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Abstract

Known for its execution flexibility and pricing elasticity, Serverless computing deploys the
code of services on demand and charges the client for their actual execution. Serverless computing
enables service developers to focus on creating useful services, without being concerned about
how these services would be deployed and provisioned. These developments have fostered the
rapid growth of a community of open-source developers creating and improving various serverless
functionalities. Because of this variety, the ecosystem of serverless functionalities suffers from a
high degree of duplication, with multiple serverless functionalities sharing similarities or being
outright identical. In order to integrate a serverless function into a project, a developer first needs to
be able to find a suitable implementation among multiple alternatives. Unfortunately, existing search
technologies have not been designed to address the needs of searching for serverless functionalities.
To address this problem, this paper presents a novel approach to search for serverless functions,
called Open-Source Serverless Search (OS?) that maximizes the utility of the returned serverless
functions by (1) basing the search process on both descriptive keywords and library usages, thus
increasing the search results’ precision and completeness; (2) filtering and ranking the search
results on both the software license and execution cost parameters. Implemented in 3,000 lines of
Python, with a search space of 5,981 serverless repositories from four major serverless platforms,
OS? outperforms existing search approaches in terms of the suitability of the returned serverless
functions, based on our evaluation with realistic use cases. Enhancing the search facilities for
serverless functions with the insights presented herein can help fully fulfill the enormous promise

of serverless computing.
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CHAPTER 1

Serverless Computing, An Overview

1.1 What is Serverless Computing

Serverless Computing, also known as Functions-as-a-Service (FaaS), is a cutting-edge and
rapidly expanding trend in cloud computing. It made its debut in 2014 at the AWS re:Invent event
with the introduction of AWS Lambda offerings[1]. Since then, numerous cloud service providers
have followed suit and added similar services to their cloud infrastructure offerings. Despite the
name “serverless”, this type of architecture does not mean the absence of servers, but rather that a
third-party is responsible for managing them, effectively hiding them from the user.

In contrast to traditional cloud computing models where resources are allocated through the
rental or provisioning of servers, serverless computing operates differently. The cloud provider
dynamically allocates resources as needed to execute and scale an application’s code, enabling
developers to upload their code in the form of small, single-purpose functions that are only triggered
by events or API requests. This eliminates the need for allocating resources through the rental or
provisioning of servers and simplifies the development process.

Serverless Computing holds enormous potential for drastically improving numerous important
facets of developing modern enterprise applications. Serverless computing’s powerful abstractions
of the underlying infrastructure management (e.g., load balancing, scaling-on-demand, etc.), rapid
prototyping, and flexible pay-as-you-go model relieve application developers from the concerns
about the low-level aspects of deploying and provisioning remote service code. Due to seemingly
infinite cloud resources allocated at runtime, this model allows for the perceived infinite elasticity
of serverless functions, so developers can focus on the high-level design aspects of service-oriented
applications [2].

The applications developed using Serverless Functions are generally broken down into individual
functions that can be triggered by different types of events such as manual invocation, scheduled
invocation, HTTP requests or message queues. Each function operates independently from other
with its own isolated environment and resources where the cloud provider automatically allocates

them to handle the incoming requests. From the software engineering standpoint, serverless



promotes reusability, as service developers naturally produce modular service components, to be

reused across multiple projects, rather than monolithic services, tailored for specific projects.

1.2 Growth and Obstacles in Serverless Computing

With an architecture that supports developers to concentrate on the core logic rather than the un-
derlying infrastructure, the growth of serverless computing can be attributed to its attractive features
such as pay as you go model, built-in scalability, and elimination of operational responsibilities.
These features make it a desirable option for businesses and developers who aim to reduce costs,
enhance efficiency, and focus on development instead of spending time and efforts in management
of the underlying resources.

In a traditional server-based model, businesses must allocate and fund a predetermined amount
of computing resources, regardless of their actual utilization. This is because maintaining the
servers that host the compute logic necessary to fulfill customer requests is mandatory. In contrast,
Serverless Computing enables customers to only pay for the exact amount of computing resources
they consume, thus eliminating the requirement for costly upfront investments and reducing overall
costs. Furthermore, its pay as you go model combined with inherent scalability enables developers
to adopt a microservice architecture instead of developing monolithic applications. This simplifies
the process of modifying individual modules and incorporating new features, providing greater
flexibility to the overall architecture.

With the recent growth in internet-based services and tools, it has become crucial to be able to
adapt to changing customer demands. The unpredictable nature of demand makes it essential to
have the ability to seamlessly scale resources, avoiding both service interruptions and unnecessary
over-allocation or under-allocation of resources. This is where serverless functions come in, offering
the added benefit of eliminating the need for operational management. The cloud provider takes
care of all the underlying infrastructure and maintenance, freeing businesses to focus solely on their
core products and reducing the time and cost associated with managing their own infrastructure.

Given the above mentioned benefits of Serverless Computing, it has been adopted into many
applications, both enterprise and academic in nature. One such example of use of Serverless
Computing is Netflix which uses AWS Lambda for operations tasks such as video encoding, file
backup, security audits of EC2 instances, and monitoring [3]. In the scientific community, it has
also been used for scientific workloads such as SNP Genotyping[4], Seismic Imaging[5], Parallel
Analytics[6], etc.

Serverless Computing offers several advantages in terms of scalability and cost-effectiveness,
but it also comes with its limitations. One of the key limitations is the limited invocation time

per instance, which is capped at 15 minutes (as of 10th Feb, 2023) on AWS Lambda, resulting



in a stateless environment where subsequent invocations are not guaranteed to run on the same
machine. To overcome this, developers often use additional services provided by the cloud provider
to enhance their application’s workflow and make their functions stateful.

Another limitation of serverless functions is their cold start time, which refers to the delay that
occurs when a function has not been executed in a while, and the cloud provider needs to allocate
new resources. This delay can last from several hundred milliseconds to a few seconds[7] and is a
significant drawback of serverless computing, particularly for time-sensitive applications where
low latency is crucial. However, there are ongoing efforts to address this issue, with researchers
and developers actively working on improving cold start duration. One such effort is Snapstart[8],
recently introduced by AWS, which significantly improves the startup performance of AWS Lambda
functions written in Java by over 10X. Snapstart works by using a Firecracker microVM snapshot
of memory and disk state, which is cached for low latency access.

The choice of cloud provider also presents a challenge in serverless computing as it can result
in vendor lock-in. Once a cloud provider is selected, it can be difficult to move to a different
provider due to the tight coupling with a single provider. Furthermore, the limited control over
the environment and infrastructure can make it challenging to incorporate dependencies and debug

serverless functions, which are inherently ephemeral in nature.

1.3 Open-Source and Serverless Computing

The open-source community has made a significant impact in the development and maintenance
of open-source tools for Serverless Computing. These tools are designed to help developers in
their serverless development and deployment processes. To better understand the open-source tools
in the realm of serverless computing, it is important to categorize them into two main categories:
Platforming Tools and Deployment Tools.

Table 1.1 shows these two categories of open-source tools for Serverless Computing, along with
examples of tools for each category. Each tool has its unique features and advantages that cater to
different development requirements.

Platforming Tools are designed to help developers create a serverless platform that enables them
to run serverless functions on their selected cloud infrastructure. These tools include OpenFaas,
Apache OpenWhisk, and Kubeless, which provide developers with the necessary platform to execute
and scale their serverless functions in a cloud environment. These tools have received wide-spread
recognition and support from the open-source community and have seen a rapid growth in usage
among developers.

Deployment Tools, on the other hand, are focused on helping developers push their code to the

existing cloud infrastructure platforms such as AWS and Google Cloud. The Serverless Framework



Table 1.1: Open-Source Tools for Serverless Computing

Category
Platforming Tools | OpenFaas, Apache OpenWhisk, Kubeless
Deployment Tools | Serverless Framework, AWS SAM, Gordon, Zappa

is a popular deployment tool that provides developers with a unified experience across cloud
providers and offers a wide range of features for faster and easier deployment of serverless functions.
Other tools in this category include AWS SAM, Gordon, and Zappa, which help developers to
manage and deploy their serverless functions more effectively.

AWS SAM, Gordon, and Zappa are other popular deployment tools that serve a similar purpose
to the Serverless Framework. These tools have their unique features and advantages that cater to
different development requirements. For instance, AWS SAM provides a framework for defining
serverless applications and generating CloudFormation templates, which are critical for managing
resources in the AWS cloud platform. Gordon, on the other hand, offers fast and straightforward
deployment for Python-based serverless applications by leveraging the power of AWS CloudFor-
mation. Zappa is a serverless web framework for Python that makes it easy to develop and deploy
serverless applications on AWS Lambda and API Gateway.

In recent years, there has been a growing emphasis on the sharing of serverless function code,
which enables developers to take full advantage of the inherent modularity of serverless functions.
This idea of code sharing is driving initiatives such as the Amazon AWS Serverless Application
Repository (SAR), which enables developers to open source and share their code with others,
making it easier to reuse core components across multiple projects.

By leveraging the modular nature of serverless functions and the potential for reuse, particu-
larly for common utility functions such as video encoding, text-to-speech conversion, and image
compression, serverless computing holds great promise for the future of application development.
Developers can save significant time and effort by leveraging existing tools and functions developed
by the open source community, allowing them to focus on the core logic of their applications and
avoid duplicating code.

