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Abstract 

Flooding in Southeastern Michigan is intensifying due to increasing temperatures, 

precipitation, and rapid urbanization. Such developments place an increasing number of people 

and capital at risk, which calls for public flood management as well as household level adaptation 

measures. Two models commonly used to understand flood risk and support flood management in 

the U.S. include: 1) Federal Emergency Management Agency (FEMA)’s flood zones and 2) First 

Street Foundation’s Flood Factor model. FEMA’s flood zones are mapped based on historical data, 

but they might not consider intense rainfall, a growing problem as the atmosphere warms. First 

Street Foundation’s Flood Factor model integrates federal elevation, rainfall data and coastal 

flooding estimates from hurricanes, thus resulting in updated maps which show a vast increase in 

risk compared to official estimates. This study aims to compare the flood risk zones from FEMA’s 

National Flood Hazard Layers and First Street Foundation’s Flood Factor to analyze the percentage 

of properties at risk in the Rouge River Watershed of Southeast Michigan. Analyses identified 

almost a 2.5% and 5% increase in the number of parcels at risk in the 100-year and 500-year 

floodplain, respectively. This underestimated risk by FEMA represents almost 40% of the 

watershed population who might be unaware of the current and future flood risk. To further 

validate these additional at-risk parcels, a flood risk map of the watershed using a Multi-Criteria 

Decision Analysis (MCDA) model was created. This detailed comparative analysis involving two 

well-known flood models, along with this flood risk map, is a potential approach for improving 

flood management measures at a local or regional scale. This study can support climate adaptation 
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by informing flood risk reduction solutions such as green infrastructure, preservation of open space 

and improved stormwater drainage systems. 
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Chapter 1: Introduction 

Flooding is the most frequent and costly natural disaster in the U.S. because it has an impact 

on public health, local and regional economies, and the environment. In the U.S., floods cause 

$7.96 billion in damages per year on average (Koen de Koninga, 2019). Flood risk is commonly 

defined as a combination of hazard, exposure, and vulnerability. Susceptibility to flood refers to 

the natural tendency to produce flood (Khosravi, 2016). Although flooding is inevitable, the 

assessment and management of future floods can be achieved through historical analyses and 

forecasting methods, and prediction. Trends of greater flooding over the course of the twentieth 

century have been observed by the statistical analyses of global historical flooding records (Milly, 

2002). Studies have evaluated future flood risks analyzing trends using global climate models from 

such historical records (Xu, 2019). Annual precipitation has increased in the U.S. during the past 

century, with much of the increase driven by intensification of the heaviest rainfalls. This tendency 

towards more intense precipitation events is projected to continue in the future (Pryor, 2014). A 

significant increase in heavy precipitation events in the Midwest has also been documented since 

the 1920s which are likely due to spatial and temporal variations in sea surface temperatures 

(Angel, 1997).  Studies utilizing historical precipitation data (1961-1990) and daily precipitation 

projections for the period 2000- 2099, show that 24-hour and 7-day extreme rainfall events are 

projected to double by the end of the next century in the Midwest (Wuebbles, 2004). More than 

half of the damages from the U.S. Billion Dollar disasters also occur due to flooding in the Midwest 

(Figure 1a.; Smith, 2021). Along with physical and socio-economic factors, these damages are 
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sensitive to extreme precipitation, which has become more frequent in this region (Figure 1) 

(Diffenbaugh, 2021). 

        

 

Figure 1: a. Annual damages from U.S. Billion Dollar Disaster Floods. Flood damage in Midwest shown in blue. b. 
Extreme precipitation days per year in the Midwest for overall (black), early (gray), and late (green) periods. 
(Davenport, 2021). 

   

Flood damage accounts for a large proportion of the economic losses due to natural hazards in 

developed countries (Güneralp, 2015). A global assessment recently estimated that based on land 

use, the economic exposure to coastal and fluvial flooding could increase from $27 trillion in 2010 

to $80 trillion in 2050 (Güneralp, 2015). According to the United States Geological Survey 

(USGS), “although the number of fatalities has declined due to improved early warning systems, 

economic losses continue to rise with increased urbanization in flood-hazard areas” (Water 

Resources, 2018). Flood losses are expected to increase, not only due to ongoing anthropogenic 

climate change (IPCC, 2014) but also due to socio-economic development (Röthlisberger, 2018). 

The increased intensity of rain events has contributed to $75 billion in flood-related damages in 

the U.S. between 1988 and 2017 (Sampson, 2021). According to the Intergovernmental Panel on 

Climate Change (IPCC) many of the global risks of climate change will be concentrated in urban 

areas (IPCC, 2014).  
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Many post-industrial cities like Detroit face a wide range of challenges including demographic 

change, financial and political neglect, and poor public service. With a median household income 

of $31,000, less than half the state median income, it is also one of the poorest large cities in the 

U.S. (Larson, 2021). Changes in frequency and intensity of rainfall patterns can therefore 

overwhelm aging infrastructure in such crippling environments and create multiple stormwater 

issues in the city and adjacent areas (Howell, 2019). Detroit has an almost flat topography and the 

city’s natural drainage is split between the Detroit and Rouge rivers, though the natural tributaries 

were replaced with underground pipes prior to the 1960s. Sewage and water runoff run through a 

combined sewer system to discharge more than 58 million liters of treated and untreated sewage 

which eventually flows into Lake Erie (Michigan Department of Environment, Great Lakes, and 

Energy (EGLE), 2018). This combined system of rain runoff and sewage discharge can overwhelm 

the Detroit’s treatment system causing sewage backflow into homes during large and extreme rain 

events (Steis Thorsby, 2020).  

 

Asphalt and concrete-based “gray infrastructure” such as buildings, roads, and parking lots 

comprise majority of the urban growth in the U.S. (Brown, 2014). A larger amount of surface 

runoff is therefore generated owing to such types of urban expansion which leads to an increase in 

impervious surfaces. Stormwater drainage systems, including sewers, infiltration trenches, and 

detention basins, are used to remove runoff by controlling its flow rate and velocity. Water tends 

to accumulate on roadways, leading to potential damage to properties (e.g., houses, cars, and 

commercial activities) and other infrastructure, when drainage structures exceed their capacity. 

However, the increasing unpredictability of future weather risks suggests that even oversized 
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infrastructure such as concrete levees, dams, retention basins, culverts and canals, may be 

vulnerable to future extreme rainfall that can far exceed existing design criteria (Kim, 2017). 

