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ABSTRACT

The study of light transport is important in many applications ranging from neutron transport, gas
and plasma dynamics, Brownian motion, and photon transport in biological tissues. In medicine,
light can be used to investigate tissue physiology up to several centimeters below the surface with-
out the use of harmful radiation. For example, by spectrally resolving the amount of absorbed
near-infrared light, concentrations of both oxygenated and deoxygenated hemoglobin can be de-
rived to measure tissue oxygen saturation and blood volume. On the other hand, measuring the
dynamic fluctuations of scattered light from circulating red blood cells can be used to quantify the
speed of blood flow. All of these techniques require an appropriate description of light transport
through biological tissue that can successfully model the forward transport of light. Even more im-
portantly, these models must also be used in inverse models to estimate probed tissue parameters
from measured optical signals. Therefore, the successful translation of light based technologies to
clinical medicine depend on appropriate physical forward and inverse models that can best describe
the underlying tissue structure and experimental system. Because these models are often imple-
mented in computer programs, the accuracy and performance of the translation of these models to
numerical algorithms are vital.

This dissertation focuses on the intersection of the mathematical theory of light transport and
subsequent numerical implementations. An important application of tissue optics is in the study
of brain hemodynamics which is limited by the penetration depth of optical signals and the con-
founding effects of superficial tissue. The use of time-resolved measurements can improve depth
sensitivity by selecting for later arriving photons that have a higher probability of probing deeper
tissues. The first half of this thesis focuses on developing a time-resolved system and subsequent
data analysis procedure for fast analysis of reflectance measurements. An approach using Monte
Carlo lookup tables for rapid quantitation of the reduced scattering coefficient within 6-25 % of
baseline values was developed. The approach has the advantage of being independent of the instru-
ment’s temporal dispersions while avoiding slower iterative data processing. This approach was
further improved to include recovery of the absorption and reduced scattering coefficient within
5-15 % that combined the lookup table approach with diffusion based curve fitting. These ap-
proaches help reduce the recovered error in optical properties from over 40 % to less than 15 %
when considering uncertainties in the measurement’s time scale.
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On the other hand, improved sensitivity to brain tissue can be achieved through more robust
data analysis methods. Particular focus is given to studying layered turbid media as a higher
order approximation to brain tissue. Efficient numerical approaches to solve both the photon dif-
fusion equation and correlation diffusion equation in layered media are given in the steady-state,
frequency domain, and time-domain. The developed algorithm was able to simulate the steady-
state and time-domain fluence in less than 50 and 500 microseconds which is 3-4 orders of mag-
nitude faster than current approaches allowing for real-time (< 1 Hz) data processing in both
domains. Solutions and numerical algorithms were also developed to solve the correlation diffu-
sion equation for real-time data analysis of blood flow measurements in both the steady-state and
time-domain. Inverse procedures were also developed to recover flow coefficients within 5 % of
baseline numerical values when using layered diffusion theory. For both the photon and correlation
diffusion equation, successful validation against Monte Carlo measurements in simulated brain tis-
sue was also shown indicating the promise of the described approaches to improve optical brain
monitoring. The presented numerical algorithms and code are publicly available for the work de-
scribing diffuse optics (https://github.com/heltonmc/LightPropagation.jl), Bessel and other special
mathematical functions (https://github.com/JuliaMath/Bessels.jl), and inverse Laplace transforms
(https://github.com/heltonmc/Laplace.jl).
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CHAPTER 1

Introduction

1.1 Overview

This thesis focuses on the study of light diffusion in biological tissue as it relates to medical di-
agnostics [167]. Much of the discussion is also applicable to other media of high scattering such
as paints [41], clouds [77], pharmaceuticals [155], plastics [178], and food [118]. Although there
exists several ways to model light transport [191, 82, 23, 1], the two most popular approaches are
considered: (1) numerical methods to solve the Radiative Transport Equation (RTE) using Monte
Carlo (MC) simulations [191] and (2) analytical approximations to the RTE using diffusion theory
[137]. Transport theory considers a larger class of problems concerning the general transport of
particles (e.g. neutrons, electrons, photons) through some background medium [22, 23, 1]. These
problems have many application areas in atmospheric [162, 93, 24] and nuclear physics [26, 88],
however, much of the discussion will focus on the utility of the diffusion approximation in biolog-
ical media [64].

