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Research data management is an expensive enterprise. Computing infrastructure for storing, retrieving, and preserving data is one
area of expenses, and computing infrastructure costs grow as the size and number of datasets and demands for their retrieval grow.
This paper compares the costs and performance of two database infrastructures, PostgreSQL and Elasticsearch, for digital data
archives. We used benchmarking experiments and data from social media to estimate the costs of loading, indexing, and querying
data from these two databases. The results show that traditional relational open-source databases can be effective for large social
science data and run on relatively low-cost computing infrastructure, where PostgreSQL queries can be faster and less expensive than
Elasticsearch. PostgreSQL required higher up front costs and time, and adding computing resources did not improve Elasticsearch’s

query performance. These findings are useful for digital archives evaluating back-end storage systems.
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1 INTRODUCTION

Sharing and archiving data is important to enable researchers to verify, replicate, and extend one another’s work. Caring
for digital research data is a demanding and expensive enterprise [5, 12, 20, 24]. The specialized hardware required
to provide long-term, secure, distributed access to research data (e.g., cloud servers, private networks) carries both
monetary and environmental costs. Advances in cloud computing offer opportunities for flexible, scalable data storage
and access systems. This paper examines whether these advances have made digital archiving more affordable or
efficient by testing queries in multiple database structures and on various servers hosting terabytes of data from social
media.

The [archive name removed for blind review] is developing infrastructure to archive and distribute data from social
media platforms. The archive offers an opportunity to calculate the costs associated with a cloud-based data archive. In
this paper, we address only questions related to loading data for storage, indexing data for retrieval, and querying data
for access. We do not include costs related to staffing, data collection, user training, or long-term preservation. We
also do not address collection development and access questions but acknowledge that social media users’ preferences
should influence archiving decisions [14, 17].

Our primary contribution is a comparison of the costs of two different database infrastructures, PostgreSQL and

Elasticsearch, for digital data archives. We present findings from a set of benchmarking experiments that let us estimate
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the costs of loading, indexing, and querying text and date data from these two databases. We found that PostgreSQL
could return queries quickly, but it was more expensive overall because of the size of its data store and the separate
index and ingest steps required. Elasticsearch was cost-effective and could run efficiently on moderate computing

resources.

2 BACKGROUND
2.1 Digital Archiving and Big Data

The integration of digital archiving and big data has attracted increasing research attention: big data technologies
can be employed to manage and preserve large digital collections, and digital archiving techniques can be used to
ensure the long-term big data management and stewardship. Using big data technologies in digital archives enhances
machine-actionability of archives and accelerates the shift to ensuring the findability, accessibility, interoperability,
and reuse (FAIRness) of high volume digital assets [23]. A variety of recent research focuses on implementing and
developing scalable and automated systems for preserving and managing large digital collections.

Some research focus on algorithms and infrastructures for storing, processing, and analyzing large digital collections.
Some applications utilize distributed computing systems, such as Hadoop and Spark, to process and analyze complex
types of big data in parallel [2, 26]. The use of distributed storage systems is also embedded in digital preservation
workflows to ensure that digital content is properly preserved and managed over time [8].

Some other research uses machine learning and artificial intelligence techniques to extract insights and knowledge
from big data in archives, which depends on the algorithm and infrastructure advancements [7, 15, 19, 25]. Machine
learning and artificial intelligence are helpful in supporting decision-making in digital preservation, including the use
of big data analytics to assess and mitigate the risks associated with preservation strategies and needs, for example,
organizing and querying archives [4]. Machine learning techniques can also be useful for identifying the elements to

preserve, depending on the relevance to archival goals in a digital collection [6].

2.2 Database Options for Digital Archives

The database system is the backend core of a digital archive. We mainly consider the two types of database system:
(1) relational database, (2) NoSQL database. Relational database systems (RDS) are the most popular and most mature
database systems in production. Schema designs influence how quickly and efficiently RDS can store and retrieve data.
We include an RDS in our experiment because they are so popular and configurable. NoSQL database systems are
gaining popularity because of their flexibility in data modeling. Unlike RDSs, which model data in table relations, NoSQL
stores data in other formats, e.g. JSON, XML, key-values pairs, etc.. We include a NoSQL option in our experiments

because they support JSON, the most popular format for social media data application programming interfaces (APIs).

