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ABSTRACT

Universal anomaly detection and applications

by

Sehong Oh

Chair: Alfred O. Hero

Anomaly detection is important in many research areas including fraud detection and

biological change detection. However, anomaly detection is a difficult task due to the

lack of anomalies available for training. In this thesis, we propose a compression-

based nonparametric anomaly detection method for time series and image data using

a pattern dictionary. This method constructs two features (typicality and atypicality)

to distinguish anomalies based on normal training data captured in a tree-structured

data structure. The typicality of a test sequence is a measure of how well the data

can be compressed by the pattern dictionary. The typicality can be used as an

anomaly score to detect anomalous data at a certain threshold. The atypicality of a

sequence is a measure of compressibility of the test data by a universal source coder,

determined independently of training data. The typicality and the atypicality of each

sub-sequence in the test sequence are complementary and anomalous deviations can

be determined by combining them. Several methods are evaluated for aggregating

these measures. These include a scalarized of the typicality and atypicality score, a

2-dimensional (typicality and atypicality) score, and a high-dimensional score.

ix



CHAPTER I

Introduction

It is hard to define what an anomaly is. However, it is obvious that anomalies

exist in various field across the world, especially in engineering and science. Detection

of anomalies is thus important in many fields and various anomaly detection methods

have been developed. An anomaly is generally defined as patterns that deviate sig-

nificantly from a normal distribution [3]. The motivation for this thesis is to identify

patterns in the data that are indicative of an anomaly. A pattern dictionary method

is presented that uses a measure of typicality and atypicality, two information theo-

retic notions used in compression algorithms, specifically the Huffman coder and the

Lempel-Ziv encoder. We apply our method not only to time series data (Ch.2, 3) but

also to image data (Ch.4) by using image features. Moreover, by considering multiple

patterns of different lengths simultaneously, we show the performance of our model

is improved.

1.1 What is anomaly detection?

There is a difference between anomaly detection and binary classification. Anomaly

detection seeks to classify anomalous data that significantly deviates from a normal

training sample. There is no label for the anomalous sample, so this is often called

on-class classification. Binary classification is a supervised learning method that uses
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Figure 1.1: Binary classification vs. Anomaly detection

labeled training data for both classes while anomaly detection is an unsupervised

learning problem. For illustration see Fig 1.1. There are blue Os and red Xs in two

dimensions. In the case of binary classification, the labels ”O” and ”X” are available

in the training data. The labels and coordinates of the training data are used to

train a classifier with a decision boundary (in green). The classifier is then applied to

classify new data ”A’ and ”B”. On the other hand, anomaly detection must classify

one class (the ”X” class) without seeing any instances in the training data (the ”O”

class). An anomaly detection establishes a region (in green) that represents typical

or expected behavior and considers any observation in the dataset that falls outside

this region as an anomaly [3].

1.2 Why is anomaly detection difficult?

Anomaly detection might not seem like a difficult task at first, as humans can

often distinguish anomalies in a given dataset. However, there are several causes that

make anomaly detection challenging [3]:

1. Different domains might have their definition of what constitutes an anomaly,

so it can be hard to use methods developed for one domain to another domain.

2. The length and occurrence frequency of potential anomalous data is unknown

2



in time series.

3. There is extreme data imbalance, with no or few instances of one of the classes

of data during training.

1.3 Atypicality

One of the most important concepts exploited in this thesis is atypicality. Ac-

cording to A. Høst-Madsen et al. (2019) in [4], we should start with the theory of

randomness developed by Kolmogorov and Martin-Löf to understand this concept

[5],[6],[7]. According to Kolmogorov, infinite sequences can be divided as ”typical”

or ”special” and we consider the typical sequences random. Namely, the typical

sequences satisfy all laws of probability, whereas the special sequences do not. Kol-

mogorov complexity is a way of measuring the amount of information contained in

data and the more complex data, the higher Kolmogorov complexity. A sequence

that consists of bits {xn, n = 1, . . . ,∞} is random (i.e, i.i.d. uniform) if the Kol-

mogorov complexity satisfies K (x1, . . . , xn) ≥ n − c for all n with some constant c

[6][4]. Furthermore, if K (x1, . . . , xn | n) ≥ n for all n is satisfied, the sequence is

incompressible and random [7],[4]. Suppose we generate sequences xn from an i.i.d.

uniform distribution. The identity function is the optimum coder of the sequences

with the code length n. Let’s assume that we have a (universal) coder that makes

the code length less than n. This can be stated as K (x1, . . . , xn | n) < n. In this

case that sequences can be compressed to a length shorter than n, we would not call

the sequence ”typical” but a ”special” sequence. In this thesis, we consider such

sequences ”atypical”. The definition of ”atypical” is as follows:

Definition 1. A sequence is atypical if it can be described (coded) with fewer bits

in itself rather than using the (optimum) code for typical sequences [4].

3



This definition is the key to approaching the atypicality problem. We assume

prefix-free codes to understand ”the (optimum) code for typical sequences” based

on the principle in [7] The possible methods are Huffman codes, Shannon codes,

Shannon-Fano-Elias codes, arithmetic coding, etc. We use Huffman codes in other

chapters, focusing only on the code length. The code length for typical encoding is

calculated accurately because the variation of the length is within a few bits. On the

other hand, “described (coded) with fewer bits in itself” in definition 1 is less clear.

We can use Kolmogorov complexity, but it cannot be calculable. Thus, we should use

some types of universal source coder instead of the concept of Kolmogorov complexity

for a more accurate comparison. A detailed description of atypicality is in [4].

1.4 Source coding

In information theory, source coding is the process of converting a sequence of

symbols from information into a sequence of alphabet symbols, which are typically bits

(binary digits). The goal of source coding is to represent the original data efficiently

while maintaining the desired level of fidelity. Source coding is generally divided into

two types as follows [7]:

1. Lossless source coding: Lossless source coding can exactly recover the original

symbols from the encoded bits. Namely, we do not lose any information during

the data compression and decompression processes. We focus on this type of

data compression method in this research and Huffman coding and Lempel-

Ziv78 (LZ78) [8] algorithm are mainly used.

2. Lossy source coding: Lossy source coding allows for better data compression

compared to lossless source coding. It implies that the original symbols might be

distorted when they are decompressed so this type of data compression method
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Figure 1.2: A simple example of Huffman coding

is used when information loss is acceptable.

1.4.1 Huffman Coding

Huffman coding is an algorithm that compresses data without losing information.

Huffman code is an optimal prefix code and compresses data by assigning variable-

length codes to each character in the data. This algorithm works by building a

binary tree by combining the least frequent symbols into a new node repeatedly.

This repeated process assigns shorter code lengths to frequent symbols, whereas the

less frequent symbols have longer code lengths. A simple example is shown in figure

1 with a sequence x = ABCDABCABA. The steps are as follows:

1. Create a leaf node for each symbol with the frequency.

2. Arrange all nodes in descending order based on their frequency.

3. Repeat the below sub-steps until there is one node left.

(a) Remove the last two nodes and create a new internal node with those two

nodes
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(b) Assign the removed nodes as the left and right children of the new internal

node.

(c) Rearrange all nodes in descending order based on the updated frequency.

4. Assign a ’0’ for every left branch and a ’1’ for every right branch. The Huffman

code for a symbol is the sequence of ’0’s and ’1’s encountered along the path

from the root to the symbol’s leaf node.

1.4.2 Lempel-Ziv78 (LZ78)

The Lempel-Ziv 78 algorithm is a lossless data compression algorithm designed

by Abraham Lempel and Jacob Ziv in 1978 [8]. The basic idea of Lempel-Ziv al-

gorithms is subsequences that have already appeared are more likely to be repeated

than subsequences that we haven’t seen. The algorithm works by creating a dictio-

nary of patterns in the input data and replacing repeated subsequences with an index

in a dictionary. The compressed data can be also decompressed to the original data

without losing information like Huffman coding.

1. Initialize: Start with an empty dictionary. As you process the input, you will

fill the dictionary with new entries.

2. Read input: Look at the input data one symbol at a time.

3. Build the phrase: Begin with an empty phrase. Keep adding symbols from the

input to the phrase until you get a combination that isn’t in the dictionary yet.

4. Add to the dictionary: Once you have a new phrase, add it to the dictionary

and assign it a unique index number.

5. Output the code: For the new phrase, find the longest prefix (the part before

the last symbol) that already exists in the dictionary. Output the index number

of that prefix along with the last symbol of the new phrase.

6



Figure 1.3: A simple example of Lempel-Ziv78 algorithm

6. Repeat: Continue steps 3-5 until you reach the end of the input data.

7. Termination: If there is a remaining phrase at the end of the input that is not

in the dictionary, output its prefix’s index number and the last symbol, as you

did in step 5.

1.5 Summary of Contributions

My contributions are divided into three principal chapters.

1. Chapter 2 was published as the paper [9]. I contributed to Section 2.6 of this

paper by doing the simulations that led to the results presented in Tab2.2 - 2.4

2. Chapter 3 describes my extension of the paper [9] that uses the vector-valued

pair of typicality and atypicality scores.

3. Chapter 4 describes my application of the methods of chapter 2 to detect anoma-

lous images.
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CHAPTER II

Pattern Dictionary Method for Anomaly Detection

2.1 Introduction

Anomaly detection and outlier detection are used for detecting data samples that

are inconsistent with normal data samples. Early methods did not take the sequential

structure of the data into consideration [3]. However, many real world applications

involve data collected as a sequence or time series. In such data, anomalous samples

are better characterized as subsequences of time series. Anomaly detection is a chal-

lenging task due to the uncertain nature of anomalies. Anomaly detection in time

series and sequence data is particularly difficult since both length and occurrence

frequency of potentially anomalous subsequences are unknown. Additionally, algo-

rithmic computational complexity can be a challenge, especially for streaming data

with large alphabet sizes.

In this paper, we propose a universal nonparametric model-free anomaly detection

method for time series and sequence data based on a pattern dictionary (PD). Given

training and test data sequences, a pattern dictionary is created from the sets of all the

patterns in the training data. This dictionary is then used to sequentially parse and

compress (in a lossless manner) the test data sequence. Subsequently, we interpret

the number of parsed phrases or the codelength of the test data as anomaly scores.

The smaller the number of parsed phrases or the shorter the compressed codelength
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of the test data, the more similarity between training and test data patterns. This

sequential parsing and lossless compression procedure lead to detection of anomalous

test sequences and their potential anomalous patterns (subsequences).

The proposed pattern dictionary method has the following properties: (i) it is

nonparametric since it does not rely on a family of parametric distributions; (ii) it is

universal in the sense that the detection criterion does not require any prior modeling

of the anomalies or nominal data; (iii) it is non-Bayesian as the detection criterion is

model-free; and (iv) as it depends on data compression, data discretization is required

prior to building the dictionary. While the proposed pattern dictionary can be used as

a stand-alone anomaly detection method (Pattern Dictionary for Detection (PDD)),

we show how it can be utilized in the atypicality framework [10], [11] for more general

data discovery problems. This results in a method we call PDA (Pattern Dictionary

based Atypicality), in which the proposed pattern dictionary is contrasted against a

universal source coder which is the Tree-Structured Lempel–Ziv (LZ78) [7], [8]. We

use the LZ78 as the universal encoder since its compression procedure is similar to

our proposed pattern dictionary, and it is (asymptotically) optimal [7], [8].

