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Abstract 

In the machine learning problem of multi-label classification, the objective is to determine for 

each test instance which classes the instance belongs to. In this work, we consider multi-label 

classification in the context of multi-label radioisotope classification for gamma spectra data. By 

viewing spectra as discrete distributions we tackle a more challenging variant of multi-label 

classification where the goal is to ascribe a proportion to each class label, not just a binary 

variable. Motivated by this application to radioisotope identification, we aim to simultaneously 

predict label proportions while also performing out-of-distribution (OOD) detection. To achieve 

this goal, we introduce a novel semi-supervised loss function that combines a traditional 

supervised loss with an unsupervised reconstruction error penalty. This work demonstrates that 

the proposed model can successfully perform radioisotope identification in a realistic test 

scenario. We also show how to extend this approach to perform OOD detection which can 

determine when the model prediction should not be trusted due to the presence of an anomalous 

source. The semi-supervised model, trained on gamma spectra based on a measurement of a real 

fission source containing a mixture of 30 distinct radioisotopes (labeled by a spectroscopist), 

learned to estimate in-distribution (ID) samples with about 39% error while simultaneously being 

able to differentiate (with 95% confidence) between ID and OOD samples with an anomaly 

contribution as small as 10%. 
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Chapter 1 Introduction 

The unique signatures manifested in gamma spectra by each contributing radioisotope 

have long been analyzed by pattern recognition algorithms. Utilizing modern software tools 

which can simulate spectra, researchers are well-equipped to try and construct synthetic datasets 

which represent their problem space. Although radioisotope identification (RIID) has 

traditionally relied on manual analysis by subject matters experts, the availability of synthetic 

data has opened the problem space to more modern techniques. Machine learning methods are 

especially suited for this problem space as they excel at generalizing useful models from large 

amounts of diverse data. 

The simplest RIID problem would be to identify a single, dominant isotope in each 

observed gamma spectrum. This is a multi-class classification problem where the output is a 

single positive class. Unlike multi-class classification, multi-label radioisotope classification 

involves identifying the presence of multiple radioisotopes in a single gamma spectrum.  

The goal of this thesis is two-fold. We investigate a novel formulation of multi-label 

classification where the objective is to predict the proportion of each isotope present in a 

spectrum (LPE). In addition, as a second goal, we aim to design a classifier that can detect the 

presence of a novel source (OOD detection). To address these problems a neural network is 

trained on a semi-supervised loss function which simultaneously optimizing for these two 

objectives. This semi-supervised loss combines a traditional supervised loss with an 

unsupervised reconstruction error penalty. In particular, the reconstruction error penalty uses a 

dictionary of pure gamma spectra (corresponding with each class label) along with the model’s 
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predicted proportions to generate a reconstruction of the input spectrum. The resulting 

reconstruction error represents a metric that can be used for determining confidence in 

proportion estimates or in conjunction with a threshold to identify OOD samples. 

Both this problem formulation and our approach leverage the fact that these classes and 

spectral measurements are probability distributions. Thus, the proposed technique should extend 

to other applications where the feature vector can be viewed as a mixture of distributions. 

1.1 Contributions 

The key contributions of the proposed learning framework are as follows: 

• A novel semi-supervised loss function is proposed for LPE which combines a traditional 

supervised loss with an unsupervised reconstruction error term. 

• A method for performing OOD detection using the unsupervised portion of the loss 

function is proposed. This allows the model to learn both LPE and OOD detection 

simultaneously using shared network parameters. 

• A probabilistic interpretation of the proposed semi-supervised loss function is offered, 

which explains the learning objective as a paired maximum likelihood estimator. 

• The effectiveness of the proposed model is tested on synthetic gamma spectra based on a 

fission source with a large mixture size of 30 radioisotopes. 

1.2 Organization of Paper 

Before discussing the technique used to create the proposed semi-supervised model, 

chapter 2 presents a review of current machine learning methods for radioisotope identification 

and related topics. In chapter 3, the problem statement, assumptions, and goals for this work are 

formally defined. In chapter 4, the proposed method label proportion estimation with OOD 
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detection is given, along with a probabilistic interpretation of the loss function. Chapter 5 details 

the steps taken to generate a dataset of representative, synthetic gamma spectra, along with an 

evaluation of the dataset. Chapter 6 contains information regarding the training setup, network 

architecture, and experimental results. Finally, conclusions and future work are discussed in 

chapters 7 and 8, respectively. 
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Chapter 2 Background 

In this chapter, radioisotope identification is motivated and a review of recent approaches 

for radioisotope identification with machine learning is presented in Section 2.1. Dictionary-

based signal modeling and sparse coding are reviewed in Section 2.2, as this forms the basis for 

the unsupervised term of the proposed loss function. Finally, in Section 2.3, out-of-distribution 

detection is motivated and defined. 

2.1 Gamma Spectra and Fission Sources 

Radioactive decay occurs when an unstable atomic nucleus emits radioactive 

electromagnetic energy, and subsequently transforming into a different atomic nucleus. This 

decay gives off energy in various forms including alpha, beta, and gamma radiation. The energy 

of emitted gamma ray particles, which are the highest energy form of electromagnetic radiation 

(i.e., have the shortest wavelength), can be individually resolved via a gamma-ray spectrometer. 

Each radioisotope emits gamma particles during this radioactive decay at unique, characterizable 

energy levels. As a gamma-ray spectrometer detects individual gamma photons, they can be 

binned by energy level, producing a histogram of counts known as a gamma spectrum. This 

histogram can then be normalized and viewed as a discrete probability distribution. Since 

radioisotopes tend to produce unique and characterizable features in gamma spectra, gamma 

spectroscopists take advantage of this fact to identify radioactive sources. All these processes are 

well described in [1]. 

 The data used for this work is based on a gamma spectrum taken of a fission source in 

[2]. The fission source, in this context, is spent nuclear fuel removed from a reactor and 
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subsequently measured with a High-Purity Germanium (HPGe) detector. The source itself, 

which has been bombarded with neutrons, is a chaotic soup of radioisotopes. Despite this, to 

obtain ground truth proportions, a spectroscopist performed a peak-based analysis of the 

spectrum to determine the individual activities of each radioisotope present.  These ground truth 

activities form the basis of the synthesis process described in chapter 5. 

Unfortunately, spectra are not always easy to analyze. A myriad of real-world, physical 

effects related to both the sources, detector, and environment can alter a gamma spectrum from 

what is expected. Often, the resolution of a detector prevents characteristic peaks of two sources 

from being distinguishable, and sometimes resolution worsens as a detector ages. 

Simultaneously, a specific configuration of a source can produce an unexpected scattering effect 

making it look less like what one would expect. Moreover, environmental temperatures change, 

and this can cause the spectrum to shift without employing automatic gain stabilization at the 

detector level. These are but a few of the challenges faced by spectroscopists. While fission 

source data could face the real-world challenges mentioned above, it is less likely as the process 

by which such data is collected is typically more controlled. 

2.2 Radioisotope Identification 

The goal of identifying and quantifying the radioisotope contributors in measured gamma 

spectra is of major importance to national security, especially in areas such as nuclear device 

detection, nuclear material identification, nuclear treaty verification, and emergency response. 

Traditionally this task is performed manually by a subject matter expert (SME), namely a 

spectroscopist, who follows a series of steps to perform the analysis. These time-consuming 

steps can include photo-peak identification, background subtraction, and software-assisted 

template matching [3], and often rely heavily on the intuition/experience of the spectroscopist. 
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Although conventional methods will likely continue to be used, machine learning techniques 

have been shown as viable alternatives in a variety of limited problem spaces. In the last few 

decades, many off-the-shelf machine learning methods have been applied to this problem space 

with the goal of performing radioisotope identification faster and more accurately [4], [5], [6], 

[7], [8], [9], [10], [11], [12], [13].  

Machine learning techniques were first applied to radioisotope identification by Olmos et 

al. in 1991 [4]. In their work they applied a simple neural network to single-isotope 

determination by training from limited experimental data. Although the model did not 

outperform conventional techniques, such as peak analysis, it gave promising results and 

demonstrated that machine learning could provide a simple and fast approach for gamma 

spectrum analysis, which would only improve with better model and data availability. 

More recently, there has been significant progress in this area. For example, in 2017 

Kamuda et al. [8] studied using artificial neural networks for identifying the relative proportions 

of radioisotopes from low-resolution mixture gamma spectra. Unlike some previous works, this 

paper focused on training with the entire normalized spectral shape rather than counts in regions 

of interest and utilized a large library of sources (32 radioisotopes). They predicted relative class 

contributions by training a two-layer neural network with softmax activation and cross-entropy 

loss. They demonstrated that the neural network could correctly identify the presence and 

approximate proportions for small mixtures of two radioisotopes. For larger mixtures of 5 

radioisotopes, the model did not successfully predict their relative proportions, but could 

generally identify the largest contributors to the spectrum. 

In 2020, Daniel et al. [11] use convolutional neural networks for radioisotope 

identification with gamma spectra. They trained a separate neural network model for each of the 



 

 7 

6 sources they aimed to identify, where each model consisted of convolutional feature learning 

layers followed by fully connected layers and finally a binary output. Each model took the log-

normalized gamma spectra as an input and minimized the binary-cross-entropy loss. For each 

model they found that they could achieve 90% accuracy with at least 1000 counts in the gamma 

spectrum and a relative proportion of at least 5%. Although this demonstrates the effectiveness 

of convolutional neural networks for radioisotope identification, this method does not allow for 

estimated mixture proportions of detected sources. 