1.2 Diffuse Optical Spectroscopy

Diffuse optical spectroscopy (DOS) is a noninvasive technique to measure optical properties (i.e.,
scattering and absorption) of multiply scattered light which can be used to assess pathological and
physiological conditions of biological tissue [53]. Near-infrared (NIR) light is most commonly
used because of the relatively low background absorption of water providing better contrast to other
light absorbers such as oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (Hb) [48,
149, 159]. Biological tissue is composed of many chromophores with distinct absorption spectra
allowing for separation and quantitation of their respective concentrations. In the NIR window, the
primary absorbers of light are hemoglobin, melanin, water, and lipids, however, biological tissue
also strongly scatters light which dictates light propagation [80].
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Chromophores are the tissue components that absorb light through either electronic or vibra-
tional transitions while scattering is determined by the size and morphology of biological cells [5].
At small incident angles, light scattering is predominately caused by a change in the cell’s index of
refraction whereas the cell’s nuclei are more responsible at larger incident angles [127, 126, 128].
Mie theory is a rigorous way to model light scattering in a distribution of spherical objects of
varying sizes from an incident planar electromagnetic wave considering the inter particle space,
scattering angle, refractive index, and spherical diameter [16, 121]. However, considering all these
properties in light that has travelled several centimeters and interacted with many thousands of
cells is impractical due to the limited knowledge about the underlying tissue. Therefore, it is expe-
dient to consider the macroscopic properties of biological tissue by modelling it as a bulk material
of many different types of cells and tissues [80]. A weighted sum of the contribution of each
chromophore is used to quantify the bulk absorption coefficient (µa) of the probed medium. Like-
wise, the reduced scattering coefficient (µ′

s), which is typically 100× larger than µa, represents a
photon random walk with a step length of 1/µ′

s where each step corresponds to an isotropic scat-
tering event. The distinction between the reduced version µ′

s and the regular scattering coefficient,
µ′
s = (1− g)µs, is due to the strong forward scattering nature of biological tissue (g ≥ 0.9) where

each step length only results in a small angular deflection. The anisotropy g represents the amount
of forward direction retained after a single scattering event quantified by the averaged cosine angle
g =< cos(θ) > where g = 0 represents isotropic scattering and g = 1 represents total forward
scattering.

Light propagation in turbid media such as biological tissue is typically described by the RTE
which is a complex integro-differential equation [109]. Since much of this thesis is focused on the
compromises between analysis methods, it is important to mention that the RTE is a phenomeno-
logical and heuristic theory that does not have a rigorous mathematical formulation to account for
all the physical effects of light transport. The multiple scattering theory that start from Maxwell’s
equations can mathematically account for the effects of multiple scattering, diffraction, and in-
terference but is not practical due to its complexity. However, under some assumptions the RTE
can be derived from the more rigorous electromagnetic theory in discrete random media [109].
Therefore, the RTE is typically solved numerically using the MC method.

The Monte Carlo method provides a robust physical simulation of light propagation and can
solve the RTE to any desired accuracy even when considering irregular boundary conditions and
heterogeneous media [50]. The general procedure traces the random walk steps of energy pack-
ets (i.e., the trajectory of simulated photons) by sampling probability functions that govern light
transport. This stochastic process requires tracing tens to hundreds of millions of photons where
the standard error decreases proportionally to the inverse square root of the number of detected
photons given by the central limit theorem [191]. Therefore, the MC method has several advan-
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tages and disadvantages. The ability to solve the RTE in any domain (e.g., low scattering, high
absorption) for complex heterogeneous media allows for its use in many areas of biophotonics.
However, it requires enormous computational resources that inhibit its use for fast (< 1 Hz) data
processing.

On the other hand, the RTE can be solved analytically under certain boundary conditions to give
direct expressions to compute. Direct analytical solutions to the RTE have received recent attention
but are difficult to express in closed form in different domains and geometries [105]. The diffusion
approximation to the RTE is most commonly used as there are analytical solutions available in
several geometries which are easily translated to computer code that can be solved quickly for fast
data analysis [137, 85]. The compromise is that diffusion theory is limited to simple geometries
with homogeneous optical properties and the assumptions of diffuse light (e.g., µ′

s >> µa).

1.3 Technical challenges

The problem can be reduced to estimating the optical properties µa and µ′
s from measured light in-

tensities at multiple wavelengths. The properties can be used to estimate concentrations of varying
chromophores using known extinction spectra to give more clinically relevant information such
as the percent of oxygen saturation of underlying tissue [80]. This is usually not as simple be-
cause the effects of absorption must be uncoupled from scattering changes while making several
assumptions and approximations about the underlying tissue geometry and composition. Much
of this thesis is focused on the compromise between a representable and accurate physical model
of light transport and the necessity to estimate important metrics quickly to be used in a clinical
setting.

Spectroscopy and imaging require an understanding of the interaction between probed media
and external stimuli. In most cases, we are interested in the behavior of the injected light after it
has traveled some distance inside the medium before being detected. Our objective is to develop a
forward model that can estimate the response of a tissue to a known optical source. Once a forward
model is developed, it can be used along with experimental measurements to quantify properties
of the medium. This process is known as the inverse problem where we seek parameters of the
forward model that best fit measured data.

