for

the climate sgenario with 25% more hurricanes is multiplied by 1.25). Once the simulation begins, in

each simul dl, we sample from the intensity and frequency distributions to identify how many
hurricanes a e region that year (0 or more) and how intense each hurricane is. The hurricane
in the synt ry that is closest in intensity to the sampled intensity is selected. A more
detailed d

ut|re uriane environment of the case study location under specific future climate

ription of this model is provided in Appendix A. Again, we are not aiming to model the
precise
scenarios. stead trying to gain a more general understanding of the potential role of

-
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individual learning in shaping a region’s vulnerability over time under different possible future
hazard scenarios.

T

3.4. Buildiodel

For eadhi hurricane, the 3-second 10-meter peak wind gust at the centroid of each parcel is
computed , 1980). If more than one hurricane occurs in a year, the hurricane that is most
intense is ysed. t is, damage from subsequent storms does not compound. Then, each house is

assigned a state by combining building’s fragility curve with the downscaled windspeed at

the parcel’m.
HAZUS il curves are used to model each house’s fragility. Each parcel is assigned to a

building cl in its characteristics (e.g., number of stories, construction material). Each

3

building cl tinct possible resistance levels, depending on the possible ways mitigation can
be conducted (e.g., wind straps). As a house is mitigated, its resistance level improves. Each

resistance [€vel has five fragility curves, one for each of the possible damage states. These are:

iE

Damage St 0, no damage), Damage State 1 (DS 1, minor damage or 10% or less of the
building su amage), Damage State 2 (DS2, moderate damage or about 25% of the building
sustained dam % Damage State 3 (DS3, severe damage or about 50% of the building sustained

damage), ana age State 4 (DS4, completely destroyed) (Vickery et al., 2006). Fragility curves

produc y that a house of a specific type and resistance level will be in one of five

damage states cOfilitioned on the windspeed.

Th
in proportion to the likelihood of being in a specific damage state given a windspeed. The losses are

N

del randomly samples a number between 0 and 1 and a damage state is selected

quantified @y multiplying the improved value of the parcel by the fraction of sustained damage.

I

Given the of these fragility curves, criticism exists (Reilly et al., 2017b). Our study is not

dependen odel and alternate fragility curves can easily be incorporated as long as they

give simila

G

After a e, we assume that any agents which experienced damage (from one or multiple

!

hurrica cover in a single year. That is, we do not focus on the immediate post-storm

recover cess. Additionally, some or all agents may decide to mitigate. A wood-framed home,

{

which constitutes the vast majority of the houses in our study area, could be upgraded by installing
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roof-wall straps, application of secondary water resistance, installing storm shutters, strengthening
the roof deck attachment, or by changing the shape of the roof. Part of this decision depends on the
cost of mitiiation. g\/e estimated the cost for individual homeowners to make house upgrading

decision RS Means cost pricing database (Plotner & R.S. Means Company., 2017).

||
3.5. Agent Earnmg and mitigation decision models

Mitigafion dedisions are essential components of how a community's vulnerability evolves.
These deci partially controlled by an individual’s personal beliefs about the risk a hazard
poses (Sieguist tscher, 2008). By observing a hazard and the damage it causes, or the lack
thereof, individUal§imay update their beliefs about the risks posed by the hazard, and potentially

change future mitigation decisions.
After e cane season in a simulated year, agents learn from their experience and may

take mitigatory action. For instance, they may believe that the likelihood of a hurricane in any given

year is nowligreater especially if they recently experienced a hurricane. These beliefs are combined
with dama ilities for each of the mitigation strategies and are used as inputs for a decision
model on o mitigate.

The ABMi alized by assigning each agent partial information or “knowledge” about the
hazard ically, each agent holds an initial belief about the frequency of each category of
hurricane (i g no hurricane). This is updated annually given their experiences. In each year of
the ABM ardless if hurricane or damage occurs, agents “learn” from their experience by
updati fs about their risk and then decide whether to act. Based on this knowledge,

agents may choose to mitigate, which, in turn, may change the vulnerability of their homes to

damage inSture hurricanes.