 

Past attempts to estimate rainfall-driven flood risk across the U.S. either have incomplete coverage, 

coarse resolution, or use overly simplified models of the flooding process (Wing, 2018). Data from 

the study conducted by Wing et al., show that the total U.S. population exposed to significant 

flooding is 2.6 to 3.1 times higher than previous estimates, and that nearly 41 million Americans 

live within the 1% annual exceedance probability floodplain compared to only 13 million when 

calculated using Federal Emergency Management Agency (FEMA) flood maps. The growth of 

population and Gross Domestic Product (GDP) alone are expected to lead to significant future 

increases in flood exposure, and this change may be exacerbated in the future by climate change 

(Wing, 2018). Flood risk assessment is therefore an important tool to recognize various 

communities which are at risk of being exposed to flooding and can also help in the planning and 

implementation of mitigation techniques in flood vulnerable areas. In more recent decades, there 

has been a shift in the way in which disasters including from flooding are handled, from disaster 

management focused on relief and disaster preparedness to a more sustainable approach of 

avoiding and reducing the impacts of disaster, through developing communities’ coping strategies 

to achieve resilience (Tunstall, 2009). Identification of flood-prone areas and preparation of 

susceptibility maps of flooding is an important tool to mitigate future flood damages. By 

identifying locations prone to flooding, strategies to facilitate quick response can be organized, 

therefore helping in decreasing the impact of possible flood events and providing means for early 

warning (Khosravi, 2016). However, national, and global-level assessments can undermine the 

spatial variability of climate change, land use and surface hydrology at smaller scales that are 
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relevant for adaptation measures (Adger, 2005). Routing future climate data through smaller 

watershed-scale models can thus be a solution towards quantifying flood risk at a local or regional 

scale (Xu, 2019).  

1.1 Historic Floods and Flooding in Southeast Michigan 

Flooding in Southeastern Michigan has become more common with the shifts in weather patterns 

(Drawing Detroit, 2021). Even though flooding in Detroit has remained at the forefront, cities 

throughout southeastern Michigan like Grosse Pointe and Dearborn continue to be affected by the 

surge of storm events. In September 1986, the “Great Flood of 1986” was termed as one of the 

worst flood disasters in 50 years. This 500-year flood event reported rainfall averaging between 6 

to 12 inches in central and lower southeast parts of Michigan, with certain isolated parts receiving 

up to 14 inches (Figure 2a.). The total damage was estimated between $400 and $500 million by 

the National Weather Service (Deedler, 2016) out of which around $120 million was from crop 

damage due to the floods occurring near the harvest time. 

 

Another historic rainfall event was recorded in August 2014 known as the “Metro Detroit Flood.” 

The hardest hit areas included Metro Detroit and surrounding communities, Flint, and the Saginaw 

Valley areas. Wayne, Southern Oakland, and Macomb counties experienced the worst flooding as 

4 to 6 inches of rain fell over a 4-hour period (United States Flood Loss Report - Water Year 2014) 

(Figure 2b.,d.). The Rouge River in Detroit hit a flood stage of 17.51 feet which was the fifth 

highest recorded crest of this river.  According to the United States Flood Loss Report – Water 

Year 2014, around 75,000 homes and businesses suffered damage, with over 3,000 suffering major 

damage. There was also damage to the roads and bridges, along with the city sewer pumps, which 

were overwhelmed by the torrential rainfall. This 500-year flood eventually exceeded the monetary 
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damage of the 1986 floods, with up to $1.8 billion in flood damage (August 11, 2014 Historic 

Rainfall, n.d.) .  

 

The June 2021 floods similarly affected areas of Detroit and surrounding Wayne, Oakland, and 

Macomb counties (Figure 2c.). This 500-year flood event recorded an average of 6 inches of 

rainfall in 24 hours, with some places like Dearborn receiving a record 7.5 inches compared to the 

5.8 inches of rain in the flood event of August 2014 (Flood Response Summer 2021, n.d.). This 

historic flood event has led to the recognition of the importance of stormwater management for 

private and public development in the forty-eight communities of the Rouge River Watershed. 

Places like the Dearborn (Figure 2e.), with its proximity to the Detroit River, are most impacted 

during such intense rainfall events. Thus, regional corporations and local organizations may be 

required to identify such concerns and come up with regional and local solutions.  
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1.2 Federal Emergency Management Agency (FEMA) Flood Data 

Flood risk management using quantitative approaches has long been used, particularly with the 

mapping of flood hazards. FEMA maps are based on open-space conditions, flood-control works, 

development and historically available data. In the U.S., FEMA maintains and updates flood 

hazard data through the Flood Insurance Rate Maps (FIRMs). FEMA hosts the National Flood 

Hazard Layer (NFHL), a geospatial database that contains effective flood hazard data. They 

provide this flood hazard data to support the National Flood Insurance Program (NFIP) which 

provides flood insurance to help reduce the financial impact of floods. FIRMs show special flood 

Figure 2: a. Extreme rainfall of September 1986, (Deedler, 2016); b. Flood Warnings in Metro Detroit, Flint, Saginaw 
during August 2014 floods c. Extreme average flooding in the SEMCOG region (SEMCOG, 2020) d. NEXRAD 
Doppler radar showing extremely heavy rainfall in Metro Detroit, August 2014, (Wiltgen, 2014) e. Properties at 
increased flood risk towards East Dearborn, (Matheny, 2020). 
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hazard areas and risk premium zones in the form of official community maps. These are developed 

using historic meteorological data and from hydrological/hydraulic analyses and topographic 

surveys which delineate different flood risk zones. In each zone, the base flood elevations (BFE), 

which is the level to which the house is recommended to be elevated, is stated. The flood risk 

zones and BFEs, in turn, dictate design requirements and insurance pricing (Xian, 2015). FEMA 

has produced maps delineating the Special Flood Hazard Area (SFHA) for nearly all current 

coastal flood hazard areas in the U.S. Detailed estimates of the number of people exposed have 

been published along with the distribution of the exposure on a national level. Maps delineating 

fluvial (riverine) and pluvial (rainfall-driven) flooding, however, are only partially complete 

nationwide, and no comprehensive estimate of U.S. population exposure currently exists (Wing, 

2018). Where they are available, FEMA flood maps are of varying age and levels of quality. They 

also have notably poor coverage of smaller catchments, which is a trait shared by many of the 

hazard maps that are used to inform risk calculations at global or continental scales. The flood 

hazard zones of FEMA also summarize notable flood risks within a study area and present the data 

within a map. Although FEMA redraws and updates the maps periodically, there are rising 

concerns that they underestimate flood risk.  

 

The National Flood Insurance Reform Act of 1994 stated that FEMA should be reviewing and 

updating all their maps every 5 years. But based on a report by First Street Foundation (Kaminski, 

2021), 75% of the maps are out of date and 11 % date back to the 1970’s and 1980’s. Most of the 

FEMA zones mapped in Southeast Michigan are 5 to 10 years old, with few parts dating back to 

more than 10 years (Figure 3). Part of the problem is keeping the maps up to date, which is not 
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only costly and labor intensive, but also faces further complications as climate change alters the 

flood risk.  

 

Figure 3: Age of FEMA maps in Michigan. Source: (Eby, 2019) 

 

1.3 First Street Foundation’s Flood Factor 

The First Street Foundation is a non-profit research and technology group defining America's 

Flood Risk. There has been an urgent need for accurate, property-level, publicly available 

environmental risk information in the United States based on open source, peer reviewed science. 

