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ABSTRACT

Coulomb collisions in plasmas are typically modeled using the Boltzmann colli-

sion operator or its variants. These apply to weakly magnetized plasmas in which

the typical gyroradius of particles significantly exceeds the Debye length. Conversely,

O’Neil has developed a kinetic theory to treat plasmas that are so strongly magne-

tized that the typical gyroradius of particles is much smaller than the distance of

closest approach in a binary collision. This dissertation presents a generalized colli-

sion operator that applies across the full range of magnetization strength and which

asymptotes to the traditional Boltzmann collision operator in the weakly magnetized

limit and O’Neil’s theory in the extremely magnetized limit. The theory also spans

the weak to strong Coulomb coupling regimes by incorporating the mean force kinetic

theory concept. To demonstrate novel physics associated with strong magnetization,

it is used to compute the friction force on a massive test charge and the ion-electron

temperature relaxation rate.

Recent works studying weakly coupled plasmas have shown that strong magne-

tization leads to a transverse component of the friction force that is perpendicular

to both the Lorentz force and velocity of the test charge, in addition to the stop-

ping power component. Recent molecular dynamics simulations have also shown that

strong Coulomb coupling, in addition to strong magnetization, gives rise to a third

“gyrofriction” component of the friction force in the direction of the Lorentz force.

The generalized kinetic theory captures these effects and agrees well with the molecu-

xiv



lar dynamics simulations over a broad range of Coulomb coupling and magnetization

strengths. The transverse force strongly influences the average motion of a test charge

by changing the gyroradius, and the gyrofriction force is found to slightly change the

gyrofrequncy of the test charge resulting in a phase shift.

Strong magnetization is also shown to break a fundamental symmetry of inde-

pendence of the collision rate on the sign of the charges of the interacting particles,

commonly known as the “Barkas effect”. It is found that the friction force changes

dramatically depending on the sign of the interacting charges. The magnitude of

the Bragg peak of the stopping power component for oppositely-charged particles

decreases in magnitude compared with like-charged particles, and the perpendicular

components increase in magnitude. Moreover, the difference between the two cases

increases with increasing magnetization strength. On computing the electrical re-

sistivity from the friction force, it is found that strong magnetization in conjunction

with oppositely-charged interactions significantly decreases the parallel resistivity and

increases the perpendicular resistivity.

Ion-electron temperature relaxation in strongly magnetized plasma is also found

to exhibit novel properties. Strong magnetization is generally found to increase the

temperature relaxation rate perpendicular to the magnetic field and to cause the tem-

peratures parallel and perpendicular to the magnetic field to not relax at equal rates.

This, in turn, causes a temperature anisotropy to develop during the equilibration.

The temperature relaxation rate is also found to depend strongly on the sign of the

charge of the interacting particles. It is found that the combination of oppositely

charged interaction and strong magnetization causes the ion-electron parallel tem-

perature relaxation rate to be significantly suppressed, scaling inversely proportional

to the magnetic field strength.
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CHAPTER I

Introduction

Plasma kinetic theory describes the evolution of plasmas that are displaced from

equilibrium. The nonequilibrium state of a plasma may occur due to nonuniformity

of the density, hydrodynamic velocity, or temperature throughout the plasma. These

non-uniformities are smoothed out during the approach of the plasma to the equi-

librium. This is done by the transport of mass, momentum, and energy from one

part of the plasma to another. These processes are known as transport processes.

The objective of kinetic theory is to explain the transport processes in terms of the

properties of microscopic interactions between the particles.

The foundations of plasma kinetic theory are based on the Boltzmann equation of

gases. Many assumptions used in the gas kinetic theory also carry over to the plasma

kinetic theory. These assumptions include that the particles are weakly coupled in the

sense that the average kinetic energy of the particles is much larger than the average

potential energy: Γ ≪ 1, where Γ = (e2/a)/(kBT ) is the Coulomb coupling parameter

and a = [3/(4πn)]1/3 is the Wigner-Seitz radius. However, there are many plasmas

that are so dense or cold that the average potential energy exceeds the thermal energy.

These plasmas are called strongly coupled plasmas and occur in many systems such

as non-neutral plasmas [1], ultra-cold neutral plasmas [2], anti-matter traps [3], dusty

plasmas [4, 5] and neutron star atmospheres [6].
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In addition to weak coupling, traditional plasma kinetic theory assumes that the

plasma is weakly magnetized in the sense that the gyroradius (rc =
√
kBTmc/eB)

of particles is much larger than the Debye length (λD =
√
kBT/4πe2n). This implies

that β = λD/rc = ωc/ωp ≪ 1, where ωc = eB/mc is the electron gyrofrequency

and ωp =
√

4πe2n/m is the electron plasma frequency. Most plasmas are weakly

magnetized with the gyrofrequency smaller than the plasma frequency (or equiva-

lently the gyroradius larger than the Debye length) (β < 1). In these plasmas, the

magnetic field is not strong enough to influence the trajectories at the microscopic

length scales at which Coulomb collisions occur (within a Debye length). However,

there are many plasmas in which the magnetic field is so strong that it influences

the trajectories of the particles during Coulomb collisions. These plasmas are called

strongly magnetized (β > 1) and occur in many experiments, such as magnetic con-

finement fusion [7], nonneutral plasmas [1], ultracold neutral plasmas [8], magnetized

dusty plasmas [9], pulsed power devices [10], electron cooling devices [11], trapped

antimatter [3] and naturally occurring plasmas in planetary magnetospheres [12] and

neutron star atmospheres [6]. Table 1.1 shows the magnetization strength for some

of these systems.

Fundamentals of transport in the regime of weak coupling and weak magneti-

zation have long been studied using traditional plasma kinetic theories. However,

plasmas also exist in regimes of strong Coulomb coupling and strong magnetization.

Such strongly magnetized and/or strongly coupled plasmas behave fundamentally in

different ways that are not well understood. Developing a theory to understand the

transport in these regimes is of interest from a fundamental point of view in addition

to having applications in the above-mentioned experiments.

In this dissertation, a generalized plasma kinetic theory that applies

across the Coulomb coupling - magnetization phase space, spanning from

small to large values of both Γ and β is developed. The kinetic theory is
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System ne (cm
−3) kBTe (eV) B (T) Γe βe Ref.

Ultracold neutral plasmas 107 10−3 0.01 0.05 10 [8]
Antimatter traps 108 10−3 1 0.1 310 [3]
Magnetized dusty plasma 1010 3 4 10−4 125 [9]
Neutron star atmospheres 1024 100 108 0.2 300 [6]
Magnetic confinement fusion 1014 104 5 10−6 1.5 [7]

Table 1.1: A sample of systems in which electrons are strongly magnetized.

used to compute friction and temperature relaxation rates spanning these

regimes.

1.1 Transport regimes

Regimes that characterize the influence of magnetization and coupling strength

on transport can be identified by comparing the gyroradius (rc =
√
kBT/m/ωc) with

the Debye length (λD =
√
kBT/4πe2n), Landau length times

√
2 (rL =

√
2e2/kBT ),

Coulomb collision mean free path (λcol) [13] and average interparticle spacing (a).

The four possible transport regimes are shown in Fig. 1.1. Each of the four transport

regimes are accessible when the plasma is weakly coupled. However, at strong cou-

pling the parameter space collapse into two regimes since the Coulomb collision mean

free path becomes shorter than both the Debye length and Landau length. The four

regimes are classified as

1. Unmagnetized (rc > λcol): The plasma is considered unmagnetized when the

gyroradius is larger than the Coulomb collision mean free path. In this regime

gyration of particles by the magnetic field does not happen due to Coulomb

collisions with other particles. The collisional transport in this regime is not

significantly influenced by the magnetic field.

2. Weakly Magnetized (max(λD, a) < rc < λcol): In this regime the gyroradius is

smaller than the Coulomb collision mean free path but larger than the Debye

3
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Figure 1.1: Coupling-magnetization phase space indicating the transport regimes.

length or inter particle spacing. The magnetic field influences the transport in

this regime because the distribution functions are more easily distorted along

the field lines than across. However, the gyromotion does not influence particles

at the collision scale.

3. Strongly Magnetized (rL < rc < λD): Plasma is considered strongly magnetized

when the gyroradius is smaller than the Debye length but larger than the dis-

tance of closest approach. In this regime, the gyromotion happens at the scale

at which collisions occur. Here, the magnetic field influences the collisions at

the microscopic scale.

4. Extremely Magnetized (rc < min(rL, a, λcol)): In this regime gyroradius is

smaller than the closest interaction distance between the particles. Particles

in this regime move effectively in one dimension and have 180◦ collisions with

other particles on the same field line.
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1.2 Experiments

There are many examples of laboratory and naturally occurring plasmas that are

strongly magnetized. Here, we describe two experiments that have served as the main

motivation for our theoretical development.

1.2.1 Magnetized ultracold neutral plasmas

Electrons

Ions

(a)

Figure 1.2: Regions corresponding to values of ions and electrons in magnetized
ultracold neutral plasma experiments in the Γ− β phase space

Ultracold neutral plasma experiments are well-diagnosed tabletop-scale experi-

ments. These plasmas are created by laser-cooling neutral atoms to temperatures

near absolute zero and then photoionizing them [14]. The resulting system of cold ions

and electrons forms a finite-size quasi-neutral two-component plasma. The plasma

expands freely with electrons confined by the positive charge of the inertially-localized

ions. If not confined by an external potential, the ions expand freely and are limited

only by their mass. Owing to the high ionization achieved by photoionization, the

plasma is relatively free of neutral-species contaminants.
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The ions in these experiments are very cold (∼ 1 K) and have a density of approx-

imately 1013 − 1015 m−3, making them strongly coupled with the coupling strength

Γ < 10. The electron temperature in ultracold neutral plasma experiments is con-

trolled by tuning the wavelength of the photoionizing laser. In these experiments,

the electron temperature is tuned from 1-1000 K. This controllability of the electron

temperature is used to study the temperature dependence of many transport proper-

ties and other processes, such as three-body recombination. In a typical experiment,

electrons are weakly to moderately coupled with a coupling strength of Γ < 0.5.

An advantage of ultra cold neutral plasmas is that they access strongly coupled

regime in a well diagnosed table-top scale apparatus. Other strongly coupled systems,

such as inertial confinement fusion plasma, warm dense matter, and white dwarf stars,

are very dense. Thus, the dynamical time scale (∼ 1/ωpi) in these systems is on

the order of 100 fs, making the measurement of fundamental dynamical properties

difficult. However, ultracold neutral plasmas achieve strong coupling via very low

temperatures. The low density of these systems makes the dynamical timescale on

the order of 100 ns, making fundamental studies more tractable. This allows ultracold

neutral plasma experiments to be a well-diagnosed platform for studying strongly

coupled plasmas and is an excellent tool to benchmark theories [15].

Over the last two decades, the ability of the ultracold neutral plasma experiments

to achieve the strongly correlated state has been a valuable tool for investigating the

fundamental properties of strongly coupled systems. They have led to the discovery

and further explanation of many physical processes associated with the strong cou-

pling, including disorder-induced heating [16, 17], Barkas effect [18, 19], three-body

recombination [20, 21], modification of collisional transport [15, 22, 23], etc.

In recent years, several ultracold neutral plasmas have been magnetized [8, 24, 25,

26]. With a magnetic field strength of a few thousand gauss, the electrons in these ex-

periments reach the strongly magnetized transport regime. Ions, being more massive
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than electrons, are not strongly magnetized in these experiments. Figure 1.2 shows

the coupling strength and magnetization values of electrons and ions in the coupling

magnetization phase space. These experiments are in a unique regime where the ions

are strongly coupled and the electrons are strongly magnetized. Ongoing experiments

measure plasma expansion, electrical conductivity, temperature evolution, and three-

body recombination. Theoretical models using the traditional plasma kinetic theory

for weakly magnetized plasmas have failed to capture the plasma expansion in recent

magnetized experiments [26]. The generalized kinetic theory developed in this thesis

can describe the novel transport processes in these strongly magnetized and strongly

coupled plasmas and provide a candidate theory that may be applied to model these

experiments in the future.

1.2.2 Antihydrogen Laser Physics Apparatus (ALPHA)

�̅� 𝑒+ 

𝑒− 

Figure 1.3: Regions corresponding to values of antiprotons (p̄), positrons (e+) and
electrons (e−) of ALPHA experiment in the Γ− β phase space

The Nobel Prize in 1933 was awarded to Paul Dirac for the formulation of what
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came to be known as the Dirac equation. The Dirac equation combines the quantum

theory and the special theory of relativity, two contributions of Einstein. The Dirac

equation predicted the existence of antimatter, which is a corresponding entity to

ordinary matter with the same mass but with an opposite charge and spin. For

example, the antiparticle of an electron is an anti-electron, called a positron. It is

identical in every way to an electron but with a positive electric charge. Similarly,

for a proton, there is an antiproton having a negative charge. Shortly after Dirac’s

prediction, the existence of antiparticles was validated experimentally. Fundamental

antimatter particles can be combined to form more complex antimatter, like how

ordinary particles combine to form matter.

Theories postulate that antimatter should obey the same physical laws as ordi-

nary matter. This, along with the current understanding of the universe, suggests

that the amount of antimatter in the universe should be equal to that of ordinary

matter; however, to the best of our knowledge, the universe is primarily composed of

matter. Antimatter is only observed in laboratory and exotic natural processes, such

as cosmic rays and radiation decays. This matter-antimatter asymmetry remains one

of the great mysteries in physics. The ALPHA experiment at CERN investigates this

asymmetry by precisely comparing antihydrogen with hydrogen. An essential aspect

of this research is to maximize the production of antihydrogen to decrease the sta-

tistical uncertainty in the measurement of its properties [27, 28, 29, 30, 31]. In these

experiments, antihydrogen is produced by mixing antiprotons with positrons in a

Penning-Malmberg trap. The charged antiproton and positron can be well contained

in the trap. However, the antihydrogen is not well contained in the trap because it

is charge neutral. The trap depth for the synthesized antihydrogen is only 0.5 K in

temperature units. Thus, to maximize the efficiency of antihydrogen production, the

positrons and antiprotons are first cooled before combining [32].

The positrons are cooled in the trap to cryogenic temperatures by cyclotron cool-
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ing. This decreases the perpendicular temperature and produces an anisotropy, which

later relaxes by Coulomb collisions. Since antiprotons are massive, the cyclotron cool-

ing method does not reduce their temperature significantly. Instead, the antiprotons

are sympathetically cooled by collisions with cool electrons. Once the antiprotons are

cooled, the electrons are removed from the trap, and the antiprotons are mixed with

cool positrons for antihydrogen synthesis [28, 29, 30, 33].

Figure 1.3 shows the coupling strength and magnetization values of the electrons,

antiprotons, and positrons. All particles are strongly magnetized, and the electrons

and positrons are moderately coupled. The generalized kinetic theory developed in

this thesis can be used to model this exotic antimatter plasma. A few questions that

can be answered using the generalized theory, in relation to the ALPHA experiment,

include the temperature anisotropy relaxation rate of electrons and positrons, the

temperature relaxation rate of antiprotons cooling down on electrons and the rate

at which antiprotons and positrons reach an equilibrium temperature before they

recombine to form the antihydrogen.

1.3 Previous theoretical approaches

1.3.1 Boltzmann equation

A common approach to the plasma kinetic theory is based on the Boltzmann

equation:

∂tf + v · ∂xf +
e

m
[E+ v/c×B] · ∂vf = C, (1.1)

where the interactions between the particles occurring at microscopic scales are de-

scribed by the collision operator (C). The collision operator is

C =

∫
d3v′

∫
σdΩu [f(x, v̂, t)g(x, v̂′, t)− f(x,v, t)g(x,v′, t)] . (1.2)
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Here, σ is the differential scattering cross section, dΩ = sin θdθdϕ is the solid angle,

f and g are the distribution functions, the velocities with hat (ˆ) on them are the

postcollision velocities and u = v−v′ is the relative velocity of the colliding particles.

The theory assumes that collisions are isolated, uncorrelated events in which two

particles start infinitely far apart before the collision (precollision state) and end up

infinitely far apart after the collision (postcollision state). The interaction between

the particles is modeled using the bare Coulomb potential, and the particles exchange

momentum and energy during a collision event. The differential scattering cross

section is given by the Rutherford scattering formula [34].

When calculating the transport properties using the Boltzmann equation, the

resulting integrals confront a logarithmic divergence at large impact parameters (in-

frared divergence). This is because of the assumption that the particles interact via

the bare Coulomb potential, and that the collisions are well-separated binary colli-

sion events. This logarithmic divergence of the theory is resolved using the physical

argument of Debye screening to cut off the maximum impact parameter at the Debye

length.

Application of the traditional Boltzmann kinetic theory to account for the effects

of the magnetic field assumes that the gyroradius of the interacting particles is signif-

icantly larger than the Debye length. This is equivalent to saying that the corrections

to particle trajectories due to the Lorentz force during the collision events are negli-

gible. Thus, the Rutherford scattering formula is used for the differential scattering

cross section. Consequently, the magnetic field appears only on the left-hand side of

the Boltzmann equation, and the collision operator is independent of the magnetic

field. This limits the theory to the unmagnetized and weakly magnetized transport

regimes.
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1.3.2 O’Neil’s equation

O’Neil has developed a Boltzmann-like kinetic theory [35] for the opposite limit

of extreme magnetization. In this theory, the collisions between particles of a pure-

electron plasma are considered, and the gyroradius of the particles is assumed to be

much smaller than the Landau length. The collision operator is

C =

∫
d3v′

∫
ρdρdθ |u · ẑ| [f(x, v̂, t)g(x, v̂′, t)− f(x,v, t)g(x,v′, t)] , (1.3)

where ρ is the transverse separation between the electrons at the beginning of the

collision.

The collision operator is obtained from a closure of the BBGKY hierarchy [34]

specific to extremely magnetized pure-electron plasmas. Considering only the col-

lisions between particles of the same species simplifies the equations of motion by

decoupling the center of mass and the relative motion. This simplification, along

with the adiabatic invariance of the perpendicular kinetic energy in the limit of ex-

treme magnetization, was used to simplify the first-order BBGKY equation to obtain

the collision operator for extremely magnetized plasma. The utility of the collision

operator was later shown by calculating the temperature anisotropy relaxation rate

of a pure electron plasma and successfully verifying the results with experiments [36].

1.3.3 Lenard-Balescu equation

The Boltzmann-type collision operator is a binary collision theory, which misses

the overall collective behavior of the plasma. The failure of the theory to capture

collective behavior leads to an infrared divergence. In contrast, Lenard-Balescu [37,

38] theory accounts for the linear response of the plasma to a perturbation, capturing

the collective behavior. This features the use of a frequency-dependent dielectric

response function to account for various waves in the plasma. This theory successfully
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captures the dynamic screening of the plasma, which is absent in the Boltzmann-type

collision operators that model the interaction between particles via a static (Coulomb)

potential. By capturing the physics of collective behavior, the Debye shielding comes

naturally in theory, and thus, it does not diverge at large impact parameters.

Since the Lenard-Balescu theory only accounts for the linear response of the

plasma to a perturbation, it fails to capture the close nonlinear interactions. This

limits the theory to small-angle scattering at large impact parameters. The failure of

the theory to capture the large-angle scatterings leads to the divergence of the theory

at small impact parameters (ultraviolet divergence). This is fixed by introducing an

ad hoc cut-off at the distance of the closest approach.

The Lenard-Balescu formalism for weakly magnetized plasmas was generalized to

treat strong magnetization by Rostoker [39]. Similar to the Lenard-Balescu theory,

this theory successfully captures the collective behavior of the magnetized plasma,

including the dynamic screening. However, the weak interaction approximation of the

theory leads to divergence at short distances. Thus, this approach is not applicable to

the extremely magnetized plasmas where the gyroradius is smaller than the distance

of the closest approach.