2.3 Cloud Computing, Archival Practice, and the Environment

Following recent research [16, 21] on the energy considerations for machine learning tasks, we aim to highlight the
environmental impacts of research data management. Individual researchers storing, indexing, and querying multiple
copies of the same (or substantially similar) data multiplies both the financial and environmental costs of working
with digital data. For instance, when multiple researchers query a platform’s API for data from candidates for office,

they create multiple copies of the same set of records, usually housed on individual researcher’s computers. Carbon
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footprints are receiving increased attention from the digital archiving community, especially in audio/visual archives
where storage demands dwarf even our experiments [3].

Shared data infrastructure that uses a common data store reduces the computing demands for individuals, but
it doesn’t eliminate the costs. Hosting data on shared cloud services risks muddling the chain of custody, presents

challenges for data security, and creates security and scalability trade-offs [9].

3 METHODS
3.1 Test Data

We used simplified Twitter data in all of our experiments. We stored only the author, tweet text, date, and hashtags. We
used one year (2021) of the Twitter Decahose ("Decahose”), containing roughly 14.2 billion tweets. To store the data in
PostgreSQL required roughly 7.1TB ($568/month to store in Amazon EBS); for Elasticsearch, Mapping 1 took 6.7TB
($536), and mapping 2 required 3.7TB ($296) of storage. Details on mappings are available below and in the Appendix.

3.2 System Setup

For software, we choose the following two database systems:

e PostgreSQL (v14.5)
e Elasticsearch (v8.4.2)

Database system configuration is a key factor to the system performance. Since both PostgreSQL and Elasticsearch
have hundreds of settings, it is impossible test how every different configuration will effect the performance of the
digital data archive. Therefore, to simplify the experiment setup, we decided to use the recommended configuration
by PGTune! for PostgreSQL, and to use the default configuration for Elasticsearch. In order to test how hardware
influences system performance, we also limited the number of CPUs, the size of the memory, .etc, to approximate the
system performance of various EC2 instance types. For example, for c5.1arge, we set the configuration of PostgreSQL as

recommended by PGTune for 2 CPUs, 4GB memory.

3.3 PostgreSQL Schema

We used text, timestamp, and tsvector data types to store data in PostgreSQL. We used the same indexing approach in

both tests except that in Schema 2, hashtags are case-insensitive. Details are available in the Appendix in Table 4.

3.4 Elasticsearch Mapping

For Elasticsearch, we use the same field name and pre-processing methods (see the Appendix Table 3). We also designed
two different mapping strategies in our experiment. For the first one, we utilize Elasticsearch’s “dynamic mapping”?
function and let the system choose the data type automatically.

In Mapping 1, Elasticsearch recognized ‘created_at’ as a text field, and we had to manually change the mapping to
accommodate date queries. Mapping 1 also recognized ‘hashtags’ as text and therefore treated them as case-insensitive.

In Mapping 2, we mapped ‘hashtags’ as keywords rather than text, and that rendered them case-sensitive.

!https://pgtune.leopard.in.ua
2https://www.elastic.co/guide/en/Elasticsearch/reference/current/dynamic-field-mapping.html
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Instance type vCPU Memory CO; per hour $ per hour

c5.large 2 4 7.0 $0.085
c5.xlarge 4 8 14.1 $0.17
c5.2xlarge 8 16 28.0 $0.34
c5.4xlarge 16 32 56.1 $0.68
c5.9xlarge 36 72 126.2 $1.53
Avg. American 1872

Table 1. Comparing EC2 instances types used in experiments. Prices are for on demand instances. Memory is measured in GiB. CO,
estimates are from Teads Engineering and are measured in gCOzeq. 3

3.5 Benchmark Queries

We identified common query types from existing research about how researchers use Twitter data [13]. The following
types of queries were most common: hashtags, tweet authors, and keywords within tweets. Based on those queries, we
defined six types of queries that use hashtags, the tweet text, tweet authors, and date information (see Table 2). To make
the benchmark queries reflect the information needs of social scientists, we selected several influential individuals,

topics and events in 2021:

(1) Individuals: “Elon Musk”, “Joe Biden”

(2) News Press: “CNN”, “New York Times”

(3) Social Movement: “Stop Asian Hate”, “Free Britney”
(4) Hot Topic: “Tokyo Olympics”

(5) Natural Event: “hurricane ida”

3.6 Estimating Costs

3.6.1 Computing Resources. We used five different Elastic Cloud Computing (EC2) instances from Amazon Web
Services (AWS) for our benchmark experiments. We chose EC2 and AWS because they are widely used in university
and non-profit settings and have robust user support communities. See Table 1 for a summary of the instances and
their associated costs. We did not apply any of the discounts for which the authors are eligible; these costs are based on

AWS’s commercial rates as of January 2023.