For instance, a developer working on an image classification machine learning model can reuse
functions such as RGB to grayscale conversion and image resizing, freeing up valuable time and
resources to focus on the essential aspects of the project. This can reduce development efforts and

streamline the development process, providing a more immersive experience for developers.



1.4 Success Criteria for Open-Source Contributions

As serverless computing becomes increasingly widespread, the open-source community will
continue to be a crucial player in its development and the future of cloud computing. The community
has already made a significant impact by providing developers with the resources and tools needed
to build and maintain serverless functions, but there is still room for improvement. Currently, there
are gaps in the sharing and reuse of serverless functions, which could greatly benefit the community.
The tools for researching and developing serverless functions to encourage sharing and reuse are
limited and have not received much attention.

The very success of an ideal situation for a software project that utilizes serverless computing
hinges on the ability of application developers to find functions that are the most suitable for the task
at hand. For instance, in a chatbot project, functions like tokenization, lemmatization, and encoders
may be deemed critical. As it turns out, this is a formidable task due to two main complications.

First, the high heterogeneity of vendors and platforms rules out a one-stop platform for service
developers to share their serverless functions. The serverless ecosystem is highly fragmented
across multiple infrastructure providers, including Microsoft Azure [9], IBM Cloud [10], AWS [11],
Google Cloud [12], and open source serverless frameworks [13] that support multiple infrastructure
providers. AWS [14] maintains its own platform for developers to share open source reposito-
ries(AWS SAR), Google Cloud maintains 51 sample functions [12], while developers of other
serverless platforms open source their functions on Github.

Second, the existing search facilities for serverless functions rely on keyword-based searching
heuristics, which alone are insufficient to find the functions based on their suitability for a given task.
To be able to effectively search for serverless functions, a search facility must take into account

their unique characteristics(see Fig. 1.1) that include
1. library usage, a critical issue for serverless as compared with traditional services
2. high user sensitivity for the runtime costs
3. software licensing, which imposes legal restrictions on how serverless functions can be used

The success of finding the most suitable serverless functions for a software project depends on
the ability to take into account important characteristics. Current search facilities fall short in this
regard and cannot accurately identify the best functions. To overcome this, it is crucial to consider a
combination of performance, resource utilization, and legal criteria when searching for the right

serverless functions.
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Figure 1.1: Unique characteristics of Serverless Functions

1.5 Problem Domain and Contributions

Driven by these insights, this thesis presents a novel approach to search for serverless functions.
This paper presents a novel approach to searching for serverless functions. Dubbed OS?, our
approach maximizes the suitability of returned serverless functions by incorporating the unique
characteristics above. For (1), it improves the precision and completeness of the search results by
complementing keyword-based search results with library usage; for (2), it estimates the complexity
of serverless repositories by analyzing their source code to rank the search results; for (3), it filters
out license-problematic repositories based on the individual use case.

The reference implementation of OS? searches for open-source serverless functions across
multiple vendor platforms. Its search space comprises 5,981 serverless repositories, filtered out
from over 60K repositories, collected for four major vendors from GitHub. OS? not only improves
the precision and completeness of keyword-based search, but also identifies repositories protected
by appropriate software licenses, thus returning search results that are most suitable for the task at
hand.

This thesis makes the following contributions:

1. We collect and filter over 60K Github repositories to curate a high-quality dataset of 5,981
serverless repositories. We carefully study the data and identify several unique aspects of

searching for serverless functions.



2. We introduce a clustering-based algorithm to improve keyword-based search by considering
library usage; it refines the search results of existing search algorithms by removing false

positives and appending repositories originally missing.

3. We build the first search engine for cross-platform, open-source serverless functions. The
search engine enables incremental development of serverless functions based on similar

open-source versions, filling in the missing pieces of the serverless ecosystem.



CHAPTER 2

Search and Recommendation in Serverless Computing

When it comes to Search and Recommendation systems, it’s important to understand the
underlying technology powering them, which often involves Information Retrieval Systems. These
systems are designed to quickly and efficiently retrieve relevant information, helping users find
what they’re looking for in a timely manner. Fig. 2.1 shows the modules involved when working
with information systems.

To achieve this, Information Retrieval Systems use several different modules that work together
to enable the smooth functioning of the system. The first module is the Query Normalizer, which is
responsible for standardizing user queries so that they can be effectively processed by the system.
This module helps to ensure that the system can handle a wide range of queries, no matter how they
are phrased or spelled.

Next, the Preprocessing module is responsible for parsing and analyzing the documents or
data that the system will be searching. This module is crucial for ensuring that the system can
quickly and accurately retrieve relevant information. It also involves techniques like stemming and
stop-word removal, which help to improve the precision and recall of the system.

The Search algorithm is the core of the Information Retrieval System, and it’s responsible for
matching user queries with relevant documents or data. This module employs techniques like
keyword matching, fuzzy matching, WordVector based matching and so on to ensure that users
receive the most relevant results possible.

After the Search algorithm has retrieved a set of documents or data, the Ranking module comes
into play. This module is responsible for determining the relevance of each document or data point,
and ranking them in order of relevance. This ensures that users see the most important results first,
and helps them to quickly find what they’re looking for.

Finally, the Filtering module is responsible for removing any irrelevant or low-quality results
from the set of documents or data that have been retrieved. This module uses a variety of techniques,
including machine learning algorithms, to help identify and filter out irrelevant results, improving

the overall quality of the results provided to the user.
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2.1 Keyword Based Search and Recommendation Techniques

Keyword matching algorithms are an essential component in various applications like search
engines and recommendation systems. These algorithms help to match keywords entered by
users with relevant content stored in a database, thus ensuring an efficient and effective search or
recommendation experience. The objective of keyword matching algorithms is to provide the most
relevant results for a user’s query.

There are several variations of keyword matching algorithms, including exact match, partial
match, and fuzzy match. Exact match algorithms return results that exactly match the keyword
entered by the user. For instance, if someone searches for “’serverless function for image encoding,”
the algorithm will return search results that contain the words “’serverless”, function”, “for”,
”image” and “encoding”. On the other hand, partial match algorithms return results that contain the
keyword entered by the user, even if it is not an exact match. For the same example, the algorithm
will return results that contain words like ”server”, ”serverless”, ”functions”, “encode”, “image”,
“images” etc. Some Fuzzy match algorithms goes a step further to return results that are similar to

the keyword entered by the user, even if they are not an exact match. For instance, the keyword



”serverless” might also be associated with the keywords “cloud computing”, ’function”, ”lambda”,
"AWS”, ”Azure”, etc.

Keyword matching algorithms not only consider the type of match but also take into account
various factors to rank the results and determine their order. These factors include keyword
frequency, relevance, and user intent. For instance, a keyword that appears frequently in the content
is more likely to be considered relevant than one that appears less often. To perform such filtering,
various techniques like TF-IDF can be used[15].

Moreover, the relevance of a keyword depends on the context and user intent. For example,
different users might search for different things using the same keyword. To provide accurate results,
it is essential to have domain knowledge, which helps in recommending contextual-based results.
Thus, understanding user intent and context is crucial for providing the most relevant results.

To improve the accuracy of keyword matching algorithms, machine learning and natural lan-
guage processing techniques can also be used. These techniques enable the algorithm to better
understand user queries, disambiguate similar keywords, and provide more precise results. By
incorporating these advanced technologies, keyword matching algorithms can more effectively

recognize and address user needs, leading to higher user satisfaction and engagement.

2.1.1 Exact Match Keyword Based Search

Exact match keyword-based search is a simple search algorithm that involves matching the
query precisely with the keywords or phrases in the documents. The main goal of this type of search
is to find documents that most match the query terms, making it ideal for straightforward search
scenarios.

To perform an exact match keyword-based search, the query is typically broken down into
individual keywords, a process known as tokenization. Then, the search system looks for documents
that contain those keywords, taking into account lemmatization and considering the root forms of
the tokens. To provide more relevant results, the search algorithm also penalizes common words
such as ”is,” ”the,” and ”a” to ensure that only the most important and relevant words are used for
ranking.

The search results are then ranked based on the number of matches and the context, where
the documents that contain more matches appear higher in the rankings. Additionally, to improve
the quality of the results, the system ensures that the words are important and relevant within the
context of the query while giving less importance to the commonly occurring words as discussed.

One advantage of exact match keyword based search is that it is simple and straightforward to
implement, and can be easily integrated into existing systems. Furthermore, it is also very fast and
efficient, since it only requires a direct comparison of the query and document terms, without any

additional processing.
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Given the benefits of exact match keyword based search, it also has several limitations. It can
only return results that match the exact query terms, and cannot handle synonymy, polysemy, or
other semantic relationships between words. Additionally, it is sensitive to spelling errors and other

forms of user error, and can only match exact terms, rather than semantically related terms.

2.1.2 Word2Vec Embedding Distance Based Search

The introduction of Word2Vec based word embeddings marked a major advancement in keyword
based search. They are vectors of continuous values that represent high-dimensional data in low-
dimensional vector space. These representations are commonly used in various natural language
processing and machine learning applications, including sentiment analysis, document classification,
and recommendation systems. In the realm of information retrieval, embeddings can be utilized to
depict documents or query terms in a continuous vector space that can then be compared through a
similarity measure such as cosine similarity.

Word2Vec is a popular method for learning word embeddings, where each word is represented
as a vector of real numbers. The goal of Word2Vec is to preserve the semantic relationships between
words in the embedding space. For example, words that are semantically similar should have
similar embeddings, and words that are semantically dissimilar should have dissimilar embeddings.
Word2Vec learns these embeddings by predicting the surrounding words of a given word, using
either a continuous bag-of-words (CBOW) or skip-gram model.

