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ABSTRACT

This paper presents two novel techniques for securing electronic control units (ECUs) in the
controller area network (CAN) bus network of autonomous vehicles (AVs).

Method 1 proposes an ECU fingerprinting technique to detect malicious ECUs in the in-vehicle
CAN bus network. The technique extracts unique digital signatures based on intrinsic characteristics
of the ECUs to identify the ECU responsible for broadcasting counterfeit messages received on the
CAN bus. The proposed work employs three machine learning (ML) algorithms, namely k-Nearest
Neighbors (k-NN), Support Vector Machine (SVM), and Logistic Regression (LR), to analyze
the data from seven distinct ECUs. The performance of the proposed cybersecurity framework is
evaluated and compared using these algorithms.

Method 2 proposes a solution for efficient ECU classification to protect against multiple threats
and attacks, including hacking and spoofing attacks, that can be perilous for the vehicle and its
occupants. This technique visualizes signal loss and distortion in the ECU voltage signals caused
by the ECU position in the CAN bus and utilizes Euclidean distance-based image classification on
the principal components. This methodology is based on the commercially feasible eigenface-based
algorithm, which has found extensive application in real-time scenarios like face recognition, finger-
print recognition, image recognition in photo-based applications, and real-time object identification.
By profiling the ECU using this method, we can make the signal analyzer commercially viable.
In this paper, we analyze different ECU configurations in the daisy chain network to evaluate the
effectiveness of our proposed method. Our approach achieves a high accuracy rate of 97.14%.

The proposed techniques address the security concerns related to the CAN bus network of
AVs and provide efficient and effective ways to secure ECUs against malicious activities. The use
of machine learning algorithms and visualization techniques in these methods not only enhances
the accuracy of ECU detection and classification but also provides a better understanding of the
underlying data. These techniques can be implemented in AVs to improve the security of the CAN
bus network and ensure safe and secure operation of the vehicles.
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CHAPTER 1

Introduction

Automation and the application of artificial intelligence are modernizing the automotive industry
and changing the way people perceive it. The ECU (Electronic Control Unit) is pivotal in facilitating
vehicle automation such as elevating the user experience by monitoring and making dynamic
decisions based on the sensor data for ADAS. Cars that offer semi-autonomous driving features
like Tesla Autopilot hinge heavily on the signal processing of the ECU. Automotive researchers
are experimenting with vehicle-to-vehicle interactions, and ECUs will play an additional role in
communicating with the nearest ECUs during transit. This versatile component is subjected to a
multitude of threats and attacks, such as remote hacking into a Jeep Cherokee’s ECU in 2015 and
the 2017 Tesla Model S ECU breach using a physical custom-designed system. These threats pose
a perilous situation for the vehicle and its occupants. In a wave of the increasingly connected and
automated automobile era, it is paramount to ensure that ECUs are resilient to hacking and spoofing
attacks.

As the automotive industry progresses toward extensive robotization, the use of diverse sensors
and actuators is becoming increasingly common. These sensors and various computation units
are controlled by embedded ECUs, which are integrated and designed for optimizing a wide
variety of functions. Modern electric vehicles contain hundreds of ECUs, and this number is
expected to increase in the coming years. CAN is used as a legacy standard protocol for in-vehicle
communication, owing to its reliability, robustness, and simplicity.

However, despite the many built-in functional safety features, the unencrypted nature of CAN
messages and lack of authentication of message sources render the CAN network vulnerable to
multiple cyber-attacks, such as spoofing and modification attacks. These attacks can cause severe
implications, such as data breaches and jeopardizing the safety and security concerns of the vehicle
industry. The CAN data link connects multiple ECUs together as nodes to send or receive messages,
enabling engine operations. It consists of two wires twisted as a pair, namely CAN high and CAN
low, and is terminated with a resistor on each end. The CAN bus can have one of two logic states,
logical or recessive, where a logical 0 corresponds to a dominant bus level, and a logical 1 is termed
as the recessive level. When the bus is idle, i.e., when there is no transmission of ECU information,
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the voltage level on the bus is recessive (2.5V), and once a message is transmitted, it goes into a
dominant state (3.5V). This whole system works as a multi-master system, where every device
within the system sends or receives information. However, only a single device or ECU is allowed
to send a message at a given time.

The vulnerability of the CAN bus to cyber-attacks is a critical concern for the automotive
industry. Several research studies have proposed a range of preventive methods such as message
authentication-based approaches, which implement security at the data link layer, and intrusion
detection-based approaches, which implement security at the physical layer. However, these
approaches have limitations, and there is a need for a more intelligent solution for ECU identification.

The primary contribution of this thesis is to develop a cybersecurity model called ECU finger-
printing to solve the problem of identifying the source ECU of a CAN packet transmitted over
the communication channel. The proposed method exploits the undesirable material and design
defects in both the physical communication medium and ECUs to relate the received signal to the
ECU responsible for sending it. Generally, the distinctive or unique patterns of the transmitted
ECU signals over time are explicitly used as digital signatures for the proposed method. Feature
sets comprising time and frequency domain-based physical signal attributes are employed to train
machine learning-based classification algorithms to determine the malicious ECU.The significance
of the proposed ECU fingerprinting model is to improve the CAN efficiency by identifying the
malicious CAN packet and its sender node.

2



CHAPTER 2

Machine Learning Based ECU Detection for Automotive Security

2.1 Background and Motivation

The automotive industry has progressed significantly over the recent years into extensive
robotization by using diverse sensors and actuators. These sensors and various computation units
are controlled by embedded ECUs which are integrated and designed for optimizing of a wide
variety of functions. There are hundreds of ECUs fitted in the modern electric vehicles, and this
number is anticipated to amplify in the subsequent years. CAN is used as a legacy standard protocol,
owing to its reliability, robustness and simplicity for in-vehicle communication. However, despite
many built-in functional safety features, unencrypted nature of the CAN messages and lack of
authentication of message sources render CAN network vulnerable to multiple cyber-attacks, e.g.,
spoofing and modification attacks [1]. As a result, these attacks can cause severe implications, for
instance, data breach, and jeopardize the safety and security concerns of the vehicle industry[2].