1.3.4 Fokker-Planck equation

Rosenbluth, MacDonald, and Judd used the Fokker-Planck formalism initially

developed for the molecular gases to derive a kinetic equation for the plasmas [40].

This result is commonly referred to as the Rosenbluth equation. The classical Fokker-

Planck equation has two terms: friction and diffusion coefficients. For a weakly

magnetized plasma, they can be expressed in terms of Rosenbluth potentials.

Using the small scattering angle approximation, the Rosenbluth equation can also

be obtained from the Boltzmann equation. It is obtained by Taylor-expanding the

postcollision distribution functions for a small change in velocities and maintaining
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only the terms up to the second order. The evaluation of the Boltzmann kinetic

equation involves the computation of the distribution functions at postcollision ve-

locities in the collision operator. The Fokker-Planck equation has an advantage over

the Boltzmann equation, as it does not involve any postcollision velocities in the dis-

tribution functions. However, due to the small scattering angle approximation, the

Fokker-Planck equation is limited to weakly coupled plasmas.

The extension of the Fokker-Planck equation to strongly magnetized plasma in-

volves the calculation of the friction and diffusion coefficients for strongly magnetized

Coulomb collisions. Different approaches used to obtain magnetized Fokker-Planck

coefficients include perturbative treatments of binary collisions [41, 42, 43], guiding

center approximations [44, 45], electric field fluctuations and dielectric response func-

tion [46], velocity space current [47, 48] and Green-Kubo relations [49].

Like the unmagnetized case, the magnetized Fokker–Planck equations only ac-

count for the small angle scattering events between the colliding particles in the

plasma. These equations inherently assume that the momentum exchanged during

a collision is small. Because large momentum transfer collisions are frequent when

the gyroradius is shorter than the distance of the closest approach, this method is

expected to apply only in regions 1–3.

An alternative approach is to circumvent the collision operator and directly model

the macroscopic transport coefficients from the properties of particle trajectories.

Previous work along these lines has utilized perturbation theory [50, 51, 52, 53],

integration along unperturbed orbits [45, 54], linear-response theory [55, 56], force

correlation methods [57, 58], and other perturbation methods [59] to determine the

momentum and energy exchanged in a collision and to directly model the transport

coefficients.
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1.3.5 Mean force kinetic equation

Each approach mentioned above addresses a portion of the strong magnetization

parameter space at weak coupling conditions (Γ ≪ 1) but does not address strong

coupling. A vital characteristic of collisions in the strongly coupled plasmas is that the

large angle scattering events become prominent [60]. Thus, the Fokker-Planck and

Lenard-Balescu approaches, which inherently assume small momentum transfer in

collisions, are unsuitable for this regime. Theories that address transport in strongly

coupled regimes use Boltzmann theory, but instead of modeling binary collisions via

the bare Coulomb potential, use an effective interaction potential [61, 62, 63, 64, 65].

The effective potential introduces plasma screening and thus naturally avoids the

infrared divergence of the traditional Boltzmann theory.

Mean force kinetic theory is an effective kinetic potential theory developed by

Baalrud and Daligault [63, 64]. It is the mean force acting on a particle obtained

while keeping it and another particle at fixed positions and averaging over all equilib-

rium configurations of the remaining particles. The potential of mean force asymp-

totes to the well-known Debye-Hückel potential when the plasma is weakly coupled;

however, it also includes many-body correlation effects beyond Debye screening at

higher Coulomb coupling [64].

The potential of mean force was initially introduced as an effective interaction

potential to model binary collisions. [63]. However, a later rigorous work using a

new expansion parameter for BBGKY hierarchy that measures the deviation of cor-

relations from their equilibrium values, instead of using the strength of correlations

as used in the traditional Boltzmann theory, has shown that the two particles in-

teract via a mean force [64]. This theory has been extensively tested for Coulomb

interactions in fully ionized unmagnetized plasmas by comparison with MD simu-

lations [18, 60, 63, 66, 67, 68] and experiments [15, 63] for a variety of transport

coefficients. These tests have shown that the theory is accurate when Γ ≤ 20. At
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larger coupling strength, the plasma transitions to a liquid-like regime [69], where

assumptions made in the mean force kinetic theory do not apply.

1.4 Outline of this thesis

The goal of the thesis is to develop a generalized Boltzmann kinetic theory that

is applicable for the whole coupling-magnetization phase space and use it to obtain

macroscopic transport properties. The macroscopic transport properties computed

in this thesis are the friction and temperature relaxation rate. The thesis is divided

into five projects.

1.4.1 Derivation of a generalized Boltzmann collision operator

In this project a generalized Boltzmann collision operator that is applicable to all

the transport regimes of the plasma is derived. The traditional Boltzmann collision

operator and O’Neil’s Boltzmann-like collision operator for the extremely magnetized

plasma are obtained from the generalized collision operator in the limits of no mag-

netic field and high magnetic field, respectively. The results have been published in

Ref. [70] and are the topic of chapter II.

1.4.2 Friction in strongly magnetized plasmas

The generalized collision operator is applied to compute the friction force acting on

a massive test charge moving through a weakly coupled magnetized one-component

plasma. It is found that the strong magnetization leads to a transverse component of

the friction force that is perpendicular to both the Lorentz force and velocity of the

test charge, in addition to the stopping power component aligned antiparallel to the

velocity. These predictions are in agreement with a previous linear response calcula-

tion. The work also extends the computation of the friction force to the extremely
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magnetized transport regime, which is not attainable using the linear response theory.

The results have been published in Ref. [70] and are the topic of chapter III.

1.4.3 Friction in strongly coupled strongly magnetized plasmas

In this project, the friction force calculation on a test charge is extended to the

strongly coupled strongly magnetized regime. It is found that strong coupling along

with strong magnetization gives rise to a “gyro” component of friction force along

the direction of the Lorentz force, in addition to the stopping power and the trans-

verse force. The theory results are in good agreement with the results from previous

molecular dynamics (MD) simulations. Computing the average motion of the test

charge through the background plasma, the transverse force is found to strongly in-

fluence the trajectory by changing the gyroradius and the gyrofriction force is found

to slightly change the gyrofrequency of the test charge resulting in a phase shift. The

results have been published in Ref. [71] and are the topic of chapter IV.

1.4.4 Barkas effect in strongly magnetized plasmas

Conventional plasma theories obey a fundamental symmetry that the collision rate

is independent of the sign of the charge of interacting particles. For example, in the

Boltzmann-based models this stems from the fact that the Rutherford cross section

depends only on the square of the charges. Thus, the transport coefficients remain

the same if electron-ion interactions are modeled as positron-ion interactions. This

project shows that this symmetry is broken when the plasma is strongly magnetized.

This symmetry-breaking effect is called the Barkas effect. When extending the cal-

culation of the friction force on a test ion to oppositely charged background particles

(electrons), it is found that the friction force changes dramatically when compared

to like-charged interactions. The stopping power component for oppositely charged

particles decreases in magnitude compared with like-charged particles, and the per-
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pendicular components increase in magnitude. The electrical resistivity is calculated

from the friction force, where it is found that strong magnetization in conjunction

with oppositely charged interactions significantly decreases the parallel resistivity and

increases the perpendicular resistivity. The results have been published in Ref. [72]

and are the topic of chapter V.

1.4.5 Ion-electron temperature relaxation rate

This project calculates the ion-electron temperature relaxation rate of strongly

magnetized plasmas. Strong magnetization is generally found to increase the tem-

perature relaxation rate perpendicular to the magnetic field, and to cause the tem-

peratures parallel and perpendicular to the magnetic field to not relax at equal rates.

This, in turn, causes a temperature anisotropy to develop during the equilibration.

Strong magnetization is also shown to cause a large Barkas effect in the energy re-

laxation process. It is found that the combination of oppositely charged interaction

and strong magnetization causes the ion-electron parallel temperature relaxation rate

to be significantly suppressed, scaling inversely proportional to the magnetic field

strength. This work is presented in chapter VI.
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CHAPTER II

Generalized Boltzmann Collision Operator

Derivations of the Boltzmann equation begin from a general description of the

dynamics of N interacting particles, but then apply a series of approximations to

focus on average quantities of interest, and to make the problem tractable by invoking

properties of the dilute gas (or plasma) limit. Here, we follow a traditional derivation

due to Grad [73, 74, 75], insofar as it applies to arbitrary magnetization. This includes

defining reduced distribution functions, and making use of the dilute limit to justify

binary collisions, the molecular chaos approximation [73], and local collisions that

happen at microscopic space and time scales. The departure from the traditional

derivation comes about by not making approximations of a certain geometry for the

collision volume that are justified only in the absence of strong magnetization, and

by accounting for the Lorentz force when computing the binary collision dynamics

inside that volume. This leads to a more general, but more computationally intensive,

kinetic equation. It reduces to either the traditional result or O’Neil’s result in the

appropriate limits.

2.1 Derivation of a generalized collision operator

Derivation of the Boltzmann equation begins from Liouville’s equation [34], which

describes the phase space evolution of the N -particle distribution function (f (N)(r1, r2
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· · · rN ,v1,v2 · · ·vN , t)). However, this description is a complex computational prob-

lem because of the large number of degrees of freedom brought by the huge number

of particles in the system. As a way to reduce the computational complexity of the

problem and to focus on physical processes of interest, reduced distributions are de-

fined by integrating a subset of the degrees of freedom. This results in the BBGKY

hierarchy [34]. These equations are not closed because the evolution equation for the

n particle distribution (f (n)(r1, r2 · · · rn,v1,v2 · · ·vn, t)) contains the n + 1 particle

distribution.

A kinetic equation describes the evolution of the one-particle distribution function

f (1). Obtaining a closed form expression requires an approximation for f (2), which

is usually obtained from an approximation that closes the BBGKY hierarchy. The

Boltzmann equation is a prototypical example. It can be derived by solving for f (2)

from the n = 2 equation of the hierarchy by dropping triplet correlations via the

approximation f (3) = 0. Although this method is accurate for particles interacting

via short-range potentials, such as neutral gases, it leads to an infrared divergence

in plasmas due to the long-range nature of the Coulomb interaction [34]. This is

usually corrected by introducing an ad hoc cutoff to the impact parameter at the

Debye length to model Debye screening. Recent work [64] using a new closure of

the BBGKY hierarchy has shown that expanding about the deviations of correlations

from their equilibrium values,

∆f (3) = f (3) − f (3)
o f (2)/f (2)

o (2.1)

rather than in terms of the strength of correlations, f (3), ensures that the exact equi-

librium properties are maintained at all orders of the hierarchy, including screening.

Here, fo is the equilibrium distribution function. This expansion shows that binary

collisions occur via the potential of mean force [60, 63], rather than the bare Coulomb
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potential. The potential of mean force asymptotes to the Debye-Hückel potential in

the weakly coupled limit

ϕ(r) =
e1e2
r
e−r/λD . (2.2)

Here, r = |r| = |r1 − r2| is the distance between the particles and e1, e2 are the

charges of the particles. We make use of this new closure, but otherwise follow

Grad’s [73, 74, 75] derivation of the Boltzmann equation.

In this approach, the coordinate space is divided into a microscopic volume where

the collisions occur (Vσ) and an outside region where no collisions occur. This moti-

vates the definition of truncated reduced distribution functions according to this scale

separation

f (n)
σ (r1,v1 · · · rn,vn, t) =

N !

(N − n)!

∫
Ṽσ

dΓ(N−n)f (N)(r1,v1 · · · rN ,vN , t), (2.3)

where dΓ(N−n) = d3rn+1d
3vn+1 · · · d3rNd3vN and Ṽσ indicates that the collision vol-

ume is excluded in the spatial integral. Integrating the Liouville’s equation, the first

order term of the BBGKY hierarchy in terms of the truncated distribution function

is [64]

[
∂t + v1 · ∂r1 +

e1
m1

(
v

c
×B+ E

)
· ∂v1

]
f (1)
σ =

∫
d3v2

∮
S

ds · (v1 − v2) f
(2)
σ

−
∫
Ṽσ

d3r2

∫
d3v2

e1 e2 r

m1r3
· ∂v1∆f

(2). (2.4)

Here, the surface integral is defined by the small region of space in which the two

particles interact (collision volume). As described in Ref. [64], the term corresponding

to an integral of ∆f (2) over the collision volume is small in comparison with the surface

term because the excluded volume (i.e., collision volume) is defined as the scale over

which ∆f (2) is small. This scale is determined by the screening length and is directly
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related to Eq. (2.2) at equilibrium [64]. Furthermore, f
(1)
σ can be equated with f (1)

because the single particle distribution is uniform over this short spatial scale. With

these approximations, collision operator can be written as

C =

∫
d3v2

∮
S

dsu · ŝ f (2)
σ (r1, r2,v1,v2, t), (2.5)

where u = v1 − v2 is relative velocity between the colliding particles. In the small

collision volume limit, the truncated distribution function is the observable particle

distribution function (f
(2)
σ (r1, r2,v1,v2, t) = f (2)(r1, r2,v1,v2, t)). Here, ds is the

infinitesimal area on the surface of the collision volume and ŝ is the unit normal of

the area element. The collision volume can be visualized in the relative frame with

the coordinate system fixed to particle 2 with particle 1 entering the collision volume

as shown in Fig. 2.1.

Figure 2.1: Illustration of a collision volume surrounding particle 2 (r2) during an
interaction with particle 1 (r1).

Depending on the sign of u · ŝ, the surface integral is split into two terms, repre-

senting contributions from two surfaces S+(u · ŝ > 0) and S−(u · ŝ < 0). Points on S+

correspond to particles moving away from each other (postcollision state) and points

on S− correspond to particles moving towards each other (precollision state). As-

suming binary collisions occurring via the mean force within the interaction volume,

the second order BBGKY equation with the ∆f (3) = 0 truncation provides a solution
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whereby f (2)(r1, r2,v1,v2, t) is a constant along the two particle trajectory. Thus,

for points on the S+ surface, f (2) can be replaced with the post collision coordinates:

f (2)(r1, r2,v1,v2, t) → f (2)(r′1, r
′
2,v

′
1,v

′
2, t), where the variables with prime (′) repre-

sent postcollision states [73, 74]. On making these changes, the collision operator

becomes

C =

∫
d3v2

∫
S+

ds |u · ŝ|f (2)(r′1, r
′
2,v

′
1,v

′
2, t)

−
∫
d3v2

∫
S−

ds |u · ŝ|f (2)(r1, r2,v1,v2, t). (2.6)

In order to get an explicit form of the collision operator, the integrals can be

written over the same integration range by the change of variable: ŝ → −ŝ in

the first integral, changing S+ to S−. Further, we make the assumption of molecu-

lar chaos (Stosszahlansatz): f (2)(r1, r2,v1,v2, t) = f (1)(r1,v1, t)f
(1)(r2,v2, t), where

f (1)(r,v, t) is the one particle distribution function 1. We also assume that the colli-

sion volume is small. This is justified by the short timescale of the collision compared

to the larger timescale of evolution of f (1)(r,v, t). In this limit of a local collision r′1,

r′2 and r2 can be approximated by r1 [73, 74]. On making these approximations, a

generalized collision operator is obtained

C =

∫
d3v2

∫
S−

ds |u · ŝ|(f ′
1f

′
2 − f1f2), (2.7)

1Considering collisions in strongly magnetized one-component plasmas, Dubin has argued that
strong magnetization causes particles to recollide multiple times [54]. Such multi-body interactions
violate the molecular chaos approximation. Further research will be required to understand the role
of recollisions in the friction force problem considered in this chapter, or to adapt the generalized
collision operator to incorporate recollision dynamics.

22



in which the following abbreviated notations have been applied

f ′
1 ≡ f (1)(r1,v

′
1, t), f ′

2 ≡ f (1)(r1,v
′
2, t),

f1 ≡ f (1)(r1,v1, t), f2 ≡ f (1)(r1,v2, t).

Equation (2.7) is the expression for the generalized collision operator. This result

has been obtained in many prior works during the path to derive the traditional

Boltzmann equation. The novelty here is to evaluate Eq. (2.7) directly, rather than

proceed to simplify it by invoking arguments associated with either the weak or

extreme magnetization limits. In order to evaluate this expression, the post collision

velocities (v′
1 and v′

2) need to be evaluated. This involves solving the two body

dynamics of the colliding particles inside the collision volume for the initial velocities

(v1 and v2).

Equation (2.7) is a 5-D integral: 3-D velocity space volume and a 2-D surface in

the coordinate space. The surface integral encloses a small region where collisions

occur that is determined by the range of the potential of mean force. The integral

can be viewed as summing over all possible configurations in which particle 1 enters

the collision volume and interacts with particle 2, weighted by the postcollision and

the precollision velocity distributions. The surface integral counts all the possible

orientations in which the particle enters the collision volume and the velocity integral

counts all the possible velocities of particle 2. Limiting the surface integral to the

surface S− makes sure only the precollision states are counted.

For a weakly coupled plasmas for which the potential of mean force is the Debye-

Hückel potential, the collision volume is characterized by the Debye length. The

equations of motion for two charged particles with masses m1 and m2 and charges e1

and e2 interacting in a uniform magnetic field B within the collision volume are
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m1
dv1

dt
= −∇r1ϕ(r) + e1

(v1

c
×B

)
(2.8)

m2
dv2

dt
= −∇r2ϕ(r) + e2

(v2

c
×B

)
. (2.9)

Since the potential depends only on the distance between the particles, it is useful

to change the variables to the center of mass,

R =
m1r1 +m2r2
m1 +m2

, (2.10)

V =
m1v1 +m2v2

m1 +m2

, (2.11)

and the relative frame, r = r1 − r2 and u = v1 − v2. Under this transformation, the

equations of motion for the center of mass and the relative velocities are

(m1 +m2)
dV

dt
= m12

(u
c
×B

)( e1
m1

− e2
m2

)
+ (e1 + e2)

(V
c
×B

)
, (2.12)

m12
du

dt
= −∇ϕ(r) +m2

12

(u
c
×B

)( e1
m2

1

+
e2
m2

2

)
+m12

(V
c
×B

)( e1
m1

− e2
m2

)
. (2.13)

These equations of motion describe how the precollision states transform to the post-

collision states within the collision volume. The initial positions of the colliding

particles in the relative frame correspond to the surface of the collision volume. For

initial conditions corresponding to a precollision state, u · ŝ < 0, the equations of

motion are solved within the collision volume to obtain the postcollision velocities as-

sociated with the location at which the particles leave the collision volume. However,

as indicated in Fig. 2.1, the precise shape of the collision volume can be arbitrary.

The only relevant characteristic is that it must be significantly larger than the range

of the potential of mean force [64]. As long as this condition is met, both the prec-
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ollision and postcollision states correspond to a condition in which there is negligible

interaction between the particles. In practice, choosing a collision volume that is

much larger than the range of the potential of mean force increases the computa-

tional cost associated with evolving the particle trajectories, but it does not alter

the momentum exchanged, which is the input to the collision operator resulting from

trajectory calculation.

Although the general case does not require a specified volume, certain limits create

symmetries that can be used to simplify the problem through the specification of

a definite collision volume. We next consider two limiting cases: the traditional

Boltzmann collision operator and O’Neil’s collision operator.

2.2 Weakly magnetized limit: Boltzmann equation

In the unmagnetized and weakly magnetized regimes, the effect of the magnetic

field in the collision volume is negligible. The dynamics of the colliding particles

are modeled using the Debye-Hückel potential alone. The spherical symmetry of the

Debye-Hückel potential suggests that a sphere is an appropriate collision volume.