Recently there have been several papers that compare a variety of machine-learning 

techniques for radioisotope identification. For example, Qi et al. in 2022 [12] compare six 

different machine learning algorithms for single radioisotope identification including the support 

vector machine, k-nearest neighbor, logistic regression, naïve Bayes, decision tree, and 

multilayer perceptron methods. They compared these algorithms on two groups of datasets with 

5 and 14 target nuclides and trained the algorithms on simulated data generated via Monte Carlo 

simulations. They demonstrated that all the methods were able to achieve similar performance 

(in terms of accuracy) on the simulated test datasets. They also found that although all the 

methods had slightly higher accuracies on the simulated data, the naïve Bayes and decision trees 

models performed significantly worse on experimental data. 

Another recent work by Khatiwada et al. in 2023 [13] also compares several machine 

learning techniques for gamma ray radioisotope identification, including decision trees, gradient-

boosted trees, k-nearest neighbors, Gaussian process regression, multi-layer perceptron (MLP), 

and convolutional neural networks. These model were trained on simulated data with various 

proportions of Uranium and Plutonium under various levels of shielding. They found that a fully 
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connected neural network (i.e., MLP) achieved the best results in terms of mean error compared 

to the other methods. 

2.3 Dictionary-Based Modeling and Sparse Coding 

We say that a signal 𝒙	 ∈ 	ℝ!, where 𝑝 is the length of the signal, has a dictionary 

decomposition if it can be closely represented as a linear combination of the columns (atoms, 𝑑) 

of a dictionary 𝑫 ∈ ℝ!	×	$. Dictionary learning methods involve simultaneously learning a 

dictionary as well as the corresponding coefficients. Dictionary learning techniques have led to 

state-of-the-art results in a variety of different tasks such as image denoising [14] [15] and facial 

recognition [16] [17]. In some applications the signal being estimated is sparse, in which case 

this is known as sparse coding. Sparse coding, an unsupervised dictionary learning method, 

involves learning a sparse representation of an input signal using a predefined dictionary. Sparse 

coding techniques are also known to be resilient to noisy and corrupted data, even in cases where 

a small amount of training data is available.  

Although sparse coding methods are generally resilient to noisy data, they have been 

shown to be susceptible to cases where noise represents natural variation in training data, for 

example if an image of a face has different scales or poses for facial recognition [18]. This leads 

to disappointing performance on large datasets where variation like this is common. Several 

recent methods have aimed to mitigate these issues by pairing sparse coding techniques with 

neural networks which conversely perform well with large amounts of data [19] [20] [21] [22]. 

For example, Sun et al. [23] proposed a novel method for extending sparse coding to deep multi-

layer networks by developing a sparse coding bottleneck module which pairs two sparse coding 

layers with wide and slim respective dictionaries to generate an intermediate lower-dimensional 

feature space.  
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To realize sparse coding on neural networks, rather than incorporating it into the network 

layers, sparse coding objectives can also be included in the loss function. The idea of using a 

dictionary learning method with a supervised loss function is not new. For example, Mairel et al. 

[24] propose a semi-supervised learning objective which combines two learning cost functions 

together with a trade-off parameter. The unsupervised term minimizes a sparse coding objective 

while the supervised term uses the learned sparse representation of the input signal as an input. 

This concept is very similar to the technique used in the supervised loss function, except both the 

unsupervised and supervised term use the model inputs (i.e., a dictionary-based representation is 

not used to learn the supervised task). 

2.4 Out-Of-Distribution Detection 

Typically, machine learning models are trained under the assumption that test data is 

drawn i.i.d. from the same distribution of training data. This is known as the closed-world (or 

closed-set) assumption and can be dangerous in practice, as models are generally applied in an 

open-world scenario [25]. In their natural habitats, models will often encounter test data that was 

unseen in training data and thus is out-of-distribution (OOD) [26]. Neural networks have been 

shown to assign over-confident predictions to OOD inputs, which could be especially dangerous 

in high-consequence scenarios. For example, Nguyen et. al. demonstrate that state-of-the-art 

deep neural networks will assign high probability predictions (> 99%) to completely 

unrecognizable images [18]. For a machine learning model to be trustworthy it should not only 

have a high performance in terms of the known classes, but it should also be able to identify 

OOD samples. 

The field of OOD detection is not the only field which operates on the open-world 

assumption and is closely related to similar problems including outlier detection, anomaly 
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detection, novelty detection, and open set recognition. All these fields are closely related, and the 

terms are often used interchangeably. There have been several recent surveys which aim to unify 

these fields under a common framework [25] [27]. These fields can be generally defined as 

detecting when a test sample comes from a different distribution than the in-distribution (ID) 

training data due to some sort of distribution shift (shift in the label space, shift in sensory 

conditions, etc.). 

According to Yang et al. [25] OOD detection techniques can be grouped into four main 

categories: classification-based detection, distance-based detection, density-based detection, and 

reconstruction-based detection. Classification-based methods rely on the output of classifiers to 

identify OOD samples and originate from simply using the softmax probabilities as OOD 

indicators [28].  Several post-hoc methods [29], [30], [31] fall into this category with various 

techniques including input perturbation, data augmentation, and adversarial training to expand 

the separability between ID and OOD samples. A popular approach called outlier exposure is a 

classification-based OOD detection method which involves pre-training (or exposing) a model 

on an auxiliary OOD dataset which has been shown to result in better differentiation between ID 

and OOD inputs [32], [33]. Distance-based OOD detection methods operate on the assumption 

that OOD samples should be relatively far from ID prototypes in terms of some distance metric 

such as the Mahalanobis distance [34], [35], cosine similarity [36], radial basis function kernel 

[37], and Euclidean distance [38]. Density-based methods involve explicitly modeling the ID 

data under some probability distribution and then declaring OOD samples in the low-density 

regions [39], [40]. Finally, reconstruction-based methods assume that the reconstruction of ID 

and OOD samples based on some generally smaller-dimensional latent representation will yield 

different values.  This is typically done with an encoder-decoder model [41], [42], [43], [44]. 
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The approach taken in this work for OOD detection would best be categorized as a 

reconstruction-based method because the difference between the reconstruction input signal and 

observed input signal is used as an OOD indicator. However, the OOD detector developed here 

is realized by declaring a sample OOD if it falls in the low-density region of reconstruction 

errors for ID samples (see 6.4), so it could also be viewed as a density-based OOD detection 

method. 

The approach taken in this work was partly motivated by Katz-Samuels et al. in [26], 

who explored a similar setting for OOD detection as in this paper. Inspiration was taken from 

their feedforward model structure which used shared network parameters to perform both multi-

class classification and OOD detection simultaneously. 
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Chapter 3 Problem Setup 

In this chapter we formally define LPE and OOD detection in the context of the multi-

label gamma spectra classification problem. First, the necessary condition for classes to be 

represented by probability distributions is discussed. This is followed by a formulation of the 

training data and goals in terms of quantifiable metrics. Finally, we address the case where label 

proportions are known to be sparse. 

3.1 Distributional Assumption 

This approach for LPE and OOD detection is based on the idea that each class can be 

viewed as a unique probability distribution. With this in mind, label proportions can be viewed 

as mixture proportions, and the observations can be viewed as a mixture of distributions. 

Moreover, if the class distributions are assumed to be discrete, then the true distribution for each 

class can be represented as a normalized histogram. This approach relies on the assumption that 

these histograms (the true distribution of each class) are known a priori. 

For this problem in particular, these discrete distributions represent the pure spectral 

shape of each radioisotope the model predicts. This assumption is reasonable in real-world 

applications as most only care about a specific set of sources, and the spectral shape of those 

sources can be determined by measurement or simulation for the particular detector being used. 

 Formally, the model assumes access to a dictionary 𝑫 ∈ ℝ!×$ a priori, where each 

column (atom) contains the pure, normalized (in this case, normalization means divided through 

by total counts) spectrum for a specific radioisotope. Training samples are then synthesized from 

this dictionary as a random mixtures of columns, collectively and randomly scaled by signal-to-
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noise ratio (SNR), and with noise included for both background subtraction and Poisson statistics 

(more details in chapter 5).  Each input is therefore approximately representable as a linear 

combination of dictionary columns, 

𝒙 = 	𝑫 ∗ 𝒚 + 𝒏, 

where 𝒏 ∈ ℝ! is a vector representing noise. Based on this interpretation of the problem, a 

dictionary-based modeling approach, where the predicted isotope proportions can be viewed as 

dictionary coefficients, seemed justified. 

3.2 Training Data 

With this distributional assumption in mind, the inputs to this model will be measured a 

mixture of distributions, and in this case a mixture gamma spectra. The corresponding labels will 

be the true mixture proportions of each contributing source and must be in the probability 

simplex (i.e., the proportions must be non-negative and sum to one). Formally, let 𝒳 ∈ ℝ! 

denote the input space (i.e., input spectra have 𝑝 channels) and 𝒴 ∈ Δ$%& (where 𝑑 is the number 

of sources targeted) denote the label space. Then assume access to a labeled, training dataset 𝒟 ∶

= 	 {(𝒙' , 𝒚')}'(&)  where 𝑛 samples are drawn i.i.d. from the joint distribution ℙ𝒳𝒴.  

3.3 Goal 

Suppose we are given a new observed gamma spectrum 𝒙 ∈ ℝ! from an unknown 

mixture of isotopes.  The goal is to accurately predict the proportion of known sources in the 

mixture (LPE) while simultaneously detecting whether the observation is OOD.  Let 𝑓,:	𝒳 →

Δ$%& denote a model for the label proportion estimation task, in this case a neural network with a 

single hidden layer. Let 𝑔,:	𝒳 → {𝑖𝑛, 𝑜𝑢𝑡} be a binary classification function which maps each 

test input 𝒙 ∈ ℝ! to either ID or OOD. Note that for this work only the case where samples are 
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OOD due to a semantic distribution shift (i.e., some proportion of the counts of a spectrum come 

from a novel source) is considered. Also notice that both 𝑓 and 𝑔 are parameterized by 𝜃 to 

indicate that they use shared parameters. 