In a mission to fill that need, First Street Foundation has built a team of leading modelers, 

researchers, and data scientists to develop the first comprehensive, publicly available risk models 

in the United States. It is a probabilistic model showing any location's risk of flooding from rain, 

rivers, tides, and storm surge. It also forecasts how flood risks will change over time due to changes 

in the environment. The model captures the likelihood of a flood occurring in a given year based 

on the location's historic and geographic information such as elevation, climate, proximity to water 

and adaptation measures. The model then analyzes select probabilities (0.2%, 1%, 10%, 20%, 

50%) to create “hazard layers,” which show where and how deep flooding could occur for each 

probability. Their flood model, called Flood Factor, uses federal elevation and rainfall data, and 

coastal flooding estimates from hurricanes. According to the Flood Factor model, a property's 
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Flood Factor is an indicator of its comprehensive flood risk, ranging from 1 (minimal) to 10 

(extreme). The foundation then checks its results against a national database of flood claims and 

historic flood paths. This state-of-the-art flood model has been utilized for various studies by 

researchers and by businesses and government agencies to examine flood risk inequities to 

promote public safety and social equity (Flores, 2023), define flood risk for commercial and multi-

unit residential buildings (Porter J. R., 2022) as well as community level flooding risk in the next 

30 years (Porter J. R., 2021) . 

 

The model covers the contiguous United States, including areas the FEMA has not yet mapped or 

updated in decades. When compared with the FEMA maps, the Flood Factor results show an 

increase in risk compared with FEMA estimates. According to The First National Flood Risk 

Assessment (First Street Foundation, 2020), the First Street Foundation Flood Model identifies 

around 1.7 times the number of properties as having substantial risk compared to the FEMA 1-in-

100 Special Flood Hazard Areas (SFHA) designation. This equates to a total of 14.6 million 

properties across the country at substantial risk, of which 5.9 million properties and property 

owners are currently unaware of or underestimating the risk they face because they are not 

identified as being within the SFHA zone (Figure 4).  
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1.4 Multi-Criteria Decision Analysis (MCDA) 

New technologies and methodologies, such as Multi-Criteria Decision Analysis (MCDA), could 

be used to develop more detailed flood susceptibility maps that identify the areas with the highest 

exposure to flooding for Southeast Michigan. MCDA can structure decision problems by utilizing 

science-based approaches and schemes to form, assess and prioritize alternative decisions. The 

combination of GIS and MCDA can effectively and efficiently support the spatial decision-making 

process. It can be an optimal tool for land managers to assess flood risk and quantify the 

relationships between floods and their influencing factors. Recent decades have seen a major 

increase in the use of MCDA coupled with GIS. Kazakis (2015) assessed flood hazard areas at a 

regional scale in Greece using an index-based approach and Analytical Hierarchy Process (AHP) 

Figure 4: Difference in number of properties at substantial risk compared to FEMA (First Street Foundation, 2020). 
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model. Finally, a comparison between the flood maps was produced and the historical events 

showed that the model was capable of flood hazard mapping. Similar approaches using Multi-

Criteria Analysis by Stavropoulos (2020) and Nektarios N. Kourgialas (2011), use various factors 

to develop flood susceptibility and flood risk models to identify hazard prone areas and 

vulnerability. The weights in multi-criteria analysis are assigned to prioritize the relative 

importance of the different criteria. A fundamental factor in MCDA is that the weights are 

subjected to the judgment of the decision maker ensuring credibility. AHP is an effective 

multicriteria decision-making tool that can be used to set a systematic approach for evaluating and 

integrating the impacts of different factors, which include some levels for qualitative and 

quantitative information (Saaty T. L., 1990). The relative weight for each factor to be considered 

in this study can be estimated using the methods of AHP and pairwise comparison matrix. The 

comparative scale is a common methodology typically performed to analyze the comparison 

between various factors. The relative importance is measured between two factors based on a scale 

from 1 to 9, where 1 indicates the two factors are equally important while 9 reflects that one factor 

is much more important than another.  

 
1.5 Objective  

The objective of this thesis is twofold. 

• Compare predicted flood extent from FEMA and First Street Foundation’s Flood 

Factor to analyze the percentage of properties at risk and delineate the areas prone 

to flood risk in the Rouge River watershed. 

• Developing a flood risk map using MCDA and AHP to estimate the overall flood 

risk of the watershed by identifying hazard layers. 
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Flood risk estimates from both models of FEMA and First Street Foundation as well as the flood 

risk map will be validated against each other to identify the extent of overlap of the high flood risk 

areas from these models. This comparison can identify parcels that have been over or 

underestimated by one or the other flood model. A thorough comparison will also recognize areas 

of concern consisting of parcels with increasing future risk that require immediate flood adaptation 

and mitigation measures. Highlighting such areas can be used as a guide not only to spread 

awareness among the population at high flood risk, but also for organizations looking to address 

the flooding conditions with risk reducing solutions. Improved stormwater pumps and drainage 

systems, construction of levees and dams, preservation of open spaces, marshes and wetlands are 

a few of the adaptation measures that can be implemented at a local level in reducing physical and 

financial flood risks.  

 
1.6 Study Area  

The Rouge River Watershed is located in southeastern Michigan and includes four sub watersheds 

(Figure 5). The boundaries of this watershed include the Main branch of the Rouge River, Upper 

Rouge River, Middle Rouge River, and Lower Rouge River. These branches total 126 miles of 

river. The Rouge River watershed drains 1206 square kilometers into the Detroit River and 

encompasses 48 communities, which are parts of three counties: Oakland, Washtenaw, and 

Wayne. It is a fan-shaped watershed with a maximum elevation of approximately 323 meters 

(above mean sea level [MSL]) in the northwestern portion and a minimum elevation of 192 meters 

feet above MSL at the point where the river discharges into the Detroit River. The stream patterns 

vary due to elevation changes and geologic characteristics from trellis to dendritic drainage 

patterns. The watershed contains the oldest and most heavily populated and industrialized area in 

southeast Michigan which has led to sediment and water contamination from industrial 
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development and discharge, combined and sanitary sewer overflows (United States Environmental 

Protection Agency, 2022). Southeast Michigan Council of Governments (SEMCOG) projected 

that the continued urbanization would result in a 50% increase by 2020 and around 80% increase 

by 2050, in occupied land which will place continued stress on the watershed (Rogers, 2002) 

(Nowak, 2005). 

 

Increased precipitation in the Midwest in recent years has caused increased strain on the 

stormwater system. In 2018, Great Lakes Water Authority, which collects and treats most of the 

sewer from southeast Michigan, discharged 7,275 million liters of untreated sewage and 51,568 

million liters of treated sewage, highlighting the need for additional stormwater management 

(Michigan EGLE, 2018). Because the sanitary sewer and the rainwater runoff use the same pipes, 

large rain events cause sewage backflow into houses if the system cannot handle high flows during 

storms (Steis Thorsby, 2020). A report from the Great Lakes Integrated Sciences and Assessments 

(GLISA, 2017) found annual precipitation in the region has increased by 14% since 1951, with the 

greatest increase happening in the winters and springs. The NOAA data from the National Centers 

for Environmental Information calculated 2016 to 2020 as the wettest five-year period in Great 

Lakes history (Climate at a Glance: Statewide Rankings, 2023). June 2021 was the 10th wettest 

month in Michigan history when an average of 4.9 inches fell on the state. Detroit recorded more 

than 6 inches in its historic June storm alone. According to First Street Foundation’s Risk Factor 

for the state of Michigan, environmental changes can cause more 17.8 million properties to be at 

substantial risk by 2050 (First Street Foundation, 2021). This means Michigan could see a 4.2 % 

increase in the number of properties with risk of flooding. Thus, a flood risk assessment and flood 
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susceptibility map for the different subsections of Rouge River Watershed can be a primary step 

towards minimizing flood hazards and optimizing flood adaptation measures in the region. 