The main contributions of this paper are as follows. First, we propose the pattern

dictionary method for anomaly detection and characterize its properties. We show

in Theorem 1 that using a multi-level dictionary that separates the patterns by their

depth results in a shorter average indexing codelength in comparison to a uni-level

dictionary that uses a uniform indexing approach. Second, we develop novel non-

asymptotic lower and upper bounds of the LZ78 parser in Theorem 2 and further

analyze its non-asymptotic properties. We demonstrate that the non-asymptotic up-

per bound on the number of distinct phrases resulting from the LZ78 parsing of an

|X |-ary sequence of length l can be explicitly expressed by the Lambert W function

[12]. To the best of our knowledge, such characterization has not previously appeared

in the literature. Then, we show in Lemma 1 that the achieved non-asymptotic upper

9



bound on the number of distinct phrases resulting from the LZ78 parsing converges

to the optimal upper bound l
log l

of the LZ78 parser as l → ∞. Third, we show

how the pattern dictionary and LZ78 can be used together in an atypicality detec-

tion framework. We demonstrate that the achieved non-asymptotic lower and upper

bounds on both LZ78 and pattern dictionary determine the range of the anomaly

score. Consequently, we show how these bounds can be used to analyze the effect of

dictionary depth on the anomaly score. Furthermore, the bounds are used to set the

anomaly detection threshold. Finally, we compare our proposed methods with the

competing methods, including nearest neighbors-based similarity [13], threshold se-

quence time-delay embedding [14], [15], [16], [17], and compression-based dissimilarity

measure [18], [19], [20], [21], [22], that are designed for anomaly detection in sequence

data and time series. We conclude our paper with an experiment that details how

the proposed framework can be used to construct a baseline of health against which

anomalous deviations are detected.

The paper is organized as follows. In Section 2.2, we briefly review the relevant

literature in anomaly detection (readers who are familiar with anomaly detection can

skip this section). Section 2.3 introduces the detection framework and the notation

used in this paper. Section 2.4 presents our proposed pattern dictionary method and

its properties. In Section 2.5, we show how the proposed pattern dictionary can be

used in an atypicality framework alongside LZ78, and we analyze the non-asymptotic

properties of the LZ78 parser. Section 2.6 presents experiments that illustrate the

proposed pattern dictionary anomaly detection procedure. Finally, Section 2.7 con-

cludes our paper.

2.2 Related Works

Anomaly detection has a vast literature. Anomaly detection procedures can be

categorized into parametric and nonparametric methods. Parametric methods rely
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on a family of parametric distributions to model the normal data. The slippage prob-

lem [23], change detection [24], [25], [26], [27], concept drift detection [28], minimax

quickest change detection (MQCD) [29], [30], [31], and transient detection [32], [33],

[34] are examples of parametric anomaly detection problems. The main difference

between our proposed pattern dictionary method and the aforementioned techniques

is that our method is a model-free nonparametric method. The main drawback of

the parametric anomaly detection procedure is that it is difficult to accurately specify

the parametric distribution for the data under investigation. Nonparametric anomaly

detection approaches do not assume any explicit parameterized model for the data

distributions. An example is an adaptive nonparametric anomaly detection approach

called geometric entropy minimization (GEM) [35], [36] that is based on the minimal

covering properties of K-point entropic graphs constructed on N training samples

from a nominal probability distribution. The main difference between GEM-based

methods and our proposed pattern dictionary is that former techniques are designed

to detect outliers and cannot easily incorporate the temporal information regarding

anomaly in a data stream. Another nonparametric detection method is sequential

nonparametric testing that considers data as online stream and addresses the grow-

ing data storage problem by sequentially testing every new data samples [37], [38].

A key difference between sequential nonparametric testing and our proposed pattern

dictionary method is that our method is based on coding theory instead of statistical

decision theory.

Information theory and universal source coding have been used previously in

anomaly detection [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. The detection

criteria in these approaches are based on comparing metrics such as complexity or

similarity distances that depend on entropy rate. An issue with these approaches is

that there are many completely dissimilar sources with the same entropy rate, re-

ducing outlier sensitivity. Another related problem is universal outlier detection [51],

11



[52]. In these works, different levels of knowledge about nominal and outlier distribu-

tions and number of outliers are incorporated. Unlike these methods, our proposed

pattern dictionary approach does not require any prior knowledge about outliers and

anomalies. In [53], a measure of empirical informational divergence between two indi-

vidual sequences generated from two finite-order, finite-alphabet, stationary Markov

processes is introduced and used for a simple universal classification. While the pars-

ing procedure used in [53] is similar to the pattern dictionary used in this paper,

there are important differences. The empirical measure proposed in [53] is a stand

alone score function that is designed for two-class classification, while our measure is

a direct byproduct of the LZ78 encoding algorithm designed for single-class classifica-

tion, i.e., anomaly detection. In addition, the theoretical convergence of the empirical

measure to the relative entropy between the class conditioned distributions, shown in

[53], is only guaranteed when the sequences satisfy the finite-order Markov property,

a condition that may be difficult to satisfy in practice. In [10], [11], an information

theoretic data discovery framework called atypicality has been introduced in which

the detection criterion is based on a descriptive codelength comparison of an opti-

mum encoder or a training-based fixed source coder, namely a data-dependent source

coder introduced in [10]) with a universal source coder. In this paper, we show how

our proposed pattern dictionary method can be used as a training-based fixed source

coder in an atypicality framework. Anomaly and outlier detection for time series has

also been extensively studied [54]. Various time series modeling techniques such as re-

gression [55], auto regression [56], auto regression moving average [57], auto regressive

integrated moving average [58], support vector regression [59], and Kalman filters [60]

have been used to detect anomalous observations by comparing the estimated residu-

als to a threshold. Many of these methods depend on a statistical assumption on the

residuals, e.g., an assumption of Gaussian distribution, while the pattern dictionary

method is model-free.

12



The proposed pattern dictionary method is closely related to the anomaly detec-

tion methods that are designed for sequence data. Many of these methods are focused

on specific applications. For instance, detection of mutations in DNA sequences [13],

[61], detection of cyberattacks in computer network [62], and detection of irregular

behaviors in online banking [63] are all application-specific examples of anomaly de-

tection for discrete sequences. In the recent years, multiple sequence data anomaly

detection methods have been developed specifically for graphs [64], dynamic net-

works [65], and social networks [66]. Chandola et al. [39] summarized many anomaly

detection methods for discrete sequences.

and identified three general approaches to this problem. These anomaly detection

formulations are unique in the way that anomalies are defined, but similar in their

reliance on comparison between a test (sub)sequence and normal sequences in the

training data. For example, kernel-based techniques such as nearest neighbor-based

similarity (NNS) [13] are designed to detect anomalous sequences that are dissimilar

to the training data. As another example, threshold sequence time-delay embedding

(t-STIDE) [14, 15, 16, 17] is established to detect anomalous sequences that contain

subsequences with anomalous occurrence frequencies. The compression-based dissim-

ilarity measure (CDM) is proposed for discord detection [18, 19, 20, 21, 22] to detect

anomalous subsequences within a long sequence. Chandola et al. [39] also showed

how various techniques developed for one problem formulation can be changed and

applied to other problem formulations. While our pattern dictionary method shares

similarity with NNS, CDM, and t-STIDE, our proposed method is generally appli-

cable to any of the categories of anomaly detection identified in [39]. Furthermore,

our detection criterion does not depend on the specific type of anomaly. Note that

while CDM is also a compression-based method, its anomaly score is based on a dis-

similarity measure that might fail to detect atypical subsequences [10]. For instance,

using CDM method, a binary i.i.d. uniform training sequence is equally dissimilar to
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another binary i.i.d. uniform test sequence or to a test sequence drawn from some

other distribution. In Section 2.6, the detection performance of our proposed pat-

tern dictionary method is compared with NNS, CDM, t-STIDE, and the Ziv-Merhav

method of [53].

It is worth mentioning that since the proposed pattern dictionary method is based

on lossless source coding, it requires discretization of time series prior to deployment.

In fact, many anomaly detection approaches require discretization of continuous data

prior to applying inference techniques [67, 68, 3, 69, 70]. Note that discretization

is also a requirement in other problem settings such as continuous optimization in

genetic algorithms [71], image pattern recognition [72], and nonparametric histogram

matching over codebooks in computer vision [73].

Anomaly and outlier detection for time series has also been extensively studied

[54]. Various time series modeling techniques such as regression [55], auto regression

[56], auto regression moving average [57], auto regressive integrated moving average

[58], support vector regression [59], and Kalman filters [60] have been used to detect

anomalous observations by comparing the estimated residuals to a threshold. Many of

these methods depend on a statistical assumption on the residuals, e.g., an assumption

of Gaussian distribution, while the pattern dictionary method is model-free.

2.3 Framework and Notation

In the anomaly detection literature for sequence data and time series, the following

three general formulations are considered [39]: (i) an entire test sequence is anomalous

if it is notably different from normal training sequences; (ii) a subsequence within a

long test sequence is anomalous if it is notably different from other subsequences in

the same test sequence or the subsequences in a given training sequence; and (iii) a

given test subsequence or pattern is anomalous if its occurrence frequency in a test

sequence is notably different from its occurrence frequency in a normal training se-
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quence. In this paper, we consider a unified formulation in which we determine if a

(sub)sequence is anomalous with respect to a training sequence (or training sequence

database) if any of the aforementioned three conditions are met. In other words, given

a training sequence or a training sequence database, a test sequence is anomalous if

it is significantly different from training sequences, or it contains a subsequence that

is significantly different from subsequences in the training sequence, or it contains a

subsequence whose occurrence frequency is significantly different from its occurrence

frequency in the training data.

Notation We use x to denote a sequence and xm
n to denote a subsequence of

x : xm
n = {xi, i = n, n+ 1, . . . ,m}, and xl represents a sequence of length l, i.e.,

{xn, n = 1, . . . , l} .X denotes a finite set, and D represents a dictionary of subse-

quences. Throughout this paper:

• All logarithms are base 2 unless otherwise is indicated.

• In the encoding process, we always adhere to lossless compression and strict

decodability at the decoder.

• While adhering to strict decodability, we only care about the codelength, not

the codes themselves

2.4 Pattern Dictionary: Design and Properties

Consider a long sequence, called the training data, {xn, n = 1, . . . , L} of length L

drawn from a finite alphabet X . The goal is to learn the patterns (subsequences) of

this sequence by creating a dictionary that contains all distinct patterns of maximum

length (depth)Dmax ≪ L that are embedded in the sequence. We call this dictionary a

pattern dictionaryD with the maximum depth SD(x) = {A,B,C,D,AB,BA,AC,CA,
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AD,DA,BB,CC,DD}.

