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ABSTRACT

We study the Hodge theory of twisted derived categories and its relation to the period-index

problem. Our main contribution is the development of a theory of twisted Mukai structures

for topologically trivial Brauer classes on arbitrary smooth proper varieties and in families.

As applications, we construct Hodge classes whose algebraicity would imply period-index

bounds; construct new counterexamples to the integral Hodge conjecture on Severi-Brauer

varieties; and prove the integral Hodge conjecture for derived categories of Deligne-Mumford

surfaces. Finally, we solve the period-index problem for the complex-analytic Brauer group

of a general complex torus of dimension at least three.
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CHAPTER I

Introduction

I.1: The period-index problem

Let K be a field. A finite-dimensional (noncommutative) algebra A/K is a central simple

algebra if its center is K, and the only two-sided ideals of A are 0 and A itself. The simplest

examples of central simple algebras are the matrix algebras Mn(K), for each n > 0. In fact,

for any central simple algebra A/K, there is an isomorphism A ⊗Ksep ≃ Mn(Ksep) where

Ksep is a separable closure of K; the integer n is called the degree of A.

Two central simple algebras A and B over K are Morita-equivalent if there exist integers

r, s > 0 and an isomorphism

A⊗Mr(K) ≃ B ⊗Ms(K).

The set of Morita-equivalence classes of central simple algebras with tensor product forms a

group Br(K), the Brauer group of K.

A fundamental problem, and a precursor to the period-index problem described below, is

to determine which fields have a trivial Brauer group. Some classical results are as follows:

• If K is separably closed, then the Brauer group of K is trivial.

• If K is a finite field, then the Brauer group of K is trivial, by Wedderburn’s little

theorem.

• If K has transcendence degree 1 over an algebraically closed field, then the Brauer

group of K is trivial, by Tsen’s theorem.

On the other hand, many fields of interest (such as local or global fields, or the real numbers

R, or suitable transcendental extensions of all of the above) have nonzero Brauer groups.

For these fields, one tries instead to get a handle on the complexity of the Brauer classes

themselves.
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It is a general fact that Br(K) is a torsion group, and the order of a class α ∈ Br(K)
is called its period, per(α). One may also consider the index ind(α), which is the greatest

common divisor (in fact, minimum) of the degrees of central simple algebras of class α.

(1) The period of α divides its index.

(2) The period and the index of α have the same prime factors.

The period-index problem is the issue of determining a bound on ind(α) in terms of per(α):

Period-Index Problem. Determine ε > 0 such that ind(α) divides per(α)ε.

Generally speaking, one seeks an ε which works for any α ∈ Br(K). We mention a

few notable examples. According to the Albert–Hasse–Noether–Brauer theorem [Roq05],

period and index coincide in the Brauer group of a local field. (Indeed, any Brauer class is

represented by a cyclic algebra of degree equal to the period). Artin, in the context of his

work on Severi–Brauer varieties over C2 fields, conjectured that period and index coincide for

Brauer classes over C2 fields [Art82]. Finally, Saltman showed that ind(α) divides per(α)2

for a Brauer class α on a p-adic curve, assuming that per(α) is prime to p. These results

contribute to the general picture that Brauer groups of fields with bounded “dimension” (for

instance, cohomological dimension or Tsen rank) should have a uniform period-index bound

ε.

We now turn to the conjectural picture, which seems to have been folklore for some time

before its appearance in unpublished notes of Colliot–Thélène [CT01]:

Period-Index Conjecture. Let k be an algebraically closed field, and let K/k be a finitely

generated extension of transcendence degree d. Then for any α ∈ Br(K),

ind(α) ∣ per(α)d−1.

One could formulate the conjecture more generally for Cd fields. We note, however, that

the analogous conjecture for fields of cohomological dimension d is false. In fact, Merkurjev has

constructed a family of fields Ki of cohomological dimension 2 and Brauer classes αi ∈ Br(Ki)
of period 2 such that ind(αi) is unbounded [Mer91]. There are also versions when k is a

finite or p-adic field:

• With k = Fq, one conjectures that for α ∈ Br(K), ind(α) ∣ per(α)d.

• With k = Qp, one conjectures that for α ∈ Br(K), ind(α) ∣ per(α)d+1.
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It is not known if there is a clean formulation of the conjecture which covers all known and

expected cases.

The period-index conjecture is trivial for d = 0 and d = 1. A crucial result is the theorem

of de Jong [dJ04], which proves the conjecture when d = 2 and per(α) is prime to the

characteristic of k. De Jong’s result was later extended by Lieblich [Lie08] to the general

case:

Theorem I.1 (de Jong, Lieblich). Let k be an algebraically closed field, and let K/k be a

finitely generated extension of transcendence degree 2. Then for any α ∈ Br(K),

ind(α) = per(α).

On the other hand, the picture for an extension K/k of transcendence degree at least

3 is obscure. In fact, there is no known example of a finitely generated extension K/k of

transcendence degree at least 3 over an algebraically closed, and an integer ε > 0, such that

ind(α) ∣ per(α)ε

for all α ∈ Br(K).

I.2: Hodge theory of twisted derived categories

We now introduce the main point of view of this thesis. We will adopt the viewpoint of

twisted sheaves, which were introduced by Giraud [Gir71], but became widespread after the

appearance of Căldăraru’s thesis [Căl00]. The importance of twisted sheaves to the study of

all aspects of the Brauer group was underscored by their role in de Jong’s proof of Gabber’s

result that Br(X) = H2
ét(X,Gm) for a scheme with an ample line bundle [dJ03].

First, given a scheme X and a class α ∈ H2
ét(X,Gm), one may consider the abelian category

Coh(X,α) of α-twisted sheaves in the sense of Căldăraru [Căl00].

The Grothendieck group K0(X,α) of Coh(X,α) admits a rank homomorphism

rk ∶ K0(X,α) → Z,

and a key fact is that the index of α coincides with the positive generator of rk(K0(X,α)).

Remark I.2. We make a simple observation in the case α = 0. There is a forgetful homomor-

phism from the algebraic K-group K0(X) to the topological K-group Ktop
0 (X), which is the

Grothendieck group of complex topological vector bundles on X. Moreover, the forgetful
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homomorphism admits a factorization

K0(X) Ktop
0 (X)

Hdg(X)

(⋆)

where Hdg(X) ⊆ Ktop
0 (X) is the subgroup of classes in Ktop

0 (X) whose Chern characters are

of Hodge type in each degree. The question of whether (⋆) is surjective is a variant of the

integral Hodge conjecture on X.

We now explain an analogous picture for K0(X,α), relying on a framework recently

introduced by Perry [Per22]. Begin with a C-linear triangulated category C (suitably

enhanced), which admits an admissible embedding into a category of the form Dperf(Y ), for

Y a smooth, projective variety over C; such a category C will be called geometric. To a

geometric category C, Perry associates a natural weight-0 Hodge structure Ktop
0 (C), satisfying

several properties:

First, in the case when C = Dperf(X) for a smooth, projective variety X, Ktop
0 (C) is

naturally isomorphic to Ktop
0 (X), with the Hodge structure induced by the rational Chern

character isomorphism

Ktop
0 (X) ⊗Q ≃⊕

i

H2i(X,Q)(i).

Second, there is a natural homomorphism from the Grothendieck group K0(C) to Ktop
0 (C),

admitting a factorization

K0(C) Ktop
0 (C)

Hdg(C)

(⋆)

where Hdg(C) ⊆ Ktop
0 (C) is the subgroup of integral Hodge classes.

Integral Hodge Conjecture (Perry). The homomorphism (⋆) is surjective.

Remark I.3. The integral Hodge conjecture for C is an analogue of the classical integral Hodge

conjecture [Hod52], which asserts that for a smooth projective variety X over C, the cycle

class map

CHk(X) → Hdg2k(X,Z(k)) ⊆ H2k(X,Z(k))

is surjective in each degree.
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Returning to the case of twisted sheaves, one may take C = Dperf(X,α), the derived

category of α-twisted sheaves. A result of Bernardara [Ber09] implies that Dperf(X,α) is

geometric, so Perry’s formalism applies. In particular, we obtain a diagram

K0(X,α) Ktop
0 (X,α)

Hdg(X,α)

(⋆)

where we have written Ktop
0 (X,α) = Ktop

0 (Dperf(X,α)), and likewise with Hdg(X,α).
It is natural, then, to divide the period-index problem for α ∈ Br(X) into two parts:

(1) Construct a Hodge class v ∈ Hdg(X,α) of rank per(α)dimX−1.

(2) Show that v is algebraic, i.e., lies in the image of an element of K0(X,α).

In order to carry out step (1), it is necessary for one to be able to compute the Hodge

structure Ktop
0 (X,α).

Let X be a smooth, projective variety over C. From the exponential sequence, there is

an exact sequence

0 H2
(X,Q(1))

H2(X,Z(1))+NS(X)Q
Br(X) H3(X,Z(1))tors 0.

A Brauer class α ∈ Br(X) is topologically trivial if it lies in the kernel of the right-hand map.

Equivalently, there is an element B ∈ H2(X,Q(1)) mapping to α; such a B is called a rational

B-field.

Theorem I.4. Let X be a smooth, projective variety over C, and let α ∈ Br(X) be topologically

trivial.

(1) There is an isomorphism of abelian groups between Ktop
0 (X,α) and Ktop

0 (X).

(2) Under the isomorphism from (1), the Hodge structure on Ktop
0 (X,α) may be identified

with the Hodge structure on Ktop
0 (X) induced by the isomorphism

Ktop
0 (X) ⊗Q ≃⊕

i

H2i(X,Q)(i), v ↦ exp(B) ⋅ ch(v),

where B is any rational B-field for α.

Theorem I.4 says that the Hodge structure Ktop
0 (X,α) is a form of twisted Mukai structure,

a notion which has been used extensively in the context of twisted derived categories of K3

surfaces since the work of Huybrechts and Stellari [HS05].
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I.3: Applications to the period-index problem

There is a natural rank homomorphism from Ktop
0 (X,α), which is compatible with the rank

morphism from K0(X,α):

K0(X,α) Ktop
0 (X,α)

Z.

We define Hodge-theoretic index indH(α) as the positive generator of the image of Hdg(X,α)
under the rank homomorphism. We will show (among other things) that

per(α) ∣ indH(α) ∣ ind(α).

In particular, if one assumes the period-index conjecture, then it must be the case that

indH(α) is bounded by per(α)dimX−1. We show this up to a constant factor:

Theorem I.5. Let α be a topologically trivial Brauer class. Then

indH(α) ∣ per(α)dimX−1 ⋅ ((dimX − 1)!)dimX−2.

While the period-index problem is concerned with upper bounds for ind(α), it is worth

noting that there are few methods available for producing lower bounds, with perhaps the

most notable (in the global setting) being Gabber’s method [CT02], which works on products

of curves. In many cases where α is topologically trivial and the cohomology ring of X is

well understood, one may compute indH(α) concretely using Theorem I.4, which results in a

lower bound for α. In this way, one can recover (and generalize) a result of Kresch:

Theorem I.6 (Kresch). Let X be a smooth, projective variety over C. For b ∈ H2(X,Z(1)),

let α ∈ Br(X)[2] be the 2-torsion Brauer class associated to b. If ind(α) = 2, then there exists

τ ∈ Hdg4(X,Z(1)) such that

b2 + τ ≡ 0 mod 2

The Brauer class α associated to b is given by taking b/2 as the rational B-field. The

importance of Kresch’s result is in its converse implication; that is, it allows one to construct

examples of Brauer classes α with per(α) = 2 and ind(α) = 4. When X is a threefold, these

examples are sharp with respect to the period-index conjecture. As an extension of Kresch’s

result, we obtain a Hodge-theoretic obstruction for α to have index 4:
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Theorem I.7. Let X be a smooth, projective variety over C. For b ∈ H2(X,Z(1)), let

α ∈ Br(X)[2] be the 2-torsion Brauer class associated to b. If ind(α) = 4, then there exist

σ ∈ NS(X), τ ∈ Hdg4(X,Z(1)) such that

(I.3.1) b2 + σ ⋅ b + τ ≡ 0 mod 2.

The interesting case is when dimX = 3. On the one hand, the period-index conjecture

predicts that ind(α) = 4. On the other hand, we do not know if the condition (I.3.1) is

satisfied by all degree 2 cohomology classes b on threefolds in general, although it is satisfied

in all examples known to us.

I.4: Applications to the integral Hodge conjecture

In his 1950 ICM address [Hod52], Hodge conjectured that if X is a smooth, projective variety,

then for each k ≥ 0, the cycle class map

cl ∶ CHk(X) → H2k(X,Z(k))

surjects onto the subspace of integral Hodge classes

Hdg2k(X,Z(k)) = {v ∈ H2k(X,Z(k)) ∶ vC ∈ F0H2k(X,C(k))}.

Atiyah and Hirzebruch observed Hodge’s formulation would imply that each torsion class

v ∈ H2k(X,Z(k)) lies in the image of cycle class map, and constructed counterexamples with

topological methods. As a result, Hodge’s formulation (which, we emphasize, is known to be

false) is called the integral Hodge conjecture, whereas the rational Hodge conjecture is the

analogous statement with rational coefficients.

We note that the method of Atiyah and Hirzebruch (and subsequent authors, notably

Totaro [Tot97]) is based on approximating the Deligne–Mumford stack BG for G a finite

group. On the other hand, it is not difficult to see from basic representation theory that the

integral Hodge conjecture holds for the category Dperf(BG), illustrating the principle that

Perry’s integral Hodge conjecture for categories is more robust than the usual integral Hodge

conjecture for cohomology.

Theorem I.8. Let X be a smooth, proper Deligne–Mumford stack of dimension at most 2.

Then the integral Hodge conjecture holds for Dperf(X).