3.5.1. Aﬂg model
We m

el ageat learning using a Bayesian updating framework. Learning in this model focuses
on how s believe hurricane force winds of varying magnitudes are to occur on their
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parcel in a given year. For example, an agent could believe that there is an 80% likelihood of no
hurricane occurring in a given year, a 19% likelihood that their parcel experiences tropical storm
force windsl anda !% likelihood that a Category 1 or stronger storm would occur. If this agent were

to expe ory 2 force winds, their beliefs about their chances of experiencing a Category 1
storm or gr uld likely change.
We us al distribution to describe each agent’s belief for both hurricane frequency

and int&As MW@ Ecfine X as a categorical random variable,

L X ~ Cat(py,p2, D7)  (2)

where p; tlirough @, correspond to the probability of no hurricane, a tropical storm, and Category 1-
5 hurricanes. ile each of these divisions has a wide range of windspeeds, we select them because
an individu@l isitinlikely to know the exact windspeed they experienced, but rather an approximate

windspeed he intensity of the storm on the Saffir-Simpson scale. The Dirichlet distribution is

the catego ibution’s conjugate prior. a4, a5, ..., @7 are the Dirichlet’s support parameters
and represent theflumber of observations for each of the windspeed divisions. Thus,

P1, D2, - D7 ~Dir(a1: ay, ---;a7) (3)
If we treat orical distribution parameters as random variables, we can leverage each new

windspeed ion, X;,ew, to update these parameters using Bayes rule and the Dirichlet
distributiomA T terior distribution will still be a Dirichlet distribution with parameter a’ given by,

] = @i+ 1(Xpe = D, =12,...7 (4)

where I is i ator function. The posterior predictive distribution for this model is given by
equati

a
ai”l =12,..,7(5)

f& =ia) =5

[

Before is run, priors — meaning initial beliefs over the intensity and frequency of
& —need to be assigned for each agent. We iteratively assign different starting

priors in diffefént ABM runs to test how initial beliefs influence the agents’ decision process and the

long-term !nerasllity of the region.

hurricanes
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We also consider the impact of recency bias in the learning models. Recency bias is a cognitive
bias that occurs when an individual weighs more recent events in decision making (Phillips-Wren et

al., 2019). We modiel the recency bias using

al{ =a;*w+ H(Xnew = i), (6)

P

where w is f the long-term memory of the agents. w < 1 represents a decay of the
Iong—teri'n mof the agent. More specifically when w decreases, it forces less weight on prior

experience!and more weight on the agent’s experience in that year.

Asane consider two agents with different priors: (1,1,0,0,0,0,0) and (100,100,0,0,0,0,0),
respectiveljh Althqligh both indicate the agents believe there is a 50% probability of having no
hurricanes an % probability of having a tropical storm in a given year, the underlying confidence
for these tWo agents is distinct. Saying in the next year, both agents experienced a category 5+
hurricane, gents will update their beliefs by incorporating the new observations to update
the underl hlet distributions’ hyperparameters. If we don’t consider the recency bias effect,
the new beliefs w':Sbe computed with the updated distribution with hyperparameters (1,1,0,0,0,0,1)
and (100,100,0,0,0,0,1). If we consider the recency bias effect with a weight of 0.9, then the

hyperpara!eter WI!| be updated to be (0.9, 0.9,0,0,0,0,1) and (90,90,0,0,0,0,1).

In this work, we consider the initial beliefs an agent held when making decisions by leveraging

the paramete support the Dirichlet distribution. An individual who has significant experience
may be mo¥eyli o act than an individual who has much less (Siegrist & Gutscher, 2008). Table |
shows i use and what each prior implies about their beliefs. Partially uninformative
priors desc nts who hold a minimum understanding of the environment. They could be, for
example, o move to the region and thus lack knowledge of the regional risks. Partially
strong e agents who have lived in the region for a while, though the region is assumed

to have been spared a strong hurricane for a long time. This may change at the start of the
simulationfwhere the impact of climate change on hurricanes might make them occur more
frequently ore intensity. Wrong prior describes agents with potentially extreme
experience evious hurricanes, who might be considered most likely to mitigate. We don’t

consider t of recency bias in these scenarios.

Similarlfp y bias also likely impacts mitigation decisions. Therefore, we modify the weight
of the | mory (w) to represent different levels of recency biases, with a value of 1

representi* no rsency bias and a value close to 0 representing that they have no memory. Our
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hypothesis is that the loss of long-term mild and extreme hurricane experiences make recent events
more meaningful for mitigation decision-making.