Example 1. Suppose Dmax = 2, the alphabet is X = {A,B,C,D} and the train-

ing sequence is x = ABACADABBACCADDABABACADAB. The set of patterns

with depth d ≤ Dmax in this sequence is SD(x) = {A,B,C,D,AB,BA,AC,CA,AD,

DA,BB,CC,DD}.

Since the pattern dictionary is going to be used as a training-based fixed source

coder (a data-dependent source coder as defined in [10]), an efficient structure for

the pattern representation that minimizes the indexing codelength is of interest. The

simplest approach is to consider all the patterns of length 1 ≤ d ≤ Dmax in one set SD

and use a uniform indexing approach. This approach is called a uni-level dictionary.

Another approach is to separate all the patterns by their depth (pattern length) and

arrange them in Dmax sets S(1)
D ,S(2)

D , . . . ,S(Dmax)
D , and define SD =

⋃Dmax

d=1 S(d)
D , which

we call a multi-level dictionary. In the following sections, we show that the latter

results in a shorter average indexing codelength. It is worth mentioning that since a

multi-level dictionary results in a depthdependent indexing codelength, the average

over the depth is considered. A relevant question is if the average of indexing code-

length over all the patterns independent of depth should be used as an alternative.

Since such pattern dictionaries are used to sequentially parse test data, patterns at

smaller depth are more likely to be matched, even if they are anomalous. Thus, the

average of indexing codelength over depth can better differentiate depth-dependent

anomalies.
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2.4.1 A Special Case

Suppose all the possible patterns of depth d ≤ Dmax exist in the training sequence

{xn, n = 1, . . . , L}. That is, the cardinality of S(d)
D is

∣∣∣S(d)
D

∣∣∣ = |X |d for 1 ≤ d ≤ Dmax.

Then, the total number of patterns is

∣∣SD
(
xL
1

)∣∣ = Dmax∑
d=1

∣∣∣S(d)
D
(
xL
1

)∣∣∣
=

Dmax∑
d=1

|X |d

=
|X |
(
|X |Dmax − 1

)
|X | − 1

Hence, a uni-level dictionary results in a uniform indexing codelength of

Luni = log

(
|X |
(
|X |Dmax − 1

)
|X | − 1

)

≈ Dmax log(|X |).

On the other hand, a multi-level dictionary requires a two-stage description of index.

The first stage is the index of the depth d (using logDmax bits), and the second stage is

the index of the pattern among all the patterns with the same depth (using d log(|X |)

bits). This two-stage description of the index leads to a non-uniform indexing of

codelength: the minimum indexing codelength occurring for the patterns of depth

d = 1 equals to Lmulti
min = logDmax + log(|X |) bits, while the maximum indexing

codelength occurring for the patterns of depth d = Dmax equals to L
multi
max = logDmax+

Dmax log(|X |) bits. Thus, the average indexing codelength of a multi-level dictionary
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Figure 2.1: Comparison of indexing codelength between a uni-level dictionary and a
multi-level dictionary (fixed alphabet size |X | = 100 ).

is given by

Lmulti =
1

Dmax

Dmax∑
d=1

(logDmax + d log(|X |))

= logDmax +
log(|X |)
Dmax

Dmax∑
d=1

d

≈ logDmax +
1

2
Dmax log(|X |)

Figures 2.1 and 2.2 graphically compare the indexing codelength between a uni-level

dictionary and a multi-level dictionary for a fixed alphabet size and a fixed Dmax,

respectively. As seen, the average indexing codelength of a multi-level dictionary

results in a shorter indexing codelength.

2.4.2 The General Case

Given the training sequence {xn, n = 1, . . . , L}, suppose there are ad =
∣∣∣S(d)

D

∣∣∣ ≤
|X |d patterns of depth d ≤ Dmax ( a1 patterns of depth one, a2 patterns of depth two,
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Figure 2.2: Comparison of indexing codelength between a uni-level dictionary and a
multi-level dictionary (fixed Dmax = 20 )

etc.). The following Theorem 1 shows that the average indexing codelength using a

multi-level dictionary is always less than the indexing codelength of a uni-level dic-

tionary.

Theorem 1. Assume there are embedded ad =
∣∣∣S(d)

D

∣∣∣ ≤ |X |d patterns of depth

1 ≤ d ≤ Dmax in a training sequence of length L ≫ Dmax. Let L
uni and Lmulti be the

indexing codelength of a uni-level dictionary and the average indexing codelength of

a multi-level dictionary, respectively. Then,

(1) Lmulti ≤ Luni ; and

(2) log

(
1 +

(√aDmax−
√
a1)

2

Dmax

)
≤ Luni−Lmulti ≤ log

(
1 + w + (1− w)

aDmax

a1
− aw−1

1 a1−w
Dmax

)
,

where

w =
ln
[(

aDmax

aDmax−a1

)
ln aDmax

a1

]
ln

aDmax

a1

.
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Proof. Since L ≫ Dmax, clearly 0 < a1 ≤ a2 ≤ · · · ≤ aDmax . Using a uni-level

dictionary, the indexing codelength is

Luni = log

(
Dmax∑
d=1

ad

)

= logDmax + logADmax

whereADmax ≜ (a1 + a2 + · · ·+ aDmax) /Dmax is the arithmetic mean of a1, a2, . . . , aDmax .

Using a multi-level dictionary the average indexing codelength is

Lmulti =
1

Dmax

Dmax∑
d=1

(logDmax + log ad)

= logDmax + logGDmax

where GDmax ≜
(∏Dmax

d=1 ad

)1/Dmax

is the geometric mean of a1, a2, . . . , aDmax . Hence,

the comparison between Luni and Lmulti comes down to comparing the arithmetic

mean and the geometric mean of a1, a2, . . . , aDmax . Thus, ADmax ≥ GDmax , which

established the first part of the theorem. For the second part of the theorem, we use

lower and upper bounds on ADmax −GDmax derived in [74].

(√
aDmax −

√
a1
)2

Dmax

≤ ADmax −GDmax ≤[
wa1 + (1− w)aDmax − aw1 aD1−w

max

]
,

where w =
ln[(aDmax/(aDmax−a1)) ln(aDmax/a1)]

ln(aDmax/a1)
. Since a1 ≤ GDmax ≤ aDmax and Luni −

Lmulti = log
ADmax

GDmax
, the proof is complete.

Theorem 1 shows that a multi-level dictionary gives a shorter average indexing

codelength than a uni-level dictionary. logDmax + log ad is the indexing codelength
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for patterns of depth d, where ad is the total number of observed patterns of the

depth d. In order to reduce the indexing codelength even further, the patterns of

the same length in each set S(d)
D can be ordered according to their relative frequency

(empirical probability) in the training sequence. This allows Huffman or Shannon-

Fano-Elias source coding [7] to be used to assign prefix codes to patterns in each

set S(d)
D separately. In this case, for any pattern xd

1 ∈ S(d)
D , the indexing codelength

becomes

Lmulti
(
xd
1

)
= logDmax + L

(d)
D
(
xd
1

)
, (2.1)

where L
(d)
D
(
xd
1

)
is the codelength assigned to the pattern xd

1 based on its empirical

probability using a Huffman or Shannon-Fano-Elias encoder. If such encoders are

used, the codelength (1) is optimal ([7] Theorem 5.8.1). Since the whole purpose of

creating a pattern dictionary is to learn the patterns in the training data, assigning

the shorter codelength to the more frequent patterns and assigning longer codelength

to the less frequent patterns in any pattern set S(d)
D will improve the efficiency of the

coded representation.

Example 2. Suppose the alphabet is X = {A,B,C,D} and the training sequence

is x = ABACADABBACCADDABABACADAB. Table 2.1 shows the dictionary

with Dmax = 3 created by the patterns inside the training sequence, and the code-

length assigned for each pattern using Huffman coding.

2.4.3 Pattern Dictionary for Detection (PDD)

Suppose we want to sequentially compress a test sequence xl
1 = {xn, n = 1, . . . , l}

using a trained pattern dictionary D with maximum depth Dmax < l. The encoder

parses the test sequence xl
1 into c phrases, xv2−1

v1
, xv3−1

v2
, . . . , xl

vc where vi is the index

of the start of the i th phrase, and each phrase x
vi+1−1
vi is a pattern in the pattern
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Table 2.1: Filling (training) the dictionary (of maximum depth Dmax = 3 ) with the
patterns in the training sequence ABACADABBACCADDABABACADAB.

Depth 1 Depth 2 Depth 3

xd
1 Pr

(
xd
1

)
L
(1)
D
(
xd
1

)
xd
1 Pr

(
xd
1

)
L
(2)
D
(
xd
1

)
xd
1 Pr

(
xd
1

)
L
(3)
D
(
xd
1

)
A 0.44 1 AB 0.2083 2 ABA 0.1304 3
B 0.24 2 BA 0.1667 3 BAC 0.1304 3
C 0.16 3 AC 0.1250 3 CAD 0.1304 3
D 0.16 3 CA 0.1250 3 DAB 0.1304 3

AD 0.1250 3 ACA 0.0870 4
DA 0.1250 3 ADA 0.0870 4
BB 0.0417 4 ABB 0.0435 4
CC 0.0417 5 BBA 0.0435 4
DD 0.0417 5 ACC 0.0435 4

CCA 0.0435 4
ADD 0.0435 4
DDA 0.0435 5
BAB 0.0435 5

dictionary D. Let SD
(
xl
1

)
=
{
xv2−1
v1

, xv3−1
v2

, . . . , xl
vc

}
denote the set of the parsed

phrases using pattern dictionary D. The parsing process begins with setting v1 = 1

and finding the largest v2 ≤ Dmax and v2 ≤ l such that xv2−1
v1

∈ D but xv2
v1

/∈ D. This

results in the first phrase xv2−1
1 . Similarly, the same procedure is performed in order

to find the largest v3 ≤ Dmax and v3 ≤ l such that xv3−1
v2

∈ D but xv3
v2

/∈ D. This

type of cross-parsing was first introduced in [53] in order to estimate an empirical

relative entropy between two individual sequences that are independent realizations

of two finite-order, finite-alphabet and stationary Markov processes. Here, we do

not impose such an assumption on the sources generating the sequences. Algorithm

1 summarizes the procedure of the proposed pattern dictionary (PD) parser. After

parsing the whole test sequence xl
1 into c phrases, xv2−1

v1
, xv3−1

v2
, . . . , xl

vc , the codelength

will be

L
(
xl
1

)
=

c∑
i=1

LD
(
xvi+1−1
vi

)
+ c logDmax. (2.2)

For detection purposes, on a test sequence xl
1, either the number of parsed phrases

or the codelength can be used as anomaly scores with respect to the trained pattern
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Algorithm 1 Pattern Dictionary (PD) Parser

Require: Pattern Dictionary D, Test Sequence xl
1

1: Set c = 1, vc = 1, d = 1
2: while vc + d− 1 < 1 do
3: if xvc+d−1

vc ∈ S(d)
D then

4: if d+ 1 ≤ Dmax then
5: d = d+ 1
6: else
7: vc+1 = vc + d
8: c = c+ 1
9: d = 1
10: else
11: vc+1 = vc + d− 1
12: c = c+ 1
13: d = 1
return xv2

v1
− 1, xv3−1

v2
, . . . , xl

vc

dictionary D. In other words, for any test sequence xl
1 and given a pattern dictionary,

if the number of parsed phrases
∣∣SD

(
xl
1

)∣∣ or the codelength L
(
xl
1

)
in Equation (2)

are greater than a certain threshold, then xl
1 is declared to be anomalous. While the

proposed pattern dictionary technique can be used as a stand-alone anomaly detection

technique, below we show how it can be used for atypicality detection [10], [11] as a

training-based fixed source coder (data-dependent encoder).

