
Precision Neuromodulation of Sensorimotor Systems 

 

by 

Charles Lu 

A dissertation submitted in partial fulfillment 

 of the requirements for the degree of  

Doctor of Philosophy 

(Biomedical Engineering) 

in the University of Michigan 

2020 

Doctoral Committee: 

 

Associate Professor Parag G. Patil, Chair 

Associate Professor Cynthia A. Chestek 

Assistant Professor Daniel K. Leventhal  

Professor Lonnie D. Shea  

 

  



 

  

  

  

  

  

  

  

  

Charles W. Lu 

 

lucw@umich.edu 

 

ORCID iD:  0000-0003-0673-7452 

 

 

 

© Charles W Lu 2020 

 

 



ii 

 

 

My experience at the University of Michigan was shaped by, more than any other 

influence, my time in the Patil Lab. I would like to individually thank my colleagues in the lab and 

clinic, each of whom played critical roles in the projects presented in this dissertation and made 

my time in lab as enjoyable as it was: Karlo Malaga; Matt Willsey; Layla Houshmand; Ari Lax; 

Brian Schwartz; Joey Costello; Kelly Lupo; Wilma Mackenzie; Matthew Cheney; Melissa 

Matthews, Kelvin Chou; and of course, my advisor and mentor, Parag Patil, who has 

enthusiastically supported me in every facet of life. Special shoutout to my student mentees, who 

intrepidly took on impossible projects on my behalf and taught me to lead: Walker Thompson, 

Kumar Duraivel, Benji Bear, Allison Tichenor, Kim Huynh, Aidan Ahamparam, and Akshay Rao. 

Finally, I would like to specifically thank Sunjay Dodani who gave me my start in the Patil Lab 

and set me on the path that I am now on. 

Outside of lab, the Translational Neural Engineering community has served as an 

incredible source of intellectual, professional, and social support. My friends in the Chestek Lab, 

in particular, have played an outsized role in helping me with my projects and have graciously 

brought me along on their escapades. Members of my dissertation committee—Cindy Chestek, 

Dan Leventhal, and Lonnie Shea—have likewise provided me with invaluable advice and guidance 

throughout my thesis work. Across the broader university environment, I enjoyed wonderful 

support from the Biomedical Engineering Department, the Medical Scientist Training Program, 

and my colleagues in those programs. The extracurricular organizations in which I participated—

Acknowledgements 



iii 

 

miLEAD, the University Office of Technology Transfer, the Zell-Lurie Commercialization Fund, 

and ESPA (Engaging Scientists in Policy and Advocacy)—and the collaborators I met there have 

broadened my worldview tremendously and granted me the confidence to eagerly take on all that 

lies ahead.  

Above all, I would like to thank my friends and family for their limitless encouragement. 

My dad, Yiwei, taught me to how to succeed; my mom, Suwen, how to make the most of what 

I’ve been given; and my brother, Brian, how to be a good friend to the incredible people around 

me. I could not have asked for better support while I pursued my passions. My graduate training 

would also not have been what it was without the remarkable friends I have had to support me 

along the way. Although the number of people who have helped me over the past five years are 

too many to list here, I would like to specifically thank a handful of special individuals: Xiaoran, 

Robin, and Ryan, for keeping me connected to the real world; Emily, for keeping me in check; 

Paloma, for doggedly bringing me on new adventures; Henry and Yingchao, for keeping me 

informed of what’s going on with my other degree; and Sara, for pushing me to try new experiences 

I otherwise would not have considered. Finally, thank you to Physics House for providing me with 

the most interesting and loving community I have ever been a part of, and the ILB coalition for 

giving me something to look forward to each week. 

  



iv 

 

 

 

Acknowledgements ......................................................................................................................... ii 

List of Tables ................................................................................................................................ vii 

List of Figures .............................................................................................................................. viii 

Abstract ........................................................................................................................................... x 

Chapter 1 Introduction .................................................................................................................... 1 

Background ............................................................................................................................................... 1 

Outline ...................................................................................................................................................... 4 

Chapter 2 Electrophysiological Prediction of Therapeutic Tissue Activation Volumes ................ 8 

Abstract ..................................................................................................................................................... 8 

Introduction ............................................................................................................................................... 9 

Materials and methods ............................................................................................................................ 11 

Patients ................................................................................................................................................ 11 

DBS Lead Placement .......................................................................................................................... 12 

Location of DBS Electrode Contacts .................................................................................................. 13 

Tissue Activation Modeling ................................................................................................................ 13 

Microelectrode Recording................................................................................................................... 15 

Classifier Design and Validation ........................................................................................................ 16 

Statistical Analysis .............................................................................................................................. 18 

Results ..................................................................................................................................................... 18 

Lead Placement and Tissue Activation Locations .............................................................................. 18 

Predictive Electrophysiological Features ............................................................................................ 19 

Support Vector Machine Predictions .................................................................................................. 19 

Interpretation of Covariate Effects ...................................................................................................... 22 

Discussion ............................................................................................................................................... 23 

Acknowledgements ................................................................................................................................. 29 

Funding ................................................................................................................................................... 29 

Supplement ............................................................................................................................................. 29 

Chapter 3 Evaluation of Empirical Mode Decomposition in Finger Decoding ............................ 32 

Table of Contents 

 



v 

 

Abstract ................................................................................................................................................... 32 

Author’s Note.......................................................................................................................................... 33 

Introduction ............................................................................................................................................. 33 

Methods .................................................................................................................................................. 34 

Human ECoG signals .......................................................................................................................... 34 

Fourier bandpass filtering (FFT) ......................................................................................................... 35 

Principal spectral component analysis (PSCA)................................................................................... 35 

Wavelet analysis (WA) ....................................................................................................................... 36 

Empirical mode decomposition (EMD) .............................................................................................. 36 

Finger flexion analysis ........................................................................................................................ 38 

Results ..................................................................................................................................................... 38 

Discussion ............................................................................................................................................... 39 

Conclusion .............................................................................................................................................. 42 

Chapter 4 Impedance-Guided Lead Localization ......................................................................... 43 

Abstract ................................................................................................................................................... 43 

Introduction ............................................................................................................................................. 44 

Methods .................................................................................................................................................. 45 

Subjects ............................................................................................................................................... 45 

Surgical procedure .............................................................................................................................. 46 

Simulated impedance measurements .................................................................................................. 46 

Approximation of impedance from diffusion tensors ......................................................................... 47 

In vivo impedance measurement ......................................................................................................... 48 

Impedance-guided trajectory localization ........................................................................................... 48 

Results ..................................................................................................................................................... 49 

Spatial variance of simulated impedances .......................................................................................... 49 

DTI estimates of finite element model impedance ............................................................................. 50 

Impedance-guided localization of deep brain trajectories .................................................................. 51 

Spatial and spectral variance of in vivo impedance measurements .................................................... 51 

In vivo impedance-guided localization ............................................................................................... 53 

Discussion ............................................................................................................................................... 54 

Chapter 5 Analgesic Stimulation of Zona Incerta......................................................................... 57 

Abstract ................................................................................................................................................... 57 

Introduction ............................................................................................................................................. 58 

Methods .................................................................................................................................................. 60 

Subjects ............................................................................................................................................... 60 



vi 

 

DBS lead placement ............................................................................................................................ 61 

Estimation of stimulation sites ............................................................................................................ 61 

Deep brain stimulation ........................................................................................................................ 62 

Thermal stimulation ............................................................................................................................ 63 

Mechanical stimulation ....................................................................................................................... 64 

Experiment design .............................................................................................................................. 64 

Statistical analysis ............................................................................................................................... 66 

Results ..................................................................................................................................................... 66 

Subjects ............................................................................................................................................... 66 

Zona incerta DBS modulates heat pain ............................................................................................... 66 

Validation of 20 and 130 Hz stimulation ............................................................................................ 68 

Discussion ............................................................................................................................................... 69 

Competing Interests ................................................................................................................................ 71 

Data Availability ..................................................................................................................................... 71 

Acknowledgements ................................................................................................................................. 72 

Funding ................................................................................................................................................... 72 

Supplement ............................................................................................................................................. 72 

Chapter 6 Emulation of Naturalistic Sensation by Unit-Specific Stimulation ............................. 74 

Abstract ................................................................................................................................................... 74 

Introduction ............................................................................................................................................. 74 

Methods .................................................................................................................................................. 75 

Results ..................................................................................................................................................... 76 

Discussion ............................................................................................................................................... 77 

Chapter 7 Temporal Dynamics of Tactile Sensation Representation in Sensory Cortex ............. 79 

Abstract ................................................................................................................................................... 79 

Introduction ............................................................................................................................................. 79 

Methods .................................................................................................................................................. 80 

Results ..................................................................................................................................................... 81 

Discussion ............................................................................................................................................... 84 

Chapter 8 Placing the Work in Context ........................................................................................ 86 

Innovations in deep brain stimulation ..................................................................................................... 86 

Advances in sensory modulation ............................................................................................................ 89 

References ..................................................................................................................................... 92 

  



vii 

 

 

Table 2-1 Classifier performance. ................................................................................................. 19 

Table 2-2 (Supplementary Table 1) Classifier performance by covariate set. ............................. 31 

Table 4-1 Trajectory error for hypothetical targets. ...................................................................... 51 

Table 4-2 Differences between trajectories and CT-visualized lead locations. ............................ 54 

Table 5-1 Subject characteristics. ................................................................................................. 60 

Table 6-1 Stimulation patterns and evoked sensations reported by an exemplary subject. .......... 76 

Table 6-2 Stimulation patterns and evoked sensations across all subjects and sites. ................... 77 

  

List of Tables 



viii 

 

 

Figure 2-1 Patient example of algorithm predictions projected upon the corresponding COMSOL 

model of clinically effective tissue activation and patient MRI. .................................................. 17 

Figure 2-2 Therapeutic VTA locations along DBS lead trajectories and smoothed classifier 

predictions, for all implants. ......................................................................................................... 21 

Figure 2-3 Receiver operating characteristic curve of smoothed classifier. ................................. 22 

Figure 2-4 Power within main effects of interaction terms plotted against one another show inter-

frequency dependence of predictors. ............................................................................................ 23 

Figure 2-5 (Supplementary Figure 1) LASSO regularization parameter sweep. .......................... 29 

Figure 2-6 (Supplementary Figure 2) Therapeutic VTA locations along DBS lead trajectories and 

binary classifier predictions, for all implants. ............................................................................... 30 

Figure 3-1 Electrode positions for the two subjects. ..................................................................... 35 

Figure 3-2 Neural signal analysis scheme. ................................................................................... 37 

Figure 3-3 Finger movement detection using beta. ...................................................................... 39 

Figure 3-4 Finger flexion decoding using gamma. ....................................................................... 40 

Figure 4-1 COMSOL-simulated impedances of deep brain tissue. .............................................. 49 

Figure 4-2 Computationally efficient estimation of whole-brain impedance. .............................. 50 

Figure 4-3 Impedance profiles along the trajectory of an exemplary DBS implant. .................... 52 

Figure 4-4 Multiunit activity, measured in vivo impedance, and COMSOL-simulated impedance 

plotted against depth. .................................................................................................................... 53 

List of Figures 



ix 

 

Figure 4-5 Representative best-fit trajectory alongside planned and CT-visualized trajectories. 54 

Figure 5-1 Feedforward inhibition of thalamic pain processing by zona incerta. ........................ 58 

Figure 5-2 Deep brain stimulation sites and thermal stimulation device. ..................................... 63 

Figure 5-3 Experimental protocols. .............................................................................................. 65 

Figure 5-4 Effects of DBS on perceived pain from warm stimuli, hot stimuli, and mechanical 

pressure. ........................................................................................................................................ 67 

Figure 5-5 Effects of 20 and 130 Hz DBS on perception of heat pain. ........................................ 68 

Figure 5-6 (Supplementary Figure 1) Effects of DBS on perceived intensity (rather than pain) from 

warm and hot stimuli. ................................................................................................................... 73 

Figure 6-1 Illustrations of stimulation patterns based on a synthetic signal. ................................ 75 

Figure 7-1: Sensory cortex threshold crossings across all channels during 1 Hz brushing. ......... 81 

Figure 7-2: Cross-channel synchrony of tactile-induced spiking. ................................................ 82 

Figure 7-3: Representative stimulation artifact template. ............................................................. 83 

  



x 

 

 

Therapeutic neuromodulation has an established history for clinical indications, such as 

deep brain stimulation for movement disorders and spinal cord stimulation for pain, despite an 

incomplete understanding of its mechanism of action. Novel neuroprosthetics have the potential 

to enable wholly new therapies, including sensory restoration and treatment of affective disorders. 

In order to fully realize the potential of these interventions, precise parameterization of stimulation, 

informed by better understanding of underlying processes, is required. This dissertation explores 

the temporal and spatial determinants of outcomes for stimulation within the context of clinical 

and experimental sensorimotor neuromodulation.  

The first study of the dissertation defines a new functional target for subthalamic deep brain 

stimulation for Parkinson disease. We use logistic LASSO to identify features of wideband neural 

recordings associated with therapeutic stimulation regions derived from patient-specific 

anisotropic tissue activation models. The study identifies several electrophysiological markers of 

optimal stimulation regions, which were used in a support vector machine classifier to predict 

therapeutic activation regions with 64% sensitivity and 82% specificity. By predicting entire 

regions of therapeutic activation, this algorithm provides a tool for efficient optimization of 

stimulation programming.  

The second study investigates the use of empirical mode decomposition, a relatively novel 

signal analysis tool notable for its ability to extract time-variant and non-sinusoidal signal 

components, for neuroprosthetic control. We directly compare the performance of empirical mode 
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decomposition against Fourier bandpass filtering, wavelet analysis, and principal spectral 

component analysis within the context of electrocorticography-based finger movement decoders. 

Using a Naïve Bayes classifier to detect thumb movement and decode finger flexion, our results 

indicate that it does not outperform conventional tools despite significantly higher computational 

cost. 

The third study presents a novel form of lead localization utilizing impedance. The study 

presents a scalable and computationally efficient whole-brain impedance atlas derived from 

individual patient diffusion tensor images. The study then shows that in vivo impedance 

measurements generally match patterns observed in electrostatic simulations of impedance in 

patient-specific anisotropic brain conductance models. However, we find that monopolar 

impedances measured using a clinical macroelectrode provide spatial information at the resolution 

of 2-5 millimeters, requiring additional refinement to achieve precision necessary for clinical use. 

The fourth study evaluates stimulation of a novel subthalamic target for modulation of pain. 

Rodent studies show that stimulation of zona incerta can provide analgesic effect, and clinical 

evidence suggests that stimulation of a nearby nucleus, nominally used to treat Parkinson disease, 

often also results in improvement of pain symptoms. We directly test the analgesic effect of zona 

incerta stimulation in humans and show that stimulation at 20 Hz, the physiological frequency of 

zona incerta, selectively reduces perceived heat pain. Stimulation at 60 and 130 Hz does not 

modulate sensation. Likewise, stimulation of zona incerta does not modulate sensation of non-

painful heat or pressure pain threshold. 

The final two studies briefly examine temporal dynamics of evoked sensory activity—

within a single unit and across multiple channels. The first study demonstrates, in humans 

undergoing thalamic deep brain stimulation surgery for essential tremor, that microstimulation of 
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a small region in sensory thalamus with a pulse pattern modeled after its own evoked activity can 

reproduce the original sensation. The second study shows that natural tactile stimulation evokes 

highly asynchronous activity in sensory cortex of a primate model. 
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Background 

Therapeutic neuromodulation has a well-established clinical history. For over twenty years, 

deep brain stimulation (DBS) has been used to treat movement disorders to great effect. Likewise, 

cochlear implants have restored hearing to over 300,000 individuals with hearing loss since the 

1980s (National Institute on Deafness and Other Communication Disorders, 2017). More recently, 

neuroprosthetic interfaces have demonstrated qualified success in providing sensory feedback for 

artificial limbs (Tan et al., 2014; George et al., 2019). 

Although the specific mechanisms by which electrical stimulation modulates motor 

systems and conscious sensation have yet to be fully elucidated, research on novel modes of 

neuromodulation have consistently highlighted two key determinants of outcome. First is the 

critical importance of location. The nervous system, in all its complexity, operates through cell 

bodies and axons that occupy distinct physical space. Thus, the cognitive functions affected by 

stimulation are largely dictated by the specific neural pathways activated by delivered charge. 

Although straightforward in theory, precise spatial targeting of neuromodulation is highly 

complex in practice. Neural organization occurs at the level of micrometers and often in entangled 

neuronal populations. Accurate localization of specific neural populations and pathways can 

involve physical, electrophysiological, functional, genetic, and histological methods. For example, 

in vivo validation of deep brain stimulator lead placement involves physical identification of 

structures with imaging technologies, electrophysiological identification of the target structure 

Chapter 1  
 

Introduction 



2 

 

using microelectrode recording, and functional testing of stimulation with clinical motor testing 

(Frequin et al., 2020). The multitude of localization technologies used to validate lead location 

serve to highlight the critical importance of accurate placement. Even a two-millimeter deviation 

can determine the clinical success or failure of the intervention (McClelland et al., 2005). 

Despite the importance of precisely targeted stimulation, contemporary methods remain 

limited to millimeter precision (Koeglsperger et al., 2019). When exacerbated with the effects of 

brain shift (Hunsche et al., 2009), these inaccuracies can often contribute enough targeting error 

to require multiple electrode placement attempts to achieve satisfactory clinical effect (McClelland 

et al., 2005; Okun et al., 2005). For some, but not all indications, functional testing may be used 

to compensate for deficiencies in stereotactic targeting. Newer indications for DBS, such as major 

depression (Mayberg et al., 2005), substance use disorders (Chen et al., 2019), and Alzheimer 

dementia (Lyketsos et al., 2015), do not have the benefit of functional testing and must rely solely 

on the limited accuracy of stereotactic targeting. 