Formally, suppose we are given an unlabeled test dataset which may contain both ID and 

OOD samples, drawn from ℙin and ℙout, respectively. The goal will be to minimize the mean 

absolute error (MAE) of the label proportion estimator on ID samples while maximizing the F1 

score of the OOD detector. The priority given to each of these objectives can be controlled by the 

user via a hyperparameter referred to as beta (𝛽). 

3.4 Optional Condition of Sparsity 

In some applications the mixtures proportions are known to be a sparse mixtures where 

only a small number of classes are present at one time. This is an important case to consider. In 

this case, Section 4.1.2 offers a variation of the proposed approach that accounts for this 

alternative assumption.
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Chapter 4 Method 

The main idea of the proposed method is to train a neural network by minimizing the 

empirical risk associated with a custom loss function which leverages the assumption mentioned 

in the previous chapter. A supervised loss term is paired with an unsupervised loss term to 

promote consistency with the assumed dictionary 𝑫 via a reconstruction error objective. The 

reconstruction error objective will compare the input signal to a reconstructed input signal 

created using predicted proportion estimates and the dictionary. 

For the training dataset 𝒟 ∶= 	 {(𝒙' , 𝒚')}'(&) , the semi-supervised learning objective takes 

the form of, 

𝐿 =H𝐿2

)

'(&

(𝒚I' , 𝒚') + 𝛽𝐿32(𝒙I' , 𝒙'), 

where 𝐿2, 𝐿32 are the supervised and unsupervised loss terms, respectively, 𝛽 ≥ 0 is a trade-off 

parameter,  𝒚I' = 𝑓,(𝒙') are the predicted proportions, and 𝒙I' = 𝑫 ∗ 𝒚I'  is the reconstructed input 

signal. The trade-off parameter 𝛽 controls the priority of the unsupervised term. 
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4.1 Supervised Term – A Loss Function for Label Proportion Estimation 

In this section the traditional supervised loss function for estimating label proportions in 

this model is introduced. An alternative is also discussed for the case when the true label 

proportions are known to be sparse. 

4.1.1 Cross Entropy Loss 

For the supervised term, 𝐿2, in the loss function, the categorical cross-entropy loss 

(softmax activation + cross-entropy loss) naturally fits. Typically, cross-entropy loss is used for 

multi-class classification with a one-hot encoding and can be used to estimate class probabilities 

as it outputs a distribution. Cross-entropy can also be used for predicting label proportions. For 

example, Kamuda et al. use cross-entropy for LPE in the context of radioisotope identification 

like ours [8]. Let the predicted proportions  𝒚I = 𝑓,(𝒙) be the already softmax-activated logits 

from the model with corresponding true label proportions 𝒚. Then the cross-entropy loss can 

simply be defined as, 

𝐿245(𝑓,(𝒙), 𝒚) = −H𝒚6 log(𝑓,(𝒙)6) .
$

6(&

 

4.1.2 Sparsemax Loss 

This section introduces an alternative supervised loss function to the cross-entropy loss if 

the true labels proportions are known to be sparse. To promote sparsity, ℓ& regularization is 

typically used as a convex relaxation of the ℓ7 norm. However, this is not ideal for truly sparse 

data when paired with the categorical cross-entropy loss as this approach relies on softmax 

activation to map the model scores to the probability simplex, and softmax will always map to a 

dense distribution (i.e., distribution with full support). Thus, to obtain truly sparse proportions, 
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the softmax output must be thresholded at some arbitrarily chosen value. Moreover, as label 

proportions are being predicted, the predictions will already sum to one, so ℓ& regularization 

would not make sense. 

In this case, the sparsemax loss function for sparse label proportion estimation, proposed 

by Martin et al. [45], would be a better option for the supervised term in the learning objective. 

The sparsemax loss is based on a the sparsemax activation function, which is like softmax but 

outputs truly sparse probability distributions. For some vector 𝒙 ∈ ℝ$, the sparsemax activation 

is defined as, 

sparsemax(𝒙) = argmin
𝒑∈:!"#

	‖𝒑 − 𝒙‖;;, 

which is the Euclidean projection of the input vector 𝒙 onto the probability simplex.  In other 

words, the sparsemax activation function is the closest valid probability distribution in terms of 

the ℓ; distance. Since this projection is often on the boundary of the probability simplex, the 

sparsemax will nearly always output a sparse probability distribution, with some of the terms 

close to or exactly zero. The sparsemax has a closed form solution based on soft thresholding, 

sparsemax'(𝒙) = [𝑥' − 𝜏(𝒙)]<, 

𝜏(𝒙) = 	
(∑ 𝑥6) − 16∈=(𝒙)

|𝑆(𝒙)| , 

where 𝑆(𝒙) is the support of the sparsemax activation: 𝑆(𝒙) ≔ {𝑗 ∈ [𝑑]	|	sparsemax6(𝒙) > 0}. 

This can be computed in 𝑂(𝑑 log 𝑑) time. 

Martins et al. [45] propose a loss function based on the sparsemax activation for 

estimating sparse label proportions. Let 𝒚I = 𝑓,(𝒙) be the model prediction for some input 𝒙 with 

corresponding true label proportions 𝒚. Then the sparsemax loss is defined as, 
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𝐿sparsemax(𝒚I; 	𝒚) = −𝒚H𝒚I +
1
2 H h𝒚I6; − 𝜏(𝒚I)i +

1
2
‖𝒚‖;;.

6∈=(𝒚J)

 

The gradient for this loss simplifies nicely to, 

∇𝒚J𝐿sparsemax(𝒚I; 	𝒚) = −𝒚 + sparsemax(𝒚I). 

This is identical to the gradient for the categorical cross-entropy loss, except the softmax 

activation is replaced with sparsemax activation. 

4.2 Unsupervised Term – Penalizing Dictionary-Based Reconstruction Error 

The main idea behind the unsupervised term in the loss function is to minimize the 

difference between the input signal and the estimated reconstruction of the input signal. This 

estimated reconstruction can be found as a linear combination of the dictionary columns with the 

predicted coefficients:  𝒙I = 𝑫 ∗ 𝑓,(𝒙). Including this in the loss function will encourage the 

model to make predictions which are consistent with the predefined dictionary. The quantity 

resulting from a comparison between the input spectrum and the reconstructed spectrum is 

referred to as reconstruction error. In the following sections several different reconstruction 

error functions are considered. 

4.2.1 Poisson Negative Log-Likelihood (PNLL) 

It has been shown that each channel of a gamma spectrum can be modeled as a Poisson 

random variable with a mean equal to the channel count and variance equal to the square root of 

the mean (standard deviation equals variance) [1]. The idea here is instead of minimizing the 

differences between the input and reconstruction, the reconstruction probability in terms of this 

Poisson noise model is being maximized. This is equivalent to minimizing the negative log-

likelihood, which is described as, 
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𝐿32
!K' = − log Pr(𝒙I	| 𝑿 = 𝒙), 

where  𝒙I = 𝑫 ∗ 𝑓,(𝒙) is the reconstructed signal. In other words, this is the probability of 

measuring a reconstructed signal  𝒙I ∈ ℝ! given an input signal 𝒙 ∈ ℝ!. Expanding this for each 

energy bin in the spectrum gives, 

Pr(𝒙I	| 𝑿 = 𝒙) = Pr(𝑋n& = 𝑥o&, 	𝑋n; = 𝑥o;, …𝑋n! = 𝑥o!	|	𝑿 = 𝒙), 

and assuming that each channel is measured independently, 

Pr(𝒙I	| 𝑿 = 𝒙) = Prq𝑋n& = 𝑥o&	r𝑋& = 𝑥&) ∗ Prq𝑋n; = 𝑥o;	r𝑋; = 𝑥;) ∗ … ∗ Prq𝑋n! = 𝑥o!	r𝑋! = 𝑥!). 

Because each channel of a gamma spectrum can be modelled as a Poisson random variable, this 

can be simplified to, 

Pr(𝒙I	| 𝑿 = 𝒙) =s𝑃𝑜𝑖(𝑥o6; 𝜆6 = 𝑥6)
!

6(&

=s
𝑥6
LM$𝑒%L$

𝑥o6!
.

!

6(&

 

Then the negative log-likelihood can be written as a summation, 

− log Pr(𝒙I	| 𝑿 = 𝒙) =H(𝑥6

!

6(&

− 𝑥o6 log 𝑥6 + log 𝑥o6!). 

Thus, the unsupervised loss term can be written as, 

𝐿32
!K'(𝑫 ∗ 𝑓,(𝒙), 𝒙) =H(

!

6(&

𝑥6 − [𝑫 ∗ 𝑓,(𝒙)]6 log 𝑥6 + log[𝑫 ∗ 𝑓,(𝒙)]6!). 

4.2.2 Gaussian Negative Log-Likelihood (GNLL) 

It is well-known that for sufficiently large count rates a Gaussian random variable can be 

used as an approximation of a Poisson random variable. In particular, a Poisson random variable 

𝒳 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) can be approximated as 

𝒳 ≈ 𝒩(𝜇 = 𝜆, 𝜎; = 𝜆). 
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Although for high count rates this approximation is excellent, for low count rates a Poisson 

model is more precise, especially as the number of counts approaches zero [46]. For this reason, 

directly using the GNLL as an unsupervised loss function would not be expected give better 

performance than using the PNLL, but it is considered for comparison. And in the next section 

the GNLL is further simplified into a new unsupervised loss function with some nice 

optimization properties for this problem space. 

Just like the unsupervised Poisson negative log-likelihood shown the in previous section, 

the Gaussian negative log-likelihood can also be derived in a similar way. This will estimate the 

probability of an input reconstruction in terms of a Gaussian noise model. Using this Gaussian 

model, the probability can be expressed similar to before as,	

Pr(𝒙I	| 𝑿 = 𝒙) =s𝒩(𝑥o6; 𝜇6 = 𝑥6 , 𝜎6; = 𝑥6)
!