2.5 Pattern Dictionary-Based Atypicality (PDA)

In [10], [11], an atypicality framework was introduced as a data discovery and

anomaly detection framework that is based on a central definition: ”a sequence (or

subsequence) is atypical if it can be described (coded) with fewer bits in itself rather

than using the (optimum) code for typical sequences”. In this framework, detection

is based on the comparison of a lossless descriptive codelength between an optimum

encoder (if the typical model is known) or a training-based fixed source coder (if

the typical model is unknown, but training data are available) and a universal source

coder in order to detect atypical subsequences in the data [10], [11]. In this section, we
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apply our proposed pattern dictionary as a training-based fixed source coder (typical

encoder) in an atypicality framework. We call it pattern dictionary-based aty picality

(PDA) method.

The pattern dictionary-based source coder can be considered as a generalization

of the Context Tree [75], [76], [77] based fixed source coder that was used in [10] for

discrete data. The universal source coder (atypical encoder) used here is the Tree-

Structured LempelZiv (LZ78) [7], [8]. The primary reason for choosing LZ78 as the

universal encoder is that its sequential parsing procedure is similar to the proposed

pattern dictionary described in Section 2.4, and it is (asymptotically) optimal [7], [8].

One might ask why do we even need to compare descriptive codelengths of a training-

based (or optimum) encoder with a universal encoder for data discovery purposes

when, as alluded to in the end of last section, a training-based fixed source coder

can be a stand-alone anomaly detector. The necessity of such concurrent comparison

is articulated in [10]. In fact, such a codelength comparison enables the atypicality

framework to go beyond the detection of anomalies and outliers, extending to the

detection of rare parts of data that might have a data structure of interest to the

practitioner.

We give an example to provide further intuition for why anomaly detection can

benefit from our framework that compares the outputs of a typical encoder and an

atypical encoder. Consider an i.i.d. binary sequence of length L with P (X = 1) = p

in which there is embedded an anomalous subsequence of length l ≪ L with P (X =

1) = p̂ ̸= p that we would like to detect. If p = 1
2
and p̂ = 1, the typical encoder

cannot catch the anomaly while the atypical encoder can. On the other hand, if p = 1
3

and p̂ = 2
3
, the typical encoder identifies the anomaly while an atypical encoder fails

to do so (since the entropy for p = 1
3
and p̂ = 2

3
is the same). Note that in both

cases, our framework would catch the anomaly since it uses the difference between

the descriptive codelengths of these two encoders.
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Recall that in Section 2.4, we supposed that a test sequence xl
1 has been parsed

using a trained pattern dictionary D with maximum depth Dmax < l. This parsing

results in
∣∣SD

(
xl
1

)∣∣ parsed phrases. Using Equation (2.2), the typical codelength of

the sequence xl
1 is given by

LT

(
xl
1

)
=

∑
y∈SD(xl

1)

LD(y) +
∣∣SD

(
xl
1

)∣∣ logDmax.

For the atypical encoder, the LZ78 algorithm results in a distinct parsing of the test

sequence xl
1. Let SLZ

(
xl
1

)
denote the set of parsed phrases in the LZ78 parsing of xl

1.

As such, the resulting atypical codelength is [7], [8]

LA

(
xl
1

)
=
∣∣SLZ

(
xl
1

)∣∣ [log ∣∣SLZ

(
xl
1

)∣∣+ 1
]
.

Since L
(
xl
1

)
using both LZ78 and the pattern dictionary depends on the number

of parsed phrases, we investigate the possible range and properties of
∣∣SD

(
xl
1

)∣∣ −∣∣SLZ

(
xl
1

)∣∣. While the LZ78 encoder is a well-known compression method which is

asymptotically optimal [7], [8], its non-asymptotic behavior is not well understood.

In the next section, we establish a novel non-asymptotic property of an LZ78 parser,

and then compare it with the pattern dictionary parser.

2.5.1 Lempel-Ziv Parser

We start this section with a theorem that establishes the non-asymptotic lower

and upper bounds on the number of distinct phrases in a sequence parsed by LZ78.

Theorem 2. The number of distinct phrases c(l) resulting from LZ78 parsing of
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an |X |-ary sequence xl
1 = {xn, n = 1, . . . , l} satisfies

1

2
(
√
8l + 1− 1) ≤ c(l) ≤ l ln |X |

W
(

β
α
|X |

α+1
−α ln |X |

)
where α = |X | − 1, β = (|X | − 1)2l − |X |, and W(.) is the Lambert W function [12].

Proof. First, we establish the upper bound. Note that the number of parsed

distinct phrases c(l) is maximized when all the phrases are as short as possible.

Define M ≜ |X | and let lk be the sum of the lengths of all distinct strings of length

less than or equal to k. Then,

lk =
k∑

j=1

jM j =
1

(M − 1)2
[
{(M − 1)k − 1}Mk+1 +M

]
Since l = lk occurs when all the phrases are of length ≤ k,

c (lk) ≤
k∑

j=1

M j =
M
(
Mk − 1

)
M − 1

<
Mk+1

M − 1
≤ lk

k − 1
M−1

.

If lk ≤ l < lk+1, we write l = lk +△ where

∆ < lk+1 − lk = (Mk +M − 1− k)
Mk+1

M − 1

= (k + 1)
Mk+1

M − 1
.

We conclude that the parsing ends up with c (lk) phrases of length ≤ k and l−lk
k+1

phrases of length k + 1. Therefore,

c(l) ≤ c (lk) +
l − lk
k + 1

≤ lk
k − 1

M−1

+
∆

k + 1

≤ lk +∆

k − 1
M−1

=
l

k − 1
M−1

.

(2.3)
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We now bound the size of k for a given sequence of length l by setting l = lk.

Define α ≜ M − 1 and β ≜ (M − 1)2l −M . Then,

1

(M − 1)2
[
((M − 1)k − 1)Mk+1 +M

]
= l

⇐⇒((M − 1)k − 1)Mk+1 = (M − 1)2l −M

⇐⇒(αk − 1)Mk+1 = β

⇐⇒k̂M (k̂+1)/α+1 = β

⇐⇒k̂
lnM

α
exp

(
k̂
lnM

α

)
=

β

α
M−1−1/α lnM.

where k̂ = αk − 1. The last equation can be solved using the Lambert W function

[12]. Since all the involved numbers are real and for M > 1 and l ≥ 2, we have

β
α
M−1−1/α lnM ≥ 0 > −1

e
, it follows that

k̂
lnM

α
= W

(
β

α
M−1−1/α lnM

)
⇐⇒ k =

αW
(
β
a
M−1−1/α lnM

)
+ lnM

α lnM
,

where W(.) is the Lambert W function. Using (2.3), we write

c(l) ≤ l

k − 1
α

=
l lnM

W
(
β
α
M−1−1/α lnM

) .
To prove the lower bound, note that the number of parsed distinct phrases c(l) is

minimized when the sequence of length l consists of only one symbol that repeats.

Let l̃k be the sum of the lengths of all such distinct strings of length less than or equal

to k. Then,

l̃k =
k∑

j=1

j =
k(k + 1)

2
.

Thus, given a sequence of length l by enforcing l = k(k+1)
2

, we obtain the lower

bound.
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Figure 2.3: Plot of the lower and upper bounds of Theorem 2 on the number of
distinct phrases resulting from LZ78-parsing of an |X |-ary sequence of length l.

Figure 2.3 illustrates the lower and upper bounds established in Theorem 2 against

the sequence length for various alphabet sizes. Note that the lower bound on the

number of distinct phrases is independent of the alphabet size.

While numerical experiments are not a substitute for the mathematical proof of

Theorem 2 provided above, the reader may find it useful to understand the theorem

in terms of a simple example. In Figures 4-6, we compare the theoretical bound

with numerical results of simulation for binary i.i.d. sequences. In these experiments,

for each value of P (X = 1), a thousand binary sequences are generated; then, the

number of distinct phrases resulting from LZ78 parsing of each sequence is calculated,

and hence, the average, minimum, and maximum of these counts are found and

represented by error bars.

Next, we verify the convergence of the non-asymptotic upper bound achieved in

Theorem 2 to the asymptotic upper bound of the LZ78 parser. Using a lower bound
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Figure 2.4: Simulation results compared to the lower and upper bounds of Theorem
2 on the number of distinct phrases resulting from LZ78-parsing of binary sequences
of length l generated by sources with three different source probabilities P (X = 1).
For every P (X = 1), one thousand binary sequences of length l are generated. Error
bars represent the maximum, minimum, and average number of distinct phrases.
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on Lambert W function lnx− ln(lnx) ≤ W(x) [78], we write

W

(
β

α

lnM

M1+1/α

)
= W

((
(M − 1)l − M

M − 1

)
lnM

M M
M−1

)

≈ W(cM l lnM)

≥ ln
cM l lnM

ln (cM l lnM)

= ln
cM l

log (cM l lnM)

where the logarithm is base M = |X | and cM = M−1
MM/(M−1) . Hence, we can further

simplify the asymptotic upper bound of c(l) as follows

c(l) ≤ l lnM

W
(
β
a
M−1−1/a lnM

)
≤ l lnM

ln cM l
log(cM l lnM)

=
l

log cM l
log(cM l lnM)

=
l

log l + log cM − log log (cM l lnM)

=
l(

1− log log l+ĉM
log l

)
log l

,

where ĉM = log cM − log log (cM lnM). Therefore, as l → ∞, we have c(l) ≤ 1
log l

.

This is consistent with the binary case M = 2 proved in ([7] Lemma 13.5.3) or [8].

The following Lemma extends the result of ([7] Lemma 13.5.3) to |X |-ary case.

Lemma 1. The number of distinct phrases c(l) resulting from LZ78-parsing of

an |X |-ary sequence xl
1 = {xn, n = 1, . . . , l} satisfies

c(l) ≤ l

(1− ϵl) log l′
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where the logarithm is base |X | and ϵl = min

{
1,

log log l−log(|X |−1)+
3|X|−2
|X|−1

log l

}
→ 0 as

l → ∞.