As shown in Fig. 2.1, CAN data link connects multiple ECUs together as nodes to send or
receive messages, enabling engine operations. It consists of two wires twisted as a pair, namely
CAN high and CAN low, and is terminated with a resistor on each end. CAN bus can have one of
the two logic states, logical or recessive, where a logical 0 corresponds to dominant bus level, and a
logical 1 is termed as the recessive level. When the bus is idle, i.e., when there is no transmission of
ECU information, voltage level on the bus is recessive (2.5V), and once a message is transmitted
it goes into dominant state (3.5V) [3]. This whole system works as a multi-master system, where
every device within the system sends or receives information [4]. However, only a single device or
ECU is allowed to send a message at a given time.

There has been an extensive research carried out in seeking the possible vulnerabilities, detection
and mitigation of the communication attacks on CAN bus. Literature has proposed a number of
preventive methods like, message authentication based approaches which implement security at data
link layer [5, 6, 7, 8, 9, 10, 11, 12, 13], and intrusion detection based approaches which implement
security at physical layer [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36].
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Figure 2.1: ECUs connected across serial CAN Bus.

However, due to the inefficiency of the data encryption based methodologies, an intelligent
solution of ECU identification is considered. In a CAN network, the source ECU of a packet
transmitted over the communication channel is possibly unmapped[4]. Hence, in case of abnormal
behaviors, it is critical to associate malicious CAN packet to its sender node to improve the CAN
efficiency, which is a grueling task. The primary contribution of this paper is to solve this problem
by developing a cybersecurity model called ECU fingerprinting. Undesirable material and design
defects, both in the physical communication medium and ECUs, are exploited to relate the received
signal to the ECU responsible for sending it. Generally, the distinctive or unique patterns of
the transmitted ECU signals over the course of time are explicitly used as digital signatures for
the proposed method. Feature set comprising time and frequency domain based physical signal
attributes, are employed to train ML-based classification algorithms to determine the malicious
ECU. In the end, performance of the proposed ECU fingerprinting model is analyzed by testing a
dataset accumulated from seven different ECUs.

The remainder of the paper is organized as: Section II discusses experimental set up for
the proposed approach. Section III the data acquisition and pre-processing stages of the ML
algorithms, followed by explaining the feature set comprising of peak-to-peak voltage, mean
distortion, percentage overshoot, etc. in section IV. Further, section V plots the probability density
functions of all the features listed in previous section. Section VI and section VII outline different
ML algorithms which are used for classifying the ECU data in this paper and feature separation
respectively. Finally, the paper illustrates the experimental results in section VIII.

2.2 Hardware-In-The-Loop (HIL) Experimental Set Up

An HIL platform is set up to develop and test the proposed approach. In the propounded ML
technique, channel variability is evaluated to identify a specific ECU for message authentication.
The experiment uses seven channels governed by Society of Automotive Engineers (SAE) and
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Figure 2.2: Square waves of original data from ECU 1.

CANH pin is used to record the data. The hardware uses seven Arduino UNO-R2 micro-controller
kits, seven CAN-Bus shield boards with MCP 2515 CAN-bus controllers, MPC2551 high speed
CAN transceivers, and PicoScope 6 Beta tool using a 2 GSa/s maximum real-time sampling rate
and 100 MHz bandwidth to capture the measured voltage signals. An interactive software called
Jupyter Notebook 6.4.0 is further employed for the study of the captured voltage samples.

2.3 Data Acquisition AND Pre-Processing

First and the foremost step of the ML algorithm is data acquisition, in which the data is
accumulated and imported to the specific ML technique. This paper uses a dataset of CAN message
packets from seven distinct ECUs, which is recorded using PicoScope. There are seven CAN
channels used for transmitting each ECU data. Each ECU has 30 data files comprising of both the
dominant and recessive bit voltages and 789 records in total comprising the dataset. The collected
data often contains some invalid or inaccurate data points, so data pre-processing is done to clean or
remove the incomplete or corrupted data from the dataset. Therefore, the complete ECU data is
cleaned to get individual square waves from the distorted waveforms. The graphical plot shown
in 2.2 illustrates the result of the data cleaning. After data cleaning, 674 sample records are linked
to their appropriate ECU classes. Further, this entire dataset is split into training data (70%) and
testing data (30%) for model evaluation. This individual square wave data is further used for feature
extraction.

2.4 Feature Set

A collection of control theory and signal processing parameters are considered as the promenient
features for the next stage, which is feature extraction. Moreover, feature scaling is done by using
min-max normalization, where the features are bound to be in the fixed range of [0,1] to increase
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the convergence speed. The features utilized for the paper include:

• Peak-to-peak voltage

• Mean distortion

• Percentage overshoot

• Variance

• Volt Root Mean Square (VRMS)

• Peakedness

• Total Energy

2.4.1 Peak-to-Peak Voltage

Peak-to-peak voltage (Vpp) is the distance from the lowest amplitude, or trough (Vmin) [37], to
the highest positive amplitude, or the crest (Vmax) as defined in equation 2.1.In the dataset, it is
observed that the lowest and highest voltages of CAN for each ECU are unique. Hence, Vpp must
be separable as shown in Fig. 2.3, where peak-to-peak voltages are plotted across multiple ECUs.

Vpp = Vmax − Vmin (2.1)

Figure 2.3: Peak-to-peak voltage plotted across ECUs.

2.4.2 Mean Distortion

Distortion is a common problem in signals transmitted through communication channels. It
might occur due to both impurities in the medium or any inimitable features of the signals [38]. In
the proposed work, each ECU shows a specific pattern of distortion, which is calculated by getting
the difference between the actual and the expected value of each voltage. Further, mean of this
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distortion is calculated for each square wave, dominant bit and recessive bit. For n number of values,
the MeanDistortion is computed as,

MeanDistortion =
n∑

i=1

Actual(i)− Expected(i)

n
(2.2)

The graph in Fig. 2.4 shows the mean distortion plotted across the seven ECUs. Many outliers
are observed and hence, a good accuracy can be achieved even without this feature. Also ECU 1,
ECU 2, ECU 4, and ECU 5 show visible distinction in ranges. The outliers are observed in ECU 1,
ECU 2,ECU 3, ECU 4, and ECU 6.