Table I. Initial knowledge explanations

Priors Implication

ot

(No Hurr — Cat 5+ Hurr)

I

Partially ative 1 (1,1,0,0,0,0,0) Little knowledge for hurricanes events stronger
(Bawr) than tropical storm
Partially mative 2 (1,1,1,0,0,0,0) Little knowledge for events stronger than

category one storms

S

Partially nfofmative 3 (1,1,1,1,0,0,0) Little knowledge for events stronger than
category two storms

U

ative 4 (1,1,1,1,1,0,0) Little knowledge for events stronger than
category three storms

Partially

o
Q
=

o
Y]
=
~ =4
o
N

(10,10,0,0,0,0,0) Moderately strong belief that there will be no
events stronger than tropical storm

oQ
[EnY

(100,100, 0,0,0,0,0) Strong beliefs that there will be no events
stronger than tropical storm

Wron

=

(1,1,1,1,100,100,100) Strong belief in intense hurricane events

(S nes)

[

3.5.2. Mitig ecision model

N

Aft
our dec

rn, they decide whether and how to act. A detailed mathematical description of

with an example of how agent learn and behave is presented in Appendix B. A

{

brief overv ws. The agents choose from the following alternatives in each year that the

Ui
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model is run, e.g., installing roof-wall straps, installing storm shutters, improving the roof deck
attachment, installing second level water resistance, changing the shape of the roof, or simply doing
nothing. Each option corresponds to a specific resistance level. Houses that are mitigated have a
lower p being damaged when they are upgraded which is represented by differing

ever, the degree of improvement and the mitigation costs vary considerably

ention. We assume agents know the probability of their house being damaged
for each category of hurricane and for all housing mitigation options. Future iterations of the work

|| * . .
€ relaxing this assumption.

could expl

In each simulated year, we calculate each agent’s expected utility for each mitigation alternative

by combinifig the dgent’s probability distributions over hurricane frequency and intensity and the

likelihood o ge for each mitigation option together with the costs of the options and the

agent’s utilify fj jon. An exponential risk averse utility function is used (Anand, 1993). The agent
then choo ernative that maximizes their expected utility.

4. MEASUEMMUNITY VULNERABILITY

ifferent scenarios, it is helpful to have a measure of the overall vulnerability of the

ect of different scenarios more simply. We do this through an additional

of tropical storms in that year and integrated these vulnerabilities into an overall
or our study region. This score does not feed back to the ABM in any way.

vulnerability of the houses in the community. This section provides the details of how this was done.

In eadfl simulated year, we record the state of each house in terms of its resistance level (i.e.,
its degree
ongoing AB

ion). Then, separate from the ABM, i.e., not providing any feedback into the

iformly applied six different windspeeds (the median windspeed of each

to each house and calculated the expected damage (in dollar value) for each
windspeed. We then summed the expected damage across all of the houses to
get d;, the({@ggregate vulnerability measure for windspeed i.

Given that the is an upper limit of the achievable resistance of houses to hurricane winds, we

max min
d; d;

also caIcuI e the maximum and minimum expected damage, and , which describe the

-
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most and the least damage a community could experience under windspeed level i. The maximum
expected damage, d;"?*, corresponds to all houses being in the lowest resistance level (i.e., no
mitigation has beeg conducted). Similarly, the minimum expected damage, dlmin, corresponds to all
houses Hhighest resistance level (i.e., no mitigation has been conducted). We then

normalize @te according to equation (7):
di—d™in

1
VI = 6 ZiEwind level dlgnax_dlmin (7)

]
Equatihmalizes the range of vulnerability measure to be between 0 and 1. For example,
the vuInermYear 1is 1, which assumes that no households have conducted mitigation and
itial

are in thei sistance levels. If every household in the system chooses to mitigate their house

to the fullest extent, the community vulnerability index will be 0. This does not mean houses are
invulnerabmey reach the max hurricane resistance as defined in the paper. The normalization
is for the p s&0f a better representation of the results. This value is not a representation of risk
as it does er the likelihood of each level of storm occurring; it is a simplified measure of
aggregatemity. It is also not comparable across different regions or across individual
buildings. The simulation for each replication of the full history always starts with no house
upgrades. The Table Il below shows the maximum and minimum damage (in U.S. dollars) for the
case study