3.6.2 Carbon Emissions. We use freely-available tools* to estimate the carbon emissions generated by our benchmark
queries. Our carbon estimates are meant to illustrate the relative costs of various database approaches, not to be accurate
calculations of the exact carbon emissions for any of our benchmarks. AWS recently introduced a tool for estimating an
account’s carbon impact >, but it only allows account holders to estimate their own carbon emissions based on their
AWS workload and not to forecast or compare various architectures. See Table 1 for a summary of the EC2 instances and
their associated emissions estimates. For reference, Strubell et al. [21] estimates that the average American consumes

16,400 kilograms of CO3 per year, and the average car consumes 57,153 kilograms of CO; in its lifetime.

Shttps://engineering.teads.com/sustainability/carbon-footprint-estimator-for-aws-instances
“https://engineering.teads.com/sustainability/carbon-footprint-estimator-for-aws-instances
Shttps://aws.amazon.com/blogs/aws/new-customer- carbon-footprint-tool/

®per-capita consumption: https://bit.ly/2Hw0xWec; car lifetime: https://bit.ly/2Qbrow1[21, p.3645]
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Fig. 1. Comparing costs of different query types using either PostgreSQL or Elasticsearch databases. All queries in this chart were
run on c5.2xlarge EC2 instances.

4 RESULTS
4.1 Costs of indexing and loading data

We used a c5.9xlarge EC2 instance for loading and indexing data. Both databases took roughly 50 hours to load our test
data. Elasticsearch indexes as it loads, but PostgreSQL required an additional 144 hours of time to index the data in our
schema. In total, Elasticsearch indexing and loading cost roughly 6.31 kgCOzeq and $76.50. PostgreSQL required an
additional 18.2 kgCOzeq and $220.32 to index the data.

4.2 Costs of querying

We illustrate the costs of various queries on different databases in Figure 1. More detailed cost estimates are provided in
Tables 7 in the Appendix.

We illustrate the impact of query result set size and EC2 instance type on Elasticsearch’s performance in Figure
2. Expanding the computing resources available improves Elasticsearch’s performance only to a point, after which

increased computing actually decreases performance.
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Fig. 2. Query times for Elasticsearch (Mapping 2) for full text search

4.3 Overall costs

Of course, the computing infrastructure runs 24/7 and not just when users submit queries. Our query time estimates
are useful for comparing the databases’ performance trade offs but not for determining the actual costs of running the

archives’ instances. Using a c5.2xlarge instance, the costs to set up and run our archives for one year are as follows:

e PostgreSQL: $10,092
e Elasticsearch Mapping 1: $6607
e Elasticsearch Mapping 2: $3552

The start up costs for PostgreSQL are higher, but it’s case insensitive, flexible queries are faster and likely better for
users. Unfortunately costs to load data recur anytime we add new data to the database. This is true for both PostgreSQL

and Elasticsearch, but PostgreSQL is more expensive at load time.

5 DISCUSSION

We conducted a series of experiments with benchmark queries on Twitter data stored in PostgreSQL and Elasticsearch
and serviced by varying levels of computing resources. We found that PostgreSQL’s up front and data ingest costs
are higher but that its queries are faster and more efficient in the long run. Elasticsearch provides fuzzy search and
improved recall but requires higher ongoing computing costs to meet performance goals. Our findings are in line with
earlier work on the cloud computing costs associated with digital archiving [22, 24].
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Twitter data is born digital and undergoes many transformations and moves before arriving at an API endpoint;
like the Facebook data Glassman [10] discusses, there are many representations of the same data. Each representation
of a tweet is essentially a surrogate carrying the original information. As Shein and Lapworth [20] pointed out, the
ongoing maintenance of digital surrogates can be expensive, sometimes even more expensive than taking custody of a
physical object. Our inability to develop infrastructure for ethically and accessibly archiving large data, like social media
records, undermines trust in archives [10]. Our paper helps articulate the costs and trade-offs involved in building such

infrastructure provides important benchmarks for discussions about data structures and types of query support.