Given a sequence of words (wy,ws, ..., wr), the CBOW model maximizes the average log
probability (Equation 2.1) where w; is the target word, and w;_g, . .., w;j are the surrounding
context words. For which the probability p(w|w; g, ..., w;1x) is computed using the softmax
function as defined in Equation 2.2 where v, is the vector representation (embedding) of word w,

and W is the total number of words in the vocabulary.

T
1
T Z log p(wi|wi—k, - ., Wiig) 2.1

t=1

exp(vw; - 5 > j = 1,7 #t — k' vu;)
S — IV explvi- §33) = 1j £ L v)

The skip-gram model in Word2Vec is similar, but instead of predicting the target word given the

p(wi|wi—p, ..., Wep) = 2.2)

context words, it predicts the context words given the target word. This form of embeddings allows
us to compare sentences based on their semantic meaning. As an example for our case, the words
’serverless”, ”cloud computing”, ”AWS Lambda”, etc will be close to each other in the vector space
while the words such as ”’Server” or ”’Virtual Machines” should be placed away from each other.

To check how similar or dissimilar the query is, we generally use Word2Vec and find the cosine

11



distance between query vector and document vector. The goal here is to find documents that are
semantically related to the query, rather than just matching the exact terms in the query. Hence,
improving and expanding the search results.

Equation 2.3 is used for determining the cosine distance between two word vectors where ¢
represents the query vector and d represents the document vector. While ||g]| and ||d|| are the

magnitude of the query vector and word vector respectively.

—). J’
cosine distance = q—q 2.3)
[T [|]]

One advantage of Word2Vec based search is that it can handle queries with multiple terms and
handle synonymy, polysemy, and other semantic relationships between words. This is because
the embeddings capture the semantic meaning of words, rather than just matching exact terms.
Additionally, Word2Vec based search can handle misspellings and other forms of user errors, since
the embeddings capture the semantic relationships between words, regardless of the exact spelling.

Having said that to train an accurate Word2Vec Embedding model we require a large, high quality
training set. If the training set is biased or limited, the embedding may not accurately represent the
semantic relationships between words, leading to inaccurate search results. Additionally, Word2Vec
based search may struggle with rare or domain-specific words that may not appear frequently enough
in the training data to generate accurate embeddings. This can result in poor search performance for

specialized domains or niche topics.

2.2 Peculiarities in Serverless Computing

As discussed, Serverless computing is a model of cloud computing that operates on a pay-per-
use basis. When a user requests a service, the cloud provider allocates and creates the necessary
resources on a virtual machine. This process is designed to be fast and efficient, but it can sometimes
suffer from what is known as the “cold start problem”. This occurs when the required resources are
not readily available and must be newly instantiated, leading to slow response times.

To address this challenge, serverless computing platforms have imposed certain restrictions on
the amount of compute time and resources that can be utilized for each instance. This is done to
ensure that the process remains efficient and reliable, even when the demands on the system are
high. As a result of these restrictions, developers must write functions that are concise, well-defined,
and focused on a specific task.

This approach to writing code encourages developers to create simple, efficient functions that
are optimized for use in a serverless environment. It also requires developers to make strategic
decisions, particularly when importing libraries as the size of external libraries can significantly

impact the performance of the function.
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Also, when suggesting serverless functions for reuse, it is crucial to take into account their
accompanying licenses, which dictate the permitted usage and deployment of the serverless function,
without the need to open-source the entire application. Different types of licenses are available and
are typically used to release code as open source. Each license possesses distinct characteristics and
fulfills a specific purpose, and identifying them based on usage can result in beneficial outcomes.

Additionally, it’s crucial to ensure that the recommended functions belong to the same platform
as the one the application is being developed upon. This is because of the vendor lock-in problem,
which does not allow the customers to change the platforms with ease. When implementing a search
and recommendation system, it is necessary to take all of these factors into consideration in order to

recommend a useful and effective serverless function to developers.

2.3 Known Problems for Search and Recommendation

When it comes to working with search and recommendation systems, the quality of the data is
paramount to the success of the system. However, despite the best efforts to ensure high-quality
data, the data that we have are often not up to the desired standards. Many of times, we even forget
to incorporate something important as the licenses which can lead the found repository moot.

One of the major challenges faced when we are trying to improve search and recommendation is
the presence of missing, vague, or incorrect descriptions of the of the source code. To make matters
worse, it can be even more challenging to relate the descriptions provided with the actual functions
defined within the source code. This makes it harder for the recommendation systems to relate
with the functionalities within the code. This can lead to a situation where the system is unable to
provide accurate recommendations or search results for the same.

Furthermore, the repositories found also have numerous example repositories, repositories
for the purposes of learning, teaching and so on. Such repositories are not generally suitable
for production as they are not optimized for maintainability as opposed to a production ready
repositories. Also, a lot of times we see repositories that are exactly the same with little to no
difference. This creates multiple recommendation results for the same repository. Thus, when
recommending repositories it is of high importance to return a diverse suggestion maintaining a
balance between relevance and diversity of the results.

Table 2.1 provides a summary of the challenges we explored regarding their impact on Search
and Recommendation for Serverless functions, along with potential solutions to mitigate these

impacts.
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Table 2.1: Challenges and Solutions for Serverless Repository Search and Recommendation

Challenge

Impact

Solution

Redundant Data

Repeated Sugges-
tions and decreased
utility

Shallow compare
and remove same
repositories from
the dataset

Toy Repositories

Poor recommenda-
tion quality

Remove reposito-
ries with keywords

like example, toy,

test, etc.
Bad Descriptions | Inaccurate Results | Ensure higher
or Missed Results | cleaning and
preprocessing
procedures, Rely

on diverse set of
features instead of
descriptions only.
Usage based rec-
ommendation that
inherently consid-
ers licenses

Ignoring Licenses | Unusable Reposito-

ries

2.4 Current State of Search and Recommendation for Serverless Functions

As previously discussed, there are initiatives in place to promote collaboration among individuals
and facilitate the sharing and reuse of serverless functions. However, these efforts are limited to the
development of tools like the Serverless Framework and repositories like AWS SAR. While the
Serverless Framework automates and simplifies the deployment process, allowing users to share
code on platforms such as Github, SAR promotes sharing and reuse within the vendor platform.

Despite these initiatives, the growth of AWS SAR lags behind the repositories found on Github,
and the sharing and reuse of serverless functions has yet to reach its full potential. Developers
continue to implement similar functions repeatedly, rather than leveraging the existing functions
already developed by members of the open-source community.

The number of serverless functions available through public repositories is growing, which can
make it challenging for developers to find the right function for their needs. Furthermore, multiple
functions may perform the same task, and it may not be immediately clear which one is the best fit.
Additionally, serverless functions may have different performance characteristics, dependencies,
and licensing requirements, all of which need to be considered when making a recommendation.

The search and recommendation of serverless functions is essential to promote better sharing

and reuse, yet there have been few efforts to research and improve this process, specifically tailored
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to serverless functions. Keyword-based matching can be problematic due to incomplete or missing
information in Readme files. Finding specific functions based on an exact query can also be
challenging when working with code examples that require more context than what can be included
in a search query. Therefore, it is crucial to continue exploring ways to improve the search and
recommendation of serverless functions to better promote sharing and reuse in the open-source

community.
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CHAPTER 3

Data Collection and Analysis

In this chapter, we will discuss the main considerations we took into account when collecting
our dataset of serverless repositories. Currently, there is limited research on serverless functions
and the datasets available are not comprehensive enough[3, 16]. Some studies have attempted
to analyze serverless with custom datasets but the collected data is insufficient in both quality
and quantity. For example, the largest dataset available is Wonderless, which contains only 1877
serverless repositories, and another high-quality dataset[3] contains 89 repositories.

To enable effective search and recommendation, a much larger and high-quality database is
required. To address this gap, we collected a dataset of over 60K serverless repositories from
GitHub and analyzed it to inform the design of our search engine. We then narrowed it down to
5,981 repositories after cleaning and preprocessing the data. In the following sections we discuss

our methodology for the same.

3.1 Data Collection

During our research on datasets related to serverless repositories, we analyzed multiple sources
and found the recently published Wonderless dataset [16] to be the most comprehensive among its
peers, with a collection of 1,877 serverless repositories. While the size of this dataset is impressive,
we found that it has some limitations in terms of its collection procedure and criteria for cleaning
data.

One of the major drawbacks of the Wonderless dataset is that it relies solely on the Serverless
framework [13] as the source of repositories. This could potentially limit the dataset’s relevance for
search and recommendation purposes, as it may not capture the full range of serverless repositories
available on various platforms.

Moreover, the criteria used to clean the data in Wonderless are overly strict and may remove
repositories that could have had significant recommendation value. In particular, we found that
Wonderless removes multiple repositories that could be useful for developers to consider for reuse

purposes.
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Another important factor to consider when working with source code deployed on the internet is
the presence of licenses for repositories. It is often a topic that goes unattended but is critical when
search and recommendation is concerned. We found that Wonderless did not take this into account
during its collection procedure. As a result, many of the repositories in the dataset are moot and
cannot be used for any reuse purposes.

On that note, after accounting for the presence of licenses, we found that the number of
repositories that could be used from the Wonderless dataset reduced to 819 repositories from 1,877
repositories. This is a massive drop for usable repositories accounting to only 44% of the dataset.
The remaining 1058 repositories did not contain licenses making them unusable.