Figure 2.4: Mean of distortion plotted across ECUs.

2.4.3 Percentage Overshoot

Overshoot, also known as percentage of the steady-state value is defined as the maximum
amount by which the response overshoots the final, steady-state value [39]. It is used to calculate
the step rise in a waveform. Fig. 2.5 plots percentage overshoot across the seven ECUs. It shows a
distinct separation between all the ECUs, except ECU 1 and ECU 3. The steady state voltage Vss, is
when the voltage reaches the final values and remains steady. It is equated as,

%Overshoot =
Vpp − Vss

Vss

(2.3)
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Figure 2.5: Percentage overshoot plotted across ECUs.

2.4.4 Variance

The graph in Fig. 2.6 plots variance of the voltage across the seven ECUs. By the observation,
there is a complete overlap between ECU 2 and ECU 3 and with the combined feature set, they can
be distinguished, and complete distinct range can be observed between ECU 1, ECU 3, ECU 4 and
ECU 5. In general, variance is the statistical measurement of the spread between different values in
a given dataset [40]. Variance for Xi term is calculated as,

V ariance =
N∑

i=1

(Xi −M)2

N2
(2.4)

Where N is sample size, and M is mean.

Figure 2.6: Variance of the voltage plotted across ECUs.

2.4.5 Volt Root Mean Square (VRMS)

The graph in Fig. 2.7 plots VRMS values across the seven ECUs. It is observed that there is
a complete overlap between ECU 1 and ECU 3. Also with a combined feature set, they can be
distinguished, and a complete distinct range can be observed between ECU 1, ECU 2, ECU 4, ECU
5 and ECU 7. VRMS voltage (VRMS) is calculated by dividing peak voltage (Vpp) by square root of
2 as shown [41] ,

8



VRMS =
Vpp√
2

(2.5)

Figure 2.7: VRMS plotted across ECUs.

2.4.6 Peakedness

Since the voltage values of a single ECU are closely related and show similar patterns, so
another parameter called peakedness can be used to determine the extent to which voltage values
are concentrated around the central value, i.e., mean of the distribution [42]. Peakedness for Xi

term is calculated as,

Peakedness =

∑ N
i=1

Xi−M
N

S4
(2.6)

Where N is sample size, M is mean, and S is standard deviation. The graph in Fig. 2.8 plots
peakedness values across the seven ECUs. It states that there is a partial overlap between ECU 3
and ECU 4 and with the combined feature set, they can be distinguished. In addition, a complete
distinct range can be observed between ECU 1, ECU 2 and ECU 7.

Figure 2.8: Peakedness plotted across ECUs.
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Figure 2.9: Total energy plotted across multiple ECUs.

2.4.7 Total Energy

Fig. 2.9 indicates the total energy plotted across the seven ECUs. Total area under the curve
gives the total energy by that waveform [43]. By looking at the graph, it is observed that that there
is a partial overlap between ECU 2 and ECU 3 and with the combined feature set, they can be
distinguished. Further, a complete distinct range might be observed between ECU 1 and ECU 5.

2.5 Density Of The Features

Density plots shown in Fig. 2.10, visualize the probability density functions of all the features,
using kernel density estimation [44]. The features’ density values are plotted separately and the
point with higher peak is the region with maximum data points occupying between those values. By
this plot, separation of ECUs with different features can be visualized.

2.6 Machine Learning Approaches

A ML algorithm is a dynamic mathematical tool to enable immunity from malicious attacks in
the vehicular networks. For this paper, several intelligent algorithms are implemented using sklearn
library in Python.

2.6.1 k-Nearest Neighbour

k-NN, a non-parametric, supervised algorithm, is used to classify a data point into its available
classes. As the name goes, the new data point is placed in the training dataset, followed by the
computation of distance metrics, e.g., Euclidean distance to evaluate the correlation between each
of the training sample point and the new data point [45].

In the proposed classification algorithm, Euclidean distance (dE) is the accepted default measure
for classification of feature points. It is the geometric distance between two points in a domain, (i) an
unknown point (pt1), (ii) another point from the example training set (pt2). Let n is the sample size

10



Figure 2.10: Densities of features for the specific ECUs.

in k-dimensional feature space, then (dE) is measured using Pythagoras theorem applied between
the two vectors,

dE (pt1i, pt2i) =

√
Σn

i=1 (pt1i − pt2i)
2 (2.7)

A more generalized formula is used when the training set has both continuous and discrete
attributes,

dE (pt1i, pt2i) =
√

Σn
i=1dE (pt1i, pt2i) (2.8)

Further, dE between the given test (pt1) and training data point (pt2) is formulated as,
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dE (pt1i, pt2i) =
n∑

s=1

|pt1is − pt2is| (2.9)

Another distance metric called as Hamming distance (dH) is the direct difference between the
Boolean attribute values between an example training set point and the unknown vector [46]. If
set1 = (t, t, t, f) and set2 = (f, f, t, f), then dH(set1, set2) = 2. The value of k is chosen as an
odd number, i.e., 5, 7, 9.

There is one other method of measuring the distance and it is called Minkowski distance (dM)

[47] which is defined as ,

dM (pt1i, pt2i) =

(
n∑

s=1

|pt1is − pt2is|q
)1/q

(2.10)

Hyper-parameter (k) is an important parameter in the classification algorithm as it might cause
under-fitting or over-fitting of the values. For example, if it is too small, then the results might not
be accurate, or if the value is too large, then too many neighbors might result in mis-classification
of the sample point. Therefore, weighted k-NN is used to avert the undesired results. In weighted
k-NN, weight is assigned to the ’k’ nearest samples using linear kernel function [37], which is
defined as,

K(d) =
1

2
· 1(|d| ≤ 1) (2.11)

Where K(d) is rectangular kernel function, and d is the distance metric.
The classifier estimates the ECU class based on the nearest neighbors and their votes. In this

method, a unique separation between the class of ECUs is observed, and hence a high accuracy is
obtained.