Remarkably, even for well-validated modalities of DBS, such as treatment of Parkinson 

disease with subthalamic stimulation, the exact mechanisms of therapeutic effect and, therefore, 

the precise neuromodulatory pathway of action are still unclear (Cagnan et al., 2019). While 

previous evidence supported the hypothesis that subthalamic DBS acts through retrograde 

activation of motor cortex via the hyperdirect pathway (Gradinaru et al., 2009; Kumaravelu et al., 

2018), more recent studies have highlighted limitations in this interpretation (Yu et al., 2020). It 

is possible, instead, that therapeutic DBS acts through multiple non-exclusive mechanisms of 

action, including direct modulation of both upstream and downstream pathways and changes in 

neurochemistry (Herrington et al., 2016).  These potential pathways do not have established tools 

for directly targeting and activation using conventional DBS. These limitations in our ability to 
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precisely deliver neuromodulation to the optimal target, both spatially and functionally, establishes 

opportunities for innovation. 

A second key determinant of neuromodulatory outcomes is timing. In this domain, 

mechanistic understanding is still rapidly evolving. At a fundamental level, individual neurons 

often transmit information using rate and pattern encoding—the number and timing of action 

potentials fired over a period of time. In many cases the firing rates of individual neurons can be 

associated with specific behaviors or stimuli (Weiss et al., 2009). Likewise, firing rates of cells 

across a population are also known to exhibit precise temporal dynamics (Fortier-Poisson and 

Smith, 2016). The importance of appropriate timing is also reflected in the diversity of stimulation 

frequencies employed across different indications of therapeutic neuromodulation: 130 Hz for 

subthalamic DBS for Parkinson disease (Koeglsperger et al., 2019), 10 kHz for spinal stimulators 

for pain (Russo and Van Buyten, 2015), and even higher frequencies for cochlear implants 

(Shannon et al., 2011).  

Although conventional stimulation utilizes tonic patterns of electrical pulses, physiological 

processes employ complex, irregular spiking activity, both within firing patterns of an individual 

unit (Weiss et al., 2009) and across neuronal populations (Fortier-Poisson and Smith, 2016). 

Inspired by the temporal complexity of physiological neural activity, recent works have revealed 

that more sophisticated patterns of stimulation may be superior to tonic stimulation in achieving 

pain suppression (Kirketeig et al., 2019), naturalistic sensation (Tan et al., 2014; Swan et al., 2018; 

George et al., 2019), and suppression of Parkinson disease symptoms (Brocker et al., 2017). 

Mechanisms by which these patterns achieve superior effect are still unclear, limiting the 

generalizability of these concepts.   
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Together, precise location and timing determine the behavioral outcomes of stimulation. 

This dissertation explores the intersection of these dynamics within the context of clinical and 

experimental neuromodulation. The following chapters propose tools for improved localization of 

deep brain stimulation targets, demonstrate novel modes of stimulation for sensory modulation, 

and investigate specific temporal dynamics of neural activity. 

Outline 

Broadly, this dissertation begins with clinically oriented studies focused on questions of 

location: How can we know where we are in the brain? Where is it most appropriate to stimulate? 

These questions are informed by both physical properties of the nervous system and physiological 

activity of local neural populations. Subsequent chapters explore dynamics of sensory modulation, 

with increasing emphasis on temporal stimulation parameters and their interactions with 

behavioral outcome. 

Chapter 2 opens with a study that unites many of the above principles in the context of 

subthalamic DBS for Parkinson disease. The study identifies electrophysiological markers in the 

frequency domain of neural signals and uses them to predict the location of therapeutic regions of 

stimulation. Previous studies have described electrophysiological markers of clinically optimized 

lead sites (Ince et al., 2010; Verhagen et al., 2015; Tinkhauser et al., 2017). However, DBS 

activates volumes of brain tissue (Butson et al., 2007; Maks et al., 2009), rather than discrete 

points. This study was the first to utilize such volumes to identify neural markers of clinically 

therapeutic activation regions. By marrying neural recordings, tissue activation models, and 

machine learning, the study identifies several electrophysiological markers of optimal stimulation 

targets, providing a tool for efficient optimization of DBS programming.  
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Chapter 3 describes an investigation of empirical mode decomposition, a relatively new 

alternative to the Fourier techniques utilized in Chapter 2. The decomposition is notable for its 

ability to extract time-variant and non-sinusoidal signal components which are neglected by 

conventional tools (Huang et al., 1998). Evidence suggests that multiunit activity does contain 

important signals with these characteristics (Cole and Voytek, 2017), which may be useful for 

neurological disease state monitoring or neuroprosthetic control. To assess the utility of this tool, 

we directly compare the performance of empirical mode decomposition against Fourier analysis 

and other state-of-the-art signal decomposition techniques within the context of 

electrocorticography-based finger movement decoders. 

Chapter 4 presents a study that focuses explicitly on location, presenting a novel form of 

deep brain localization utilizing purely physical properties of brain tissue. Previous studies have 

reported variations in brain tissue impedance along deep brain trajectories (Robinson, 1962). These 

properties have been indirectly associated with parameters of non-invasive imaging data (Tuch et 

al., 2001) and play an important role in computational models of deep brain tissue activation 

(Houshmand et al., In review). Chapter 4 proposes using these tools to determine lead location by 

finding concordance between measured impedances along a rigid trajectory and estimated values 

derived from pre-operative imaging. Notably, this approach is intuitive, cost-effective, and 

overcomes common limitations of deep brain targeting. The approach is agnostic to target 

physiology and opens the door to precise targeting of arbitrary deep brain structures. 

Chapter 5 begins the dissertation’s exploration of sensory system modulation by evaluating 

stimulation of a novel subthalamic target for suppression of pain. Previous rodent studies have 

provided strong evidence that stimulation of zona incerta can provide an analgesic effect (Lucas 

et al., 2011). There have also been clinical reports that subthalamic DBS, which typically also 
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activates zona incerta (Plaha et al., 2006), often modulates patients’ sensory thresholds and pain 

symptoms (Custozzo et al., 2020). Chapter 5 directly tests the analgesic effect of zona incerta DBS 

in humans, providing human translation of rodent observations and a neurophysiological 

explanation of the analgesic effects observed from subthalamic DBS. The study also investigates 

the selectivity and frequency-dependency of this intervention. 

Chapter 6 presents preliminary data from an investigation of a novel approach to 

stimulation patterning for tactile sensory modulation. While there have been previous attempts to 

elicit naturalistic sensations via physiologically-inspired patterns of electrical stimulation (Swan 

et al., 2018; George et al., 2019), results have been inconsistent. This study takes the idea of 

biomimetic stimulation patterns to its extreme and models stimulation timing after the evoked 

activity of the specific unit being stimulated. Early results indicate that these tailored patterns can 

induce naturalistic sensations much more reliably than conventional tonic patterns, other power-

matched patterns, or patterns reported elsewhere (Weiss et al., 2009; Tan et al., 2014; Swan et al., 

2018), which tend to produce parasthetic sensations. Although preliminary, the results highlight 

the critical importance of precise temporal parameters in neural signaling.  

Chapter 7 presents the final study of this dissertation, which examines multi-unit timing 

dynamics of sensory-evoked activity. Literature suggests that the relative timings of action 

potentials from separate sensory neurons convey meaningful information about tactile input 

(Fortier-Poisson and Smith, 2016). This presents a plausible explanation for why electrical 

stimulation, which simultaneously activates large neural populations, often results in artificial 

parasthetic sensations. Chapter 7 presents evidence that this may indeed by the case, by 

demonstrating that natural tactile stimuli evoke highly unsynchronized activity in sensory cortex. 
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Finally, Chapter 8 places the above works within the context of existing knowledge and 

future possibilities. Specific attention is given to the potential clinical impact of newly developed 

technologies and future experiments to further explore the ideas discussed here. 
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Co-authored with: Karlo A. Malaga, Kelvin L. Chou, Cynthia A. Chestek, Parag G. Patil 

 

Abstract 

Background: Subthalamic deep brain stimulation alleviates motor symptoms of Parkinson 

disease by activating precise volumes of neural tissue. While electrophysiological and anatomical 

correlates of clinically effective electrode sites have been described, therapeutic stimulation likely 

acts through multiple distinct neural populations, necessitating the need to characterize the full 

span of tissue activation. Microelectrode recordings have yet to be mapped to therapeutic tissue 

activation volumes and surveyed for predictive markers. 

Objective: Combine high-density, broadband microelectrode recordings with detailed 

computational models of tissue activation to describe and to predict regions of therapeutic tissue 

activation. 

Methods: Electrophysiological features were extracted from microelectrode recordings 

along 23 subthalamic deep brain stimulation implants in 16 Parkinson disease patients. These 

features were mapped in space against tissue activation volumes of therapeutic stimulation, 

modeled using clinically-determined stimulation programming parameters and fully 

individualized, atlas-independent anisotropic tissue properties derived from 3T diffusion tensor 

magnetic resonance images. Logistic LASSO was applied to a training set of 17 implants out of 

the 23 implants to identify predictors of therapeutic stimulation sites in the microelectrode 
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recording. A support vector machine using these predictors was used to predict therapeutic 

activation. Performance was validated with a test set of six implants. 

Results: Analysis revealed wide variations in the distribution of therapeutic tissue 

activation across the microelectrode recording-defined subthalamic nucleus. Logistic LASSO 

applied to the training set identified six oscillatory predictors of therapeutic tissue activation: theta, 

alpha, beta, high gamma, high frequency oscillations (HFO, 200-400 Hz), and high frequency band 

(HFB, 500-2000 Hz), in addition to interaction terms: theta x HFB, alpha x beta, beta x HFB, and 

high gamma x HFO. A support vector classifier using these features predicted therapeutic sites of 

activation with 64% sensitivity and 82% specificity in the test set, outperforming a beta-only 

classifier. A probabilistic predictor achieved 0.87 area under the receiver-operator curve with test 

data.  

Conclusions: Together, these results demonstrate the importance of personalized targeting 

and validate a set of microelectrode recording signatures to predict therapeutic activation volumes. 

These features may be used to improve the efficiency of deep brain stimulation programming and 

highlight specific neural oscillations of physiological importance. 

Keywords: Parkinson disease; deep brain stimulation; subthalamic nucleus; microelectrode 

recording; tissue activation volumes 

Abbreviations: deep brain stimulation (DBS); subthalamic nucleus (STN); volume of tissue 

activation (VTA); high-frequency oscillations (HFO); high-frequency band (HFB); support vector 

machine (SVM) 

Introduction 

Deep brain stimulation of the subthalamic nucleus (STN DBS) is a well-established 

surgical treatment for Parkinson disease. Efficacious therapy requires both accurate surgical 
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placement of DBS leads and careful programming of stimulation parameters. Together, these 

procedures ensure modulation of the correct neural pathways to achieve maximal therapeutic 

effect. However, conventional DBS programming to achieve optimal tissue activation is a time-

consuming empirical process (Hunka et al., 2005; Volkmann et al., 2006). 

There exist both anatomical and electrophysiological approaches to prospectively identify 

therapeutic activation regions. Clinical observations (Zonenshayn et al., 2004; Wodarg et al., 

2012; Garcia-Garcia et al., 2016) and computational models (Maks et al., 2009; Butson et al., 

2011; Akram et al., 2017) both point to dorsal STN as an effective stimulation target. This region 

is traversed by the hyperdirect pathway (Haynes and Haber, 2013), which has been strongly 

implicated in the therapeutic mechanisms of DBS (Gradinaru et al., 2009; Kumaravelu et al., 

2018). Tissue activation models, in particular, have made notable contributions to this area of 

study. Although in vivo measurement of tissue activation is typically impractical, tissue activation 

models offer a sophisticated estimate of the anatomical region activated by therapeutic stimulation 

(McIntyre et al., 2004; Kuncel et al., 2008) and have strengthened hypotheses identifying dorsal 

STN and the hyperdirect pathway as optimal sites of stimulation (Maks et al., 2009; Akram et al., 

2017). Regions of elevated beta power observed on microelectrode recording have also been 

associated with effective DBS (Ince et al., 2010; Yoshida et al., 2010; Zaidel et al., 2010; Guo et 

al., 2013; Stein and Bar-Gad, 2013; Bour et al., 2015; Horn et al., 2017; Tinkhauser et al., 2018) 

and are often coincident with dorsal STN (Zaidel et al., 2010; Moshel et al., 2013; Verhagen et 

al., 2015). 

However, a growing body of evidence suggests that this is not the complete story. While 

the “average” active contact is often located near the dorsal STN border, maximally effective 

stimulation sites are known to vary significantly across patients (Caire et al., 2013; Telkes et al., 
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2018). This highlights a need to more precisely characterize the three-dimensional span of tissue 

activated by therapeutic stimulation, which has historically been analyzed as a solitary point (Ince 

et al., 2010; Yoshida et al., 2010; Guo et al., 2013; Horn et al., 2017). Likewise, a number of 

subthalamic oscillations outside the beta band—notably alpha, gamma, and high frequency 

oscillations—are known to play key roles in Parkinsonian neurophysiology (Foffani et al., 2003; 

Lopez-Azcarate et al., 2010; Oswal et al., 2013a, b; Telkes et al., 2016; Shreve et al., 2017; van 

Wijk et al., 2017; Telkes et al., 2018) and potentially interact in clinically meaningful ways, such 

as phase-amplitude coupling (Lopez-Azcarate et al., 2010; van Wijk et al., 2016; Shreve et al., 

2017; Telkes et al., 2018). These observations suggest a need to more holistically interpret the 

anatomical and electrophysiological loci of STN DBS intervention to better understand optimal 

physiological sites of action.  

Here, we analyze fully individualized anisotropic models of therapeutic tissue activation 

alongside high-density, broadband electrophysiology. We bring together these complementary 

modes of study into a unified analysis of therapeutic stimulation, by mapping microelectrode 

recordings to clinically-derived tissue activation models. By incorporating individual 

heterogeneous anisotropy into our models, we achieve precise patient-specific estimates of tissue 

activation (Howell and McIntyre, 2016, 2017). We describe a data-driven approach to identify 

associations between regions of therapeutic tissue activation and broadband electrophysiological 

features, including cross-frequency interactions. We then show that selected signal features can be 

used to accurately predict spans of therapeutic activation in a test set of data. 

Materials and methods 

Patients 
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Subjects included 16 patients (11 men and 5 women) with advanced idiopathic Parkinson 

disease who underwent STN DBS surgery at the University of Michigan. Patient selection criteria 

for STN DBS at the institution have been described previously (Patil et al., 2012). All patients 

were implanted bilaterally with Medtronic DBS leads, model 3389. Leads were placed with 

guidance by 3T magnetic resonance imaging (MRI), stereotactic navigation, and microelectrode 

recording. Subjects were STN DBS patients with stable programming parameters and subjectively 

satisfactory clinical outcomes 6 months after surgery. Subjects had a mean (standard deviation) 

age of 63 (6.1) years and mean disease duration of 10 (4.6) years. Stimulation amplitudes ranged 

from 1.7 to 4.8 (mean 2.8 V), with pulse width of 60 µs and frequencies of 125-185 Hz. Three 

implanted leads utilized two adjacent active contacts; all others utilized one active contact. 

Average DBS OFF and DBS ON MDS-UPDRS part III scores off medication were 45 (19) and 

31 (17), with 25% improvement due to STN DBS stimulation. The study was approved by the 

University of Michigan Institutional Review Board, and all participants provided individual 

informed consent. 

DBS Lead Placement 

Patients underwent frame-based awake DBS surgery with microelectrode recording. 

Planned targets were initially assigned from indirect targeting (12 mm lateral, 3 mm posterior, and 

4 mm inferior to the mid-commissural point), with adjustment from direct magnetic resonance 

visualization of the ventral border of STN, on 3T MRI (field of view = 200 mm x 200 mm, 0.69 x 

0.69 x 1.25 mm voxels) (Philips Achieva 3T; Philips, Amsterdam, Netherlands). Recordings were 

performed from 15 mm above to 5 mm below the planned target on a single trajectory. 

Microelectrode signals were recorded at the tip of a bipolar microelectrode (MicroTargeting 

Electrode; FHC, Bowdin, ME), amplified (D360 Isolated Patient Amplifier System; Digitimer, 
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Hertfordshire, England), and recorded to a computer using custom software (LabVIEW 2015; 

National Instruments, Austin, TX). An electrophysiologist identified the dorsal and ventral borders 

of the STN during surgery. DBS leads were then inserted with the tip near the ventral border of 

the electrophysiologically identified STN. Intraoperative confirmation of the microelectrode 

trajectory and DBS lead placement were performed using fluoroscopy. Additional details of the 

surgical procedure are described in previous publications (Patil et al., 2012; Houshmand et al., 

2014). 

Location of DBS Electrode Contacts 

A high-resolution computed tomographic (CT) scan (GE HD750; General Electric, Boston, 

MA) was performed 2 to 4 weeks after surgery to visualize the location of DBS leads and 

individual electrode contacts. CT images were resampled via linear interpolation to match the 

resolution of the MRI images and oriented in Talairach space via coregistration to Talairach-

oriented MR images using a mutual-information algorithm in commercial software (Analyze, 

AnalyzeDirect, Overland Park, KS). Additional detail can be found in (Houshmand et al., 2014). 