6(&

=s(
1

~2𝜋𝑥6
⋅ exp�−

1
2
q𝑥o6 − 𝑥6�

;

𝑥6
�).

!

6(&

	

Then	the	negative	log-likelihood	can	be	given	as,	

− log Pr(𝒙I	| 𝑿 = 𝒙) =
1
2H(logq2𝜋𝑥6�

!

6(&

+
q𝑥o6 − 𝑥6�

;

𝑥6
). 

Then this unsupervised term can be written as, 

−log Pr(𝒙I	| 𝑿 = 𝒙) =
1
2H(logq2𝜋𝑥6�

!

6(&

+
q[𝑫 ∗ 𝑓,(𝒙)]6 − 𝑥6�

;

𝑥6
). 

In practice, however, issues arise for low-count channels, especially when there are 

exactly zero counts (which is common at high-energies) where this unsupervised loss breaks 

down. At the zero-count limit, the Gaussian approximation is defined with zero uncertainty 

which does not make sense statistically and runs into a divide-by-zero problem. Like the 
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approach used by Lass et al. in [47], this is resolved by setting a lower threshold for the variance 

at one. Then the GNLL can be adjusted to, 

𝐿32𝒩 (𝑫 ∗ 𝑓,(𝒙), 𝒙) =
1
2H(logq2𝜋max(𝑥6 , 1)�

!

6(&

+
q[𝑫 ∗ 𝑓,(𝒙)]6 − 𝑥6�

;

max(𝑥6 , 1)
). 

4.2.3 Sum of Squared Errors (SSE) 

A new unsupervised loss function can be obtained by forcing the variance to remain 

constant in the GNLL loss (a homoscedastic GNLL). Then the GNLL loss for one sample can be 

simplified to, 

1
2H(log(2𝜋𝜎;)

!

6(&

+
q[𝑫 ∗ 𝑓,(𝒙)]6 − 𝑥6�

;

𝜎; ) 

Notice that as the variance no longer affects the minimization problem, this is equivalent to 

simply minimizing the sum of squared errors (SSE) or the squared ℓ;-norm difference between 

the input and reconstruction (‖𝒚 − 𝑫 ∗ 𝑓,(𝒙)‖;;). 

 Although this simplification no longer accurately models the conditional probability of 

measuring a reconstructed spectrum, it does have several nice properties for optimization. For 

one, it eliminates the zero-count issue that is present when computing the GNLL loss. Also, by 

assuming a constant variance across all the energy channels, this loss will exponentially penalize 

channels which have higher errors. For example, in typical gamma spectra high-energy channels 

generally contain very few counts, often exactly zero (of course depending on SNR and the 

detector live-time), while spectral peaks in lower energy channels will generally have thousands 

of counts. By assuming constant variance, the error from being a few counts off in low-count 

channels will be very small compared to the error from being a few hundred counts off in high-
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count channels. In other words, this SSE unsupervised loss should encourage peak fitting more 

than the GNLL and PNLL which judge each energy channel with equal importance. 

 For this study, the SSE loss is not fully simplified and the constant variance terms in the 

unsupervised loss function are left in place, with a constant variance selected based on the 

sample variance to obtain loss values on a similar scale as the PNLL and GNLL reconstruction 

error functions. Using 𝜎; = 𝑉𝑎𝑟(𝒙) would make the most sense statistically, where 𝑉𝑎𝑟(𝒙) 

refers to the sample variance over all the counts in a gamma spectrum. However, as the SSE is a 

less accurate probabilistic model of count spectra than the PNLL and GNLL, the reconstruction 

errors are on a much higher scale. To combat this issue, 𝜎; = ~𝑉𝑎𝑟(𝒙) was chosen as the 

constant variance term in the SSE reconstruction error function, based on empirical observations 

of the range of reconstruction errors. We chose to apply the square root as this adjusted the scale 

of the reconstruction errors for this unsupervised loss function to be on the same scale as the 

other reconstruction error loss functions (PNLL and GNLL). As this value is just a constant it 

does not affect the solution of the minimization problem but was chosen simply to allow us to set 

the same 𝛽 value when comparing performance later between the different unsupervised loss 

functions. In particular, 

𝐿32==5(𝑫 ∗ 𝑓,(𝒙), 𝒙) = 	
1
2H(logq2𝜋~𝑉𝑎𝑟(𝒙)�

!

6(&

+
q[𝑫 ∗ 𝑓,(𝒙)]6 − 𝑥6�

;

~𝑉𝑎𝑟(𝒙)
). 

 An alternative method for balancing loss terms would be to use a method for adaptively 

adjusting the weighting between the supervised and unsupervised loss terms while training (see 

Future Work). 
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4.3 Tying it All Together 

Combining the three unsupervised losses with the supervised cross-entropy loss gives 

three semi-supervised loss functions which were used to train the model. Formally, for the 

labelled training dataset 𝒟 ∶= 	 {(𝒙' , 𝒚')}'(&) , the three learning objectives can be written as: 

𝐿!"# = min
$
&[−&[𝒚#]% log(𝑓$(𝒙#)%)

&

%'(

)

#'(

+ 𝛽&(
!

%'(

[𝒙#]% − [𝑫 ∗ 𝑓$(𝒙#)]% log[𝒙#]% + log[𝑫 ∗ 𝑓$(𝒙#)]%!)] 

𝐿𝒩 = min
$
&[−&[𝒚#]% log(𝑓$(𝒙#)%)

&

%'(

)

#'(

+ 𝛽
1
2
&(log92𝜋max([𝒙#]% , 1)>
!

%'(

+
9[𝑫 ∗ 𝑓$(𝒙)]% − [𝒙#]%>

+

max([𝒙#]% , 1)
)] 

𝐿,,- = min
$
&[−&[𝒚#]% log(𝑓$(𝒙#)%)

&

%'(

)

#'(

+𝛽
1
2&(log ?2𝜋@𝑉𝑎𝑟(𝒙𝑖)A

𝑝

𝑗=1
+
B[𝑫 ∗ 𝑓𝜃(𝒙𝑖)]𝑗 − [𝒙#]%C

2

D𝑉𝑎𝑟(𝒙𝑖)
)] 

4.4 OOD Detection 

The proposed OOD detector is predicated on the fact the unsupervised losses (PNLL, 

GNLL, and SSE) do not depend on the true label proportions. Thus, these losses can be 

computed even for test cases where the true label proportions are unknown. The idea is that these 

metrics should not only improve the model by encouraging predictions consistent with the 

dictionary, but that they should also provide a built-in metric for OOD detection. When a 

novel/anomalous source is sufficiently present in an observed spectrum (i.e., some nonzero 

proportion of the measured counts come from a novel isotope), the model will not be able to 

generate an accurate reconstruction as the dictionary is missing the column associated with the 

novel source. Even if the model correctly predicts the proportions of known isotopes, the 

presence of the novel source should result in an inferior reconstruction. In other words, the 

stronger and more distinct a novel source is, the harder it will be for the model to explain itself. 
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To force the model to generate poor reconstructions on out-of-distribution (OOD) samples, the 

prioritization of in-distribution reconstruction is encouraged by increasing 𝛽. 

The idea of using reconstruction error as a means of OOD detection is not new. Recently 

Ghawaly et al. in 2022 [44] proposed a method called ARAD for detecting anomalies in gamma 

ray spectra using a deep convolution neural network. Their technique uses a deep convolutional 

autoencoder to learn a lower dimensional latent representation of input spectra. A decoder 

convolutional neural network then attempts to recreate the input spectra from the latent 

representation. They then use the Jenson Shannon distance as a reconstruction metric to compare 

their input and reconstructed input. Their approach, however, is different than this method in 

several aspects. Their reconstructed spectra are generated using a deep convolution auto-encoder 

neural network, whereas the method presented in this thesis generates a reconstruction simply as 

a linear combination of the dictionary columns. Their proposed ARAD model has a single 

objective of anomaly detection, while this approach pursues the detection of anomalies alongside 

proportion estimation of known sources. Furthermore, this work considers different metrics 

when computing reconstruction errors. The ARAD model uses the Jenson Shannon distance to 

compare the reconstruction to the input, while this paper proposes a Poisson probability model to 

measure the likelihood of the reconstruction compared to the input. 

This thesis performs OOD detection as a binary classification problem and realizes the 

classifier 𝑔,(𝒙) as a decision function using the unsupervised term of the learning objective, 

𝑔,(𝒙) = � "𝑖𝑛", 𝐿32(𝒙I, 𝒙) < 𝛾
"𝑜𝑢𝑡", 𝐿32(𝒙I, 𝒙) ≥ 𝛾, 

where 𝛾 ∈ ℝ is a threshold for detection. In practice the detection threshold 𝛾 must be set 

manually based on the typical reconstruction error in the model’s natural habitat for ID inputs. A 
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sample is declared OOD if it lies in the low-density region of the ID reconstruction errors. More 

detail on this is provided in chapter 6. 

4.5 A Probabilistic Interpretation 

Earlier in this chapter, each of the unsupervised loss functions (PNLL, GNLL, and SSE) 

was shown to be derived from directly computing the conditional likelihood of a reconstruction 

given an input signal under different statistical models for the data. For example, the PNLL 

reconstruction error assumes that each channel in a measured gamma spectrum can be modeled 

as a Poisson random variable. Similarly, the GNLL and SSE reconstruction errors assume a 

Gaussian and homoscedastic Gaussian model for gamma spectrum channels. As minimizing the 

negative log-likelihood of the reconstructions is equivalent to maximizing their likelihoods, each 

of the unsupervised loss terms can be viewed as maximum likelihood estimators. This makes 

sense considering it is well known that minimizing the sum of squared errors is equivalent to 

performing maximum likelihood estimation under a Gaussian prior. 