If X is a smooth, proper variety, then Theorem I.8 follows from Lefschetz’s (1,1) theorem,

along with the degeneration of the Atiyah–Hirzebruch spectral sequence relating singular

7



cohomology and topological K-theory. In general case, Theorem I.8 reduces to the case of

D(X,α) when X is a smooth, proper orbifold of dimension 2, and the proof boils down to an

application of de Jong’s result that per(α) = ind(α).
The Hodge-theoretic index introduced above also provides a method for producing

new families of counterexamples to the integral Hodge conjecture, both in its categorical

and cohomological forms. The idea is to begin with a Brauer class α with a previously

known nontrivial lower bound on the index, so that per(α) < ind(α). Then one constructs

a Hodge class v in Ktop
0 (X,α) of rank per(α); the algebraicity of v would imply that

per(α) = ind(α). For instance, using lower bounds of Gabber for certain Brauer classes on

products of curves [CT02], we show the following:

Theorem I.9. Let C be a curve of genus ≥ 2, and let E1, . . . ,Ek be elliptic curves for 2 ≤ k ≤ g.

Suppose that C,E1, . . . ,Ek are very general, and let X = C ×∏Ei.

(1) For each prime `, there is a Brauer class α` such that the integral Hodge conjecture

fails for Dperf(X,α`).

(2) For each Severi–Brauer variety of class P of class α`, the integral Hodge conjecture

fails for P.

We note that the counterexamples to the integral Hodge conjecture from (2) are topologi-

cally rather simple: Each Severi–Brauer variety over a product of curves is (topologically)

the projectivization of a complex (topological) vector bundle. We prove a similar result for

Severi–Brauer varieties over abelian threefolds:

Theorem I.10. Let A be an abelian threefold, with α ∈ Br(X)[2] such that ind(α) > 2. For

any Severi–Brauer variety P→X of class α, the integral Hodge conjecture fails for P

In contrast to Theorem I.9, we do not assert that the integral Hodge conjecture fails for

D(X,α). In fact, we expect it to be true.

I.5: The period-index problem for complex tori

Let X be a connected complex manifold. An Azumaya algebra A over X is a sheaf of

OX-algebras which is locally isomorphic to a matrix OX-algebra Mn(OX). Since the rank of

an Azumaya algebra A is a square, one defines the degree of A to be
√

rkA. Two Azumaya

algebras A and B are Morita equivalent if there exist vector bundles E and F , and an

isomorphism of OX-algebras

A⊗ End(E) ≃ B⊗ End(F ).

8



The Brauer group Br(X) is the group of Morita-equivalence classes of Azumaya algebras

with tensor product.

Given a Brauer class α, the period per(α) of α is its order in Br(X), which is a torsion

group. The index ind(α) of α is the greatest common divisor of the set of degrees of Azumaya

algebras of class α. It follows from a general result of Antieau and Williams that per(α)
divides ind(α), and that they share prime factors [AW15]. In analogy with the algebraic case

considered above, the period-index problem asks for an integer ε > 0 such that

ind(α) ∣ per(α)dimX−1.

Little is known about the period-index problem for Brauer groups of non-algebraic complex

manifolds beyond the case of surfaces. When X is an analytic K3 surface, an analysis of

the argument given in [HS03] shows that period and index coincide, in accordance with de

Jong’s theorem. Moreover, the same argument applies to the case when X is a 2-dimensional

complex torus. When X is a Stein manifold, the period-index problem is equivalent to the

topological period-index problem by the Grauert–Oka principle, and one may obtain bounds

from the work of Antieau and Williams [AW21] (Remark VIII.2).

If X is a complex torus of dimension g with α ∈ Br(X), then there is a näıve upper bound

on ind(α) given by the annihilator Ann(α), which is the least degree of a finite isogeny

f ∶ X ′ → X such that f∗α = 0. When NS(X) = 0, one may compute Ann(α) explicitly

(Lemma VIII.15), and as α ranges over Br(X)[n], Ann(α) attains any positive integer value

which divides ng. Our main result is that for X general, Ann(α) is also a lower bound for

ind(α):

Theorem I.11. Let X be a general complex torus of dimension g ≥ 3, and let α ∈ Br(X).

Then

ind(α) = Ann(α)

More precisely, Theorem I.11 holds for a complex torus X with NS(X) = Hdg4(X) = 0.

The proof of Theorem I.11 is based on an argument of Voisin [Voi02] showing that a general

complex torus of dimension at least three does not satisfy the resolution property, along

with an analysis of the Hodge-theoretic properties of α-twisted sheaves. As an immediate

consequence of Theorem I.11, we obtain the following result:

Corollary I.12. Let X be a general complex torus of dimension g ≥ 3. For each n > 0, there

exists a Brauer class α with per(α) = n, ind(α) = ng.

In particular, the extension of the period-index conjecture to even the most familiar

compact Kähler manifolds is false. By contrast, we prove the period-index conjecture for
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abelian threefolds in forthcoming work with Perry [HP22].

One may interpret Theorem I.11 as the statement that the rank of any locally free α-

twisted sheaf is divisible by Ann(α). In fact, we show that the rank of an arbitrary α-twisted

coherent sheaf on X is divisible by Ann(α) (Theorem VIII.17), so that using a coherent index

(Definition VIII.4) does not correct for the failure of the expected period-index bounds.
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CHAPTER II

Twisted Derived Categories

II.1: Linear categories

The content of §II.2 is rather formal, so we work in a greater level of generality than is

necessary for the rest of the paper. Note, however, that for the main results of the paper, it is

sufficient to consider smooth, separated Deligne–Mumford stacks over a field of characteristic

0.

In general, we follow the conventions and terminology of [Per19], with the exception

that our base S is permitted to be a perfect algebraic stack, as in [BZFN10]. In contrast

to [BZFN10], we avoid for simplicity the language of derived algebraic geometry.

Definition II.1. An algebraic stack S is perfect if the following conditions hold:

(1) Dqc(S) is compactly generated.

(2) The compact and perfect objects of Dqc(S) coincide.

(3) The diagonal of S is affine.

Quasi-compact tame Deligne–Mumford stacks with affine diagonal are perfect [HR17]. For

example, separated Deligne–Mumford stacks of finite type over a field of characteristic 0 are

perfect.

Let S be a perfect algebraic stack. Then Dperf(S), with the tensor product of complexes,

may be regarded as a commutative algebra object of the category Catst of small, idempotent-

complete stable ∞-categories.

An S-linear category is a Dperf(S)-module object of Catst. The collection of S-linear

categories forms an ∞-category CatS = ModDperf(S)(Catst), with a symmetric monoidal

structure given by the tensor product of Dperf(S)-modules C ⊗S C′. Moreover, given a

C,C′ ∈ CatS, there is a mapping object FunS(C,C′) ∈ CatS, satisfying the property that

MapCatS
(C,C′) = FunS(C,C′)≃

11



where the left-hand side denotes the morphism space in the category CatS, and the right-

hand side denotes the maximal ∞-subgroupoid of FunS(C,C′), obtained from FunS(C,C′) by

discarding non-invertible 1-morphisms.

Example II.2. Let f ∶X → S be a morphism. Then Dperf(X) is an S-linear category, with

the action of Dperf(S) given by

E ↦ E ⊗ f∗(F ), E ∈ Dperf(X), F ∈ Dperf(S).

Let T → S be a morphism, and let C be an S-linear category. The base change CT is the

tensor product

C⊗Dperf(S) Dperf(T )

regarded as an T -linear category.

Example II.3. Let T → S be a morphism between perfect algebraic stacks, and let C =
Dperf(S). Then

CT ≃ Dperf(T )

by [BZFN10, Theorem 1.2]

II.2: Twisted derived categories

In this section, we establish some basic notation and results about twisted derived categories.

We begin by briefly introducing the abstract theory, due to Toën and extended by Antieau–

Gepner [AG14] and Antieau [Ant17].

Let X be a perfect stack. An X-linear category is a twisted derived category over X if

there exists an fppf cover U → X such that CU is equivalent to Dperf(U). According to a

result of Toën [Toë12], any twisted derived category C is determined up to equivalence by a

class

[C] ∈ dBr(X) = H2
ét(X,Gm) ×H1

ét(X,Z),

where dBr(X) is the derived Brauer group of X. Briefly, one may construct [C] as

follows: the higher stack IsoX(C,Dperf(X)) of X-linear equivalences is a torsor under

G = AutX(Dperf(X)) = BGm ×Z, and is determined up to isomorphism by the cohomology

class [C] ∈ H1
ét(X,G). Conversely, for any α ∈ dBr(X), there exists an X-linear category C,

unique up to equivalence, with α = [C].

Notation II.4. For α ∈ dBr(X), we write Dperf(X,α) for the choice of a category C with

[C] = α.
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We warn the reader that Dperf(X,α) is unique up to potentially non-unique X-linear

equivalence. More precisely, if C and C′ are twisted derived categories categories with

[C] = [C′], then the set of isomorphism classes of X-linear equivalences C ≃ C′ is a torsor

under Pic(X) ×H0
ét(X,Z).

Example II.5. Let X→X be a Gm-gerbe, and let D1
perf(X/X) be the derived category of

perfect 1-twisted complexes on X. When the gerbe structure on X is understood, we simply

write D1
perf(X). Then D1

perf(X) is a twisted derived category over X, with

[D1
perf(X)] = [X] ∈ H2

ét(X,Gm) ⊆ dBr(X).

To prove this, observe that IsoX(D1
perf(X),Dperf(X)) may be identified with Pic−1(X/X) ×

H0
ét(X,Z), where the first factor is the stack of −1-twisted line bundles on X/X. Then

Pic−1(X/X) →X is a Gm-gerbe of class [X] (cf. [Shi21, Prop. 2.11]).

Example II.6. For n > 0, let X→X be a µn-gerbe. As in the previous example, the X-linear

category D1
perf(X) of perfect 1-twisted complexes on X is a twisted derived category of class

α ∈ H2
ét(X,Gm), where α is the image of [X] under the homomorphism

H2
ét(X,µn) → H2

ét(X,Gm).

In fact, there is an orthogonal decomposition

(II.2.1) Dperf(X) = ⟨D0
perf(X),D1

perf(X), . . . ,Dn−1
perf(X)⟩,

where Dk
perf(X) is the category of perfect k-twisted complexes on X, and D0

perf(X) is the

pullback of Dperf(X).

Example II.7. Let π ∶ P → X be a Severi–Brauer variety of relative dimension n − 1.

According to a result of Bernardara [Ber09] (and [BS21] in the case of an algebraic stack X),

there is an X-linear semiorthogonal decomposition

(II.2.2) Dperf(P) = ⟨Dperf(P)0,Dperf(P)1, . . . ,Dperf(P)n−1⟩,

where Dperf(P)0 is the pullback of Dperf(X), and for any k, Dperf(P)k is a twisted derived

category over X of class [P]k, where [P] is the class of P in the cohomological Brauer group

of X.

Warning II.8. We warn the reader that we follow Giraud’s convention [Gir71, Example

V.4.8] regarding the Brauer class of a Severi–Brauer variety, which differs from Bernardara’s
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convention by a sign.

Remark II.9. When [P] = 0, (II.2.2) recovers Beilinson’s semiorthogonal decomposition for

a projective bundle, with Dperf(P)k = π∗Dperf(X) ⊗OP(1) for any tautological line bundle

OP(1).

Remark II.10. We explain the compatibility between Example II.7 and Example II.6. Let X

be a separated scheme of finite type over C. Let X → X be a µn-gerbe, and suppose that

there exists a Severi–Brauer variety P→X which represents the image of [X] in H2
ét(X,Gm).

We observe that PX → P is a projective bundle. Consider the pullback diagram

PX P

X X

π′

f ′

π

f

Let Pic−1(PX)1 be the set of relative hyperplane bundles on PX/X which are −1-twisted for

the gerbe structure PX → P. Then Pic−1(X)1 is nonempty (cf. the proof of [BR19, Theorem

6.2], for instance), and moreover it is a torsor under Pic(X).

Lemma II.11. For any OPX
(1) ∈ Pic−1(PX)1, the Fourier–Mukai functor

ΦOPX(1)
∶ D1

perf(X) → Dperf(P)1

is an X-linear equivalence of categories.

Proof. From the semiorthogonal decompositions above, tensoring with OPX
(1) induces an

equivalence

D1
perf(X) ⊗X Dperf(P) → D0

perf(X) ⊗X Dperf(P),

and an equivalence

Dperf(X) ⊗X Dperf(P)0 → Dperf(X) ⊗X Dperf(P)1,

where each category is regarded as an admissible subcategory of PX by pullback on both

factors. Comparing the two, we see that tensoring with OPX
(1) induces an equivalence

D1
perf(X) ⊗X Dperf(P)0 → D0

perf(X) ⊗X Dperf(P)1,

which may be identified with the Fourier–Mukai transform in the statement of the lemma.
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II.3: Derived categories of non-abelian gerbes

Let X be a perfect algebraic stack, and let X→X be a gerbe with finite inertia. Let X̂→X be

the moduli stack of simple coherent sheaves on X→X, and let X̂sh →X be the sheafification

of X̂ over X. We note that X̂→ X̂sh is a Gm-gerbe.

Let E ∈ Dperf(X ×X X̂) be the universal simple, perfect sheaf, and let

ΦE ∶ Dperf(X) Ð→ D1
perf(X̂/X̂sh)

be the Fourier-Mukai transform associated to E.

Proposition II.12. In the context above, if X is a Q-stack, then ΦE is an equivalence.

Proof. The question is fppf-local on X [BZFN12, Prop. 2.1, Prop. 2.2]. Since the statement

is compatible with fppf base change, we ultimately reduce to the case when X = Speck,

for k an algebraically closed field with char(k) = 0, and X = BG for a finite constant group

scheme G. Then X̂sh may be identified with the set {[V1], . . . , [V`]} of isomorphism classes of

irreducible G-representations.