Figure 2.2: A spherical interaction volume around particle 2 (r2) in the presence of
a repulsive interaction with particle 1 (r1). The disk surface is perpendicular to the
precollision relative velocity (u). Each point on the hemisphere (S−) can be projected
to a point on the disk as shown making a one to one correspondence.
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The usual form of the collision operator can be obtained by introducing a plane

perpendicular to the relative velocity u of the colliding particles and intersecting the

sphere along a diameter with the coordinate system centered at particle 2 (r1) as

shown in Fig. 2.2. The S− surface is a hemisphere and the projection of it on this

plane is a disk surface. Points on this disk surface have a one-to-one correspondence

with the points on the hemisphere. This enables a transformation of the integration

surface from the hemisphere to the disk surface. Using b db dϕ as the area element of

the polar coordinates on this disk, the collision operator can be recast as [34, 73]

C =

∫
d3v2

∫
b db dϕ u(f ′

1f
′
2 − f1f2), (2.14)

where u = |u| and b can be identified as the impact parameter from Fig. 2.2.

Substituting b db dϕ = σdΩ, where σ is the differential scattering cross section and

dΩ = sin θdθdϕ is the solid angle, we get

C =

∫
d3v2

∫
σdΩu(f ′

1f
′
2 − f1f2). (2.15)

This is the traditional Boltzmann collision operator. It is much simpler to evaluate

than the general form of Eq. (2.7) because in the absence of a Lorentz force inside

the collision volume, classical mechanics provides a closed form expression for the

differential scattering cross section from the scattering angle [34]

σ =
b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ (2.16)

where θ = π − 2Θ and

Θ = b

∞∫
r0

dr
1

r2

[
1− b2

r2
− 2ϕ(r)

m12u2

]−1/2

(2.17)
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is the scattering angle and r0 is the distance of closest approach, obtained by finding

the root of the denominator of the integrand. In this case, the problem reduces

to solving the scattering angle integral (Eq. (2.17)). This is much simpler than the

general case of solving the equations of motion (Eqs. (2.12) and (2.13)) of the colliding

particles inside the collision volume, which are coupled ordinary differential equations.

2.3 Extremely magnetized limit: O’Neil equation

O’Neil developed a Boltzmann-like collision operator [35] that accounts for the

collisions between particles of a one-component plasma in the extremely magnetized

regime (region 4). This was later used to calculate the temperature anisotropy relax-

ation rate of a non-neutral plasma, and the predicted relaxation rate was validated

experimentally [36, 76]. In this subsection, we show that O’Neil’s results can be ob-

tained from the generalized collision operator in the extremely magnetized limit by

choosing the collision volume to be a cylinder.

The one-component plasma is a special case because when the charge-to-mass ratio

is the same, the center of mass motion and relative motion are decoupled (Eqs. (2.12)

and (2.13)). The resulting equations of motion in the relative frame are equivalent to

that of a charged particle in a uniform magnetic field scattered by the potential at

the origin. The resulting trajectory is that of a helix before and after the collision,

but where both the parallel and gyromotion can change due to the collision. The

natural geometry characterizing this motion is a cylinder, as depicted in Fig. 2.3.

For this geometry of the collision volume, Eq. (2.7) takes the form

C =

∫
d3v2

∫
ρdρdθ |u · ẑ|(f ′

1f
′
2 − f1f2)

+

∫
d3v2

∫
ρdθdz |u · ρ̂|(f ′

1f
′
2 − f1f2). (2.18)

The first term corresponds to collisions in which particle 1 enters through the circular
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r2

r1

Figure 2.3: Cylindrical interaction volume around particle 2 (r2) during an interaction
with particle 1 (r1) in the presence of a strong magnetic field.

surface (blue), and the second term corresponds to collisions in which particle 1

enters through the lateral surface (red) depicted in Fig. 2.3. When the plasma is

extremely magnetized, the gyroradius of particles is so small compared to the size

of the collision volume (λD) that motion is restricted to remain close to the guiding

centers and scattering perpendicular to the initial guiding centers is minimal. In

this case, the contribution to the collision operator from the second term (entering

through the lateral surface) is negligible. In this limit

C =

∫
d3v2

∫
ρdρdθ |u · ẑ|(f ′

1f
′
2 − f1f2). (2.19)

This is O’Neil’s collision operator for extremely magnetized plasmas [35]. As there is

no closed-form solution of the equations of motion of colliding particles in the presence

of a magnetic field, they are solved numerically to find the postcollision states of

the particles, except in the asymptotic case of a very large magnetic field where an

approximation based on an adiabatic invariant was developed [36]. Even though the

evaluation of the transport coefficients using O’Neil’s theory is more difficult than

the traditional Boltzmann theory, it is simpler than the general theory because the

equations of motion in center of mass (Eq. (2.12)) and relative (Eq. (2.13)) frames are

decoupled (e1/m1 − e2/m2 = 0 for a one-component plasma) making the numerical
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calculation of the trajectories less computationally expensive.
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CHAPTER III

Friction Force in Strongly Magnetized Plasmas

The generalized collision operator can be used to compute the macroscopic trans-

port properties of the plasma in all magnetization strength regimes. To illustrate

this, we compute the friction force acting on a massive projectile, taken to be a single

test charge, moving through a magnetized one-component plasma. Understanding

how friction is modified in the presence of a strong magnetic field is fundamentally

important and it also has direct implications in many magnetized plasma experiments

such as non-neutral plasmas [1], ultracold neutral plasmas [2], magnetic confinement

fusion [7] and naturally occurring plasmas in planetary magnetospheres [12]. It is

also the fundamental process controlling macroscopic transport of momentum.

A projectile moving through the plasma is acted upon by friction in addition to the

Lorentz force from the external magnetic field. The friction force is due to Coulomb

collisions with the background plasma. In the unmagnetized and weakly magnetized

regimes, the Boltzmann equation predicts that the friction force is antiparallel to

the velocity of the projectile and is commonly known as the stopping power [77]. It

was recently predicted that a qualitatively new effect occurs in strongly magnetized

plasmas: the friction force obtains a transverse component that is perpendicular to the

velocity vector of the projectile, in the plane formed by v and B [56]. This prediction

was made using linear response theory, and was later tested using molecular dynamics
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simulations [78]. Since the transverse force is perpendicular to the velocity, it does

not decrease the kinetic energy of the projectile. Thus it was not noticed in the

conventional way of obtaining the stopping power by calculating the energy loss of

the projectile [50, 79, 80, 81, 82]. Here, we test the generalized collision operator by

comparing with the predictions of linear response theory in the strongly magnetized

regime. We also compute the friction force in the extremely magnetized regime,

showing that the transverse component of the friction force exists, and is large, in

this regime. This extends the regime of magnetization over which this phenomenon

has been studied because the linear response theory from [56] is not expected to apply

in the extremely magnetized regime due to a close-collision cutoff in that theory.

3.1 Theory

Consider a massive test charge slowing down on a magnetized one-component

plasma. Since the projectile is more massive than the particles constituting the back-

ground plasma, the gyromotion of the projectile happens at a larger spatial scale than

the size of the collision volume. While the Lorentz force significantly influences the

background plasma, it has a negligible influence on the massive test charge during

the collision and can therefore be accurately excluded from the equations of motion

for the test charge. The equations of motion from Eqs. (2.12) and (2.13) then reduce

to

(m1 +m2)
dV

dt
= e

(V
c
×B

)
− em12

m2

(u
c
×B

)
(3.1)

m12
du

dt
= −∇ϕ(r) + em2

12

m2
2

(u
c
×B

)
− em12

m2

(V
c
×B

)
. (3.2)

Here the charge on the massive projectile is taken to be the same as the charge of the

background plasma particles (e1 = e2 = e). The friction force is F = R12/n1, where

n1 is the density of the projectile and R12 is the friction force density obtained by
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taking the momentum moment of the collision operator,

R12 =

∫
d3v1

∫
d3v2

∫
S−

ds |u · ŝ|m1v1(f
′
1f

′
2 − f1f2). (3.3)

Equation (3.3) can be simplified using the principle of detailed balance [36] (
∫
d3v1d

3v2

ds |u · ŝ|m1v1f
′
1f

′
2 =

∫
d3v1d

3v2ds |u · ŝ|m1v
′
1f1f2). The derivation of the principle of

detailed balance typically relies upon the invariance of the collision dynamics under

time-reversal and space inversion to find an inverse collision [83]. But for a system

with an externally generated magnetic field, the time-reversal symmetry is no longer

valid (the system has the time-reversal invariance only if the reversal of current di-

rection that produces the magnetic field is accounted for) making it difficult to find

an inverse collision. Nevertheless, the system of charged particles with an externally

generated magnetic field is expected to follow detailed balance because many colli-

sions can be lumped together to produce a result with the same consequence as an

inverse collision. This argument is similar to that made in polyatomic gases, which

are another system in which a inverse binary collision does not exist [84]. Although

a proof has not been developed for the magnetized plasma case, as it has for the

polyatomic gas [84], we adopt the detailed balance relation as a postulate, as others

have done [36]

After applying the detailed balance, the friction force density can be recast as

R12 =

∫
d3v1

∫
d3v2

∫
S−

ds|u · ŝ|m1(v
′
1 − v1)f1f2, (3.4)

where v′
1 is the postcollision velocity of the projectile, obtained by solving the equa-

tions of motion. Since the projectile is a single particle, its distribution is a Dirac

delta function. The background plasma distribution is taken as a uniform Maxwellian
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distribution. Thus,

f1 = n1δ
3(v1 − v0),

f2 =
n2

π3/2v3T
exp

(
−v22
v2T

)
,

where n2 is the density of the background plasma and vT =
√

2kBT/m2 is the thermal

velocity of the background plasma. On making these substitutions we get,

R12 =
n1n2m1

π3/2v3T

∫
d3v2

∫
S−

ds |u · ŝ|(v′
1 − v0) exp

(
−v22
v2T

)
. (3.5)

Three components of the friction force are obtained from the friction force density

using the following definitions

Fv =
R12 · v̂0

n1

, (3.6a)

F× =
R12 · (v̂0 × n̂)

n1

, (3.6b)

Fn =
R12 · n̂
n1

, (3.6c)

where n̂ is the unit vector perpendicular to v0 and B defined as n̂ = v̂0 × b̂/ sin θ,

b̂ = B/|B| is the unit vector in the direction of the magnetic field and θ is the angle

between v0 and B. Here, −Fv is the stopping power, F× is the transverse force and Fn

is the friction force component along the direction of the Lorentz force. The geometry

of the friction force components are shown in Fig. 3.1.
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Figure 3.1: Friction force components in a strongly magnetized plasma.

3.2 Numerical evaluation

The integrals for computing different components of the friction force are five-

dimensional: three in the velocity space and two in the coordinate space. They

were solved numerically using Monte Carlo integration. The computational difficulty

is that the coupled differential equations (Eq. (3.1) and Eq. (3.2)) describing the

two-body interaction in a magnetic field must be solved numerically to compute the

change in velocity of the projectile (v′
1 − v0) for each Monte Carlo integration point.

Because the parameter-space is five-dimensional, a very large number of integration

points is required for convergence. In our computations, the number ranged from

106 to 108. In order to solve the integrals numerically, the equations were first made

dimensionless by normalizing the time with the plasma frequency, distance with the

Debye length and velocity with the Debye length times the plasma frequency. Using
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the scaled variables,

R12 =
mrkBTn1

8
√
6π5/2Γ3/2λD

∫
ṽ22 sin θv2dθv2dϕv2dṽ2

×
∫
S̃−

R̃2
s sin θRsdθRsdϕRs|ũ · ŝ|(ṽ′

1 − ṽ0) exp

(
−ṽ22
2

)
. (3.7)

Here, the collision volume is taken as a sphere and the integrals are written in spherical

polar coordinates for both velocity and space (recall that the shape of the collision

volume is unimportant in the general theory, so long as it is large compared to the

range of the interparticle force). Since the potential falls off exponentially on the

Debye length scale, the radius of the sphere (Rs) is taken as 2.5 Debye lengths for

computations in which the Coulomb coupling strength is Γ = 0.1 and 3.5 Debye

lengths for Γ = 0.01. Here, mr is the ratio of the mass of the projectile to that

of the background plasma particle (mr = m1

m2
) and the variables with tilde (˜) on

top represent scaled variables. We note that although Eq. (3.7) has a leading term

that is proportional to mr, the true scaling of the friction force density is a non-

trivial function of mass that depends on the result of the trajectory calculation. The

expectation is that it becomes independent of the projectile mass in the limit that

the projectile is much more massive than the background plasma. This can be seen

by considering Eqs. (3.1) and (3.2). When mr ≫ 1, ∆V ∝ 1/mr and V ≈ v1.

Using this result in equation (3.7) shows that the friction force density is expected to

become independent of the ion mass in this limit.

A variety of Monte Carlo integration techniques are available to reduce the large

number of sample points required in the integration routine. One common technique

is the transformation method [36, 85], but this requires an approximate analytic

expression for the change in momentum of the projectile during a collision. As there

is no known analytic expression for this problem, a different technique is desirable.

Instead, we use an adaptive Monte Carlo integration technique - VEGAS [85, 86, 87,
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88]. In this method, the integration variables are recast in an attempt to make the

integrand a constant and a Monte Carlo integration is performed. These two steps

are iterated several times. The algorithm uses the information about the integrand

from one iteration to optimize the change of variable for the next iteration.

Friction force curves were obtained by evaluating the integrals (Eqs. (3.6a), (3.6b)

and (3.6c)) based upon trajectory calculations with initial conditions selected from

the adaptive Monte Carlo algorithm. Each point in this 5-D integral corresponds to

an initial velocity of the background particle and an initial position in the relative

coordinates

r̃i =


R̃s sin θRs cosϕRs

R̃s sin θRs sinϕRs

R̃s cos θRs

 (3.8)

ṽ2i =


ṽ2 sin θv2 cosϕv2

ṽ2 sin θv2 sinϕv2

ṽ2 cos θv2

 (3.9)

and the initial velocity of the projectile ṽ1i is taken as ṽ0. The unit normal vector

is ŝ = r̃i/R̃s. Using Eq. (2.10), ṽ0 and ṽ2i were transformed to the relative and

the center of mass coordinates. For initial states that satisfy ũ · ŝ < 0, the two

particle equations of motion (Eq. (3.1) and Eq. (3.2)) were solved using the ’DOP

853’ method [89]. The trajectory calculations were stopped when the particle crossed

the collision volume, i.e, |̃r| > R̃s and the change of projectile velocity (ṽ′
1 − ṽ0)

was calculated. Twenty iterations of the VEGAS grid adaptation and the integral

estimate were made. The final result and error was obtained by taking the weighted

average of the last 10 iterations with the weight chosen to be the inverse of the variance

of each of those iterations. The numerical implementation is described in detail in

appendix A. Results from evaluation of the friction force in different transport regimes

are discussed in the following section.
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3.3 Results

In this section, we discuss the results from calculation of the friction on the pro-

jectile and compare it with the traditional Boltzmann theory and the linear response

theory. The traditional Boltzmann theory is valid for the unmagnetized and weakly

magnetized regimes and predicts that the stopping power is the only non-zero compo-

nent of the friction force. The expression for the stopping power when the interaction

is modeled using the Debye-Hückel potential in the traditional Boltzmann collision

theory is [77]

Fv =
−n2m12vT
2
√
π|v0|2

∫
duu2σ(1)(u)

[
e−(u−|v0|)2/v2T

(2u|v0|
v2T

− 1
)

+e−(u+|v0|)2/v2T
(2u|v0|

v2T
+ 1

)]
, (3.10)

where

σ(1) = 4π

∞∫
0

bdb cos2Θ(b, u) (3.11)

is the momentum-transfer scattering cross section and Θ(b, u) is the scattering angle

(Eq. (2.17)).

Linear response theory is valid in all the transport regimes except the extremely

magnetized regime. It computes the friction force from the induced electric field

associated with the wake generated by the movement of a projectile (ion) in the

plasma. The result is [56]

F = − e2

2π2

∫
d3k

k

k2
Im

{
1

ϵ̂(k,k · v)

}
, (3.12)
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where k is wave vector and

ϵ̂(k,k · v) = 1 +
1

k2λ2D

[
1 +

k · v
|k|||vT

exp

(
−k2⊥v2T
2ω2

c

)]
×

[
∞∑

n=−∞

In

(
k2⊥v

2
T

2ω2
c

)
Z

(
k · v − nωc

|k|||vT

)]
(3.13)

is the linear dielectric response function of the plasma. Here, Z is the plasma dis-

persion function [90], In is the nth order modified Bessel function of the first kind,

and k|| and k⊥ are parallel and perpendicular components of the wave vector with re-

spect to the direction of the magnetic field. Since the linear response theory does not

account for the short range collisions, it would lead to a logarithmic divergence [91].

This is typically avoided by choosing a high wave number cut off for the k integral,

kmax = m12(v
2
T + v20)/e

2, which is approximately the inverse of distance of closest

approach [92].

3.3.1 Unmagnetized and weakly magnetized plasma

In order to test the generalized collision operator, and our numerical implementa-

tion, we first compute the friction force in the unmagnetized and weakly magnetized

plasma regimes and compare the results with the accepted results from the Boltzmann

equation. Our computations are consistent with the expectation from the Boltzmann

equation that, in this regime, only the stopping power component Fv is non-zero [77].

Figure 3.2 compares the stopping power curve obtained using the generalized collision

operator to the result of the traditional Boltzmann collision operator with the Debye-

Hückel potential as well as the results of linear response theory [92] for Γ = 0.1 and

Γ = 0.01. Since the influence of the magnetic field during collisions is negligible, the

magnetic field was taken as zero in the equations of motion (Eq. (3.1) and Eq. (3.2)).

Results from the generalized and traditional Boltzmann collision operators agree

to within numerical tolerances. Of course, this is expected since the traditional Boltz-
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Figure 3.2: Stopping power (−Fv) of a massive projectile (mr = 1000) in a light
background plasma with the coupling strengths (a) Γ = 0.1 and (b) Γ = 0.01 using
the generalized collision operator (GCO). Also shown are the predictions using the
linear response theory (LR) and the traditional Boltzmann collision operator (BCO)

mann collision operator is a limiting case of the generalized collision operator. Nev-

ertheless, this comparison also helps to verify the generalized collision operator and

our numerical implementation.

The linear response predicts a slightly larger stopping power than the predictions

by the binary collision models. Sources of discrepancy between these approaches

include the absence of the velocity-dependent screening (dynamic screening) in the

Debye-Hückel potential used for modeling the binary collisions, as well as uncertainty

in the short-range cut off length (Landau length) used in the linear response theory

to avoid the logarithmic divergence caused by neglecting strong nonlinear scattering

associated with close collisions [91]. The strengths and weaknesses of these models

were previously studied using molecular dynamics simulations [93, 94], and the results

shown in Fig. 3.2 are consistent with these previous studies. Results from the two

methods merge in the limit Γ → 0.
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3.3.2 Strongly magnetized plasma

In the strongly magnetized regime, the magnetic field influences the collision dy-

namics, causing the numerical evaluation of the trajectories of colliding particles to

become much more computationally expensive. The computational expense was re-

duced by optimizing the number of integration points per iteration of VEGAS (neval)

and setting the tolerance for the trajectory calculations (tol) in order to achieve a

chosen numerical accuracy of the computed friction force coefficients. The tolerance

of the trajectory calculation is set by both the relative tolerance and the absolute tol-

erance, which were taken to be the same. Figure 3.3 shows an example convergence

test for the transverse force on a projectile in a background plasma of Γ = 0.1 and

β = 50 and having speed 0.2vT and 2vT . In (a), the tolerance was chosen to be 10−8

and convergence with respect to the number of integration points was established.

In (b), the number of integration points for each iteration was chosen to be 106 and

convergence with respect to the tolerance was established. As expected, convergence

is obtained as the number of integration points increases, as well as when the toler-

ance of the trajectory calculation decreases. The number required for convergence

was observed to depend on the projectile speed, as well as the Γ and β parameters.