 

Figure 5: Rouge River Watershed with its sub watersheds. 
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Chapter 2: Methods 

 

The methods for this study were divided into two parts. The parcels of land falling within 

the FEMA flood hazard layers and First Street Foundations high flood risk were compared. Then 

a Multi-Criteria-Decision-Analysis was conducted to visualize a more comprehensive flood risk 

for the study area. 

2.1 Comparison of FEMA and First Street Flood Models 

A comparison between the FEMA and First Street models revealed the differences between the 

percent properties at risk in the 100-year and 500-year floodplain within the study area. 

2.1.1 Parcels Under FEMA Flood Zones:  

The FEMA 100-year and 500-year floodplain data was obtained from the National Flood Hazard 

Layer (NFHL) available at the FEMA Map Service Centre. The NFHL is a geospatial database 

that contains effective flood hazard data. This data is divided into flood zones which FEMA has 

defined according to varying levels of flood risk, e.g., Moderate to Low-Risk Areas, High Risk 

Areas, and Undetermined Areas (Federal Emergency Management Agency, 2021) (Figure 12a.). 

Table 1 lists the FEMA flood zones used to determine flood risk in this study. The parcels of land 

which intersected with these flood zones were selected using ArcGIS Pro and the percentage of 

parcels falling under each of the flood zones (A, AE, and X) were summarized. To get a more 

detailed overview of the parcels at risk in the watershed, the percentage of parcels under each of 

the flood zones were calculated according to each of the four sub watersheds. The number of 
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parcels in each of the flood zones, A, AE, and X was divided by the total number of parcels in 

each of the four sub watersheds to get an estimation of the at-risk parcels.  

 

Table 1: Description of the FEMA Flood Zones (FEMA, 2020) 

 

2.1.2 Parcels Under First Street Foundation’s (FSF) Model 

The Flood Factor data was accessed through the First Street Foundation’s (FSF) Research Lab 

membership. Required parcel level data was requested directly from the organization which 

provided the ability to access flood risk data for research and analysis. The First Street Property Id 

is a point dataset containing the Flood Factor data, which indicates the comprehensive flood risk 

of each parcel and ranges from the values 1 to 10, where 1 represents minimal flooding and 10 

represents extreme flooding (Figure 6) (First Street Foundation, n.d.).  Parcel data from Wayne, 

Oakland and Macomb counties were derived from the respective county’s GIS data. The Flood 

Factor point dataset was spatially joined to the parcel polygons to get a flood risk value for each 

land parcel in the study area. To compare FSF’s flood risk against FEMA, Flood factor values 

representing 1 % chance of annual flooding (100-year floodplain) and 0.2 % chance of annual 

High Risk Areas 
Zone Description 

A Areas with a 1% annual chance of flooding and a 26% chance of flooding over the 
life of a 30‐year mortgage. Because detailed analyses are not performed for such 
areas; no depths or Base Flood Elevations (BFEs) are shown within these zones. 

AE Areas subject to inundation by the 1 % annual chance flood event determined by 
detailed methods. Base Flood Elevations (BFEs) are shown. Mandatory flood 
insurance purchase requirements and floodplain management standards apply. 

Moderate Risk Areas 
Zone Description 

X (shaded) Areas of moderate flood hazard between limits of the 1% annual chance floodplain 
and the 0.2% annual chance floodplain. 
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flooding (500-year floodplain) were selected (First Street Foundation, n.d.). According to FSF’s 

Risk Factor, properties with “properties with 1% annual chance or at least a 26% chance of 

flooding over 30 years will have a Flood Factor of 4 or higher”, so Flood factor values of 4 and 

greater than 4 were chosen to represent the 100-year floodplain. “Properties with 0.2 % annual 

chance or at least an 6% chance of flooding over 30 years will have a Flood Factor of 2 or higher”, 

Flood Factor values of 2 and greater than 2 were chosen to represent the 500-year floodplain. The 

number of parcels exposed to these higher flood risk zones were identified in ArcGIS Pro and the 

at-risk parcels were summarized. Selecting by location, the data was analyzed for each of the four 

subsections of the watershed. The developed areas in the sub watersheds, subjected to high flood 

risk, were also delineated in ArcGIS Pro to evaluate the amount of developed land susceptible to 

flooding.  

 

 

 

2.1.3 Overlooked Parcels by FEMA and FSF 

FEMA has delineated the 100-year flood risk zones through Flood Insurance Rate Maps (FIRMs) 

as a basis of the national Flood Insurance Program (NFIP). They use these flood zones to delineate 

flood risk, regulate flood insurance premiums and inform floodplain management activities 

Figure 6: Flood intensity based on Flood Factor scores by FSF. 
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(Flores, 2023). This program was established in 1968 which allowed businesses and homeowners 

to purchase flood insurance. However, these FIRMs are often outdated and fail to account for 

changes in the built environment and further increase flood losses (Wing O. E., 2017) (Patterson, 

2009). Furthermore, large areal gaps in the FEMA FIRMs can exclude areas from risk 

identification and risk management processes in turn putting a large number of residents at an 

unknown risk. The at-risk parcels identified by FSF’s Flood Factor data and the parcels falling 

under the 100-year FEMA flood zones were overlaid in ArcGIS Pro. The FSF-recognized parcels 

which fell outside the FEMA -delineated flood zones were then extracted. These parcels were then 

defined as the federally overlooked parcels (Flores, 2023). Certain parcels seemed to be 

overlooked by the FSF model as well, so similar methods were used to overlay the two models 

and extract the parcels falling outside the Flood Factor model.  

 

2.2 Multi-Criteria-Decision-Analysis (MCDA) Model 

In this study, the assessment of Rouge River watershed’s susceptibility to flooding was the main 

objective for using a decision hierarchy. Flood risk assessment plays a crucial role in rainwater 

harvesting and flood mitigation. The MCDA model using Analytical Hierarchy Process (AHP) is 

one of the various approaches used to map flood risk (Radwan, 2019). This method of creating the 

flood risk map was divided into two main steps (Figure 7). First, six factors that affect the 

watershed's vulnerability to flooding were identified based on a thorough literature review 

(Danumah, 2016; Lyu, 2018; Radwan, 2019; Swain, 2020). These factors were then reclassified 

in ArcGIS Pro to form thematic maps. The factors contributing to the flood hazard of the study 

area are land use/land cover, rainfall, slope, drainage density, soil hydrology, and impervious 

surface. Second, a pairwise matrix (Figure 8) was used to assign weights to each of the six factors 
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according to AHP (see 2.2.2 for explanations). Finally, a weighted overlay process was conducted 

in ArcGIS Pro to create the final flood risk map and identify the flood hazard areas in the study 

area. According to Nektarios N. Kourgialas, (2011) the hazardous areas cannot be estimated by 

considering the effect of each factor separately. The integration of all these factors were necessary 

to obtain the overall map of flood-hazard areas. Since all factors do not have the same degree of 

influence on the hazardous areas, a weighting approach, in which a different weight is assigned to 

each factor, was applied. 