In terms of G-representations, the component of ΦE which maps to Dperf({[Vi]}) is given

by

V ↦ (V ⊗ Vi)G ≃ HomG(V ∨, Vi),

and it follows from Maschke’s theorem and Schur’s lemma that ΦE gives an equivalence at

the level of categories of coherent sheaves.

Corollary II.13. Let X be a perfect algebraic stack over Q, and let X→X be a gerbe with

finite inertia. There exists a finite étale cover Y → X which is representable by algebraic

spaces, a class α ∈ H2
ét(Y,Gm), and an X-linear equivalence Dperf(X) ≃ Dperf(Y,α).

Proof. We may take Y = X̂sh and α = [X̂] in the context of Proposition II.12.

Remark II.14. When X→X is a µn-gerbe, X̂sh is a disjoint union of n copies of X, labeled

by the characters of µn, and the equivalence of Proposition II.12 recovers the orthogonal

decomposition (II.2.1).

Example II.15 (Total rigidification). Let X be a smooth Deligne–Mumford stack over a

field k of characteristic 0. Then X admits a total rigidification [AOV08, Appendix A], which

is a gerbe X → Xrig with finite inertia such that Xrig is an orbifold over k. (We recall our

convention that an orbifold over k is a Deligne–Mumford stack of finite type with trivial

generic stabilizers). By Corollary II.13, Dperf(X) is equivalent to Dperf(Y,α), where Y is an

orbifold and α ∈ H2
ét(Y,Gm).
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II.4: Root stacks

In what follows, we have followed the notation and conventions of [BLS16, §3], to which we

refer for details.

Definition II.16. Let X be an algebraic stack, and let E ⊆X be an effective Cartier divisor.

For an integer r > 0, we recall that the rth root stack Xr−1E → X of X along E is given by

the pullback

Xr−1E [A1/Gm]

X [A1/Gm],

πr

f

where f is the morphism induced by E, and πr is induced by rth power map on both A1 and

Gm.

Let π ∶ Xf−1E → X be the rth stack of X along E. According to [BLS16, Theorem 4.7],

Dperf(Xr−1E) admits an X-linear semiorthogonal decomposition of the form

(II.4.1) Dperf(Xr−1E) = ⟨Cr−1,Cr−2, . . . ,C1, π
∗Dperf(X)⟩,

where each Ci is equivalent to Dperf(E). In fact, the base change of (II.4.1) to the preimage

r−1E of E in Xr−1E recovers the semiorthogonal decomposition (II.2.1) associated to the

µn-gerbe r−1E → E, which has a trivial cohomological Brauer class.

Example II.17 (Weak factorization). According to a result of Harper [Har17] (see also

[BR19]), if X and Y are smooth, separated Deligne–Mumford stacks over a field of character-

istic 0, which are isomorphic over an open substack U , then X and Y may be connected by a

chain

X =X0 X1 ⋯ Xn = Y,
f0 f1 fn−1

where, for each i, either fi or f−1
i is a root stack over a smooth divisor in the complement of

U or a blowup along a smooth closed substack in the complement of U .

If Xi →Xrig
i denotes the total rigidification of Xi (Example II.15), then there is a diagram

X =X0 X1 ⋯ Xn = Y

Xrig =Xrig
0 Xrig

1 ⋯ Xrig
n = Y rig,

f0 f1 fn−1

f rig0 f rig1 f rign−1

where the vertical morphisms are gerbes with finite inertia.
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Variant II.18. Suppose that X is smooth over a field k, and let E be a simple normal

crossing divisor of X, with ordered components E1, . . . ,En. For a multi-index r ∈ Zn
>0, the

iterated rth root stack Xr−1E is given by the fiber product

Xr−11 E1
×X Xr−12 E2

×X ⋯×X Xr−1n En
.

The stack Xr−1E is smooth over k, and the preimage of E is a simple normal crossing divisor.

The following lemma is standard, but we include it for completeness.

Lemma II.19. Let X be a smooth variety over a field k, and let U ⊆X be an open subvariety

such that X −U has simple normal crossings with components Ei. If Xn−1E →X is an iterated

n̄th root stack over E = (Ei), where n̄ = (n,n, . . . , n), then the restriction

Br(Xn−1D)[n] → Br(U)[n]

is an isomorphism.

Proof. By purity, one may reduce to the case of a DVR, which is treated in [Lie11, §3.2].

Lemma II.20. Let U be a smooth, quasi-projective variety over a field k of characteristic 0,

and let α ∈ Br(U). There exists a smooth, proper Deligne–Mumford stack X, and an open

immersion j ∶ U →X, such that the following conditions hold:

(1) There exists a class α′ ∈ Br(X) whose restriction to U is α.

(2) Any µn-gerbe U→ U with Brauer class α extends to a µn-gerbe X→X of Brauer class

α′.

Proof. Let X0 be a smooth, projective variety over k which compactifies U such that X0−U has

simple normal crossings. We observe that Pic(X0) → Pic(U) is surjective. By Lemma II.19,

there is an iterated root stack X →X0 such that α extends to a cohomological Brauer class

α′ ∈ H2
ét(X,Gm)[n].

Let U→ U be a µn-gerbe of Brauer class α. Consider the commutative diagram

Pic(X) H2
ét(X,µn) H2

ét(X,Gm)[n]

Pic(U) H2
ét(U,µn) H2

ét(U,Gm)[n].

The outer vertical morphisms are surjective, so [U] lifts to a class [X] ∈ H2
ét(X,µn). Finally,

since X is a global quotient stack with quasi-projective coarse space ( [BLS16, Lemma
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3.4]), the covering theorem of Kresch–Vistoli [KV04] implies that H2
ét(X,Gm) coincides with

Br(X)

18



CHAPTER III

Hodge Theory of Categories

III.1: Topological K -theory

In [Bla16], Blanc constructs a functor

Ktop ∶ CatC Ð→ Sp

from the ∞-category of C-linear categories to the stable ∞-category of spectra, satisfying

the following properties:

(i) Ktop commutes with filtered colimits.

(ii) Given an exact sequence1

C C′ C′′

of C-linear categories, the resulting sequence

Ktop(C) Ktop(C′) Ktop(C′′)

is an exact triangle in Sp.

(iii) There is a commutative diagram

(III.1.1)

K(C) HN(C)

Ktop(C) HP(C)

ch

ch

in Sp, functorial in C.

1A sequence of C-linear categories is exact if it is both a fiber and a cofiber sequence.
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(iv) If X is a separated scheme of finite type over C, then Ktop(Dperf(X)) may be identified

with the complex topological K-theory Ktop
0 (X), and (iii) may be identified (functorially

in X) with the corresponding diagram

K(X) HN(X)

Ktop(Xan) HP(X)

ch

ch

of Chern characters for X.

For our purposes, it is enough to understand Ktop(C) in the case when C occurs as a

semiorthogonal component of a category of the form Dperf(X), when X is a scheme or a

Deligne–Mumford stack. From (ii), the functor Ktop satisfies the following additivity property:

Given a semiorthogonal decomposition

C = ⟨C1,C2, . . . ,Cn⟩

of a C-linear category C, there is an equivalence

Ktop(C) ≃ Ktop(C1) ⊕Ktop(C2) ⊕⋯⊕Ktop(Cn)

induced by the projections C→ Ci.

Remark III.1. Let C be a proper C-linear category. Perry [Per22, Lemma 5.2] constructs an

Euler pairing

χtop(−,−) ∶ Ktop
i (C) ⊗Ktop

i (C) → Z,

which satisfies the following properties:

(1) If C admits a semiorthogonal decomposition, then the resulting splitting of Ktop
i (C) is

semiorthogonal for the Euler pairing.

(2) If χ(−,−) is the Euler pairing on K0(C) given by

χ(v,w) = ∑
i

(−1)i dim ExtiC(v,w),

then the homomorphism K0(C) → Ktop
0 (C) preserves Euler pairings.

(3) If C = Dperf(X) for a proper scheme X over C, then for v,w ∈ Ktop
i (X),

χtop(v,w) = s∗(v∨ ⊗w) ∈ Ktop
2i (SpecC) ≃ Z,
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where s ∶X → Spec(C) is the structure morphism.

Blanc’s topological K-theory satisfies a localization sequence:

Lemma III.2. Let i ∶ Z → X be a closed immersion of algebraic stacks over C, with

complement j ∶ U →X. There is an exact triangle

Ktop(Db
coh(Z)) Ktop(Db

coh(X)) Ktop(Db
coh(X −Z)).i∗ j∗

The following argument appeared in a preprint version of [HLP20], and we include it here

for completeness. Note that it exploits details of Blanc’s construction (cf. [Bla16, Def. 1.2]),

which we have not described.

Proof. For a C-linear category C, consider the presheaf of spectra

K(C)(U) = K(C⊗C Dperf(U))

on the category of smooth, affine schemes over C.

For any smooth, affine scheme U , and any algebraic stack X, there is an equivalence

Db
coh(X) ⊗C Dperf(U) ≃ Db

coh(X ×C U)

by [DG13, Corollary 4.2.3]. From the localization sequence for G-theory of algebraic stacks,

it follows that there is a fiber sequence of presheaves of spectra

(III.1.2) K(Db
coh(Z)) K(Db

coh(X)) K(Db
coh(U))

on the category of smooth, affine schemes over C. Finally, (III.1.2) remains a fiber sequence

after geometric realization and inverting the Bott element.

Example III.3. Let X be a smooth, projective Deligne–Mumford stack over C, and suppose

that X = [Y /G], where Y is quasi-projective and G is reductive. According to a result of

Halpern-Leistner and Pomerleano, one may identify Ktop(Dperf(X)) with the equivariant

topological K-theory Ktop
G (Y an) [HLP20, Theorem 2.10].

Example III.4. Let X be a separated scheme of finite type over C, and α ∈ Br(X).
Moulinos [Mou19] constructs an equivalence

Ktop(Dperf(X,α)) ≃ KUᾱ(Xan),
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where ᾱ ∈ H3(Xan,Z)tors is the topological Brauer class associated to α, and KUᾱ(Xan) is

the ᾱ-twisted topological K-theory spectrum of X in the sense of Atiyah–Segal [AS06].

Remark III.5. Let C be a C-linear category. According to a result of Antieau–Heller [AH18],

the functor

T ↦ Ktop(Dperf(T ) ⊗C C)

satisfies étale hyperdescent on the site of smooth, separated schemes over C. In the case

C = Dperf(SpecC), one recovers the fact that topological K-theory satisfies étale hyperdescent.

Variant III.6. There is a relative version of Blanc’s construction, due to Moulinos [Mou19].

Let S be a separated scheme of finite type over C. There is a functor

(III.1.3) Ktop(−/S) ∶ CatS Ð→ ShvSan(Sp),

valued in sheaves of spectra on San, satisfying the following properties:

(i) When S = SpecC, Ktop(C/S) is the constant sheaf associated to Ktop(C).

(ii) If C admits an S-linear semiorthogonal decomposition

C = ⟨C1,C2, . . . ,Cn⟩,

then there is a decomposition

Ktop(C/S) = Ktop(C1/S) ⊕Ktop(C2/S) ⊕⋯⊕Ktop(Cn/S).

(iii) If f ∶X → S is a proper morphism of separated schemes over C, then Ktop(Dperf(X)/S)
may be identified (functorially in S) with the sheaf of spectra U ↦ Ktop((f an)−1(U)).

III.2: The Hodge filtration

Let C be a C-linear category. In the terminology of Orlov [Orl16], C is geometric if it arises as

a semiorthogonal component of Dperf(X), for a smooth, proper scheme X over C. Examples

of C-linear categories include Dperf(X) for smooth, proper Deligne–Mumford stacks [BLS16],

and, consequently, Dperf(X,α) where X is a smooth, proper Deligne–Mumford stack, and

α ∈ H2(X,Gm).

Construction III.7. Let C be a geometric C-linear category. For each i ∈ Z, the morphism

from (iii)

Ktop
i (C) ⊗CÐ→ HPi(C)
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is an isomorphism, the noncommutative Hodge-to-de Rham spectral sequence

(III.2.1) HH∗(C)[u±1] Ô⇒ HP∗(C)

degenerates [Kal08], and the resulting filtration endows Ktop
i (C) with a pure Hodge structure

of weight −i.

Example III.8. Let X be a smooth, proper scheme over C, and let i ∈ Z. Identifying

Ktop
i (X) with Ktop

i (Dperf(X)), the result of Construction III.7 is the unique integral Hodge

structure on Ktop
i (X) such that the Chern character homomorphism

Ktop
i (X) ⊗Q→⊕

k

H2k−i(Xan,Q)(k)

is an isomorphism of rational Hodge structures.

Remark III.9. If X is a smooth, proper Deligne–Mumford stack over C, then the Hodge

structure on Ktop
i (Dperf(X)) is not necessarily pulled back from the Hodge structures on the

rational cohomology of X through a Chern character. For example, when X = BG for a finite

cyclic group G, then Ktop
0 (Dperf(BG)) has rank n, whereas H2∗(Xan,Q) has rank 1.

For a geometric category C, we write Hdg(C,Z) for the group of integral Hodge classes in

Ktop
0 (C). From considering the case of Dperf(X), it follows that there is a factorization

K0(C) Ð→ Hdg(C,Z) ⊆ Ktop
0 (C).

Perry formulates a noncommutative integral Hodge conjecture [Per22, Conjecture 5.13]:

Conjecture III.10 (Perry). Let C be a geometric C-linear category. The homomorphism

K0(C) → Hdg(C,Z)

is surjective.