2.6.2 Support Vector Machine

SVM is an important statistical supervised learning algorithm that implements both classification
and regression analysis. It works on the concept of finding an optimal hyper-plane, also called a
decision boundary which linearly separates members of one class from the other by using support
vectors and margins [48]. The hyper-plane corresponds to the the maximum margin, i.e., maximum
distance between data points of the classes in the hyper-space. SVM is solely based on data points
or support vectors nearest to the hyper-plane.

A hyper-plane can be optimized by maximizing the distance between the two distinct support
vector clusters, also called street width. Maximum street width (W) can be computed as the below
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equation, as the boundary of class 1 is x1 and the boundary of class 2 is x2 .

W = âω · (x1 − x2) (2.12)

Since,

âω =
ω⃗

|ω|
(2.13)

So,

W =
ω⃗

|ω|
· (x1 − x2) (2.14)

Figure 2.11: Datapoints separation using hyperplane.

Further, decision rule (yi) is defined to determine on which side of the boundary line, an
unknown sample lies. For example, when sample points lie on the boundary line, yi is,

yi(ω · xi + b)− 1 = 0 (2.15)

For class 1 (yi = +ve), i.e., when the sample points are on right of the boundary line, decision
rule is given by,

w⃗ − x1 = 1− b (2.16)

For class 2 (yi = −ve), i.e., when the sample points are on left of the boundary line, decision
rule is given by,

w⃗ · x⃗2 = −1− b (2.17)

Therefore, street width (W) can be computed as,
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W =
ω⃗x1 − w⃗x2

|ω|
(2.18)

Also it can be represented as,

W =
1− b− (−1− b)

|ω|
(2.19)

or
W =

2

|ω|
(2.20)

Now, maximum W can be computed either by maximizing 2/|ω| or by minimizing |ω|/2 or
1
2
∥ω∥2. However, minimizing 1

2
∥ω∥2 is adopted, since it is the most mathematically convenient

method. Further, a simpler Lagrange multiplier methodology is used to compute it.
Let’s apply the method of Lagrange multiplier (L),

L =
1

2
∥ω∥2 −

∑
αi [(yi (w⃗zx⃗i + b)− 1] (2.21)

∂L

∂w⃗
= ω⃗ −

∑
αiyixi = 0 (2.22)

ω⃗ = εαiyixi (2.23)

It is evident that, w⃗ is a linear sum of support vectors.
Now, calculating ∂L/∂b,

∂L

∂b
= −εαiyi = 0 (2.24)∑

αiyi = 0 (2.25)

L =
1

2
∥ω∥2 −

∑
i

αi [yi (w⃗xi + b)− 1] (2.26)

L = 1
2

∑
i αiyixi

∑
j αjyjxj−∑

i αiyixi ·
∑

αjyixj −
∑

αiyib+ εαi

(2.27)

L =
∑

αi −
1

2

∑
i

∑
j

αiαjyiyj (x⃗i · x⃗j) (2.28)

As it is evident from the above equation that optimization depends upon the dot product of xi

and xj .
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Figure 2.12: Separation of ECUs under various features.

2.6.3 Logistic Regression

LR is a predictive analysis method where the classification of the data is predicted based on
the prior collected dataset [49]. It works on structured data only which are linearly separable.
It separates the class based on decision boundaries and weights. In other words, it models the
probability distribution of a target variable belonging to a specific class [50]. In this case, probability
of inclusion is computed for the analysis.

2.7 Feature Separation

The illustration as shown in Fig. 2.12 refers to the separation of ECUs under the utilized features.
It explains the pairwise relationship among the seven features. It visualizes relationship between
each variable in a matrix format and by that, we can have an instant examination of ECU data. Also,
the diagonal shows the separation of the individual features among the ECUs. For example, the Vpp

feature shows maximum separation and the energy feature shows minimum separation.

2.8 Experimental Results And Performance Evaluation

2.8.1 k-Nearest Neighbour

The classification results of k-NN classifier as illustrated in Fig. 2.13, states that the two test
classes from ECU 3 and one class from ECU 1 are wrongly classified as ECU 1. It is clearly shown
that the clusters of ECU 1, ECU 2, ECU 4, ECU 5, and ECU 6 have distinct separations.
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Figure 2.13: k-NN results.

Table 2.1 shows the accuracy results across the seven ECUs by using k-NN classification
algorithm. It shows that an accuracy of 97.3% is obtained for predicting ECU 2. However, a total
accuracy of 99.61% is achieved using the algorithm.

Table 2.1: Confusion matrix of k-Nearest Neighbour

Predicted Class

- - ECU(1) ECU(2) ECU(3) ECU(4) ECU(5) ECU(6) ECU(7) Total%

T
a
rg
et

C
la
ss

ECU(1) 114 1 0 0 0 0 0 99.12

ECU(2) 0 108 0 0 0 0 0 100

ECU(3) 0 2 103 0 0 0 0 98.06

ECU(4) 0 0 0 117 0 0 0 100

ECU(5) 0 0 0 0 113 0 0 100

ECU(6) 0 0 0 0 0 115 0 100

ECU(7) 0 0 0 0 0 0 116 100

Total% 100 97.3 100 100 100 100 100 99.61

2.8.2 Support Vector Machine

The distinguished area of each ECU under SVM classification is illustrated by the surface
diagram in Fig. 2.14. It is clearly observed that the five test classes from ECU 3 are mis-classified
as ECU 1. Further, the accuracy is reduced because of the intersection in the boundaries of ECU 7
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and ECU 5.
Further, table 2.2 shows the accuracy results across the seven ECUs under SVM classification

algorithm. It is inferred that an accuracy of 95.65% is obtained for ECU 1 prediction and a total
accuracy of 99.35% is achieved by the algorithm.

Figure 2.14: SVM results.