Proof. The proof is similar to the proof in ([7] Lemma 13.5.3) or ([79] Theorem

2). Let M ≜ |X |. In Theorem 2, we defined lk as the sum of the lengths of all distinct

strings of length less than or equal to k, and we showed that for any given l such that

lk ≤ l < lk+1, we have c(l) ≤ c (lk) +
l−lk
k+1

≤ l
k− 1

M−1

. Next, we bound the size of k. As

such, we have l ≥ lk ≥ Mk or, equivalently, k ≤ log l where the logarithm is base M .

Additionally,

l ≤ lk+1 =

(
k + 1− 1

M − 1

)
Mk+2

M − 1
+

M

(M − 1)2

=

(
k

M − 1
+

M − 2

(M − 1)2

)
Mk+2 +

M

(M − 1)2

≤ k + 2

M − 1
Mk+2 ≤ log l + 2

M − 1
Mk+2

therefore, k + 2 ≥ log (M−1)l
log l+2

. Equivalently, for l ≥ M2,

k − 1

M − 1
≥ log l − log(log l + 2) + log(M − 1)− 2− 1

M − 1

=

(
1−

log(log l + 2)− log(M − 1) + 2M−1
M−1

log l

)
log l

≥

(
1−

log(2 log l)− log(M − 1) + 2M−1
M−1

log l

)
log l

=

(
1−

log log l − log(M − 1) + 3M−2
M−1

log l

)
log l

= (1− ϵl) log l,

where ϵl = min

{
1,

log log l−log(M−1)+ 3M−2
M−1

log I

}
.

Next, we analyze the properties of the number of distinct phrases c(l) resulting
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Figure 2.5: Similar to Figure 2.4 , the number of distinct phrases resulting from LZ78-
parsing of binary sequences of fixed length l = 1000 varies over the source probability
parameter P (X = 1). For every P (X = 1), one thousand binary sequences of length
l are generated. Error bars represent the maximum, minimum, and average number
of distinct phrases.

from LZ78-parsing of an |X |-ary sequence xl
1 = {xn, n = 1, . . . , l} when l is fixed.

The error bar representation in Figure 2.4 shows the variation of c(l) when l is fixed.

A possible explanation for such variations is that the statistical distribution of the

pseudorandomly generated data are different from the theoretical distribution of the

generating source. To elucidate this possibility, we enforce the exact matching of the

source probability mass function and the empirical probability mass function of the

generated data. Figure 2.5 represents the number of distinct phrases c(l) resulting

from LZ78-parsing of a binary sequence of fixed length where the characteristic of

the generating source and the generated data matches. As seen, there is still some

variation around the average value of c(l). We can specify a distribution-dependent

bound on c(l) when both l and the distribution of the source are fixed.

In ([80] Theorem 1), for sequences generated from a memoryless source, c(l) is
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assumed to be a random variable with the following mean and variance:

E(c(l)) ∼ hl

log l′

Var(c(l)) ∼ (h2 − h2) l

log2 l
, (2.4)

where h = −
∑

a∈X pa log pa is the entropy rate, and h2 =
∑

a∈X pa log
2 pa with pa

being the probability of symbol a ∈ X . Note that the approximations (2.4) are

asymptotic as l → ∞. Below, we obtain a finite sample characterization of c(l).

Consider an |X |-ary sequence xl
1 = {xn, n = 1, . . . , l} with fixed length l generated

from a source with the probability mass function p(x). Here, the notations xl
1 and xl

are used interchangeably. Let c(l, p) denote the number of distinct phrases resulting

from LZ78-parsing of the sequence xl
1 of length l and the generating probability

mass function is defined by p(x). In order to find a distribution-dependent bound

on the number of distinct phrases in LZ78-based parsing of xl
1, we note that since

the generating distribution is not necessarily uniform, all the strings xn for n <

l ≪ ∞ do not necessarily appear as parsed phrases. For instance, consider the

binary case with P (X = 1) = 0.9. Then, it is very unlikely to have a string with

multiple consecutive zeros in any parsing of a realization of the finite sequence xl.

As such, using the Asymptotic Equipartition Properties (AEP) ([7] Chapter 3) or

Non-asymptotic Equipartition Properties (NEP) [81], we define the typical set A(n)
ϵ

with respect to p(x) as the set of subsequences xn ∈ X n of xl
1 with the property

2−n(h+ϵ) ≤ p (xn) ≤ 2−n(h−ϵ),
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where h is the entropy. Then, we have

1 =
∑

xn∈Xn

p (xn) ≥
∑

xn∈A(n)
ε

p (xn) ≥
∣∣A(n)

ϵ

∣∣ 2−n(h+ϵ),

therefore,
∣∣∣A(n)

ε

∣∣∣ ≤ 2n(h+ϵ). Let lk be the sum of the lengths of all the distinct strings

xn in the set
∣∣∣A(n)

ϵ

∣∣∣ of length less than or equal to k. We write,

lk =
k∑

n=1

n
∣∣A(n)

ϵ

∣∣
≤

k∑
n=1

n2n(h+ϵ)

=
1

(m− 1)2
[
((m− 1)k − 1)mk+1 +m

]
where m ≜ 2h+ϵ. Therefore, l = 1

(m−1)2

[
((m− 1)k − 1)mk+1 +m

]
can be solved

for k which leads into an upper bound for c(l, p) as follows

k =
αW

(
β
a
m−1−1/α lnm

)
+ lnm

α lnm

c(l, p) ≤
k∑

n=1

∣∣A(n)
ϵ

∣∣ = m
(
mk − 1

)
m− 1

=
2k(h+ϵ) − 1

1− 2−h−ϵ
,

where α = m − 1 and β = (m − 1)2l −m. Therefore, the dependency of the c(l, p)

upper bound on the distribution is only through the entropy. Figure 6 depicts the

upper bound on c(l, p) for ϵ = 0.1
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Figure 2.6: Simulation of the probability-dependent upper bound c(l, p) for binary
sequences of fixed length l = 100 with various probability parameters P (X = 1). For
every P (X = 1), one thousand binary sequences of length l are generated. Error bars
represent the maximum, minimum, and average number of distinct phrases.
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2.5.2 Pattern Dictionary Parser versus LZ78 Parser

Given an |X |-ary sequence xl
1 = {xn, n = 1, . . . , l}, let cT (l) be the number of

parsed phrases of xl
1 when the ty pical encoder (pattern dictionary withDmax ) is used,

and cA(l) be the number of parsed phrases of xl
1 when the atypical encoder (LZ78) is

used. Clearly, l
Dmax

≤ cT (l) ≤ l where the lower bound is achieved when SD
(
xl
1

)
={

xv2−1
v1

, xv3
v2
− 1, . . . , xl

vc

}
, and each xvi−1

vi
∈ S(Dmax)

D , namely xvi−1
vi

is of length Dmax and

exists in the dictionary. The upper bound is achieved when SD
(
xl
1

)
= {x1, x2, . . . , xl}

where each xn ∈ S(1)
D . Using the result of Theorem 2 and a lower bound on the

Lambert W function, lnx− ln(lnx) ≤ W(x) [78], we have

l

Dmax

(
1− Dmax

log l
log(l ln |X |)

)
≤ cT (l)− cA(l)

≤ l

(
1−

√
8l + 1− 1

2l

) (2.5)

The above bounds have asymptotic and non-asymptotic implications. The asymp-

totic analysis of the bounds in (2.5) suggests that as l → ∞, for a dictionary with

fixed Dmax, we have l
Dmax

≤ cT (l) − cA(l) ≤ l. This inequality implies the asymp-

totic dominance of the parser using a typical encoder. This is to be expected due

to the asymptotic optimality of LZ78. However, the above inequality also implies a

more interesting result: if Dmax > log l
log(l ln |X|) as l → ∞, then cT (l) can be smaller

than cA(l). The non-asymptotic behavior of the bounds in (2.5) is more relevant to

the anomaly detection problem. These bounds suggest that for a fixed l and |X |,

increasing Dmax has a vanishing effect on the possible range of the anomaly score.

Additionally, the achieved bounds on cT (l)− cA(l) provide the range of values of the

anomaly score. This facilitates the search for a data-dependent threshold for anomaly

detection, as the search can be restricted to this range.
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2.5.3 Atypicality Criterion for Detection of Anomalous Subsequences

Consider the problem of finding the atypical (anomalous) subsequences of a long

sequence with respect to a trained pattern dictionary D. Suppose we are looking for

an infrequent anomalous subsequence xn+l−1
n = {xn, n = n, . . . , n+ l − 1} embedded

in a test sequence {xn, n = 1, . . . , L} from the finite alphabet X . Using Equation

(2.2), the typical codelength of the subsequence xn+l−1
n is

LT

(
xn+l−1
n

)
=

∑
y∈SD(xn+l−1

n )

LD(y) +
∣∣SD

(
xn+l−1
n

)∣∣ logDmax,

while using LZ78, the atypical codelength of the subsequence xn+1−1
n is

LA

(
xn+l−1
n

)
=
∣∣SLZ

(
xn+l−1
n

)∣∣ [log ∣∣SLZ

(
xn+l−1
n

)∣∣+ 1
]

+ log∗(l) + τ,

where log∗(l) + τ is an additive penalty for not knowing in advance the start and

end points of the anomalous sequence [10], [11], and log∗(l) = log l + log log l + . . .

where the sum continues as long as the argument to the outer log is positive. Let

L′
A = LA − τ . We propose the following atypicality criterion for detection of an

anomalous subsequence:

∆L(n) = max
l

{
LT

(
xn+l−1
n

)
− L′

A

(
xn+l−1
n

)}
> τ, (2.6)

where τ can be treated as an anomaly detection threshold. In practice, τ can be set

to ensure a false positive constraint, e.g., using bootstrap estimation of the quantiles

in the training data.
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2.6 Experiments

In this section, we illustrate the proposed pattern dictionary anomaly detection

on a synthetic time series, known as Mackey-Glass [82], as well as on a real-world time

series of physiological signals. In both experiments, first, the real-valued samples are

discretized using a uniform quantizer [83], and then, anomaly detection methods are

applied.

2.6.1 Anomaly Detection in Mackey-Glass Time Series

In this section, we illustrate the proposed anomaly detection method for the case

of a chaotic Mackey-Glass (MG) time series that has an anomalous segment grafted

into the middle of the sequence. MG time series are generated from a nonlinear time

delay differential equation. The MG model was originally introduced to represent the

appearance of complex dynamic in physiological control systems [82]. The nonlinear

differential equation is of the form dx(t)
dt

= −ax(t) + bx(t−δ)
1+x10(t−δ)

, t ≥ 0, where a, b and

δ are constants. For the training data, we generated 3000 samples of the MG time

series with a = 0.2, b = 0.1, and δ = 17. For the test data, we normalized and

embedded 500 samples of the MG time series with a = 0.4, b = 0.2, and δ = 17 inside

1000 samples of a MG time series generated from the same source as the training

data, resulting in a test sequence of length 1500. Figure 2.7 shows a realization of

the training data and the test data.