5.1 Comparing PostgreSQL and Elasticsearch

5.1.1 Costs. The costs, both carbon and dollars, for PostgreSQL and Elasticsearch databases are similar in the first year.
PostgreSQL was 53% more expensive given its higher index and ingest costs. PostgreSQL is more expensive because the
default compression algorithm is not as effective as Elasticsearch’s, which is reflected by it’s lower storage demands
after loading and indexing. However, PostgreSQL queries are faster which means it can support more uses on the same
infrastructure, and the overall carbon footprint is lower: the amount of carbon produced depends on the load on the

EC2 instance while the dollar costs are fixed by time.

5.1.2  Features. Both databases supported the common user query types we identified from existing research (ie.,
full-text, author). We were able to create indices and mapping that allowed for case insensitive search, but those increase
query time in both databases. Future work should investigate query fuzziness specifically. For instance, for some
research questions, researchers may not know the exact keyword(s) to search and would benefit from less precise
matching than we tested. We expand on potential avenues for fuzzy search in the Appendix. In general, Elasticsearch
provides better support for text search than PostgreSQL, but some features such as “edit distance” can be added via
PostgreSQL modules. Archives will need to use data from user queries and other interactions with users to identify the

fuzziness that would be useful and design databases and queries to support it.

5.2 Other Options for Large-scale Data Storage

5.2.1 Custodial Archiving. First we address other cloud-based services for hosting data for which the archive accepts
custody. In these scenarios, the archive is responsible for storing and providing access to the files. In the next section,
we address non-custodial approaches in which the archive does not directly manage the data in its collections.

Amazon Athena: Athena’ is a serverless interactive query service. It provides query capacity on top of data lake
storage, e.g. Amazon Simple Storage Service® (Amazon $3) using ANSI SQL.

However, Amazon Athena is not appropriate for hosting a large data archive for two main reasons: costs and query
types. Athena’s total cost includes (1) the cost of data storage, e.g. Amazon S3, (2) and Athena SQL query: $5.00 per TB
of data scanned. In our experiment, the entire data size is around 6TB, thus each query will cost around $30.00. We can
certainly reduce the cost as well as accelerate the query by partitioning the data and build partition indexes using AWS
Glue Data Catalog. However, the archive would still need to spend time on data infrastructure configuration (i.e. data
partitioning and partition index building). This produces the second drawback: efficiently partitioned Athena cannot

efficiently support the different types of queries our users require.

"https://aws.amazon.com/athena/
8https://aws.amazon.com/s3/
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Hosted RDS: Hosted, managed RDS services such as Amazon RDS or Cloud SQL (Google Cloud’s offering) are too
expensive for our purposes (e.g., storage alone is $1207/month for our data in Cloud SQL?). Staffing and computing
create trade-offs for managed vs self-hosted RDSs. RDSs are mature enough that the expertise to manage RDS services is
affordable for most archives that employ technical staff. Cloud computing, especially at discounted rates for universities,
archives, and other non-profit organizations, is now inexpensive enough to be more cost-effective, even when system

administration staff is required, than managed RDS options.

5.2.2  Non-custodial Archiving. Thus far we have assumed that the data archive must take physical custody of the
data. For many archives, taking custody of large-scale data is not practical (i.e., it’s too expensive or difficult to secure)
or necessary. Instead, the archive could serve as a trusted intermediary between those with custody of the data (in
our case, a social media platform company) and the archive’s users (i.e., academic researchers). This postcustodial
approach [11, 20] comes with other drawbacks, however. First, whether data custodians can be trusted to provide fair,
perpetual access to the data remains to be seen. Second, the mechanism of access, such as an APJ, creates constraints
and risks for data users. As Padilla [18] points out, social media platforms can monetize and monitor researchers’ API
calls, potentially threatening academic freedom. Acker and Kreisberg [1] also call attention to the competing interests
between API developers and researchers, acknowledging that researchers’ data needs are often not met by commercial
APIs. A non-custodial, or postcustodial, approach to data archives would require archives and data custodians to work

together to ensure secure, fair, accessible use for researchers.

6 CONCLUSION

In this paper, we compared the expenses and efficiency of PostgreSQL and Elasticsearch as database systems for storing

digital archives. Our findings indicate that

(1) Traditional relational open source database structures can work for large social science data and run on relatively
inexpensive computing infrastructure but have higher start up costs;
(2) PostgreSQL queries can be faster and less expensive than Elasticsearch; and

(3) Additional computing resources do not improve Elasticsearch query time performance.