Contacts were then directly visualized in 3D image reconstructions and coordinates were exported 

to MATLAB (MathWorks, Natick, MA) software for further analysis. 

Tissue Activation Modeling 

Preoperative diffusion tensor imaging (DTI) data for each patient were acquired using a 

single-shot echo planar imaging sequence with a dS-SENSE parallel-imaging scheme (reduction 

factor = 2, field of view = 224 mm x 224 mm, 1 x 1 x 2 mm voxels). Diffusion weighting was 

encoded along 16 independent orientations with a b-value of 800 s/mm². DTI images were 

resampled via cubic spline interpolation to match the resolution of the MRI images and oriented 

in Talairach space via coregistration to the Talairach-oriented MRI images in Analyze (Analyze 
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12.0; Mayo Clinic, Rochester, MN). The Analyze software DTI application was used to calculate 

the eigenvectors and eigenvalues of the DTI images. Diffusion tensors were then calculated from 

the eigenvectors and eigenvalues in MATLAB (MATLAB R2018b; MathWorks, Natick, MA) and 

converted to conductivity tensors using the linear relationship between conductivity and diffusion 

tensor eigenvalues (σ/d ≈0.844 S∙s/mm3) as described by Tuch et al. (Tuch et al., 2001). 

3D finite element models of therapeutic DBS were constructed for each patient in 

COMSOL (Multiphysics 5.2; COMSOL, Burlington, MA), incorporating each patient’s entire 

MRI scan, the DBS lead, and clinically-determined stimulation parameters. Brain tissue was 

modeled as a block with DTI-derived anisotropic conductivity tensors linearly interpolated onto 

the adaptive mesh. The lead was modeled as an isotropically conductive Medtronic DBS lead, 

model 3389, (contact: 1.4×107 S/m; insulation: 1×10-13 S/m) (Yousif et al., 2008; Kent and Grill, 

2014) positioned to match the coordinates of each patient’s implanted DBS contacts, as measured 

from post-operative CT. 

Boundary conditions were defined for the DBS electrode and bulk tissue. Specifically, an 

electric potential was applied to the surface of the active contact(s) according to programmed 

stimulation parameters of each patient, floating potentials were applied to the surfaces of the 

remaining contacts, and ground was applied to the surface of the brain tissue. Each patient’s finite 

element model was meshed once individually, with finer meshing applied near the lead. 

Simulations were then run to solve for the electric potential in each model. The models were 

electrostatic, assuming frequency-independent gray matter impedance (Logothetis et al., 2007). 

Tissue activation volumes (VTAs) were generated for each patient in COMSOL by 

calculating the spatial derivative of the electric potential (McNeal, 1976; Rattay, 1986) with 
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activation thresholding at the level corresponding to each patient’s clinical stimulation amplitude 

(Astrom et al., 2015). 

Microelectrode Recording 

Wideband (0.1 Hz -15 kHz) spiking activity and field potentials were recorded along the 

DBS probe trajectory at 0.5 mm intervals, spanning from 15 mm above to 5 mm below the surgical 

target (the STN ventral border on imaging), using the microelectrode recording tip. A typical 

trajectory traverses thalamus, field of Forel, zona incerta, subthalamic nucleus, and substantia 

nigra. Seven seconds of uninterrupted electrophysiology was recorded at each site, with the first 

second of recording removed from analysis to eliminate movement artifact. Each trajectory had 

electrophysiology recorded at 30 to 48 sites. Microelectrode recordings less than 5 mm from the 

starting depth, which may have been affected by the cannula, were excluded from analysis. 

Recorded signal at each site was also visually examined for extraneous noise and excluded from 

analysis if found to be noisy. Data from 9 trajectories out of 32 implants were unavailable or 

excluded due to presence of significant noise. In total, microelectrode data from 641 sites were 

included in this analysis. Direct visualization of the microelectrode and the permanently implanted 

DBS lead using intraoperative fluoroscopy confirmed that both leads follow the same trajectory in 

the anteroposterior and dorsoventral directions. Post-operative migration of the DBS lead was 

assumed to be minimal. Using this relationship, electrophysiology was spatially mapped to each 

VTA model along the trajectory defined by the DBS lead visualized on post-operative CT.  

At each depth, we calculated spike rate and the log of normalized power within the delta 

(0.1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), low gamma (30-59 Hz), high gamma 

(61-200 Hz), high frequency oscillation (HFO; 200-400), and high frequency (HFB; 500-2000 Hz) 

bands (Thompson et al., 2014). In addition to main effects, first order interaction terms, calculated 
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as the product of each pair of covariates, e.g., log(beta power) x log(low gamma power), were also 

considered during analysis. Spike rate was calculated by high pass filtering the microelectrode 

recording at 300 Hz and counting the number of threshold crossings at 4.5 times the signal’s root 

mean square. For analysis of oscillations, spectra of each microelectrode recording were estimated 

using the fast Fourier transform. To remove 60 cycle noise, spectra values within 2.5 Hz of each 

60 Hz harmonic was replaced with the median power within 5 Hz of the harmonic. 

Classifier Design and Validation 

Predictive electrophysiological parameters for forecasting of VTA spans were identified 

using logistic least absolute shrinkage and selection operator (logistic LASSO). LASSO  is a well-

established regression method that removes uninformative covariates from linear models, thereby 

selecting for features that provide predictive value (Tibshirani, 1996). This was carried out using 

MATLAB’s built-in lassoglm() function. The function requires a regularization parameter, λ, 

which determines the penalization of non-zero slopes. A parameter sweep of λ was used to 

determine the optimal value of λ to minimize divergence observed in 300-fold cross validation. 

The final λ value used for parameter selection was one standard deviation greater than the optimal 

value to prevent overfitting, following the one standard error rule for model selection (Kirkland et 

al., 2015). Parameterization of LASSO and covariate selection were performed using a training 

set of the data comprised of sites along 17 lead trajectories in 13 patients (out of a total of 23 

implants in 16 patients), consisting of 486 sites. 

The final classifier was a support vector machine (SVM) (Cortes and Vapnik, 1995), used 

due to its robustness to extreme values which are often observed in electrophysiological data. The 

classifier incorporated the covariates identified by logistic LASSO, along with the first order terms 

implicated by selected interaction terms. The SVM was trained on the training data set using the 
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MATLAB built-in fitcsvm() function, with a one standard deviation box constraint (to prevent 

overfitting to outliers) and assumption of uniform prior probabilities. (Since there are many more 

sites sampled outside of therapeutic VTAs than inside, an SVM trained on empirical prior 

probabilities will be biased toward classifying points as non-VTA.) Notably, the classifier 

analyzed each site independently, predicting whether it was inside or outside of the clinically-

determined VTA, using electrophysiological features recorded at that site alone (Figure 1A). The 

microelectrode recording from each site was analyzed independently of all other sites, without any 

spatial, trajectory, or subject information included in the analysis. Binary classifications from the 

SVM at each site were then spatially smoothed with a Gaussian window (σ=1 mm) to produce a 

probabilistic prediction spanning the DBS lead trajectory (Figure 1B). Performance of the 

smoothed prediction was characterized by a receiver-operator characteristic curve. 

 

Figure 2-1 Patient example of algorithm predictions projected upon the corresponding COMSOL model of clinically 

effective tissue activation and patient MRI. (A) SVM binary predictions of clinically activated sites. Sites predicted 

to be within the therapeutic VTA (shown in orange) are indicated with red circles; sites predicted to be outside 
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indicated with blue. Active contact is shown in red. (B) The predictions shown in A are smoothed over space to 

produce a probabilistic prediction, accounting for the spatially contiguous nature of VTAs. Colors indicate probability 

of a site being within the therapeutic VTA, with hotter colors indicating higher probability. 

Performance of the SVM classifiers were determined using a holdout set of data comprised 

of electrophysiology from 155 sites (from six lead trajectories in three randomly selected patients 

not included in the training set). As such, classifier design and validation were achieved using 

wholly separate sets of data. This was done to ensure that classifier performance is not a result of 

overfitting to the training data.  

The optimized SVM classifier was compared to both a beta-only classifier and a simple 

STN border-based approach to targeting and programing. The STN border approach assumes 2.8 

V (cohort average) monopolar stimulation at the electrophysiologically-defined dorsal border of 

STN. This passive approach to programming activates 2.0 mm of tissue in each direction along 

the span of the DBS lead (observed in two implants with 2.8 V monopolar stimulation). 

Statistical Analysis 

All statistical tests were performed using MATLAB software. Statistical validation of 

classifier performance was determined using Fisher’s exact test. Classifiers were compared using 

the McNemar test. Performance metrics are assessed using test data. 

Results 

Lead Placement and Tissue Activation Locations 

DBS lead placement was found to vary across patients, with the average active contact 

located 1.9 mm ventral to the electrophysiological STN dorsal border. Tissue activation volumes 

modeled from clinically-determined stimulation parameters of different implants spanned regions 

above, within, and/or below the STN. 18% of observed VTA spans along the DBS lead were dorsal 
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to STN, 37% within the dorsal half of STN, 36% within the ventral half of STN, and 9% ventral 

to STN. 

Predictive Electrophysiological Features 

A parameter sweep was used to determine the most appropriate regularization constant for 

logistic LASSO regression of VTA spans against microelectrode recordings. The sweep, 

performed using 300-fold cross-validation on the training set of 486 sites, yielded an optimal 

regularization constant of λ=0.00633, with a standard deviation of 0.0308.  Details of the parameter 

sweep are shown in Supplementary Figure 1. Re-running LASSO with a regularization constant 

equal to the optimal value plus the standard deviation (λ=0.0591) identified five predictive neural 

features: HFB, theta x HFB, alpha x beta, beta x HFB, and high gamma x HFO. The main effects 

implicated by the interaction terms—theta, alpha, beta, high gamma, and HFO—were included as 

predictors for subsequent classifier analysis. 

Support Vector Machine Predictions 

Table 2-1 Classifier performance. Classifier performance using the full model determined by LASSO and using a 

beta-only model. PPV = positive predictive value; NPV = negative predictive value; LOOCV = leave-one-out cross-

validation 

 Full model Beta only STN-border 

Train Test LOOCV Train Test Test 

Accuracy 0.76 0.77 0.73 0.51 0.52 0.70 

Sensitivity 0.60 0.64 0.56 0.53 0.57 0.50 

Specificity 0.85 0.82 0.83 0.50 0.50 0.77 

PPV 0.67 0.57 0.63 0.35 0.30 0.45 

NPV 0.81 0.86 0.91 0.67 0.76 0.81 
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A support vector machine classifier was used to predict therapeutic tissue activation sites 

using ten electrophysiological features: theta, alpha, beta, high gamma, HFO, HFB, theta x HFB, 

alpha x beta, beta x HFB, and high gamma x HFO. The binary classifier achieved 77% accuracy, 

with 64% sensitivity and 82% specificity on the test set of 155 independently analyzed sites (Table 

1). Performance was significantly above chance with an odds ratio of 8.4 (Fisher’s exact test: p<10-

6; 95% confidence interval: 3.8-18.5). Leave-one-out cross-validation (COOCV) (partitioned by 

implant) of the support vector machine achieved similar overall performance. Binary predictions 

and VTA models for each trajectory analyzed in this study can be seen in Supplementary Figure 

2. This model outperformed both a beta-only classifier (McNemar’s test: p<10-6) and the STN 

border-based approach to targeting and programming (McNemar’s test: p=0.1175) (Table 1). 

Performance of the model was also evaluated against classifiers using individual frequency bands 

and a classifier using all available covariates (Supplementary Table 1). The model using LASSO-

selected covariates achieved greater predictive value than all other classifiers. The HFB and spike 

rate-only classifiers were the highest-performing alternative models, both with accuracies of 74%.  
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Figure 2-2 Therapeutic VTA locations along DBS lead trajectories and smoothed classifier predictions, for all 

implants. Colors indicate probability of a site being within the therapeutic VTA, with hotter colors indicating higher 

probability. Active contact is shown in red. Two leads utilized two active contacts (both anodic and synchronized). 

Test data comprised of six implants is enclosed by the gray dotted line. The implant shown in Figure I is shown as the 

top left implant in this figure. 

While therapeutic activation sites may exist as isolated regions throughout the STN region, 

VTAs generated by conventional leads must be contiguous in space. To yield a more clinically 

useful prediction of VTA span reflecting this possibility, binary classifications of individually 

analyzed points were smoothed with a Gaussian window (σ=1 mm) to be graded over space (Figure 

2). The smoothed predictions yielded probabilistic scores with an AUC of 0.87 for the test data 

(Figure 3). Examination of individual implants in Figure 2 reveals that classifier performance can 

vary by implant, with some predictions fully concordant with modeled VTAs, while others exhibit 

only slight overlap. 



22 

 

 

Figure 2-3 Receiver operating characteristic curve of smoothed classifier. Calculated from test data. AUC = area under 

curve. 

Interpretation of Covariate Effects 

In the SVM classifier, higher values of beta, HFB (500-2000 Hz), and theta x HFB were 

positive predictors of therapeutic VTAs, while higher values of theta, alpha, high gamma, HFO, 

alpha x beta, beta x HFB, and high gamma x HFO were negative predictors. In general, single 

covariates were insufficient to accurately forecast effective sites of tissue activation along the DBS 

trajectory. 

Of particular interest was the predictive effect of beta. Plotting beta power against HFB 

(Figure 4A) shows that elevated beta is a positive predictor of therapeutic activation sites, but only 

in the presence of high HFB. Sites with high beta are not activated by therapeutic stimulation when 

observed with low HFB. HFB-theta interactions show a different effect: low theta power is a 

positive predictor of therapeutic activation when coincident with high HFB power (Figure 4B). As 

HFB is an indicator of STN multiunit activity (Novak et al., 2011), these interactions suggest that 

high beta and low theta power are positive predictors of therapeutic activation only within the 

STN. Overlapping regions of VTA and non-VTA sites show that these covariates must still be 

interpreted alongside other bands of interest to generate reliable predictions. Alpha-beta and high 
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gamma-HFO interactions were also identified as predictors of therapeutic activation. While the 

nature of interactions between these oscillations and their relation to VTAs is unclear from visual 

analysis, the high covariance observed between these pairs of covariates is notable (Figure 4C-D). 

 

Figure 2-4 Power within main effects of interaction terms plotted against one another show inter-frequency 

dependence of predictors. Red points indicate sites within modeled VTAs, gray points indicate sites outside. Axes are 

scaled along arbitrary units. A shows interactions between main effects of the beta x HFB term, B for theta x HFB, C 

for alpha x beta, and D for high gamma x HFO. 

Discussion 

This study yields three notable findings. First, we used atlas-independent, fully 

individualized patient VTA models to show that clinically effective tissue activation volumes can 

span a variety of locations, with large proportions of clinically optimized tissue activation observed 

both above and within the electrophysiologically-defined STN. Second, we mapped high-density, 

broadband microelectrode recordings to individualized VTAs, and applied a data-driven method 

to objectively select and validate seven anatomically agnostic electrophysiological predictors of 

therapeutic tissue activation in the subthalamic region. Third, we demonstrated and validated a 

predictive clinical tool to aid DBS lead placement and programming that significantly outperforms 

a beta-only classifier. When tested on a set of three randomly selected new patients, the algorithm 

achieved an AUC of 0.87, demonstrating high accuracy and generalizability across patients. In 

doing so, this study unifies anatomical, electrophysiological, and computational analyses to 

describe and to validate electrophysiological signatures of regions activated by therapeutic STN 

DBS. 
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Logistic LASSO suggested ten electrophysiological predictors of therapeutic VTAs that 

were subsequently validated by an SVM classifier: theta, alpha, beta, high gamma, HFO, HFB, 

theta x HFB, alpha x beta, beta x HFB, and high gamma x HFO. While covariates of the relatively 

simple model used here do not directly reflect physiological mechanisms of treatment or disease 

pathology, the high predictive value of the SVM does warrant additional attention toward the 

selected oscillations. Predictive frequency bands identified in this study both support the literature 

on existing oscillations of interest and suggest new directions of investigation. Power in beta, HFO, 

alpha, and gamma bands are well-established correlates of Parkinsonian symptoms: beta and HFO 

are associated primarily with bradykinesia and rigidity, while gamma and alpha oscillations are 

more often associated with other motor manifestations and affective components of Parkinson 

disease (Foffani et al., 2003; Ozkurt et al., 2011; Oswal et al., 2013b). Likewise, subthalamic theta 

activity has been causally linked to Parkinsonian tremor (Tass et al., 2010). Together, these 

separate frequency bands may independently contribute information about different dimensions of 

Parkinsonism, each of which can be acted upon by therapeutic DBS. In contrast, HFB power 

represents STN multiunit activity and therefore provides primarily anatomical information (Novak 

et al., 2011). Evaluation of an HFB-only classifier reveals high predictive value in this anatomical 

information, as expected from the well-established practice of targeting STN. Other frequency 

bands likely contribute information to more precisely identify therapeutic activation sites within 

and adjacent to STN. Notably, spike rate was not selected as a predictive feature of therapeutic 

VTAs, despite the unique spiking activity of STN. Its exclusion from the LASSO model is likely 

due to spiking rate’s high covariance with HFO and HFB (Schlag and Balvin, 1963; Stark and 

Abeles, 2007), which reduces the amount of predictive information it contributes to the model. 