The anomaly detection performance of our proposed pattern dictionary is evalu-

ated. To illustrate the effect of the model parameter, i.e., the maximum depth Dmax,

on the detection and compression performance of the pattern dictionary, we run two

experiments. First, we use a 30-fold cross-validation on the training data (resulting

in 30 sequences of length 100) and calculate the number of distinct parsed phrases

against Dmax. Second, we train a pattern dictionary with various Dmax using the

training data and then evaluate the sensitivity of detector of the anomalous subse-
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Figure 2.7: Mackey-Glass time series: the training data (top) and an example of the
test data (bottom) in which samples in [501, 1000] are anomalous (shown in red).

quences in the test data using Equation (2.6) with τ = 0. In this experiment, the

detection sensitivity (true positive rate) is defined as the ratio of number of samples

correctly identified as anomalous over the total number of anomalous samples. Figure

2.8 illustrates the result of both experiments. As seen, after some point, increasing

Dmax has diminishing effect on both detection sensitivity and the number of distinct

parsed phrases. Note that this behavior is to be expected as it was suggested by the

bounds in (2.5).

Next, we compare anomaly detection performance of our proposed pattern dic-

tionary methods, PDD and PDA, with the nearest neighbors-based similarity (NNS)

technique [13], the compression-based dissimilarity measure (CDM) method [18], [19],

[20], Ziv-Merhav method (ZM) [53], and the threshold Sequence Time-Delay Em-

bedding (t-STIDE) technique [14], [15], [16], [17]. In this experiment, a window of

length 100 is slid over the test data and each method measures the anomaly score

(as described below) of the current subsequence with respect to the training data.

39



Figure 2.8: The effect of maximum dictionary depth Dmax on parsing and detection
sensitivity (true positive rate) of the Mackey-Glass time series presented in Figure
2.7.

The anomaly is detected when the score exceeds a threshold, determined to ensure

a specified false positive rate. In the following, we compute AUC (area under the

curve) of the ROC (receiver operating characteristic) and Precision-Recall curves as

performance measures. In the following, we provide details of the implementation.

Pattern Dictionary for Detection (PDD): First, the training data are used

to create a pattern dictionary with Dmax = 40, as described in Section 2.4. Then,

for each subsequence x100 (the sliding window of length 100) of the test data, the

anomaly score is computed as the codelength L (x100) of Equation (2.2) described in

Section 2.4.3.

Pattern Dictionary Based Atypicality (PDA): Similar to PDD, first the

training data are used to create a pattern dictionary with Dmax = 40, as described in

Section 2.4. Then, for each subsequence x100 of the test data, the anomaly score is the

atypicality measure described in Section 2.5, i.e., LT (x100)−LA (x100), the difference
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between the compression codelength of the test subsequence using typical encoder

(pattern dictionary) and atypical encoder (LZ78).

Ziv-Merhav Method (ZM) [53]: In this method, a cross-parsing procedure

is used in which for each subsequence x100 of the test data, the anomaly score is

computed as the number of the distinct phrases of x100 with respect to the training

data.

Nearest Neighbors-Based Similarity (NNS) [13]: In this method, a list S of

all the subsequence of length 100 (the length of the sliding window) of the training

data is created. Then, for each subsequence x100 of the test data, the distance between

x100 and all the subsequences in the list S is calculated. Finally, the anomaly score

of x100 is its distance to the nearest neighbor in the list S.

Compression-Based Dissimilarity Measure (CDM) [18], [19], [20]: In this

method, given the training data xtrain , for each subsequence x100 of the test data the

anomaly score is

CDM
(
xtrain , x

100
)
=

L (C (xtrain , x
100))

L (xtrain ) + L (x100)

where C(y, x) represents concatenation of sequences y and z, and L(x) is the size of

the compressed version of the sequence x using any standard compression algorithm.

The CDM anomaly score is close to 1 if the two sequence are not related, and smaller

than one if the sequences are related.

Threshold Sequence Time-Delay Embedding (t-STIDE) [14], [15], [16],

[17]: In this method, given l < 100, for each sub-subsequence xl of the subsequence

x100 of the test data, the likelihood score of xl is the normalized frequency of its

occurrence in the training data, and the anomaly score of x100 is one minus the

average likelihood score of all its sub-subsequences of length l. In this experiment,

various values of l are tested and the best performance is reported.

We compare the detection performance of the aforementioned methods by gener-

ating 200 test data sequences with different anomaly segments (the anomalous MG
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segments have different initializations in each test dataset). The detection results of

comparisons are reported in Table 2.2. As seen, our proposed PDD and PDA methods

outperform the rest, with ZM and CDM coming in third place. The effect of alphabet

size of the quantized data (the resolution parameter of the uniform quantizer [83]) on

anomaly detection performance is summarized in Table 2.3. Table 2.3 shows that our

proposed PDD and PDA methods outperform in all three cases of data resolution.

Table 2.2: Comparison of anomaly detection methods (µ ± σ representation is used
where µ is the mean and σ is the standard deviation). The proposed PDA method
attains overall best performance (bold entries of table).

ROC AUC PR AUC

PDA 0.963 ± 0.009 0.909 ± 0.044

PDD 0.959± 0.009 0.907± 0.044

ZM 0.959± 0.009 0.895± 0.049

CDM 0.957± 0.012 0.907± 0.057

NNS 0.920± 0.021 0.777± 0.091

t-STIDE 0.897± 0.013 0.857± 0.044

Since the parsing procedure of our proposed PD-based methods and the ZM

method [53] are similar, it is of interest to compare the running time of these two

methods. While the cross-parsing procedure of the ZM method was introduced as

an on the fly process [53], we can also consider another implementation similar to

our proposed PD by creating a codebook of all the subsequences of the training data

prior to the parsing procedure. As such, in order to compare the running time of the

dictionary/codebook creation and parsing procedure of our PD-based methods with

the aforementioned two implementations of the ZM method, we use the same MG

training data of length 3000 , one test dataset of length 1500 while a sliding window

of length 100 is slid over it for anomaly score calculation, and the PD-based method

with Dmax = 40. Note that since a sliding window of length 100 over the test data

42



is considered, for the codebook-based implementation of ZM, all the subsequences of

the training data up to length 100 are extracted which make its codebook creation

process significantly faster. Table 2.4 summarizes the running time comparison. As

it can be seen, our PD-based method is faster in both dictionary/codebook creation

and parsing process.

Table 2.3: Comparison of anomaly detection methods for different cases of data
resolutions: high resolution corresponds to an alphabet size of 90 , medium resolution
corresponds to an alphabet size of 45 , and low resolution corresponds to an alphabet
size of 10 . In this table, µ ± σ representation is used where µ is the mean and σ is
the standard deviation. The proposed PDA method achieves overall best performance
(bold entries of table).

2.6.2 Infection Detection Using Physiological Signals

Finally, we apply the proposed pattern dictionary method to detect unusual pat-

terns in physiological signals of two human subjects after exposure to a pathogen

while only one of these subjects became symptomatically ill. The time series data

were collected in a human viral challenge study that was performed in 2018 at the

University of Virginia under a DARPA grant. Consented volunteers were recruited

into this study following an IRB-approved protocol and the data was processed and

analyzed at Duke University and the University of Michigan. The challenge study

design and data collection protocols are described in [84]. Volunteers’ skin temper-
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Table 2.4: Table 4. Comparison of running time (in second) of PD-based method and
two implementations of the ZM method for different cases of data resolutions: high
resolution corresponds to an alphabet size of 90 , medium resolution corresponds to
an alphabet size of 45 , and low resolution corresponds to an alphabet size of 10. This
experiment is performed on a Hansung laptop with 2.60GHzCPU, 500 GB of SSD,
and 16 GB of RAM using MATLAB R2021a. The proposed PD-based method has
fastest run time overall (bold entries in table).

ature and heart rate were recorded by a wearable device (Empatica E4) over three

consecutive days before and five consecutive days after exposure to a strain of human

Rhinovirus (RV) pathogen. During this period, the wearable time series were contin-

uously recorded while biospecimens (viral load) were collected daily. The infection

status can be clinically detected by biospecimen samples, but in practice, the collec-

tion process of these types of biosamples can be invasive and costly. As such, here, we

apply the proposed anomaly detection framework to the measured two-dimensional

heart rate and temperature time series to detect unusual patterns after exposure with

respect to the normal (healthy) baseline patterns. In the preprocessing phase, we fol-

lowed the wearable data preprocessing procedure described in [85]. Specifically, we

first downsample the time series to one sample per minute by averaging. Then, we

apply an outlier detection procedure to remove technical noise, e.g., sensor contact

loss. After preprocessing, the two-dimensional space of temperature and heart rate

time series is discretized using a two-dimensional uniform quantizer [83] with step

size of 5 for heart rate and 0.5 for temperature, resulting in one-dimensional discrete

sequence data. The first three days of data are used as the training data, and the

PDA methods with maximum depth Dmax = 30 are used to learn the patterns in the

training data. In order to detect anomalous patterns of the test data (the last five
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Figure 2.9: Anomaly detection using the proposed PDA method for a subject based
on heart rate and temperature data collected from a wearable wrist sensor. Anomalies
are shown in red in (a,b). (c) shows the subject’s infection level.

days), we used the result of Section 2.5.3 and the atypicality criterion of Equation

(2.6), which requires choosing the threshold τ . While this threshold can be chosen

freely, we selected it using cross-validation on the training data. Leave-one-out cross-

validation over the training data generates an empirical null distribution of the PDA

anomaly score function LT − LA. The threshold τ was chosen as the upper 99%

quantile of this distribution. Figure 2.9 illustrates the result of anomaly detection on

one subject who became infected as measured by viral shedding as shown in Figure

2.9.c. All the anomalous patterns occur when the subject was shedding the virus.

Figure 2.10 also depicts the result of anomaly detection on one subject who had a

mild infection with a low level of viral shedding, as shown in Figure 2.10.c. Note that

in this case, no anomalous patterns were detected.

2.7 Conclusions

In this paper, we have developed a universal nonparametric model-free anomaly

detection method for time series and sequence data using a pattern dictionary. We
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Figure 2.10: Anomaly detection using the proposed PDA method for a subject who
had a mild infection with low level of viral shedding based on heart rate and temper-
ature data collected from a wearable wrist sensor. Note that no anomaly has been
detected: (a) heart rate, (b) temperature, and (c) infection level.

proved that using a multi-level dictionary that separates the patterns by their depth

results in a shorter average indexing codelength in comparison to a uni-level dictionary

that uses a uniform indexing approach. We illustrated that the proposed pattern

dictionary method can be used as a stand-alone anomaly detector, or integrated with

Tree-Structured LempelZiv (LZ78) and incorporated into an atypicality framework.