I. Average Community Damages in U.S. dollars from each windspeed

Windspeed mph 85 mph 103 mph 120 mph 143 mph 160 mph
Lev ~TS) (~Cat 1) (~Cat 2) (~Cat 3) (~Cat 4) (Cat 5+)

dmax () 1.04 x10® 850x 108 7.96x10° 2.67x101° 487 x101° 537 x 1010

d™in ($) M8 x 10° 4.18x10% 2.61x10° 7.76x10° 1.94x 10'° 3.04 x 101°

We use VI oae as our set of overall community vulnerability measures. The VI is not intended
to reflect rj ly, as the likelihood of the hurricanes are considered only in the scenarios, but
ratherr jonal building stock vulnerability conditioned on a particular scenario occurring.

5. RESULT:
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This section presents the results of our analysis. We start with the influence of hurricane
frequency and intensity given weak priors (i.e., low confidence of their assessment of the hazard). In
the second subsection, we then vary the intensity of the priors. The priors are varied by iteratively
perturbiHort parameters of the Dirichlet distribution that reflect each agent’s knowledge

and level o nce when each run of the ABM is initialized. This helps us to isolate the influence

of individu arn and gain confidence in their knowledge on regional vulnerability verses

those who learn little from their experience. Similarly, we iteratively perturb the recency bias weight
paramerer quantify the effect that an emphasis on more recent events has in forming beliefs on
mitigation i

5.1 Influence ofdauirricane intensity and frequency

In this i e first show how community vulnerability evolves in our model under different
hurricane climate S€enarios. We selected 100-years to understand the limit of learning and how

SCI

vulnerabili decay over long periods of time for different scenarios. However, it is

unreasona ect that homeowner would reside in a house for that length of time. To address
this, blue v@gtical lines after the passage of 30-years are added to understand what the impact of
learning ma each scenario over a typical U.S. mortgage. We tested multiple intensities and
frequencie%canes. The intensity and frequency are modeled as 0.75, 1, 1.25, 1.5, and 1.75

times the h'sto fitted hurricane frequency and intensities. Either intensity or frequency is

modifiepli nario. Again, we make no claims that these changes reflect an actual future
climate sce stead, we are using these discrete changes to examine potential changes in how
learning i s vulnerability as a function of different hazard environments. We initialized the

agents
environment, and that they believe they are equally likely to experience a tropical storm as a
Category 1$orm. This is later referred to as the “baseline” priors. These priors are unlikely to induce
mitigation agent observes additional hurricanes because an agent holding these beliefs
urricane with force significant enough to cause substantial damage their house

prior of (1,1,0,0,0,0,0), which assumes the agents have little knowledge with the

does not beg

will occur. ts of this initial analysis are shown in Fig. 3.
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Tntensity 0.75,1.00,1.25,1.50,1.75 to basclin intensity Froquency 0.75,1.00,1.25,1.50,1.75 to basclinc froquency
remains baseling Intensity remains baseline
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Fig. 3. The baseline ev@lution of community vulnerability over a century under different hurricane scenarios. The agents
are initialized wi ,0,0,0,0,0) prior. Each solid line represents the median vulnerability index across all replications
in each simulation year. Dashed line with the same color with ‘+’ sign are the 85% upper bound of the output samples.

Dashed line \Cwe color with ‘-’ sign are the 15% lower bound of the output samples.
In Fig. h plots, the x-axis is the year within simulation, and the y-axis is the vulnerability

index (VI1). IQ ans hurricane intensity is 0.75 times the intensity generated from the current and

ns. Each line represents the median vulnerability index across all replications in
r. We see that the community vulnerability decreases over time. This occur

will reduce the probability of damaged if a hurricane occurs. We also see that the intensity and
frequency of hurricanes also substantially affect how community vulnerability evolves. As the
intensity oseﬁuency of hurricanes increases, community vulnerability to a storm of a given

intensity decreases, and the higher the increase in intensity or frequency, the greater the reduction

in vulnerah is because more mitigation takes place in response to more realized damage

and this mi occurs sooner, meaning the benefits compound.