The supervised loss in the proposed learning objective can also be considered a 

maximum likelihood estimator. Cross-entropy is a function that measures the difference between 

two probability distributions. When used as a loss function, in the case of this model, it measures 

the difference between the true and predicted distribution of class labels. It is also known that 

minimizing the cross-entropy loss is equivalent to maximizing the likelihood of the predicted 

class distributions over the model parameters. 

Thus, the overall semi-supervised loss function can be viewed as a paired maximum 

likelihood estimation problem, where the priority between the two maximum likelihood 

estimators can be controlled via a scalar parameter 𝛽. 
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Chapter 5 Generating Synthetic Training Data 

This section describes the training dataset and how it was synthesized from assumptions 

made about the response of a high purity germanium (HPGe) detector. 

5.1 Gamma Spectra Sources  

The training data for this paper consists of synthetic fission source gamma spectra based 

on an 8 in3 handheld HPGe detector using GADRAS [48]. Each training spectrum contains a 

random mixture of the following 30 sources: 112Ag, 78As, 139Ba, 140Ba, 143Ce, 124I, 131I, 132I, 133I, 

134I, 135I, 85mKr, 87Kr, 140La, 142La, 99Mo, 149Nd, 150Pm, 105Rh, 105Ru, 115Sb, 129Sb, 91Sr, 92Sr, 132Te, 

235U, 88Y, 93Y, 91mY, and 95Zr. A pure spectral signature for each source, known as a seed, is 

obtained via GADRAS Inject based on the detector at 100 cm distance, 100 cm height, and a 

dead time of 23 𝜇s. Each seed spectrum consists of 16,384 energy channels spanning an 8 MeV 

energy range. The energy ranges of the seed spectra are cut to span ~30keV to 4 MeV, as all the 

meaningful features are contained in that range. And to reduce computational costs and model 

Source Expected Proportion Source Expected Proportion Source Expected Proportion 
Ag112 0.0267 I135 0.0868 Sb115 0.0303 
As78 0.0403 Kr85m 0.0227 Sb129 0.0506 
Ba139 0.0197 Kr87 0.0252 Sr91 0.06 
Ba140 0.0235 La140 0.0214 Sr92 0.0128 
Ce143 0.0266 La142 0.0372 Te132 0.0328 
I124 0.0377 Mo99 0.0067 U235 0.0337 
I131 0.0217 Nd149 0.0952 Y88 0.0261 
I132 0.0399 Pm150 0.0402 Y93 0.0257 
I133 0.0168 Rh105 0.0204 Y91m 0.0157 
I134 0.0429 Ru105 0.0369 Zr95 0.024 

Table 5.1: list of foreground sources, along with count proportion in typical gamma fission spectrum 
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complexity, the resulting seed spectra are uniformly down binned to 2048 channels. Plots of the 

seed spectra are shown in Appendix A.  

5.2 Generating Random Mixtures of Foreground Seeds 

With seeds obtained from GADRAS, the next step in simulating realistic mixture spectra 

is to create pure mixture spectra by combining the seed spectra with random proportions. This is 

accomplished with PyRIID (Python-based Radioisotope Identification) [49], an open-source 

Python package for synthetically generating gamma spectra.  PyRIID’s methods use the Dirichlet 

distribution to randomly sample the mixture proportions based on a provided parameter. The 

Dirichlet distribution, a multivariate generalization of the beta distribution, can be used to 

randomly sample a vector of positive proportions which sum to one. The Dirichlet distribution 

can be thought of as a distribution of distributions. It has support over the probability simplex 

(i.e., 𝒙 ∈ ℝV, where 𝑥' ∈ [0,1] and ∑ 𝑥' = 1' ), where it is defined as, 

𝐷𝑖𝑟(𝒙|𝜶) =
1

𝐵(𝜶)s𝑥'
W%%&

V

'(&

, 

where 𝐵(⋅) is the multivariate beta function, and 𝜶 is a vector parameter controlling the expected 

shape of the distribution. If 𝛼& = 𝛼; = ⋯ = 𝛼V, then the all the mixture proportions will be 

sampled uniformly, whereas 𝛼& = 2, 𝛼; = 1,… , 𝛼V = 1 would generate a skewed distribution 

with the first proportion greater than all others on average. The magnitude of 𝜶 controls the 

strength or variation of the distribution. In other words, 𝛼& = 𝛼; = ⋯ = 𝛼V → ∞ would generate 

completely uniform distributions with no variance (i.e., all proportions equal). For 𝛼& = 𝛼; =

⋯ = 𝛼V → 0, the Dirichlet distribution would converge on outputting a vector with a single non-

negative proportion equal to 1, thus maximizing the variance.  
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 The 𝜶 parameter of the Dirichlet distribution provides an opportunity to utilize prior 

information when sampling random mixture proportions, specifically the expected proportions of 

sources present in a measurement taken of a fission source. The expected proportions for each 

fission source, determined through consultation with a subject matter expert, are shown in Table 

5.1. These proportions can then be multiplied by a large scalar, in this case 300, to create 

variation of each proportion centered on the expectation and usable as the vector parameter 𝜶 

when generating random mixtures. For the training dataset, 1e4 random mixtures were sampled. 

5.3 Static Synthesis of Mixture Spectra 

With the randomly sampled mixtures of foreground sources in hand, PyRIID is used to 

simulate additional types of noise, most notably SNR variation and imperfect background 

subtraction. Before discussing how this is accomplished, it is necessary to define some terms 

used by PyRIID. In practice, every detected gamma spectrum will be a gross spectrum, where 

measured counts come from both the foreground (or net) sources (the targets of interest) and 

background sources (noise always present in the environment). Thus, a measured spectrum can 

be thought of as the summed foreground and background spectra.  Let the gross, foreground, and 

background counts be defined as, 

𝑔𝑟𝑜𝑠𝑠	counts	 ≡ 𝐺 

foreground	counts ≡ 𝐹 

background	counts	 ≡ 𝐵. 

From this, PyRIID defines the signal-to-noise ratio (SNR) as, 

𝑠𝑛𝑟 =
𝐹
𝐵. 
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With a collection time (also referred to as “live time”) over which the detector was counting, 𝑡, 

the count rate in counts per second (cps) is obtained as follows, 

gross	counting	rate	(cps) 	≡ 𝑔 =
𝐺
𝑡  

foreground	counting	rate	(cps) 	≡ 𝑓 =
𝐹
𝑡  

background	counting	rate	(cps) 	≡ 𝑏 =
𝐵
𝑡 . 

Synthetically generating a gamma spectrum begins by modeling the number of counts in 

each channel (or energy bin). As described in [1], the Binomial distribution can be used to model 

the number of counts in each energy bin. And because the number of nuclei is generally very 

large and the collection times are relatively short compared to half-life of the measured nuclei, 

the Poisson distribution can be used in place of the Binomial distribution, which is parameterized 

by a single parameter equal to the expected number of counts for that energy bin [46]. Although 

for expected values above 25, the Poisson distribution can be approximated with a Gaussian, the 

Poisson distribution is used as it is applicable to channels with both low and high counts. 

To synthesize a realistic 𝑝-channel gamma spectrum, the following information must be 

known a priori: a target SNR value (𝑠𝑛𝑟  ), a target live time (�̃�), a target background count rate 

(𝑏¢), a known distribution of foreground counts across all channels (𝒇), and a known distribution 

of background counts across all channels (𝒃). In particular, the known foreground and 

background distributions must be 𝑝-dimensional, non-negative vectors which sum to one. The 

foreground distributions used here are the normalized mixture spectra described in the previous 

section. A single, normalized representative background spectrum (taken as a combination of K, 

U, Th, and cosmic radiation) is used as the target background distribution for all the training 

samples.  
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Then the process to synthesize a single gross gamma spectrum is as follows. First, 

expected foreground and background counts can be found as, 

𝐵¢ = �̃� × 𝑏¢ 

𝐹¢ = 𝐵¢ × 𝑠𝑛𝑟  . 

Then the expected gross spectrum can be found as, 

𝑮§ = 𝐵¢ × 𝒃	 + 𝐹¢ × 𝒇. 

The final synthetic gross spectrum, 𝑮, is obtained by sampling the counts in each channel of 𝑮§ 

from a Poisson distribution, where each mean is the expected number of counts for that channel, 

𝐺' ← 𝑃𝑜𝑖𝑠𝑠𝑜𝑛q𝐺n'�. 

 All these synthesis steps are performed automatically using the StaticSynthesizer in 

PyRIID. For the fission source dataset in this study, the 𝑠𝑛𝑟   is randomly sampled 50 times for 

each mixture from a uniform distribution ranging from 1 to 100. The live time is held constant at 

600 seconds. 

5.4 Additional Preprocessing Steps 

Before the model is trained, the following preprocessing steps are applied to the synthetic 

dataset. First, background is subtracted from each Poisson-sampled gross spectrum by removing 

a 600-second, Poisson-sampled background spectrum. By using a Poisson-sampled background 

spectrum, instead of just the expectation, the intent is to represent the imperfect subtraction in the 

real world. As a result, it is possible for low-SNR samples to have negative counts in some 

channels. Such negative values are clipped to zero to enable the calculation of the Poisson 

Negative Log-Likelihood. Finally, the resulting background-subtracted spectra are normalized by 

dividing through by total counts such that each spectrum sums to one, equivalent to an L1 norm. 
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5.5 Evaluating the Training Dataset 

The training dataset used in this study, whose generation is described in the previous 

subsections, contains 5 × 10X samples (10k random mixtures with 50 random samples/mixture 

varying SNR). As mentioned previously, the expected source proportions from a measured 

fission source spectrum are collectively used as the alpha parameter of the Dirichlet distribution 

when generating random mixture proportions. The distribution of actual mixture proportions of 

the training dataset, along with the provided expected proportions, are shown in Figure 5.1. To 

double-check the behavior of the mixer, the expected proportion for each source falls well-within 

the inner quartile of the synthetic proportions and is very close to the median value. Also, the 

distribution of proportions for each isotope empirically follows a Gaussian distribution 

(truncated at 0 of course), which is shown for two select isotopes in Figure 5.2. The plotted 

Figure 5.1: a boxplot showing the randomly sampled distributions of mixture proportions for each source in the 
training dataset, along with the expected proportion obtained from analysis of a measured fissions source spectrum. 
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distributions across the entire training set for each isotope are including in Appendix B. Utilizing 

this expected distribution when generating training data makes the problem more tractable to 

solve while also encouraging the model to predict more realistic proportions. 