As with the integral Hodge conjecture for the integral cohomology of a smooth, proper

variety, Conjecture III.10 is known to fail in certian examples. As Perry notes, if X is a hyper-

surface in P4 for which the integral Hodge conjecture fails [BCC92], then Conjecture III.10

fails for Dperf(X).

Remark III.11. If the Atiyah–Hirzebruch spectral sequence relating Ktop
∗ (X) with H∗(Xan,Z)

degenerates (for example, if the cohomology ring H∗(Xan,Z) is torsion-free) then the integral

Hodge conjecture in all degrees for X implies the integral Hodge conjecture for Dperf(X), as
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one may see from the proof of [Per22, Prop. 5.16]. In general, however, there do not appear

to be implications in either direction between the integral Hodge conjecture for X and the

integral Hodge conjecture for Dperf(X).

It is often useful to measure the failure of the integral Hodge conjecture using the Voisin

group,

V(C) = Coker (K0(C) → Hdg(C,Z)) .

The integral Hodge conjecture holds for C if and only if V(C) = 0.

The most important property of the integral Hodge conjecture for categories is its com-

patibility with semiorthogonal decompositions: If C admits a semiorthogonal decomposition

C = ⟨C1,C2, . . . ,Cn⟩,

then there is a decomposition

V(C) = V(C1) ⊕V(C2) ⊕⋯⊕V(Cn).

In particular, the integral Hodge conjecture holds for C if and only if it holds for each Ci.

III.3: Variations of Hodge structure

Let S be a separated scheme of finite type over C, and f ∶ X → S be a smooth, proper

morphism. Suppose that there is an S-linear semiorthogonal decomposition

Dperf(X) = ⟨C1,C2, . . . ,Cn⟩.

For each i ∈ Z, there is a splitting

(III.3.1) Ktop
i (X/S) = Ktop

i (C1/S) ⊕Ktop
i (C2/S) ⊕⋯⊕Ktop

i (Cn/S),

and combining Construction III.7 with Variant III.6, one may show that (III.3.1) is a splitting

of pure variations of Hodge structure.
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CHAPTER IV

Twisted Derived Categories

IV.1: Topologically trivial Brauer classes

For an integer n, we write Z(n) = (2πi)nZ.

Definition IV.1. LetX be a separated scheme of finite type over C, and let α ∈ H2
ét(X,Gm)tors

be a cohomological Brauer class. Then α is topologically trivial if it lies in the kernel of the

composition

H2
ét(X,Gm) → H2(Xan,Gcont

m ) → H3(Xan,Z(1)),

where Gcont
m is the sheaf of invertible continuous functions on Xan, and the right-hand

morphism arises from the continuous exponential sequence.

Remark IV.2. If X is proper, then H2
ét(X,Gm)tors is isomorphic to H2(Xan,O×

Xan)tors. From

the exponential sequence for the complex-analytic space Xan, there is an exact sequence

H2(Xan,Q(1)) H2
ét(X,Gm)tors H3(Xan,Z(1))tors,

so α ∈ H2
ét(X,Gm)tors is topologically trivial if and only if α lies in the image of H2(Xan,Q(1)).

It is often convenient to phrase topological triviality at the level of µn-gerbes:

Definition IV.3. Let X be a separated scheme of finite type over C, and let X→X be a

µn-gerbe, for n > 0.

(1) If the Gm-gerbe associated to X is trivial, then X is essentially trivial.

(2) If the topological Gm-gerbe associated to Xan is trivial, then X is essentially topologically

trivial.

We observe that X is essentially trivial if and only if [X] lies in the kernel of the

homomorphism

H2
ét(X,µn) → H2

ét(X,Gm).
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Similarly, X is essentially topologically trivial if and only if [X] lies in the kernel of the

connecting homomorphism

H2(Xan,µn) → H3(Xan,Z(1))

arising from the sequence

Z(1) Z(1) µn.
n exp(−/n)

Equivalently, [X] lies in the image of an element v ∈ H2(Xan,Z(1)).

Remark IV.4. Let X→X be a µn-gerbe. By a topological line bundle on X, we mean a line

bundle on the associated gerbe on the topological site of X. If L is a topological line bundle

on X, then L⊗n descends to a topological line bundle on X, which we simply call L⊗n.

Similarly, we will consider 1-twisted topological line bundles on X. If X→X is topologically

essentially trivial, the set of 1-twisted topological line bundles on X is a torsor under the

group of topological line bundles on X

Definition IV.5. Let X be a separated scheme of finite type over C, and let X→X be a

µn-gerbe. Let L be a topological line bundle on X.

(1) The K-theory class [L] of L in Ktop
0 (X) ⊗Q is the nth root ([L⊗])1/n of the class of

L⊗n.

(2) The first Chern class of L is c1(L) = c1(L⊗n)/n, regarded as an element of H2(Xan,Q(1)).

(3) The Chern character of L is the image of [L] under the Chern character:

ch(L) = exp(c1(L)) ∈ H2∗(Xan,Q(∗)).

Lemma IV.6. Let L be a 1-twisted topological line bundle on X. The image of c1(L⊗n)
under

exp(−/n) ∶ H2(Xan,Z(1)) → H2(Xan,µn)

is [X].

Proof. This is an analogue of [Lie07, Prop. 2.3.4.4] for the topological site, and the proof is

identical. Briefly, if L is a 1-twisted topological line bundle on X, then the topological gerbe

associated to X is equivalent to the gerbe of nth roots of L⊗n.
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IV.2: Severi–Brauer varieties

Let X be a separated scheme of finite type over C. Let X→X be a µn-gerbe, and suppose

that there exists a Severi–Brauer variety P → X which represents the image of [X] in

H2
ét(X,Gm). In what follows, we frequently refer to the notation of Example II.7.

Consider the pullback diagram

PX P

X X.

π′

f ′

π

f

Let L be a 1-twisted topological line bundle on X. Then π′∗L ⊗ OPX
(1) is a 0-twisted

topological line bundle on PX, so it descends to a line bundle on P, which we simply call

L(1).

Proposition IV.7. In the setting above, multiplication by L(1) on Ktop
0 (P) induces an

equivalence of spectra

Ktop(Dperf(P)0) → Ktop(Dperf(P)1).

Proof. First, assume that X→X is essentially trivial. We may write L = Lalg ⊗ f∗L0, where

Lalg is a 1-twisted algebraic line bundle on X and L0 is a topological line bundle on X. Then

L(1) = Lalg(1) ⊗ π∗L0, and Lalg(1) is a tautological bundle on the projective bundle P→X,

so the desired result is clear from Beilinson’s semiorthogonal decomposition.

In the general case, consider the pullback square

P(2) = P ×X P P

P X.

π2

π1

Let Dperf(P(2))π1k be the kth piece of the semiorthogonal decomposition of Dperf(P(2)) for the

projective bundle structure from π1. The bottom horizontal morphism of the commutative

diagram

Ktop(Dperf(P)0) Ktop(Dperf(P)1)

Ktop(Dperf(P(2))π10 ) Ktop(Dperf(P(2))π11 ).

π∗2

L(1)

π∗2
π∗2L(1)

is an equivalence by the previous case, and moreover the vertical morphisms are inclusions of

summands. Comparing with the analogous diagram for multiplication by L(1)−1, we see that
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multiplication by L(1) is an equivalence.

Remark IV.8. The assumption in Proposition IV.7 that the Brauer class of X is represented

by a Severi–Brauer variety is, we expect, inessential. However, we have imposed it in the

absence of a comparison theorem between the topological K-theory of the gerbe X and

Blanc’s K-theory in the case when X is not a global quotient.

IV.3: Twisted Mukai structures

The goal of this section is to prove that the Hodge structures of twisted derived categories

are given by twisted Mukai structures. This is stated as Corollary IV.14 below.

Definition IV.9. LetX be a smooth, proper variety over C. Given a classB ∈ H2(Xan,Q(1)),
the B-twisted Mukai structure Ktop

i (X)B is the unique integral Hodge structure of weight −i
on Ktop

i (X) such that the homomorphism

Ktop
i (X)B →⊕

k

H2k−i(Xan,Q(k)), v ↦ exp(B) ⋅ ch(v)

induces, after extension of scalars, an isomorphism between rational Hodge structures. We

endow Ktop
i (X)B with an Euler pairing, which by definition is the Euler pairing of Remark III.1

on the underlying group Ktop
i (X).

Theorem IV.10. Let X be a smooth, proper variety over C, and let X→X be an essentially

topologically trivial µn-gerbe. Suppose that the cohomological Brauer class of X lies in Br(X).

Then for each i and each 1-twisted topological line bundle L on X, there is an isomorphism

of Hodge structures

Ktop
i (D1

perf(X)) → Ktop
i (X)c1(L),

which is compatible with Euler pairings.

Proof. Let P be a Severi–Brauer variety which represents the image of [X] in Br(X). In the

notation of Proposition IV.7, consider the composition

Ktop
i (Dperf(P)0) Ktop

i (Dperf(P)1) Ktop
i (Dperf(P)0) ⊗Q,

[L(1)] [OPX
(−1)]

where, in the right-hand morphism, we use multiplication by the K-theory class of the twisted

line bundle (Definition IV.5).

Since OPX
(−1) is an algebraic twisted line bundle, the right-hand morphism induces an

isomorphism of rational Hodge structures. On the other hand, by Proposition IV.7, the
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left-hand morphism is an isomorphism of abelian groups. It follows that the Hodge structure

on Ktop
i (Dperf(P)1)) is identified with Ktop

i (X)c1(L) by [L(1)], and we conclude the theorem

by Lemma II.11, which implies that Ktop
i (Dperf(P)1) is isomorphic to Ktop

i (D1
perf(X)) as a

Hodge structure. The compatibility with Euler pairings follows from the observation that

multiplication by [L(1)] preserves the Euler pairing on Ktop
i (P).

Remark IV.11. We frequently use the observation that, in the case i = 0, the isomorphism

constructed in the course of the proof preserves the rank homomorphisms

Ktop
0 (D1

perf(X)) → Z, Ktop
0 (X)c1(L) → Z

on both sides.

Definition IV.12. Let X be a smooth, proper variety over C, and let α ∈ Br(X). A rational

B-field for α is a class B ∈ H2(Xan,Q(1)) which maps to α under the exponential

exp ∶ H2(Xan,Q(1)) → H2(Xan,O×

Xan)tors ≃ H2
ét(X,Gm).

Remark IV.13. Let X → X be a µn-gerbe with cohomological Brauer class α. If L is a

1-twisted topological line bundle on X, then c1(L⊗n)/n is a rational B-field for α. To prove

this, observe that there is a commmutative diagram

H2(Xan,Z(1)) H2(Xan,µn)

H2(Xan,Q(1)) H2(Xan,O×

Xan),

−/n

exp(−/n)

exp

and apply Lemma IV.6.

Corollary IV.14. Let X be a smooth, proper variety over C, and let α ∈ Br(X) be a

topologically trivial Brauer class. If B is a rational B-field for α, then for each i there is an

isomorphism of Hodge structures

Ktop
i (Dperf(X,α)) ≃ Ktop

i (X)B,

which is compatible with Euler pairings.

Proof. By Remark IV.13 and Theorem IV.10, it is enough to show that the isomorphism

class of the integral Hodge structure Ktop
i (X)B does not depend on the choice of the rational

B-field B. If B and B′ are two rational B-fields for α, then from the exponential sequence,

the difference B −B′ lies in H2(Xan,Z(1)) +NS(X)Q.
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If B −B′ lies in NS(X)Q, then the identity map on Ktop
i (X) induces an isomorphism of

Hodge structures

Ktop
i (X)B → Ktop

i (X)B′
.

Therefore, we may suppose that x = B −B′ lies in H2(Xan,Z(1)). In that case, the desired

isomorphism of Hodge structures

Ktop
i (X)B → Ktop

i (X)B′

is given by multiplication by [Lx], where Lx is a topological line bundle on X with c1(Lx) =
x.

IV.4: Variation of twisted Mukai structure

Let f ∶X → S be a smooth, proper morphism, and let X→X be a µn-gerbe. Let P0 be the

local system of topological line bundles on the fibers Xs of f , and let P1 be the local system

of 1-twisted topological line bundles on the fibers of X→ S. We observe that P1 is a torsor

under P0.

Remark IV.15. The category of P0-sheaves is symmetric monoidal, with the monoidal structure

given by the contracted product of P0-sheaves A∧B, which is the sheafification of the quotient

presheaf

A ×B/(a, b) ∼ (ga, g−1b).

If A is a P0-module, and B is a P0-torsor, then A ∧B is a P0-module, with addition given

locally by

a ∧ b + a′ ∧ b′ = a ∧ b + a′ ∧ gb
= (a + ga′) ∧ b,

where b′ = gb for a unique g ∈ P0.

For i ∈ Z, the local system Ktop
i (X/S) is a P0-module, and we may define a variation of

Hodge structure on the P0-module Ktop
i (X/S) ∧P1 as follows:

Definition IV.16. The variation of twisted Mukai structure on Ktop
i (X/S)∧P1 is the unique

integral variation of Hodge structure such that the Chern character

Ktop
i (X/S) ∧P1 →⊕

k

R2k−if∗Q(k), v ∧L↦ ch(L) ⋅ ch(v)

induces an isomorphism between Q-variations of Hodge structure.
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Theorem IV.17. Let f ∶ X → S be a smooth, proper morphism, where S is a separated

scheme of finite type over C, and let X → X be a µn-gerbe such that the fiber Xs → Xs is

essentially topologically trivial for each s ∈ S(C). Assume that the cohomological Brauer class

of X lies in Br(X). Then there is an isomorphism of variations of Hodge structure

Ktop
i (D1

perf(X)/S) → Ktop
i (X/S) ∧P1.