Our findings will be useful to any digital library or archive evaluating back-end storage systems and those estimating

and/or articulating computing costs.
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Here we provide additional details about the queries we tested, our pre-processing steps, mapping and schema for the

databases, the experiment results, and parameters for fuzzy search.

Manuscript submitted to ACM



10

Hemphill, et al.

Type Description PostgreSQL Query Example Elasticsearch Query Example
i Match 1 Hashtag SELECT * FROM post WHERE hashtags @> ’bool’: 'filter’: ['term’: "hashtags’: "toky02020’]
(ARRAY[ toky02020’]);
ii Match Multiple Hash- SELECT * FROM post WHERE hashtags && ’bool’: should’: [ ’term’: "hashtags’: toky02020’,
tags with OR relation- (ARRAY[ toky02020’, ‘tokyoolympics’]); ‘term’: "hashtags’: "tokyoolympics’ ]
ship
iii Match Multiple Hash- SELECT * FROM post WHERE hashtags @> ’bool’: 'filter’: [ ’term’: "hashtags’: 'toky02020’,
tags with AND relation- (ARRAY[’toky02020’, tokyoolympics’]); ‘term’: hashtags’: "tokyoolympics’ ]
ship
iv Match Author Name SELECT * FROM post WHERE author_name = ’bool’:  ’filter’:  [‘term’: ’author_name’:
"Toky02020’; "Toky02020°]
\s Match Author Name SELECT * FROM post WHERE author_name ’bool’:  ’filter’:  ’term’:  ’author_name’:
and Text = ’'Tokyo2020’ and text_searchable @@ ’Toky02020’, ‘'must’: ‘match’: "text’: ’swimming’
to_tsquery(’ swimming’);
vi Match Text SELECT * FROM post WHERE text_searchable ’'match’: "text’: ’query’: ’Olympic Tokyo’, 'opera-

@@ to_tsquery(’Olympic Tokyo’);

5.

tor’: ’and’

Table 2. Types of Queries in the Benchmark Tests. Includes examples of the queries in both PostgreSQL and Elasticsearch syntax.

Preprocess Operation

Column Name  Decahose Field Schema 1 Schema 2

id id None None

author_name screen_name lower lower

text full_text or text use full text unless not exist use full_text unless not exist
created_at created_at None None

hashtags hashtags and extended_hashtags union union & lower
text_searchable None None None

Table 3. Pre-processing steps taken on Decahose data

Column Name  Data Type Index Type
id TEXT btree
author_name TEXT btree
text TEXT N/A
created_at TIMESTAMP btree
hashtags TEXT GIN
text_searchable tsvector = GEN- GIN
ERATED
ALWAYS AS
(to_tsvector(’english’,
text)) STORED

Manuscript submitted to ACM

Table 4. PostgreSQL Table Schema
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Field Name Mapping

id ‘type’: ‘keyword’

author_name ‘type’: ‘’keyword’

text ‘type’: ‘text’, ‘analyzer’: ‘english’
created_at ‘type’: ‘date’

hashtags ‘type’: ‘keyword’

Table 5. Elasticsearch field mapping for the second mapping strategy (i.e., manual mapping)

B c5large M c5.xlarge c5.2xlarge [ c5.4xlarge [ c5.9xlarge

8000

—~ 6000
2]
E
(0]
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> 4000
[}
=]
g
(]
()]
o

j% 2000

0

10000 20000 30000 40000 50000 100000
LIMIT

Fig. 3. Query times in PostgreSQL for full text search (query type vi). LIMIT indicates the number of results per query.