Elevated spike rate is also often observed in thalamus, which is rarely activated by STN DBS, 
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further reducing its contribution to the predictive model. Note, however, that the microelectrode 

features used in this study are extracted from only six seconds of recording at each site, which may 

neglect phenomena that occur at longer time scales and limit the quality of spectral estimation used 

for other features.  

Interaction terms selected by LASSO must be carefully interpreted. The HFB interaction 

terms identified here provide anatomical context for interpretation of beta and theta power, by 

restricting their predictive value to sites within STN. Interpretation of the alpha-beta interaction is 

less obvious. Stein and Bar-Gad (Stein and Bar-Gad, 2013) suggest that perhaps a single 

physiologically important oscillation is captured by both alpha and beta bands, in concordance 

with the high covariance of alpha and beta observed in our data, which the model corrects for using 

the interaction term. There also exists some evidence that the two bands together are directly linked 

to presentation of parkinsonian tremor (Hirschmann et al., 2019). Similar phenomena may also 

explain inclusion of the high gamma-HFO interaction in the LASSO model. Perhaps surprisingly, 

beta-gamma and beta-HFO interactions were excluded. This is likely due to the complex nature of 

described interactions between beta and high frequency oscillations (Lopez-Azcarate et al., 2010; 

van Wijk et al., 2016), which would not be captured by the simplistic metric used here. 

Looking ahead, the prominence of multi-frequency interactions identified and validated 

here strongly points to avenues of future study. Telkes et al. (Telkes et al., 2016) recently 

demonstrated that information in beta must be fused with high frequency bands to accurately 

predict optimal implantation tracks. While the interactions analyzed in this study and by Telkes 

indicate only that power across frequency bands should be jointly assessed in the predictive model, 

there also exist more complex measures of interaction that may provide valuable additional 

information. Sophisticated multi-frequency phenomena, such as phase-amplitude coupling (van 
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Wijk et al., 2016; Shreve et al., 2017) and beta burst length (Tinkhauser et al., 2017), have 

demonstrated physiological relevance. While the regression-based approach described here is 

unsuitable for analysis of these predictors, the cross-frequency features identified here and in other 

studies highlight the importance of investigating different components of broadband 

electrophysiology in concert.  

Anatomically, we used atlas-independent, fully individualized VTA models to show that 

therapeutic effect can be achieved with tissue activation across a variety of sites both within and 

outside the STN borders. Most therapeutic VTAs activated regions within and above STN, which 

can be largely achieved with 2.8 V stimulation at dorsal STN. This is in line with prior work 

pointing to dorsolateral STN as an optimal site of stimulation (Zonenshayn et al., 2004; Wodarg 

et al., 2012). STN border-based programming was outperformed by microelectrode predictions, 

although the difference was not statistically significant. However, nuances in performance of the 

STN border approach necessitate important caveats to this finding. The low positive predictive 

value (0.45) of STN border-based programming suggests that it activates a large portion of tissue 

that need not be stimulated for therapeutic effect. Furthermore, the specificity of the approach is 

likely overestimated. Although key sites of therapeutic activation may be distinct, conventional 

VTAs must be spatially contiguous, activating neighboring regions. Thus, STN border-based 

programming and the therapeutic VTAs used for reference exhibit the same systematic error, 

artifactually inflating the measured specificity.  When interpreted together with the anatomical 

diversity of therapeutic activation regions observed across subjects, as reported by earlier studies 

(Caire et al., 2013; Hamel et al., 2017), these findings support opportunities for additional 

refinement of DBS targeting and personalized stimulation. 
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Although this study treats therapeutic tissue activation as a binary variable, presentations 

of Parkinson disease and its response to STN DBS are known to be multidimensional and varied 

across patients. A robust body of work suggests that different symptoms may be optimally treated 

by activation of different subthalamic regions and neural pathways with unique 

electrophysiological markers (Moran et al., 2008; Oswal et al., 2013b; Bour et al., 2015; Kuhn 

and Volkmann, 2017). In this view, it is critical to consider the full span of activated tissue when 

identifying neural markers of DBS targets, as therapy is likely achieved through activation of 

multiple sites with distinct electrophysiological signatures. Recent work by Telkes et al. (Telkes 

et al., 2018) showed that different motor subtypes of Parkinson disease present with unique 

multiband signatures in spatially distinct STN regions. Close examination of results in Figure 2 

reveal large variations in classifier performance between individual implants, suggesting that this 

phenomenon is likely present in the current study as well. These observations demonstrate the 

significant potential for further progress in this area. Future work will directly examine these 

relationships and their utility in treatment optimization. 

It is important to note that the analysis here must be understood within the context of some 

fundamental limitations of the methodology. The spatially contiguous nature of VTAs guarantees 

that the clinically determined sites of therapeutic activation are biased to include non-therapeutic 

regions adjacent to clinically important sites of activation. This intrinsic error in our designation 

of therapeutic activation regions likely introduces significant noise into the algorithm, both in 

design and validation. Also, the spatial relationship between recorded oscillations and the 

corresponding synchronous neural population is both imprecise and incompletely understood 

(Lempka and McIntyre, 2013; Maling et al., 2018), limiting the precision of microelectrode 
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predictions. Spatially smoothing the predictions in this study provided an informative but 

imperfect remedy for these sources of imprecision.  

More generally, it should be noted that tissue activation modeling is complex and makes 

several specific assumptions. This study utilizes fully individualized anisotropic conductivities and 

simple activation thresholds to calculate precise patient-specific VTAs. Alternative approaches, 

such as those employing explicit axon models (Gunalan et al., 2017) and driving force calculations 

(Peterson et al., 2011), may yield different therapeutic activation volumes (Gunalan et al., 2018). 

At the same time, literature suggests that incorporation of tissue heterogeneity and anisotropy 

generates reliable activation models (Howell and McIntyre, 2016, 2017). Small errors in image 

co-registration and lead movement after implantation may also introduce errors into our analysis. 

Nonetheless, by predicting both the approximate location and span of generalized 

therapeutic tissue activation volumes, the approach presented here can be used to quickly estimate 

effective sites and amplitudes of stimulation. Perhaps more importantly, this method significantly 

restricts the parameter space that must be explored to optimize DBS stimulation parameters. With 

the introduction of directional DBS leads promising greater therapeutic windows (Contarino et al., 

2014; Pollo et al., 2014; Dembek et al., 2017), new tools such as the one presented here are needed 

to constrain the greatly expanded parameter space of directional leads to efficiently interrogate 

potential program settings. Eventually, such targeting methods may be used in concert with 

parameter optimization algorithms (McIntyre et al., 2006; Teplitzky et al., 2016; Xiao et al., 2016; 

Pena et al., 2017; Anderson et al., 2018), potentially achieving even greater STN DBS 

programming efficiency. 
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Supplement 

 

Figure 2-5 (Supplementary Figure 1) LASSO regularization parameter sweep. Parameter sweep of λ using 300-fold 

cross-validation over the training data set. Minimum divergence was found at λ = 0.00633, with a standard deviation 

of 0.0308. 
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Figure 2-6 (Supplementary Figure 2) Therapeutic VTA locations along DBS lead trajectories and binary classifier 

predictions, for all implants. Sites predicted to be within the therapeutic VTA (shown in orange) are indicated with 

red circles; sites outside indicated with blue. Active contact is shown in red. Two leads utilized two active contacts 

(both anodic and synchronized). Test data comprised of six implants is enclosed by the gray dotted line. The implant 

shown in Figure I is shown as the top left implant in this figure. 
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Table 2-2 (Supplementary Table 1) Classifier performance by covariate set. Performance of classifiers using LASSO-

selected covariates, all covariates, and individual frequency bands. Reported values are from validation on the test 

data. PPV = positive predictive value; NPV = negative predictive value. 

Included covariates Accuracy Sensitivity Specificity PPV NPV 

LASSO-selected 0.77 0.64 0.82 0.57 0.86 

All  0.70 0.62 0.64 0.46 0.84 

Delta 0.41 0.50 0.37 0.23 0.67 

Theta 0.48 0.64 0.42 0.29 0.76 

Alpha 0.39 0.98 0.17 0.30 0.95 

Beta 0.52 0.57 0.50 0.30 0.76 

Low gamma 0.43 0.62 0.35 0.26 0.71 

High gamma 0.49 0.3 0.53 0.23 0.70 

High frequency oscillations 0.58 0.60 0.58 0.34 0.79 

High frequency band 0.74 0.64 0.78 0.52 0.78 

Spike rate 0.74 0.43 0.86 0.53 0.80 
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Abstract 

Objective. Conventional neural signal analysis methods assume that features of interest are 

linear, time-invariant signals confined to well-delineated spectral bands. However, new evidence 

suggests that neural signals exhibit important non-stationary characteristics with ill-defined 

spectral distributions. These features pose a need for signal processing algorithms that can 

characterize temporal and spectral features of non-linear time series. This study compares the 

effectiveness of four signal processing algorithms in extracting neural information and decoding 

cortical signals: Fourier bandpass filtering (FFT), principal spectral component analysis (PSCA), 

wavelet analysis (WA), and empirical mode decomposition (EMD).  

Approach. Electrocorticographic signals were recorded from the motor and sensory cortex 

of two epileptic patients performing finger movements. Each signal processing algorithm was used 

to extract beta (10-30 Hz) and gamma (66-114 Hz) band power to detect finger movement and 

decode finger flexions, respectively. Naïve Bayes classifiers using each signal were validated 

using leave-one-out cross-validation.  

Main results. All four algorithms achieved above 90% accuracy in finger movement 

detection using beta power. When decoding individual finger flexion using gamma, the PSCA 

classifier achieved 83 ± 4% accuracy while FFT, WA, and EMD analysis achieved accuracies of 

75 ± 6%, 68 ± 5%, and 56 ± 5% respectively.  

Chapter 3  
 

Evaluation of Empirical Mode Decomposition in Finger Decoding 
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Significance. These results reveal some of the advantages and limitations of each approach 

to signal decomposition, which can inform the development of effective neural decoding pipelines. 

Further analysis could compare performance in extracting more specific non-sinusoidal features, 

such as transients and phase-amplitude coupling.  

Author’s Note 

The project described in this chapter was originally conceived by Suseendrakumar 

Duraivel, who also wrote all code and performed all analysis related to this project. The 

dissertation author (Charles Lu)’s contribution to the chapter consisted of high-level direction and 

coordination of the project, code review, interpretation of results, manuscript design, and 

manuscript revisions.  

Introduction 

Conventional Fourier bandpass filtering (FFT) uses deterministic frequency bands to 

extract signal information and assumes that neural signals can be represented as time-invariant 

sinusoids. However, recent studies suggest that neural oscillations possess broadband, power-law 

characteristics dispersed across the frequency domain and exhibit physiologically important non-

stationary features (Miller et al., 2009c; Cole and Voytek, 2017), including non-sinusoidal 

waveforms in cortical beta (Manning et al., 2009; Cole et al., 2017).  

Signal-processing tools that can capture both the spectral and temporal dynamics of neural 

signals may improve analysis of neural waveforms. For example, principal spectral component 

analysis (PSCA) uses singular value decomposition to capture spectral components that exhibit 

maximum variance during epochs of interest (Jolliffe and Cadima, 2016).  

On the other hand, wavelet analysis (WA) and empirical mode decomposition (EMD) 

capture temporal variations in neural signals evoked by physiological activity. WA uses short-time 
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wavelike oscillations to extract the temporal response (Mallat, 1989), whereas EMD  iteratively 

decomposes temporal patterns in the neural signal (Huang et al., 1998). These three algorithms 

have the potential to capture spectral variations and non-stationary features of neural signals. 

This study directly compares the performance of these four signal decomposition 

techniques within the context of finger decoding. We applied FFT, PSCA, WA, and EMD to 

decode human ECoG signals during movement. Beta and gamma powers extracted from each 

algorithm were used to train separate Naïve-Bayes classifiers to detect thumb movement and 

decode finger flexion, respectively. The performance of each classifier was then compared to gain 

insights on the quality of signal extraction. Our results indicate some of the advantages and 

limitations of each approach, offering new perspectives on the development of neural decoding 

pipelines and warranting future studies that compare extraction of specific non-sinusoidal features, 

such as transient activity and phase-amplitude coupling. 

Methods 

All human procedures were carried out in accordance with protocols approved by the 

Institutional Review Board at the University of Michigan. 

Human ECoG signals 

    Electrocorticographic signals were recorded from two epileptic patients at 30 kHz using 

a Neuroport signal processor (Blackrock Microsystems). The subjects had been implanted with 

clinical subdural ECoG grids (Figure 1) for epilepsy treatment as previously described in (Irwin et 

al., 2016). Subjects were cued to flex fingers independently during eight-second movement trials. 

Finger positions were recorded using a DataGlove 5 Ultra (5DT) with flex sensors on each finger. 

Each finger was flexed eight to twelve times. For this analysis, we considered only the thumb, 

index, and little fingers. The data were subsampled to 10 kHz and common average referenced 
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across each ECoG grid. Movement was defined as the 1-second period following movement onset, 

as measured by the DataGlove. Rest was defined as a period >1-second during which no movement 

was recorded. Three data sets were analyzed: one set of 27 trials from Patient 1 (P1a), a second set 

of 33 trials from Patient 1 performed on a separate day (P1b), and 29 trials from Patient 2 (P2). 

 

Figure 3-1 Electrode positions for the two subjects. Signals recorded from the black electrodes were used for analysis. 

 Fourier bandpass filtering (FFT) 

Spectral analysis through Fourier filtering (FFT) assumes that fluctuations in activity can 

be characterized by sinusoids. Processing nonsinusoidal data with FFT may reveal non-existent 

harmonics, making it difficult to characterize cross-frequency coupling in neural signals (Kramer 

et al., 2008). Regardless, the simplicity of FTT makes it an ideal choice to many neural signal 

decoding tasks.  

Fourier bandpass filtering of beta and gamma was implemented using 8th order elliptic IIR 

bandpass filters. Beta band cutoffs were 10 Hz and 30 Hz; cutoffs for gamma were 66 Hz and 114 

Hz (Schroeder et al., 2017). 

Principal spectral component analysis (PSCA) 

Principal component analysis is an adaptive processing algorithm that reduces the 

dimensionality of a dataset into predefined variables, known as principal components. PSCA is 

the application of this algorthm to a signal’s power spectral density (Jolliffe and Cadima, 2016). 
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Since this is a data-driven method, it can prove useful for decomposing the spectral data of 

complex neural signals. Previous work has used PSCA to accurately detect finger movement from 

cortical signals (Miller et al., 2009a).  

Power spectra with 1024 frequency points up to Nyquist frequency were computed using 

MATLAB’s periodogram function and normalized across trials. Principal component analysis was 

then applied to the normalized power spectra to obtain principal components and component 

scores. The beta and gamma powers were represented using the second and first principal 

components, respectively. 

Wavelet analysis (WA) 

Wavelet transforms provide temporally localized frequency analysis that can overcome the 

frequency-time resolution trade-offs exhibited by the short-time Fourier transform (Cohen, 2014). 

We used the analytical Morlet wavelet to construct a scalogram between 5 Hz and 200 Hz with 

1.95 Hz resolution. We extracted beta and gamma power by summing the squares of absolute 

coefficients in each frequency band. 

Empirical mode decomposition (EMD) 

EMD is a data processing tool introduced to process non-linear and non-stationary time 

series. The algorithm, developed by Huang et al., reduces a composite signal into a set of 

oscillatory time-series called intrinsic mode functions (IMFs) by iteratively subtracting the mean 

of the signal’s temporal envelope (Huang et al., 1998). Previous work has demonstrated the utility 

of EMD in processing neural signals for a variety of prediction tasks, including estimation of 

anesthetic depth, classification of epileptic seizures, and classification of finger flexion (Hazrati, 

2012; Huang et al., 2013; Cho et al., 2017).  
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Figure 3-2 Neural signal analysis scheme. a) Multi-taper spectral analysis: finger flexion begins at t = 0, leading to a 

significant elevation (p < 0.05, 1-sided permutation test, false discovery rate corrected) in the gamma band (66-144 

Hz) and a suppression in the beta band (10-30Hz) b) Gamma power burst following thumb flexion from a 

representative electrode, as decoded by each of the four algorithms. c) Spectral characteristics of beta. d) Spectral 

characteristics of gamma. FFT produces sharp cut-off bands in both cases, whereas the other three algorithms produce 

more varied spectra. 

EMD was implemented using publicly available MATLAB code from Huang (Research 

Center for Adaptive Data Analysis, 2015), with envelopes calculated using standard not-a-knot 

spline interpolation. We specified the algorithm to decompose neural signals to 9 IMFs, as 

subsequent IMFs did not contain any signal. EMD is an empirical approach, so beta and gamma 

bands were assigned based on the power spectral densities of each IMF. Based on spectral 

characteristics, we chose the 5th IMF to represent beta band and the 3rd IMF for gamma band. 
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Finger flexion analysis 

Processed ECoG data from each of the four algorithms was used to train two sets of Naïve-

Bayes classifiers. Extracted log power of beta was used to detect thumb movement, and extracted 

gamma was used to predict finger flexions of the thumb, index, and little finger. Naïve-Bayes was 

chosen for its general simplicity, as well as its robustness to small training sets, which may lead to 

overfitting in more complex models (Duda et al., 2012). Performance was measured using leave-

one-out cross-validation. 

Results 

Multi-taper spectral analysis (Percival and Walden, 1993) shows gamma band synchrony 

and beta band depression during finger movement in a subset of electrodes (Figure 2(a)). Gamma 

band elevation was significant (p < 0.05, 1-sided permutation test, false discovery rate corrected). 