Basﬂe of change over time in the VI, the agents are more responsive to intensity
change ncy changes. That is, for a given level of increase intensity, there is a greater
reductichility than for the same level of change in frequency. Furthermore, for the 11.75
scenario, t&ﬁability of the region asymptotically approaches the minimum vulnerability (most
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resistant to hurricanes) over time. Hurricanes that are more intense tend to stimulate substantially
more mitigations and reduce community vulnerability than more frequent but mild hurricanes.

T

5.2 Impact m knowledge on the evolution of community vulnerability under different

climate scenarios
H I

To exaMine the effect of initial beliefs held by agents on the evolution of community
vulnerabilityun different hurricane environments, we tested different sets of initial priors that all
the agentsffiold at the beginning of the simulation. We compare the results from starting with each
prior with t ts from starting with the baseline-priors (provided in Table I) to examine the

effects of i wledge under each climate scenario.

The baseline evolution of vulnerability is shown in Fig. 3 (with baseline climate and baseline
prior) and is use compare with each different prior scenario under the same climate. As before,

we change itensity or the frequency, but not both together. We also controlled the hurricane
records inp ch hurricane climate scenario (e.g., a certain frequency or intensity comparing to
the baseling scenario) with common random numbers to reduce the variance and make the results
comparabl scenario. That means the area will always be impacted by the same hurricanes
over 100 y ch replication for each initial knowledge priors. The common random number
approach ease the variance and reduce the number of replications needed for

conver comparing different scenarios (Nelson & Matejcik, 1995).

Fig. 4 (a) a show the difference between the median VI from the baseline-priors case and
Ian for a scenario using modified priors (but the same intensity-frequency
combination). Also shown are the 95% confidence intervals that are constructed by bootstrapping of
all VI outputs from each replication in that scenario. The x-axis of each plot is time (years), and the y-
axis is the &erence between the mean VI for the baseline-priors case and the mean VI for a
scenario usingmodified priors. When this difference is positive (negative), it means that this case

ess) vulnerable community than the baseline-priors scenario. Sometimes, this

antial. Using the difference with respect to the baseline helps us to examine how

they areditom each other and explain the sensitivity.
Init n influence agents’ behaviors and community vulnerability substantially in the

early yeWple, we found that under the climate scenario with hurricanes of intensity 1.75
times the iﬂvatic conditions, the largest difference between any two priors was more than
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0.2, which is a large difference in the outcome when facing a same hurricane. When the climate
intensity increases from the initial climatic conditions, cases with different initial priors begin to
converge to a similar vulnerability level given a sufficient amount of time. The vulnerability indices
initially Harlier years and start to converge after the agents have experienced sufficient

events to le

the environment. That is, we see the effects of learning over time. Stronger
hurricanes D the effect of learning and sway the effect of initial beliefs and led the entire

community towards similar actions.
I I
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Figure 4. Differences in vulnerability for different initial priors compared with the baseline initial knowledge scenario over
100 years. (a) Hurricane intensity scenario changes from 0.75, 1.00, until 1.75 times the baseline climate while frequency
remains baseline. (b) Hurricane frequency scenario changes from 0.75, 1.00, until 1.75 times the baseline climate while
intensity remains baseline.

30



Another interesting finding is that holding strong beliefs about intense hurricanes initially (i.e.,
the “wrong priors case”) does not necessarily imply the least vulnerability compared to other initial
beliefs. The reason is that strong hurricane beliefs make the agents realize that, according to their
beliefs, Hhat mitigation they undertake, damage is inevitable and cannot be reduced by

itigation options we modeled. Their investment on house upgrades then would not

Dn the other hand, holding a very strong beliefs about less intense hurricanes
(i.e., the “Partia
experlence‘ a strong hurricane makes it difficult for agents to overcome their strongly held prior

y Strong 2 case”) impedes mitigation as well. This is because even an additional

belief that i s in the region are usually not intense. Only when the agents hold more neutral
beliefs, i.e. Parti Uninformative 3 and 4 cases does the community become more hurricane-
resistant.

for differe ne intensities (Fig. 4 (b)). However, the differences between the “best” prior as
measured Inerability index (i.e., Partially strong 2) and the worst prior (i.e., Partially
uninformative 4) inkreases as the frequency multiplier increases (note that the range on the y-axis
differs amm

reason is t hurricanes strike the area more frequently, regions that had been less likely to