Proof. Let P→X be a Severi–Brauer variety which represents the image of [X] in Br(X).
Following the proof of Theorem IV.10, we may consider a composition of morphisms of

P0-modules

(IV.4.1)

Ktop
i (Dperf(P)0/S) ∧P1 Ktop

i (Dperf(P)1/S) Ktop
i (Dperf(P)0/S) ⊗Q,Φ Ψ

where:

Φ(v ∧L) = [L(1)] ⋅ v, Ψ(v) = [OPX
(−1)] ⋅ v

On stalks, (IV.4.1) recovers (after choosing a 1-twisted topological line bundle) the analogous

sequence in the proof of Theorem IV.10. In particular, Φ is an isomorphism of local systems,

and Ψ induces an isomorphism of Q-variations of Hodge structure.

Remark IV.18. In the context of Theorem IV.17, let V = Ktop
0 (X/S) ∧P1. Then V admits

a rational section τ ∈ Γ(San,V) ⊗ Q, whose restriction to the stalk at s ∈ S(C) is given

by [L∨] ∧ L for any 1-twisted topological line bundle L on Xs. Then τ is Hodge, since

Ψ(Φ(τ)) = [L] ⋅ [L∨] = 1.

By the theorem of the fixed part [Del71, 4.1.1], Γ(V) = Γ(San,V) carries a natural Hodge

structure, determined by the property that for each s ∈ S(C), the inclusion Γ(V) → Vs

is a morphism of Hodge structures. Regarding Γ(V) as a Ktop
0 (X/S)-module, the section

τ ∈ Γ(V) ⊗Q determines an isomorphism of Q-variations of Hodge structure

Ktop
0 (X/S) ⊗Q→V ⊗Q,

and hence an isomorphism of rational Hodge structures

Γ(Ktop
0 (X/S)) ⊗Q ≃ Γ(V) ⊗Q.

In particular, if v ∈ Γ(V) is everywhere Hodge, then the image of v in Γ(V) ⊗Q may be

written w ⋅ τ , where w is a global section of Ktop
0 (X/S) ⊗Q which is everywhere Hodge.
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IV.5: Quasi-projective varieties

We now develop a theory of twisted Mukai structures on smooth, quasi-projective varieties.

On the one hand, our treatment is rather ad hoc, but on the other, it is amenable to

computation. The usefulness of the quasi-projective case comes from the following well-known

lemma:

Lemma IV.19. Let X be a smooth scheme over C, and let α ∈ H2
ét(X,Gm) be a cohomological

Brauer class. There is a dense open subscheme U of X such that αU is topologically trivial.

Proof. Let ᾱ ∈ H3(Xan,Z(1))tors be the topological Brauer class of α. According to [CTV12,

Théorème 3.1], H3(Z(1)) is torsion-free, where H3(Z(1)) is the sheafification of the Zariski

presheaf U ↦ H3(Uan,Z(1)). In particular, ᾱ lies in the kernel of the homomorphism

H3(Xan,Z(1)) → H0(X,H3(Z(1))).

The right-hand side is the third unramified cohomology group H3
nr(X,Z(1)) of X, and the

kernel consists of classes with coniveau ≤ 1.

Let U be a smooth, separated variety over C. Each singular cohomology group Hk(Uan,Q)
carries a functorial mixed Hodge structure, with weights in the interval [k,2k]. The lowest-

weight part WkHk(Uan,Q) is a pure Hodge structure of weight k, and may be described

concretely as the image of the restriction map

j∗ ∶ Hk(Xan,Q) → Hk(Uan,Q)

for any smooth compactification j ∶ U →X [Del71, 3.2.16].

Definition IV.20. Let U be a smooth, separated scheme over C, and let B ∈ H2(Uan,Q(1)).
The B-twisted Mukai structure Wtop

i (U)B is the Hodge structure of weight −i, given by the

preimage of

(IV.5.1) ⊕
k

W−i(H2k−i(Uan,Q(k))

under the B-twisted Chern character

Ktop
i (U) Ð→⊕

k

H2k−i(Uan,Q(k)), v ↦ exp(B)ch(v).

The Hodge filtration on Wtop
i (U)B is pulled back along the Chern character from (IV.5.1).
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When B = 0, we write Wtop
i (U)B = Wtop

i (U), and call Wtop
i (U) the lowest-weight part of

Ktop
i (U).

Lemma IV.21. Let U → X be an open immersion from a smooth, separated scheme U

to a smooth, proper Deligne–Mumford stack X over C. For each i, the homomorphism

Ktop
i (Dperf(X)) to Ktop(U) factors through Wtop

i (U), and the induced homomorphism

Ktop
i (Dperf(X)) →Wtop

i (U)

is a morphism of Hodge structures.

Proof. First, suppose that X is a smooth, proper variety. Then the lemma follows from

the fact that for each k, the induced map Hk(Xan,Q) → Hk(Uan,Q) preserves the weight

filtration.

Next, we argue that if the lemma holds for a single compactification X of U , then it holds

for all compactifications. By weak factorization (Example II.17), it is enough to prove the

following claim: If X is a compactification of U , and X ′ →X is either a root stack along a

smooth divisor in the complement of U , or a blowup along a smooth closed substack in the

complement of U , then the conclusion of the lemma holds for X if and only if it holds for X ′.

The claim follows from considering the semiorthogonal decomposition associated to either a

blowup or a root stack.

Definition IV.22. Let U be a smooth, separated scheme over C, and let P → U be a

Severi–Brauer variety. The lowest-weight part of Ktop
i (Dperf(P)1) is the subgroup

Wtop
i (Dperf(P)1) ⊆ Ktop

i (Dperf(P)1)

which is the intersection of Ktop
i (Dperf(P)1)) with Wtop

i (P).

Theorem IV.23. Let U be a smooth, quasi-projective variety. Let U→ U be an essentially

topologically trivial µn-gerbe, and let P→ U be a Severi–Brauer variety which represents the

Brauer class of U. Let i be an integer.

(1) Wtop
i (Dperf(P)1) is a Hodge substructure of Wtop

i (P).

(2) For each 1-twisted topological line bundle L on U, there is an isomorphism of Hodge

structures

Wtop
i (Dperf(P)1) →Wtop

i (U)c1(L).
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Proof. Following the proof of Theorem IV.10, we consider the composition

Ktop
i (Dperf(P)0) Ktop

i (Dperf(P)1) Ktop
i (Dperf(P)0) ⊗Q.

[L(1)] [OPU
(−1)]

Multiplication by [OPU
(−1)] gives an automorphism of the rational Hodge structure Wtop

i (P)⊗
Q, so (1) follows since the right-hand map is an isomorphism after extending scalars to Q.

Then (2) follows, since the left-hand map identifies the Hodge structure on Wtop
i (Dperf(P)1))

with the twisted Mukai structure Wtop
i (U)c1(L).

IV.6: Computations on quasi-projective varieties

In this section, we prove several technical results which will be used later. In Lemma IV.26,

we give a lower bound for the ranks of Hodge classes for twisted Mukai structures on smooth,

quasi-projective varieties, and in Lemma IV.27, we compute the set of Hodge classes for

twisted Mukai structures on affine surfaces.

For a smooth, separated scheme U over C, we define

W0H2(Uan,Z(1)) ⊆ H2(Uan,Z(1))

to be the set of class v whose image in H2(Uan,Q(1)) lies in W0H2(Xan,Q(1)). The proof of

Lemma IV.24 below implies that W0H2(Uan,Z(1)) coincides with the image of H2(Xan,Z(1))
for any smooth compactification of U , although we do not need this fact.

Lemma IV.24. Let U be a smooth, separated scheme over C. Then

NS(U) = Hdg(W0H2(Uan,Z(1))).

Proof. Let X be a smooth compactification of U so that D = X − U has simple normal

crossings. Consider the diagram

0 NS(X) H2(Xan,Z(1)) Cokerf 0

0 Hdg(W0H2(Uan,Z(1))) H2(Uan,Z(1)) Coker g 0.

a

f

b c

g

Since a⊗Q is an isomorphism, we need to show that Cokera is torsion-free. It is well-known

that Ker b is generated by the cycle classes of the components of D (see for instance [BO21,

Prop. 2.2]). In particular, Kera is isomorphic to Ker b, and the connecting homomorphism

Ker c → Cokera is injective. Since f is the inclusion of a saturated sublattice, Cokerf is
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torsion-free, hence so is Ker c. In particular, to show that Cokera is torsion-free, it is enough

to show that Coker b is torsion-free.

Finally, the torsion-freeness of Coker b follows from the Leray spectral sequence for

j ∶ U → S, and the observations that H0((D(2))an,Z) and H1((D(1))an,Z) are torsion-free,

where D(1) is the disjoint union of the components of D and D(2) is the disjoint union of the

pairwise intersections of the components of D.

Let U be a smooth, quasi-projective variety over C. Given a class v ∈ H2(Uan,Z(1)) and

an integer n > 0, let α(v, n) ∈ Br(U) be the image of v under the composition

H2(Uan,Z(1)) H2
ét(U,µn) H2

ét(U,Gm).exp(−/n)

The following lemma shows that Wtop
i (U)v/n depends only on α(v, n).

Lemma IV.25. In the situation above, let v1, v2 ∈ H2(Uan,Z(1)), and let n1, n2 > 0 be

integers. If α(v1, n1) = α(v2, n2), then there is an isomorphism

Wtop
i (U)v1/n1 ≃ Wtop

i (U)v2/n2 .

Proof. For simplicity, we write W(v/n) = Wtop
i (Dperf(U))v/n. We make three observations:

(1) For t > 0, W(tv/tn) ≃ W(v/n).

(2) For w ∈ H2(Uan,Z(1)), W((v + nw)/n) ≃ W(v/n).

(3) For w ∈ NS(U), W((v +w)/n) ≃ W(v/n).

Note that (1) is from the definition, and for (2) and (3) one follows the proof of Corollary IV.14.

For the lemma, by (1) we may assume that n1 = n2. Then from the Kummer sequence,

v1 − v2 lies in n1 ⋅H2(Uan,Z(1)) +NS(U), and we apply (2) and (3).

Lemma IV.26. Let U be a smooth, quasi-projective variety over C, with a class v ∈
H2(Uan,Z(1)) and an integer n > 0. Then the rank of any Hodge class in W0(U)v/n is

divisible by n0, where n0 is the order of α(v, n) in Br(U).

Proof. By Lemma IV.25, we may suppose that n = n0. Let w ∈ Wtop
0 (U)v/n be a Hodge class,

and write w = (w0,w2, . . . ), so that

exp(B) ⋅ ch(w) = (w0,w2 +w0 ⋅B, . . . ).
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Then w2 +w0 ⋅ (v/n) is Hodge, so nw2 +w0v is an integral Hodge class in W0(H2(Uan,Z(1)),
and hence is the Chern class of an algebraic line bundle by Lemma IV.24. In particular, the

image of w0v + nw2 under the composition

H2(Uan,Z(1)) → H2(Uan,µn) → Br(U)[n]

is trivial. On the other hand, the image coincides with w0 ⋅ α(v/n). Therefore, n divides

w0.

Lemma IV.27. Let U be a smooth, affine surface over C, with a class v ∈ H2(Uan,Z(1))
and an integer n > 0. There is a short exact sequence

0 NS(U) Hdg(Wtop
0 (U)v/n) n0 ⋅Z 0,rk

where n0 is the order of α(v/n) in Br(U).

Proof. From the Atiyah–Hirzebruch spectral sequence, the map

(rk, c1) ∶ Ktop(U) → H0(Uan,Z) ⊕H2(Uan,Z(1))

is an isomorphism. By Lemma IV.25, we may suppose that n = n0. By Lemma IV.24, (w0,w2)
is a Hodge class in Wtop

0 (U)v/n if and only if w0 ⋅ (v/n) +w2 lies in NS(U)Q. If w0 = 0, then

w2 ∈ NS(U) by Lemma IV.24. The morphism

NS(U) → Hdg(Wtop
0 (U)v/n)

in the statement of the lemma is given by sending w2 to (0,w2). Since (n,−v) is a Hodge

class of rank n, it remains to show that the rank of any Hodge class is divisible by n, which

is Lemma IV.26.
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CHAPTER V

The Hodge-theoretic Index

V.1: The period-index problem

We refer to [CT06] for an account of the classical theory of Brauer groups and the period-index

conjecture.

Definition V.1. Let K be a field, and let α ∈ Br(K). The period of α is its order in the

torsion group Br(K). The index of α is equal to the following positive integers:

(1) The minimum rank of an α-twisted vector space.

(2) The minimum degree of a separable extension K ′/K such that αK′ = 0.

(3) The integer d′ + 1, where d′ is the minimum dimension of a Severi–Brauer variety of

class α.

(4) The degree
√

dimD of the unique division algebra D of class α.

One may show that ind(α) divides per(α), and that per(α) and ind(α) share the same

prime factors. In particular, for each α ∈ Br(K), there is an integer ε(α) such that

ind(α) ∣ per(α)ε(α).

The period-index problem for K is the problem of determining a bound for ε(α), preferably

one which is uniform over the Brauer group. The main conjecture is the following:

Conjecture V.2 (The period-index conjecture). Let K be a field of transcendence degree d

over an algebraically closed field k. For any Brauer class α ∈ Br(K),

ind(α) ∣ per(α)d−1.

There are variants of Conjecture V.2, for instance when k is a finite field or a p-adic field.

The status of Conjecture V.2 is as follows:
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d ≤ 1 The Brauer group Br(K) is trivial.

d = 2 Conjecture V.2 was proved by de Jong [dJ04] when per(α) is prime to the characteristic

of k. When the characteristic of k divides per(α), the conjecture was proved through

different methods by de Jong–Starr [SdJ10] and Lieblich [Lie08].

d ≥ 3 Conjecture V.2 is not known for any given field K.