Manuscript submitted to ACM



12 Hemphill, et al.
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Fig. 4. Query times in Elasticsearch (Mapping 1) for full text search (query type vi). LIMIT indicates the number of results per query.
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Fig. 5. Query times for Elasticsearch (mapping 2) for hashtag and author (query type iii). LIMIT indicates the number of results per
query.
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Query Type Database Schema or Mapping ~ EC2 instance type ~ Query time (ms) 1K Query CO, cost 1K Query $ cost
c5.large 235 0.46 0.01
c5.xlarge 233 0.91 0.01
Match 1 hashtag PostgreSQL Schema 1 c5.2xlarge 234 1.82 0.02
c5.4xlarge 221 3.44 0.04
c5.9xlarge 222 7.78 0.09
c5.large 659 1.28 0.02
c5.xlarge 455 1.78 0.03
Match 1 hashtag PostgreSQL Schema 2 c5.2xlarge 451 3.51 0.04
c5.4xlarge 437 6.81 0.08
c5.9xlarge 434 15.21 0.18
c5.large 8849 17.21 0.21
c5.xlarge 3682 14.42 0.42
Match 1 hashtag Elasticsearch ~ Mapping 1 c5.2xlarge 8198 63.76 0.77
c5.4xlarge 2701 42.09 0.51
c5.9xlarge 8005 280.62 3.40
c5.large 661 1.29 0.02
c5.xlarge 296 1.16 0.03
Match 1 hashtag Elasticsearch ~ Mapping 2 c5.2xlarge 771 6.00 0.07
c5.4xlarge 678 10.57 0.13
c5.9xlarge 796 27.90 0.34
c5.large 372 0.72 0.01
. 5.xlarge 342 1.34 0.02
Match multipl ¢
h a}f m 'ltl;eOR PostgreSQL Schema 1 c5.2xlarge 345 2.68 0.03
ashtags wi c5.4xlarge 332 5.17 0.06
c5.9xlarge 335 11.74 0.14
c5.large 828 1.61 0.02
. 5.xlarge 778 3.05 0.04
Match multipl Co.xlarg
h a};:t . 'lgleoR PostgreSQL Schema 2 c5.2xlarge 757 5.89 0.07
ashtags wi c5.4xlarge 752 11.72 0.14
c5.9xlarge 751 26.33 0.32
c5.large 6981 13.57 0.16
Match multiple c5.xlarge 5003 19.60 0.33
hasht t[}’l OR Elasticsearch ~ Mapping 1 c5.2xlarge 4768 37.08 0.45
ashtags wi c5.4xlarge 4622 72.03 0.87
c5.9xlarge 4752 166.58 2.02
c5.large 623 1.21 0.01
. 5.xlarge 293 1.15 0.03
Match multipl ) ) X ETE
areh mu }p ¢ Elasticsearch ~ Mapping 2 c5.2xlarge 609 4.74 0.06
hashtags with OR
c5.4xlarge 509 7.93 0.10
c5.9xlarge 640 22.44 0.27
c5.large 6 0.01 0.00
. 5.xlarge 6 0.02 0.00
Match multipl ©.xlarg
h al:t mu ;I;;ND PostgreSQL Schema 1 c5.2xlarge 6 0.05 0.00
ashtags wi ¢5.4xlarge 6 0.09 0.00
c5.9xlarge 6 0.21 0.00
c5.large 137 0.27 0.00
. 5.xlarge 82 0.32 0.01
Match multipl ©.xlarg
h ahct m 'ltrl)leAND PostgreSQL Schema 2 c5.2xlarge 81 0.63 0.01
ashtags wi ¢5.4xlarge 83 1.29 0.02
c5.9xlarge 81 2.84 0.03
c5.large 1267 2.46 0.03
Match multiple c5.xlarge 887 3.47 0.06
hash 'I;lAND Elasticsearch ~ Mapping 1 c5.2xlarge 937 7.29 0.09
ashtags it c5.4xlarge 1313 20.46 0.25
c5.9xlarge 1068 37.44 0.45
c5.large 74 0.14 0.00
Match multiple c5.xlarge 66 0.26 0.00
hasht gl AND Elasticsearch ~ Mapping 2 c5.2xlarge 69 0.54 0.01
ashtags wi c5.4xlarge 65 1.01 0.01
c5.9xlarge 66 231 0.03

Table 6. Estimated costs to run benchmark queries in terms of CO; emissions (grams of carbon dioxide equivalent) and cloud compute

Kﬁggq USQ)éu%%‘i&gglgow, we limit results to 10,000 records. To make the costs easier to read, we provide the estimates per 1000