Recognizing these limitations of the current dataset, we have concluded that a more comprehen-
sive and diverse dataset is necessary to facilitate effective search and recommendation of serverless
repositories. Accordingly, we opted to gather data from multiple sources instead of relying solely
on the Serverless framework, which is the case with the Wonderless Dataset.

We are confident that our dataset, which is larger and more diverse, will enable us to overcome
some of the shortcomings of the existing dataset and better meet the needs of developers searching
for reusable serverless functions. By having access to a more extensive and varied dataset, we can
provide more comprehensive and relevant search and recommendation outcomes. Additionally,
our dataset will prove to be an invaluable resource for conducting further research and analysis on
serverless functions.

To make such an approach possible we consider different kinds of configuration files and
their peculiarities to search for repositories on GitHub for different platforms. We identified
configuration files such as “serverless.yml” for repositories that use the Serverless framework,
“template.yml” for repositories that use AWS, “function. json” for repositories that use
Azure, and “manifest.yml” for repositories that use IBM functions.

By following this process, we collected a total of 67,744 repositories from GitHub, which
comprises 29,995 for the Serverless framework, 14,164 for AWS, 21,523 for Azure, and 2,062
for IBM. This diverse and expansive dataset would provide us with a more comprehensive and
relevant set of repositories, enabling us to conduct further analysis and research related to serverless

functions.

Table 3.1: Platform Validation using Config files

Platform | Configuration File | Validation Check

AWS template.yml AWSTemplateFormatVersion
Azure function.json direction

IBM manifest.yml actions
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3.2 Data Preprocessing

As we previously mentioned, after completing our Data Collection process, we have acquired
a substantial amount of data, with approximately 67,744 repositories. However, it is important to
note that these repositories are not all appropriate for search and recommendation purposes. The
reason being is that the collected repositories may contain irrelevant repositories, as previously
discussed, due to common names such as “function. json” and “manifest.yml”. Moreover,
the repositories may also consist of examples that are used to setup basic structure of serverless
functions, repositories that serve the purpose of training and teaching, and repositories that are
very similar to one another. As a result, these factors could lead to the difficulty of distinguishing
between the relevant and irrelevant repositories during the recommendation process.

In order to enhance the quality of the collected dataset, we have implemented several prepro-
cessing steps. The primary objective of these preprocessing steps is to ensure that the repositories
obtained are of top-notch quality and are relevant for the purpose of searching and recommending
serverless functions. The overall workflow for preprocessing can be observed in Fig. 3.1. In this
section, we will elaborate on the preprocessing steps that we have taken to achieve this goal.

The initial step that we took in the preprocessing of our dataset was to eliminate empty reposi-
tories and toy repositories that consist of specific keyword phrases such as example, demo, and
test in their Readme files. This removal process is carried out as these repositories often do not
accurately represent genuine serverless functions. By removing these repositories, we can enhance
the precision and relevance of our search and recommendation results.

Subsequently, we proceeded with the filtering of all repositories by removing unlicensed reposi-
tories, a step that was not performed during the creation of the Wonderless dataset. The removal of
unlicensed repositories is deemed essential for the effective recommendation of serverless functions
as it ensures that only repositories for which the owner has authorized reuse and modification can
be considered. It is imperative to note that the owner alone has all rights reserved for an unlicensed
repository, and its use without the explicit permission of the owner may result in legal consequences.
Additionally, we carried out the elimination of all duplicate repositories to ensure that the resulting
dataset contains only unique and distinct repositories.

During the data collection process, we also took into account the potential removal of repositories
with no stars or those that were inactive, a step that was implemented in the Wonderless dataset.
However, we decided to keep such repositories as they could still be useful for the purpose of
searching and recommending serverless functions.

The decision was based on the fact that serverless functions are typically small modules that
perform a specific task. Therefore, if a function is not actively updated, it is highly likely that
it already performs its intended functionality and is considered complete. Moreover, not all
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Figure 3.1: Preprocessing and Data Cleaning for OS® Dataset

functions can be easily discovered, and a repository with no stars might indicate that it was merely

undiscovered, and not necessarily imply that it should be excluded from recommendation. In light
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Figure 3.2: Validity Check Workflow for Serverless config files

of these considerations, repositories with no stars or those that are inactive are still deemed useful,

and their removal could prove counterproductive for searching and recommendation tasks.
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Furthermore, as noted above, some configuration files such as “function. json” and
“manifest.yml”, are commonly found in software repositories that are not related to serverless
functions. To avoid having irrelevant repositories in our dataset, we use configuration peculiarities
to validate whether a repository is genuinely used for implementing a serverless function. These
peculiarities are based on the documentation for their respective platforms, which are listed in Table
3.1. This table is used in workflow as defined in Fig. 3.2 which is the part of Fig. 3.1.

Following the execution of all the cleaning and filtering steps mentioned above, we were able to
considerably reduce our dataset to a total of 5,981 repositories. Among these, 5,220 repositories
were developed using the Serverless framework, 498 were created for AWS, 241 for Azure, and
22 for IBM. From these results, we can infer that the most commonly used deployment method is
via the Serverless framework, followed by AWS, Azure, and IBM, respectively. It is noteworthy
that we observed a relatively low level of interest in IBM, while there was a heavy interest in AWS.
Additionally, we would like to highlight that our repository numbers for different platforms align

with the popularity of these platforms, as demonstrated in [17].

3.3 Data Analysis

The purpose of this section is to conduct an in-depth analysis of the repositories we have
collected, with a specific focus on identifying the peculiarities that are inherent to serverless
functions. Our goal is to gain a better understanding of these peculiarities, as such insights will be
valuable when designing and implementing a search and recommendation system for serverless

functions.

3.3.1 Study 1: Usages of Externally Managed API

Our analysis of the collected repositories has revealed that a significant majority (88%) of
serverless functions rely on externally managed APIs, such as S3 [18], DynamoDB [19], Lex [20],
Polly [21], and SQS [22], among others.

In addition to these APIs, we have also noted that developers often utilize cloud services like
AWS Textract to implement the desired functionality quickly. This trend is a positive direction
for serverless functions, as it enables developers to rapidly implement their desired functionality
by providing pre-built serverless functions for their use. Our goal of providing a search and
recommendation system for serverless functions is aligned with this trend of facilitating faster
development by leveraging existing services and functions.

Additionally we observe that developers of serverless functions are more likely to avoid import-
ing unnecessary libraries as compared with other software developers. On average for serverless

functions, we find 2.8 library imports per serverless function, whereas for standard software, the
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number is much higher with an average of 11.6 library imports per project [23]. This difference
is mainly due to the following reasons: 1) serverless functions are usually developed following
the microservice software architecture, in which monolithic software is partitioned into smaller
components, so each component is encapsulated as a serverless function. One serverless function is
concerned with completing a single task; 2) the pay-as-you-go pricing model of serverless requires
that serverless developers be very cautious about the size of their serverless containers, as a larger
container takes longer to ship and more memory to deploy, thus increasing its execution costs.
These reasons force developers to make their code efficient and only include those libraries that are
truly used in the functionality of a serverless function.

We also noticed another notable characteristic that stands out is their heavy reliance on externally
managed libraries. These libraries are utilized to perform various tasks and therefore should tend to
be more strongly correlated with the specific functionalities of the serverless function in question
compared to other types of software. This observation is significant because it highlights the
importance of considering the library usages of serverless repositories when developing a system
like OS®. With this in mind, it becomes clear that understanding the nuances of library usage in
the context of serverless functions is essential for creating an effective and relevant search and

recommendation system for serverless function repository.

3.3.2 Study 2: Equivalent APIs for Different Platforms

When we take a look at the Services and APIs provided by different cloud providers, we find
similarities. Most of the aforementioned externally managed APIs have their corresponding versions
on other platforms as well. We have compiled representative sets of equivalent APIs for different

platforms in Table 3.2.

Table 3.2: Equivalent Managed Services

AWS Azure IBM
1S3 Blob Storage COS
2 | DynamoDB | Cosmos DB DB2
3 | SNS Event Grid Cloud Event Notification Service
4 1 SQS Storage Queues | MQ
5 | SES SendGrid APP Connect
6 | Kinesis Event Hubs Streams
7 | Lex Bot Service Watson
8 | Polly Text to Speech | Watson Text to Speech

The wide existence of such equivalent APIs is caused by Vendor Lock-In [24], as developers

are likely to choose externally managed APIs provided by the same platform. This strategy greatly
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reduces the execution latency and resource consumption of their serverless functions. Furthermore,
it is easier to use such services when they belong to the same vendor due to inherent integration.

The availability of equivalent APIs can facilitate the identification of comparable serverless
functions that have been developed for different cloud platforms. To illustrate this, let’s consider
two serverless functions - one that employs S3, SNS, and Pol1ly, and another that utilizes COS,
Cloud Event notification Service,and Watson Text to Speech.

It can be inferred that these two functions have been developed for AWS and IBM respectively,
and offer similar functionalities. This is mainly due to similar functionalities provided by the APIs
being used. We can see many such examples in the collected repositories. This observation further
serves as a motivating factor for us to incorporate equivalent APIs into OS?, as it can help enhance
the platform’s versatility and compatibility with other cloud providers. By leveraging equivalent
APIs, OS? can enable users to seamlessly integrate their existing serverless functions and find
functions for different cloud vendor regardless of the cloud platform they were originally developed

for.