 

 

 

 

Figure 7: Schematic diagram of the methods used for mapping flood risk. 



21 
 

 

Figure 8: Pairwise comparison matrix and final weights for flood susceptibility criteria. 

 

2.2.1 Data Processing and Classification: 

Remote sensing data was used to create thematic maps of the six factors for the proposed study 

area. The general topographic surveying and mapping of the landscape features within the Rouge 

River Watershed were derived from a digital elevation model (DEM) of 1 meter resolution to 

define the slope of the watershed (U.S. Geological Survey, 2019). Surface runoff being dependent 

on the watershed relief, the layer was reclassified with areas close to the lowest values of the slopes 

having higher values and in turn higher flood risk (Figure 10 A).  

 

The National Land Cover Database (NLCD) 2019 groups land use and land cover (LULC) into 20 

classes including vegetation type, development density and agricultural use, areas of water, ice, 

snow, and barren lands. Depending on the type of land use, this factor can increase or decrease the 

soil infiltration that impacts on the surface runoff rate (Figure 10 B). Some of the LULC categories 
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were combined to be more meaningful in this study. All categories labeled “developed” were 

aggregated into one class “Developed”, and all categories labeled “Forest” were aggregated into 

one class. Similarly, “wetland” categories were aggregated as well as cultivated Crops (Figure 9).  

 

The drainage density is an important morphometric parameter and reveals the impact of land use, 

terrain, and soil texture in the watershed (Horton, 1932). It is calculated as a proportion of the total 

stream lengths in the watershed per unit area of the watershed. The DEM raster layer was used to 

develop the thematic map of the study area’s drainage density. After filling the DEM using the 

‘Fill’ tool in ArcGIS Pro, the flow direction was determined along with the flow accumulation and 

flow conditions. Then the total stream lengths were calculated along with the total basin area to 

create the final map. Low drainage density values indicate high permeable soils which support 

thick vegetation (Abdelkareem, 2017). In contrast, high drainage density values indicate soils with 

low permeability which leads to impermeable subsurface materials and sparse vegetation 

(Radwan, 2019). This layer was therefore reclassified with higher values of drainage density 

demonstrating high flood risk and lower values of drainage density indicating lower flood risk in 

the study area (Figure 10 C).  

 

Higher precipitation rates increase the probability of flooding in high flood-risk areas (Swain, 

2020). The annual rainfall data for the past 30 years (1991 to 2021) was accessed from the Climate 

Research Unit gridded Time Series (CRU TS) dataset which is a widely used climate dataset on a 

0.5° latitude by 0.5° longitude grid over all land domains excluding Antarctica (Harris, 2020). The 

data is derived by interpolating monthly climate anomalies from a network of weather stations 

observations (mm/month). The collected rainfall data for the study area was then reclassified to 
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represent areas recording highest rainfall values as high flood-risk zones and areas recording low 

values of rainfall as low flood risk zones (Figure 10 D).  

 

Soil infiltration heavily depends on the geologic substrate. High infiltration rates reduce the surface 

runoff and results in floods as well as flash floods. The hydrologic soil groups of the study area 

were accessed from the Web Soil Survey of the United States Department of Agriculture (USDA) 

(Staff, 2019). They were further classified according to the classes (A-D) which are based on the 

intake and transmission of water under conditions of maximum yearly wetness, bare soil surface 

and maximum swelling of expansive clays. The soil groups also estimate the runoff potential and 

the water infiltration capacities of the soil. Dual hydrologic soil groups were regrouped to represent 

Group D since of them are placed under group ‘D’ based on the presence of a water table within 

60 centimeters (USDA Natural Resources Conservation Service, 2007). The data was reclassified 

to represent the A and B hydrologic groups as areas with high infiltration and in turn pertaining to 

low flood-risk. Areas with hydrologic groups C and D were classified as areas with high flood risk 

potential due to the soil’s low infiltration capacity (Figure 10 E).  

 

Urbanization increases regional impervious surface area, which generally reduces hydrologic 

response time and therefore increases flood risk (Feng, 2021). Areas prone to flood risk due to 

urbanization are related not only to overall impervious surface area percentage but also to the 

spatial distribution of impervious surface coverage. With similar average impervious surface area 

percentage, land use with spatial variation may aggravate flash flood conditions more intensely 

compared to spatially uniform land use distribution. The NLCD 2019 impervious surface data was 

used to map the percent impervious cover in the study area. The layer was then reclassified 
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assigning the buildings, land cover changes and non-road impervious surfaces as high flood-risk 

prone areas (Figure 10 F).  

 

Figure 9: Reclassification of Land Cover categories of The NLCD data. 
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Figure 10: Thematic maps to identify areas at the risk of flooding. 
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2.2.2 Analytical Hierarchy Process and Weighted Overlay Model 

AHP is an effective multicriteria decision-making tool that can be used to set a systematic approach 

for evaluating and integrating the impacts of different factors, which include some levels for 

qualitative and quantitative information (Saaty, 1990). Relative weight for each factor considered 

in this study was estimated using the methods of AHP and a pairwise comparison matrix. The 

comparative scale (Table 2) is a common methodology typically performed to analyze comparison 

between various factors (Saaty, 2003). The relative importance is measured between two factors 

based on a scale from 1 to 9, where 1 indicates the two factors are equally important while 9 reflects 

that one factor is much more important than another. A consistency ratio (CR) is computed to 

check the differences between the pairwise comparisons and the reliability of the measured 

weights. The consistency ratio should be < 0.1 to be accepted; otherwise, it is important to check 

subjective judgments and recalculate the weights (Saaty, 2001).  

 

Weights for this study were assigned using a freely available AHP Excel template (Goepel, 2013) 

which allowed for multiple inputs with individual and consolidated outputs for decision makers. 

The excel template was made available for download on the Business Performance Management 

Singapore website. Six factors identified in this study were then compared using the comparative 

scale, and each factor was rated and evaluated against every other factor by assigning a relative 

dominant value between 1 and 9 (Kayastha, 2013) (Table 2). A pairwise matrix was then developed 

after assessing the relative weights of these factors for the watershed’s flood risk vulnerability 

assessment (Figure 8).  From the calculated pairwise matrix, the weightage of each layer 

contributing to the watershed’s vulnerability to flood risk was derived.  
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These assigned weights were then used for analysis using the weighted overlay method (Figure 

11). The determination of factors, the development of weightage for each, and the ranking of the 

weights were based on a synthesis of similar studies which were conducted to investigate possible 

factors and their impacts on the flood risk. According to the judgment of experts and literature 

reviews in this field (Danumah, 2016; Lyu, 2018; Radwan, 2019; Swain, 2020), in addition to the 

data available and required for the study area, each factor was categorized into sub-categories. 