Nevertheless, a tolerance of 10−8 and number of integration points for each iteration

of 106 was sufficient to obtain convergence to less than 1% throughout the strongly

magnetized and extremely magnetized regimes.

Figure 3.4 shows the friction force curves obtained using the generalized collision

operator and the linear response theory for the coupling strength Γ = 0.1 and the

magnetic field strength β = 10 for different orientations of the initial projectile veloc-

ity with respect to the magnetic field. Only a qualitative agreement can be reached

between the curves from these two theories, because of the shortcomings of the two

models that were discussed in the previous subsection.

The main result of this chapter is shown in panels (b) and (e) of Fig. 3.4. This
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Figure 3.3: Transverse force (F×) on a projectile in a light background plasma of
Γ = 0.1 and β = 50 as a function of (a) number of integration points per iteration
(neval) and (b) tolerance in trajectory calculation (tol). The velocity of the projectile
makes an angle of 22.5◦ with the direction of the magnetic field and initial speed of
v1 = 0.2vT (green circle) and v1 = 2vT (red diamond).

shows that a significant transverse component of the friction force is predicted by

the GCO computations. The existence of this component was recently predicted by

the linear response approach. Our results demonstrate that this effect is captured in

the more complete description from the collision operator of a kinetic theory. It also

demonstrates that the effect is captured by the binary collision approach. The two

approaches predict qualitatively similar behavior, but have quantitative differences

at a similar level to what was observed in the unmagnetized case. This is expected

at Γ = 0.1 due to the uncertainties associated with the screening model, or the
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Figure 3.4: Friction force on a massive projectile (mr = 1000) slowing down on a
light background plasma with coupling strength Γ = 0.1 and magnetic field strength
β = 10 for different initial projectile velocity angles with respect to the magnetic field
θ = 22.5◦ [a, b, and c] and θ = 45◦ [d, e, and f]. The generalized collision operator
results (GCO) and linear response theory curve (LR).

short-range cutoff. However, the two approaches would be expected to merge as the

coupling strength decreases.

In linear response theory, the friction force on the projectile is due to the induced

electric field associated with the wake generated by the projectile in the background

plasma. But in the binary collision theory, the friction force is the net force acting on

the projectile from subsequent binary interactions with the background plasma. The

linear response theory attributes the origin of the transverse force to the way in which

the Lorentz force on the background plasma influences the instantaneously generated

wake. In contrast, the generalized collision operator captures the transverse force by

accounting for the gyromotion of the background particles while interacting with the

projectile. Even though these two are completely different approaches, they both are

equally capable of capturing the physics of transverse force in this regime.

On comparing the stopping power curves (−Fv) from Fig. 3.4 with those for the
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weakly magnetized regime from Fig. 3.2, qualitative changes are observed. The po-

sition of the peak shifts to a lower speed, and the magnitude of the force decreases

at the Bragg peak, but decays less rapidly with speed. The stopping power is also

observed to depend on the orientation of the projectile velocity with respect to the

magnetic field. The friction force along the direction of the Lorentz force (Fn) is much

smaller than either the stopping power or transverse force. Points computed at most

velocities are consistent with zero to within the estimated accuracy of the data, but

there are a few points at which the computed force appears to be non-zero. This is

a qualitative distinction with the predictions of linear response theory and is studied

in greater detail in next chapter. We expect that the agreement between these two

approaches becomes better as Γ decreases.

3.3.3 Extremely magnetized plasma
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Figure 3.5: Friction force on a massive projectile (mr = 1000) slowing down on a
light background plasma with coupling strength Γ = 0.1 and magnetic field strength
β = 50 for different initial projectile velocity angles with respect to the magnetic field
θ = 22.5◦ [a, b, and c] and θ = 45◦ [d, e, and f]. The generalized collision operator
results (GCO) and linear response theory curve (LR).
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Figure 3.5 shows the friction force curves obtained using the generalized collision

operator and the linear response theory for the coupling strength Γ = 0.1 and the

magnetic field strength β = 50 for different orientations of the initial projectile veloc-

ity with respect to the magnetic field. On comparing with the friction force curves

in the strongly magnetized regime, the magnitude of the friction force is predicted

to increase and the peak of stopping power curve shifts slightly to lower projectile

speeds. Similar to the case of strongly magnetized regime, the friction force in the

direction of the Lorentz force, Fn is much smaller than either the stopping power or

transverse force.

Linear response theory assumes that the interactions are weak and are small angle

collisions. In order to avoid the divergence in the theory caused by the strong large-

angle collisions an ad hoc short-range cut off is introduced at the Landau length.

These assumptions break down in the extremely magnetized regime. In this regime,

the gyroradius is the smallest length scale and the particles are bound to the mag-

netic field lines. The collisions between the particles are strong and are large-angle

collisions. However, the physics of strong interactions are captured by the binary

collision theory. This makes the generalized collision operator a strong candidate

to understand the physics of the extremely magnetized plasmas. Although the kmax

cutoff used in the linear response theory is not expected to apply in the extremely

magnetized regime, Fig. 3.5 shows a similar level of agreement between linear re-

sponse theory and the GCO as is observed in the strongly magnetized regime shown

in Fig. 3.4. It is unknown if this a fortuitous agreement particular to this combination

of Γ and β, or if it will also extend to yet stronger magnetization.

3.4 Discussion

This section provides a qualitative description of the physical origin of the trans-

verse friction force due to strong magnetization from the binary collision perspective.
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Binary collision theory calculates the friction force via the change in momentum of

the projectile after a sequence of elementary binary collisions with the background

plasma particles that includes all possible scattering events. When the gyroradius of

the colliding particles are larger than the characteristic scattering length (λD), the

influence of the magnetic field during the collisions is negligible. In this case, back-

ground plasma particles collide with the projectile from all the directions with equal

probability. The net change in momentum from the collisions in all the directions

except parallel or antiparallel to the projectile velocity will be zero. For instance, take

the projectile velocity to be in the +x̂ direction as shown in panel (a) of Fig. 3.6.

Here, the projectile is labeled (P) and the background particles are numbered r1 to r4.

The change in momentum of the projectile from a collision with a background particle

having velocity vŷ (r4) is canceled by the change in momentum from a collision with a

background particle having velocity −vŷ (r3). This leads to the conclusion that there

is no transverse component of the friction. In contrast, the change in momentum of

the projectile from collisions with the background particle having velocity −vx̂ (r1) is

greater than from a collision with velocity +vx̂ (r2) because of the larger magnitude

of the relative velocity. Thus the friction force is antiparallel to the projectile velocity.

When the plasma is strongly magnetized or extremely magnetized, background

particles are bound to the magnetic field lines, effectively making their motion 1-

D. This restricts the approach of background particles to the projectile along the

±b̂ direction, breaking the symmetry of particles approaching uniformly from all

directions, as in the unmagnetized and weakly magnetized cases. Panel (b) of Fig.

3.6 shows the collision of a projectile with four different background particles. The

projectile (P) velocity vector makes an angle θ with respect to the magnetic field and

the background particles are numbered r1 to r4.

Consider the case that the velocity vector of the projectile makes an acute angle

to the magnetic field (0◦ ≤ θ ≤ 90◦). The net change in momentum of the projectile
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Figure 3.6: Illustration of collisions of the massive projectile with the background
particles - (a) unmagnetized and weakly magnetized (b) strongly magnetized and
extremely magnetized transport regimes.

along the magnetic field direction from collisions with the background plasma particles

approaching from the +b̂ direction will be higher than that of the collision with

background plasma particle approaching from the −b̂ direction, resulting in a force

anti parallel to the direction of the magnetic field. For example consider the collision

between particle 1 (r1) and particle 2 (r2). Both the particles have equal speed,

but the relative velocity is higher for the collision with particle 2, resulting in higher

exchange of momentum.

The projectile also experiences a net force in the −x̂ direction. This can be un-

derstood by comparing collisions between the projectile and particle 3 (r3) or particle

4 (r4). The projectile experiences more change in momentum from the collision with

particle 3 than collision with particle 4 because the projectile is moving towards the

particle 3. The conclusion of these arguments is that the presence of the magnetic
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field breaks the symmetry about the velocity vector, causing there to be both a

stopping power component antiparallel to the velocity and a transverse component

perpendicular to the velocity in the plane of v0 and B.

The force on the projectile in the ŷ direction is nominally expected to be zero

because the projectile has no component of the velocity in this direction, other than

its gyromotion, and the symmetry of momentum exchange with particles entering

from either ±ŷ directions is expected to balance. For instance, the force on the

projectile in the ŷ direction from a background particle moving along the magnetic

field line at |y|ŷ is canceled by the force from the background particle moving along

the field line at −|y|ŷ.

The above discussion considered oblique angles between v0 and B, but when the

projectile moves either perpendicular or parallel to the magnetic field, symmetry

about the projectile velocity vector is expected to return, and the transverse compo-

nent of the friction force to vanish. Consider a projectile moving perpendicular to

the magnetic field in the x̂ direction. In this case, the projectile is not expected to

experience any net force in the ẑ direction as the momentum exchanged in collisions

with background particles approaching from the +b̂ and −b̂ directions are antisym-

metric. In this case, the projectile experiences a force in the −x̂ direction only. Thus,

a projectile moving perpendicular to the magnetic field only has a stopping power

component and no transverse force. Similar arguments of symmetry can be made to

understand why there is also no transverse component when the projectile velocity

aligns along the magnetic field. Although the solutions in the previous section fo-

cused only on oblique angles, these symmetry properties were confirmed, and they

have also been shown to hold in both the previous linear response calculations [56]

and molecular dynamics simulations [78].

47



CHAPTER IV

Friction Force in Strongly Coupled Strongly

Magnetized Plasmas

The effects of strong magnetization on the friction force when the plasma is weakly

coupled were discussed in the last chapter. It was found that strong magnetization

significantly affects the friction force. Instead of being aligned antiparallel to the

velocity vector, the friction force shifts, gaining a transverse component that is per-

pendicular to the velocity vector in the plane formed by the velocity and magnetic

field vectors. However, many magnetized experiments such as ultracold neutral plas-

mas [25], non neutral plasmas [1] and antimatter plasmas [3] exhibit strong Coulomb

coupling (Γ > 1) in addition to strong magnetization. This chapter extends the gen-

eralized collision operator from weak coupling to strong coupling. This is done by

combining the generalized collision operator with the mean force kinetic theory that

extends the traditional Boltzmann equation to treat strong Coulomb coupling. The

mean force kinetic theory is derived based on an expansion related to the deviation

of correlations from their equilibrium values, rather than in terms of the strength

of correlations [64]. The result is similar to the Boltzmann equation, but where bi-

nary collisions occur via the potential of mean force, rather than the bare (Coulomb)

potential.

In order to test this model, we compute the friction force on a single massive
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charged particle (ion) moving through a background one-component plasma (elec-

trons). We choose the friction force on a single particle as the test transport model

for a few reasons: first-principles molecular dynamics (MD) simulation data are avail-

able with which to benchmark the theory [95] and these data predict novel transport

behaviors associated with strong coupling and strong magnetization that a correct

kinetic theory should be able to reproduce. The MD simulations [95] have revealed

that a third “gyrofriction” component of the friction force vector arises in the strongly

coupled strongly magnetized regime: Fn = F · n̂. Here, we show that the kinetic the-

ory is able to capture this physical effect. The theory is also used to provide an

explanation for the physical origin of the gyrofriction force, which arises due to asym-

metries associated with gyromotion during close collisions. This chapter is based on

Ref. [71].

4.1 Theory and evaluation

When the plasma is strongly coupled, spatial correlations between the particles

become significant. The theory accounts for this many-body effect in the collision

by using the potential of mean force, which is the potential obtained by fixing the

positions of two particles at a distance r apart and averaging over the positions of the

remaining particles at equilibrium. In the strongly coupled regime, the potential

of mean force for a one-component plasma can be accurately modeled using the

hypernetted-chain approximation (HNC) [96]

g(r) = exp[−v(r)/kBT + h(r)− c(r)], (4.1a)

ĥ(k) = ĉ(k)[1 + nĥ(k)], (4.1b)

where h(r) = g(r) − 1, ĥ(k) is the Fourier transform of h(r), v(r) = e2/r is the

Coulomb potential, c(r) is the direct correlation function and ĉ(k) is its Fourier trans-
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form. The potential of mean force is obtained from the pair distribution function via:

ϕ(r) = −kBT ln(g(r)). The pair distribution function and the potential of mean

force for coupling strengths Γ = 0.1, 1, 10 and 100 are shown in Figs. 4.1 and 4.2

respectively.

0 1 2 3 4 5 6
Radial distance (r/a)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pa
ir 

di
st

rib
ut

io
n 

fu
nc

tio
n 

(g
(r)

) = 0.1
= 1
= 10
= 100

Figure 4.1: Pair distribution function for the one-component plasma at Γ = 0.1, 1,
10 and 100.

The use of the potential of mean force to model binary interactions introduces

aspects of many-body effects such as screening and correlations that become essential

at strong coupling. The mean force kinetic theory also accounts for the Coulomb hole

surrounding the particles interacting via Coulomb force [97]. This excluded volume

leads to a reduced volume of space that the particles can occupy resulting in an

increased collision frequency for strongly coupled plasma. This leads to a frequency

enhancement factor χ[g(r = σ)], where σ is the Coulomb hole radius, in the collision

operator. This is obtained from the modified version of the Enskog’s theory of hard

spheres for plasmas developed in Ref. [97]. In this model, the χ factor is computed

based on a property of thermodynamic equilibrium [g(r)], and as a result does not

depend on the strength of the magnetic field. The χ factor for the coupling strengths
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Figure 4.2: Potential of mean force for the one-component plasma at Γ = 0.1, 1, 10
and 100.

studied here Γ = 1, 10 and 100 are 1.36, 1.45 and 1.65 respectively. The modified

expression of the friction force density after including the χ factor is

R12 =
χn1n2m1

π3/2v3T

∫
d3v2

∫
S−

ds |u · ŝ|(v′
1 − v0) exp

(
−v22
v2T

)
. (4.2)

The potential of mean force, ϕ(r), was computed numerically by solving Eqs. (4.1a)

and (4.1b). The result was interpolated using the Cubic spline method [85] for the

trajectory calculations. Numerical evaluation of the friction force integral, Eq. (4.2),

was the same as that described in chapter III except that the numerically computed

potential of mean force was used instead of the Debye-Hückel potential, and the

variables used to solve the equations of motion inside the collision volume were scaled

using the Wigner-Seitz radius (a) instead of the Debye-length (λD) to account for

the change in the scale of the collision volume at strong coupling. Since the potential

falls off rapidly on the inter-particle distance scale, the radius of the spherical collision

volume for the coupling strengths Γ = 1, 10 and 100 were taken to be 2.89a, 2.74a and
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4.16a respectively. It was confirmed that these were large enough to reach convergence

with respect to the size of the collision volume.

4.2 Results

4.2.1 Comparison with molecular dynamics simulations
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Figure 4.3: Friction force components at β = 10 and θ = 22.5◦ for different coupling
strengths Γ = 0.1 [(a), (e), and (i)], Γ = 1 [(b), (f), and (j)], Γ = 10 [(c), (g), and
(k)]and Γ = 100 [(d), (h), and (l)]. The generalized collision operator (GCO) results
are shown as red solid lines and the molecular dynamics (MD) results as data points.

In order to test the results computed from the generalized collision operator,

Eq. (4.2), we compare with results of recent molecular dynamics simulations [95].

Molecular dynamics simulations provide a rigorous benchmark because they directly

solve the first-principles equations of motion for all interacting particles. The re-

sults are compared across different coupling strengths, magnetization strengths and

orientation of the projectile’s velocity with respect to the direction of magnetic field.

Figure 4.3 compares the friction force curves by fixing the magnetization strength

(β = 10) and orientation of projectile’s velocity with respect to the direction of the
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Figure 4.4: Comparison of GCO (lines) and MD (data points) predictions for the
friction force components [−Fv in (a), F× in (b) and Fn in (c)] at Γ = 1 and β = 10
for different orientations of projectile and magnetic field θ = 0◦, 22.5◦, 90◦, 157.5◦

and 270◦.

magnetic field (θ = 22.5◦) and varying the coupling strength (Γ = 0.1, 1, 10 and

100). The model predictions are generally in good agreement with the MD results

across this entire range of coupling strengths. At Γ = 100, the plasma is liquid-

like and the agreement between theory and MD is quite remarkable. In these plots,
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Figure 4.5: Comparison of GCO (lines) and MD (data points) predictions for the
friction force components [−Fv in (a), F× in (b) and Fn in (c)] at Γ = 10 and
θ = 22.5◦ for different magnetization strengths β = 0, 1 and 10.

Γ = 0.1 are in the strongly magnetized transport regime and the rest are in the

extremely magnetized transport regime as defined in the introduction. This shows

the versatility of the GCO to be applicable across a wide range of both Coulomb

coupling and magnetization strength regimes. A previous approach [56, 98] based

on linear response theory is limited to the strongly magnetized regime because it

does not account for strong non-linear interactions that arise in either the extremely
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magnetized regime, or the strongly coupled regime.

On comparing the stopping power curves, good qualitative agreement is observed.

Features like an increase in magnitude of the force, shift in position of the Bragg

peak and broadening of the curves with increasing coupling strength are observed.

A good quantitative agreement between theory and MD is observed for small speeds

of the projectile, but some quantitative differences emerge at high speeds. This was

also observed in unmagnetized plasmas [93]. The larger discrepancy at high speeds

may be due to the absence of dynamic screening (velocity-dependent screening) in

the potential of mean force used for modeling the binary interactions.

The transverse force curves obtained by the theory also capture the qualitative

trends predicted by the MD. Features like an increase in the magnitude of the force

and broadening of the curves with increasing coupling strength are observed in both.

However, some quantitative differences are observed. The most significant difference

is that for coupling strengths Γ = 10 and Γ = 100, the theory predicts a change in

sign of the transverse force at low speeds, which is not observed in the MD data. This

change in sign is a prominent characteristic of the transverse force and is observed

when Γ = 0.1 and Γ = 1 by both the theory and MD. The GCO calculations predict

that the change in sign happens at higher speeds with increasing coupling strength.

The cause of this disagreement remains uncertain at this time. Strong magnetization

causes particles to move tightly along the field lines and to re-collide multiple times,

resulting in increased inter-particle correlations in space and time [99]. These in-

creased correlations increase the time it takes for the plasma to reach hydrodynamic

behavior. One possible reason for the discrepancy might be that the strong corre-

lations cause a disconnect between the concept of an “instantaneous” friction force

with what is computed over a few plasma period interval in the MD simulations.

Such correlations may also violate the molecular chaos approximation used in the

generalized collision operator [54] and might be another reason for the discrepancy.
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A significant result of this chapter is the prediction of the gyrofriction force com-

ponent in the direction of the Lorentz force (Fn). Good agreement is found between

the theory and the MD across coupling strengths. This component is found to be

negligible in the weakly coupled regime and its strength increases with the coupling

strength. This prediction shows the ability of the generalized collision operator to ac-

curately capture novel physics arising from the combination of strong magnetization

and strong coupling.

The friction force is found to not only depend on the speed of the projectile but also

on the orientation of the projectile’s velocity with the direction of the magnetic field.

Figure 4.4 compares the friction force curves for different orientation of the projectiles

velocity with the direction of the magnetic field (θ = 0◦, 22.5◦, 90◦, 157.5◦ and 270◦)

for the coupling strength Γ = 1 and the magnetization strength β = 10. The good

agreement with MD shows that the theory can accurately capture the dependence of

the friction force components on the orientation of the projectile’s velocity.