Table 2.2: Confusion matrix of Support Vector Machine

Predicted Class

- - ECU(1) ECU(2) ECU(3) ECU(4) ECU(5) ECU(6) ECU(7) Total%

T
a
rg
et
C
la
ss

ECU(1) 115 0 0 0 0 0 0 100

ECU(2) 0 108 0 0 0 0 0 100

ECU(3) 5 0 100 0 0 0 0 95.24

ECU(4) 0 0 0 117 0 0 0 100

ECU(5) 0 0 0 0 113 0 0 100

ECU(6) 0 0 0 0 0 115 0 100

ECU(7) 0 0 0 0 0 0 116 100

Total% 95.65 100 100 100 100 100 100 99.35

2.8.3 Logistic Regression

Table 2.3 outlines the accuracy results across the seven ECUs under LR classification algorithm.
It is clear that that the seven test classes from ECU 3 are mis-classified as ECU 1 and one test class
from ECU 1 is mis-classified as ECU 3. Moreover, accuracy figures of 94.78% and 94.29% are
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achieved for ECU 1 and ECU 3 predictions respectively. Overall, a total accuracy is estimated to be
99.35%.

Table 2.3: Confusion matrix of Logistic Regression

Predicted Class

- - ECU(1) ECU(2) ECU(3) ECU(4) ECU(5) ECU(6) ECU(7) Total%

T
a
rg
et

C
la
ss

ECU(1) 114 0 1 0 0 0 0 99.13

ECU(2) 0 108 0 0 0 0 0 100

ECU(3) 7 0 98 0 0 0 0 93.33

ECU(4) 0 0 0 117 0 0 0 100

ECU(5) 0 0 0 0 113 0 0 100

ECU(6) 0 0 0 0 0 115 0 100

ECU(7) 0 0 0 0 0 0 116 100

Total% 94.78 100 94.29 100 100 100 100 98.68
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CHAPTER 3

Eigenwave Based Principal Component Analysis for ECU Profiling

3.1 Background and Motivation

Automation and the application of artificial intelligence are modernizing the automotive industry
and changing the way people perceive it. The ECU (Electronic Control Unit) is pivotal in facilitating
vehicle automation such as elevating the user experience by monitoring and making dynamic
decisions based on the sensor data for ADAS. Cars that offer semi-autonomous driving features
like Tesla Autopilot hinge heavily on the signal processing of the ECU. Automotive researchers
are experimenting with vehicle-to-vehicle interactions, and ECUs will play an additional role in
communicating with the nearest ECUs during transit. This versatile component is subjected to a
multitude of threats and attacks, such as remote hacking into a Jeep Cherokee’s ECU in 2015 [51]
and the 2017 Tesla Model S ECU breach using a physical custom-designed system [52]. These
threats pose a perilous situation for the vehicle and its occupants. In a wave of the increasingly
connected and automated automobile era, it is paramount to ensure that ECUs are resilient to
hacking and spoofing attacks.

The ECUs communicate in the CAN bus in such a way as to ensure seamless operation and
good performance. One such commonly used approach to ECU configuration in a significant part
of auto manufacturers is the daisy chain configuration. Some of the notable brands that deploy the
above configuration are Mercedes-Benz, Audi, Volkswagen, and Porsche. A substantial proportion
of the other auto manufacturers use similar configurations.
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Figure 3.1: Infotainment CAN bus illustrating UConnect system

Specific ECUs in the high-speed CAN bus has a unique ID that protects them against spoofing
to some extent. And the CAN bus arbitration of a signal happens by taking into account this unique
ID and a priority level. But a sizeable segment of the low-speed CAN bus ECUs involves lighting,
HVAC, and infotainment systems as shown in Fig. 3.1, climate control, and a few other less critical
areas. These peripheral CAN bus needs to be profiled in order to prevent critical CAN bus hacking
through these low-speed CAN bus. The incident where the engine and brake ECU of the 2015
Jeep Cherokee were accessed by remotely hacking [51] into the Uconnect system is a compelling
scenario that highlights the need to secure the less critical CAN bus.

The daisy chain a is commonly used configuration for in-vehicle infotainment systems. In
this configuration, ECUs are connected in series with the adjacent ones and the CAN bus is
systematically designed to connect through the every ECU node. To reduce signal reflections,
electromagnetic interference, and signal distortion, we are maintaining a minimum distance of 1
meter between two ECUs. Each ECU in the CAN bus are approximately 1 meter apart as shown in
Fig. 3.2.
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Figure 3.2: ECUs connected in Daisy chain CAN configuration.

The Fig. 3.2 expounds the Daisy chain CAN configuration, in which each ECU in the CAN bus
has a CAN input and CAN output, and every ECU is connected as a chain in a linear fashion. The
CAN data link connects multiple ECUs to enable engine operations. It consists of two twisted pair
wires, CAN high and CAN low, terminated with a resistor on each end. The bus has two logic states:
logical 0, which corresponds to the dominant bus level, and logical 1, which is the recessive level.
The voltage level on the bus is recessive (2.5V) when there is no transmission of ECU information
and goes into a dominant state (3.5V)[3] when a message is transmitted.

Contemporary research suggests mitigating hacking vulnerabilities through opportunities like
Authentic Group Keys [53], ML-based security approaches [54, 55]. Literature has proposed a
number of preventive methods like message authentication-based approaches which implement
security at the data link layer. [5, 6, 7, 8, 9, 10, 11, 12, 13]. Approaches based on intrusion detection
can be used to implement security at the physical layer. [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

Though the evolving technologies pave way for innovative security measures, hackers find new
methodologies to exploit the ECUs and break into the vehicle system. With no to less standardization
of the ECU fingerprinting most of vehicles are still prone to attacks. Many proposed solutions
require a complex feature set and have high computation time. The main objective of this paper is
to propose an efficient solution by considering the visualization of signal loss and distortion due to
the position of the ECU in the CAN bus and using the weight of principal components to classify
the ECUs.

Section II of this paper presents the possible arrangements of ECUs and the data collection
process for various configuration studies. This section also emphasizes the extraction of usable data
from the raw data. In Section III, we discuss the restructuring of data into images to fit into the
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principal component analysis (PCA) framework. Section IV elaborates on the PCA methodology
and visualizes the projected standard variations as eigenwaves, from which we derived eigenvectors.
The experimental results are presented in Section V, and finally, in Section VI, we conclude the
paper.

3.2 Data Preparation

Information gathering, scrubbing, and preparation are crucial steps in making informed decisions.
Our methodology involves studying the behavior of all six ECUs and analyzing the differences. In a
daisy chain configuration, the position of each ECU in the chain plays a crucial role in determining
the overall efficiency of the system. With six ECUs in the Hardware-in-the-loop (HIL) simulation,
we have

nPr =
n!