When d ≥ 3, it is not known in general that there exists an exponent ε such that for each

α ∈ Br(K),
ind(α) ∣ per(α)ε.

However, Matzri [Mat16] has obtained non-uniform exponents ε(α), which depend only on

tr.deg(K/k) and the prime factors of per(α), based on estimates for the symbol length of a

central simple algebra of given period. Aside from the cases described above, Matrzi’s bounds

are the best available.

V.2: The global period-index problem

We now explain a version of the period-index conjecture for orbifolds over fields.

Definition V.3. Let X be a connected Deligne–Mumford stack of finite type over a field k,

and let α ∈ H2
ét(X,Gm)tors. The period per(α) of α is its order in H2

ét(X,Gm). The index

ind(α) of α is the positive generator of the image of a rank homomorphism,

K0(Dperf(X,α)) → Z

which arises by viewing Dperf(X,α) as D1
perf(X) for X→X a µn-gerbe of class α.

We recall our convention that an orbifold over a field k is a Deligne–Mumford stack of

finite type over k with trivial generic stabilizers.

Lemma V.4. Let X be a smooth, connected orbifold over k. If α ∈ H2
ét(X,Gm), then

ind(α) = ind(αK),

where αK is the image of α in Br(K).

Proof. We first show that ind(αK) divides ind(α). Let X→X be a Gm-gerbe of class α, and

let XK → SpecK be the fiber over the generic point. Choose a 1-twisted vector bundle VK

on XK of rank ind(αK). By [Lie08, Prop. 3.1.1.9], there exists a coherent extension of VK to
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a 1-twisted coherent sheaf V on X, and since X is smooth, V is quasi-isomorphic to a perfect

complex E, with rkE = ind(αK). We next show that ind(α) divides ind(αK). Let E be a

1-twisted perfect complex on X of rank r. Then the restriction of E to XK is perfect, and

the rank of any 1-twisted locally free sheaf on XK is divisible by ind(α).

Conjecture V.5 (Global period-index). Let X be a smooth, proper, connected orbifold of

dimension d over an algebraically closed field k. For any α ∈ H2
ét(X,Gm),

ind(α) ∣ per(α)d−1.

Remark V.6. The global period-index conjecture over C (Conjecture V.5) is equivalent to

the period-index conjecture for complex function fields (Conjecture V.2). Lemma V.4 shows

that the conjecture for function fields implies the global conjecture. In the other direction,

let K be a function field over C. Then any Brauer class extends to a quasi-projective model

of K, and one may apply Lemma II.19 to pass to a smooth, proper orbifold.

Alternatively, the discriminant-avoidance theorem of de Jong and Starr [SdJ10] implies

that, in order to prove the period-index conjecture for complex function fields of transcendence

degree ≤ d, it is enough to verify the global period index conjecture for smooth, complex,

projective varieties of dimension ≤ d. However, the reduction is inexplicit.

V.3: The Hodge-theoretic index

Let X be a smooth, proper, connected orbifold over C, and let α ∈ H2
ét(X,Gm). Given a

closed point SpecC→X, the pullback

Dperf(X,α) → Dperf(SpecC)

defines a rank homomorphism Ktop
0 (X,α) → Ktop

0 (SpecC) = Z, compatible with the rank

homomorphism K0(Dperf(X,α)) → Z on algebraic K-theory.

Definition V.7. The Hodge-theoretic index indH(α) is the positive generator of the image

of the rank homomorphism

Hdg(Dperf(X,α),Z) → Z.

Observe that indH(α) divides ind(α), and if they differ, then the integral Hodge conjecture

fails for Dperf(X,α). In general, the Hodge-theoretic index may differ from both the period and

the index, but it enjoys a number of the same formal properties, as indicated in Lemma V.8

below.
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We first establish some basic properties of indH(α). Since Br(X) is a torsion group, any

nonzero element α admits a prime decomposition

α = α1 + α2 +⋯ + αn,

characterized by the property that per(αi) = `rii , for distinct primes `1, . . . , `n and ri > 0.

Lemma V.8. Let X be a smooth, proper, connected orbifold over C with function field K,

and let α ∈ H2
ét(X,Gm).

(1) If f ∶X ′ →X is generically finite, then indH(α) ∣ (deg f) ⋅ indH(f∗α).

(2) If X ′ is smooth, proper connected orbifold over C which is birational to X, and

αK ∈ Br(K) extends to a class α′ ∈ H2
ét(X ′,Gm), then indH(α) = indH(α′).

(3) If α = α1 +⋯ + αn is the prime decomposition of α, then indH(α) = ∏i indH(αi).

(4) per(α) ∣ indH(α) ∣ ind(α).

Proof. For (1), observe that

rk f∗f
∗v = (deg f) rk v

for any v ∈ Ktop
0 (S,α). Then (2) follows from (1) and weak factorization for a µn-gerbe of

Brauer class α, which (as noted in Example II.17) is compatible with the gerbe structure.

For (3), it is not hard to see that indH(α) divides ∏ indH(αi), so we show that for each i,

indH(αi) divides indH(α). Let E be an object in Dperf(X,αi − α) of rank ind(αi − α). Since

FunX(Dperf(X,α),Dperf(X,αi)) ≃ Dperf(X,αi − α),

the object E gives a functor from Dperf(X,α) to Dperf(X,αi), and the induced map on

topological K-theory sends a Hodge class of rank indH(α) to a Hodge class of rank indH(α) ⋅
ind(α − αi). Since it is clear that indH(αi) divides ind(αi), indH(αi) is prime to ind(α − αi),
and so indH(αi) divides indH(α).

For (4), it is clear that indH(α) divides ind(α), so we show that per(α) divides indH(α).
Let U ⊆ X be a substack which is equivalent to a smooth quasi-projective variety. By

Lemma IV.19, we may suppose (after perhaps shrinking U) that the restriction of α to U is

topologically trivial. By Lemma II.20 and (2), we may assume that there is a Severi–Brauer

variety P→X whose restriction over U has class αU .

It follows from Lemma IV.21 that the induced map

Ktop
0 (Dperf(P)1) →Wtop

0 (Dperf(PU)1).
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is a morphism of Hodge structures. We conclude by observing that the rank of any Hodge

class in the right-hand side is divisible by per(α), by Theorem IV.23 and Lemma IV.26.

Example V.9. Let X be a smooth, proper variety, and let v ∈ H2(Xan,Z(1)) be a cohomology

class. In [Kre03], Kresch shows that if the image exp(v/2) of v in Br(X)[2] has index 2, then

there exists a Hodge class h ∈ Hdg4(Xan,Z(2)) such that

(V.3.1) v2 ≡ h mod 2.

Kresch observes that (V.3.1) imposes a nontrivial condition on v, and so constructs examples

of threefolds with Brauer classes of period 2 and index 4.

From our calculation of the twisted Mukai structure, one may give a quick proof of

Kresch’s result. Let B = v/2. If the index of α is 2, then let

ch(w) = (2,w2,w4, . . . )

be the Chern character of a Hodge class w of rank 2 in Ktop
0 (X)B. Since w is Hodge,

exp(B) ⋅ ch(w) = (2,2B +w2,B
2 +w2 ⋅B +w4, . . . )

is Hodge in each degree. Since 2w4 is integral,

4(B2 +w2 ⋅B +w4) = v2 + 2v ⋅w2 + 4 ⋅w4

≡ v2 mod 2,

which recovers Kresch’s obstruction (V.3.1).

Remark V.10. We briefly compare the Hodge-theoretic index with the étale index indét(α)
studied by Antieau [Ant11a], [Ant11b], and Antieau–Williams [AW13]. Let X be a smooth,

proper scheme over C, and let Két
0 (X) be the étale K-theory of X. There is a sequence of

morphisms

(V.3.2) K0(X) Két
0 (X) Ktop

0 (X) Z.s rk

From [Tho85, Theorem 2.15], s becomes an isomorphism after tensoring with Q. It follows

that the image of Két
0 (X) in Ktop

0 (X) is contained in Hdg(Dperf(X),Z).
Let α ∈ Br(X) be a Brauer class, and let P → X be a Severi–Brauer variety of class α.
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As a summand of the sequence (V.3.2) on P, we obtain a sequence

(V.3.3) K0(X,α) Két
0 (X,α) Ktop

0 (Dperf(X,α)) Z.rk

From above, Két(X,α) maps into Hdg(Dperf(X,α),Z).
In [Ant11b], Antieau defines the étale index indét(α) of α to be the positive generator of

rk(Két
0 (S,α)). In [AW13], Antieau and Williams construct Brauer classes on Serre-Godeaux

varieties with per(α) strictly less than indét(α).
The Hodge-theoretic index provides a straightforward method for finding such examples.

From the discussion above,

indH(α) ∣ indét(α),

so it suffices to construct examples where indH(α) exceeds per(α). For instance, any pair

(X,α) such that α ∈ Br(X)[2] is obstructed by Kresch’s method (Example V.9) furnishes an

example. Alternatively, it is straightforward to construct Brauer classes on abelian varieties

of dimension d ≥ 3 with indH(α) > per(α), using Corollary IV.14.

V.4: Bounding the Hodge-theoretic index

In this section, we obtain an upper bound for the Hodge-theoretic index of a topologically

trivial Brauer class.

Theorem V.11. Let X be a smooth, proper variety of dimension d over C. For any

topologically trivial Brauer class α ∈ Br(X) with per(α) = n,

indH(α) ∣ nd−1 ⋅ ((d − 1)!)d−2.

In particular, if n is prime to (d − 1)!, then indH(α) ∣ nd−1.

Remark V.12. Theorem V.11 is a Hodge-theoretic analogue of a recent result of Antieau–

Williams on the topological period-index conjecture [AW21].

We begin with a simple result on the image of topological K-theory in integral cohomology.

Lemma V.13. Let M be a finite CW complex of dimension 2d. For any v ∈ H2(M,Z) and

any polynomial f(t) ∈ Z[t], there exists a constant c ∈ Q so that

((d − 1)!)d−v0(f)−1(f(v) + c ⋅ vd) ∈ Hev(M,Q)

lies in the image of Ktop
0 (M) under the Chern character, where v0(f) is the order of vanishing

of f(t) at 0.
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Proof. Since CP∞ = K(Z,2), it suffices to treat the case of its 2d-skeleton M = CPd,

v = c1(OCPd(1)). We use the following fact: If x ∈ H2k(M,Z) is an integral class, then there

exists z ∈ Ktop
0 (M) such that

ch(z) = x + chk+1(z) + chk+2(z) +⋯

The fact is a consequence of the degeneration of the Atiyah–Hirzebruch spectral sequence for

M at E2 [AH62].

We proceed by ascending induction on k = v0(f). If k = d − 1, then the result is clear,

since (from the fact) we may find z ∈ Ktop
0 (M) so that f(v) and ch(z) differ by c ⋅ vd. If

k < d − 1, then we may apply the fact to obtain a class z ∈ Ktop
0 (M) so that the polynomial

f(v) − ch(z) ∈ Q[v] vanishes to order k + 1 at 0. Since (d− 1)! ⋅ ch(z) is integral except in the

top degree, there exists a constant c0 ∈ Q so that

g(v) = (d − 1)! ⋅ (f(v) − ch(z)) + c0v
d

is integral, and v0(g) = k + 1. From the inductive hypothesis, there exists c1 ∈ Q so that

((d − 1)!)d−k−2 ⋅ (g(v) + c1v
d) = ((d − 1)!)d−k−1 (f(v) − ch(z) + 1

(d − 1)!(c0 + c1)vd)

lies in the image of Ktop
0 (M).

Proof of Theorem V.11. Let v ∈ H2(Xan,Z(1)) be an integral class so that v/n is a rational

B-field for α. Let

f(v) = nd−1 exp(−v/n) − ((−1)d
n ⋅ d!

+ (nd−2)d
d!

) vd

= nd−1 − nd−2v + n
d−3

2
v2 −⋯ + (−1)d−1

(d − 1)!v
d−1 − (nd−2)d

d!
vd

For each c ∈ Q, the class ((d − 1)!)d−2 ⋅ f(v) + cvd is a rational Hodge class in Ktop
0 (X)B ⊗Q.

We claim that it lies in the image of the Chern character for an appropriate choice of c ∈ Q.

The polynomial

g(v) = (d − 1)! ⋅ (f(v) − nd−1 + (exp(nd−2v) − 1))

= (d − 1)! ⋅
d−1

∑
k=2

(nd−2)k + (−1)knd−k−1

k!
⋅ vk
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is integral, and v0(g) = 2. By Lemma V.13, there exists a constant c′ ∈ Q such that

((d − 1)!)d−3 (g(v) + c′vd)

lies in the image of the Chern character, which implies the claim.

Remark V.14. The factor of ((d − 1)!)d−2 appearing in Theorem V.11 is not optimal. One

could improve it by incorporating a more careful analysis of the image of Ktop
0 (CPd) in

Hev(CPd,an,Q) into the proof of Lemma V.13, or, alternatively, with the integrality theorem of

Adams [Ada61]. Both routes lead to better but more complicated bounds, which unfortunately

still contain a factor of (d − 1)!.

V.5: Potential obstructions to period-index bounds

Let X be a smooth, proper threefold, and let α ∈ Br(X) be a topologically trivial Brauer

class. Then Theorem V.11 provides the bound

indH(α) ∣ 8,

whereas the period-index conjecture would imply that indH(α) divides 4. The goal of this

section is to analyze the situation in detail.

Theorem V.15. Let X be a smooth, proper variety over C with v ∈ H2(Xan,Z(1)), and let

α be the image of v/2 in H2
ét(X,Gm)[2]. If indH(α) divides 4, then there exists H ∈ NS(X)

such that

(V.5.1) v2 + v ⋅H ∈ H4(Xan,Z(2))

is congruent to a Hodge class modulo 2.