3.3.3 Study 3: License Considerations

103_

104
| I I I I
[ ]

Unlicense MIT ~ BSL Apache2 MPL2 LGPL V3 GPL V3 AGPL V3 SSPL Partial

Figure 3.3: License Distribution In Serverless Functions (log scale)
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Open source licenses are legal instruments that govern the use, distribution, and modification of
open source software. These licenses grant users the right to access, use, and modify the source
code of the software, and distribute it to others. There are several types of open source licenses,
each with its own set of terms and conditions. There are many different licenses and these licenses
differ in terms of their restrictions, obligations, and compatibility with other licenses.

The choice of license can have significant implications for the development and distribution
of open source software, as it can affect the ability of users to freely modify and redistribute
the software. As such, it is important for developers and organizations to carefully consider the
implications of different open source licenses before choosing one for their project.

In our collected repositories the license distribution can be seen in Fig. 3.3, where the licenses
are arranged in the order of restriction, with the left-most licenses being the least restrictive and
rightmost being the most restrictive. One should note that, in the list of licenses mentioned, the
“Unlicense” license is actually a license that poses the least restrictions on users. Although a large
part of serverless functions uses one of the least restrictive licenses, most are either not licensed or
are toy repositories.

To top that, of the remaining repositories we found that about 9.5% of the repositories use
licenses towards the restrictive end (from MPL2 to SSPL) whereas about 7.7% are only partially
licensed. Partially licensed repositories have some components that can be reused while some are
not usable. This is because many popular software licenses grant permissions for developers to use
and modify open-source software under the terms of certain agreements.

As an example, some licenses allow for commercial use of open source software along with any
software built upon it [25, 26]. Some licenses require an application that is built upon the software
they protect to open source its code as well if the application is distributed to end users [27]. Some
licenses require an application to open source its entire code if any part of the application is built
upon open source software protected by the licenses [28, 29].

When it comes to reusing serverless repositories, the software license considerations share some
similarities but also have noticeable differences with cloud services. Different from traditional
software, cloud-based services require special considerations for software licenses for two reasons:
1) as services are deployed in the cloud, they may not be considered as “being distributed to the end
users.” Therefore, a cloud service can choose not to open source its code even if it is developed
upon open source software protected by a restrictive license; 2) if a monolithic service is partitioned
into microservices, developers of a cloud service only need to open source the part of the code, or
more precisely, the microservice that uses the open source repository protected by the restrictive
license, rather than open sourcing all microservices.

Similar to cloud services, using a serverless function can avoid the need to open source the entire

application while deploying a serverless function protected by a restrictive license in the cloud does
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not require to open source its code. However, serverless functions may be deployed on edge servers,
owned by individuals, so the deployment becomes subject to the “being distributed to the end users”
clause. Hence, we argue that a search engine for serverless functions should consider the planned
application deployment scenarios. If a developer has no plans to open source their modifications on
a serverless repository with a license starting from MPL?2 to Partial, the resulting code cannot be
deployed in edge environments. Such nuances in license usage for serverless functions makes it
even more important to have it considered when recommending serverless functions to a user for

reuse.

3.3.4 Study 4: Cost Considerations

Serverless functions offer a significant advantage over traditional server-based computing as
they allow for resource utilization on an as-needed basis. Unlike server-full computing, where
a fixed amount of resources must be paid for, regardless of whether they are utilized, serverless
computing enables developers to scale resources up or down in response to application demand. This
is particularly beneficial for applications with variable workloads that may experience fluctuations
in traffic.

Another benefit of serverless computing is its ability to minimize costs. By only charging for
resources consumed, serverless functions offer a more cost-effective solution than traditional server-
based computing. This can be especially valuable for implementing expensive functionalities that
would be cost-prohibitive in a server-full environment. By using a serverless approach, developers
can ensure that their applications are highly efficient, scalable, and affordable.

There are two key factors to consider when evaluating serverless functions: the amount of
resources utilized and the associated cost. Compared to traditional software, serverless functions
are typically smaller in size with most being in the range of 10 MB per repository[3]. Additionally,
developers can utilize the cyclomatic complexity of functions to estimate their processing time as
well.

While cyclomatic complexity can be a useful metric for estimating function time, it is important
to note that a lower complexity does not always equate to a faster function, nor does higher
complexity always indicate a slower function. However, when comparing functions with similar
functionality, lower cyclomatic complexity can be advantageous in terms of reducing processing time
and optimizing performance. By considering both resource consumption and function complexity,

developers can create highly efficient and cost-effective serverless applications.
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CHAPTER 4

0S3: Design Considerations

The design of our OS? system is informed by both the characteristics of serverless functions and
insights gleaned from analyzing collected data. OS? is specifically designed to leverage the unique
capabilities of serverless functions in order to achieve three primary goals: (1) prevent incorrect
results, (2) identify relevant but previously overlooked results, and (3) prioritize highly-usable
serverless functions with higher rankings. By utilizing the features of serverless functions, OS?
aims to provide a more accurate and efficient search experience for users.

In addition to the aforementioned priorities, an important consideration for the OS? system
is the ability to utilize the existing underlying search infrastructure. Rather than tightly coupling
the search system with OS?, the design of the system should allow for seamless integration with
existing search tools and frameworks.

This will enable the OS® system to leverage the benefits of existing repositories while also
taking advantage of the existing search infrastructure, resulting in a more efficient and streamlined
search process. By maintaining flexibility in the system design, OS® can adapt to changes in the

underlying search technology landscape, ensuring long-term viability and scalability.

4.1 Capability of Incorporating Existing Search Algorithms

Developers currently apply multiple keyword based mature techniques to search for and rec-
ommend open source functions. Some of these techniques includes algorithms such as keyword
matching [30], topic modeling-based search[31, 32, 33], and Word2Vec-based search[34]. When
we look into these algorithms, the keyword matching search generally matches keywords within
Readme files or their descriptions. When considering topic-modeling based search, it finds a set of
topics to determine to which category a repository belongs. Finally, The Word2Vec-based search
widens the results by using word vectors to find similar repositories.

Although existing serverless repositories, including Github and AWS Serverless Application
Repository(SAR)[14], apply these techniques to search for and recommend serverless functions,

these techniques tend to overgeneralize their search results, thus causing high false positive rates[35].
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For instance, keyword matching might lead to many more matches than required, thereby causing
many false positives[36].

Similarly, topic modeling approaches, such as Latent Dirichlet Allocation(LDA)[37], overgen-
eralize their results by limiting the search categories and thus are vastly inaccurate. The word
vector-based approaches also face similar problems due to them being extremely model reliant
and prone to overgeneralization due to vector distance-based search and influence of outliers [38].
Therefore, these techniques may not be the best solution for finding accurate and relevan results,
more so if we desire to find serverless functions to integrate with the application under development.

After careful consideration of the aforementioned details, instead of creating a new algorithm,
our solution, OS?, focuses on enhancing existing algorithms to improve the accuracy of results
for serverless functions. Our goal is to offer a solution that can be integrated into current search
engines without requiring a complete overhaul of the underlying algorithm. This approach enables
us to capitalize on the strengths of existing algorithms while addressing the limitations they face
regarding serverless-specific features such as configuration files, platforms, and peculiarities related
to the use of libraries in serverless functions.

By keeping the underlying search algorithm intact and improving the results, OS® can extend
the existing search engines rather than create a new one. This design feature makes it feasible to
customize the existing search engines to use OS? without restructuring the underlying search algo-
rithm. Therefore, customization can focus on serverless-specific features, including configuration

files, platforms, and peculiarities related to the use of libraries in serverless functions.

4.2 Improving Search by Exploiting Serverless Peculiarities

By utilizing the unique features of serverless functions, our objective is to enhance the precision
of search and recommendation algorithms. Currently, these algorithms oversimplify and fail to
deliver a comprehensive range of relevant results. Additionally, they do not consider cost and
resource consumption as a primary factor for finding the best match. To address these limitations,
we aim to identify relevant repositories and incorporate them into the search results to ensure
diversity and relevance.

OS? takes advantage of serverless-specific peculiarities to improve the search results. The
desirable properties of serverless functions that led to their unprecedented growth (i.e., infinite
perceived elasticity, reduced DevOps, and the pay-as-you-go model) also impose certain restrictions
on the developer. As revealed in our study, the usages of externally managed libraries are more
correlated with the functionality of a serverless function. We use this peculiarity of serverless
functions to find more comprehensive results and filter out inaccurate results.

In particular, we take as input the search results of an existing search and a ranking algorithm,
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and then refine the given search results by following these steps:

1. Cluster the repositories in the search results by their library usages. To explain this, consider
a simplified example, where the serverless functions in the search results are {a, b, ¢, d}, with
a being the most recommended and d being the least recommended. Applying the clustering
algorithm forms two clusters, {a, ¢} and {b, d}. If we look closer into the serverless functions
in the clusters, we may find a, ¢ both uses libraries /; and [, while b and d both use libraries
l3 and 4. b may also use [, but as it has a stronger connection to d, b thereby falling into the

same cluster.

2. Find the cluster C with the highest energy. We define the energy of a cluster of serverless
> rec By
IC]
result, with a higher R indicating the function is more recommended. The energy of a cluster

functions f € Cas e = , where 7y denotes the ranking of function f in the search
indicates the likelihood of the most accurate serverless functions being included in the cluster.
To continue with the example, serverless functions a and c are the two most highly ranked

results. Hence, we recognize the cluster of {a, ¢} as with the highest energy.