(n− r)!
=

6!

0!
= 720 (3.1)

different ways the daisy chain CAN can be configured as shown in the Fig. 3.3

Figure 3.3: Possible combination of six ECUs in a Daisy chain configuration

To demonstrate the applicability of this method, data is collected from each ECU using six
different wire lengths, including 1 meter, 2 meters, 3 meters, 4 meters, 5 meters, and 10 meters.
This is based on the assumption that the ECUs can be placed in different positions in the CAN
configuration. The dominant and recessive voltage data is collected for each ECU using six different
wire lengths. This method has the benefit of being able to place the ECUs in any of the six positions
and test for the efficiency of the system as shown in Fig 3.4.
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Figure 3.4: Combinations of ECU 3 placement in the CAN with the signal analyzer

The collected data is cleaned to remove short pulses and Inter-Frame Spacing (IFS) data. After
scrubbing, the voltages are inspected to identify individual square waves corresponding to each wire
length for each ECU. The square wave data for each wire length and ECU is then utilized for data
manipulation and feature extraction.
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3.3 Data Restructuring And Filtering

Computational machines well understand images as every pixel color can be coded and converted
to numerical values to extract features.[56] The square waves from individual ECUs for all the
lengths are converted into graphical images, which are then subjected to feature extraction. The area
under each square wave is filled with a uniform color, such as red, to make the region of interest
distinct as shown in the Fig.3.5.

Figure 3.5: ECU 3 Square waves 1m-10m - Area under the curve

Before extracting features from the M x M images, it is necessary to perform geometric
rectification by adjusting and standardizing the axis and adjusting the dimensions across all the
images[57]. This ensures a consistent input for all feature extraction processes. 240 images are
chosen for feature extraction, with 40 images taken for each length under each ECU.
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3.4 Methodology

Any tone or intensity in an image can be represented as a numerical value assigned to that point
of coordinate in the image [58]. A geometrically rectified, size-compressed, and color-coded M x
M image can be represented by a M2 x N matrix of numerical values that a computational machine
can understand. This technique enables the classification of similar images into a category, even if
they are not identical.[56]. The primary action to make this image matrix computationally efficient
is to reduce its dimensionality, which we are achieving using PCA.

Erd = fPCA[E] (3.2)

Where E is the initial set of attributes of the image and Erd is the reduced dimensions of the initial
set of attributes using PCA function fPCA. The principal components or reduced dimensions are
derived by centering the data around the origin, which involves subtracting the mean from each
attribute.

Ei = Ei − µ (3.3)

Where E1 and E2 are the high-dimensional attributes and µ is mean. Once the data is centered
around the origin the covariance matrix of the data is computed to understand the type of relationship
between the attributes.

cov(Σ) =
1

n

n∑
i=0

Ei.(Ei)
T (3.4)

Where n is the number of observations in the sample. Once the covariance matrix is in place
each vector from the original dataset is multiplied by the covariance matrix. The vectors that point
in the same direction as the variance are termed eigenvectors v. Eigenvalues are calculated by
solving the below equation, where Σ is the covariance matrix, λ is the eigenvalue, and I is the
identity matrix.

det (Σ− λI) = 0 (3.5)

The eigenvectors v with maximum eigenvalues λ are called principal components. As the final
step to get the low-dimension data Erd, the eigenvectors v are multiplied with centered data.

Erdi = v.(Ei − µ) (3.6)

Where Erd is the low-dimension data obtained by principal component analysis of the images
[59].
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PCA is extensively utilized in face identification to extract a small set of standardized features
from vast datasets, which are subsequently employed for classification[60]. Many memory-efficient
algorithms are based on this concept, and eigenfaces have inspired many image classifiers. Eigenface
decomposes a large set of face samples into a collection of dominant variance sets[61].

Figure 3.6: Eigenwaves showing dominant variance across the sample set

The eigenwaves presented in this paper capture the standard variations observed across the
samples, and the dominant features exhibiting high variance are identified as a set of eigenwaves.
These eigenwaves represent the principal components of the square wave sample set and help
visualize the prototypical wave attributes. Using these eigenwaves, it is possible to reconstruct
actual square waves with high accuracy.

Fig.3.6 showcases the distinguishing features of the six different ECUs through a collection of
images highlighting dominant variance. The original square wave can be reconstructed by partially
summing these images, along with the mean wave.
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Figure 3.7: Eigenvectors showing the progression of square wave reconstruction

The progression of square wave reconstruction is represented by the eigenvectors shown in
Fig.3.7.

The next step involves classification, and various ML-based models can be utilized to fit the
PCA attributes and classify the ECU corresponding to the square wave. In this paper, we adopt a
Euclidean distance-based approach for classification. To classify the ECU square wave image into
its corresponding class, the algorithm begins by subtracting the mean vector obtained from PCA
from the vectorized input image. The resulting mean-subtracted vector is then projected onto each
eigenface, and the weights are calculated. These weights are then used for classification. Every
image in the sample set has weight data to compare, and the obtained weight data is compared with
the training data to classify the ECU square wave. This method is highly effective in our approach.

3.5 Results

To understand the efficiency of the daisy chain configuration with different positions of ECUs,
we simulated the ECUs in various arrangements. This paper focuses on testing the system’s
efficiency in six different configurations. To verify whether the position of an ECU has a significant
impact on profiling, we combine the data of all the ECUs tested in the hardware-in-loop simulation,
assuming that any ECU can be placed in six different positions in any order, with similar wire
lengths. This analysis shows that the square waves from the ECUs closer to the signal analyzer in
the CAN bus chain exhibit distinct differences compared to those farther away.

The Fig.3.8 shows an accurate identification and also we observe 97.14% of classification
accuracy by this approach. The efficiency of this system can be further validated by considering
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real-time scenarios and exploring various ECU placements in the CAN BUS to validate the working
accuracy. The confusion matrix of this approach is listed in 3.1.