Relevant electrodes were selected for analysis based on the methods described in (Chestek et al., 

2013). Robust modulation of gamma power was observed on these electrodes during finger 

movement for all four algorithms (Figure 2(b)). Each of the four algorithms extracted different 

representations of beta and gamma bands (Figure 2(c) & 2(d)), with FFT producing the sharpest 

cut-offs.  

For all four signal processing methods, classification  using beta band power achieved 

above-chance detection of thumb movement across all datasets (p < 10-3, binomial cumulative  

distribution test (Combrisson and Jerbi, 2015)) (Figure 3). The McNemar test found no significant 

difference in performance between any of the four algorithms. 
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Figure 3-3 Finger movement detection using beta. Percentages above confusion matrices indicate classification 

accuracies. All algorithms could predict thumb movement onsets above random chance (p < 10-3). 

In decoding finger flexions using gamma band power, the classifier achieved above chance 

prediction accuracies for all four algorithms (p < 0.01) (Figure 4). PSCA achieved an overall 

accuracy of 83% with a standard deviation of 4%, whereas FFT (75 ± 6%), WA (68 ± 5%), and 

EMD (56 ± 5%) achieved lower decoding accuracies. For all the three cases, the classification 

accuracies of PSCA and FFT were significantly greater than that of EMD (p < 0.05,  McNemar 

test). 

Discussion 

An analysis of the accuracy data reveals noticeable differences between the performance 

of FFT, PSCA, WA, and EMD in processing human ECoG for a Naïve-Bayes classifier. When 

using extracted beta to detect thumb movement, all algorithms achieved similarly high 

performance. When using extracted gamma to decode finger flexions, all algorithms classified 

flexions with an above average chance, although performance across algorithms varied.  

PSCA-extracted gamma produced the most consistently accurate classification results of 

the four algorithms. These results support the claim that neurophysiological signals are distributed 
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over a broadband spectral distribution, rather than within clearly defined frequency bands. The 

adaptive nature  

 

Figure 3-4 Finger flexion decoding using gamma. Percentage values above confusion matrices indicate classification 

accuracies. All algorithms could predict flexion above random chance (p < 0.01). Accuracies of PSCA and FFT are 

greater than EMD, in all the three cases (p < 0.05). 

of PSCA allows for active tuning of the processing pipeline, which could ensure reliable 

extraction of a wide variety of non-sinusoidal components. Other studies have demonstrated 

similar success with PSCA-extracted gamma in speech decoding (Kellis et al., 2010; Miller et al., 

2011) and identification of visual stimuli (Miller et al., 2009b; Miller et al., 2010). 

Although we did not observe significant differences in decoding performance between WA 

and FFT gamma, WA can be used to identify transients, a property that was not investigated in 

this study. This capability may be useful for analysis of time-variant phenomena and has been used 

to capture spikes (Lopes-dos-Santos et al., 2014) and evoked potentials (Lopes-dos-Santos et al., 

2017) from neural oscillations. 

EMD-extracted gamma exhibited the lowest performance of the four algorithms. The 

observed accuracy is comparable to previous work using EMD for finger flexion classification 

(Hazrati, 2012).  The comparatively low performance of EMD-extracted gamma may be due to 

the EMD algorithm’s tendency to behave as a series of dyadic filter banks when decomposing  
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signals with flat power spectral densities (Flandrin et al., 2004). The broadness of the 

gamma band may cause the algorithm to behave as a bandpass filter with indeterminate cut-off 

frequencies, which may compromise neural information. In this analysis, we did not observe any 

mixing of spectral content in the resultant IMFs, precluding the need for noise assisted versions of 

EMD (Yeh et al., 2010). However, more sophisticated forms of EMD such as multivariate 

empirical mode decomposition may be more suitable for decomposing high frequency gamma 

oscillations. This method has had success in predicting seizure onset from EEG (Cho et al., 2017). 

Since EMD appears to provide accurate estimates of beta, it may be useful for examining 

temporal patterns such as phase of low-frequency oscillations such as alpha and beta.  Calculations 

of phase-amplitude coupling and phase-locking value, for example, benefit significantly from 

EMD-derived signals over traditional bandpass filtering (Pittman-Polletta et al., 2014).  Recent 

studies have even suggested that some observed phase-amplitude coupling values may arise 

spuriously from non-sinusoidal features in the phase-carrier oscillation, a phenomena that may be 

suitable for extraction by EMD (De Hemptinne et al., 2013; Cole et al., 2017; Cole and Voytek, 

2018). 

Our comparison test-case was based on the performance of a Naïve-Bayes classifier. The 

simplicity of this model compared to other widely used classifiers (SVMs, K-nearest neighbors, 

neural networks, etc.) makes it a good first choice for prototyping decoding pipelines. The 

particular characteristics of the chosen classifier may influence the resulting algorithm 

performance.   Naïve-Bayes relies on an assumption of independent predictors, so processing 

algorthms that reveal greater interactions betweens features may have hindered performance 

(Bressan et al., 2003). In future work that involves much larger neural datasets, a comparison of 

decoding algorithms with a more complex classifier would be prudent. 
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Conclusion 

In summary, we compared the effectiveness of PSCA, WA, and EMD against standard 

FFT analysis of neural signals by training Naïve-Bayes classifiers to detect finger movements and 

decode finger flexions from human cortical signals. We found that all four algorithms were equally 

accurate in predicting finger movements using beta. In decoding finger flexions using gamma, 

PSCA produced the highest performance. Although WA and EMD-extracted gamma resulted in 

lower decoding performance, the two algorithms appear to operate well on lower frequencies and 

can extract temporal information not provided by PSCA and traditional bandpass filtering. These 

results can inform the development of decoding pipelines in future studies that require extraction 

of a specific quality from human ECoG data. 
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Abstract 

Background: Previous studies have reported variations in brain tissue impedance along 

deep brain trajectories. These properties have been associated with parameters of non-invasive 

imaging data. Using this relationship to localize deep brain leads may increase accuracy of lead 

placement for deep brain stimulation therapies that lack functional methods of validation. 

Objective: Evaluate the feasibility of localizing deep brain leads using in vivo measured 

impedance and computational models of deep brain impedance. 

Methods: Patient-specific diffusion-tensor-derived conductivity models were used 

simulate deep brain impedance measurements and create computationally efficient whole-brain 

models of tissue impedance. Wideband impedance measurements were measured along deep brain 

trajectories in living human subjects using the macro contact of a microelectrode lead and 

compared to simulated impedances. Trajectories were localized by comparing measured 

impedances to estimated values along potential trajectories in the vicinity of the surgical plan. 

Results: Computationally efficient transforms of diffusion tensor-derived fractional 

anisotropy and maximum eigenvalue accurately approximated electrostatic simulations of 

impedance with a correlation of 0.93. Simulations of deep brain impedance indicated that locally 

measured impedance captures tissue properties from as far as 5 mm away from the measurement 

site. Patterns observed in simulated impedances were generally concordant with trends measured 

Chapter 4  
 

Impedance-Guided Lead Localization 
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in vivo. Impedance-guided localization of both hypothetical and implanted leads resulted in 

millimeter-scale errors. 

Conclusions: These results demonstrate the feasibility of impedance-guided localization of 

deep brain leads. Although conceptually sound, measurement of impedance using macro contacts 

does not provide sufficient spatial resolution to perform precise localization. 

Introduction 

Deep brain stimulation (DBS) is an established treatment modality for a number of 

neurological disorders—most notably Parkinson disease, essential tremor, dystonia, and Tourette’s 

syndrome—through electrical activation of precise anatomical targets. Across DBS indications, 

accuracy of electrode placement is a critical determinant of clinical success and failure 

(McClelland et al., 2005; Okun et al., 2005). However, stereotactic targeting technologies are 

limited in precision. Conventional approaches to lead placement incorporating imaging and 

stereotactic platforms achieve precisions of 1 to 2 mm (Schrader et al., 2002; Holloway et al., 

2005; Bjartmarz and Rehncrona, 2007; Balachandran et al., 2009; D'Haese et al., 2010; Burchiel 

et al., 2013; Lefranc et al., 2014; von Langsdorff et al., 2015; Koeglsperger et al., 2019). An 

additional 2 to 4 mm of error can be contributed by brain shift (Winkler et al., 2005; Khan et al., 

2008; Hunsche et al., 2009). 

For some applications of DBS, uncertainty in stereotactic accuracy can be compensated for 

by functional testing, such as intra-operative stimulation and recorded electrophysiology. This 

additional information can result in revisions of the initial implant in over half of cases (Frequin 

et al., 2020). However, there exist several DBS indications for which intraoperative testing is 

currently infeasible.  Notably, recent research has identified the subgenual cingulate (CG25) as a 

promising stimulation target for treatment-resistant depression (Mayberg et al., 2005), and the 
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anterior limb of internal capsule for treatment of substance use disorders (Chen et al., 2019), 

among others (Lyketsos et al., 2015; Herrman et al., 2019; Huys et al., 2019). Further development 

of these treatment modalities requires tools to more accurately verify intraoperative lead location. 

Localization of lead location using cerebral tissue impedance was first proposed by 

Robinson, with the observation that changes in measured impedance corresponded to histological 

borders of brain structures (Robinson, 1962). Robinson and others then demonstrated that these 

variations in tissue impedance could be used to identify lead entry into specific structures in situ 

(Fry et al., 1962; Robinson and Tompkins, 1964; Laitinen et al., 1966; Johansson et al., 2009). 

The clinical potential of this approach has been demonstrated by use of in vivo impedance to 

localize brain tumors (Bullard and Makachinas, 1987; Rajshekhar, 1992; Andrews et al., 2009). 

Here, we combine the principles pioneered by Robinson et al. with modern imaging 

technologies and computational models to find direct relationships between measured tissue 

impedances and detailed, patient-specific brain imaging data. We demonstrate that deep brain 

impedances correspond with location in diffusion tensor-derived conductivity models of the brain, 

show frequency-independent variations in in vivo measurements of tissue impedance, and apply 

these findings to a deep brain localization tool. 

Methods 

Subjects 

Impedance and imaging data were measured from two patients with advanced Parkinson 

disease undergoing subthalamic deep brain stimulation surgery at the University of Michigan. 

Details of patient selection at the institution have been described in a previous publication (Patil 

et al., 2012). All participants provided informed consent. The study was approved by the 

University of Michigan Institutional Review Board. 
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Surgical procedure 

Subjects underwent awake, frame-based deep brain stimulation surgery, during which 

microelectrode recording and impedance measurements were performed. Planned targets were 

initially assigned from indirect targeting (12 mm lateral, 3 mm posterior, and 4 mm inferior to the 

mid-commissural point), with adjustment from direct magnetic resonance (MRI) visualization of 

the ventral border of subthalamic nucleus. Microelectrode recording to determine location of the 

subthalamic nucleus was performed using a NeuroProbe and Neuro Omega system (Alpha Omega, 

Alpharetta, GA). Locations of implanted electrodes were directly visualized via computed 

tomography two weeks after surgery. 

Simulated impedance measurements 

Pre-operative diffusion tensor imaging (DTI) data for each patient were acquired using a 

single-shot echo planar imaging sequence with a dS-SENSE parallel-imaging scheme (reduction 

factor = 2, field of view = 224 mm x 224 mm, 1 x 1 x 2 mm voxels). Diffusion weighting was 

encoded along 16 independent orientations with a b-value of 800 s/mm². Diffusion tensors were 

resampled via cubic spline interpolation to match the resolution of pre-operative imaging and 

oriented in Talairach space via coregistration to the Talairach-oriented images in Analyze 

(Analyze 12.0; Mayo Clinic, Rochester, MN). The Analyze software DTI application was used to 

calculate the eigenvectors and eigenvalues of the DTI images. Diffusion tensors were then 

calculated from the eigenvectors and eigenvalues in MATLAB (MATLAB R2019b; MathWorks, 

Natick, MA) and converted to conductivity tensors using the linear relationship between 

conductivity and diffusion tensor eigenvalues (σ/d ≈0.844 S∙s/mm3) as described by Tuch et al. 

(Tuch et al., 2001). 
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3D electrostatic finite element models incorporating individual brain anatomy, 

macroelectrode position and orientation, and anisotropic tissue conductivity were modeled in 

COMSOL (Multiphysics 5.5; COMSOL, Burlington MA). Bulk brain tissue was modeled as a 

sphere (8 cm radius) surrounded by concentric shells to model cerebrospinal fluid, skull, and scalp. 

Brain tissue was assigned diffusion tensor imaging-based anisotropic electrical conductivities 

linearly interpolated onto the mesh. The remaining domains—cerebrospinal fluid, skull, and 

scalp—were assigned isotropic resistivities of 56 ohm-cm, 16000 ohm-cm, and 230 ohm-cm, 

respectively (Sadleir and Argibay, 2007; Wendel et al., 2010). The cerebrospinal fluid shell, skull 

shell, and scalp shell had inner and outer radii of 8 cm and 8.8 cm, 8.8 cm and 9.3 cm, and 9.3 cm 

and 10 cm, respectively. Ground was defined as a 1x1x0.1 cm block at the bottom of the scalp 

shell. The macro electrode at which impedance was measured was modeled after the macro contact 

of the NeuroProbe (1 mm length, 0.56 mm diameter). The cylindrical lead had an outer diameter 

of 0.46 mm, an inner diameter of 0.200 µm, and a length of 1 mm. The macro contact was 

translated and rotated to match locations where impedance was measured in vivo.  

A boundary condition of 1-amp current was applied to the surface of the macro contact. 

Simulations solved for the resulting voltage at the macro contact, which was then converted to 

measured impedance by application of Ohm’s law. 

Approximation of impedance from diffusion tensors 

Diffusion tensor values were used to approximate COMSOL-simulated impedances to 

provide a scalable method to estimate whole-brain impedances. Fractional anisotropy (𝐹𝐴) was 

used to estimate impedance (�̂�𝐹𝐴) using a cubic relationship, 

�̂�𝐹𝐴(𝐹𝐴) = 𝑎𝐹𝐴3 + 𝑏𝐹𝐴2 + 𝑐𝐹𝐴 + 𝑑 
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Where 𝑎, 𝑏, 𝑐, and 𝑑 are fitted parameters. Maximum eigenvalue (𝜆) of tensors were fit to 

impedance (�̂�𝜆) using an exponential decay function: 

�̂�𝜆(𝜆) = 𝑎𝑒−𝑏𝜆 + 𝑐 

Where 𝑎, 𝑏, and 𝑐 are fitted parameters. Expected values from the two functions where 

then averaged and smoothed with a 3D Guassian filter (σ = 2 voxels ≈ 1 mm) to predict COMSOL-

simulated impedances. 

In vivo impedance measurement 

Impedance measurements were performed along trajectories parallel to the microelectrode 

recording, but offset by 2 mm. The use of a separate trajectory was necessary due to the formation 

of edema by each electrode pass, which would affect both impedance measurements and 

microelectrode recording. Monopolar impedance measurements were made using a commercially 

available battery-powered LCR meter (880 LCR Meter; B&K Precision, Yorba Linda, CA). The 

positive contact of the LCR meter was connected to the macro contact of the microelectrode, and 

return connected to a stimulating EMG surface lead attached to the subject’s right clavicle. This 

configuration established a distal and relatively large current sink, producing impedance 

measurements localized to the site of the macro contact (Newman, 1966). Other electronic 

recording devices, including the Neuro Omega recording contacts, were detached from the patient 

for the duration of impedance measurement. Custom software (LabVIEW 2019; National 

Instruments, Austin, TX) was used to control the LCR meter to measure complex impedance 

measurements at 100 Hz, 1 kHz, 10 kHz, and 100 kHz. Measurements were made from 15 mm 

above to 5 mm below the planned target, in 0.5 mm steps. 

Impedance-guided trajectory localization 
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In order to identify the most likely location of the lead based on impedance, measured 

impedance values along the DBS trajectory were compared to estimated impedances along 

plausible trajectories within the vicinity of the planned approach using Python (Python 3.6; Python 

Software Foundation). An initial search analyzed the 3x3x3 mm volume around the planned target 

with a uniform 9x9x9 grid and an equal number of randomly selected points. Plausible ring and 

arc values within 3 degrees of the planned values were also searched in a similar manner, resulting 

in a total of 119,000 potential trajectories. Best-fit trajectories were ranked using Pearson’s 

correlation coefficient. This process was then iterated with the three best-fit trajectories at each 

stage, with a 30% reduction in search dimensions until the search window reached 0.1 mm. 

Results 

Spatial variance of simulated impedances 

 

Figure 4-1 COMSOL-simulated impedances of deep brain tissue. A) COMSOL-simulated impedances (color; red: 

high impedance, blue: low impedance) overlaid on 3T MRI (grayscale). Note regionally depressed impedance 

measurements around areas of cerebrospinal fluid (left lateral ventricle and temporal horn of lateral ventricle). B) 

COMSOL-simulated impedance of parallel trajectories spaced 0.5 mm apart. 

Simulation of locally measured impedances in the region of basal ganglia indicate 

significant variety in local impedance (Figure 1A). Observations of locally depressed impedances 

both within and around regions of cerebrospinal fluid suggest that nearby tissues can affect 
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measured impedance from up to 5 mm away. An analysis of local impedances along parallel 

trajectories 0.5 mm apart (Figure 1B) indicate that impedance topographies could appear highly 

similar across parallel trajectories up to 2 mm apart. These simulation results suggest that while 

measured impedance is related to regional tissue properties, information is limited to millimeter-

scale resolution. 