We developed novel nonasymptotic lower and upper bounds of the LZ78 parser and

demonstrated that the nonasymptotic upper bound on the number of distinct phrases

resulting from LZ78-parsing of an |X |-ary sequence can be explicitly derived in terms

of the Lambert W function, an important theoretical result that is not trivial. We

showed that the achieved non-asymptotic bounds on LZ78 and pattern dictionary

determine the range of the anomaly score and the anomaly detection threshold. We

also presented an empirical study in which the pattern dictionary approach is used to

detect anomalies in physiological time series. In the future work, we will investigate

the generalization of the context tree weighting methods to the general discrete case,

using the pattern dictionary since the pattern dictionary handles sparsity well and is
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computationally less expensive when the alphabet size is large.
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CHAPTER III

Pattern Dictionary Method with Clustering

3.1 Introduction

The previous chapter described an anomaly detection procedure that combined

typicality and atypicality scores by subtracting atypicality from typicality, and thresh-

olding the result (Equation 2.6). This can be integrated as scalarizing the 2-dimensional

vector scores (typicality and atypicality). In this chapter, we develop the pattern dic-

tionary method without scalarization, looking instead at the new 2-dimensional score

vector for deviations from a normal 2D distribution. We first describe a clustering ap-

proach for the case where several samples from anomalous distribution are available.

Then we apply a level-set type of anomaly detection technique, Leave-one-out kNN

graph (L1O-kNNG) to detect single sample anomalies from the 2-dimensional score

vector. The 2-dimensional score (typicality, atypicality) can achieve better anomaly

detection performance than the scalarized score. We apply the method to detect-

ing anomalous sequences of the Mackey glass signal explained in the next section.

In Section 3.2, we will demonstrate that using the (typicality, atypicality) score in-

stead of the scalarized score used in Chapter 2 improves the performance of anomaly

detection. Here, we apply k-means, agglomerative, and normalized spectral cluster-

ing, in addition to a consensus-based DRPT (Dual Rooted Prim Tree) method [86]

for the multiple sample anomaly detector. These are based on centroid-based [87],

48



hierarchical [88], [89], and spectral clustering [90] methods, respectively.

3.2 Multiple Sample Anomaly Detection

In this section, we demonstrate how clustering can be applied to the 2D plane of

typicality and atypicality to accomplish anomaly detection for multiple samples. For

this multiple-sample anomaly detection problem, several clustering methods can be

applied including agglomerative, k-means, spectral clustering, and DRPT methods.

In Section 3.2.1, we describe the different experiments we performed. In Section 3.2.2,

we show that the 2-dimensional typicality and atypicality plane results in improved

performance. Furthermore, in Section 3.2.3, we show that using high-dimensional

typicality and atypicality results in more stable performance compared to using a

2-dimensional score.

3.2.1 Mackey Glass Experiments

Several experiments are conducted for the case of a chaotic Mackey-Glass time

series that has an anomalous segment embedded into the middle of the sequence. We

generated the same MG samples with a = 0.2, b = 0.1, and δ = 17 for the training

data in 2.6. For the test data, we embedded the same anomalous sample with a = 0.4,

b = 0.2, and δ = 17 in Section 2.6 into the middle of the training data. We generated

and embedded different types of anomalous data into the middle of the training data

so, the experiments are conducted with four cases to prove the robustness of the

proposed method. Refer to Figure 3.2 and 3.3.

3.2.2 Results of Clustering 2-dimensional Scores

By using a 2-dimensional score (typicality, atypicality), we will demonstrate that

the clustering methods are applied as shown through accuracy and F1-score in Fig-

ure 3.4 - 3.7. The accuracy and the F1-score are calculated by TP+TN
TP+FP+TN+FN

and
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Figure 3.1: Train data is generated by Mackey Glass equation

(a) MG data with a = 0.4, b = 0.2, δ = 17

(b) MG data with a = 1.2, b = 0.6, δ = 17

Figure 3.2: Complex anomaly cases (Anomalies are embedded from 501 to 1000)
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(a) Sine wave (Frequency = 0.03)

(b) Flat signal (y = 1.1)

Figure 3.3: Simple anomaly cases (Anomalies are embedded from 501 to 1000)

Figure 3.4: Accuracy and F1 score of the case in Figure 3.2 (a) based on time window
size
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Figure 3.5: Accuracy and F1 score of the case in Figure 3.2 (b) based on time window
size

Figure 3.6: Accuracy and F1 score of the case in Figure 3.3 (a) based on time window
size

Figure 3.7: Accuracy and F1 score of the case in Figure 3.3 (b) based on time window
size
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Figure 3.8: Accuracy and F1 score of the case in Figure 3.2 (a) based on the number
of dimensions

2×precision×recall
precision+recall

, respectively. In the cases, the clustering methods perform well with

a certain time window size except for the spectral clustering method. There are also

specific time window sizes where clustering methods do not perform effectively, such

as the window size of 20 in Figure 3.6 and the window size of 30 in Figure 3.7. Thus,

we propose a method that considers multiple typicality and atypicality at the same

time in the next section.

3.2.3 Results of Clustering High-dimensional Scores

In Figure 3.8 - 3.11, the x-axis represents the number of dimensions. These figures

start with two dimensions (One typicality CT (100) and one atypicality CA(100)).

Then, the number of dimensions is increasing by 18 (Nine typicality from CT (100) to

CT (20) and nine atypicality from CA(100) to CA(20)) while the window size decreases

by 10 each time. The accuracy for the four cases in Figure 3.8 and 3.9 tends to improve

as the number of samples increases. Similar to the previous accuracy, the F1-scores

in Figure 3.10 and 3.11 tend to similarly improve. When we use multi-dimensional

typicality and atypicality, we obtain relatively stable results.
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Figure 3.9: Accuracy and F1 score of the case in Figure 3.2 (b) based on the number
of dimensions

Figure 3.10: Accuracy and F1 score of the case in Figure 3.3 (a) based on the number
of dimensions

Figure 3.11: Accuracy and F1 score of the case in Figure 3.3 (b) based on the number
of dimensions
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3.3 Leave-one-out (L1O) kNNG

3.3.1 Introduction

The Leave-one-out (L1O) kNNG was introduced in [35] as a level-set anomaly de-

tection method for multidimensional distributions. First, we must consider why this

approach is necessary. In the previous chapter, we demonstrated clustering methods

for detecting anomalies when multiple samples are available. Multiple samples from

the post anomalous distributions may not be available. However, the L1O-kNNG

is capable of performing anomaly detection for a single sample data and is particu-

larly well-suited for handling high-dimensional features. The kNN anomaly detector

thresholds the distance between the test point and its k-th nearest neighbor. On the

other hand, the L1O-kNNG detector determines the change in the entire kNN graph’s

topology when a test sample is added, and approximates a level set test of anomalous

at a false positive level of 1 - k
n
, where n is the total number of samples. The specific

algorithm will be explained in the next section.

3.3.2 Methodology

Suppose we have a set of n points, denoted as Xn = {X1, . . . , Xn}. For any

point Xi ∈ Xn, its k nearest neighbors, represented as the k nearest neighbors

(kNN)
{
Xi(1), . . . Xi(k)

}
, are the k points closest to Xi within the set Xn − {Xi}.

The closeness is determined by the Euclidean distance. The set of edges connect-

ing Xi to its k nearest neighbors is denoted as
{
ei(1), . . . , ei(k)

}n
i=1

. The kNN graph

(kNNG) over the set X is formed by the union of all kNN edges
{
ei(1), . . . , ei(k)

}n
i=1

.

The total power-weighted edge length of the kNN graph is given by:

LkNN (Xn) =
n∑

i=1

k∑
l=1

∣∣ei(l)∣∣γ
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The definition of K-point kNNG is as follows and directly from [35]:

Definition 2 K-point kNNG: Let Xn,K denote one of the
 n

K

 subsets ofK distinct

points from Xn. Among all of the kNNG over each of these sets, theK−point−kNNG

is defined as the one having minimal length minXn,K⊂Xn LkNN (Xn,k).

Algorithm 2 L1O-kNNG anomaly detection algorithm

1. For each Xi ∈ Xn+1, i = 1, . . . , n + 1, compute the kNNG total length difference
∆iLkNN = LkNN (Xn+1)− LkNN (Xn+1 − {Xi}) by the following steps. For each i :

1.(a): Find the k edges Ek
i→∗ of all of the kNN’s of Xi.

1.(b): Find the edges Ek
∗→i of other points in Xn+1 − {Xi} that have Xi

as one of their kNNs. For these points find the edges Ek+1
∗ to their respective

k + 1 st NN point.
1.(c):Compute ∆iLkNN =

∑
e∈Ek

i→∗
|e|γ +

∑
e∈Ek

∗→i
|e|γ −

∑
e∈Ek+1∗ |e|γ

2: Define the kNNG most ”outlying point” as Xo = argmaxi=1,...,n+1 ∆iLkNN .
3 : Declare the test sample Xn+1 an anomaly if Xn+1 = Xo.

3.3.3 Experiments and Results

The experiment was conducted under the same conditions as the previous Section

3.2.2. As the number of dimensions increases, the detection ranges (time window

sizes) are increased from 10 to 100, and multiple trials are performed. Unlike the

results in Section 3.2.3, the performance of the L1O-kNNG method does not nec-

essarily increase as the dimensions increase depending on the characteristics of the

data. Refer to Figure 3.12 and 3.13. However, the performance is generally better

when using multi-dimensional typicality and atypicality compared to using typical-

ity and atypicality independently. Referring to Table 3.1 - 3.2, with the exception

of the sine anomaly, the performance is superior when using the high-dimensional

score. For this experiment, typicality and atypicality are calculated by Dmax = 20

and 45 medium resolution (The number of characters is 45). Finally, we compare
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Figure 3.12: Accuracy of four cases based on the number of dimensions for different
values of the kNN parameter k in the L1O-kNNG. The number of samples = 300.

Figure 3.13: F1-score of four cases based on the number of dimensions for different
values of the kNN parameter k in the L1O-kNNG. The number of samples = 300.

the performance of L1O-kNNG to the PDA method proposed in Chapter 2. Refer

to Table 3.3. L1O-kNNG with multivariate score gives superior performance to PDA

with univariate score computed as the difference between typicality and atypicality.