At strong coupling, the coupling-magnetization parameter space identifying trans-

port regimes is predicted to collapse to two regions - unmagnetized and extremely

magnetized. Fixing the coupling strength Γ and changing the magnetization strength

β can span these two transport regimes. Figure 4.5 compares the friction force compo-

nents obtained using MD simulations and theory for magnetization strengths β = 0, 1

and 10. Here the coupling strength is Γ = 10 and angle θ = 22.5◦. Theory captures

the overall trends observed in the MD results. Both predict that strong magnetization

causes a shift of the position of the Bragg peak to lower speed and decrease the stop-

ping power at high speeds. The increase in relative magnitude of the transverse force

with the increase in magnetization strength is captured by both the theory and MD.

However, some quantitative features like the position of the peaks and sign reversal

differ. For instance, the theory predicts a sign reversal of the transverse force (once

for β = 10 and twice for β = 1), which is absent in the MD results. Good agreement
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between the theory and MD is seen in the gyrofriction force curve for β = 10, and

both are consistent with zero at β = 0. However, at the transition magnetization

strength (β = 1), the agreement is poor across the projectile speeds.

4.2.2 Coupling strength and angle
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Figure 4.6: Polar plots of the friction force components [−Fv in panel (a), F× in panel
(b) and Fn in panel (c)] at Γ = 1 and β = 10. The radial axis is the speed of the
projectile (v1/vT ) and the angle is the phase angle that the projectile’s velocity makes
with the direction of the magnetic field (θ).

The friction force exhibits strong dependence on the orientation of the velocity

with the direction of the magnetic field. For this reason, an entire polar plot that

includes both speed and angle is required to compute the average trajectory of a test

charge in a strongly magnetized plasma. Because so many data points are required

to solve for this 2D parameter space, it is impractical to obtain this information

from MD simulations due to their high computational cost. However, the much lower

computational expense of the GCO calculations makes this possible. Polar plots also

reveal the symmetry properties of the different friction force components.
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Figure 4.7: Polar plots of the friction force components [−Fv in panel (a), F× in panel
(b) and Fn in panel (c)] at Γ = 10 and β = 10. The radial axis is the speed of the
projectile (v1/vT ) and the angle is the phase angle that the projectile’s velocity makes
with the direction of the magnetic field (θ).

Figures 4.6, 4.7, and 4.8 show the polar plots of each friction force component

for β = 10 and coupling strengths Γ = 1, 10 and 100. On comparing these fig-

ures, quantitative changes are observed. The magnitude of the friction increases

with increasing coupling strength. Panel (a) of figures 4.6, 4.7, and 4.8 show that

the stopping power curve broadens and the Bragg peak shifts to higher speed with

increasing coupling strength. This trend is similar to that observed in the unmagne-

tized plasma [77, 93]. The phase angle of the stopping power follows the symmetry:

Fv(θ) = Fv(π − θ) = Fv(π + θ) = Fv(2π − θ) for 0 ≤ θ ≤ π/2. This is the same

symmetry observed in the weakly coupled transport regime [56]. When θ increases

from 0◦, the magnitude of the Bragg peak monotonically decreases and reaches a

minimum value at 90◦. The position of the Bragg peak is observed to shift to lower

speed with increasing θ in the first quadrant. Since stopping power is anti-parallel

to the velocity of the projectile, these results imply that the energy deposition of the
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Figure 4.8: Polar plots of the friction force components [−Fv in panel (a), F× in panel
(b) and Fn in panel (c)] at Γ = 100 and β = 10. The radial axis is the speed of the
projectile (v1/vT ) and the angle is the phase angle that the projectile’s velocity makes
with the direction of the magnetic field (θ).

projectile has a significant dependence on the orientation of the velocity vector.

Panel (b) of figures 4.6, 4.7, and 4.8 show the transverse component of the fric-

tion. Similar to the stopping power, both the positive and negative peaks shift to

higher speeds and the transverse force curve widens as the coupling strength in-

creases. The prominent sign reversal signature of the transverse force is seen across

coupling strengths. The phase angle of the transverse force follows the symmetry:

F×(θ) = −F×(π − θ) = F×(π + θ) = −F×(2π − θ) for 0 ≤ θ ≤ π/2. This is the

same symmetry observed at weakly coupling [56]. Similar to the previous findings,

the transverse force is zero when the projectile’s motion is parallel or perpendicular

to the magnetic field. For a phase angle less than 90◦, a positive transverse force

increases the gyroradius and a negative transverse force decreases the gyroradius.

Thus the transverse force increases the gyroradius of the fast projectile by redirecting

the kinetic energy from the parallel direction to the perpendicular direction and de-
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Figure 4.9: Friction force components [−Fv in (a), F× in (b) and Fn in (c)] at Γ = 10
and θ = 22.5◦ for different magnetization strengths β = 0, 1, 2, 3, 5 and 10.

creases the gyroradius of the slower projectile by redirecting the kinetic energy from

the perpendicular direction to the parallel direction.

Panel (c) of figures 4.6, 4.7, and 4.8 show the gyrofriction component of the

friction force. This component is absent in linear response theory calculations [56, 98],

which apply in the weakly coupled regime. The linear response theory inherently

assumes that the interactions between the colliding particles are weak and avoids the

strong non-linear interactions characterizing close collisions [91]. However, the binary
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collision theories are capable of capturing the physics associated with the strong close

collisions. This suggests that the Fn component of the friction force is due to close

collisions.

The magnitude of the gyrofriction component is found to be smaller than the other

two components for all coupling strengths studied. Similar to the transverse force,

the sign of the gyrofriction force has a dependence on the speed of the projectile.

The critical speed at which the transition occurs is found to depend on the coupling

strength. Similar to the other two friction components, the force curve broadens

and both the positive and negative peaks shift to higher speeds with the increase in

coupling strength. The phase angle of the gyrofriction follows the symmetry: Fn(θ) =

Fn(π − θ) = −Fn(π + θ) = −Fn(2π − θ) for 0 ≤ θ ≤ π/2. The gyrofriction is zero

when the projectile moves parallel or anti-parallel to the magnetic field (θ = 0◦ and

θ = 180◦). Its magnitude is maximum when the projectile’s motion is perpendicular to

the magnetic field. For a phase angle less than 90◦, a positive sign of the gyrofriction

corresponds to an increase in the gyrofrequency of the projectile, whereas a negative

sign corresponds to a decrease in the gyrofrequency. Thus, gyrofriction increases the

gyrofrequency of a fast projectile and decreases that of a slow projectile.

4.2.3 Magnetization

In order to study how the friction force components change across transport

regimes, we compute them for a fixed coupling strength (Γ = 10) and orientation

of the projectile velocity (θ = 22.5◦) and change the magnetization strength (β = 0

to 10). The boundary between the unmagnetized and extremely magnetized transport

regimes for Γ = 10 is at β ≈ 0.25.

Figure 4.9 shows the components of the friction force curves for β = 0, 1, 2, 3, 5

and 10. The Bragg peak of the stopping power curve shifts to the lower speeds and

the magnitude of the Bragg peak increases on moving from the unmagnetized to

61



the extremely magnetized regime. Careful examination shows that this transition

involves 2 stages. A new peak develops at low speed and increases in magnitude with

increasing magnetization strength. Simultaneously, the stopping power at high speed

decreases. Thus magnetization increases the stopping power of slow projectiles and

decreases the stopping power of fast projectiles. This is similar to the weak coupling

limit [56].

The transverse force is present only when the plasma is in the extremely mag-

netized transport regime and its magnitude increases with increasing magnetization

strength. For this orientation of the projectile (θ = 22.5◦) the positive sign of the

transverse force corresponds to a force that acts to increase the gyroradius of the

projectile, and the negative sign corresponds to a force that decreases its gyroradius.

The curve for β = 1 predicts two negative dips of very small magnitudes. This pre-

diction is unique to the regime of strong coupling and a transitional magnetic field

strength (β ≈ 1). The effect may be associated with the non-monotonic nature of the

potential of mean force at strong coupling. The second negative dip disappears with

increasing magnetization strength.

The gyrofriction is absent in the unmagnetized regime (β = 0). For this angle

(θ = 22.5), a negative sign of the gyrofriction corresponds to a force that acts to

decrease the gyrofrequncy of the projectile, whereas a positive sign corresponds to a

force that acts to increase its gyrofrequency. The increase in magnetization strength

from β = 1 to β = 10, increases and then decreases the magnitude of the peak of the

gyrofriction. This is in contrast to F× where the magnitude of the peak monotonically

increases. However the change in the critical speed at which the gyrofriction changes

its direction has a strong dependence on the magnetization strength. The critical

speed moves to larger speeds with increasing magnetization strength. This can also

be contrast with the transverse force, where the sign change is nearly independent of

the magnetization strength (β).
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4.3 Physical interpretation of gyrofriction

A qualitative description of the physical origin of stopping power and transverse

force from the binary collision perspective was provided in chapter III. Although that

chapter concentrated on the weakly coupled regime, the qualitative explanations carry

over to the strongly coupled regime. Here, we give a qualitative description of the

physical origin of the gyrofriction.

Gyrofriction is only observed in the strongly coupled strongly magnetized regime.

When the plasma is strongly coupled, the screening distance reduces and close colli-

sions become more relevant. Gyrofriction is also absent in the linear response calcu-

lations, which ignores close collisions. These suggest that gyrofriction is associated

with close collisions. Binary collision theory obtains the friction force by summing

the change in momentum of the projectile from all possible binary scattering events.

!" !#

l l

rrrl

P

X

Y

Figure 4.10: Illustration of a collision between a projectile particle (p) and a back-
ground particle starting with a y position a distance l to the left of the projectile (rl,
case 1), or with a y position a distance l to the right of the projectile (rr, case 2). If
the associated scattering angles balance (θl = θr) the net force along y is zero and
there is no net gyrofriction force. If θl ̸= θr, a net gyrofriction force is expected.

In order to have a clearer qualitative description, consider the interaction of the

test charge (projectile) and a background particle in 2D, corresponding to the situa-
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Figure 4.11: Trajectories of the projectile (red) and the background plasma particle
(blue) during a Coulomb collision in the 2D plane perpendicular to B = Bẑ. Panels
(a), (b), (e) and (f) show the case of a fast projectile (v1 = 1vT ) and panels (c), (d),
(g) and (h) are for a slow projectile (v1 = 0.1vT ). The bottom panels show the zoomed
in view of the top panels. The initial speed of the background particle is taken as
(0.2vT , 0.2vT , 0) and the initial position (red dot) of the projectile is at (−32a, 0,
0). The initial guiding center position (blue dot) of the background particles are (0,
0.5a, 0) [(a), (e), (c), (g)] and (0, −0.5a, 0) [(b), (f), (d), (h)]. The trajectories shown
are binary interactions occurring via the Debye-Hückel potential for Γ = 1, which is
an excellent approximation of the potential of mean force at this conditions, and the
Lorentz force is modeled using β = 2.

tion of both the particles in a plane perpendicular to the magnetic field; see Fig. 4.10.

The projectile has an initial velocity in the +x̂ direction. Consider two example in-

teractions: (1) a background particle that starts a distance l to the left of the initial

projectile position (rl · ŷ = −l), and (2) a background particle that starts a distance

l to the right of the initial projectile position (rr · ŷ = l). The interaction deflects the

projectile from its initial trajectory by an angle θl in case (1), and θr in case (2). In

an unmagentized plasma θl = θr, so the momentum exchanged in the ŷ direction in

case (1) cancels the momentum exchanged in the ŷ direction in case (2). Since the

net force on the projectile is the result of all of the possible collisions with the back-
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ground, and because each particle at a position rl will have a partner at a position

rr, this symmetry results in no net gyrofriction force.

This symmetry is broken when the plasma is strongly magnetized because the

deflection angles become unequal (θl ̸= θr), as illustrated in Fig. 4.11. Here, the

magnetic field is in the +ẑ direction and the charge of the particles is positive, so the

background particles gyrates in the counterclockwise direction. The initial velocity

of the projectile is in the x̂ direction, thus n̂ = −ŷ. The initial position of the

projectile is (−32a, 0, 0), and the initial guiding center position of the background

particle in case (1) is (0, −0.5a, 0) and in case (2) is (0, 0.5a, 0). A net gyrofriction

force results when the component of momentum exchanged in the n̂ direction from

case (1) does not balance that in case (2). The dominant symmetry breaking process

is observed to depend on the speed of the projectile. At sufficiently high speed

it is associated with the strength of the relative velocity between the projectile and

background particle when they are closest together (most strongly interacting), which

is asymmetric because the gyromotion causes the velocity vector of the background

particle to be either aligned with the projectile (case 1), or antialigned (case 2). At

sufficiently low projectile speed, the dominant symmetry breaking mechanism is an

E×B drifting motion of the background particle. Each process is found to lead to a

different sign of the gyrofriction and the sign change is associated with the transition

from one process dominating over the other.

First, consider the interaction of a fast projectile with a thermal background

particle; as shown in panels (a), (b), (e) and (f) of Fig. 4.11. When the background

particle starts to the right of the projectile (case 2; panels (a) and (e)), the collision

deflects the projectile in the −ŷ direction. In contrast, when the background particle

starts to left of the projectile (case 1; panels (b) and (f)), the collision deflects the

projectile in the +ŷ direction. However, the momentum transfer is greater in case

2 than in case 1, resulting in different scattering angles, θl ̸= θr. Since θr > θl, this
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asymmetry produces a net force in the−ŷ direction, which is the +n̂ direction, leading

to a positive sign of the gyrofriction at high speed. The reason for the asymmetry is

that the relative velocity between the projectile and background particle is higher in

case (2) than in case (1). Within the region of closest approach, where the interaction

is strongest, the interaction is head-on in case (2). In contrast, in case (1) the x̂

component of the velocity of both particles is positive at closest approach. The

higher relative velocity in the head-on collision causes a greater momentum transfer.

Any E×B motion is negligible in this case because the collision time is too short for

the background particle to exhibit an E×B drift when the projectile speed is large.

In contrast, panels (c), (d), (g) and (h) of Fig. 4.11 show the collision of a slow

projectile with a thermal particle of the background plasma. At these conditions, the

projectile is observed to deflect to the right (+ŷ direction) whether it starts to the

right or left of the background particle. The reason for this qualitative difference is

that when the projectile approaches slowly, the background particle has enough time

to E × B drift in a counterclockwise orbit around the projectile (it sees an almost

static electric field from the projectile at the timescale of the gyromotion). This leads

to a situation where, even though the background particle starts to the right of the

projectile (case 2), the E×B drift takes it to the left side of the projectile for a large

fraction of the time interval over which the particles interact strongly. This results in

momentum transfer in the +ŷ direction for case (2). In case (1), when the background

particle starts to the left of the projectile, there is still a counterclockwise E×B drift

as shown in the panels (d) and (h). However, the drift is not as pronounced in this case

because it acts to shorten the interaction time between the particles by deflecting the

background particle behind the projectile. For this reason, the background particle

remains on the left side of the projectile for the entire interaction, and the net force is

in the +ŷ direction. Thus, for a slow projectile both cases act to transfer momentum

in the +ŷ direction, so the net gyrofriction is also in the +ŷ direction (which is the
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−n̂ direction).

The critical speed at which the gyrofriction changes sign can be estimated by com-

paring the interaction timescale (τc) to the gyroperiod of the background particle ω−1
c .

The interaction timescale is set by the ratio of the interaction length and the speed of

the projectile: τc ∼ l/v1. The interaction length (l) is approximately characterized by

λD in the weakly coupled regime, and a in the strongly coupled regime. If τc ≳ ω−1
c ,

then the background particle undergoes complete gyro-orbits during the collision and

can thus exhibit E × B drifting motion. Note that gyration during a collision also

requires that rc < l, where l is the interaction range, but we are already assuming

that this condition is met (β > 1) and concentrating here on the dependence on the

projectile speed. In this sense, it defines a speed-dependent parameter to characterize

strong magnetization when v1 > vT . The condition τc > ω−1
c is satisfied when the

projectile is sufficiently slow

v1
vT

≲
lωc

vT
≈ l

λD
β. (4.3)

When this is satisfied, the E×B drift is expected to cause Fn to be in the−n̂ direction.

In contrast, when v1/vT ≳ lωc/vT ≈ (l/λD)β the interaction time is too short for E×B

motion to occur, and we expect the net gyro force to be in the +n̂ direction. The

expectation that this transition speed increases proportionally with β is consistent

with the trend observed in panel (c) of Fig. 4.9. Considering strong coupling effects,

the interaction range scales as l/λD ≈ a/λD =
√
3Γ1/2. The prediction that the

critical speed increases proportionally to Γ1/2 in the strongly coupled regime also

appears consistent with the data shown in panel (c) of Figs. 4.6–4.8.
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Figure 4.12: Trajectories of a massive projectile (mr = 1000) with initial speed
14vT moving through a one component plasma with coupling strength Γ = 10 and
magnetization strength β = 10. The initial orientation of the velocity with respect
to the magnetic field is θi = 15◦ (panel (a), (b) and (e)) and θi = 85◦ (panel (c) and
(d)).

4.4 Trajectories

The average motion of a projectile in a plasma is influenced by the Lorentz force

and the friction force. Thus, the equations of motion can be written as

mt
dv

dt
= q(v ×B) + F. (4.4)

Although the trajectory of an individual particle is influenced by diffusive motion

resulting from interactions with other particles, Eq. (4.4) describes the expected

trajectory resulting from the average of many sample individual trajectories. In

order to study the effects of the various friction force components on the motion of a

projectile through the plasma, we solve Eq. (4.4) including each of the three vector
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components of F shown in the polar plot Fig. 4.7. Figure 4.12 shows the resulting

trajectory of a projectile moving in a background plasma characterized by Γ = 10

and β = 10. The projectile starts at the origin with an initial speed of v = 14vT .

The initial velocity is vz = v cos θi, vx = v sin θi, vy = 0 and initial orientation with

respect to the magnetic field is θi = 15◦ (panel (a), (b) and (e)) and θi = 85◦ (panel

(c) and (d)). Here the magnetic field direction is taken along the ẑ direction. The

trajectories are calculated for three different scenarios to emphasize the importance of

different friction components: 1) includes the stopping power (Fv ̸= 0), but excludes

the transverse and gyrofriction components (F× = 0 and Fn = 0) (red line). 2)

includes the stopping power (Fv ̸= 0) and transverse force (F× ̸= 0), but excludes the

gyrofriction component (Fn = 0) (green line). 3) includes all the three components

(Fv ̸= 0, F× ̸= 0 and Fn ̸= 0) (blue line). The green and blue lines are only separated

by a small phase shift and appear overlapping in panels (a) – (d). Panel (e) zooms

into the phase shift.

Out of the three components of the friction force, only stopping power decreases

the kinetic energy of the projectile. It acts opposite to the motion of the projectile

and reduces both the parallel and perpendicular kinetic energy. This results in a

monotonic decrease in the gyroradius of the projectile (red line in Fig. 4.12). The

transverse force is perpendicular to the velocity of projectile and does not influence its

total kinetic energy. However, it influences the gyroradius by redirecting parallel speed

to perpendicular speed, or vice-versa (green line). For larger speeds, the transverse

force is positive and it increases the gyroradius, whereas for smaller speeds, it is

negative and decreases the gyroradius. This effect is prominent in the case of θi = 15◦.

Here, the gyroradius increased for most of the motion and steeply decreased near the

stopping point after the projectile speed had dropped sufficiently that the transverse

force changed sign.

The transverse force also changes the stopping distance of the projectile. It is

69



not a prominent effect at θi = 15◦, but is well demonstrated by the θi = 85◦ initial

condition. In this scenario, the initial parallel speed is very low compared to previous

scenario leading to a smaller stopping distance. But the transverse force strongly

alters its trajectory by decreasing the parallel speed, resulting in a significantly shorter

stopping distance.