DTI estimates of finite element model impedance 

 

 

Figure 4-2 Computationally efficient estimation of whole-brain impedance. A) Whole-brain estimation of local 

impedance calculated from fractional anisotropy and maximum eigenvalues of conductivity tensors. Values range 

between 100 and 1000 Ohms. B) Conductivity tensor-based estimates of local impedance plotted against COMSOL-

simulated impedances at the same sites. 

In order to predict impedances at a whole-brain scale, a more efficient method of estimating 

impedance from imaging data was developed. COMSOL simulations of sites near the basal ganglia 

were used to define a relationship between COMSOL-simulated impedances and two conductivity 

tensor properties: fractional anisotropy and maximum eigenvalue. Fractional anisotropy and 

maximum eigenvalue were used to approximate COMSOL impedances via cubic and exponential 

decay transforms, respectively, providing an accurate and computationally efficient estimate of 

impedances across the entire brain (Figure 2A). Impedance predictions by fractional anisotropy 
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and maximum eigenvalue matched COMSOL-simulated impedances with a correlation of 0.93 

(Figure 2B). 

Impedance-guided localization of deep brain trajectories 

Table 4-1 Trajectory error for hypothetical targets. 

Implant 
Trajectory 

Impedance-matched Starting trajectory 

Subthalamic nucleus 2.05 0.92 

Ventral intermediate thalamus 3.12 3.61 

Globus pallidus internus 4.12 4.44 

Anterior limb of internal capsule 2.50 2.77 

Errors shown in millimeters. 

 

Impedances along four DBS trajectories were simulated in COMSOL: subthalamic 

nucleus, ventral intermediate thalamus, globus pallidus internus, and anterior limb of the internal 

capsule. The simulated impedances along each trajectory were then compared to estimated 

impedances along DBS trajectories in the vicinity of the known trajectory. The algorithm was 

provided with a starting trajectory with random error of up to 3 mm (in the X, Y, and Z directions) 

and 3 degrees (in ring and arc). In three out of four test cases, the trajectory with the most similar 

impedance topography approached the correct trajectory (Table 1). However, errors of multiple 

millimeters were consistently observed. 

Spatial and spectral variance of in vivo impedance measurements 

In vivo measurements of impedance found values within the range described by previous 

literature (McIntyre et al., 2006). While absolute impedances differed across frequencies (Figure 

3A), topographies were similar across frequency once baseline was removed (Figure 3B), with 

correlation coefficients across different frequencies ranging from 0.85 to 0.98. Normalized 
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impedance topographies revealed clear changes across depth. Spectral characteristics of 

impedance measured at each depth were also highly similar (Figure 3C,D), confirming that brain 

tissue exhibits largely non-capacitive impedance from 1 Hz to 100 kHz, as previously shown 

(Nicholson, 1965; Robinson et al., 1965). Differences in absolute impedance across frequencies 

were likely due to equipment, equipment-tissue interfaces, and tissues distal to the electrode. 

 

Figure 4-3 Impedance profiles along the trajectory of an exemplary DBS implant. A) Absolute impedance across each 

depth along an implant, measured at 100 Hz, 1 kHz, 10 kHz, and 100 kHz. B) Absolute impedances normalized to a 

shared scale. C) Absolute impedance across frequency. Each line represents a measurement taken from a different 

depth. Blue lines correspond to shallow sites, while red lines correspond to deeper sites. D) Phase measurements with 

respect to the input signal across frequency. 

When impedance topographies were compared to electrophysiology recorded along 

parallel trajectories (Figure 4), the occurrence of impedance changes broadly coincided with 

changes in multiunit activity, approximated by 1000-2000 Hz power in the recorded neural signal. 

Changes in impedance were less sharp than changes in electrophysiology. Some discordance 

between trends was expected due to the 2 mm separation between tracks used for impedance and 

electrophysiology measurement. 
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Comparison of measured impedances to COMSOL-simulated values along the same 

trajectory also revealed general concordance (R = 0.84). Simulated impedance magnitudes 

exhibited spans of 80 and 438 Ω in the two models for which data was available, while measured 

impedances spanned 1.1 and 1.7 kΩ, respectively. 

 

Figure 4-4 Multiunit activity, measured in vivo impedance, and COMSOL-simulated impedance plotted against depth. 

Dotted and solid blue lines indicate multiunit activity along the central and posterior (2 mm from central) trajectories 

of an implant, with elevated activity at 20-25 mm indicating subthalamic nucleus. Red lines indicate measured 

impedance at 1000 Hz (dotted; values scaled to fit axis) and COMSOL simulated impedance (solid) along the medial 

track, 2 mm from central. 

In vivo impedance-guided localization 

Two intraoperatively measured impedance topographies were compared to estimated 

impedances along trajectories within the neighborhood of the surgical plan. In each case, a 

trajectory with a highly correlated impedance topography was found (R = 0.99 and 0.89). 

However, the impedance-matched trajectory target differed from the CT-visualized trajectory by 

more than the difference between the planned trajectory and CT-visualized trajectory (Figure 5, 

Table 1). 
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Figure 4-5 Representative best-fit trajectory alongside planned and CT-visualized trajectories. A) The planned (blue), 

CT-visualized (red), and impedance best-fit (green) trajectories overlaid on the patient 3T MRI. B) The estimated 

impedance topographies of the planned, CT-visualized, and impedance best-fit trajectories, plotted alongside the OR-

measured impedance values (yellow). 

Table 4-2 Differences between trajectories and CT-visualized lead locations. 

Implant 
Trajectory 

Impedance-matched Planned 

1 4.67 0.95 

2 6.56 4.71 

Differences shown in millimeters. 

Discussion 

While variability in brain tissue impedance has been previously observed (Robinson, 

1962), this study is the first to combine impedance measurements with sophisticated computational 

models and contemporary imaging technologies. By combining in vivo measurements with patient-

specific computational models of tissue impedance, this study assesses the feasibility of using local 

impedance to localize deep brain leads. We validated a computationally efficient, scalable model 

of whole-brain impedance and showed that impedance measurements provide information about 

local tissue properties at a spatial resolution of millimeters. We also demonstrate that in vivo 
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measurements of impedance vary across deep brain trajectories and are largely concordant with 

trends observed in imaging-based models. Impedance-guided localization of deep brain leads, 

however, yielded errors of multiple millimeters. 

The results here indicate that local impedance, as measured in this study, does not provide 

sufficient spatial resolution to precisely determine lead location. This is likely due to the relatively 

large size of the macro contact, which results in a large volume of measured tissue (Newman, 

1966). Additional spatial error may also have been contributed by tissue shift occurring during 

electrode movement. Curiously, the spans of values observed in measured and simulated 

impedances differed by roughly an order of magnitude. While the scale of this discrepancy is not 

unusual (McIntyre et al., 2006), it does suggest potential for more accurate modeling of deep brain 

impedances from imaging data.  

Importantly, the concordance of measured and computational results does indicate the 

conceptual feasibility of impedance-guided localization, given improvements in spatial resolution 

of impedance measurements. The observation of significant changes in impedances measured in 

vivo and creation of a scalable whole-brain model of local impedance demonstrate that this 

approach can provide meaningful spatial information. Attainment of necessary improvements is 

straightforward, with use of either smaller contacts or implementation of multi-contact 

configurations for impedance measurements. Measurements at additional sites along parallel 

trajectories would also improve accuracy by providing additional fitting constraints.  

The need for additional such tools is highlighted by the rapidly expanding list of indications 

for DBS. Notable emerging DBS treatments include major depression targeting the cingulate gyrus 

(Mayberg et al., 2005), substance use disorders targeting nucleus accumbens or the anterior limb 

of the internal capsule (Chen et al., 2019), and Alzheimer dementia targeting the fornix (Lyketsos 
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et al., 2015). While classical indications of DBS, such as Parkinson disease and essential tremor, 

can benefit from functional validation of lead placement, most emerging indications are not 

amenable to robust intra-operative testing. With suboptimal placement of DBS electrodes 

accounting for roughly half of lead revisions (McClelland et al., 2005) and failed surgeries (Okun 

et al., 2005), tools such as impedance-guided localization are necessary to maximize the clinical 

potential of these interventions. 

This potential innovation would exist within a diverse ecosystem of targeting technologies. 

The foundation of conventional deep brain surgical targeting relies on stereotactic neurosurgery 

informed by pre-operative MRI. However, stereotactic targeting when used alone is limited by 

intrinsic inaccuracies of 1 to 2 mm (Koeglsperger et al., 2019) and effects of brain shift (Hunsche 

et al., 2009). Microelectrode recordings offer a highly precise complement to stereotactic 

approaches, although the technique requires skilled operation and is applicable only to a select 

subset of anatomical targets that exhibit distinguishable electrophysiology. Notably, intra-

operative magnetic resonance imaging may overcome many of these limitations, but the high cost 

of specialized instrumentation and expertise preclude its use in many settings (Kubben et al., 

2011). Impedance-guided localization, if realized, would offer an intuitive and low-cost 

supplement to existing technologies. 
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Abstract 

Background: Stimulation of zona incerta in rodent models has been shown to modulate 

perception of pain. Sensory changes observed in Parkinsonian patients with subthalamic deep brain 

stimulation suggest that this effect is translatable to humans. 

Objective: Utilize the serendipitous placement of subthalamic deep brain stimulation leads 

to directly investigate the effects of zona incerta stimulation on human pain perception. 

Methods: Twelve Parkinson disease patients with subthalamic deep brain stimulation 

implants were asked to rate perceived pain from non-painful and painful heat stimuli and undergo 

mechanical pressure pain threshold testing. Pain measurements were conducted while subjects 

received contralateral zona incerta deep brain stimulation at 20, 60, or 130 Hz in a double-blinded 

fashion. Effects of stimulation on pain perception and pressure pain threshold were assessed using 

a mixed linear model. 

Results: Stimulation at the physiological firing frequency of zona incerta reduces heat pain 

by a modest but significant amount, achieving a 30% reduction in one fifth of implants. Modulation 

is selective for heat pain and was not observed in non-nociceptive heat or mechanical pressure pain 

threshold. 

Chapter 5  
 

Analgesic Stimulation of Zona Incerta 
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Conclusions: These findings provide a mechanistic explanation of sensory changes seen in 

subthalamic DBS patients and identify zona incerta as a potential target for neuromodulation of 

pain. 

Introduction 

Deep brain stimulation (DBS) has been used for treatment of pain since the 1970s. Classical 

targets—sensory thalamus, periaqueductal gray, and periventricular gray matter—are often able 

to provide pain relief, although long-term success of these interventions varies widely across 

etiologies. While DBS treatment of phantom limb pain, failed back surgery syndrome, and 

trigeminal neuropathy is frequently successful, outcomes for treatment of pain from other 

etiologies, including stroke, peripheral neuropathy, and brachial plexus injury, tend to be less 

satisfactory (Kumar et al., 1997; Boccard et al., 2013; Frizon et al., 2020). The many pain patients 

for whom conventional DBS remains ineffective highlight the need for new targets of 

neuromodulation. 

 

Figure 5-1 Feedforward inhibition of thalamic pain processing by zona incerta. VMpo: ventromedial posterior nucleus. 
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Strong evidence points to zona incerta, a heterogeneous region of cell bodies and fibers 

dorsal to subthalamic nucleus, as a promising new target for analgesic neuromodulation. The 

region receives direct spinothalamic input and projects GABAergic efferents to ventromedial 

thalamus, which integrates cortical and spinothalamic inputs (Figure 1) (Barthó et al., 2002; 

Mitrofanis, 2005). In rodents, zona incerta has been shown to act as a feedforward inhibitor of pain 

perception, playing a key role in central pain syndromes (Masri et al., 2009). The same group later 

demonstrated that 50-60 Hz stimulation of zona incerta reduces hyperalgesia in a rat model of 

neuropathic pain, providing a proof of concept for analgesic zona incerta DBS (Lucas et al., 2011). 

More recent works have established compelling causative links between GABAergic output from 

zona incerta, neuropathic pain, and neuromodulatory relief of hyperalgesia and allodynia (Whitt 

et al., 2013; Moon and Park, 2017; Hu et al., 2019).  

Experimental findings in rodent models have been corroborated by observations of sensory 

changes in human patients receiving subthalamic DBS. Although subthalamic DBS for Parkinson 

disease nominally targets the subthalamic nucleus, a large body of work has shown that most active 

contacts are located at or above the dorsal border of the subthalamic nucleus—a region directly 

adjacent to and overlapping zona incerta (Plaha et al., 2006; Maks et al., 2009). While the 

intervention is best recognized for its suppression of parkinsonian motor symptoms, it is also 

known to have substantial therapeutic effects on pain and sensation (Oshima et al., 2012; Surucu 

et al., 2013; Jung et al., 2015; Belasen et al., 2017; Custozzo et al., 2020). Multiple studies show 

that this effect is not explained by motor improvements alone (Marques et al., 2013; Cury et al., 

2016), indicating an independent mechanism by which subthalamic stimulation ameliorates pain 

symptoms. Taken together, these observations strongly suggest that stimulation of zona incerta 

modulates pain perception. 
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In this study, we utilized the serendipitous placement of subthalamic DBS leads in patients 

with Parkinson disease to directly evaluate the effects of zona incerta DBS on human perception 

of experimental heat and mechanical pain. A broad set of stimulation parameters were tested and 

then prospectively validated in independent cohorts, showing that stimulation at physiological 

frequency modulated perceived heat pain by a modest but significant amount. Modulation was 

specific to heat pain and did not significantly alter perception of non-painful heat or mechanical 

pain threshold. These findings provide a mechanistic explanation of sensory changes seen in 

subthalamic DBS patients and identify zona incerta as a potential target for neuromodulation of 

pain.  

Methods 

Subjects 

Table 5-1 Subject characteristics. GDSS: Geriatric Depression Scale Short Form score. Duration of DBS measured 

from time of implant to time of study. 

Age Sex GDSS Duration of DBS, 

months 
Experiment 

Data 

inclusion 

62 M 4 55 Exploratory Bilateral 

58 M 2 18 Exploratory Bilateral 

62 M 2 64 Exploratory Excluded 

67 M 2 13 Exploratory Bilateral 

58 F 1 65 Exploratory Bilateral 

71 M 2 59 Exploratory Bilateral 

73 M 2 7 Exploratory Unilateral 

45 M 1 22 Validation Bilateral 

62 F 11 6 Validation Bilateral 

60 M 3 40 Validation Bilateral 

73 F 2 42 Validation Bilateral 

66 M 2 38 Validation Unilateral 

 

Outpatient experiments were performed with 9 male and 3 female patients previously 

implanted with subthalamic DBS leads for treatment of Parkinson disease at the study institution. 

Patient selection criteria for subthalamic DBS at the institution have been described previously 
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(Patil et al., 2012; Houshmand et al., 2014). All patients were implanted with Medtronic (Dublin, 

Ireland) DBS leads, model 3389, with guidance by 3T magnetic resonance imaging (MRI), 

stereotactic navigation, and microelectrode recording. Subjects were implanted at least six months 

prior to the study and had stable, effective programming parameters. Prior to study, outpatient 

subjects were screened for depression using the Geriatric Depression Scale Short Form (Yesavage 

and Sheikh, 1986). The study was approved by the study institution’s Institutional Review Board, 

and all participants provided individual informed consent. 

DBS lead placement 

DBS targets were initially assigned from indirect targeting (12 mm lateral, 3 mm posterior, 

and 4 mm inferior to the mid-commissural point) and adjusted with direct visualization of the 

ventral border of subthalamic nucleus on 3T MRI (Philips Achieva 3T; Philips, Amsterdam, 

Netherlands). Microelectrode signals were recorded with a Neuroprobe amplified by a Neuro 

Omega system (Alpha Omega, Alpharetta, GA). Recordings were performed from 15 mm above 

to 5 mm below the planned target. An experienced electrophysiologist identified the location 

subthalamic nucleus during surgery. DBS leads were inserted with the tip near the 

electrophysiologically defined ventral border of subthalamic nucleus. Pulse generators were 

implanted and connected to DBS leads within 14 days of lead implantation. High-resolution 

computed tomography scans (GE HD750; General Electric, Boston, MA) were acquired two to 

four weeks after surgery to verify lead locations. 

Estimation of stimulation sites 

Post-operative computed tomography scans were co-registered with magnetic resonance 

images using commercial software (Analyze; AnalyzeDirect, Overland Park, KS). Coordinates of 

DBS contacts were recorded, alongside coordinates of the subthalamic nucleus midpoint and its 



62 

 

mediolateral, dorsoventral, and anteroposterior spans. Coordinates were linearly transformed into 

a common space with a shared orientation (left brain) and subthalamic nucleus midpoint. 

Coordinates for each contact were then scaled according to the size of its corresponding 

subthalamic nucleus to preserve relative anatomical locations. Scaled leads were then visualized 

within a representative magnetic resonance image to approximate the anatomical location of 

contacts used to deliver stimulation. 