3.4 Conclusion

In this chapter, we have presented a model that can detect various anomalies by us-

ing the 2-dimensional score (typicality, atypicality). Where typicality and atypicality

were introduced, multiple sample clustering methods and a single sample L1O-kNNG

method were presented. We demonstrate that the 2-dimensional score and high-

dimensional score generally give better performance with multiple sample clustering

methods without setting a threshold as compared to the one-dimensional scalarization
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Anomalies
2-dimensional score

High-dimensional score
Window size = 20 Window size = 50 Window size = 100

Figure 3.2.a 0.9140 0.9320 0.9073 0.9720 (d = 10)

Figure 3.2.b 0.9867 0.9593 0.9053 0.9880 (d = 6)

Figure 3.3.a 0.9867 0.9727 0.9406 0.9820 (d = 14)

Figure 3.3.b 0.9460 0.9453 0.9033 0.9767 (d = 10)

Table 3.1: Comparison by accuracy

Anomalies
2-dimensional score

High-dimensional score
Window size = 20 Window size = 50 Window size = 100

Figure 3.2.a 0.8555 0.9056 0.8755 0.9587 (d = 10)

Figure 3.2.b 0.9802 0.9421 0.8725 0.9821 (d = 6)

Figure 3.3.a 0.9829 0.9586 0.9149 0.9725 (d = 14)

Figure 3.3.b 0.9143 0.9236 0.8715 0.9660 (d = 10)

Table 3.2: Comparison by F1-score

Resolution PD with Atypicality L1O-kNNG (d = 10)

Low 0.948± 0.011 0.985± 0.006

Medium 0.955± 0.010 0.981± 0.006

High 0.948± 0.009 0.966± 0.013

Table 3.3: ROC AUC of PDA (Chapter 2) and L1O-kNNG (this Chapter) for the case
shown in Figure 3.2.(a). The resolution is set the same as the previous experiment in
Table 2.3
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of scores used by the PDA method. Finally, we compared the PDA method with the

L1O-kNNG method by ROC AUC in Table 3.3 and presented that the L1O-kNNG

has better performance.
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CHAPTER IV

Application: Pattern Dictionary Method for

Image Data

4.1 Introduction

There is no doubt that visual information has been the most reliable source of

information for humans from the past to the present. With the rapid growth of digital

imaging and the dramatic increase in the utilization of visual data, it has become

increasingly important to detect abnormal data in images as they are being used in

various fields. Unlike in the past, the current volume of image data has accumulated to

such a vast amount that it is impossible for people to classify or detect anomalies. The

main objective of image anomaly detection is to pinpoint instances in the data that

significantly deviate from what is considered normal, signifying potential problems or

rare events that warrant attention. Anomaly detection in image data can be divided

into two main areas. The first is the classification of entire images. For example, if

we consider images of dogs as normal, then any other images, such as cats, buses,

or pictures without dogs, would be considered anomalies. The second area is called

sub-image (or pixel-level) anomaly detection, which focuses on identifying anomalous

regions or parts within an image. In this chapter, we only deal with the former case.

In recent years, a wide variety of methods and techniques have been introduced for
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image anomaly detection, spanning from traditional statistical approaches to state-of-

the-art deep learning techniques. The primary aim of this chapter is to demonstrate

the applicability of the pattern dictionary method to image data. By applying the

pattern dictionary method to image data, we show that this method can be used not

only with time-series data but also with image data in conjunction with pretrained

ResNet models.

4.2 Related Works

One-class classification concentrates on studying samples from a single group of in-

terest and the methods can be used as anomaly detection methods for image anomaly

detection [91]. One-class support vector machine (OCSVM) is a kernel-based method

derived from support vector machines (SVMs) that construct a hyperplane maximiz-

ing the distance from the origin, separating outliers from inliers [92]. Another kernel-

based one-class classification technique, Support Vector Data Description (SVDD),

forms a hypersphere with the smallest radius, encompassing target samples, and re-

gards any sample outside the hypersphere as an outlier [93]. Deep SVDD (Support

Vector Data Description) is a one-class classification method that combines the prin-

ciples of SVDD with deep learning techniques instead of kernels to learn useful feature

representations from complex, high-dimensional data and to minimize a hypersphere

[94].

4.3 Feature Extraction

It is challenging to directly use 2D or 3D image data in its raw form. Therefore,

image feature extraction is a crucial step in computer vision and image processing

tasks, as it aims to transform raw image data into a more compact and meaningful

representation that captures the key characteristics of the image. This process helps
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Figure 4.1: Resnet50, 101, 152 Architecture and feature extraction

reduce the dimensionality of data, making it more suitable for various tasks. While

there are traditional handcrafted feature extraction methods like SIFT, SURF, and

HOG, nowadays, features are often extracted from pre-trained CNN-based models

due to their superior performance in capturing image characteristics. In this chapter,

the ResNet models [95] are used to extract the image features.

Table 4.1: ROC AUC(% and Std) with MNIST (over 10 seeds) per method

NORMAL

CLASS

OC-SVM/

SVDD
KDE IF

ONE-CLASS

DEEP SVDD

PD with

Resnet 50

PD with

Resnet 101

PD with

Resnet 152

0 98.6± 0.0 97.1 98.0± 0.3 98.0± 0.7 95.6 96.2 96.6

1 99.5± 0.0 98.9 97.3± 0.4 99.7± 0.1 99.5 99.3 99.3

2 82.5± 0.1 79.0 88.6± 0.5 91.7± 0.8 86.0 85.3 86.2

3 88.1± 0.0 86.2 89.9± 0.4 91.9± 1.5 88.8 89.7 91.3

4 94.9± 0.0 87.9 92.7± 0.6 94.9± 0.8 91.4 93.7 95.4

5 77.1± 0.0 73.8 85.5± 0.8 88.5± 0.9 87.2 85.9 91.3

6 96.5± 0.0 87.6 95.6± 0.3 98.3± 0.5 93.0 91.3 93.8

7 93.7± 0.0 91.4 92.0± 0.4 94.6± 0.9 92.0 91.4 93.0

8 88.9± 0.0 79.2 89.9± 0.4 93.9± 1.6 89.9 90.9 91.1

9 93.1± 0.0 88.2 93.5± 0.3 96.5± 0.3 93.1 92.3 93.1

4.4 Experiments and Results

4.4.1 MNIST [1] and CIFAR10 [2]

In order to compare our method to others, the MNIST and CIFAR10 datasets

were used. Both the MNIST and CIFAR-10 datasets consist of ten distinct classes,
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Table 4.2: ROC AUC(% and Std) with CIFAR10 (over 10 seeds) per method.

NORMAL

CLASS

OC-SVM/

SVDD
KDE IF

ONE-CLASS

DEEP SVDD

PD with

Resnet 50

PD with

Resnet 101

PD with

Resnet 152

AIRPLANE 61.6± 0.9 61.2 60.1± 0.7 61.7 ±4.1 54.7 52.7 53.3

AUTOMOBILE 63.8± 0.6 64.0 50.8± 0.6 65.9 ±2.1 64.4 68.7 67.3

BIRD 50.0± 0.5 50.1 49.2± 0.4 50.8± 0.8 51.4 52.6 53.2

CAT 55.9± 1.3 56.4 55.1± 0.4 59.1 ±1.4 57.9 61.5 62.4

DEER 66.0± 0.7 66.2 49.8± 0.4 60.9± 1.1 68.7 71.4 71.2

DOG 62.4± 0.8 62.4 58.5± 0.4 65.7± 2.5 53.5 58.1 55.0

FROG 74.7± 0.3 74.9 42.9± 0.6 67.7± 2.6 73.1 73.1 73.8

HORSE 62.6± 0.6 62.6 55.1± 0.7 67.3± 0.9 64.2 64.1 64.6

SHIP 74.9± 0.4 75.1 74.2± 0.6 75.9± 1.2 60.3 58.9 59.6

TRUCK 75.9± 0.3 76.0 58.9± 0.7 73.1± 1.2 65.9 73.2 70.6

which we use to create ten separate one-class classification configurations. In each

configuration, one class serves as the normal class, while samples from the other nine

classes represent anomalies. We maintain the original training and test splits for our

experiments, using only the training set examples corresponding to the respective

normal classes. This results in training set sizes of approximately 6,000 for MNIST

and 5,000 for CIFAR-10. Each test set contains 10,000 samples, including samples

from the nine anomalous classes in every configuration.

In both datasets, we set one class as normal and the others as anomalies. Table

4.1 and 4.2 show the results. For the experiments, we set Dmax = 10 and medium

resolution (the number of characters is 45). The tables include the results adapted

from [94], R. Lukas et al.(2018) except for those of the PD (Pattern dictionary)

method. Furthermore, we show that the pattern dictionary method can achieve a

certain performance level with a small number of training samples in Figure 4.2.
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Figure 4.2: ROC AUCs based on the number of training samples. The number of
samples is from 5 to 50 (left) and from 500 to 2000 (right). One label is set as normal
data and the others are considered as anomalies.

4.4.2 Cats and No cats

In this section, we apply the pattern dictionary method to a new dataset that

consists of cat images1 and indoor scene images2 without a cat. The motivation for

this project stems from an error where a robot designed to detect people indoors mis-

takenly identifies images with no people as having people present. Of course, various

object detection techniques have made it increasingly sophisticated and accurate in

detecting objects. However, our method can also be applied when it is necessary to

double-check whether the detected image is correct. The dataset consists of 1250 cat

images and 250 indoor scene images, respectively. Then, we conducted k-fold cross-

validation (k = 5) to evaluate the performance and reliability of our model. The ROC

AUC from the test is 0.9248± 0.0066. In Figure 4.3 and Figure 4.4, the misdetection

cases are shown.

4.5 Conclusion

In this chapter, we applied the pattern dictionary method introduced in Chapter

2 to the image datasets with ResNet50. The pattern dictionary showed reasonable

performance on the MNIST dataset which is relatively simple. However, on the

1https://www.kaggle.com/datasets/amirhosseinpour/cats-and-dogs-25000-images
2https://www.kaggle.com/datasets/itsahmad/indoor-scenes-cvpr-2019
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Figure 4.3: Cats: Detected as normal images (left) and anomalous images (right)

Figure 4.4: Indoor Scene: Detected as normal images (left) and anomalous images
(right)
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CIFAR10 dataset, its performance was lower in specific classes compared to the One-

Class Deep SVDD method. Nevertheless, the pattern dictionary method applied

to image data demonstrates a certain level of performance with a small number of

training samples as shown in Figure 4.2. Based on this, we evaluated the performance

of the pattern dictionary method using images of cats and indoor scenes without a cat.

As a result, the ROC AUC is 0.9248± 0.0066, indicating reasonable performance.
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CHAPTER V

Conclusion

In this thesis, we have presented a universal non-parametric anomaly detection

method for time series and image data via the pattern dictionary and atypicality.

We illustrated that the proposed pattern dictionary method can be used as a stand-

alone anomaly detector, or integrated with Tree-Structured Lempel– Ziv (LZ78) for

atypicality in Chapter 2. Furthermore, we combined the proposed pattern dictionary

method with the L1O-kNNG clustering method to utilize high-dimensional typical-

ity and atypicality. Thus, we achieve a better detection performance with a high-

dimensional score as shown in Table 3.3 even though the pattern dictionary method

with a one-dimensional score performs well for time series data. In Chapter 4, we

demonstrated that the pattern dictionary method can be applied to an image dataset

with image features from the pretrained ResNet models. The applied method achieved

reasonable performance with a small number of training samples compared to other

methods.

For future work, the pattern dictionary method can be improved by a new ap-

proach for assigning code lengths. By implementing this alternative method, the

discrepancy in codelengths between normal and anomalous images can be amplified.

Consequently, this enhancement facilitates a more accurate detection of anomalous

images.
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