The gyrofriction force is in the direction of the Lorentz force and is observed to

create a small phase shift in the motion of the projectile; see panel (e) in Fig. 4.12. For

larger speeds, the gyrofriction is positive and it increases the gyrofrequency and for

smaller speeds it is negative and decreases the gyrofrequency. The effect of gyrofric-

tion in the overall evolution of the projectile is not as prominent as the transverse

force or stopping power. This can be deducted by writing the equations of motion

using the scaled variables in spherical polar coordinates. On scaling the velocity using

vT , friction by kBT/a and time using ωp, we get

dṽ

dt̃
=

F̃v√
6Γmr

, (4.5a)

dθ

dt̃
=

F̃×√
6Γmrṽ

, (4.5b)

dϕ

dt̃
= − β

mr

− F̃n√
6Γmrṽ sin θ

. (4.5c)

Here, the variables with tilde (˜) on top represents scaled variables, θ is the polar

angle which is same as the orientation of the projectile’s velocity with the direction

of the magnetic field and ϕ is the azimuthal angle. On comparing the magnitude of

the terms in the Eq. (4.5c), the F̃n term is 103 - 104 times smaller than the β term.

On the other hand, other friction force components do not have any external force

to compete with in the equations of motion. This explains the small effect of the

gyrofriction component in the trajectories of the projectile compared to other two

components.

The overall movement of the projectile inside the plasma is primarily determined
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by the combined effect of both the stopping power and the transverse force. The

effect of the gyrofriction is comparatively weak because it competes with the large

Lorentz force. However, the gyrofriction may influence other macroscopic transport

or wave properties by changing the gyration rates.
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CHAPTER V

Barkas Effect in Strongly Magnetized Plasmas

5.1 Introduction

Conventional plasma theories obey a fundamental symmetry that the collision

rate is independent of the sign of the charge of interacting particles [100]. Thus

the transport coefficients remain the same if electron-ion interactions are modeled

as positron-ion interactions. In this chapter, we show that this symmetry is broken

when the plasma is strongly magnetized.

This charge-sign asymmetry in collision rates is often referred to as the “Barkas

effect” [101]. The Barkas effect was first observed in emulsion experiments, where

differences between the stopping power of positive mesons and negative mesons were

observed [101]. These differences were attributed to the atomic screening from the

bound electrons in the emulsion medium [101, 102, 103, 104]. The Barkas effect has

also been observed and studied in plasmas [18, 105]. In plasmas, the effect arises from

differences in the trajectories of oppositely-charged versus like-charged particles when

interacting through a screened potential rather than the Coulomb potential. Interac-

tion through a screened potential results in a larger momentum transfer cross section

for oppositely-charged collisions compared to like-charged collisions. Deviations be-

tween these cases become greater as the scattering angle increases. The Barkas effect

is therefore more prominent in low-speed interactions than high-speed interactions.
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Likewise, the Barkas effect is greater in strongly coupled plasmas than in weakly cou-

pled plasmas because large-angle collisions are more frequent [18, 19, 105]. In each

case studied so far in this thesis, the sign of the charge of the test charge was the

same as the background particles it interacts with (++). This chapter explores how

changing the test charge’s sign affects the friction force (+−). It is found that the

components of the friction force in the oppositely-charged (+–) case are both qualita-

tively and quantitatively different than the like-charged (++) case. The friction force

on a single test charge is the basis for more complex macroscopic transport phenom-

ena. Alterations in the friction by strong magnetization and the sign parity of the

interacting particles translates to alterations of macroscopic transport properties. To

demonstrate this, we compute the electrical resistivity tensor from the friction force

curves using the first order moment method. When considering like-charged interac-

tions, strong magnetization is observed to increase both the parallel and perpendicular

resistivity. This result is similar to what was observed in a recent calculation using

linear response theory [106]. However, the linear response approach only models long-

range interactions, and therefore does not predict the Barkas effect which arises from

higher order terms corresponding to short-range physics [56, 98]. Opposite-charged

interactions are then considered, where the Barkas effect in combination with strong

magnetization are observed to both decrease the parallel resistivity and increase the

perpendicular resistivity by almost an order of magnitude (for Γ = 1 and β = 10

conditions). These results can be used to model the resistivity in ultra-cold-neutral

plasma experiments [8, 24] with a strong magnetic field and can be extended to cal-

culate other transport properties. This chapter is based on Ref. [72].

5.2 Theory

The friction force on the test charge is obtained by solving Eq. (4.2). The difference

in evaluating the friction force integral for the +− case compared to the ++ case
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described in the previous chapters comes into the equations of motion of the colliding

particles inside the collision volume.

(m1 +m2)
dV

dt
= e

(V
c
×B

)
− em12

m2

(u
c
×B

)
, (5.1a)

m12
du

dt
= −[±∇ϕ(r)] + em2

12

m2
2

(u
c
×B

)
− em12

m2

(V
c
×B

)
. (5.1b)

The interaction potential for the oppositely charged test charge is taken as the neg-

ative of the potential of mean force of the like charged case [18]. In the equations

of motion [Eqs. (5.1a) and (5.1b)], the plus (+) sign of the potential is for the like-

charged case and the minus (−) is for the opposite-charged case. The difference in

the interaction potential alters the trajectories of the particles during the Coulomb

collisions. In a like-charged collision, the particles do not get too close because of

Coulomb repulsion. However, for an opposite-charged collision, the particles get very

close, sometimes forming a pseudo-bound state and interacting for a long time before

ending in the post-collision free state. This contrast in the trajectories causes the

difference in the momentum exchanged during the collisions leading to the Barkas

effect.

Numerical evaluation of the friction force integral, Eq. (4.2), was the same as

that described in chapters III and IV. The χ factor [97] for attractive collisions have

not been formally derived. For this reason, the χ factor is only used in the case of

repulsive interactions.
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Figure 5.1: Friction force components [−Fv, F× and Fn ] of the like-charged (++)
and opposite-charged (+−) cases for coupling strengths Γ = 0.1 [(a), (b) and (c)]
and Γ = 1 [(d), (e) and (f)] and magnetization strength β = 10 and β = 0. The
orientation of the test charge is θ = 22.5◦.

5.3 Results

5.3.1 Comparison with molecular dynamics simulations

Figure 5.1 shows that the GCO and MD results generally agree, but have some

quantitative differences. Features like shifting of the Bragg peak, increase in magni-

tude and broadening of the curves due to strong magnetization are observed in both.

Although transverse and gyrofriction curves from theory are in good agreement with

MD results, small quantitative differences are observed for stopping power curves at

high speeds, especially in the case of oppositely-charged interaction. The difference is

seen particularly above the Bragg peak. One source of deviation may be the lack of

an Enskog model for the collision rate enhancement factor (χ) for oppositely-charged

interactions. Another possibility may be the lack of dynamic screening in the poten-

tial of mean force used to model the binary interactions in the theory. The latter

effect has been shown in previous work to be most significant at speeds above the
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Bragg peak [93], which is where the largest disagreements are observed.

In an unmagnetized plasma (β = 0), the friction force has only a stopping power

component. The Barkas effect is more prominent at Γ = 1 than Γ = 0.1, which

is expected to be due to the increased screening effect and associated large-angle

collisions at higher coupling strengths [18]. The stopping power is larger for the

opposite-charged case at low speeds but has the same value as the like-charged case

at high speeds. This is because the turning points in trajectories of particles with

low relative speeds occur at larger distances, where screening is most important, so

the oppositely charged collisions deviate from like charged collisions at low speeds

only [18].

When the plasma is strongly magnetized (β = 10), the Bragg peak of the stopping

power curve for the opposite-charged case is less than the like-charged case. This

is opposite to what was observed without a magnetic field, where the magnitude

of the Bragg peak increased. Similar to the case of unmagnetized plasma, the two

curves merge at high speeds. A similar effect was observed in experiments on electron

cooling [11, 107, 108] where there was a reduction of the stopping power when an ion

interacted with a magnetized beam of electrons [109]. One of the most apparent

observations is that the magnitude of the peak of the transverse and gyrofriction

components are significantly larger for the opposite-charged case. This contrasts

with the stopping power. In fact, the peak magnitude of the gyrofriction increases

to such an extent that it becomes comparable in magnitude to the transverse force

when Γ = 1. For comparison, gyrofriction is an order of magnitude smaller than the

transverse force in the like-charge case. Similar to the stopping power, the transverse

friction force curves merge at high speeds. The gyrofriction force curves are found to

have the same magnitude but opposite signs at large speeds.

In the oppositely charged cases, attractive interactions sometimes lead to the

formation of a pseudo bound state in which the less massive background particle
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revolves around the ion for a long time before ending in post-scattering state. These

interactions are more frequent when the test charge speed is low. This might be the

reason behind the sharp features of the friction force curves of the oppositely charged

test charge at small speeds. The magnitude of the friction force curves at low speeds

are proportional to the electrical resistivity [106]. This difference in magnitude due to

the Barkas effect suggests a significant modification of Ohm’s law for the ion-electron

collisions in strongly magnetized plasmas, [8, 106], which will be discussed further in

Sec. 5.4.

5.3.2 Coupling strength and angle

Figure 5.2: Polar plots of the friction force components (−Fv, F× and Fn) in the
opposite-charged case (+−) [(a), (b) and (c)] and like-charged case (++) [(d), (e)
and (f)] at Γ = 0.1 and β = 10. The radial axis is the speed of the test charge
(v1/vT ) and the angle is the phase angle that the test charge’s velocity makes with
the direction of the magnetic field (θ).
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Figure 5.3: Polar plots of the friction force components (−Fv, F× and Fn) in the
opposite-charged case (+−) [(a), (b) and (c)] and like-charged case (++)[(d), (e) and
(f)] at Γ = 1 and β = 10. The radial axis is the speed of the test charge (v1/vT ) and
the angle is the phase angle that the test charge’s velocity makes with the direction
of the magnetic field (θ).

The friction force in a strongly magnetized plasma is found to depend on the

orientation of the test charge with the direction of the magnetic field, in addition

to its speed. In order to study this, we compute polar plots that include both the

orientation and speed using GCO. We compare these for the like and opposite charge

cases to understand how the Barkas effect modifies the friction; see Figs. 5.2 and 5.3.

The polar plots show symmetries of the friction force components with the direction

of the magnetic field. Obtaining these polar plots with MD simulations is impractical

due to high computational cost, so we rely on GCO calculations for this.

Panels (a) and (d) of Figs. 5.2 and 5.3 show the stopping power. The most
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apparent Barkas effect is that the maximum of the Bragg peak occurs at perpendicular

incidence (θ = 90◦) in the opposite-charge (+−) case, whereas it occurs at parallel

incidence (θ = 0◦) in the like-charge (++) case. For opposite-charges, the magnitude

of the Bragg peak increases monotonically from θ = 0◦ and reaches a maximum

value at θ = 90◦. This is in contrast to the like-charged case where the magnitude

of the Bragg peak monotonically decreases from θ = 0◦ and reaches minimum at

θ = 90◦. In fact, some previous models predict that the stopping power vanishes

for parallel incidence (θ = 0◦) in the strongly magnetized regime [109]. Our model

predicts a reduction of the stopping power by approximately a factor of two compared

to perpendicular incidence (θ = 90◦); a non-zero value that is of the same order as

other angles of incidence. Since stopping power is anti-parallel to the velocity of the

test charge, this implies that an opposite-charged test charge loses more energy when

it moves perpendicular to the magnetic field, whereas as a like-charged test charge

loses more energy when it moves parallel to the magnetic field. These results imply

that the energy deposition by the test charge in a strongly magnetized plasma has

significant dependence on the sign of its charge, as well as the orientation of the test

charge velocity with respect to the magnetic field.

Comparing Figs. 5.2 and 5.3 shows that increasing coupling strength broadens

the stopping power curve and causes the Bragg peak to shift to a higher speed. The

magnitude of the stopping power for the opposite-charged case is generally smaller

than the like-charged case, except at very low speeds. The phase angle of the stopping

power follows the same symmetry in both cases: Fv(θ) = Fv(π − θ) = Fv(π + θ) =

Fv(2π − θ) for 0 ≤ θ ≤ π/2.

The transverse force doesn’t change the overall kinetic energy of the test charge,

but it deflects kinetic energy from the parallel direction to perpendicular when its

sign is positive and from perpendicular to parallel when its sign is negative (this

statement refers to the sign of the force in the first quadrant, 0 ≤ θ ≤ π/2) [56].
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These effects can significantly alter the trajectories of the test charge and can lead

to non-intuitive effects such as an increase in the gyroradius of the test charge as it

slows down; see Sec. 4.4. Panels (b) and (e) of Figs. 5.2 and 5.3 show the transverse

force component. The magnitude of the negative dip of the transverse force is much

larger for +− case than that of the ++ case. This large negative dip of the transverse

force at slow speeds results in a sharp decrease of the gyroradius of the test charge

near its stopping point by deflecting kinetic energy from perpendicular direction to

parallel. The phase angle of the transverse force for the ++ and +− cases follow the

same symmetry: F×(θ) = −F×(π − θ) = F×(π + θ) = −F×(2π − θ) for 0 ≤ θ ≤ π/2.

A finite gyrofriction component causes a phase shift in the trajectories of the

test charge; see Sec. 4.4. However, its influence on the overall trajectory is not as

prominent as the transverse and stopping power components because it competes with

the Lorentz force, which is large in the strongly magnetized regime. Even though

its effect is small for a single particle trajectory, how it manifests in macroscopic

transport coefficients has yet to be investigated. Panels (c) and (f) of Figs. 5.2

and 5.3 show the gyrofriction component. The ++ and +− cases follow the same

symmetry: Fn(θ) = Fn(π − θ) = −Fn(π + θ) = −Fn(2π − θ) for 0 ≤ θ ≤ π/2. The

gyrofriction in the +− case at high speeds is observed to have opposite sign to that

of the ++ case, but with approximately the same magnitude.

5.3.3 Magnetization

In this section we study the dependence of the friction force components on the

magnetization strength. This is done by fixing the coupling strength at Γ = 1 and

orientation of the test charge at θ = 22.5◦ and varying β. Results are shown in

Fig. 5.4. With increasing magnetization strength, the magnitude of the Bragg peak

decreases. This is in contrast to the like-charged case where the magnetization was

found to increase the magnitude of the Bragg peak (Subsec. 4.2.3). A consequence is
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Figure 5.4: Friction force components [−Fv in (a), F× in (b) and Fn in (c)] for an
opposite-charged test charge at Γ = 1, θ = 22.5◦.

that the Barkas effect decreases the energy deposition rate at strong magnetization.

The transverse force is zero when β = 0 and its magnitude increases with in-

creasing magnetization strength. The increase in the magnitude of the negative dip

at lower speeds is much more prominent than the increase of the magnitude of the

positive rise at higher speeds. For this orientation of the test charge (θ = 22.5◦), the
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positive sign corresponds to a force that increases the gyroradius and negative sign

corresponds to a force that decreases the gyroradius. Thus at high magnetization,

test charge’s trajectory at low speeds will be strongly influenced by the diversion of

kinetic energy from the perpendicular direction to the parallel direction.

The gyrofriction is zero when the magnetization is zero and increases in magnitude

with increasing magnetization strength. For this orientation of the test charge (θ =

22.5◦), the positive sign of the gyrofriction corresponds to a force that increases the

gyrofrequency of the test charge and the negative sign corresponds to a force that

decreases the gyrofrequency of the test charge. The physical origin of the gyrofriction

at low speeds is due to the E×B drift motion of the background particle around the

test charge during the interaction (Sec. 4.3). At high speeds, it is due to the close

interaction between the gyrating background particle and the test charge. These two

mechanisms act in opposite directions, so they have opposite signs. As the speed of the

projectile increases the interaction time decreases, changing the dominant mechanism

from E × B drift to close interaction. The critical speed at which the sign change

happens is proportional to the magnetization strength (β) (Sec. 4.3). In the ++ case,

only one sign change was observed (Sec. 4.2). However, in the +− case, multiple sign

changes are observed at small speeds. This might be due to the pseudo-bound state

formation during the collisions.

5.4 Electrical resistivity

The qualitative changes to the friction force arising from strong magnetization

and particles with opposite charge translate to significant quantitative changes in the

components of the electrical resistivity tensor. Here, we apply the results above to

a first-order moment method that was used recently to explore the consequences of

strong magnetization from a calculation of the friction force based on linear response

theory [106]. Recall that linear response theory does not predict the Barkas effect [56].
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This application of the GCO calculations are the first to explore the consequence of the

Barkas effect on the electrical resistivity in a strongly magnetized plasma. Consider

the form of Ohm’s law obtained from the electron and ion force balance equation at

steady state [106]

E′ = η∥J∥ + η⊥J⊥ + η∧J∧, (5.2)

where E′ = E+V×B/c is the electric field in the rest frame of the fluid and V is the

fluid center of mass velocity. Here, J∥, J⊥, J∧ are parallel, perpendicular and polar

current density components with respect to the magnetic field. The parallel (η∥),

perpendicular (η⊥) and Hall resistivity (η∧) coefficients are related to the friction

force density of ion-electron collisions via

η∥J∥ = −
2R · Ĵ∥

en
, (5.3a)

η⊥J⊥ = −2R · Ĵ⊥

en
, (5.3b)

η∧J∧ =
BJ∧
en

− 2R · Ĵ∧

en
. (5.3c)

The friction force density for a Maxwellian distribution of ions with a small drift

velocity can be related to the friction force on a single test charge via [106]

R =
2

eπ3/2v5T1

∫
d3ve−v2/v2T1 (J · v)F. (5.4)

The parallel, perpendicular and Hall conductivity coefficients can be obtained from

the electrical resistivity coefficients using the following relations [106]

σ∥ =
1

η∥
(5.5a)

σ⊥ =
η⊥

η2⊥ + η2∧
(5.5b)

σ∧ =
η∧

η2⊥ + η2∧
. (5.5c)
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Case η∥/η0 η⊥/η0 η∧/η0 σ∥/σ0 σ⊥/σ0 σ∧/σ0
β = 10,++ 1.73 2.23 26.67 0.58 0.003 0.04
β = 10,+− 0.17 9.19 26.46 5.88 0.01 0.03
β = 0,++ 0.98 0.98 0.00 1.02 1.02 0.00
β = 0,+− 1.47 1.47 0.00 0.68 0.68 0.00

Table 5.1: Comparison of the parallel, perpendicular and Hall resistivity coefficients
from oppositely charged and like-charged collisions. Here, the electron coupling
strength is, Γ = 1.

Resistivity and conductivity coefficients are obtained by inserting the results from the

previous section (corresponding to the polar plots shown in Figs. 5.2 and 5.3) into

Eq. (5.4), computing the integral numerically and applying the results to Eqs. (5.3)

and (5.5).

The results of the resistivity and conductivity calculations for Γ = 1 are shown

in table 5.1. Here, η0 = m2/(2n2e
2τ2) and σ0 = 1/η0 are the reference resistivity and

conductivity respectively. The Coulomb logarithm in electron collision time, τ2 =

3
√
m2(kBT )

(3/2)/(8
√
2πn2e

4Ξ) is replaced by the generalized Coulomb logarithm (Ξ)

for an unmagnetized plasma [60] to account for strong coupling effects. The Barkas

effect in unmagnetized plasma (β = 0) is found to increase the resistivity in both the

perpendicular and parallel direction by almost 1.5 times. Strong magnetization in the

case of like-charged collisions increases both the parallel and perpendicular resistivity.

This is similar to what was observed in the linear response theory calculations [106].