Deep brain stimulation 

Neuromodulation of zona incerta was achieved using the implanted DBS leads and pulse 

generators by delivering stimulation to the DBS contact closest to 1.5 mm above the dorsal border 

of electrophysiological subthalamic nucleus. Three different stimulation frequencies were used: 

20 Hz, 60 Hz, and 130 Hz; which reflect the frequency of observed human ZI activity (Merello et 

al., 2006), the frequency of analgesic ZI stimulation in rats (Lucas et al., 2011), and the frequency 

of conventional subthalamic DBS stimulation, respectively. Stimulation was delivered 

contralateral to the side of sensory testing with 60 µs charge-balanced pulses and voltage at 0.5 V 

below sensory threshold at 130 Hz, with a maximum of 2.0 V. Stimulation settings were set by an 

experienced clinician using a clinical programmer, with subject and experimenter blinded to 

stimulation settings. Estimated simulation sites for subjects in the Exploratory experiments (see 

Experiment design) are shown in Figure 2A. 
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Figure 5-2 Deep brain stimulation sites and thermal stimulation device. a. Estimated lead locations in subjects 

participating in exploratory experiments juxtaposed against a representative magnetic resonance image. Active 

contacts used in the study are indicated in red. b. Device used to produce thermal stimuli. c. Detail of device contact 

surface. 

Thermal stimulation 

A custom device was used to provide thermal stimuli. The contact surface is composed of 

four parallel copper bars (9x10 mm surface), shown in Figure 2B, with temperature controlled by 

Peltier devices. Two distinct stimuli were produced with the device: nonpainful Warm stimuli were 

produced by setting bars to 39 °C; painful Hot stimuli were achieved by setting bars to 45 °C, or 

the highest temperature tolerable by the subject (always greater than 41 °C). 

Thermal stimuli were applied to three sites along the volar forearm: proximal aspect, 

midpoint, and distal aspect, centered along midline. Each thermal stimulus was tested once at each 

site for each DBS setting. Application of thermal stimuli followed the sequence listed above with 

at least 30 seconds of rest between successive applications. After application of each thermal 

stimulus, patients were asked to separately rate the intensity (See Supplement) and pain of each 
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thermal stimulus on a 10-point scale, with 0 signifying “no sensation/pain” and 10 signifying the 

“most intense/painful sensation imaginable.” 

Mechanical stimulation 

Algometry was performed using an Algometer type II device (SBMEDIC Electronics, 

Solna, Sweden) upon the belly of the extensor digitorum muscle. Three measurements of pressure 

pain threshold were performed for each test case at locations roughly 1 cm apart. Measurements 

across test cases were performed at overlapping but non-identical locations.  

Experiment design 

Exploratory experiments 

A set of experiments evaluating the effects of 20, 60, and 130 Hz zona incerta stimulation 

on perceptions of warm, hot, and mechanical stimulation was performed bilaterally with seven 

outpatient subjects.  

Each DBS setting was applied for 15 minutes. The first ten minutes involved no sensory 

testing to allow for wash-in of potential slow-acting effects. The last five minutes were used to 

perform sensory testing. Thermal stimuli (warm, hot) were tested in randomized order, 

counterbalanced across DBS settings. Algometry was performed after thermal testing. Patients 

were tested unilaterally on one side first, then the other. The first and last DBS settings were sham 

stimulation. The order of 20, 60, and 130 Hz stimulation was randomized. The experimenter was 

blinded to stimulation frequency. Test subjects were blinded to stimulation setting (sham and 

frequency) and thermal stimulation paradigm. 
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Figure 5-3 Experimental protocols. Order of randomized DBS settings were hidden from both subject and 

experimenter. Order of randomized thermal stimuli were hidden from subject. 

Validation experiments 

A second set of experiments was performed on an independent cohort of five subjects to 

evaluate the effects of 20 and 130 Hz zona incerta stimulation on perceived heat pain.  

Validation experiments followed a similar protocol to that of exploratory experiments, 

described above. However, no wash-in time was provided. Instead, thermal stimulation followed 

immediately (within five minutes) after application of DBS settings. Only hot stimuli were used 
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for sensory testing. In addition, 60 Hz stimulation was replaced with another period of sham 

stimulation for three of the five subjects. Subjects remained blinded to all deep brain stimulation 

and sensory stimuli settings. Experimenter was blinded to order of stimulation parameters 

(including the additional sham period). 

Statistical analysis 

A mixed linear model controlling for differences in patient baselines (𝛽𝑠𝑢𝑏𝑗𝑒𝑐𝑡) and 

habituation over time (𝛽ℎ𝑎𝑏𝑖𝑡) was used to determine the effect and significance of each 

intervention by zona incerta stimulation (𝛽𝐷𝐵𝑆). 

𝑉𝐴𝑆 = 𝛽𝑠𝑢𝑏𝑗𝑒𝑐𝑡 + 𝛽ℎ𝑎𝑏𝑖𝑡𝑡𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽𝐷𝐵𝑆𝐷𝐵𝑆 

Each implant was treated as an individual subject during statistical analysis. As such, 

results obtained from contralateral sides of bilaterally tested subjects were assumed to be 

independent and have different baselines. Sham stimulation trials were shared across interventions. 

Results 

Subjects 

Subjects scored an average of 3.1 points (standard deviation of 2.5 points) on the Geriatric 

Depression Scale Short Form, with one subject (at 11 points) exceeding the 10-point cutoff for 

depression risk (included in analysis) (Table 1). One subject was a non-responder to hot stimuli up 

to 45 °C and was excluded from all analyses. Results were collected unilaterally on one subject 

due to scarring on one arm from previous traumatic injury. Unilateral data from one subject was 

excluded due to misinterpretation of subject instructions. No subjects reported pre-existing pain in 

the areas examined in this study. 

Zona incerta DBS modulates heat pain 
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Figure 5-4 Effects of DBS on perceived pain from warm stimuli, hot stimuli, and mechanical pressure. Gray lines 

show mean pain scores across arm sites for each subject-implant. Red lines show average across implants with 

standard error of the mean shaded. n = 99 trials for all analyses shown, with sham trials shared across DBS frequencies. 
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Zona incerta DBS with conventional 130 Hz stimulation decreased perceived heat pain by 

0.71 points (p=0.01) on the visual analog scale (Figure 4). Low frequency 20 Hz stimulation 

reflecting physiological firing of zona incerta also reduced pain elicited by hot stimuli, relative to 

sham trials (-0.78 points; p=0.005). DBS of any frequency did not appear to significantly affect 

perceived pain from warm stimuli (20 Hz, p=0.23; 60 Hz, p=0.63; 130 Hz, p=0.35) or mechanical 

pain thresholds (20 Hz, p=0.70; 60 Hz, p=0.15; 130 Hz, p=0.19). 

Validation of 20 and 130 Hz stimulation 

 

Figure 5-5 Effects of 20 and 130 Hz DBS on perception of heat pain. a. Effects of DBS on perceived pain from hot 

stimuli. Gray lines show mean pain scores across arm sites for each subject-implant. Red lines show average across 

implants with standard error of the mean shaded. n = 96 trials for both analyses, with sham trials shared across DBS 

frequencies. b. Distribution of percent change in heat pain with 20 Hz DBS. n = 20 implants. 

Due to the small effect sizes observed and multiple comparisons made in the exploratory 

experiments, the effects of 20 and 130 Hz stimulation on heat pain were measured in an 

independent set of nine implants (five subjects) to confirm results. This group also received an 

additional sham trial. In this cohort, 20 Hz stimulation reduced heat pain by 0.51 points (p=0.006), 

confirming the original observation of this effect. Stimulation at 130 Hz also reduced heat pain by 
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0.27 points but did not reach significance (p=0.16). As the validation experiments did not 

incorporate wash-in time, results also indicate that neuromodulation of heat pain by zona incerta 

DBS takes rapid effect. 

To quantify the effects of 20 Hz stimulation on heat pain, data from exploratory and 

validation experiments were combined. Analysis of each subject-implant’s percent improvement 

from averaged sham score revealed that stimulation achieved pain reduction of 30% or more in 

20% of implants. The mean and median effects of stimulation on heat pain were -11.8% and -

11.3%, respectively, with a standard error of 4.5% (Figure 5B).  

Discussion 

This study evaluates a new form of DBS for pain and demonstrates that stimulation of zona 

incerta achieves a modest but significant analgesic effect in human subjects. We further 

demonstrate that analgesia is best achieved using stimulation at low frequency. This phenomenon 

was selective to perception of heat pain and did not affect perceived intensity of warm or 

mechanical stimuli. The results of this study are the first to confirm that stimulation of zona incerta 

modulates evoked pain perception in humans. This follows a compelling body of work in rodent 

models, which have demonstrated both behavioral manifestations and mechanistic explanations of 

pain modulation by excitation of zona incerta (Lucas et al., 2011; Moon and Park, 2017). Human 

translation of zona incerta DBS is an important step to better qualify the perceptual effects of zona 

incerta neuromodulation and lays a foundation for further optimization of analgesic DBS. 

Observation that analgesia is best achieved with stimulation at physiological frequency is 

a notable finding. While stimulation at conventional DBS frequencies has been hypothesized to 

act as an informational lesion (Grill et al., 2004), stimulation at physiological firing rates may act 

to increase activity in zona incerta, which has been shown by rodent studies to impart analgesic 
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effect (Moon and Park, 2017). A parsimonious interpretation of the findings is that analgesic 

stimulation acts by increasing GABAergic output from zona incerta to sensory thalamus. 

Importantly, we also show that the effects of stimulation appear specific to heat pain; perception 

of non-painful warm stimulation and mechanical pain thresholds were not altered by DBS. 

However, zona incerta is known to project widely across the brain (Mitrofanis, 2005), and potential 

relevant off-target effects were not investigated in this study, nor were other pain modalities. 

There are differences in findings between this study and previous rodent studies. Most 

notably, this study did not identify any significant effects of zona incerta DBS on mechanical pain 

thresholds, while hind paw withdrawal thresholds were seen to increase in rodent models of 

neuropathic pain (Lucas et al., 2011; Moon and Park, 2017; Hu et al., 2019). Although unexpected, 

this may arise from a variety of differences between our study and those performed in rodent 

models. Primarily, pain in our patients did not arise from clinically relevant sources of neuropathic 

pain. Additionally, Parkinson disease is known to cause a broad but inconsistent and poorly 

understood constellation of sensory abnormalities (Ha and Jankovic, 2012), introducing an 

important confounder. Performing this study in humans, however, allowed for the first experiment 

to directly assess the effects of zona incerta stimulation on perceived pain intensities, rather than 

noxious withdrawal thresholds. Other human studies describing the sensory effects of nearby 

subthalamic stimulation differ on whether mechanical pain thresholds are modified by stimulation 

(Cury et al., 2016; Belasen et al., 2017). However, the mechanistic pathway of these effects may 

also be distinct from that of DBS at zona incerta (DiMarzio et al., 2019). 

Critically, interpretation of these results must acknowledge that targeting of zona incerta 

in this study is inherently imprecise. While DBS leads for Parkinson disease are placed to activate 

dorsolateral subthalamic nucleus, the portions of zona incerta connected to the spinothalamic tract 
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and sensory thalamus are found in ventral zona incerta, which is located medial to the dorsolateral 

horn of subthalamic nucleus (Mitrofanis, 2005). As such, optimal activation of the target region 

could not be guaranteed. The imprecise nature of stimulation targeting may account for some of 

the large variations in effect size observed across subjects shown in Figures 4 and 5. 

Despite this limitation in study design, stimulation of zona incerta elicited a statistically 

significant and reproducible effect on perceived heat pain, identifying zona incerta as a strong 

candidate for neuromodulation of pain. Although clinical translation of this intervention requires 

substantial additional work, these findings provide a compelling explanation of how subthalamic 

DBS modulates pain-related symptoms observed in Parkinson patients and present clear avenues 

for optimization. Foremost, explicit targeting of ventral zona incerta, medial to the subthalamic 

DBS targets employed here, has potential to markedly improve both consistency and magnitude 

of the analgesic effect. Our finding that stimulation at physiological frequencies is effective also 

motivates further investigation of other low frequency stimulation paradigms and physiologically 

inspired patterns. More immediately, these results can be used to inform programming for the large 

population of subthalamic DBS patients presenting with pain. As we advance our understanding 

of zona incerta, further research in this direction is warranted, particularly to examine effects on 

clinically relevant etiologies of pain and sustainability of effects over longer time periods. 
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Figure 5-6 (Supplementary Figure 1) Effects of DBS on perceived intensity (rather than pain) from warm and hot 

stimuli. Gray lines show mean pain scores across arm sites for each subject-implant. Red lines show average across 

implants with standard error of the mean shaded. n = 99 trials for all plots, with sham trials shared across DBS 

frequencies. 
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Abstract 

Electrical stimulation of the sensory nervous system typically produces unnatural 

paresthesias. Attempts to emulate natural sensation have only been demonstrated with low sample 

sizes and often fail to replicate. In this preliminary study, we demonstrate empirically derived 

stimulation patterns designed from individual units’ sensory-evoked firing. We show that, within 

a small cohort, this method of stimulation reliably replicates naturalistic sensations, while other 

amplitude, site, and power-matched stimulation patterns elicit paresthesia. 

Introduction 

Tonic pulsatile stimulation of the sensory nervous system is known to elicit unnatural 

sensations, often described as “electric tingling”. Some approaches have been proposed to elicit 

more naturalistic sensation, e.g., frequency and site-specific tonic stimulation (Weiss et al., 2009; 

Swan et al., 2018), pulse-width modulation (Tan et al., 2014), and biomimetic frequency 

modulation (George et al., 2019). Previously proposed methods, however, have been demonstrated 

on small samples and lack evidence of wide reproducibility. In this preliminary study, we find 

evidence that unit-specific stimulation patterns may be able to reliably and reproducibly emulate 

naturalistic sensations. 

Chapter 6  
 

Emulation of Naturalistic Sensation by Unit-Specific Stimulation 
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Methods 

Four essential tremor patients receiving deep brain stimulator lead placement surgery 

underwent microelectrode recording in sensory ventrocaudal nucleus of thalamus (Vc). The dorsal 

border of Vc was identified by elicitation of paresthesia by 130 Hz, 100 uA microstimulation. 

While advancing the microelectrode through Vc, an experimenter lightly and rapidly brushed sites 

on the patient’s contralateral arm, including fingers, palmar surfaces, and distal arm. 

Electrophysiological activity was visually and auditorily monitored for receptive units. 

Once a responsive unit is identified, approximately ten seconds of spiking activity was 

recorded while the receptive field received 1 Hz brushing. Electrophysiology was converted to 

rasters with a manually defined threshold. Tonic activity of the unit was then removed by removing 

a set number of spikes from the raster at a regular interval. The number of spikes and interval were 

manually determined through visual inspection of the original raster. The remaining spiking 

activity was designated as the evoked pattern. Clusters of bursting activity within the evoked 

pattern were also defined, using a manually set intra-burst inter-spike interval (ISI). 

 

Figure 6-1 Illustrations of stimulation patterns based on a synthetic signal. Recorded threshold crossings (top left) are 

used to create the evoked pattern (center left) and control patterns (all others). 
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Using the evoked pattern, four control patterns were created: random, uniform, uniform 

burst, and random burst; all of which contain the same number of pulses and average pulse 

frequency as the evoked pattern. Random patterns are created by randomizing the ISIs of the 

evoked pattern. Uniform patterns are comprised of tonic pulses at the average frequency of the 

evoked pattern. Uniform burst patterns maintain burst groupings of the evoked pattern but average 

the pulse frequency within each burst. Random burst randomizes the ISIs within each burst. 

Patterns are demonstrated in Figure 1, with an artificial raster generated for purposes of illustration. 

All patterns were implemented with 60 us bipolar cathodic square waves. Stimulation amplitude 

for all patterns was set as the sensory threshold amplitude for tonic 100 Hz stimulation in an effort 

to activate the minimum volume of tissue surrounding the unit that produced the sensory evoked 

pattern. 

Microstimulation patterns were applied in semi-random order at the site of the receptive 

unit, and the patient was asked to describe location and quality of sensation evoked by each pattern. 

Results 

Table 6-1 Stimulation patterns and evoked sensations reported by an exemplary subject. 

Trial Stimulation pattern Reported sensation 

1 Evoked brushing at finger base 

2 Random A constant tingling at finger base 

3 Random B constant tingling at finger base 

4 Uniform constant tingling at finger base 

5 Uniform burst no sensation 

6 Random burst A no sensation 

7 Random burst B tingling at finger base and tips 

8 Artificial bursts pulsed tingling at finger base 

9 Evoked brushing at finger base 
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10 Tonic 27 Hz no sensation 

11 Tonic 80 Hz no sensation 

 

Five responsive units were identified in four subjects. Two subjects did not report 

paresthesia while receiving tonic 130 Hz stimulation at 100 uA and were subsequently excluded 

from further stimulation. Stimulation testing occurred in a total of three sites across two patients. 

The stimulation order and reported sensations at one exemplar site are shown in Table 1. 

Aggregate data across all subjects and sites show that stimulation with the evoked pattern 

elicited only sensations that were described as naturalistic and similar to the tactile stimulus that 

evoked the recorded unit activity. Conversely, all other stimulation patterns evoked only 

paresthetic sensations. 

Table 6-2 Stimulation patterns and evoked sensations across all subjects and sites. 

Stimulation pattern Trials (sites) Reported sensations 

Evoked 5 (3) 
3/5 tactile sensation 

2/5 no sensation 

Random 4 (2) 4/4 tingling 

Random burst 4 (2) 
1/4 tingling 

3/4 no sensation 

Uniform burst 1 (1) 1/1 no sensation 

Uniform 3 (2) 3/3 tingling 

Tonic (27, 80, 130 Hz) 3 (2) 
1/3 tingling 

2/3 no sensation 

Discussion 

This preliminary study demonstrated that suprathreshold stimulation with sensory evoked 

patterns reliably elicits naturalistic sensation while other power-matched modes of stimulation 

elicit paresthesia only. These findings provide support for two hypotheses. First, the observation 



78 

 

that stimulation with evoked patterns was necessary and sufficient to elicit naturalistic sensation 

indicates that temporally precise firing patterns are necessary to encode sensation in sensory 

thalamus. Second, the detailed sensations described by subjects indicate that activation of a highly 

localized volumes in sensory thalamus is sufficient to evoke specific naturalistic sensations. 