Figure 3.8: Classification result of ECUs

Table 3.1: Confusion matrix of Daisy Chain Simulation

Predicted Class

- - ECU(1) ECU(2) ECU(3) ECU(4) ECU(5) ECU(6) Total%

T
a
rg
et

C
la
ss

ECU(1) 136 0 0 3 1 0 97.14

ECU(2) 0 139 1 0 0 0 99.28

ECU(3) 13 0 127 0 0 0 90.71

ECU(4) 0 0 1 136 3 0 97.14

ECU(5) 1 0 0 1 138 0 98.57

ECU(6) 0 0 0 0 0 140 100

Total% 90.66 100 98.44 97.14 97.18 100 97.14

3.5.1 Configuration 1

In Fig.3.9, The arrangement of the ECUs involves placing ECU1, ECU2, ECU3, ECU4, ECU5,
and ECU6 at a distance of 1meter, 2meters, 3meters, 4meters, 5meters, and 10meters from
the signal analyzer.
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Figure 3.9: Arrangement of ECUs in the CAN - Configuration 1

The results of this arrangement show a classification accuracy of 98.35%. The confusion matrix
of this approach is listed in 3.2.

Figure 3.10: Classification result of configuration 1
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Table 3.2: Confusion matrix of Daisy Chain Configuration 1

Predicted Class

- - ECU(1) ECU(2) ECU(3) ECU(4) ECU(5) ECU(6) Total%

T
a
rg
et

C
la
ss

ECU(1) 20 0 0 0 0 0 100

ECU(2) 0 20 0 0 0 0 100

ECU(3) 0 1 20 0 0 0 95.23

ECU(4) 1 0 0 19 0 0 95

ECU(5) 0 0 0 0 20 0 100

ECU(6) 0 0 0 0 0 20 100

Total% 95.23 95.23 100 100 100 100 98.35

3.5.2 Configuration 2

In Fig.3.11, The arrangement of the ECUs involves placing ECU3, ECU5, ECU1, ECU6, ECU4,
and ECU2 at a distance of 1meter, 2meters, 3meters, 4meters, 5meters, and 10meters from
the signal analyzer.

Figure 3.11: Arrangement of ECUs in the CAN - Configuration 2

The results of this arrangement show a classification accuracy of 100%. The confusion matrix
of this approach is listed in 3.3.
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Figure 3.12: Classification result of configuration 2

Table 3.3: Confusion matrix of Daisy Chain Configuration 2

Predicted Class

- - ECU(1) ECU(2) ECU(3) ECU(4) ECU(5) ECU(6) Total%

T
a
rg
et

C
la
ss

ECU(1) 20 0 0 0 0 0 100

ECU(2) 0 20 0 0 0 0 100

ECU(3) 0 0 20 0 0 0 100

ECU(4) 0 0 0 20 0 0 100

ECU(5) 0 0 0 0 20 0 100

ECU(6) 0 0 0 0 0 20 100

Total% 100 100 100 100 100 100 100

3.5.3 Configuration 3

In Fig.3.13, The arrangement of the ECUs involves placing ECU5, ECU4, ECU2, ECU1, ECU6,
and ECU3 at a distance of 1meter, 2meters, 3meters, 4meters, 5meters, and 10meters from
the signal analyzer.
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Figure 3.13: Arrangement of ECUs in the CAN - Configuration 3

The results of this arrangement show a classification accuracy of 95.83%. The confusion matrix
of this approach is listed in 3.4.

Figure 3.14: Classification result of configuration 3

Table 3.4: Confusion matrix of Daisy Chain Configuration 3

Predicted Class

- - ECU(1) ECU(2) ECU(3) ECU(4) ECU(5) ECU(6) Total%

T
a
rg
et

C
la
ss

ECU(1) 16 3 0 1 0 0 80

ECU(2) 0 20 0 0 0 0 100

ECU(3) 0 0 20 0 0 0 100

ECU(4) 0 0 0 20 0 0 100

ECU(5) 0 1 0 0 19 0 95

ECU(6) 0 0 0 0 0 20 100

Total% 100 83.33 100 95.23 100 100 95.83
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3.5.4 Configuration 4

In Fig.3.15, The arrangement of the ECUs involves placing ECU2, ECU1, ECU6, ECU5, ECU3,
and ECU4 at a distance of 1meter, 2meters, 3meters, 4meters, 5meters, and 10meters from
the signal analyzer.

Figure 3.15: Arrangement of ECUs in the CAN - Configuration 4

The results of this arrangement show a classification accuracy of 100%. The confusion matrix
of this approach is listed in 3.5.

Figure 3.16: Classification result of configuration 4
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Table 3.5: Confusion matrix of Daisy Chain Configuration 4

Predicted Class

- - ECU(1) ECU(2) ECU(3) ECU(4) ECU(5) ECU(6) Total%

T
a
rg
et

C
la
ss

ECU(1) 20 0 0 0 0 0 100

ECU(2) 0 20 0 0 0 0 100

ECU(3) 0 0 20 0 0 0 100

ECU(4) 0 0 0 20 0 0 100

ECU(5) 0 0 0 0 20 0 100

ECU(6) 0 0 0 0 0 20 100

Total% 100 100 100 100 100 100 100

3.5.5 Configuration 5

In Fig.3.17, The arrangement of the ECUs involves placing ECU6, ECU3, ECU4, ECU2, ECU1,
and ECU5 at a distance of 1meter, 2meters, 3meters, 4meters, 5meters, and 10meters from
the signal analyzer.

Figure 3.17: Arrangement of ECUs in the CAN - Configuration 5

The results of this arrangement show a classification accuracy of 99.17%. The confusion matrix
of this approach is listed in 3.6.
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Figure 3.18: Classification result of configuration 5

Table 3.6: Confusion matrix of Daisy Chain Configuration 5

Predicted Class

- - ECU(1) ECU(2) ECU(3) ECU(4) ECU(5) ECU(6) Total%

T
a
rg
et

C
la
ss

ECU(1) 19 1 0 0 0 0 95

ECU(2) 0 20 0 0 0 0 100

ECU(3) 0 0 20 0 0 0 100

ECU(4) 0 0 0 20 0 0 100

ECU(5) 0 0 0 0 20 0 100

ECU(6) 0 0 0 0 0 20 100

Total% 100 95.23 100 100 100 100 99.17

3.5.6 Configuration 6

In Fig.3.17, The arrangement of the ECUs involves placing ECU4, ECU6, ECU5, ECU3, ECU2,
and ECU1 at a distance of 1meter, 2meters, 3meters, 4meters, 5meters, and 10meters from
the signal analyzer.
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Figure 3.19: Arrangement of ECUs in the CAN - Configuration 6

The results of this arrangement show a classification accuracy of 95%.The confusion matrix of
this approach is listed in 3.7.