Differmane frequency scenarios have similar rankings for different priors as the rankings

arios so that we can zoom-in and show differentiation among some results). The

be impacte re likely to be influenced at some point. Thus, agents with little prior

understanding of the risk (e.g., Partially uninformative) become likely to mitigate, because the
chance that'n icanes occur drops significantly and their perceived risk increases. On the other

hand, for a h strong priors, more frequent (though not necessarily more intense) hurricanes
are una me their strongly held beliefs of low perceived risk and they continuously
choose no itigate. Thus, over time, they experience more damage and their vulnerability index
increases requency cases, initial knowledge held by the agents takes on a more significant
role in the patterns of evolution of vulnerability over time relative to the cases in which

intensity was varied. The initial differences in beliefs create a divergence in community vulnerability
that does r!t converge by Year 100 when changes to frequency are considered.

5.3 Impacthy bias on the evolution of community vulnerability under different climate

scenarios
Fin£el the memory effects of agents as a weight on long-term events on their past

experie is€lissed above. We chose the recency bias weight to be 1 (no weighting), 0.9, 0.8,
0.7, and 0. process can be regarded as a result of long-term memory fading or generation
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replacement. This process limits the agents to make decisions based on partial information from
recent events instead of using a more complete record of events. As a result, we find that this
recency bias always promotes more mitigation and a less vulnerable community for any climate
scenarioHle of this is shown in Fig. 5. The results for other frequency and intensity
scenarios ag similar and are omitted for brevity. The blue line in both plots is corresponding
to the base

scenario as well.
H I

We se& Fiﬁ. 5 that the stronger an agent’s recency bias is (or the faster the agents’ long-term
memory decays, reflected in a lower recency bias weight, w), the more mitigation that occurs and

ario in Fig. 3. We are using the same partially uninformative prior as the baseline

ommunity is. The explanation for this phenomenon is that while hurricanes
usually do n r, when they do, the agents’ risk perception is weighted more heavily toward the

existence qfffst (and the fact that hurricanes usually do not occur is, to some degree, ignored).
This, in tur matically increase their perceived risk of hurricane and damage, increasing the

appeal of mitigation actions. That is, with the effect of recency bias, agents are much more sensitive
to recent hurricangs. This emphasizes the importance of better understanding the degree to which

a factor in learning from the effects of past hazards.

-

limited me

Tntensity multiplicr 1.25 Frequency multiplier 1.25
Frequency remains bascling Intensity remains bascline
‘ T T
Y

n;ll
A

50
Simulation Year

Fig. 5. The“community vulnerability under 1.25 intensity scenario (left) and 1.25 frequency scenario (right)
with differenﬁias weight parameter. Each solid line represents a different recency bias weight parameter.
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Dashed line with the same color with ‘+’ sign are the 85% upper bound of the output samples. Dashed line with the
same color with -’ sign are the 15% lower bound of the output samples.

T

6. CONCLUS

In tHs Eper, we demonstrate how learning, initial knowledge, and the effect of recency bias

alter the e f community vulnerability under different climate scenarios using an ABM. We
found that jgitliviélual-level learning can substantially change the vulnerability of the residential
building st@gk ovestime as individuals update their beliefs about future damage based on past
experience and respond via decisions about home mitigation measures. Prior beliefs about the
likelihood ming storms can have a substantial impact on how an individual learns from
experience ef@s and on their propensity to take additional mitigation actions; strong prior beliefs
that may b3an increase the vulnerability compared to weaker prior beliefs. Lastly,
overweighting recéht events could lead to the increased propensity to mitigate immediately after an
event that is often seen in practice. Incorporating the effect of learning is critical when simulating

how comrr!nity vulnerability may evolve under different adaptation and climate scenarios.

In our model, more intense and frequent hurricane scenarios stimulated more mitigation and
resulted inmmerable community overall. Different initial knowledge held by the agents had
r

an importa affecting the region’s vulnerability, especially in early years. Limited memory
can alsagpi e mitigation because agents are more sensitive to recent experiences. A better
understan e learning process of individual homeowners will lead to a better understanding
of theiEhich will benefit decision-makers and policy-makers in long-term community
vulnera ion decisions. For example, when a community is anchored in their beliefs of few
storms (i.e., partially strong priors — the blue line) they are more vulnerable. Getting people to
realize thafltheir prior beliefs are wrong through interventions like information campaigns about

hurricane , intensity, and damages — admittedly a challenging task — may be useful in
reducing v ity. Homeowners are most likely to choose to mitigate if they’ve recently
experienc ane and have sufficient resources. Government subsidies offered after a storm
canhelptoe ge mitigation.