CIip

queries.
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Query Type Database Schema or Mapping ~ EC2 instance type ~ Query time (ms) 1K Query CO, cost 1K Query $ cost
c5.large 51 0.10 0.00
c5.xlarge 51 0.20 0.00
Match author PostgreSQL Schema 1 c5.2xlarge 51 0.40 0.00
c5.4xlarge 50 0.78 0.01
c5.9xlarge 51 1.79 0.02
c5.large 849 1.65 0.02
c5.xlarge 73 0.29 0.04
Match author PostgreSQL Schema 2 c5.2xlarge 73 0.57 0.01
c5.4xlarge 73 1.14 0.01
c5.9xlarge 73 2.56 0.03
c5.large 1600 3.11 0.04
c5.xlarge 1103 4.32 0.08
Match author Elasticsearch ~ Mapping 1 c5.2xlarge 1046 8.14 0.10
c5.4xlarge 933 14.54 0.18
c5.9xlarge 928 32.53 0.39
c5.large 267 0.52 0.01
c5.xlarge 216 0.85 0.01
Match author Elasticsearch ~ Mapping 2 c5.2xlarge 156 1.21 0.01
c5.4xlarge 154 2.40 0.03
c5.9xlarge 174 6.10 0.07
c5.large 954 1.86 0.02
5.xlarge 970 3.80 0.05
Match author and ¢

& Ch ?uu tor fn PostgreSQL Schema 1 c5.2xlarge 968 7.53 0.09
search full tex c5.4xlarge 967 15.07 0.18
c5.9xlarge 968 33.93 0.41
c5.large 1617 3.14 0.04
5.xlarge 996 3.90 0.08

Match author and Co.xlarg
a Ch éfmll tor tan PostgreSQL Schema 2 c5.2xlarge 999 7.77 0.09
search ull tex c5.4xlarge 1000 15.58 0.19
c5.9xlarge 1019 35.72 0.43
c5.large 2016 3.92 0.05
Match author and ) ) c5.xlarge 1809 7.09 0.10
h full text Elasticsearch ~ Mapping 1 c5.2xlarge 1976 15.37 0.19
search full tex c5.4xlarge 1825 28.44 0.34
c5.9xlarge 1947 68.25 0.83
c5.large 47 0.09 0.00
5.xlarge 37 0.14 0.00

Match author and ©>-Xlargf
2 Ch ?ull tor :m Elasticsearch ~ Mapping 2 c5.2xlarge 15 0.12 0.00
search ull tex ¢5.4xlarge 38 0.59 0.01
c5.9xlarge 292 10.24 0.12
c5.large 1568 3.05 0.04
c5.xlarge 1501 5.88 0.07
Full text search PostgreSQL Schema 1 c5.2xlarge 1498 11.65 0.14
c5.4xlarge 1486 23.16 0.28
c5.9xlarge 1492 52.30 0.63
c5.large 1960 3.81 0.05
c5.xlarge 1583 6.20 0.09
Full text search PostgreSQL Schema 2 c5.2xlarge 1582 12.30 0.15
c5.4xlarge 1591 24.79 0.30
c5.9xlarge 1614 56.58 0.69
c5.large 407022 791.43 9.61
c5.xlarge 327517 1,282.77 19.22
Full text search Elasticsearch ~ Mapping 1 c5.2xlarge 334060 2,598.24 31.55
c5.4xlarge 338256 5,271.16 63.89
c5.9xlarge 342438 12,004.35 145.54
c5.large 474 0.92 0.01
c5.xlarge 192 0.75 0.02
Full text search Elasticsearch ~ Mapping 2 c5.2xlarge 178 1.38 0.02
c5.4xlarge 183 2.85 0.03
c5.9xlarge 1577 55.28 0.67

Table 7. Estimated costs to run benchmark queries in terms of CO emissions (grams of carbon dioxide equivalent) and cloud compute

fees (USD). For each query, we limit results to 10,000 records. To make the costs easier to read, we provide the estimates per 1000
queries, Manuscript submitted to ACM
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Fuzziness Type Example

Stemming and Lemmatizing ‘cats‘ (‘ran‘) and ‘cat’ (‘run®)
Edit Distance ‘mistakn’ and ‘mistaken’
Semantic Similarity ‘coronavirus’ and ‘covid’

Table 8. Types of Fuzziness Support for Text Search

PostgreSQL Elasticsearch
Fuzziness Type Default Adds-on Default Adds-on
Stemming and Lem- N Y Y Y
matizing
Edit Distance N Y Y Y
Semantic Similarity N N N Y

Table 9. Types of text fuzziness that each system supports. Default means the function ability comes with installation. Adds-on
means there need installing a module, package or system modification to realize the function.

Manuscript submitted to ACM
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