Proof. If π ∶X ′ →X is a blowup along a smooth subvariety, then v satisfies the conclusion of

the theorem if and only if π∗v does. Therefore, we may suppose that X is projective, so that

Br(X) = H2
ét(X,Gm) and Corollary IV.14 applies.

Suppose that w ∈ Ktop
0 (X)B is a Hodge class of rank 4. Then

exp(B) ⋅ (4,w2,w4, . . . ) = (4,4B +w2,2B
2 +B ⋅w2 +w4, . . . )

is Hodge in each degree, where ch(w) = (4,w2,w4, . . . ). We may write:

• H = 4B +w2, for H ∈ NS(X).
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• w4 = 1
2w

2
2 + ε, where ε is an integral class.

The second point comes from the condition that (4,w2,w4, . . . ) lies in the image of K-theory,

and the leading terms of Chern characters are integral.

Let Z = 2B2 +B ⋅w2 +w4. Then Z is a rational Hodge class, and

2Z = v2 + v(H − 2v) + (H − 2v)2 + 2ε

≡ v2 + v ⋅H −H2 mod 2.

In particular, v2 + v ⋅H is congruent to a Hodge class modulo 2.

Question V.16. Let X be a smooth, proper threefold over C, and let v ∈ H2(Xan,Z(1)).

Does there exist a class H ∈ NS(X) such that v2 +H ⋅ v is congruent modulo 2 to a Hodge

class in H4(Xan,Z(2))?

A negative answer to Question V.16 would imply that the period-index conjecture fails

for Brauer classes of period 2 on complex threefolds.

Remark V.17. The potential obstruction from Theorem V.15 is reminiscent of a topological

obstruction for the period-conjecture for period 2 Brauer classes on threefolds proposed by

Antieau and Williams [AW14], which was later shown to be ineffective [CG20].
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CHAPTER VI

Counterexamples to the Integral Hodge Conjecture

VI.1: Abelian threefolds

By Gabber’s method [CT02, Appendice], one may construct Brauer classes on very general

abelian threefolds of period 2 and index 4. Alternatively, one may use twisted Mukai structures

to produce examples of Brauer classes on abelian threefolds with

2 = per(α) < indH(α) = 4

The following theorem shows that all such examples give rise to counterexamples to the

integral Hodge conjecture:

Theorem VI.1. Let X be an abelian threefold over C, and let α ∈ Br(X) be a Brauer class

with per(α) = 2 and ind(α) > 2. For any Severi–Brauer variety P→X of class α and relative

dimension d, the integral Hodge conjecture fails in H2d(Pan,Z(d)).

The integral Hodge conjecture for abelian threefolds is a result of Grabowski [Gra04], so

Theorem VI.1 shows that the integral Hodge conjecture for a Severi–Brauer variety P→X

may fail even if it holds for the base.

Proof. Let π ∶ P→X be a Severi–Brauer variety of class α and relative dimension d ≥ 3. The

relative Picard group of P/X is generated by a line bundle OP(2), whose restriction to the

fiber over each s ∈X(C) is OPn
s
(2). Let Q ∈ H2(Pan,Z(1)) be the first Chern class of OP(2).

Since α is topologically trivial, Pan →Xan is a topological projective bundle, and there

exists a class H ∈ H2(Pan,Z(1)) whose restriction to each closed fiber is the hyperplane class.

We may write

H = 1

2
Q + 1

2
π∗v,

for a class v ∈ H2(Xan,Z(1)). Since Q is algebraic, the class

exp(−π∗v/2) ⋅ exp(H) = (1,w2,w4, . . . ) ∈ ⊕
k

H2k(Xan,Q(k))
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is Hodge in each degree. In particular, the component

wd =
1

d!
Hd − 1

2(d − 1)!(π
∗v)Hd−1 + 1

22 ⋅ 2(d − 2)!(π
∗v2)Hd−2 − 1

23 ⋅ 3!(d − 3)!(π
∗v3)Hd−3

is a rational Hodge class. Consider the class

Z = 2 ⋅ d! ⋅ (wd +
1

23 ⋅ 3!(d − 3)!(π
∗v3)Hd−3)

= 2Hd − d(π∗v)Hd−1 + (d)(d − 1)
4

(π∗v2)Hd−2.

First, Z is a rational Hodge class, since wd and (π∗v3)Hd−3 are Hodge classes, as v3 is Hodge.

Second, Z is integral, since v2 is divisible by 2, as is any degree 2 cohomology class on an

abelian variety.

It remains to argue that Z is not algebraic. The Gysin homomorphism

H2d(Pan,Z(d)) → H6(Xan,Z(6))

sends Z to 2 ⋅ [X], where [X] is the fundamental class. If Z is algebraic, then there exists

a zero-cycle of degree 2 on the generic fiber Pη of π. However, ind(α) coincides with the

minimum degree of a zero-cycle on Pη.

Remark VI.2. The assumption that X is an abelian threefold, as opposed to an arbitrary

threefold, enters in only two places: First, so that one may arrange that ind(α) > 2, and

second, to ensure that v2 is divisible by 2.

Remark VI.3. If X is a smooth, proper variety over C, the truth of the integral Hodge

conjecture for a Severi–Brauer variety P → X depends only on the subgroup of Br(X)
generated by [P].

Indeed, in the trivial case when P→X is a projective bundle, then the integral Hodge

conjecture for P is equivalent to the integral Hodge conjecture for X. In the general case, if

P and P′ are Severi–Brauer varieties which generate the same subgroup of Br(X), then we

may consider the diagram

P ×X P′ P′

P X.

π1

π2

We observe that π1 and π2 are projective bundles.
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VI.2: Products of curves

Let C be a smooth, projective curve of genus g ≥ 2 over C, and let E1, . . . ,Ek be elliptic

curves over C, with 2 ≤ k ≤ g. Consider a symplectic basis

s1, . . . , sg, t1, . . . , tg ∈ H1(Can,Z),

and for each i, let ui ∈ H1(Ean
i ,Z) be a nonzero class. Let X = C ×∏k

i=1Ei, and define the

class

v = 2πi ⋅
k

∑
i=1

si ∪ ui ∈ H2(Xan,Z(1)).

For each prime `, let α` ∈ Br(X)[`] be the Brauer class given by the rational B-field v/`.

Theorem VI.4. For a prime `, let X = C × ∏k
i=1Ei and α` ∈ Br(X) be as above. If

C,E1, . . . ,Ek are very general, then the integral Hodge conjecture fails for Dperf(X,α).

Proof. According to Gabber’s result [CT02, Appendice], ind(α`) = `k. Therefore, it suffices

to show that indH(α) = `.
We observe that v2 = 0. If L be a topological line bundle on X with c1(L) = v, then

consider the class

w = ` + (1 − [L]) ∈ Ktop
0 (X), ch(w) = (`,−v,0, . . . ,0).

Since exp(v/`)ch(w) is Hodge, w is a Hodge class for the twisted Mukai structure Ktop
0 (X)v/`.

Corollary VI.5. Let ` be a prime. In the context of Theorem VI.4, if P→X is a Severi–

Brauer variety of class α`, then the integral Hodge conjecture fails for P.

Proof. The cohomology ring of X is torsion-free, so the integral Hodge conjecture for P in

all degrees implies the integral Hodge conjecture for Dperf(P) (Remark III.11).
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CHAPTER VII

The Integral Hodge Conjecture for DM Surfaces

VII.1: Preliminaries on DM curves

Let C be a smooth, proper Deligne–Mumford stack of pure dimension 1 over C. Then C is a

gerbe over its total rigidification Crig (Example II.15), which a smooth, proper orbifold. By

Corollary II.13 and Tsen’s theorem, there exists a representable finite étale cover C ′ → Crig

and an equivalence

(VII.1.1) Dperf(C) ≃ Dperf(C ′).

As in the classical setting, Ktop
0 (Dperf(C)) is spanned by algebraic classes:

Lemma VII.1. Let C be a smooth, proper Deligne–Mumford curve over C. Then

K0(Dperf(C)) Ð→ Ktop
0 (Dperf(C))

is surjective.

Proof. From (VII.1.1), it suffices to consider the case when C is a smooth, proper orbifold.

Let p1, . . . , pr be the orbifold points of C. The coarse space Ccs is smooth, and from the

semiorthogonal decomposition of a root stack (§II.4),

Dperf(C) = ⟨Dperf(Ccs),C⟩,

where C admits a semiorthogonal decomposition into copies of Dperf(pi). Since the desired

result holds for Dperf(SpecC) and Dperf(Ccs), it holds for Dperf(C).

Lemma VII.2. Let D be a simple normal crossing Deligne–Mumford curve over C. Then

K0(Db
coh(D)) → Ktop

0 (Db
coh(D))

is surjective.
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Proof. Let D○ ⊆D be the smooth locus of D, and let Z =D −D○ be the complement. Note

that Z is smooth. From Lemma III.2, there is a diagram with exact rows

K0(Dperf(Z)) K0(Db
coh(D)) K0(Dperf(D○)) 0

Ktop
0 (Dperf(Z)) Ktop

0 (Db
coh(D)) Ktop

0 (Dperf(D○)) 0.

a∼ b c

The surjectivity on the right and the fact that a is an isomorphism follow from the observation

that Dperf(Z) is equivalent to a product of copies of Dperf(SpecC).
Our goal is to show that b is surjective. Since a is an isomorphism, it suffices to show

that c is surjective. But D○ is open inside of D′ = ∐iDi, where each Di is a gerbe over an

irreducible component Dcs
i of Dcs. We apply Lemma III.2 again to obtain an exact sequence

Ktop
0 (Dperf(Z ′)) Ktop

0 (Dperf(D′)) Ktop
0 (Dperf(D○)) 0,

where Z ′ is a finite set of stacky points. By Lemma VII.1, Ktop
0 (Dperf(D′)) is spanned by

algebraic classes, so the same holds for Ktop
0 (Dperf(D○)).

VII.2: DM surfaces

Our goal is to prove the following theorem:

Theorem VII.3. Let X be a smooth, proper Deligne–Mumford surface over C. Then the

integral Hodge conjecture holds for Dperf(X).

The strategy of the proof is to reduce to the case of Dperf(X,α), for a smooth, proper

orbifold X, and then to analyze the localization sequence arising from an affine surface

contained in X. At the key step, we produce a Hodge class of rank per(α) using de Jong’s

theorem [dJ04] that per(α) = ind(α). We mention a corollary:

Corollary VII.4. The truth of the integral Hodge conjecture for Dperf(X) is a birational

invariant for smooth, proper Deligne–Mumford threefolds.

Proof. Combine Theorem VII.3 with weak factorization (Example II.17).

We now begin the proof of Theorem VII.3.

Step 1. By Example II.15, it suffices to prove the integral Hodge conjecture for D1
perf(X),

where X→X is a µn-gerbe over a smooth, proper orbifold.
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Step 2. Since the integral Hodge conjecture holds for smooth Deligne–Mumford stacks of

dimension at most 1 by Lemma VII.1, weak factorization (Example II.17) implies that the

integral Hodge conjecture for D1
perf(X) is a birational invariant of X.

Step 3. Let U ⊆X be an open substack equivalent to an affine surface. Possibly shrinking U ,

we may assume that NS(U) = 0. We observe that since U is an affine surface, the restriction

U→ U of X over U is essentially topologically trivial.

From the previous step, we may replace X by any other smooth compactification of U.

In particular, following the proof of Lemma II.20, we adopt the following setup: U →X0 is

the inclusion of U into a smooth, projective variety such that D =X0 −U has simple normal

crossings; X →X0 is an iterated root stack over the components of D; X→X is a µn-gerbe

extending U; and P→X is a Severi–Brauer variety representing the Brauer class of X.

Step 4. There is a commutative diagram

Hdg(Dperf(P)1,Z) Hdg(Wtop
0 (Dperf(PU)1) Ktop

0 (Dperf(PU)1)

Hdg(D1
perf(X),Z) Ktop

0 (D1
perf(U)),

∼

f

∼

g

where the vertical isomorphisms come from Lemma II.11, after choosing OPX
(1) ∈ Pic−1(PX)1.

The key claim is that any fiber of g contains an algebraic class. To prove the claim, it

suffices to prove the corresponding statement for f . Observe that by Lemma IV.27 and the

assumption that NS(U) = 0, the rank map gives an isomorphism

Hdg(Wtop
0 (Dperf(PU)1) ≃ per(α) ⋅Z,

where α is the Brauer class of X. Therefore, it suffices to show that there is an algebraic

class of rank per(α) in Hdg(D1
perf(X),Z). This follows from de Jong’s theorem [dJ04] that

per(α) = ind(α).

Step 5. Let E be the preimage of D under the map X→X0. From the localization sequence

(Lemma III.2), we may consider a diagram with exact rows

K Hdg(D1
perf(X),Z) Ktop

0 (D1
perf(U))

Ktop
0 (Db

coh(E)) Ktop
0 (D1

perf(X)) Ktop
0 (D1

perf(U)),

where the vertical maps are inclusions. Our goal is to show that any v ∈ Hdg(D1
perf(X),Z) is
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algebraic. From the result of the previous step, we may suppose that v lies in the image of

K. Then we apply Lemma VII.2, which asserts that the map K0(Db
coh(E)) → Ktop

0 (Db
coh(E))

is surjective.
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CHAPTER VIII

The Period-index Problem for Complex Tori

VIII.1: Preliminaries

For the definition of the Brauer group of a complex manifold and its basic properties, we

refer to [Sch05]. If X is a connected complex manifold and α ∈ Br(X), we recall that the

period per(α) is the order of α in Br(X), and the index of α is given by

ind(α) = gcd(degA ∶ [A] = α),

where A runs over the Azumaya algebras of class α. (We recall that the degree of an Azumaya

algebra is the square root of its rank.)