3. Extract the most identical libraries from the selected cluster and expand the equivalent libraries.
By extracting the libraries from the selected cluster, we identify what libraries are used in
the cluster of serverless functions that are most likely to fit the user’s search intent. We then
expand the libraries with equivalent libraries from other vendors (see Table 3.2). To continue
with the example, as {a, ¢} are identified as the cluster with the highest energy, /; and [, are
recognized as the most identical libraries. If [, is “S3” from AWS, the “Blob Storage” from
Azure and the “COS” from IBM should be expanded to the set of the most identical libraries,

because they provide the same functionalities.

4. Filter out the serverless functions that use identical libraries insufficiently. In our case, we
will filter out d, as it excludes libraries /; and [5. At this time, the recommended serverless

functions are {a, b, c}.

5. Append the serverless functions excluded in the original result if they contain libraries in the
most identical set. To continue with the example, if one serverless function ¢ contains [, and
“Blob Storage” but is not included, we will append 7 to the search results. The refined search

results are {a, b, ¢, i}, with a being the most recommended and i being the least recommended.

4.3 Filtering and Reranking the Search Results

So far, the underlying search algorithms still rank the serverless functions in the search results.

As discussed in the study, when developers search for serverless functions, they are concerned about
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whether they can reuse the functions at will and whether the serverless function they choose to use
or build their own function on is the most cost-efficient.

To offer a more effective solution, OS? introduces two additional ranking strategies: (1) based
on licenses and (2) based on cost estimation. The license-based reranking strategy reorders the
recommendation list by placing serverless functions that are not suitable for reuse at the bottom.
On the other hand, the cost-based reranking strategy prioritizes the most cost-efficient serverless
functions, taking into account how the function will be used and deployed. This approach provides
a more organic way of identifying repositories that can be repurposed for development, particularly
in the context of serverless functions.

When estimating the cost of a serverless function, we consider several factors, including the cost
of invoking externally managed services, the cost of consuming resources on the hosting platform
needed to execute the function, and, the cost of shipping and installing the function executable.

The cost of invoking externally managed services is determined through the use of configuration
files and API invocations. In cases where a configuration file like serverless.yml is available, we can
use it to estimate the cost. If not, we can make use of the API invocations to provide an approximate
cost for the use of the repository. Additionally, the complexity of the code is taken into consideration
to calculate the cost of executing a serverless function. Furthermore, the shipping and installation
cost can be inferred by examining the size of the serverless function executable. By considering all

of these factors, we can offer a more precise assessment of the overall cost of a serverless function.
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CHAPTER 5

0OS? Reference Implementation

Our reference implementation of OS? comprises about 3,000 lines of Python code. OS? operates
in three phases: the first phase performs the preliminary search of repositories; the second phase
applies the search result refining algorithm;and the third phase enables an engine user to filter and
rerank the search results based on their costs and licenses. In the following subsections, we discuss
the implementation of OS? in detail.

When working with serverless function recommendation, we note the difficulty in pinpointing
specific function present in the repository based on its Readme file. Additionally, this problem
becomes more pronounced due to the fact that a single code file might be an entry point for multiple
serverless function where each function might further invoke another corresponding function. In our
reference implementation, we only recommend a repository instead of a single serverless function,
and along with that we also estimate the execution cost of a serverless function by measuring the

code complexity of the entire repository to aid users in selecting optimal repository.

5.1 Phase 1: Underlying Search Algorithm

The first phase of the OS® implementation involves the utilization of the existing search algorithm.
It is important to note that the OS® system is designed to be impartial to the underlying search
algorithms. The way we achieve this abstraction is by working on the results of the underlying
search algorithm instead of working on the search algorithms itself. The reference implementation,
however, provides two search algorithms based on keywords: keyword-matching and word-vector
based.

In the keyword-matching search algorithm, the Readme files are preprocessed by removing
stopwords and performing stemming. The stem of the keywords is then matched with the files, and
the raw scores are calculated to determine the similarity. A preference is given to the highest match
to provide the most relevant search results.

In the second search algorithm, word vectors are used to find the relevant files. The algorithm is
based on the Word2Vec([34] algorithm, which is a widely used and highly effective algorithm for
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natural language processing tasks. This algorithm compares word vectors between the user’s search
query and the corresponding Readme files of serverless repositories.

First, The preprocessed words in the Readme files are converted to vectors and added together,
taking the average at the end to determine the approximate location of the Readme file in the vector
space. Similarly, the word vectors for the search query are also aggregated and averaged to obtain
the query vector. The similarity between the query vector and the Readme file vectors is determined
by calculating the cosine distance between them. The search results are then ranked based on the
similarity scores, with the most similar results appearing at the top of the list.

Both of these search algorithms are designed to provide efficient and accurate search results for
the users of the OS? system. The use of both algorithms provides greater flexibility and options to
users to find relevant files in serverless repositories. Additionally, the underlying search algorithms

can easily be switched and replaced making OS? easily adaptable for other use cases.

5.2 Phase 2: Search Result Refining

Once the underlying search algorithm has provided initial recommendations, we use a clustering
algorithm to refine the results and eliminate false positives, as well as add any repositories that were
initially missed. To accomplish this, we apply the Louvain algorithm for clustering [39], which
finds the cluster with the highest energy and identifies the APIs that are most representative of that
cluster. If necessary, the clustering algorithm can be changed to meet specific requirements e.g.
Label Propagation Algorithm.

Using the APIs identified by the clustering algorithm, we filter out repositories that do not have
any APIs in common that are representative of the search query. This helps us to solve the problem
of over-generalization in the underlying search algorithm, as it eliminates repositories that are not
relevant to the search query. Furthermore, to discover new repositories, we conduct an API-based
search using the same set of APIs. This allows us to identify repositories that may have problems
such as missing Readme files or language differences in the Readme.

By filtering out irrelevant repositories and expanding the search to include additional repositories,
we are able to provide more comprehensive and accurate search results to users. Our approach helps
to ensure that the search results are highly relevant to the user’s query, while also discovering new

repositories that may not have been found through the initial search.

5.3 Phase 3: Filtering and Reranking

As previously mentioned, calculating the cost of a serverless function requires taking into
account multiple factors such as the cost of invoking externally managed libraries, consuming

resources on the hosting platform, and the cost of shipping and deploying the serverless function.
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To estimate the resource consumption, we rely on the code complexity of the serverless function,
which we measure using the widely-used cyclomatic complexity [40] metric. For this, we use the
open-source implementation Mccabe [41] , which supports multiple programming languages such
as Go, Python, and JavaScript.

To measure the deployment overhead, we consider the total size of the serverless function
repository. To achieve this, we traverse all the files in the repository folder and accumulate their file
sizes together as the measurement of deployment overhead.

As for the cost, we store all the costs of tested serverless functions from their official website
into one JSON file. For each serverless repository, we search the code files for the function names
provided by the JSON file and match its cost from the JSON file according to the searched name.
We use this aggregated cost metric for each repository and rerank the results based on the low-cost
repository first in our search results.

In addition to the cost-based approach, we also consider the usage scenario for filtering and
reranking. To achieve this, we use licenses to determine useful repositories and filter out non-useful
repositories. We identify three use cases: Repository for edge distribution, Repository at cloud,
and Repository for open source development. In the case of edge distribution, we cannot have any
licenses in use from MPL2 to Partial, as this requires the developer to open source their complete
code. Similarly, when cloud distribution is considered, and the recommended repository is being
provided to the user as a service only, we filter repositories from SSPL to Partial. Finally, in the
default case where open source contribution by the developer is considered as well, we rerank the
repositories such that repositories with the least restrictive license are recommended with a higher
priority, while the most restrictive repositories are placed at the end (see Fig. 3.3). While reranking,

we maintain the relative ranking by our search algorithm.
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CHAPTER 6

Case Study

In this chapter we take a look at how OS? operates with real world data. We go deeper and

analyze how the system interacts with the search results returned by the underlying search algorithm.

6.1 Query 1: Machine Analysis and Learning

Let us take a closer look at Fig. 5.1 that works with the search query “machine analysis
and learning” and describes how OS® works internally with the results. We received 129
search results using our underlying Word2Vec based search algorithm. We apply the Louvain
algorithm on the obtained results to identify the underlying clusters. Note that there were 8 clusters
detected and each clusters had more repositories than depicted in the figure. We apply Step 2 in the
search result refining algorithm to detect cluster with the highest energy.

In our example, we see that cluster 2 had the most energy. Using the detected cluster we find the
APT’s with most count. In this case we were able to find some of the commonly used libraries such
as numpy, pandas where analysis was involved. We also find SOS being used which we expand
with MQ and Azure Storage Queue.

After finding the API’s we use them to filter out the search results where we remove Pollaris
and LambdaMailer because they didn’t had any common API’s. Furthermore, we also use this API
to discover new repositories from our global repository database by selecting API’s that had most
number of API’s in common with our selected API’s.

In this case we were able to detect 3 repositories (data-analysis-aws, smartguard, mdm-night-
owl) of which each had pandas and numpy in common. We then combine these filtered repositories
and new recommendations together while keeping the existing recommendation intact and filling
the filtered repositories (Pollaris, LambdaMailer). In instances where the number of repositories is
insufficient to occupy the vacant positions, we employ an alternative strategy. Specifically, we rely
on the recommendations preceding the original search result to fill the void. This approach helps
ensure that all the slots are appropriately occupied and that the resulting recommendations remain

comprehensive and informative.
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Finally, we exemplify how the results are processed and makes changes to the recommendation
based on how the user wants to use the repositories. Currently as mentioned, we define 3 common
usage scenarios, Repository for edge distribution, Repository at cloud, and Repository for open
source development. Based on the usage we filter the repositories that can be used for the defined
usage scenario. We choose open source deployment hence, no repositories get eliminated since all
licenses that we are considering allow for open source deployment.