 

 

 

Figure 5.2: distribution of mixture proportions for Ag112 and As78, the black line indicates 
the expected measured proportion obtained from SME analysis 
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Chapter 6 Experimental Results 

6.1 Neural Network Model 

The proposed semi-supervised learning objective is minimized on a shallow neural 

network using TensorFlow [50], an open-source Python library for machine learning. In 

particular, the neural network accepts the preprocessed gamma spectra (2048 × 1) as inputs, has 

a single hidden layer (512 nodes), and outputs a target vector containing the relative 

contributions of each radioisotope (30 × 1). When exploring different models to minimize the 

loss function, we also tested other deep neural network architectures with additional hidden 

layers but found that a simple shallow neural network performed the best. The loss is minimized 

using the built-in Adam optimizer in TensorFlow with an initial learning rate of 0.001. Before 

training, the training dataset is split into training and validation data (80/20), and during training 

the overall semi-supervised loss, supervised loss, unsupervised loss, and mean absolute error 

(MAE) are tracked on both the training and validation datasets. Each model is trained for 50 

epochs with a batch size of 100 and a dropout of 0.05 applied to the hidden layer. An overview 

of learning framework, including training data generation and reconstruction error is shown in 

Figure 6.1. 

In the following experiments, the performance of models training on the proposed 

supervised loss is tested for both ID and OOD data. In particular, the effect of two key 

parameters on model performance are studied: (1) the unsupervised loss function (either PNLL, 

GNLL, or SSE), and (2) the priority trade-off between supervised and unsupervised loss (𝛽). 
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Model performance is considered both in terms of how the model performs for the LPE task on 

ID samples, measured with the MAE, and how the model performs for the OOD detection task, 

measured with the F1 score. 

 

Figure 6.1: overview of model learning framework including training and testing 

6.2 Effect of 𝜷 on Model Performance 

The results shown in the following tables and figures are obtained from applying the 

model to an unseen ID test dataset which was randomly generated in the same way as the 

training data. In particular the test dataset consists of 10X random samples (10k mixtures with 

100 random samples/mixture varying SNR). 

Setting the value of 𝛽 to be non-zero gives priority to the unsupervised loss, and 

consequently affects the performance of the model in terms of both objectives as well as 

changing the scale of the expected loss values. Throughout this section, the role of 𝛽, when 

paired with various unsupervised losses (PNLL, GNLL, and SSE), is studied. For each of the 
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unsupervised losses, models were trained on the ID training dataset with the following 𝛽 values: 

0, 5e-8, 1e-7, 5e-7, 1e-6, 5e-6, 1e-5, 5e-5, 1e-4, and 5e-4. Thus 10 models were trained using 

each unsupervised loss term, giving a total of 30 trained models. The training curves for each 

model can be found in Appendix C.  

Each model was then tested on the ID test set. In Figure 6.2, the effect of 𝛽 on ID test 

data is observed by measuring both the average MAE and the average reconstruction error on the 

test set. As expected, increasing 𝛽, and by extension the priority of the unsupervised learning 

objective, results in increasingly better reconstructions. However, this also results in a lower 

MAE for the LPE task. 

 

6.3 OOD Detection Results 

6.3.1 Testing the Effect of Anomaly Contribution on Reconstruction Error 

To test the effectiveness of this method on OOD data, an OOD test dataset was created 

by adding an anomalous source spectrum that was not present in training to the ID test dataset, in 

this case 57Co, with various proportions ranging from 0 to 1.0. 

Figure 6.2: average test MAE and average test reconstruction error for models trained 
with different unsupervised losses (PNLL, GNLL, SSE) on a range of betas 
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In Figure 6.3, the reconstruction errors for models trained with the different unsupervised 

losses are shown as the anomaly contribution in the OOD data increases. The ID test data was 

used to create the reconstruction errors with anomaly contribution equal to 0.0. This 

demonstrates that increasing 𝛽 will significantly reduce the reconstruction error for ID test 

samples, while OOD test samples will be less affected by a change in 𝛽. This can also be shown 

by plotting the distributions of the reconstruction errors for ID test samples, which is shown in 

Figure 6.4.  

 

 

 

 

  

Figure 6.3: these plots show the average test reconstruction error when training the PNLL, GNLL, and SSE 
unsupervised losses, respectively, depending on the anomaly contribution level 

Figure 6.4: distribution of reconstruction errors on ID test dataset for models trained with the PNLL, GNLL, and 
SSE unsupervised losses, respectively, generated using seaborn kernel density estimation 
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Figure 6.5: these plots show the mean reconstruction error as a function of anomaly contribution for each of the 30 
trained models; the top, middle, and bottoms rows correspond to models trained with the PNLL, GNLL, and SSE 
unsupervised losses, respectively; the shaded bands represent the 95% confidence interval 
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  For each of the 30 models trained, Figure 6.5 shows the average OOD reconstruction 

error as a function of anomaly contribution, along with the ID reconstruction error. The shaded 

bands on these plots represent the 95% empirical confidence interval of the data. These plots 

provide additional empirical evidence that reconstruction errors for ID test samples steadily 

decrease (in terms of both mean and variance) as 𝛽 increases, while the OOD reconstruction 

errors are mostly unaffected. 

6.3.2 Implementing and Testing an OOD Detector 

The previous plots demonstrate the effect of anomaly contribution on the reconstruction 

error and ID MAE. To eliminate the effects of varying anomaly contribution when measuring 

OOD detection performance, the following experiments show how an OOD detector can be 

implemented along with its expected performance for a set anomaly contribution level of 10%. 

In particular, a new OOD dataset was created for this section by adding in the same anomalous 

source (57Co) to the ID test data at a constant proportion. This way 10% of the counts in every 

test spectrum come from an OOD source. 

Ideally, in the sense of maximizing the F1 score for anomaly detection, the threshold for 

a positive OOD detection would be set at the intersection between the distribution of ID 

reconstruction errors and the distribution of OOD reconstruction errors. For example, the 

distribution of ID and OOD reconstruction errors for two values of 𝛽 are shown on the same axis 

in Figure 6.6. To have a “perfect” OOD detector there should no overlap between these 

distributions. The comparison of the distribution of reconstruction errors for the ID and OOD test 

samples for each model can be found in Appendix D. 
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However, in practice, only the ID reconstruction error distribution can be known. The 

shape of the distribution of OOD reconstruction errors is unknown and can be affected by 

numerous factors which may not be known including the spectral shape of the OOD/anomalous 

source, the contribution of the anomaly, the overall SNR of the sample, and the value of 𝛽 with 

which the model was trained.  

A threshold for an OOD decision function must be chosen based only on the known 

distribution of ID reconstruction errors. This is realized by selecting a specific empirical tail 

density which will correspond to a reconstruction error value to be used as a threshold. For this 

OOD detector, the detection threshold was chosen to be set at the 99% quantile of the empirical 

distribution of ID reconstruction errors. An example of this is shown in Figure 6.7. For each 

Figure 6.6: comparison of distribution of ID and OOD reconstruction errors for each unsupervised loss 
(PNLL, GNLL, and SSE, respectively) for beta equal to 0.0 and 5e-4; anomaly contribution at 10% 
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model trained, the detection threshold is computed in this same way, and the plot for each model 

can be found in Appendix E.  

 

A sample is then declared OOD if its reconstruction error is greater than the detection 

threshold (i.e., falls in the low-density region of ID reconstruction errors). Then the F1 score can 

be computed on the combined ID and OOD test dataset (with anomaly contribution held constant 

at 0.1). These results are given in Table 6.1, and displayed in Figure 6.8. These demonstrate that, 

as expected, increasing the priority of the unsupervised term results in a lower detection 

threshold and a higher F1 score for OOD detection. However, there is also a tradeoff to consider 

as a higher 𝛽 results in poorer performance on ID data for the LPE task in terms of the MAE (see 

future work). 

 

 

Figure 6.7: example of detection threshold setting for model trained on SSE unsupervised 
loss with 𝛽 = 0.0001 
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Beta PNLL GNLL SSE 
Detection 
threshold 

F1 
Score 

ID 
MAE 

Detection 
threshold 

F1 
Score 

ID 
MAE 

Detection 
threshold 

F1 
Score 

ID 
MAE 

0 2.474e5 0.873 0.011 2.601e5 0.815 0.011 1.166e6 0.886 0.011 
5e-8 2.375e5 0.877 0.011 2.474e5 0.82 0.011 8.56e5 0.907 0.011 
1e-7 2.282e5 0.88 0.011 2.401e5 0.822 0.011 6.475e5 0.922 0.011 
5e-7 1.777e5 0.897 0.011 1.923e5 0.839 0.011 2.841e5 0.952 0.013 
1e-6 1.371e5 0.911 0.012 1.53e5 0.857 0.012 1.675e5 0.966 0.014 
5e-6 4.654e4 0.956 0.015 5.21e4 0.927 0.016 3.699e4 0.983 0.018 
1e-5 2.747e4 0.969 0.018 2.974e4 0.951 0.018 1.882e4 0.987 0.02 
5e-5 1.07e4 0.984 0.022 1.1e4 0.978 0.022 5.59e3 0.991 0.022 
1e-4 8.85e3 0.986 0.023 9.298e3 0.981 0.023 5.302e3 0.991 0.023 
5e-4 7.951e3 0.987 0.024 8.2e3 0.984 0.024 4.067e3 0.991 0.024 

Table 6.1: table of detection thresholds, F1 scores, and ID MAEs for each of the trained models; the F1 score is 
computed on the combined ID test dataset and OOD test dataset with an anomaly contribution of 10% 

 

 
 

Figure 6.8: table of detection thresholds, F1 scores, and ID MAEs for each of the trained models as a 
function of beta with an anomaly contribution of 10% 
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Chapter 7 Conclusion 

In conclusion, this work demonstrates a novel approach for identifying and predicting the 

proportions of 30 radioisotopes present in gamma spectra using a custom loss function, 

minimized on a neural network, which prioritizes explainable estimates. The semi-supervised 

model is tested on synthetic fission spectra based on a measured spectrum, which contains 

various compositions of 30 sources. The results show that the proposed model can estimate 

radioisotope proportions that are simultaneously suitable for use in an OOD detector. 