Lemma VIII.1. Let X be a connected complex manifold, and α ∈ Br(X). Then per(α)
divides ind(α), and per(α) and ind(α) share prime factors.

Proof. See [AW15].

Remark VIII.2. Suppose that X is a connected Stein manifold, and consider the homomor-

phism

Br(X) → H3(X,Z)tors.

By the Grauert–Oka principle [For17, §8.2], the sets of isomorphism classes of holomorphic

and continuous torsors under PGLn+1 coincide, for each n. It follows that the map above is

an isomorphism, and that the period-index problem for X is equivalent to the topological

period-index problem for the CW complex underlying X. Hence, one may obtain bounds

from [AW21]. For instance,

ind(α) ∣ per(α)dimX−1

if per(α) is prime to (dimX − 1)!.

It is frequently useful to work with α-twisted sheaves in the sense of Căldăraru [Căl00].

We write Cohα(X) for the abelian category of α-twisted sheaves (where, as is customary, we
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often suppress the choice of a cocycle representative for α). One has the following well-known

result:

Lemma VIII.3. Let X be a complex manifold, and let α ∈ Br(X). Then

F ↦ End(F )

gives a bijection between the set of isomorphism classes of locally free α-twisted sheaves, and

the set of isomorphism classes of Azumaya algebras on X of class α.

Proof. We refer to [Căl00, Theorem 1.3.5], which holds without change in the analytic

case.

From Lemma VIII.3, the index of α coincides with the greatest common divisor of the

ranks of locally free α-twisted sheaves. It is also natural to consider the ranks of arbitrary

α-twisted coherent sheaves, which leads to the following variant of the index:

Definition VIII.4. Let X be a complex manifold, with α ∈ Br(X). The coherent index

indCoh(α) is the greatest common divisor of the ranks of α-twisted coherent sheaves on X.

We note that indCoh(α) divides ind(α). It follows from Theorem VIII.17 below that

indCoh(α) and ind(α) coincide when X is a general complex torus, but we do not know if

they coincide for Brauer classes on arbitrary complex manifolds.

Remark VIII.5. A famous question of Grothendieck [Gro68] asks when the inclusion

Br(X) ⊆ H2(X,O×

X)tors

is an equality. While the answer is positive in the projective case [dJ03], the question remains

widely open in the compact Kähler case. It is known, however, for compact Kähler surfaces

(cf. [HS03] and [Sch05]), as well as complex tori (cf. [EN83], or one may deduce it from the

proof of Lemma VIII.6 below).

Lemma VIII.6. Let f ∶ X ′ → X be a finite cover of complex manifolds. Given α ∈ Br(X)
such that f∗α = 0,

ind(α) ∣ deg f.

Proof. Let α̃ be a cocycle representative for α, and let L be a f∗α̃-twisted line bundle on X ′.

Then f∗L is a locally free α̃-twisted coherent sheaf of rank deg f on X, and we conclude by

Lemma VIII.3.
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In order to apply an analytic result in the proof of Theorem VIII.17 below, it will be

convenient to treat α-twisted sheaves on X as genuine sheaves on a Severi–Brauer variety.

Recall that a Severi–Brauer variety over a connected complex manifold X is a smooth, proper

PGLn+1-equivariant morphism P→X (where the action on X is trivial), which is locally on

X of the form Pn ×U → U , for U ⊆ X. A Severi–Brauer variety P → X has a Brauer class

[P] ∈ Br(X), which obstructs the existence of a holomorphic vector bundle E on X such

that P ≃ P(E).
We warn the reader that we follow Giraud’s convention [Gir71, Example V.4.8] for the

Brauer class of a Severi–Brauer variety. If one adopts the opposite convention, then the

category of weight-k sheaves defined below is equivalent to the category of α−k-twisted sheaves.

Definition VIII.7. Let X be a complex manifold, and let P→X be a Severi–Brauer variety.

A coherent sheaf E on P has weight k if, for any x ∈X, the restriction of E to the fiber Px is

isomorphic to V ⊗OPx(k) for a C-vector space V .

Let Cohk(P/X) be the abelian category of weight-k coherent sheaves on P. For simplicity,

we often write Cohk(P), with the morphism to X implicit.

Remark VIII.8 (Descent). In the setting above, let E be a weight-0 coherent sheaf on P.

Then the natural morphism

π∗π∗E → E

is an isomorphism.

Lemma VIII.9. Let X be a complex manifold, and let α ∈ Br(X), and let π ∶ P → X be a

Severi–Brauer variety of class α. There exists a rank-preserving equivalence

Cohα(X) ≃ Coh1(P).

Proof. Let α̃ be a cocycle representative for α. Since π∗α is trivial, there exists an π∗α̃−1-

twisted line bundle Otw
P (1) on P. The equivalence is given by E ↦ π∗E⊗Otw

P (1), with inverse

equivalence F ↦ π∗(F ⊗Otw
P (−1)).

Remark VIII.10 (Topologically trivial Brauer classes). Let P→X be a Severi–Brauer variety,

and suppose that the Brauer class α of P is topologically trivial, i.e., lies in the kernel of the

homomorphism

Br(X) ⊆ H2(X,O×

X)tors → H3(X,Z)tors

arising from the exponential sequence. Then P→X is the projectivization of a topological

complex vector bundle.
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In particular, there exists a weight−1 topological line bundle O
top
P (1) on P, whose restriction

to the fiber Px over x ∈X is isomorphic to OPx(1). Moreover, by the Leray–Hirsch theorem,

there is a decomposition

Ktop
0 (P) = Ktop

0 (X) ⊕Ktop
0 (X) ⋅ [Otop

P (1)] ⊕⋯⊕Ktop
0 (X) ⋅ [Otop

P (1)⊗d],

where d is the relative dimension of P→X.

Definition VIII.11. Let X be a complex manifold, and let α ∈ Br(X). A rational B-field

for α is a class B ∈ H2(X,Q) whose image under the homomorphism

exp(2πi ⋅ −) ∶ H2(X,Q) → H2(X,O×

X)tors

is α. We note that a rational B-field for α exists if and only if α is topologically trivial.

Remark VIII.12. Let X be a compact Kähler manifold, and let π ∶ P→X be a Severi–Brauer

variety of class α. Suppose that α is topologically trivial. For any weight-1 topological line

bundle O
top
P (1) on P,

c1(Otop
P (1)) =H + π∗B,

where H ∈ NS(P)Q is a class whose restriction to any fiber Px is OPx(1), and B ∈ H2(Xan,Q)
is a rational B-field for α. We refer to [dP22, Lemma 5.9], which however uses the opposite

convention for the class of a Severi–Brauer variety (hence the difference in sign), and which is

stated for a smooth, proper variety X but holds in the compact Kähler case by an identical

argument.

VIII.2: The annihilator of a Brauer class

Definition VIII.13. Let X be a complex torus.

1. The annihilator of a class ω ∈ H2(X,Z/n) is the least degree of a finite isogeny

f ∶X ′ →X such that f∗ω = 0.

2. The annihilator of a Brauer class α ∈ Br(X) is the least degree of a finite isogeny

f ∶X ′ →X such that f∗α = 0.

By Lemma VIII.6, ind(α) divides Ann(α).
Remark VIII.14. Suppose that X is a complex torus with NS(X) = 0. From the Kummer

sequence, the exponential map

H2(X,Z/n) → Br(X)[n]
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is an isomorphism. If α ∈ Br(X)[n], then α lies in the image of a unique class ω ∈ H2(X,Z/n),
and Ann(α) = Ann(ω).

The following lemma computes Ann(ω) in terms of linear algebra. For an element a ∈ Z/n,

we write AnnZ(a) ∈ Z for the positive generator of the annihilator ideal of a.

Lemma VIII.15. Let X be a complex torus of dimension g, with ω ∈ H2(X,Z/n). Suppose

that e1, . . . , e2g is a basis for H1(X,Z) such that

ω =
r

∑
i=1

aiei ∧ ei+g,

for 0 ≠ ai ∈ Z/n and 0 ≤ r ≤ g. Then

Ann(ω) =
r

∏
i=1

AnnZ(ai).

Proof. First, consider an isogeny f ∶X ′ →X of degree ∏AnnZ(ai) such that

f∗ei = Ann(ai) ⋅ e′i, 1 ≤ i ≤ r

where e′1, . . . , e
′

2g is a basis for H1(X ′,Z). Then f∗ω = 0, so Ann(ω) ≤ ∏AnnZ(ai).
In the other direction, we may suppose that n = pe is a prime power. Let

η =
r

∑
i=1

a′iei ∧ ei+g ∈ H2(X,Z)

be a lift of ω, and let f ∶X ′ →X be a finite isogeny such that f∗ω = 0. Then f∗η is divisible

by n. In particular,

f∗f
∗ηr/r! = deg f ⋅

r

∏
i=1

a′i

≡ 0 mod nr.

Since n is a prime power, it follows that ∏AnnZ(ai) divides deg f .

If X is a complex torus, then H3(X,Z)tors = 0, so any Brauer class is topologically trivial

and admits a rational B-field.

Lemma VIII.16. Let X be a complex torus with NS(X) = 0, and let α ∈ Br(X). For any

rational B-field B for α, let N be the least positive integer such that

N ⋅ exp(B) ∈ Hev(X,Q)
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lies in Hev(X,Z). Then N = Ann(α).

Proof. Let n = per(α). We write

B =
r

∑
i=1

mi

n
ei ∧ ei+g, mi ≠ 0 ∈ Z, 0 ≤ r ≤ g.

Then the image ω of n⋅B in H2(X,Z/n) maps to α under the exponential. By Remark VIII.14,

Ann(α) is equal to Ann(ω). By Lemma VIII.15, Ann(ω) = ∏AnnZ(mi mod n).
With N as in the statement of the lemma, we observe that N ⋅Br/r! is integral. For each

prime factor p of n, with vp(m) = e, it follows that

N ⋅∏mi ≡ 0 mod per,

so ∏AnnZ(mimodpe) divides N for all such p, which implies that ∏AnnZ(mimodn) divides

N . In the other direction, it is straightforward to show that

∏AnnZ(mi mod n) ⋅ exp(B)

is integral, so that N divides ∏AnnZ(mi mod n).

VIII.3: The main result

In this section, we prove our main result, phrased in terms of the coherent index of Defini-

tion VIII.4.

Theorem VIII.17. Let X be a complex torus such that NS(X) = Hdg4(X) = 0, with

α ∈ Br(X). Then

indCoh(α) = Ann(α)

Theorem VIII.17 implies Theorem I.11, and also implies Corollary I.12 by the formula

given for Ann(α) through Remark VIII.14 and Lemma VIII.15. We note that if a complex

torus X satisfies the condition that NS(X) = Hdg4(X) = 0, and E is a locally free coherent

sheaf on X, then ci(E) = 0 for each i > 0 [Voi02]. In particular, X does not have the resolution

property.

Proof. First, from the definition of indCoh(α) and Lemma VIII.6,

indCoh(α) ∣ ind(α) ∣ Ann(α),
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so it remains to show that Ann(α) divides indCoh(α), i.e., that the rank of any α-twisted

coherent sheaf is divisible by Ann(α).
Let P→X be a Severi–Brauer variety of class α, and let E be a coherent sheaf of weight

1 on P. By Lemma VIII.9, it is enough to show the rank of E is divisible by Ann(α). We

may suppose that E is torsion-free, and by induction on the rank, we may suppose that E

contains no nonzero subsheaves of smaller rank. Then E∨∨ contains no nonzero subsheaves of

smaller rank as well, and is reflexive. We replace E with E∨∨.

Let f ∶X ′ →X be a finite isogeny such that f∗α = 0, and consider a pullback diagram

P′ P

X ′ X.

g

f

We note that E is µ-stable with respect to a Kähler form ω on P, so by [BS09, Prop. 2.3],

g∗E is µ-polystable with respect to g∗ω. Since P′ → X ′ is a projective bundle, there is a

holomorphic relative hyperplane bundle OP′(1) so that E′ = g∗E ⊗OP′(−1) has weight 0, and

in particular descends to a coherent sheaf E′

0 on X ′ (Remark VIII.8).

Our assumption on X implies that NS(X ′) = Hdg4(X ′) = 0, so that c1(E′) = c2(E′) = 0.

Since E′ is reflexive and µ-polystable, the theorem of Bando and Siu [BS94, Corollary 3]

implies that E′ is a flat holomorphic vector bundle, and in particular, ci(E′) = 0 for all i > 0.

Next, we compute Chern characters. Let O
top
P (1) be a 1-twisted topological line bundle

on P. From the Leray–Hirsch theorem (Remark VIII.10), we may write

ch(E) = ch(Otop
P (1)) ⋅ ch(ξ),

where ξ ∈ Ktop
0 (X). From Remark VIII.12, we may write c1(Otop

P (1)) =H +B, where H is a

rational Hodge class and B is a rational B-field for α. Since H is Hodge,

ζ = exp(B) ⋅ ch(ξ) ∈ Hev(X,Q)

is Hodge in each degree.

We claim that f∗ζ = ch(E′

0). To prove the claim, first observe that f∗B is a rational

B-field for f∗α = 0, hence must be integral because NS(X ′) = 0. Therefore, g∗h is an integral

Hodge class, and generates NS(P′). It follows that c1(OP′(1)) = g∗h, which implies the claim.

From the first part of the proof,

ch(E′

0) = N ⋅ 1 ∈ Hev(X ′,Z),
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for an integer N ≥ 0, where 1 is the multiplicative unit. It follows that ζ = N ⋅ 1.

It remains to show that Ann(α) divides N . But

ch(ξ) = N ⋅ exp(−B)

lies in Hev(X,Z), so we conclude by Lemma VIII.16.
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