Furthermore, we also perform reranking based on license if required where the repositories with
least restrictions are ranked higher and repositories with more restrictions are placed lower in the
ranking. In our case, we notice that the result Hackathon had a license that didn’t suit our usage for
the repository and was eliminated (shifted to the end of the results).

Similarly, for cost-based reranking, we apply our cost-finding algorithm to determine the relative
invocation cost for these repositories for the ranking. Note that the numbers were changed for ease
of explanation, but the ranking was kept intact. Furthermore, we also keep the relative license
ranking intact as well. This means that license with least restrictions will be preferred compared to
license with greater restrictions regardless of cost. To achieve this, an algorithm similar to bucket
sort is applied where the repositories found are placed in buckets based on their licenses and then

sorted within them.
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CHAPTER 7

Evaluation

To evaluate the effectiveness of OS?, we seek answers to the following research questions:
Research Question 1: Compared with basic keyword-based search approaches, how much can OS?
improve precision?

Research Question 2: Can OS? accurately discover new repositories that are missing by the basic
keyword-based search approaches?

Research Question 3: Can the license-based filtering improve the suitability of the search results?

7.1 Experimental Design

To generate a set of search queries that we will employ to measure the effectiveness of keyword-
based search in comparison with keyword-based + OS?, we conduct an extensive review of various
datasets and research papers[42, 43, 44, 45], accumulating a total of 18 queries. These queries
are formulated based on either using popular repositories for serverless or actively researched
repositories.

We execute the underlying search algorithm separately, both with and without OS?, using these
queries to obtain suggestions. From these suggestions, we choose the top 5 results, disregarding the
remaining ones. This provision ensures that we have enough results to make comparisions.

Subsequently, these outcomes are manually verified against their corresponding searched queries
to determine the number of false positives within the top five recommendations. Two reviewers
assess each search result manually. After thoroughly perusing the description file and source code
of the repository, each reviewer independently determines whether the repository aligns with the
search intent. If the two reviewers have differing opinions regarding a particular repository, a third
reviewer is consulted to help reach the final decision.

Furthermore, to ensure the credibility of our results, we use the Cohen’s Kappa inter-rater
agreement coefficient to measure the level of agreement between our reviewers. The Cohen’s Kappa
score ranges from O to 1, with scores closer to 1 indicating a higher level of agreement between

reviewers. We set the threshold for a satisfactory level of agreement at 0.6. If the Cohen’s Kappa
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score falls below this threshold, we review the recommendations again and discuss our discrepancies
with more people until we reach a consensus. This approach helps with the validity and reliability
of our research findings.

We also tap into the OS? algorithm for Keyword Matching and check how many new repositories
were discovered and added based on API alone. Please note that we don’t consider all the discovered
repositories, but only the added repositories, as it is only the added repositories that contribute to
the recommendation. The number of repositories that are added is mainly dependent on how many

repositories were filtered based on missing common APIs.

7.2 Experimental Results and Discussion

Table 7.1 demonstrates 6 different search queries that we performed and how the OS® changes
the recommended repositories. We do note that these queries are generic in nature, this is to give
credibility to the search queries as they are in some form or the other directly related to repositories
that are currently under research or for repositories that are used for various studies.

Furthermore, the drawbacks of overgeneralization becomes apparent when using basic search
algorithms, particularly when we observe the repositories that are eliminated by the O.S3. For
example, a search for “text recognition” generates numerous suggested repositories that are
unrelated to text recognition or analysis, such as text-my-wife, barrimage, text-adventure-api, and
khanoi-serverless. These repositories were suggested primarily because their Readme contained the
keywords “text” (including alt text) or “recognition” in the case of barrimage.

During the initial recommendation process, the repository called fasttext-serverless was not
given due consideration, but it was later uncovered by O.S3. Upon further exploration, it was found
that this repository plays a crucial role in recommending relevant hashtags for Twitter posts by
analyzing the text used in the post. This analysis is based on a popular text classification algorithm
called "fastText” that can process vast amounts of text data efficiently.

The recommendation system’s oversight of this repository could have led to a significant gap in
its results, as it failed to consider the valuable repository. Instead of suggesting the repository, it
went ahead with more explicit matches and used those repositories. This gives us more of a reason
to put more focus on other features instead of just relying on the descriptions for the repositories.

The results of our study are depicted in Fig. 7.1. This figure illustrates the number of false
positives returned by each search query. In order to compare the performance of different search
methods, we conducted an analysis of false positives for both Keyword Matching and Keyword
Matching + OS?, which is presented in Fig. 7.2. Additionally, we also analyzed the performance of
Word Vector based Search and Word Vector + OS? and the results are shown in Fig. 7.3.

Our analysis revealed that incorporating OS?® with Keyword matching leads to a significant
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Table 7.1: Repository Discovery and Filtering using 053

Search Query

New Repositories
Discovered

Removed Reposi-
tories

text recognition

fasttext-serverless

text-my-wife,
barrimage,
adventure-api,
khanoi-serverless

text-

image resize

N/A

bom-radar, base64-
image-receiver

serverless-cognito,
python-lambda-
monorepo,  aws-
twitter-translate-
bot

machine analysis | Data-Analysis- Pollaris, = Lamb-
and learning AWS, schedule- | daMailer
generator, mdm-
nightowl, smart-
guard
sentiment analy- | twitter-sentiment- | slackbot-reginald
sis analyzer,

crypto trading

trading-signal-
processing,
lambda-requestbin

serverless-github-
webhook,
serverless-
tracking-pixel

notes or todo

serverless-notes,
serverless-api,
reloby

notes-js-api, ubi-be

improvement in precision by 8.89%. Specifically, the precision of Keyword matching increases

from 65.55% to 74.44% when OS? is used.

Similarly, when we are working with Word Vector-based search, we increase the precision by
8.23% from 55.29% to 63.52%. In both cases, we can see the increased right skew in the graph.
This right skew in the graph signifies the reduction in false positives during recommendation.

This finding highlights the effectiveness of OS? in enhancing the performance of Keyword

matching. The results of our study provide valuable insights into the performance of different search

methods with and without OS?® and how it helps with recommendation.

In Fig. 7.4, we compiled the newly discovered repositories for each query. Our analysis indicates

that the majority of the added repositories are aligned with the intended direction, with an accuracy
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Figure 7.1: Comparison of False Positive Results w/ and w/o OS? for all Search Queries

rate of 70.58%. However, there are instances where we may have mistakenly suggested inaccurate
recommendations. Sometimes we might also have removed the correct ones. Such situations cannot
be entirely avoided.

Such inaccuracies can arise when the keyword match is weak and the learned APIs are not
indicative of the search query. A case in point can be observed in Table. 7.1 for the query
“sentiment analysis”, where unsuitable repositories, such as serverless-cognito, python-
lambda-monorepo, and aws-twitter-translate-bot, were included as recommendations. This occurred
because the suggested libraries were more relevant to Twitter rather than sentiment analysis.

We see a similar example in query for “crypto trading” where lambda-requestbin was
added to set of api based suggested repositories. Note that we do not use all the suggestions but
only use them on need basis. i.e. when a repository is removed from recommended results due to
missing common API.

Additionally, on a side note, we also see an incorrect removal when querying for “notes or
todo” where notes-js-api was removed incorrectly. This is due to a low assigned score by the
search algorithm and a library mismatch between the selected libraries and the libraries in the
repository.

When we examined the licenses used by the recommended repositories, we discovered that
about 11% repositories are unusable in search results. For the usability criteria, we applied the
strictest criteria to find an upper bound by only considering least restrictive licenses, i.e., licenses

from Unlicense to Apache2 in Fig. 3.3. This filtering process enables us to take into account the
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general use case and facilitates the assessment of repositories relevant to each scenario.
Specifically, we observed that out of 90 repositories, approximately 10 would have been

unsuitable for use in 18 queries, thereby warranting attention. It is worth noting that the percentage

of unusable repositories among the top 5 search results for a query, i.e., 11%, is relatively high

compared to the overall proportion of such repositories, which is only 17.2% as depicted in Fig. 3.3.
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7.3 Interpreting Experimental Results to Address Research Questions

As discussed earlier, we are mainly interested in answering the below three research questions.
Based on our evaluation results, we answer the research questions above as follows:
RQ1: Compared with basic keyword-based search approaches, how much can OS® improve
precision?
Using OS? over the underlying search algorithms does increase the precision by a decent amount;
in our evaluations, we find that to be by about 8.89% for keyword matching algorithm and 8.23%
for word vector based approach.
RQ2: Can OS? accurately discover new repositories that are missing by the basic keyword-based
search approaches?
Our evaluation shows that OS? is capable of uncovering new repositories that were not detected by
the underlying search algorithm, as depicted in Fig. 7.4, with an accuracy rate of 70.58

RQ3: Can the license-based filtering improve the suitability of the search results?
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Figure 7.4: Accuracy of the Repositories Appended by OS? for all Search Queries

Our assessment reveals that approximately 11% of the recommended repositories, among the
top-ranked ones, may be unsuitable for real-life applications. Moreover, the sample set for nearly
unusable licenses accounts for about 17.2%, thereby underscoring the significance of taking into

account the license usage when making recommendations.
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CHAPTER 8

Related Work

In this section, we introduce the current status of serverless function sharing, and code-based

search and recommendation.