Accomplishing these tasks with a single neural network model allows for quick LPE and OOD 

detection without having to train separate models. By paring the supervised cross-entropy loss 

with the SSE unsupervised loss with a beta of 5e-7, the model reached a test MAE 0.013 for the 

LPE task, while achieving a 0.952 F1 score for the OOD detection tasks with an anomaly 

contribution of just 10%. Note that while an MAE of 0.013 seems low, it represents a cumulative 

error of ~39% across all 30 radioisotopes. While this error is higher than desired for applications 

requiring high accuracy, the model shows the ability to somewhat learn the task while still 

conveying the challenge of explaining these types of spectra in terms of 30 distinct radioisotopes. 

Perhaps incorporating more subject-matter expertise into the creation of the dictionary can help 

constrain assumptions and improve LPE. Alternatively, and in conjunction with SME 

consultation, one might find an alternative learning architecture that can utilize contextual 

information to narrow the problem space. Lastly, to easily share the developed technology with 

others, the model architecture and learning framework have been added to the PyRIID package.
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Chapter 8 Future Work 

From studying this problem space and considering the results of semi-supervised model, 

several weaknesses of this model were observed. This section discusses some avenues for future 

improvement that could be used to address these issues and make the model more robust and 

intuitive. 

1. In the GNLL unsupervised loss term, the Gaussian approximation of a Poisson breaks 

down for low count channels. This issue could be sidestepped by applying some variance 

stabilizing transformation to the spectra, such as a Freeman-Tukey transform or an 

Anscombe transform, that would cause the spectra to converge to a Gaussian distribution 

more quickly and would make the loss function bounded (avoiding the divide by zero 

issue). Alternatively, one could just use the PNLL to handle low count samples. 

2. In test cases there could be different detector and environmental parameters than in 

training, which could result in a distributional shift or change in the spectral shape of the 

target sources. The proposed model, which relies on knowledge of a dictionary of the 

expected sources, would be susceptible to shifts like these if not detected as OOD. To 

make the model more robust in different test settings we could initially adjust the 

dictionary columns to account for these changes by utilizing a calibration measurement in 

the test environment. 

3. This work focuses on OOD detection in the case where OOD inputs are the result of a 

semantic distribution shift (i.e., some of the counts of the spectrum are from a 

novel/anomalous source not seen in training data). In practice, however, this model 
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would likely also consider a sample as OOD due to a covariate distribution shift (i.e., a 

change in the detector response), or other reasons. A direction for future work would be 

to improve on the OOD detection method so it can also differentiate which type of OOD 

input it has detected whether from the presence of a novel source, or from a change in the 

sensory conditions. 

4. Currently, the supervised and unsupervised loss terms are combined as a weighted 

summation in the objective function, but as noted previously, they exist on completely 

different scales (differing by several orders of magnitude).  As a result, 𝛽 must either be 

very small or very large depending on the unsupervised loss function used, which is not 

intuitive. Ideally, a 𝛽 = 0.5 would indicate approximately equal priority given to the two 

objectives in the loss function. Moreover, the scale of the loss values for each term can 

also change at different rates throughout training, which changes the relative priority of 

the objectives throughout training. For example, the learning curves show that the model 

can quickly minimize the unsupervised loss function resulting in a decrease in priority 

relative to the supervised loss term. As the model improves on the supervised task, the 

unsupervised loss in some cases will begin to marginally increase. Malkiel et. al. [51] 

recently proposed a method for adaptively balancing multiple loss terms while training. 

Using a technique such as this could alleviate some of the negative side effects of 

combining different losses in the model. 

5. When formulating the Poisson negative log-likelihood for the unsupervised learning 

objective, it is assumed that the energy counts in each gamma spectrum channel are 

measured independently. This allowed the PNLL unsupervised loss function to simplify 

nicely to use it as a convex learning objective. However, in practice, there may be some 
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residual effects between energy channels resulting from certain decay characteristics of 

the measured nuclei as well as certain detector characteristics. In the future, the 

covariance between the energy channel counts could be used to better model the 

likelihood of a sample given an LPE-based reconstruction. 

6. The unsupervised term in the learning objective compares the difference between the 

input signal and the model’s reconstruction of the input signal. For this work, three 

different comparison metrics were tested. However, there are many other metrics that 

would be interesting to compare. For example, as the normalized spectra can be viewed 

as a probability distribution, it would be interesting to test the performance using KL 

divergence [44], Mahalanobis distance [52], or some other metric. 

7. Recently, Blondel et. al. in [53] generalize the sparsemax loss in a continuous parametric 

family of loss functions called the Tsallis 𝛼-entropies, which are parameterized by a 

sparsity-controlling parameter 𝛼. For 𝛼 = 1, 2,∞ the Tsallis entropy recovers the 

softmax, sparsemax, and argmax functions, respectively. Using the Tsallis 𝛼-entropies in 

the supervised portion of the loss function would give an additional hyperparameter 

which could be tuned based on the expected level of sparsity to yield better performance.  

8. From these results the two problems being solved (LPE and OOD detection) are 

somewhat adversarial, at least in this problem space. Assigning too high a priority to the 

OOD detection task when training (i.e., setting a large 𝛽) negatively affects the 

performance of the model for LPE in terms of the mean absolute error. A direction for 

future work would be to learn an OOD detector without negatively affecting the LPE 

performance. One approach to this may be to decouple the tasks into two specialized 
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models, one which prioritizes LPE and the other which prioritizes OOD detection, and 

then use the OOD detection model as a gatekeeper for the LPE model. 
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Appendices  

Appendix A Pure Spectral Signatures 

The spectral signature for each source used to generate the data of this work are shown below. 
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Appendix B Distribution of Mixture Proportions for Sources 

This appendix contains a histogram of the mixture proportions for each individual source 

in the training dataset.  
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Appendix C Training Curves 

This appendix contains the training/validation curves for each of the 30 models trained and with 

various betas and unsupervised losses. 
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Appendix D KDE Plots for ID and OOD Test Data  

This appendix contains the plots with the KDE distributions for both the ID and OOD data (10% 

anomaly contribution) for each of the 30 models that were trained. 
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Appendix E In-Distribution Distribution Plots with OOD Detection Threshold 

This appendix contains a histogram showing the ID plots for each model, along with the fitted 

Gaussian distribution and OOD detection threshold, corresponding to the 99th percentile. 



 

 65 

 

 

 



 

 66 

 

 

 



 

 67 

 

 



 

 68 

 

 

 



 

 69 

 



 

 70 

Bibliography 
 

[1]  G. F. Knoll, Radiation detection and measurement, John WIley and Sons, 2010.  

[2]  E. C. Finn, L. A. Metz, R. F. Payne, J. I. Friese, L. R. Greenwood, J. D. Kephart, B. D. 

Pierson and T. A. Ellis, "Methods to collect, compile, and analyze observed short-lived 

fission product gamma data," Pacific Northwest National Lab. (PNNL), Richland, WA 

(United States), 2011. 

[3]  M. Rawool-Sullivan, J. Bounds, S. Brumby, L. Prasad and J. Sullivan, "Steps Toward 

Automated Gamma Ray Spectroscopy," Los Alamos National Laboratory, 2010. 

[4]  P. Olmos, J. Diaz, J. Perez, P. Gomez, V. Rodellar, P. Aguayo, A. Bru, G. Garcia-

Belmonte and J. De Pablos, "A new approach to automatic radiation spectrum analysis," 

IEEE Transactions on Nuclear Science, vol. 38, no. 4, pp. 971-975, 1991.  

[5]  R. Abdel-Aal and M. Al-Haddad, "Determination of radioisotopes in gamma-ray 

spectroscropy using abductive machine learning," Nuclear Instruments and Methods in 

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated 

Equipment, vol. 391, no. 2, pp. 275-288, 1997.  

[6]  L. Chen and Y.-X. Wei, "Nuclide identification algorithm based on K--L transform and 

neural networks," Nuclear Instruments and Methods in Physics Research Section A: 

Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 598, no. 2, pp. 

450-453, 2009.  



 

 71 

[7]  C. Bobin, O. Bichler, V. Lourenço, C. Thiam and M. Thévenin, "Real-time radionuclide 

identification in gamma-emitter mixtures based on spiking neural network," Applied 

Radiation and Isotopes, vol. 109, pp. 405-409, 2016.  

[8]  M. Kamuda, J. Stinnett and C. Sullivan, "Automated isotope identification algorithm using 

artificial neural networks," IEEE Transactions on Nuclear Science, vol. 64, no. 7, pp. 

1858-1864, 2017.  

[9]  J. Kim, K. Park and G. Cho, "Multi-radioisotope identification algorithm using an artificial 

neural network for plastic gamma spectra," Applied Radiation and Isotopes, vol. 147, pp. 

83-90, 2019.  

[10]  S. J. Murray, J. Schmitz, S. Balkır and M. W. Hoffman, "A low complexity radioisotope 

identification system using an integrated multichannel analyzer and embedded neural 

network," in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019.  