Th ber of limitations to this study, and additional research is needed. We explicitly

did not attﬁpt tgievelop a model that would predict vulnerability evolution for a real situation.
Instead, wé¥focused on develop an abstract but reality-grounded case study to better understand

-
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the potential influence of learning on the evolution of community vulnerability. Developing a model
to provide accurate predictions of vulnerability evolution would require consideration of far more
factors and processes. This would have to include at least land use change induced by non-hazard
driverS,Hde in homes for reasons other than hazards, and the influence of social

networks, g pent subsidies and programs, and neighbors on homeowner decisions. This is not

individual I[@vel whgn conducting a vulnerability assessment or risk analysis for a community facing
the potenti peated hazard events. Individual actions can substantially alter community

vulnerabili rning from events is a critical part of this. Ignoring this learning effect can lead to
substantiaNgi ation of future risk.
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Appendix tic Hurricane Generation

ar

Synthefic hurricanes are generated outside of the ABM using the four-step process developed in

Staid e hese steps are:
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a. Choose an initial windspeed and location for landfall: The US coastline is divided into 50 km
bins and the bins are populated by the number of hurricanes to make landfall within its boundaries.
The initial location at landfall is randomly selected from these bins in proportion to historic landfall
occurreandspeed is sampled from the historical record;

b. U windspeed and location, generate a hurricane track from a non-parametric
randori®@ @tlel trained on the suite of historical US hurricane tracks(Staid et al., 2014b).
Thelfir JOKIF@PoFt s the location of the center of the hurricane in six-hour increments;

C. Co*e peak 3-second 10-m peak wind gust at the center of each parcel in the study
areau a pakametric hurricane wind field and decay model(Han et al., 2009);

G

d. Discard any hurricane that does not impact the study region.

S

Th epéated until a library of 36,399 synthetic storms to impact the study region is

generated. ms range in intensity from tropical storms to Category 5 hurricanes.

Next, t
Poisson an

tudy area’s historic hurricane intensity and frequency records are fitted to

U

| distributions, respectively, to form baseline hurricane scenarios as shown in
equations (1) and (2):

f:

N;~Poisson(cF) (1)

(O

Umax~Weibull(al, B) (2)

He e number of hurricanes that impact the case study area in year i, c is the historical
annual frequen ith which hurricanes make landfall in the study region and equals 0.137, and F is
the mu ontrols hurricane frequency. F = 1.0 implies the baseline case. v, ,, is the
maximum windspeed for each sampled hurricane. The parameters a and 8 describe a two-
parameter Weibull distribution fitted using historical maximum hurricane windspeed in this region,
where a :mwd [ = 3.64. I is the multiplier that controls hurricane intensity by changing the
scale parameteiml = 1.0 implies a baseline case. These distributions are used in the ABM to sample
both the n hurricanes that occur in a year and the intensity of each hurricane. The synthetic

track in the with the maximum 3-second peak wind gust closest to the sampled hurricane

Iandfallrs selected.
Appendix ! Decision Model

-
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For the decision-making model, we use a decision tree to enumerate all possible alternatives
that an oose given their previous upgrade history. In each simulated year with at least

one hurricangagach agent chooses from a set of alternatives that increases the wind resistance of
their housng. We use utility theory to model each agent’s preference.