8.1 Serverless Computing Dataset’s

The field of serverless computing is still in its nascent stages, and as such, there is a paucity of
datasets available for researchers and practitioners to use. While there have been some attempts at
collecting data for serverless computing, the datasets that have been gathered so far have been either
too small or limited to a single source. This makes it difficult for researchers to draw meaningful
conclusions about the performance and efficacy of serverless computing as a whole.

One of the primary challenges in gathering data for serverless computing is the issue of licensing.
Many repositories that contain code related to serverless computing may not have proper licensing,
which means that those repositories becomes unusable as per the copyright laws. This can make it
difficult for researchers to reproduce, distribute, or create derivative works from the code. This is
particularly problematic when trying to find functions, as it is already challenging to find suitable
functions for serverless computing.

One attempt at gathering data for serverless computing is the Wonderless project. The authors
of Wonderless collect data by scraping the serverless framework’s specification file, serverless.yml,
from GitHub. They then preprocess the data and only keep repositories that are recently active and
popular, as measured by recent commits and the number of stars for that repository. While this
approach has yielded a dataset of 1,877 repositories, it poses certain problems for researchers. For
example, it excludes many repositories that are not popular or recently updated, even if they could
be useful for recommendation purposes. Additionally, Wonderless only considers repositories that
use the serverless framework, which limits the dataset to a single source. Furthermore they also fail
to consider licenses making 56% repositories moot reducing the number of usable repositories to
819 repositories.

To address these challenges, we have collected the largest multi-source serverless dataset to
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date. By using this dataset, we can overcome the limitations of the Wonderless dataset and provide
more comprehensive and diverse data for researchers and practitioners in the field of serverless
computing. By having access to a larger and more diverse dataset, we can better understand the
performance and effectiveness of serverless computing and make more informed recommendations

for its use.

8.2 Serverless Function Sharing and Reusing

The modular design of serverless functions inherently makes them an attractive target for sharing
and reusing. One obstacle in serverless development is getting used to platform-specific APIs.
Finding open source implementations of serverless functions with similar functionalities enables
developers to implement their business logic incrementally, thereby saving their time and effort.

To aid developers in this effort, Many serverless vendors (e.g., Google Cloud Functions) and the
Serverless framework create and share boilerplate templates for implementing basic functionalities.
There have also been some attempts at enabling developers to share their own serverless functions
(e.g., AWS Serverless Application Repository). However, the attempts for encouraging serverless
code sharing have not been successful as of yet, with only 1,438 repositories being shared on AWS
SAR. Many developers still use GitHub to develop and share their serverless functions.

However, it is a challenging task for serverless developers to search for the required function-
alities. The current serverless repositories are chained to certain platforms, while searching for
serverless functions on Github fails to take serverless specific features, such as platform, plugins,
and events into consideration. The absence of a search engine specifically tailored for serverless
functions reduces the accuracy of search results and hinders the sharing and reusing of serverless
functions as a whole.

To address this challenge, we suggest improvements in search and recommendation domain
specifically for serverless functions. Serverless functions present many peculiarities that can be
utilized for helping developers focus on their core logic and develop with the aid of some helpful
recommendations. As far as we know, our approach is the first in implementing a search engine that
considers the unique features of serverless functions and is tailored for serverless. By improving the
accuracy and efficiency of serverless function search, our approach has the potential to significantly
increase the sharing and reusing of serverless functions among developers, thereby accelerating the

development of serverless applications.

8.3 Code-Based Search and Recommendation

There have been many approaches for code-based search and recommendation that take into

account the semantics or structure of code snippets. One such recent attempt is Aroma [46], which
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focuses on finding contextual code samples dissimilar from each other within the structural similarity
scope, and thereby helps in finding different ways a piece of code has been written by different
developers. Another approach is to use code to code pattern matching that could suggest similar
code using code snippet as a query. Researchers have also tried using AST trees to enable code
vector embedding that can be used for code recommendation [47]. However, such semantics-based
or structure-based approaches are language dependent and require dedicated parsers for different
languages. Compared to the code-based search approach, our underlying keyword-based search is

naturally more suitable for the language agnostic feature of serverless functions.
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CHAPTER 9

Conclusion and Future Directions

To address the emerging need for an efficient search and recommendation system for serverless
functions this paper introduces OS?, a custom-tailored search engine for serverless functions.
Furthermore, we also collect and open source the largest dataset for serverless functions repositories
that comprise over 5,981 licensed serverless repositories, collected from multiple sources belonging
to three major platforms, AWS, Azure, and IBM.

0S3 is optimized to search for serverless functions by focusing on serverless specific features. It
does that by taking licenses, unique properties such as invocation cost, and higher library correlation
into consideration. Our evaluation demonstrates that OS?® can become a valuable tool in developing
serverless applications, helping developers to efficiently search and find the most suitable serverless
functions for their projects.

To our knowledge, our work is the first to shed light on share and reuse of serverless functions
providing a high quality dataset and pushing towards research in search and recommmendation for
serverless functions. By taking into account the specific traits of serverless functions, including
externally managed library usage, cost, and license, a search engine can significantly increase the
accuracy and comprehensibility of the search results. Such improvements would better promote
reuse of existing serverless functions and motivate the open source community to share their work
as well.

Moving forward, we plan to extend this work in several directions. Firstly, we plan to use
program analysis techniques to accurately locate the entries of serverless functions as well as their
control flow paths within a serverless function repository. Secondly, we aim to work on an estimator
that would help us estimate the execution costs based on the code provided. Thirdly, we would like
to categorize the data to implement more advanced models for recommendation.

While current research and development efforts are primarily focused on infrastructure improve-
ments (addressing issues such as the cold start problem and statelessness of serverless functions),
there is ample scope for research in code recommendation systems that aid developers in discover-
ing the most relevant serverless functions. This would allow us to utilize the inherent features of

serverless functions and enable developers to code faster and obtain relevant information.
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APPENDIX

Relevant Paper Publications

A.1 OS?: The Art and the Practice of Searching for Open-Source Serverless Functions

Citation:

S. Bhatnagar, Z. Li, Z. Song, and E. Tilevich, “Os 3: The art and the practice of searching for
open-source serverless functions,” in 2023 IEEE International Conference on Pervasive Computing
and Communications Workshops and other Affiliated Events (PerCom Workshops).

Abstract:

Serverless computing enables service developers to focus on creating useful services, without
being concerned about how these services would be deployed and provisioned. Many developers
reuse existing open-source serverless functions to create their own functions. However, existing
technologies for searching open-source software repositories have not taken into consideration
the unique features of serverless functions. This paper presents a novel approach to searching for
serverless functions, called Open-Source Serverless Search (OS?) that maximizes the utility of
the returned serverless functions by (1) basing the search process on both descriptive keywords
and library usages, thus increasing the search results’ precision and completeness; (2) filtering and
ranking the search results based on the software license, to accommodate the unique requirements
of deploying serverless functions on dissimilar platforms, including cloud and edge computing.
Implemented in 3K lines of Python, with a search space of 5,981 serverless repositories from four
major serverless platforms, OS® outperforms existing search approaches in terms of the suitability
of the search results, based on our evaluation with realistic use cases.

Commentary:

This paper discusses and proposes the OS® model that we use to improve the search and

recommendation for serverless functions.
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A.2 Sharing and Reusing Serverless Functions: Software Licensing Constraints on My
Mind

Citation:

S. Bhatnagar, Z. Li, Z. Song, and E. Tilevich, “Sharing and Reusing Serverless Functions:
Software Licensing Constraints on My Mind” in 2023 IEEE Communications Magazine. (Under
Review as of date 1st April, 2023)

Abstract:

Serverless computing has become an important model for developers aspiring to build scalable,
efficient, and responsive applications in both cloud and edge environments. Serverless enables
service developers to focus on creating useful services, rather than on deploying and provisioning
these services. In this article, we report on the results of a study for which we collected and analyzed
open-source serverless repositories from various sources. We observe a rapid increase in the
amount and quality of open-source serverless repositories, a trend that reflects that the open-source
community has broadly embraced the serverless paradigm. By further studying the dataset, we
discuss two concerns related to the sharing and reusing of serverless functions: unique software
licensing issues and the lack of a customized search engine. We discuss these concerns and their
potential solutions and also describe our proposed approach to searching for serverless functions,
Open-Source Serverless Search (OS?), which considers both descriptive keywords and library
usages in the search process. We also propose several potential solutions for finding serverless
functions suitable for the usage scenarios and integrate some of them into OS3.

Commentary:

This article is a revised and extended version of a workshop paper, presented at the STARLESS
Workshop 2023. This modified focus of our article is reflective of the discussion that followed
the presentation of our paper at the workshop. Specifically, the revised manuscript puts a special
emphasis on discussing the software licensing issues and proposing potential solutions. Besides,
this article provides new statistical insights derived from: 1) analyzing the statistics of the open
source dataset we collected; 2) comparing our dataset with the “Wonderless” dataset collected two
years ago following similar methodologies. Quantitatively, we thoroughly edited 2 pages of the
original manuscript and added 2 pages of brand new content. We also open-sourced our dataset and

search engine at Github.
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