However, the combination of the Barkas effect and strong magnetization is found

to lead to a much more significant change, where the parallel resistivity is found to

decrease by an order of magnitude and the perpendicular resistivity to also increase

substantially. This is an expected consequence of the polar plots in Fig. 5.3 as the

stopping power and transverse force components change in the Barkas case in such a

way that the net force on the test charge in the perpendicular direction is increased

and the parallel direction is decreased. Here, results from the Γ = 0.1 data are not

shown because it was difficult to achieve the necessary accuracy of the numerical
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evaluation of the GCO model at small speeds required to obtain convergent results in

the resistivity calculations. However, the general the trend seen at Γ = 1 is expected

at Γ = 0.1 too.

The linear response theory calculations predicted an increase in parallel resistivity

with strong magnetization, [106] as does the GCO model for repulsive (++) interac-

tions (i.e., the Barkas effect is not taken into account). A recent calculation using

a Fokker-Plank collision operator predicted a decrease in the parallel resistivity due

to strong magnetization [110]. Our GCO calculation agrees with this trend when

the Barkas effect is accounted for. So, the disagreement between the Fokker-Plank

calculation from Ref. [110] and the linear response calculation from Ref. [106] may

be due to the lack of a Barkas effect in the linear response approach. The use of

magnetized Fokker-Plank coefficients [44] assume attractive +− interactions, which

may model the Barkas effect.
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CHAPTER VI

Ion-Electron Temperature Relaxation Rate in

Strongly Magnetized Plasmas

6.1 Introduction

Plasma generation typically results in a non-equilibrium state with electrons and

ions at different temperatures, which subsequently equilibrate through energy ex-

change in Coulomb collisions. Understanding the rate of this relaxation is important

to understanding plasma evolution. In this chapter, we calculate the ion-electron

temperature relaxation rate in strongly magnetized plasmas.

In a weakly magnetized plasma, the ion temperature evolution owing to colli-

sions with electrons can be obtained by taking the energy moment of the Boltzmann

equation. For a spatially homogeneous plasma, this provides

dT1
dt

= −ν (T1 − T2) (6.1)

where T1 is the ion temperature, T2 is the electron temperature and ν is the temper-

ature relaxation rate. For a weakly magnetized plasma where the gyromotion of the

particles occurs at a larger length scale than scattering, the traditional Boltzmann
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collision operator predicts the relaxation rate as [92]

ν =
32
√
πe4n2 ln Λ

3m1m2(v2T1 + v2T2)
3/2
. (6.2)

Here, n2 is the density of the electrons, m1 and m2 are the masses of the ions and elec-

trons, respectively, vT1 =
√
2T1/m1 and vT2 =

√
2T2/m2 are the thermal velocities,

and lnΛ is the Coulomb logarithm.

The ion-electron temperature relaxation rate is calculated from the energy ex-

change density of a test ion interacting with background electrons. It is found that

when the plasma is strongly magnetized, the parallel and perpendicular relaxation

rates are no longer equal, causing a temperature anisotropy to form. Cases are consid-

ered for both attractive (electron-ion) and repulsive (positron-ion) interactions. The

calculation predicts that the relaxation rates are qualitatively and quantitatively dif-

ferent in each case. The difference between the parallel and perpendicular relaxation

rates for attractive collisions is much more significant than for repulsive collisions.

For repulsive interactions, strong magnetization increases both the parallel and per-

pendicular relaxation rates and becomes constant at extreme values. In contrast, for

attractive interactions, the parallel relaxation rate is inversely proportional to the

magnetic field strength in the strongly magnetized regime.

Understanding the thermal relaxation of ions in strongly magnetized plasmas

has many applications, including the antimatter experiments at Antihydrogen Laser

Physics Apparatus (ALPHA), which synthesizes antihydrogen from antiprotons and

positrons [28, 30]. In the experiment, the collisional temperature relaxation of an-

tiprotons occurs in two stages. First, antiprotons are collisionally cooled with elec-

trons, and second, the thermal equilibration of antiprotons with positrons during the

recombination process [28, 30, 33]. For the typical experimental conditions, electrons

and positrons are strongly magnetized and have magnetization strengths around few
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hundred [28, 30]. Since both ion-electron and ion-positron interactions are important,

the results for attractive (+−) and repulsive (++) potentials are both relevant to this

experiment.

6.2 Theory

The temperature relaxation rate of a distribution of ions is closely related to the

energy exchange density of a test ion slowing down on electrons [93, 111]. This is

because the heavy mass of the ions makes their distributions very narrow compared

to the electron velocity distribution. In this limit, the ion distribution can be modeled

as a Dirac delta function, which is mathematically equivalent to a single particle. We

first calculate the energy exchange density of a single test charge and later use it to

calculate the temperature relaxation rate.

The energy exchange of a test charge that moves with a velocity, v0 in a sea of

background electrons can be obtained by taking the energy moment of the collision

operator (Q12 =
∫
d3v1m1(v1−v0)

2C/2). The velocity distribution of the test charges

is a Maxwellian distribution with a flow (v0), but zero temperature. This limit is the

Dirac delta function (f1 = n1δ
3(v1 − v0)). Thus for a single test charge, the energy

exchange moment is Q12/n1. Here, species 1 is ions and species 2 is the background

electron or positron distribution. Using GCO, the energy exchange density is

Q12

n1

=
n2m1

2π3/2v3T2

∫
d3v2ds|u · ŝ|(v′

0 − v0)
2e−v22/v

2
T2 . (6.3)

Here, the surface integral is on the surface of the collision volume, and the back-

ground plasma is assumed to be a Maxwellian distribution with thermal velocity

vT2 =
√
2kBT2/m2. The post collision velocity of the test charge (v′

0) is the input to

the collision operator and is obtained by solving equations of motion of the colliding

particles inside the collision volume [Eqs. (3.1) and (3.2)].
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The energy exchange density can be split into components parallel and per-

pendicular to the magnetic field (Q12
∥ =

∫
d3v1m1(v1∥ − v0∥)

2C/2) and (Q12
⊥ =∫

d3v1m1(v1⊥ − v0⊥)
2C/2). The two components add up to give the total energy

exchange density, i.e., Q12 = Q12
∥ +Q12

⊥ . In a weakly magnetized plasma, Q12
∥ = 1

2
Q12

⊥

in the limit of a low test charge speed. Separating the parallel and perpendicular

components will enable an analysis of temperature anisotropy formation in strongly

magnetized plasmas.

Similar to the case of the friction force calculation (Sec. 3.2), the energy moment

integral is solved using the adaptive Monte Carlo integration code VEGAS [87, 88]

and the equations of motion of the colliding particles were solved to obtain the post

collision velocity.

6.3 Results

Figure 6.1 shows example profiles of the energy exchange density, in this case for

a background coupling strength of Γ2 = 1 and an angle of θ = 22.5◦ between the

test particle velocity and magnetic field. The energy exchange density in the parallel

and perpendicular directions gives the thermalization rate of a cool beam of ions in

those directions. Its value in the perpendicular direction is expected to be double that

of the parallel direction because there are two degrees of freedom compared to one.

When the parallel and perpendicular energy exchange densities do not satisfy this

criterion, it leads to different relaxation rates in each direction, which can generate a

temperature anisotropy.

For low speeds, the energy exchange densities are independent of the speed of

the test charge (see Fig. 6.1). In the unmagnetized cases, the low-speed value of

the perpendicular energy exchange density is double that of the parallel. This is the

usual expectation of weakly magnetized plasma, where the electrons and ions relax

isotropically in the limit there is no relative drift. However, in the case of strongly
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magnetized plasma, the limiting values of the perpendicular energy exchange density

are greater than double that of the parallel. Thus, strong magnetization is expected

to lead to the development of temperature anisotropy during the relaxation. This

difference in the perpendicular and parallel energy exchange densities is significantly

enhanced for attractive collisions compared to repulsive. In fact, for β2 = 10, Q⊥

is more than an order of magnitude greater than 2Q∥, suggesting that electron-ion

energy exchange is much faster in the perpendicular direction.
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Figure 6.1: Energy exchange density components (Q12
⊥ and Q12

∥ ) of the like charged

(++) and opposite charged (+−) cases for coupling strength, Γ2 = 1 and orientation
θ = 22.5◦. Note that the break in the vertical axis signifies a switch from linear to
logarithmic scale.

The source of the difference in relaxation rate in the repulsive versus attractive

cases (i.e., Barkas effect) is screening of the Coulomb potential (the effective potential

part of this calculation). This difference is more significant in the case of small-speed
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Figure 6.2: Polar plots of the energy exchange density components (Q12
⊥ , Q12

∥ and

Q12) of the like-charged (++) interaction at Γ2 = 0.1 and β2 = 10. The radial axis
is the speed of the test charge (v1/vT2) and the angle is the phase angle that the test
charge velocity makes with the direction of the magnetic field (θ).

large-angle scattering than for high-speed small-angle scattering because the turning

points in collisions are longer range where screening is significant. Thus, the energy

exchange density enhancement due to the Barkas effect is absent at high speeds of the

test charge and indicated by the merging of the like-charged and oppositely-charged

curves; see Fig. 6.1. Similarly, the curves for the strongly magnetized conditions merge

with those for unmagnetized conditions at high speeds. This is because the collisions

of a high-speed test charge happen at a faster time scale than the gyromotion of the

electrons, nullifying the strong magnetization effect.

Figures 6.2, 6.3 and 6.4 show results of computations of the energy exchange

density components for different orientations of the test charge with respect to the

direction of the magnetic field. Figures 6.2 and 6.3 show results for like-charged

interactions at coupling strengths Γ2 = 0.1 and Γ2 = 1 and Fig. 6.4 for oppositely-

charged interactions at coupling strength Γ2 = 1. The energy exchange density not

only depends on the speed and sign of the ion charge, but also on the orientation of

the ion’s velocity with respect to the direction of the magnetic field (θ). However, at

very low speeds Q12
∥ and Q12

⊥ become independant of the orientation of test charge.
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The comparison of Figs. 6.2 and 6.3 show that Q12
∥ is largely independent of the

angle (θ) at weak coupling (Γ2 = 0.1), while Q12
⊥ is peaked along the magnetic field.

Here, both Q12
∥ and Q12

⊥ take maximal values in the low speed limit, having long flat

plateaus at low speed. In contrast, at moderate coupling (Γ2 = 1), the dependence

of both Q12
∥ and Q12

⊥ on the angle becomes more pronounced and the peak value of

each is along the magnetic field at a speed of a few thermal speeds.
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Figure 6.3: Polar plots of the energy exchange density components (Q12
⊥ , Q12

∥ and

Q12) of the like-charged (++) interaction at Γ2 = 1 and β2 = 10. The radial axis is
the speed of the test charge (v1/vT2) and the angle is the phase angle that the test
charge velocity makes with the direction of the magnetic field (θ).

The comparison of Figs. 6.3 and 6.4 show that for attractive interactions (+−),

the peak value of Q12
⊥ is significantly larger than all other cases and occurs at a

speed slightly less than the thermal speed. This suggests that the energy exchange in

the perpendicular direction is very rapid for an oppositely charged beam especially

when moving slightly slower than the thermal speed of the electrons. In this case,

the peak value of all energy exchange density components is when the test charge

moves perpendicular to the magnetic field. This contrasts with the repulsive (++)

case, where the peak values occur when the test charge moves along the magnetic

field. This observation is similar to the friction force, where the oppositely charged

test charge (+−) experiences maximum friction when moving perpendicular to the
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Figure 6.4: Polar plots of the energy exchange density components (Q12
⊥ , Q12

∥ and

Q12) of the opposite-charged (+−) interaction at Γ2 = 1 and β2 = 10. The radial
axis is the speed of the test charge (v1/vT2) and the angle is the phase angle that the
test charge velocity makes with the direction of the magnetic field (θ).

magnetic field, while the like-charged case is peaked when moving parallel to the

magnetic field (Subsec. 5.3.2). The increase of the peak value from the plateau value

in the low speed limit is also significant in the +− case.

6.4 Temperature relaxation

The energy exchange density for a test charge was discussed in the previous sec-

tion. Here, we extend the calculation to a distribution of ions with a finite tempera-

ture and apply the result to model the evolution of the ion distribution as it relaxes

with a strongly magnetized electron distribution held at a fixed temperature (i.e., a

heat bath). Since strong magnetization causes an anisotropy in the energy exchange

density, we consider an anisotropic Maxwellian distribution for ions

f1 =
n1

π3/2v2T1⊥
vT1∥

e
−v2

1∥/v
2
T1∥e

−v21⊥/v2T1⊥ . (6.4)

93



Here, vT1∥ =
√

2kBT1∥/m1 and vT1⊥ =
√
2kBT1⊥/m1 are parallel and perpendicular

ion thermal speeds. For parallel energy exchange density, we get,

Q∥ =
1

2
m1

∫
d3v1d

3v2ds|u · ŝ|(v′21∥ − v21∥)f1f2 (6.5)

Using, v′21∥ − v21∥ = (v′1∥ − v1∥)
2 +2v1∥(v

′
1∥ − v1∥), this can equivalently be expressed as

Q∥ =
1

2
m1

∫
d3v1d

3v2ds|u · ŝ|
[
(v′1∥ − v1∥)

2 + 2v1∥(v
′
1∥ − v1∥)

]
f1f2. (6.6)

On rewriting f1(v1) =
∫
δ3(v1 − v0)f1(v0)d

3v0, and evaluating the d3v1 integral

Q∥ =

∫
d3v0f1(v0)

∫
d3v2ds|u · ŝ|1

2
m1(v

′
0∥ − v0∥)

2f2

+

∫
d3v0f1(v0)

∫
d3v2ds|u · ŝ|m1v0∥(v

′
0∥ − v0∥)f2. (6.7)

Assuming an isotropic Maxwellian distribution of electrons,

f2 = n2/(π
3/2v3T2

) exp(−v22/v2T2
) and using the definitions of energy exchange density,

Eq. (6.3), and friction force of the test charge charge (Sec. 3.1)

F =
n2m1

π3/2v3T

∫
d3v2

∫
S−

ds |u · ŝ|(v′
0 − v0)e

−v22/v
2
T , (6.8)

this can be further simplified to

Q∥ =

∫
d3v0f1(v0)Q12

∥ /n1 +

∫
d3v0f1(v0)F∥v0∥. (6.9)

Similarly, the perpendicular energy exchange density is

Q⊥ =

∫
d3v0f1(v0)Q12

⊥ /n1 +

∫
d3v0f1(v0)F⊥ · v0⊥. (6.10)

94



Finally, the parallel and perpendicular energy moments of the Boltzmann equation

connect the energy exchange densities to the rate of change of the respective temper-

atures

n1kB
dT1⊥
dt

= Q⊥, (6.11)

1

2
n1kB

dT1∥
dt

= Q∥. (6.12)

Considering the common situation that the electron and ion temperatures are not

dramatically different (i.e., T1/T2 ∼ 1), an analytic approximation of the temperature

evolution can be obtained by assuming a linear dependence of the form: Q∥ ∝ (1 −

T1∥/T2) and Q⊥ ∝ (1 − T1⊥/T2). In the limit that the parallel or perpendicular

temperature is zero, the energy exchange density should asymptote to the value for

that of a test charge in the limit of zero speed, i.e., Q⊥(T1⊥ → 0) = Q12
⊥ (v1 → 0)

and Q∥(T1∥ → 0) = Q12
∥ (v1 → 0). In the limit that the ion parallel or perpendicular

temperature is equal to that of the electron temperature, the energy exchange in the

respective directions goes to zero, i.e., Q⊥(T1⊥ → T2) = 0 and Q∥(T1∥ → T2) = 0.

With these two limiting cases and the assumption of a linear dependence on the

temperature ratio, the parallel and perpendicular energy exchange densities for a

distribution of ions can be related to the test particle values in the low speed limit

Q∥ = lim
v1→0

Q12
∥ (v1)

(
1−

T1∥
T2

)
(6.13)

Q⊥ = lim
v1→0

Q12
⊥ (v1)

(
1− T1⊥

T2

)
(6.14)

where Q12
∥ (v1) and Q12

⊥ (v1) are the components of the test particle energy exchange

density.

This linear model is overall in good agreement with direct numerical integration of

Eqs. (6.9) and (6.10) for ion-electron temperature ratios near 1; as shown in Fig. 6.5.
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Figure 6.5: Energy exchange density of an ion distribution as a function of its parallel
[(a) and (c) for fixed T⊥/T2 = 0.5] and perpendicular [(b) and (d) for fixed T∥/T2 =
0.5] temperatures. Circles denote solutions of Eqs. (6.9) and (6.10). The dashed line
shows the linear prediction from Eqs. (6.13) and (6.14). The top row is for the case of
like-charged collisions and bottom row is for the case of opposite-charged collisions.
Here, the coupling strength is Γ2 = 1 and magnetization is β2 = 10.

The small deviation of Q⊥ from the linear prediction in the attractive interaction case

(+−) might be because the Q12
⊥ curve does not plateau to a constant value until very

small speeds are reached (v/vT ≲ 10−2); see Fig. 6.1. The energy exchange density

of the ions having a linear dependence on the ion temperature is equivalent to saying

that the temperature relaxation rate is independent of the ion temperature. From

Eqs. (6.11)–(6.14), we get

dT1⊥
dt

= −ν⊥ (T1⊥ − T2) (6.15)

dT1∥
dt

= −ν∥ (T1∥ − T2) (6.16)
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where,

ν⊥ = lim
v1→0

Q12
⊥ (v1)

n1kBT2
, (6.17)

ν∥ = 2 lim
v1→0

Q12
∥ (v1)

n1kBT2
. (6.18)
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Figure 6.6: The ion-electron temperature relaxation rates for like-charged collisions
[(a) Γ2 = 0.1, (b) Γ2 = 1 and (c) Γ2 = 10] and opposite charged collisions [(d)
Γ2 = 1]. The red circles are the perpendicular relaxation rates and the blue circles
are the parallel relaxation rates. Vertical dotted lines delineate transitions between
the four transport regimes.

The temperature relaxation rates ν (linear order) depend only on the low speed

value of Q12. Since the low speed value of Q12 does not depend on the orientation of

the test charge with respect to the magnetic field, the calculation of the temperature

relaxation can be extended to higher β values very efficiently. Instead of creating the

whole polar plot and integrating, Q12 was calculated for a fixed orientation θ = 22.5◦,
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at very low speed (≈ 10−2vT2) for different magnetization strengths. The results of

this calculation for different coupling strengths are shown in Fig. 6.6. This figure also

indicates the four transport regimes discussed in Sec. 1.1

As expected, the parallel and perpendicular temperature relaxation rates are inde-

pendent of the magnetic field strength and have the same value through the unmagne-

tized and weakly magnetized regimes (1 and 2). The independence of the relaxation

rates on the magnetic field is expected because the generalized collision operator in

these regimes is equivalent to the traditional Boltzmann collision operator, which does

not depend on the magnetic field strength (Sec. 2.2). In contrast, the parallel and

perpendicular relaxation rates depend on the magnetic field strength and take differ-

ent values from one another in the strongly and extremely magnetized regimes. The

difference in the relaxation rates can cause anisotropy to form in the ion temperature

during the collisional relaxation to thermal equilibrium. For like-charged interactions,

strong magnetization increases both the parallel and perpendicular temperature re-

laxation rates (though by differing amounts), reaching constant values in the large β

limit. A strikingly different behaviour is observed in the case of oppositely charged

interactions, where although the perpendicular relaxation rate increases, the parallel

relaxation rate decreases at a rate inversely proportional to β: ν∥ ∝ β−1. This leads

to a dramatic suppression of energy exchange along the magnetic field at high values

of the magnetization strength.