Then, each sub-category was specified for a suitability rating value from 1 to 9, where 1 meant 

least importance of a class and 9 meant most importance of a class in the watershed vulnerability 

analysis (Table 3). Each of these six factors were then overlayed using the “Weighted Overlay” 

tool in ArcGIS Pro based on these suitability ratings. In this method each calibrated factor (Xi) 

was multiplied by its respective weight percentage (Wi). The summation of all the factors then 

gave us the final flood risk map of the study area following the equation (Gemitzi, 2006): 

S =   ∑𝑤𝑤𝑖𝑖 𝑥𝑥𝑖𝑖 

where S is Final flood risk map, wi is the weight of a factor ‘i’ (percentage) and xi is the rate of 

factor ‘i’ according to the range of the criterion values. Figure 19 depicts the final flood risk map 

of the study area which includes into five classes (very low, low, moderate, high, and very high) 

of flood risk.  
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Figure 11: Weights assigned to each factor for the weighted overlay model. 

Table 2: Judgement scale and definitions for pairwise comparison. 
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Table 3: Relative weights and suitability ratings for the six factors. 
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Chapter 3: Results 

3.1 FEMA vs First Street Foundation (FSF) Flood Models 

3.1.1 FEMA 

The FEMA flood zones were found to buffer the Rouge River and its tributaries for most parts of 

the study area. The A, AE and X zones accounted for around 6% of the total parcels of the 

watershed. The A and AE zones making up the 100-year floodplain consisted of around 3.3% of 

the parcels and the remaining fell under the X or the 500-year floodplain (Figure 12).  

 

3.1.2 FSF 

The FSF model can determine the likelihood of a flood reaching a minimum depth in a given year, 

known as an annual flood likelihood. A property’s annual flood likelihood for a specific depth in 

15 or 30 years may differ from its annual likelihood this year because of changes in the 

environment. The Flood Factor score, which indicates a property's flood risk, increases as the 30-

year cumulative flood likelihood increases, or as the projected depth of flooding increases. 

Properties with a higher Flood Factor are either more likely to flood, are more likely to experience 

high floods, or both. Based on the First Street Foundation's data, 3% of the parcels in the Rouge 

River Watershed were found to not have a Flood Factor score. This likely translates to the fact that 

in case of a flood event, the parcels with no Flood Factor or a Flood Factor score of 1 should not 

show any flood water reaching the building outline. While it is still possible for properties with a 

Flood Factor of 1 (minimal) to flood, these properties have a less than 0.2% chance of flood water 

reaching the building in every analyzed year (First Street Foundation, n.d.).  
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Ninety-five percent of the Rouge River Watershed had parcels with a Flood Factor score, of which 

approximately 89% had a score of 1 (i.e., minimal flood risk). Almost 8% of the parcels of the 

watershed had a Flood Factor score higher than 2 which identifies increasing risk of flooding. 

According to the Flood Factor model, properties with at least a 6% chance of flooding over 30 

years will have a Flood Factor of 2 or higher and properties with at least a 26% chance of flooding 

over 30 years will have a Flood Factor of 4 or higher. Four percent of the watershed also shows 

parcels with a Flood Factor of greater than or equal to 5 (Figure 13b.). Properties with at least an 

80% chance of flooding over 30 years will have a Flood Factor of 5 or higher and at least a 99% 

chance of flooding over 30 years will have a Flood Factor of 6 or higher (First Street Foundation, 

n.d.). The map (Figure 13a.) of the study area shows the spatial distribution of the parcels at risk 

of flooding according to the FSF model with Flood Factors ranging from 2 to 10. 

 

 

3.1.3 FEMA vs. FSF 

Comparing the number of parcels within the FEMA Flood Zones and the parcels with flood factors 

corresponding to the 100 year and 500-year flooding, First Street Foundation identifies a higher 

percentage of at-risk parcels in the Rouge River Watershed (Figure 14). Almost 2.5% of additional 

parcels were found at-risk in the 100-year floodplain identified by FSF, with a 26% chance of 

flooding over a period of 30 years. The 500-year floodplain identified by FSF saw an almost 5% 

increase in the at-risk parcels with a minimum of 6% of flooding over the next 30 years (Figure 

15). 



32 
 

 

Figure 12: a. 100-year and 500-year Flood Zones of FEMA (Above); b. Percentage of parcels in the FEMA Flood 
Zones. 
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Figure 13: a. Parcels with Flood Factor score between 2 to 10; b. Percentage of Parcels with different flood factor 
scores. 
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Figure 14: Comparison of parcels in the FEMA flood zones and with corresponding Flood Factor scores. 
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Figure 15: Bar chart showing the increased flood risk identified by FSF’s model. 

 

3.2 Overlooked Parcels by FEMA and FSF 

Around 89% of the at-risk parcels identified by the FSF model constitute the federally overlooked 

100-year FEMA flood zone. These parcels fall outside the boundaries of the federally recognized 

FEMA’s Special Flood Hazard Area (SFHA) which are identified on the Flood Insurance Rate 

Map (FIRM). These parcels therefore stand the chance of not qualifying for suitable flood 

insurance if the areas are to be inundated by a flood event having a 1 % chance of being equaled 

or exceeded in any given year. Figure 16a. shows the spatial distribution of these federally 

overlooked lands, which are mostly concentrated in the southeastern and western parts of the 

watershed.  Similarly, around 93 % of FSF’s at-risk parcels in the 500-year floodplain constitute 

the federally overlooked flood zone. Since the 100-year floodplain is at a higher flood risk than 

the 500-year floodplain, a more detailed study of the land use of these federally overlooked parcels 

was conducted. Analyzing the land use of these overlooked parcels showed that almost 85% of 

these parcels comprised developed areas in highly populated areas of the watershed. The remaining 

areas comprised mostly forests and wetlands (Figure 17). The FSF flood model also overlooked 
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certain parcels which were a part of the FEMA 100-year floodplain (Figure 16b.). Around 30% of 

the parcels that represented the FEMA 100-year flood zone were not identified by the FSF flood 

model. Looking closely at the land use of these parcels, around 35% of these parcels belonged to 

developed areas. The remaining parcels comprised mostly of water bodies, forests, and wetlands 

(Figure 17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. 
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Figure 17: Land Use characteristics of the overlooked parcels. 

Figure 16: a. Federally (FEMA) overlooked parcels and b. parcels overlooked by FSF. 

b. 
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3.3 Flooding by Sub Watersheds 

To get a more detailed overview of the risk and intensity of flooding in the study area, the number 

of parcels at high flood risk under both FEMA and First Street Foundation’s flood model was 

estimated separately for all four sub watersheds of the Rouge. From Figure 18 and Table 4, the 

Main Rouge River sub watershed shows the highest number of parcels that are exposed to flood 

risk with around 7% in the 100-year floodplain where FSF identifies more parcels than FEMA. 

There is also a substantial increase in the at-risk parcels by around 7% in the 500-year floodplain 

where predictably FSF identifies more parcels at-risk than FEMA.  However, the Upper Rouge 

River sub watershed shows a significant number of parcels lying in the 100-year and 500-year 

floodplain, more than any other areas of the watershed. These additional parcels are seen to be 

identified by the FEMA flood zones but not by the FSF model. Most of these additional parcels 

identified by FEMA   

 

Even though Flood Factor identifies a higher number of at-risk parcels in the watershed, a lot of 

parcels identified by First Street Foundation's data falls outside the designated FEMA flood zones. 