[11]  G. Daniel, F. Ceraudo, O. Limousin, D. Maier and A. Meuris, "Automatic and real-time 

identification of radionuclides in gamma-ray spectra: a new method based on convolutional 

neural network trained with synthetic data set," IEEE Transactions on Nuclear Science, 

vol. 67, no. 4, pp. 644-653, 2020.  

[12]  S. Qi, W. Zhao, Y. Chen, W. Chen, J. Li, H. Zhao, W. Xiao, X. Ai, K. Zhang and S. Wang, 

"Comparison of machine learning approaches for radioisotope identification using NaI (TI) 

gamma-ray spectrum," Applied Radiation and Isotopes, vol. 186, p. 110212, 2022.  

[13]  A. Khatiwada, M. Klasky, M. Lombardi, J. Matheny and A. Mohan, "Machine Learning 

technique for isotopic determination of radioisotopes using HPGe γ-ray spectra," arXiv 

preprint arXiv:2301.01415, 2023.  



 

 72 

[14]  M. Elad and M. Aharon, "Image denoising via sparse and redundant representations over 

learned dictionaries," IEEE Trasactions on Image processing, vol. 15, no. 12, pp. 3736-

3745, 2006.  

[15]  W. Meiniel, J.-C. Olivo-Marin and E. D. Angelini, "Denoising of microscopy images: a 

review of the state-of-the-art, and a new sparsity-based method," IEEE Transactions on 

Image Processing, vol. 27, no. 8, pp. 3842-3856, 2018.  

[16]  K.-K. Huang, D.-Q. Dai, C.-X. Ren and Z.-R. Lai, "Learning Kernel Extended Dictionary 

for Face Recognition," IEEE Transactions on Neural Networks and Learning Systems, vol. 

28, no. 5, pp. 1082-1094, 2017.  

[17]  X.-Y. Jing, F. Wu, X. Zhu, X. Dong, F. Ma and Z. Li, "Multi-spectral low-rank structured 

dictionary learning for face recognition," Pattern Recognition, vol. 59, pp. 14-25, 2016.  

[18]  A. Nguyen, J. Yosinksi and J. Clune, "Deep neural networks are easily fooled: High 

confidence predictions for unrecognizable images," in Proceedings of the IEEE conference 

on computer vision and pattern recognition, 2015.  

[19]  J. T. Zhou, K. Di, J. Du, X. Peng, H. Yang, S. Pan, I. Tsang, Y. Liu, Z. Qin and R. S. M. 

Goh, "Sc2net: Sparse lstms for sparse coding," Proceedings of the AAAI Conference on 

Artificial Intelligence, vol. 32, no. 1, 2018.  

[20]  W. Luo, W. Liu, D. Lian, J. Tang, L. Duan, X. Peng and S. Gao, "Video anomaly detection 

with sparse coding inspired deep neural networks," IEEE transactions on pattern analysis 

and machine intelligence, vol. 43, no. 3, pp. 1070-1084, 2019.  



 

 73 

[21]  V. Papyan, Y. Romano and M. Elad, "Convolutional neural networks analyzed via 

convolutional sparse coding," The Journal of Machine Learning Research, vol. 18, no. 1, 

pp. 2887-2938, 2017.  

[22]  S. Arora, R. Ge, T. Ma and A. Moitra, "Simple, efficient, and neural algorithms for sparse 

coding," in Conference on learning theory, 2015.  

[23]  X. Sun, N. M. Nasrabadi and T. D. Tran, "Supervised deep sparse coding networks," in 

2018 25th IEEE International Conference on Image Processing (ICIP), 2018.  

[24]  J. Mairal, F. Bach and J. Ponce, "Task-driven dictionary learning," IEEE transactions on 

pattern analysis and machine intelligence, vol. 34, no. 4, pp. 791-804, 2011.  

[25]  J. Yang, K. Zhou, Y. Li and Z. Liu, "Generalized out-of-distribution detection: A survey," 

arXiv preprint arXiv:2110.11334, 2021.  

[26]  J. Katz-Samuels, J. B. Nakhleh, R. Nowak and Y. Li, "Training ood detectors in their 

natural habitats," International Conference on Machine Learning, pp. 10848-10865, 2022.  

[27]  M. Salehi, H. Mirzaei, D. Hendrycks, Y. Li, M. H. Rohban and M. Sabokrou, "A unified 

survey on anomaly, novelty, open-set, and out-of-distribution detection: Solutions and 

future challenges," arXiv preprint arXiv:2110.14051, 2021.  

[28]  D. Hendrycks and K. Gimpel, "A baseline for detecting misclassified and out-of-

distribution examples in neural networks," arXiv preprint arXiv:1610.02136, 2016.  

[29]  S. Liang, Y. Li and R. Srikant, "Enhancing the reliability of out-of-distribution image 

detection in neural networks," arXiv preprint arXiv:1706.02690, 2017.  

[30]  M. Hein, M. Andriushchenko and J. Bitterwolf, "Why relu networks yield high-confidence 

predictions far away from the training data and how to mitigate the problem," in 



 

 74 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 

2019.  

[31]  J. Bitterwolf, A. Meinke and M. Hein, "Certifiably adversarially robust detection of out-of-

distribution data," Advances in Neural Information Processing Systems, vol. 33, pp. 16085-

16095, 2020.  

[32]  D. Hendrycks, M. Mazeika and T. Dietterich, "Deep anomaly detection with outlier 

exposure," arXiv preprint arXiv:1812.04606, 2018.  

[33]  C. a. L. A. Qiu, M. Kloft, M. Rudolph and S. Mandt, "Latent outlier exposure for anomaly 

detection with contaminated data," International Conference on Machine Learning, pp. 

18153-18167, 2022.  

[34]  K. Lee, K. Lee, H. Lee and J. Shin, "A simple unified framework for detecting out-of-

distribution samples and adversarial attacks," Advances in neural information processing 

systems, vol. 31, 2018.  

[35]  J. Ren, S. Fort, J. Liu, A. G. Roy, S. Padhy and B. Lakshminarayanan, "A simple fix to 

mahalanobis distance for improving near-ood detection," arXiv preprint arXiv:2106.09022, 

2021.  

[36]  E. Techapanurak, M. Suganuma and T. Okatani, "Hyperparameter-free out-of-distribution 

detection using cosine similarity," in Proceedings of the Asian conference on computer 

vision, 2020.  

[37]  J. Van Amersfoort, L. Smith, Y. W. Teh and Y. Gal, "Uncertainty estimation using a single 

deep deterministic neural network," International conference on machine learning, pp. 

9690-9700, 2020.  



 

 75 

[38]  H. Huang, Z. Li, L. Wang, S. Chen, B. Dong and X. Zhou, "Feature space singularity for 

out-of-distribution detection," arXiv preprint arXiv:2011.14654, 2020.  

[39]  B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho and H. Chen, "Deep 

autoencoding gaussian mixture model for unsupervised anomaly detection," International 

conference on learning representations, 2018.  

[40]  D. Abati, A. Porrello, S. Calderara and R. Cucchiara, "Latent space autoregression for 

novelty detection," Proceedings of the IEEE/CVF conference on computer vision and 

pattern recognition, pp. 481-490, 2019.  

[41]  T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan and S. Vernekar, "Improving 

reconstruction autoencoder out-of-distribution detection with mahalanobis distance," arXiv 

preprint arXiv:1812.02765, 2018.  

[42]  Y. Zhou, "Rethinking reconstruction autoencoder-based out-of-distribution detection," 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 

pp. 7379-7387, 2022.  

[43]  Z. Xiao, Q. Yan and Y. Amit, "Likelihood regret: An out-of-distribution detection score for 

variational auto-encoder," Advances in neural information processing systems, vol. 33, pp. 

20685-20696, 2020.  

[44]  J. M. Ghawaly Jr, A. D. Nicholson, D. E. Archer, M. J. Willis, I. Garishvili, B. Longmire, 

A. J. Rowe, I. R. Stewart and M. T. Cook, "Characterization of the Autoencoder Radiation 

Anomaly Detection (ARAD) model," Engineering Applications of Artificial Intelligence, 

vol. 111, p. 104761, 2022.  



 

 76 

[45]  A. Martins and R. Astudillo, "From softmax to sparsemax: A sparse model of attention and 

multi-label classification," in International conference on machine learning, 2016.  

[46]  W. Feller, An introduction to probability theory and its applications, John Wiley & Sons, 

1967.  

[47]  J. Lass, M. E. Boggild, P. Hedegard and K. Lefmann, "Multinomial, Poisson and Gaussian 

statistics in count data analysis," Journal of Neutron Research, vol. 23, no. 1, pp. 69-92, 

2021.  

[48]  D. J. Mitchell, H. Lee, G. G. Thoreson and S. M. Horne, "GADRAS Detector Response 

Function.," Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), 2014.  

[49]  T. Morrow, N. Price and T. McGuire, "PyRIID v.2.0.0," 2021. [Online]. Available: 

https://www.osti.gov//servlets/purl/1894123. 

[50]  A. A. P. B. E. B. Z. C. C. C. G. S. C. A. D. J. D. M. D. S. G. I. G. A. H. G. I. M. I. R. J. Y. 

J. L. Martín Abadi, TensorFlow: Large-scale machine learning on heterogeneous systems, 

https://www.tensorflow.org, 2015.  

[51]  I. Malkiel and L. Wolf, "Mtadam: Automatic balancing of multiple training loss terms," 

arXiv preprint arXiv:2006.14683, 2020.  

[52]  S. Sharma, C. Bellinger, N. Japkowicz, R. Berg and K. Ungar, "Anomaly detection in 

gamma ray spectra: A machine learning perspective," in 2012 IEEE symposium on 

computational intelligence for security and defence applications, 2012.  

[53]  M. Blondel, A. F. Martins and V. Niculae, "Learning with fenchel-young losses," The 

Journal of Machine Learning Research, vol. 21, no. 1, pp. 1314-1382, 2020.  

 