Our results support previous observations that biomimetic stimulation patterns are better 

able to elicit naturalistic percepts (Tan et al., 2014; Swan et al., 2018; George et al., 2019) than 

tonic stimulation. The high reliability of evoked pattern stimulation as shown in this study, 

however, suggests that naturalistic activation patterns may be specific to individual units or 

populations within sensory thalamus. In a notable departure from previously reported findings, we 

did not observe any naturalistic percepts resulting from tonic stimulation. This may be a result of 

small sample size. 

Future experiments will attempt to validate this preliminary data over a larger dataset. With 

additional data, it may also be possible to identify generalizable patterns that can be used to 

generate naturalistic activation patterns without the need for unit-specific design of stimulation 

pattern. 
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Abstract 

Attempts to reliably emulate naturalistic sensations via electrical stimulation of the nervous 

system have remained elusive, possibly due to hypersynchrony of artificially activated pathways. 

In this preliminary study, we investigated the temporal dynamics of cortical units firing in response 

to tactile stimulation of the hand. We find that while units exhibit macro-scale synchrony at the 

level of seconds, temporal dynamics are more complex at the level of milliseconds, providing a 

potential explanation of why artificial stimulation tends to elicit non-natural sensations. 

Introduction 

Tactile sensation is a critical component of intuitive prosthetic control. A rough 

approximation of haptic feedback can be provided via tonic pulsatile stimulation of the nervous 

system, eliciting parasthetic sensations often described as “electric tingling”. Methods to reliably 

emulate naturalistic percepts via artificial stimulation, however, have yet to be reported despite 

numerous efforts (Weiss et al., 2009; Tan et al., 2014; Lee et al., 2018; Swan et al., 2018; George 

et al., 2019; Kirin et al., 2019). The authors hypothesize that this may be due to hypersynchrony 

of units activated by artificial stimulation. Electrical stimulation simultaneously and 

indiscriminately activates large populations of cells, while natural tactile stimulation is known to 

elicit complex and meaningful temporal dynamics across sensory units (Fortier-Poisson and Smith, 

2016). 

Chapter 7  
 

Temporal Dynamics of Tactile Sensation Representation in Sensory Cortex 
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In this preliminary study, we investigated the temporal dynamics of cortical units firing in 

response to tactile stimulation of the hand with specific focus on inter-unit synchrony. We find 

that while units exhibit macro-scale synchrony at the level of seconds, units are largely 

unsynchronized at the level of milliseconds, providing a potential explanation of why artificial 

stimulation tends to elicit non-natural sensations. 

Methods 

A rhesus macaque monkey was implanted with two 96-channel Utah arrays: one in right 

motor cortex and the other in right sensory cortex. Several units were visually observed to respond 

to brushing of the medial edge of the left small finger. 

A battery of tactile stimuli was applied to the receptive field described above: 1 Hz 

brushing by hand, 1 Hz poking with a wooden probe, 30 Hz vibration, 60 Hz vibration, 170 Hz 

vibration, and constant pressure. Electrical stimulation of the ulnar nerve was also applied through 

fine wires inserted into the medial aspect of the forearm near the wrist. Electrical stimuli included 

30 Hz, 60 Hz, and 170 Hz pulses. Patterns also included pulse-width modulation (Tan et al., 2014) 

and biomimetic pulse trains (George et al., 2019) previously describe in literature. All stimulation 

patterns were applied at 50, 100, 200, 300, and 400 uA in order of increasing amplitude. 

Stimulation patterns were also tested in a human regenerative peripheral nerve interface to 

determine the sensation produced by each pattern. Stimulation was delivered at sensory threshold 

to a nerve interface that elicits sensation at the medial edge of the little finger, mirroring the 

receptive field of the monkey’s recorded units. The subject was asked to describe the sensation 

elicited by each pattern. 

Analysis of channel spiking activity used threshold crossings only, without spike sorting, 

as threshold crossings were observed to be highly modulated by tactile stimuli. Prior to threshold 
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detection, channels were common average referenced and high pass filtered at 300 Hz. During 

trials for which ulnar nerve stimulation was performed, stimulation artifact was removed using a 

trial and channel-specific template of the artifact, created by averaging the recorded signal over 

each stimulus pulse (recorded on an independent channel). 

Results 

 

Figure 7-1: Sensory cortex threshold crossings across all channels during 1 Hz brushing. Brushing occurred roughly 

between the times points of 0 and 10 seconds. 

Tactile stimulation of the medial aspect of the little finger resulted in highly distinguishable 

stimulus-locked threshold crossings in a subset of recorded channels. Figure 1 shows rasters of 

threshold crossings across all 96 channels on sensory cortex in response to a tactile stimulus. Four 

channels (28, 30, 32, and 54) were identified to reliably and robustly responsive to all six tactile 

stimuli and were used for subsequent analysis of cross-channel synchrony. A smaller subset of 

channels in motor cortex were also found to respond to tactile stimuli. 
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Figure 7-2: Cross-channel synchrony of tactile-induced spiking.  Percentage of spikes on one channel occurring within 

a given time period of another channel’s spike, from same trial shown in Figure 1. A) Synchrony over a 250 ms 

window. B) Synchrony over a 5 ms window. 
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At large time scales (hundreds of milliseconds), responsive channels were found to be 

highly synchronous (Figure 2A) during 1 Hz brushing. This was expected, as all channels were 

responding to the same tactile inputs. However, at single millisecond timescales, we find that 

threshold crossings across channels are highly asynchronous (Figure 2B). This relationship was 

found across all tactile stimuli. 

Stimulation of the ulnar peripheral nerve interface in the human subject elicited paresthetic 

“electric tingling” sensations with all patterns. Electrical stimulation of ulnar nerve in the primate 

subject produced artifact templates that did not contain obvious units (Figure 3). However, 

electrical stimulation was not found to modulate recorded threshold crossings in sensory or motor 

cortex. Threshold crossings elicited during ulnar nerve stimulation were not used for further 

analysis. 

 

Figure 7-3: Representative stimulation artifact template. Extracted from channel 28 with 400 uA stimulation. No action 

potential-like waveforms are observed within the artifact template. 



84 

 

Discussion 

This set of experiments presents insight into the temporal dynamics of evoked sensory 

activity across units during natural tactile stimulation. The authors hypothesize that natural tactile 

sensations elicit neural activity with complex timing characteristics, while paresthetic sensations 

evoked by electrical stimulation arise from artificially time-locked activity of simultaneously 

activated fibers. The findings here indicate that natural activation of sensory pathways does indeed 

result in non-time-locked activity across cortical channels. However, the study was unable to 

confirm that electrical stimulation results in different neural activity. 

The lack of measurable evoked activity in sensory and motor cortex from ulnar nerve 

stimulation significantly limited the scope of the current study. Although the authors observed 

clear behavioral responses to electrical stimulation, indicating successful delivery of 

suprathreshold stimulation, there are multiple potential causes for this result. First, it is probable 

that insertion of the fine wire electrodes missed ulnar nerve and were inserted instead in an adjacent 

space. Second, it is possible that stimulation, even within ulnar nerve, elicited sensory activity at 

cortical sites not covered by the implanted electrode arrays. Third, it is possible that template 

subtraction of the stimulation artifact also removed evoked activity, although this was unlikely as 

templates exhibited smaller magnitudes than the observed spikes. 

Follow-up experiments will apply stimulation directly to the receptive field of the finger 

edge to preclude concerns of stimulation targeting. Stimulation will also be applied at reverse 

polarity, so that evoked potentials can be identified, even with template subtraction of stimulation 

artifacts. With a more robust stimulation protocol, new data may definitively demonstrate 

differences in spiking dynamics resulting from artificial and natural sensation. Such results would 
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provide a mechanistic explanation of perceptual differences elicited by tactile and electrical 

stimulation and inform future design of more efficacious sensory stimulation paradigms. 
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The work described here spans the breadth of developmental stages along the translational 

arc of biomedical research. Earlier chapters presented tools that are close to clinical validation and 

implementation, while later chapters explored basic science questions. Together, these chapters 

form a collection of contributions to the field of neural engineering with foreseeable impacts, both 

imminent and long-term. However, each study leaves significant room for further refinement, 

presenting opportunities for follow-up studies. 

Innovations in deep brain stimulation 

In the near term, the lead localization and stimulation optimization technologies presented 

in Chapters 2 and 4 may have the greatest practical impact. Chapter 2 combined sophisticated 

computational models of tissue activation with deep brain electrophysiology and machine learning 

tools to identify and validate neural signal markers of therapeutic stimulation regions. Chapter 4 

utilized modern imaging technologies and computational power to interpret physical properties of 

the brain, prototyping an accessible tool for localization of deep brain leads. While both studies 

produced ancillary findings to further fuel basic science research, their most significant 

contributions arise from the unification and translation of previously disparate works into clinically 

useful tools.  

The potential clinical impact of more sophisticated targeting technologies is large. The 

recent introduction of directional leads to the DBS market (Contarino et al., 2014; Pollo et al., 

Chapter 8  
 

Placing the Work in Context 
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2014; Dembek et al., 2017) have increased the possible precision of delivered stimulation. The 

capabilities afforded by these technologies, however, present a new challenge. Additional 

stimulation parameters dramatically increase the possible space of stimulation programs, thereby 

increasing the burden of stimulation programming which is already time-consuming and expensive 

(Hunka et al., 2005; Volkmann et al., 2006). Improved targeting technologies can help to both 

preemptively identify promising regions of stimulation, enabling use of automated stimulation 

programming algorithms (McIntyre et al., 2006; Teplitzky et al., 2016; Xiao et al., 2016; Pena et 

al., 2017; Anderson et al., 2018), and also further inform our understanding of where and how 

therapeutic stimulation acts upon pathological activity. Critically, prediction of entire tissue 

activation regions, rather than discrete points, makes it possible to predict both optimal stimulation 

site and voltage. Although the technologies described here are not intrinsically sophisticated, 

maximization of patient impact requires distribution to a broad market of neurosurgeons. To this 

end, collaboration from industry partners for commercialization is necessary. 

Additional work to further refine the targeting technologies presented here is ongoing. 

While Chapter 2 treated satisfactory therapeutic effect as a given from clinical testing, outcomes 

from DBS are complex and multidimensional (Chou et al., 2013), warranting attention toward 

specific motor outcomes, as well as side effects, reductions in medication, and other effects, such 

as changes in sensation (Cury et al., 2016). The manifestations of these effects vary by patient and 

present an opportunity for improvement of therapeutic tissue activation prediction.  Previous 

studies have shown that relationships between specific motor outcomes, recorded 

electrophysiology, and stimulation site do exist (Moran et al., 2008; Oswal et al., 2013a; Bour et 

al., 2015; Kuhn and Volkmann, 2017; Telkes et al., 2018), establishing promising leads with which 

to pursue further optimization. This approach may also be augmented with use of more 
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sophisticated interpretations of multi-band interaction, such as phase-amplitude coupling (van 

Wijk et al., 2016; Shreve et al., 2017) and beta burst length (Tinkhauser et al., 2017). Our research 

group is now performing a prospective evaluation of the tool, demonstrating its utility on a separate 

platform, and investigating the potential of motor outcome-specific predictions. 

Likewise, clear paths of optimization exist for impedance-guided lead localization. 

Although Chapter 4 established a novel method of efficiently creating whole-brain impedance 

atlases, it also identified spatial precision as the major limiting factor for using impedance to 

provide spatial information. The simplest approach to addressing this issue is to employ a smaller 

test electrode (Newman, 1966). Smaller electrodes with lower surface areas present additional 

challenges, however. First, they exhibit intrinsically higher impedance, elevating the baseline 

signal. Second, smaller surface areas can tolerate smaller charge delivery, before exhibiting 

irreversible non-faradaic reactions. The microelectrode recording tip is an obvious candidate for 

this modification, although safety tests must first be done to assess safety. The use of multiple 

contacts to act as both current source and return may also prove to provide more precise spatial 

information. Creation of a whole-brain impedance atlas for such a method, however, will be much 

more complex, as expected values may differ significantly with respect to electrode orientation. 

Stimulation of zona incerta for pain neuromodulation, presented in Chapter 5, is situated 

further upstream along the path to clinical application. The chapter demonstrated, in humans, an 

analgesic intervention previously shown only in rodent models (Lucas et al., 2011). While the 

demonstrated effect size fails to meet the clinical criteria to justify a new treatment modality for 

pain management (Coffey, 2001), the study provides a mechanistic explanation for pain relief 

resulting from subthalamic DBS (Oshima et al., 2012; Surucu et al., 2013; Jung et al., 2015; 

Belasen et al., 2017; Custozzo et al., 2020). This discovery will inform more clinically focused 
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investigations in the future, specifically by enabling clinicians to explicitly treat pain, a well-

established but often neglected symptom of Parkinson disease (Ha and Jankovic, 2012; Rana et 

al., 2013), in recipients of subthalamic DBS. Moving forward, these marginal advancements may 

eventually elucidate a new intervention to directly target other etiologies of chronic pain. 

Notably, the analgesic effects observed in the chapter were achieved with coincidentally 

placed leads. Acknowledging the importance of spatially precise stimulation, it is serendipitous 

that any effect was observed at all. Indeed, large variance in effect size was observed across 

individuals. Although the optimal site of zona incerta stimulation in humans is yet to be 

established, more intentional targeting of the structure and its subdomains is a promising avenue 

by which to improve analgesic effect (Mitrofanis, 2005). The study described here also leaves 

room for evaluation of other forms of pain, such as cold and mechanical pain, and their modulation 

by zona incerta stimulation. 

Advances in sensory modulation 

The latter chapters on tactile sensory modulation, in contrast, are situated soundly within 

the space of exploratory research, with the goal of better understanding mechanisms by which 

naturalistic tactile sensation is achieved. Chapter 6 showed compelling evidence that unit-specific 

stimulation patterns modeled after the unit’s own evoked activity in sensory thalamus can replicate 

tactile sensations. Chapter 7 demonstrated that natural tactile stimulation manifests as 

unsynchronized activity across units in sensory cortex.  

It is critical to acknowledge here that there have been previous reports of achieving 

naturalistic tactile sensations with electrical stimulation (Tan et al., 2014; Lee et al., 2018; Swan 

et al., 2018; George et al., 2019). However, published methods have been tested only in small 
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samples and often fail to replicate in follow-up studies. These qualifications highlight the 

importance of acquiring additional data to verify the stated claims in both studies described here. 

Nonetheless, given the available data, the studies reveal important insights on timing 

dynamics of both individual firing and population activity during naturalistic sensation. 

Interestingly, the two chapters appear to support intuitively contradictory conclusions. While 

Chapter 6 claims that precise modulation of a small volume around a single unit can produce 

specific tactile sensations, Chapter 7 suggests that meaningful tactile information is represented 

across multiple units in a temporally complex manner. These observations may be reconciled by 

the fact that they are observed at different locations along the sensory pathway or by another 

mechanism of sensory integration, although these possibilities cannot be verified with our data. 

Conversely, both studies reinforce the notion that naturalistic sensation is best achieved 

with highly precise activation of specific. This is concordant with previous observations that 

microstimulation of sensory thalamus more reliably elicits “natural” sensations than stimulation 

delivered via the macro contact (Swan et al., 2018). Other attempts at achieving naturalistic 

sensation have employed less discriminatory stimulation paradigms (Tan et al., 2014; Lee et al., 

2018; George et al., 2019; Kirin et al., 2019), potentially explaining the prevalence of parasthetic 

sensations. 

In line with published studies on naturalistic stimulation, the sensory experiments in this 

dissertation approach sensory modulation from an engineering perspective. Although informed by 

basic neuroscience, these studies largely seek to validate plausible patterns with which to induce 

naturalistic sensation. Additional basic neuroscience research examining low-level interactions 

along the full sensory pathway will help to better inform and generalize the approaches discussed 

here and elsewhere. Recent rodent studies, in particular, have provided particularly relevant 
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information, elucidating fundamental processes, such as interactions between sensory thalamic and 

cortical activity (Borden et al., 2019), the effects of adaptation (Wright et al., 2019), and the 

influence of cognitive states (Sederberg et al., 2019).  

Human studies, however, produce crucial qualitative findings concerning the specific 

nature of induced sensations. To this end, the studies described here will contribute important 

knowledge to further inform design of naturalistic stimulation. Chapter 6 and follow-up 

experiments will determine the importance and specificity of specific timing properties in 

activation patterns. Future experiments may also ask whether patterns are unique across units (Can 

evoked patterns recorded from one unit be used to evoke naturalistic sensations at another site?) 

and explore the extent of pathways activated during stimulation-evoked naturalistic sensation 

(How many cells are or can be activated to produce natural sensations?). Likewise, the findings 

from Chapter 7 and ensuing experiments may help to constrain future design of naturalistic 

stimulation paradigms, by establishing an upper limit to the span of pathways that can be activated 

before producing paresthesia. 

 

Altogether, the works described here help to realize the clinical potential of previously 

existing technologies and reveal promising new avenues along which to further advance 

neuroprosthetic technology. With additional work, it is foreseeable that sensorimotor 

neuromodulation will achieve the precision and accuracy necessary to find utility in a wide range 

of clinical applications, from sensory prostheses to treatment of pain disorders.  
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