First Street mostly identifies this additional data due to using current climate data and precipitation 

data as a stand-alone risk. These parcels outside the FEMA zones therefore represent homeowners 

that have been unaware of and underestimated the current risk. To get further estimations and more 

detailed comparisons of areas with flood susceptibility the Multi-Criteria Decision Analysis 

(MCDA) model was applied.  
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Figure 18: Comparing flood risk identified by FEMA and FSF in each sub watershed of the study area. 

 

Table 4: Percentage of parcels at risk flooding based on both the FEMA and FSF model. 

Rouge Sub 
watersheds 

Percentage of Parcels  

FEMA 100 yr. FEMA 500 yr. FSF 100 yr. FSF 500 yr. 

Main Rouge 3.2 1.7 6.7 9.2 

Middle Rouge 3.9 2.4 3.7 5.5 

Upper Rouge 4.3 8.7 3.8 5.2 

Lower Rouge 1.9 1.0 3.9 5.8 
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3.4 Flood Risk Mapping 

The final flood risk obtained highlighted five levels of flood risk (Figure 19): very low, low, 

moderate, high, and very high flood risk. The very low and low classes cover around 12% of the 

parcels in the study area including parts of Rochester Hills, Farmington Hills, and Wixom. These 

are essentially areas with high slopes, low precipitation amounts and low drainage density, majorly 

consisting of forests, wetlands, water bodies and less developed areas. Moderate risk areas account 

for around 15% of the watershed but are close to areas with high and very high flood risk and 

comprise mostly of low and medium intensity developed areas.  The very high flood risk class 

identifies at least 25% of the parcels in the study area to be at extreme flood risk, of which around 

99% are highly developed land. More than 50% of the parcels in the study area are also at high 

flood risk which also includes majority of the developed land and few parcels of forest area and 

barren lands. Almost all of the high flood risk areas are dominated by lower slopes, high drainage 

density, significantly higher amount of rainfall and ‘C’ or ‘D’ soil groups with low infiltration 

capacities. Increased development and uncontrolled urbanization plays a key role in addition to 

population density, flatter slopes, and heavy rainfall to the aggravating risk of flooding. 
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Figure 19: Final Flood Risk Map of the study area generated from the weighted overlay method. 

 

3.5 Validation of the MCDA Model Against FEMA and FSF Flood Models 

The various classes of flood risk in the final flood risk map were compared with the FEMA and 

the First Street Foundation’s flood models. High and very high flood risk areas showed an overlap 

with more than 85% of the parcels with a flood factor of 5 to 10. These are the areas of major to 

extreme flood risk where parcels with a Flood Factor or 6 or higher have almost a 47% chance of 

at least 1 inch of floodwater reaching their homes (First Street Foundation, n.d.). More than 50% 

of both 100-year and 500-year FEMA floodplain also intersected with the identified high flood 

risk areas of the map. Parcels having moderate flood factor scores of 3 and 4 saw almost 70% of 
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the parcels comprising of moderate flood risk but also consisted of a substantial amount of high 

flood risk areas. Around 40% of the FEMA flood zones were found to have intersected with these 

moderate risk areas. A significant number of parcels with a high flood factor rating were found in 

areas recognized as moderate or low risk areas by the MCDA model. Similarly, very high-risk 

areas identified by the MCDA model were found intersecting with parcels having minimal flood 

factor values and residing outside the FEMA 100-year and 500-year flood zones. 
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Chapter 4: Discussion 

In response to the first objective of the study, the First Street Foundation’s Flood Factor 

Model identifies a higher and increased amount of flood risk in the Rouge River Watershed. When 

compared with the FEMA flood zones, the Flood Factor model identifies an additional 2.5% of at-

risk in the 100-year flood plain and an additional 5% of at-risk parcels in the 500-year flood plain. 

Moreover, utilizing the U.S. Census Redistricting Blocks (U.S. Census Bureau, 2021) data, the 

study identified that almost half a million people lived at risk to 100-year flooding outside the 

FEMA -delineated flood zone. This accounts for at least 40 percent of the total population of the 

watershed. This alarmingly large amount of at-risk population is being overlooked mostly because 

of the government’s reliance on a largely incomplete and historical data dependent flood model as 

the foundation for the assessment of flood risk, mitigation, and policymaking nationwide (Flores, 

2023).  

 

The FEMA zones and the Flood Factor are independent risk assessments. FEMA captures the risk 

from a single 1-in-100 or 1-in-500-year flood event from storm surge and overflowing rivers and 

streams, and also most importantly it determines flood risk on the community level. In contrast, 

the Flood Factor model estimates flood risk on a property-level and the model accounts for flood 

risk due to high-intensity rainfall as well as changing climate conditions (Risk Factor, n.d.). This 

difference in scale of assessing flood risk can be the main factor why Flood Factor identifies more 

nuanced and property-specific flood risk compared to the ‘in-or-out’ binary floodplain analysis 

from FEMA maps. Flood risk identified by Flood Factor can also vary for a variety of reasons. In 
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the case of vacant lots or where building information is unavailable the risk of flooding is analyzed 

against the center of the property. Such minor differences between similar buildings, including 

personal adaptation measures taken by the homeowners can lead to differences in the flood factor 

(Risk Factor, n.d.). Additionally, the model also considers ‘grey’ and ‘green’ infrastructure and 

adaptation projects affecting flow of water and flooding to get a more accurate flood risk (First 

Street Foundation, 2020). These can be the main reasons why some parcels identified in the FEMA 

flood zones in this study, have been overlooked by FSF’S model. Eighty-five percent of the parcels 

overlooked by FEMA were part of highly developed regions of the watershed, whereas the Flood 

Factor model overlooked parcels in areas covered majorly in forests, crops, wetlands, and water 

bodies. That being said, the Flood Factor data is also known to be the most powerful dataset when 

used in conjunction with the FEMA flood maps as well as other state or local flood risk resources. 

Using this model complementary to the FEMA flood maps can be beneficial not only in identifying 

and mitigating flood risk but can also be used for building and permitting purposes (First Street 

Foundation, 2020). This study can therefore be considered as a case study to calculate and estimate 

increased flood risk in any highly urbanized watershed like the Rouge River Watershed, across the 

country. The Flood Factor model further identifies and analyzes the economic impact of these 

underestimated at-risk parcels on a national level. The potential damage and flood risk in many 

parts of the country is being underestimated based on current understandings of flood risk. This is 

concerning since the insurance premiums in the market are priced based on these understandings 

by estimating the property-level average annual loss (First Street Foundation, 2021). This puts 

homeowners, prospective buyers, renters, and cities at risk about which insurance should be 

purchased, potential dangers, and what sorts of development should be restricted (Oakford, 2022). 

Therefore, identifying the at-risk parcels outside FEMA’s designated Special Flood Hazard Areas 
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(SFHA), can reveal a vast economic risk associated with flooding. FEMA’s new Risk Rating 2.0 

calculates premiums based on specific characteristics of individual properties and also incorporates 

a broader range of flood frequencies such as pluvial flooding, Great Lakes flooding, flooding in 

leveed areas and coastal erosion outside the coastal flood zone (Horn, 2022). However, further 

research in these areas can demonstrate the extent of information asymmetries on flood risk and 

how they can contribute to financial and personal risk to property owners (First Street Foundation, 

2021). 