6.5 Discussion

This section discusses the temperature evolution of warm ions cooling down on

a cool bath of electrons. The density of the background electrons (lighter species)

is taken as much larger than the ion density so it can be considered a heat bath

(i.e., constant temperature). This case is representative of anti-matter traps where

antiprotons are mixed with electrons at the cooling stage (repulsive case) and with
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Figure 6.7: The parallel and perpendicular ion temperature evolution when warm ions
collisionally relax with a heat bath of electrons. Here, the electron coupling strength
is Γ2 = 1 and magnetization strength is β2 = 10. Solid lines are for the case were
both the ion-electron and ion-ion collisions are present and dashed lines are for the
case where ion-ion collisions are turned off.

positrons during antihydrogen formation (attractive case) [28, 30, 33].

When there is an anisotropy in the ion temperature, ion-ion collisions reduce the

anisotropy. Thus, when considering the ion temperature evolution, in addition to the

ion-electron collisions, contributions from ion-ion collisions are included as a collision

term in the Boltzmann equation. The temperature evolution equation of the ions

then takes the following form,

dT1⊥
dt

= −ν⊥ (T1⊥ − T2)− νA(T1⊥ − T1∥) (6.19)

dT1∥
dt

= −ν∥ (T1∥ − T2) + 2νA(T1⊥ − T1∥) (6.20)
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where νA is the anisotropy relaxation rate due to ion-ion interactions. Since ions are

weakly magnetized, we use the relaxation rates from Ref. [112], obtained using the

traditional Boltzmann collision operator to model this term,

νA
ν̄

=
3
√
π

16

(1 + 2
3
A)3/2

√
αA5/2

∞∫
0

dξξ2e−αξ2 σ
(2)

σ0

×
[
2

3
ξ2αAerf(ξ

√
αA)− ψ(ξ2αA)

]
. (6.21)

Here, σ0 ≡ πe4/(2kBT )
2, ξ2 ≡ u2/(2v2T1), A ≡ T1⊥/T1∥−1, α ≡ 1

3
(3+2A)/(1+A), ν̄ =

2
√
π/m1n1e

4/(kBT1)
3/2 is the reference collision frequency, σ(2) is the 2nd momentum

scattering cross section obtained using the potential of mean force computed from

the HNC approximation for the one component plasma [Eq. (27) in Ref. [112]] and

ψ(x) = erf(
√
x)− 2√

π

√
xe−x (6.22)

is the Maxwell integral.

The temperature evolution obtained by integrating Eqs. (6.19) and (6.20)] is shown

in Fig. 6.7. The plots are for the attractive (+−) interaction. As the previous sec-

tion shows, electron-ion collisions lead to different temperature relaxation rates in the

perpendicular and parallel directions. Thus, as a warm ion distribution collisionally

relaxes with electrons toward the equilibrium temperature, a temperature anisotropy

develops. The dashed lines are the results of solving the equations without the ion-

ion collisions, and solid lines account for both the ion-electron and ion-ion collisions.

Here, the initial ion distribution is an isotropic Maxwellian distribution with a tem-

perature, T1/T2 = 2.1, and the electrons are assumed to have a coupling strength,

Γ2 = 1, and magnetization strength, β2 = 10. The density ratio of ions to electrons

is n1/n2 = 10−2. Even though the initial distribution is isotropic, the ion-electron

collisional relaxation rate differs in the perpendicular and parallel directions, induc-
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ing temperature anisotropy during the relaxation process. Since the perpendicular

energy equilibration rate is much larger than the parallel, the anisotropy is such that

the parallel temperature is larger through the evolution. This anisotropy is slightly

relaxed by ion-ion collisions. For a positron density of 6.5× 107 cm−3, the perpendic-

ular temperature of antiprotons reach the equilibrium value by 3×10−5 s and parallel

by 4.5× 10−5 s.
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CHAPTER VII

Conclusion

The work presented in this dissertation has developed a generalized Boltzmann

kinetic theory that is applicable across coupling magnetization phase space. The

theory was used to compute two transport properties - friction and temperature

relaxation.

The generalized collision operator is a 5-D integral: 3-D velocity space and 2-

D physical space on the surface of a collision volume, inside of which the particles

interact via the potential of mean force. The size of the collision volume is determined

by the range of the potential of mean force. The theory incorporates the magnetic

field into the collisions by including the Lorentz force acting on the colliding particles

in the equations of motion describing binary collision. The equations of motion do

not have an analytic closed-form solution. Therefore, they are solved numerically to

obtain input for the collision operator; in contrast to the pre-calculated cross section

of the traditional Boltzmann collision operator. The traditional Boltzmann collision

operator for unmagnetized and weakly magnetized plasma and O’Neil’s Boltzmann-

like collision operator for the extremely magnetized plasma were obtained from the

generalized collision operator by simplifying the collision geometry and equations

of motion for the interacting particles in the limits of no magnetic field and high

magnetic field, respectively.
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In chapter III, the generalized collision operator was applied to compute the fric-

tion force acting on a massive test charge moving through a weakly coupled mag-

netized one-component plasma. First, the numerical implementation of the general-

ized collision operator was verified by comparing results from the unmagnetized and

weakly magnetized plasma cases with the accepted results of the traditional Boltz-

mann kinetic theory. Then the friction force calculation was extended to strongly

magnetized plasmas, where it was found that the strong magnetization gave rise to

the transverse force component in addition to the stopping power component. These

results were in good agreement with previous linear response theory results. The

work also extended the computation of the friction force to the extremely magne-

tized transport regime, which was not attainable using the linear response theory.

The transverse force mixes the parallel and perpendicular velocity components of the

projectile. Its sign changes if the test charge speed is either faster or slower than

approximately the thermal speed of the plasma species with which it predominately

interacts. The transverse force acts to increase the gyroradius of fast particles and to

decrease the gyroradius of slow particles.

Chapter IV described the extension of generalized Boltzmann kinetic theory to the

strongly coupled regime. The utility of the collision operator was shown by calculating

the friction force on a test charge moving through a background plasma at conditions

that range from weakly to strongly coupled and weakly to strongly magnetized. Good

agreement was found between the results from the GCO calculation and previous MD

simulations. The combination of strong coupling and strong magnetization introduced

a third “gyrofriction” component in the direction of the Lorentz force. Similar to the

transverse force, the magnitude and sign of the gyrofriction depend on the speed and

orientation of the projectile’s velocity with the direction of the magnetic field. It was

found to be zero when the projectile moves parallel or antiparallel to the magnetic

field and has a maximum magnitude when the test charge’s velocity is perpendicular
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to the magnetic field. The average trajectory of a projectile slowing down in a strongly

magnetized plasma was computed using the friction force data. It showed that the

transverse force and the gyrofriction influence the overall evolution of the projectile.

The transverse force changes the gyroradius and alters the stopping distance, and the

gyrofriction slightly modifies the gyrofrequncy resulting in a phase shift. The effect

of the gyrofriction on the trajectory of the projectile was found to be small due to

the large Lorentz force term.

In chapter V, the GCO was used to calculate the friction force on an oppositely

charged test charge moving through a strongly magnetized plasma. It was found

that the friction force strongly depends on the sign of the test charge, breaking the

fundamental symmetry of independence of transport properties on the sign of charge

that is present in weakly coupled weakly magnetized plasmas. This effect is analo-

gous to the Barkas effect observed in strongly coupled plasmas and charged particle

stopping in emulsion experiments. The Barkas effect in strongly magnetized plasmas

decreased the magnitude of the Bragg peak of the stopping power component of the

friction force and increased the transverse and gyrofriction components compared to

the like-charged case. Moreover, the magnitude of the gyrofriction becomes as large

as the transverse force in the oppositely-charged case. The stopping power of an

oppositely charged test charge is found to be maximum when moving perpendicular

to the magnetic field and minimum when moving parallel to the magnetic field. This

is opposite to the like-charged case, where the stopping power was maximum when

moving parallel to the magnetic field and minimum when moving perpendicular to

the magnetic field. The generalized Ohm’s law for the strongly magnetized plas-

mas from the first order moment method showed that the Barkas effect increases the

perpendicular resistivity and decreases the parallel resistivity by almost an order of

magnitude (at the example Γ = 1, β = 10 conditions).

In chapter VI, GCO was used to calculate the ion-electron temperature relaxation
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rate. The temperature relaxation rate was obtained from the energy exchange density

of a test charge slowing down in a strongly magnetized plasma. It was found that

when the plasma is strongly magnetized, the relaxation rates change and also cause

the rates in the parallel and perpendicular directions to no longer be equal. Different

parallel and perpendicular temperature relaxation rates cause temperature anisotropy

to develop when the ions and electrons equilibrate to a common temperature. The

relaxation rates were also found to depend on the sign of the charge of the interacting

particles, known as the Barkas effect. The Barkas effect increases the difference

between the parallel and perpendicular relaxation rates. The parallel relaxation rate

in the case of oppositely charged interaction was found to be inversely proportional

to the magnetic field strength in the strongly magnetized regime.

By extending the kinetic theory to the transport regimes with the gyroradius

smaller than the characteristic scattering length, we now have a theory to understand

the fundamental properties of strongly magnetized plasmas. This dissertation has

demonstrated that strong magnetization fundamentally alters how momentum and

energy are transported, resulting in several non-intuitive physical results. These new

results may be observed in many magnetized plasma experiments, including ultra-

cold neutral plasmas [8, 24, 26] and antimatter traps [3]. Modeling these experiments

requires the computation of macroscopic transport coefficients like diffusion [13, 49,

54, 113], conductivity [114], shear viscosity [115], and other characteristics like the

dynamic structure factor [116].

Future works plan to develop the theory further to compute the macroscopic

transport properties measured in magnetized ultra-cold neutral plasma experiments.

This can be done by developing a magnetohydrodynamic (MHD) theory by solving the

generalized kinetic theory using the Chapman-Enskog method. Since the generalized

collision operator is quadratically dependent on the distribution function like the

traditional Boltzmann collision operator, most of the mathematical structure of the
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traditional Chapman-Enskog derivation of the weakly magnetized plasmas will carry

over. The main change will be the evaluation of the “bracket integrals” that are

solved for the transport coefficients. These are moments (velocity-space integrals) of

the collision operator with polynomial coefficients. In a weakly magnetized plasma,

these integrals can be done analytically due to the closed-form solution of the cross

section. However, for the generalized collision operator, these integrals need to be

evaluated numerically by solving particle trajectories. These transport coefficients

can be used to model the plasma expansion, and results can be compared directly

with the experiments [26].

Future works are also planned to explore the novel plasma physics of antihydrogen

synthesis at ALPHA. These works focus on understanding how the strong magneti-

zation and strong coupling modify the temperature anisotropy relaxation rate and

the rate at which electrons sympathetically cool antiprotons. The temperature evolu-

tion of the antiprotons and electrons (or positrons) can be obtained from a two-fluid

description of the plasma. This can be achieved by taking the energy moment of

the generalized Boltzmann equation for both the species and modeling the cyclotron

cooling of the electrons by including an energy loss term based on the classical cy-

clotron emission formula. Strong magnetization is also expected to modify the rate

at which antihydrogen is produced. The dominant pathway in which antihydrogen is

produced in ALPHA is through the three-body recombination process involving two

positrons and one antiproton. Future works plan to calculate the recombination rate

by studying the three particle collisions in strongly magnetized plasmas.
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APPENDIX A

Numerical Evaluation of the Friction Force

Integral

Three components of the friction force are obtained from the friction force density

using the following definitions

Fv =
R12 · v̂0

n1

, (A.1a)

F× =
R12 · (v̂0 × n̂)

n1

, (A.1b)

Fn =
R12 · n̂
n1

, (A.1c)

where the friction force density is (Eq. 3.5)

R12 =
n1n2m1

π3/2v3T

∫
d3v2

∫
S−

ds |u · ŝ|(v′
1 − v0) exp

(
−v22
v2T

)
. (A.2)

The unknown quantity here is the postcollision velocity and it is obtained by solving
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the equations of motion (Eqs. (3.1) and (3.2)).

(m1 +m2)
dV

dt
= e

(V
c
×B

)
− em12

m2

(u
c
×B

)
(A.3)

m12
du

dt
= −∇ϕ(r) + em2

12

m2
2

(u
c
×B

)
− em12

m2

(V
c
×B

)
. (A.4)

Since there is no closed-form solution of the equations of motion of the particles,

analytic solution of these integrals are not possible. Thus the friction force density

integral (Eq. A.2) is solved numerically. For this, the equations are first made dimen-

sionless by normalizing the time with the plasma frequency, distance with the Debye

length and velocity with the Debye length times the plasma frequency. Using the

scaled variables we get,

R12 =
mrkBTn1

8
√
6π5/2Γ3/2λD

∫
ṽ22 sin θv2dθv2dϕv2dṽ2

×
∫
S̃−

R̃2
s sin θRsdθRsdϕRs|ũ · ŝ|(ṽ′

1 − ṽ0) exp

(
−ṽ22
2

)
, (A.5)

and

dṼ

dt̃
=

β

mr + 1
(Ṽ × ẑ)− βmr

(mr + 1)2
(ũ× ẑ), (A.6)

dũ

dt̃
=

βmr

mr + 1
(ũ× ẑ)− β(Ṽ × ẑ) +

(mr + 1)
√
3Γ3/2

mr

e−r̃

r̃3

(
1 + r̃

)
r̃. (A.7)

Here, the collision volume is taken as a sphere of radius 3.5λD and the friction force

density integral is written in spherical polar coordinates for both velocity and space.

The variables with tilde (˜) on top represent scaled variables.

The equations of motion (Eq. (A.6) and Eq. (A.7)) are an initial value problem.

The initial velocity of the background particle and initial position in the relative
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coordinates given by each point in the 5-D integral

r̃i =


R̃s sin θRs cosϕRs

R̃s sin θRs sinϕRs

R̃s cos θRs

 (A.8)

ṽ2i =


ṽ2 sin θv2 cosϕv2

ṽ2 sin θv2 sinϕv2

ṽ2 cos θv2

 (A.9)

and the initial velocity of the projectile ṽ1i is ṽ0. The unit normal vector is ŝ = r̃i/R̃s.

Using Eq. (2.10), ṽ0 and ṽ2i were transformed to the relative and the center of mass

coordinates. For initial states that satisfy ũ · ŝ < 0, the particle trajectories were

obtained by solving the equations of motion using the ”DOP 853” method. This is an

adaptive Runge-Kutta method of order 8 based on method of Dormand & Prince [89]

with local error estimation and step size control based on embedded formulas of orders

5 and 3.

The adaptive time stepping method considerably speeds up the trajectory cal-

culations compared to fixed time methods. When the particles are far away, their

interactions are weak, and large time steps can easily resolve the trajectories. How-

ever, small steps are needed to resolve the interaction when particles are very close.

The adaptive time-stepping method would speed through the trajectory calculations

with large strides when the particles are far away and tiptoe through with small steps

when the particles are very close. In contrast, a fixed time step method is limited to

the smallest time step required to resolve collisions when particles are close for the

entirety of the trajectory calculation.

The trajectory calculations were stopped when the particle crossed the collision

volume, i.e., |̃r| > R̃s. In order to calculate the change of projectile velocity (ṽ′
1−ṽ0) at
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the surface of the collision volume, a dense output [89] of order 7 is obtained between

the time steps just before crossing the collision volume (|̃r| < R̃s) and just after

crossing the collision volume (|̃r| > R̃s) and solved for (|̃r| = R̃s) using Wijngaarden-

Dekker-Brent method [85].

The integrals for computing different components of the friction force are five-

dimensional: three in the velocity space and two in the coordinate space. Extending

the standard one-dimensional integration techniques to evaluate the five-dimensional

integral becomes very expensive. To efficiently evaluate this high-dimensional inte-

gral, it was solved using the Monte Carlo integration technique. The Monte Carlo

integration makes very few assumptions about the integrand and does not require it

to be analytic or continuous. It evaluates the integrand at random sample points and

estimates the integral based on that. Since the accuracy increases only as the square

root of the number of integration points used, a large number of points are required

to achieve a modest accuracy.

Simple Monte Carlo integration uses uniform sampling. It is efficient and con-

verges fast only when the integrand does not vary much. When the integrand has

sharp peaks, most points sampled contribute almost nothing and are wasted. The

simple Monte Carlo integration technique is improved to handle the sharp peaks

by using nonuniform sampling. In this method, sampling points are chosen in such a

manner that they are more concentrated where the integrand is peaked. This method

is commonly known as the importance sampling method [85]. The integral is rewrit-

ten in a way such that the points are sampled from a nonuniform probability density

(p).

I =

∫
f dV =

∫
f

p
p dV. (A.10)

The ideal sampling density is the one that makes f/p a constant, which requires a

perfect knowledge of the integrand. Thus, a probability density that closely matches

the integrand is used in practice.
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Iteration Result Weighted average
1 36(20) 36(20)
2 17.0(1.3) 17.1(1.3)
3 16.50(94) 16.71(76)
4 16.97(75) 16.84(53)
5 16.55(84) 16.76(45)
6 16.80(76) 16.77(39)
7 17.01(76) 16.82(34)
8 15.77(76) 16.64(31)
9 16.50(59) 16.61(28)
10 16.35(55) 16.55(25)

Table A.1: VEGAS results for different iterations of the stopping power (kBT/λD ×
10−3) during the warmup run. Here, Γ = 0.1, β = 10, v = 2.5vT and θ = 22.5◦.

VEGAS is an adaptive Monte Carlo integration technique primarily based on

importance sampling [86]. It adaptively constructs a separable probability density of

the form

p ∝ hx(x)hy(y)hz(z)... (A.11)

At each iteration, VEGAS samples the integrand using the h-functions (starting with

a uniform probability density). Along with the estimate for the integral, it also creates

a histogram of the integrand. This is then used to define an improved form of the

h-functions for the next iteration.

VEGAS is very effective for the integrands that are separable and non-separable

integrands with large peaks. However, it is less effective when multiple small peaks

are aligned with the diagonals of the integration domain. Recent work [88] fixes

this weakness by adding a second adaptive strategy - adaptive stratified sampling.

This method divides the integration volume into many subregions, and the integral is

evaluated in these subregions separately. It adaptively reduces the overall integration

error by concentrating sampling points in the regions where the variance is largest [85].

We use this improved version of VEGAS, provided by Prof. Peter Lepage, as a

python module [87]. The module is written in Cython and supports multi-processor

evaluation of integrands using MPI. This implementation is as fast as compiled For-
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Iteration Result Weighted average
1 17.02(54) 17.02(54)
2 17.29(59) 17.14(40)
3 16.85(51) 17.03(32)
4 16.25(44) 16.77(26)
5 16.31(45) 16.66(22)
6 16.97(61) 16.69(21)
7 16.82(52) 16.71(19)
8 16.94(48) 16.75(18)
9 17.10(46) 16.79(17)
10 16.60(42) 16.77(16)

Table A.2: VEGAS results for different iterations of the stopping power (kBT/λD ×
10−3) during the main run. Here, Γ = 0.1, β = 10, v = 2.5vT and θ = 22.5◦.

tran or C. The computational cost of solving the integral comes from computing the

particle trajectories at the sampling points. A faster evaluation is achieved by writing

the integrand, including the trajectory calculation in Fortran, and compiling it using

the f2py package, which is distributed with the Python NumPy library.

Twenty iterations of VEGAS grid adaptation and the integral estimate were made.

The first ten iterations are warmup runs that train the VEGAS grid and are discarded.

The results of the warmup runs are shown in table A.1. Here, the weight for the

weighted average is the inverse of the variance of each iteration. The VEGAS adapts

quickly to the integrand taking only two iterations. The final ten iterations are the

main run. The results are shown in table A.2. Since it starts on an already trained

grid, the results of different iterations are very close and the error is reduced.
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temperature anisotropy in a strongly coupled magnetized plasma,” Phys. Rev.
E, vol. 95, p. 013209, Jan 2017.

[115] B. Scheiner and S. D. Baalrud, “Viscosity of the magnetized strongly coupled
one-component plasma,” Phys. Rev. E, vol. 102, p. 063202, Dec 2020.
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