Figure 3.20: Classification result of configuration 6

Table 3.7: Confusion matrix of Daisy Chain Configuration 6

Predicted Class

- - ECU(1) ECU(2) ECU(3) ECU(4) ECU(5) ECU(6) Total%

T
a
rg
et

C
la
ss

ECU(1) 19 0 0 0 0 1 95.23

ECU(2) 0 20 0 0 0 0 100

ECU(3) 0 0 19 0 1 0 95.23

ECU(4) 0 0 0 20 0 0 95.23

ECU(5) 0 0 0 0 20 0 100

ECU(6) 0 0 0 4 0 16 80

Total% 100 100 100 83.33 95.23 94.11 95
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Based on the experimental results, it can be concluded that configurations 2 and 4 are the most
efficient for ECU profiling using the signal analyzer. Additionally, other configurations were also
tested and demonstrated good performance.
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CHAPTER 4

Conclusion

In this study, we have proposed two methods for enhancing the security of in-vehicle networks
against potential cyber-attacks. Method 1 is based on ECU fingerprinting, which successfully
identifies the source ECU responsible for sending malicious packets in the communication channel
by utilizing various ML classification algorithms (e.g., k-NN, SVM and LR). To evaluate the
proposed approach, we have used classification accuracy as a performance metric, and obtained
promising figures of 99.61%, 99.35% and 98.68% for the respective algorithms. These results
demonstrate that the proposed method is potentially feasible and effective in identifying abnormal
behaviors in an in-vehicle CAN network, and can significantly improve the security of in-vehicle
networks. For future work, we suggest exploring the performance of other channels such as FlexRay,
MOST, and Ethernet, and testing the proposed method under different environmental conditions
such as electromagnetic interference and high temperatures.

Method 2 is based on PCA-based image classification, which effectively identifies and profiles
ECUs based on their position in the CAN bus. Our proposed system provides a robust and scalable
solution for securing automotive systems against potential cyber-attacks. The direct data acquisition
from the CAN bus minimizes the possibility of corrupted or non-square wave data, and the scalability
of the system enables economic and commercial viability. Our results demonstrate the effectiveness
of the proposed system in identifying anomalies in the signal distortion, which can be used to detect
errors in the ECU termination resistor. Future research can be done on investigating the applicability
of the proposed method in other automotive networks and exploring its performance under different
environmental conditions.

Overall, the proposed methods have shown significant promise in improving the security of
in-vehicle networks against cyber-attacks. Method 1’s ECU fingerprinting approach can potentially
identify abnormal behaviors in the in-vehicle CAN network, while Method 2’s PCA-based image
classification can provide a robust and scalable solution for securing automotive systems. Further
research can be done to explore the performance of these methods under various conditions and in
different automotive networks.
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[53] D. Püllen, N. A. Anagnostopoulos, T. Arul, and S. Katzenbeisser, “Using implicit certification
to efficiently establish authenticated group keys for in-vehicle networks,” in 2019 IEEE
Vehicular Networking Conference (VNC), 2019, pp. 1–8.

[54] K. Verma, M. Girdhar, A. Hafeez, and S. S. Awad, “Ecu identification using neural net-
work classification and hyperparameter tuning,” in 2022 IEEE International Workshop on
Information Forensics and Security (WIFS), 2022, pp. 1–6.

[55] A. Hafeez, J. Mohan, M. Girdhar, and S. S. Awad, “Machine learning based ecu detection
for automotive security,” in 2021 17th International Computer Engineering Conference
(ICENCO), 2021, pp. 73–81.

[56] J. Brownlee, “Machine learning mastery with weka,” Ebook. Edition, vol. 1, no. 4, 2019.

[57] D. Lu and Q. Weng, “A survey of image classification methods and techniques for improving
classification performance,” International journal of Remote sensing, vol. 28, no. 5, pp.
823–870, 2007.

[58] R. M. Haralick and L. G. Shapiro, “Glossary of computer vision terms.” Pattern Recognit.,
vol. 24, no. 1, pp. 69–93, 1991.

[59] V. Lavrenko and C. Sutton, “Iaml: Dimensionality reduction,” School of Informatics, 2011.

[60] L. Sirovich and M. Kirby, “Low-dimensional procedure for the characterization of human
faces,” Josa a, vol. 4, no. 3, pp. 519–524, 1987.

[61] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of cognitive neuroscience,
vol. 3, no. 1, pp. 71–86, 1991.

[62] A. A. Elkhail, R. U. D. Refat, R. Habre, A. Hafeez, A. Bacha, and H. Malik, “Vehicle security:
A survey of security issues and vulnerabilities, malware attacks and defenses,” IEEE Access,
2021.

43


	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Introduction
	Machine Learning Based ECU Detection for Automotive Security
	Background and Motivation
	Hardware-In-The-Loop (HIL) Experimental Set Up
	Data Acquisition AND Pre-Processing
	Feature Set
	Peak-to-Peak Voltage
	Mean Distortion
	Percentage Overshoot
	Variance
	Volt Root Mean Square (VRMS)
	Peakedness
	Total Energy

	Density Of The Features
	Machine Learning Approaches
	k-Nearest Neighbour
	Support Vector Machine
	Logistic Regression

	Feature Separation
	Experimental Results And Performance Evaluation
	k-Nearest Neighbour
	Support Vector Machine
	Logistic Regression


	Eigenwave Based Principal Component Analysis for ECU Profiling
	Background and Motivation
	Data Preparation
	Data Restructuring And Filtering
	Methodology
	Results
	Configuration 1
	Configuration 2
	Configuration 3
	Configuration 4
	Configuration 5
	Configuration 6


	Conclusion
	References