 

In terms of the second objective of this study, a multi-criteria analysis (AHP) was adopted which 

facilitated multi-source data combinations to constitute a flood risk map of the Rouge River 

watershed. The method was based on physical, hydrogeological, and anthropogenic parameters 

such as slope, drainage density, rainfall, land use, soil hydrology and impervious surface cover. 

Based on various previous studies, the use of a weighted approach for each of these parameters to 

generate areas of high flood susceptibility in a GIS environment proved to be an efficient method 

to gauge the overall flood risk of the watershed (Danumah, 2016). However, normalization and 

assigning weights were important factors in reducing bias and uncertainty in the final weighted 

risk model. The subjective nature of choosing the value of the weights for each parameter based 

on expert and personal judgements might result in an inaccurate model. But, based on Saaty’s 

(Saaty T. L., 1990) consistency ratio test of judgments, this inaccuracy was reduced. A consistency 

ratio threshold of less than 10% is necessary to make a coherent judgement. A 7% consistency 

ratio achieved for this study proved that the judgements used in this study could be considered 

mostly coherent. However, a lesser value would have been preferred for a more accurate and 

consistent model which could be improved by dividing the chosen flood risk parameters into 
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hazard factors and vulnerability factors. Furthermore, inclusion of parameters such as NDVI, 

population density, storm drainage system and urban structure types (Danumah, 2016); (Radwan, 

2019); (Swain, 2020) could give us a more refined and detailed overlook at the flood risk of the 

study area. Such an in-depth model might have also been useful to understand the explanations 

behind certain discrepancies observed during the validation of the MCDA model in this study. The 

existence of a significant number of parcels with high flood factor in low flood risk areas and 

parcels with minimal flood factor in high flood risk areas were identified. Based on understandings 

from First Street Foundation’s (FSF) methodology (First Street Foundation, 2020), the Flood 

Factor model considers the uncertainty of the future climate along with the current climate by 

using projections from twenty-one Global Climate Models, which could not be included in the 

MCDA model used in this study. Based on this process which includes possible future risks along 

with carbon emission scenarios and historical period analysis of thirty years, it is highly possible 

that the high flood factor parcels recognized in the low-risk regions showcases impending flood 

risk in the coming years. Locations of such regions (Figure 20 a.) can therefore be used for possible 

local adaptation measures along with identifying flood mitigation projects and storm drainage 

system limitations. The Flood Factor model has also included various adaptations and 

modifications by human activity which impact the flow of water and in turn flooding. This can 

therefore result in the parcels occurring in the high flood-risk areas to have low flood factors 

(Figure 20 b.). The FSF has incorporated an extensive database of ‘grey and green infrastructure 

and adaptation projects. Infrastructure solutions like levees, flood control channels and pump 

stations make up the ‘grey’ adaptations whereas ‘green’ infrastructure consist of wetland 

restoration, retention basins, creek rehabilitation projects and floodable open space to contribute 

to flood reduction. The adoption of such green infrastructure projects in Southeast Michigan can 
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lead to significant ecological benefits by preserving river-floodplain ecosystems as well as serve a 

large economic potential by saving hundreds of millions of dollars in flood losses. Hybrid 

solutions, utilizing both green and grey infrastructure are also proving to be the most cost-effective 

and resilient infrastructure systems. Examples of hybrid solutions such as utilizing a mangrove 

conservation and a levee can become important flood mitigation measures as incidences of 

flooding increase. Detroit’s recent initiative to transform vacant lots into green spaces is a 

particularly noteworthy project that can result in a reduction of stormwater discharge by 

approximately 100,000 gallons during large storms (Dauer, 2020). 

 

Overall, the comparison of two well-known flood models along with the flood risk map using an 

MCDA technique can be used as a simple and executable method to identify the risk of flooding 

at a parcel level in any vulnerable area. Determining location of parcels at high flood risk can 

further help government agencies as well as local non-profit organizations to use a targeted 

approach at developing restoration plans and mitigation practices, especially in a highly urbanized 

and impaired watersheds like the Rouge River Watershed.  
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Figure 20: a. Parcels with High Flood Factor scores in Low-risk areas identified by MCDA; b. Parcels with Low Flood 
Factor scores in Very High Flood Risk areas identified by MCDA. 

  

b. 
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Chapter 5: Conclusion 

In this study, an integrated approach was taken to assess the flood risk of the Rouge River 

Watershed by comparing two well-known flood models and a multi-criteria-decision-analysis 

technique. The objective was to utilize the data from FEMA, which is a federally funded flood 

model, and Flood Factor, a more detail-oriented model by the non-profit organization, First Street 

Foundation, to gauge the over or underestimation of flood risk in the study area. The impact of our 

changing climate, more intense rainfall and increasing urban development provides the need to 

develop more robust and detailed risk assessments, especially in a highly impaired watershed like 

the Rouge. The analyses conducted in this research conceivably revealed an additional 2.5% and 

5% parcels at risk of a 100-year and 500-year flood respectively. These parcels are currently being 

overlooked in terms of flood risk and account for around half the study area’s population thus 

proving the underestimation by FEMA’s flood model. Moreover, these unidentified parcels that 

are being overlooked by FEMA’s 100-year flood zones are not ‘mandated for protection’ through 

the National Flood Insurance Program (NFIP) and lack the investments in flood protection 

received by these FEMA-delineated 100-year flood zones (Flores, 2023). Approximately 13 

million U.S. residents have been identified by FEMA to reside in 100-year flood zones, however 

First Street Foundation’s analysis has identified approximately 41 million residents (Wing, 2018). 

Hence, effective, and unbiased flood protection, along with accurate flood risk mapping, is needed 

more than ever. The simultaneous use of both the FEMA and FSF’s flood model can be one 

approach of a more accurate flood risk estimation and mapping in areas prone to increased 

flooding. Flood susceptible zone mapping can be considered as one of the most constructive 



51 
 

methods to assess the flood risk of a vulnerable area (Swain, 2020). The generation of a flood risk 

map using MCDA was therefore advantageous to estimate the overall hazard-prone regions of the 

study area. This technique also used various previous studies and expert judgments to show that 

combined effects of factors such as rainfall, soil hydrology, slope, land use and drainage density, 

play a significant role in flooding. Additionally, using Saaty’s AHP technique, every flood 

dependent factor was given the highest suitability ranking and weightage to create areas of high 

flood susceptibility. The resulting map indicated that almost 50% of the watershed was at high 

flood risk.  

 

Analyses from this study can be used to assist stakeholders, planners, and decision-makers to 

create potential anticipatory measures and suitable infrastructure for flood risk management. Such 

maps can also be used for better land use planning and proper supervision of the flood-prone 

regions in turn ensuring sustainable socio-economic development (Danumah, 2016; Swain, 2020). 

Further development of the methodology used in this study can be applied by including high 

resolution satellite imagery of flood hazards as well as information on mitigation and adaptation 

projects to generate more precise flood risk maps for the overlooked (Porter, 2021). Overall, 

special attention should be given to the high-risk areas based on increasing population density and 

local needs. Monitoring should also be undertaken in the medium to low-risk areas to prevent or 

minimize any imminent flooding as a result of a changing climate.  
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