In t@ Mn, each agent’s parcel is initially assigned a building type, which is extracted from
the Maryl Department of Planning®. There are 11 building types, defined by the building
materials %er of stories. Examples of these are a single-story wood-framed homes and a
two-story yteinf@iced masonry homes. For each building type, different upgrading options to
reduce win es are available (e.g., adding roof-to-wall straps). For each type of building and
given upgr native (if any) selected, we use the fragility curve which estimates the
probabilitiw building being in each of the possible damage states (i.e., damage states 1-4)
from a given windspeed from HAZUS. Each agent incorporates this fragility function with their
probabilistic beliefs about the frequency and intensity of hurricanes to calculate the expected utility

nd then choose the alternative with the highest expected utility. Each upgrade
can only be ieeh once, and we assume the reliability of the upgrade does not decay as time

of each alt

progresses\in the simulation. A detailed description of build stock information can be found in Reilly
et al. (201

urrent state of a house as sy, which is the combination of its building type and
upgrades previo®sly done to that house. The potential future states of the house are denoted as

n is the number of different alternatives the homeowner has for upgrading
their house. i»0 < i < nisassociated with each choice. After a storm, the house can either
be not or in one of four different damage states (from minor damage to completely
amage costs C40, €41, Ca2, Ca3» Cas €qual to 0, 0.05,0.2,0.45, and 0.99 times the
house improved value V.

The aghtes their estimates of the probability of occurrence of each category of
hurricanes

storm, anad
agent in each simulated year. The probability of being in each damage state k, 0 < k < 4, given the
average wifidspeed for each category of hurricanes and the potential damage state of the house is

* http://planning.maryland.gov/OurProducts/downloadFiles.shtml

-
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defined as p(dy|s;, Hurr j), 1 < j < 7. We assume the agent knows these probabilities when
making mitigation decisions. We use a risk averse exponential utility function shown in equation (1)
to quantify the preference over outcomes

U(x) =1—e %R (1)
where R is &sion factor. In the model we select R to be 0.05 * W where W is the wealth

of each ggeptAlggise the house’s improved value as a proxy for wealth because we lack household-
level net wgth information. As a result, wealthy people can afford more expensive upgrades and to

be more ri than less wealthy people.

The ag@consider the long-term return from their investment on house upgrades, i.e.,
what is their return over the next T years with a discount factory. T = 10 and y = 0.03 in our
model. Her€ th€ raturn on their investment is defined based on how much damage is reduced if they
take that a en their assessment of the risk. Hence, we can calculate the expected utility

considerinSm return using equation (2).
EU(silso) = Xjer1,71P(U) Zkefo,a12(diclsi, )HLU (cy, cqre) (2)

Where EU;|so) is the expected utility for a house in state s, to upgrade to s;, and LU(c;, cg) is

the long-te if the house is in damage state k
1
m(ci: car) =UW —cqr — ¢;) + Xi1 U <(W — Cax) * (1+—y)t) (3)
Uw — cak is the utility value when implementing the upgrade in the current year, and
T, u = * (1+y)t> is the utility with this upgrade over the next T years. At the end of each

year, based on the agents perception of hurricane occuring, each agent identifies the state s; that
gives them!he best long-term return and upgrades their house accordingly.

nderstand the learning and decision making model, we provide an example

th 4 agents (locations and their Agent IDs shown in Fig. 6) for 5 replications, with
3 different inté€

(1,1,0,0,0,0807, heir wealth varies. The same replication under different intensity scenarios has
the sa f hurricanes occurring during the same years, though the tracks and intensity will

be differenti. In thelmeantime, different replications have hurricanes arriving at different years.

y multipliers. Agents are assumed to hold the same initial knowledge with priors

Results are"shown in Fig. 7. Each line represents the mitigation process for each of the five
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replications. When two lines are overlap, it means it is at the same resistance level as another
replication during that period of time. Note that the cost of the same mitigation activities are

different for different houses.
We fin! hat agents tend to mitigate more and earlier with higher intensity scenarios. All

resistance @ mitigation options) are adapted by agents at some point in the simulation.
Agents ten@%@ gate more if they hold more wealth. Agents living in different regions mitigate
differerifily @SiiA@yMk ave different hurricane experiences. Agents 14 and 356,911 hold limited wealth,
preventinghem from mitigating as effectively even with more intense hurricanes. Agent 163,525
lives inlan )/ ich means they have fewer hurricane observations, leading to less mitigation overall.

@ Agentld
® Agent237164

Agent 356911
@ Agent 163525

\\
| \
\
A\
\\

3

o

5

Fig. 6. Se nd their locations. Map created with QGIS with OpenStreetMap as the basemap.
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Agent 14 Agent 237164 Agent 356811 Agent 163525
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Fig. 7. The upgrade pregress of selected agents under different hurricane scenarios. Five replications are shown in this
figure.
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