Both the inverse and forward problem present their own challenges but typically any inverse
method requires evaluation of the forward model hundreds to thousands of times for different
parameters. At the same time, any useful analysis method needs to be able to deliver accurate
information in a timely matter. For example, brain oxygenation monitoring during surgery or in
emergency care requires rapid estimates of tissue properties (> 1 Hz). The recent advances in
computer hardware have made MC methods more popular which are amenable to parallel com-
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puting - meaning that each trace is independent and can be simultaneously computed on different
cores of a either a central processing unit (CPU) or graphics processing unit (GPU). The continued
yearly technology increase in the number of cores and the ability to link multiple GPU units have
provided enormous improvements in MC efficiency scaling almost linearly with the number of
cores [50].

The advantage of MC over diffusion based analytical solutions is its flexibility and accuracy.
Monte Carlo can be used with complex meshes to model capillary networks and the folds of brain
tissue while being a solution to the RTE [187]. In other words, MC does not require that light be
diffuse and can be used more generally whenever the RTE is valid. Analytical solutions often re-
quire simple boundaries, homogeneous properties, and are less accurate as they are limited by the
diffusion approximation (e.g., high scattering, low absorption, far from source). However, analyti-
cal solutions are easy to set up, orders of magnitude faster, and amendable to inverse optimization.
For example, state of the art MC simulations take on the order of several seconds on expensive
GPUs while a solution to the diffusion equation in a homogeneous medium can be simulated on a
laptop in tens of nanoseconds [183]. This is highly advantageous when quantitative data needs to
be provided to clinicians every half second while having to evaluate forward models hundreds to
thousands of times.

Of course, technology will continue to improve and scale where in the future MC may be able
to to solve inverse problems in real-time. Approaches that leverage the continued improvement
in computation power (Moore’s law) are typically most effective but an important consideration
is that medical systems may need to be embedded, portable, low cost, compact, robust and/or run
on batteries. Ideally, the system could also not keep someone warm during a Michigan winter.
The central question and main motivation in this work prods the compromise between physical
accuracy and speed as it relates to studying brain hemodynamics. How can we produce accurate
results while being efficient?

One of the most promising application areas for diffuse optics is monitoring the brain. The non-
invasive nature of light technologies allow for continuous monitoring in a safe and practical way.
Over 30 years ago, diffusion theory was shown to adequately describe light transport in biological
media, providing a theoretical framework to quickly and easily quantify biological tissue [137].
Although some improvements to the boundary conditions have been made [85], that simple model
which approximated biological tissue as optically homogeneous and semi-infinite is still one of
the most popular methods today due to its ease of use and computational efficiency [62]. How-
ever, it has been consistently shown that the semi-infinite approximation is particularly prone to
superficial contamination [133, 153]. In some applications, such as brain monitoring, the underly-
ing tissue is not optically homogeneous causing a breakdown in the forward model’s assumptions.
This is exacerbated when we are more interested in deeper tissues such as the brain compared to
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the superficial layers (scalp) [146].
This problem has been tackled both theoretically and experimentally. By using time-domain

measurements it is possible to separate the detected photons by their arrival times [163]. There-
fore, the photons that arrive later are more likely to have travelled in deeper brain tissues [186].
This allows for selection and separation of early and late arriving photons making analysis more
sensitive to deeper tissues [38]. This approach is limited by more expensive hardware, more com-
plex data analysis, limited dynamic range in experimental system, and longer data acquisition
times [186]. Additionally, even late arriving photons have to travel through superficial layers twice
which can significantly affect the detected light signal.

Alternatively, the forward model can consider a slightly less crude approximation where in-
stead of optically homogeneous, the underlying tissue is modeled as a stack of finite thick media
with their own optical properties [86, 84, 102]. This method has become increasingly attractive
as it has been shown to match MC simulations in complex brain meshes taken from magnetic
resonance imaging (MRI) data [153]. Several approaches to solve the diffusion equation in lay-
ered planar media have been presented [112, 86, 104] which increase both the complexity of the
forward and inverse problems. The forward problem is now significantly more expensive taking
roughly one second to compute a time-domain signal for different combinations of optical proper-
ties [59]. For reference, the time-domain signal in a semi-infinite medium can be computed in tens
to hundreds of nanoseconds. The increase in computational time is due to the necessity to compute
the time-domain signal (and even the steady-state signal) using numerical transforms from differ-
ent domains [75]. This can also introduce numerical errors and limitations during integration of
exponentially increasing terms within the integrand.

On the other hand, considering a more complicated tissue geometry increases the complexity of
the inverse problem significantly. An advantage of homogeneous models in addition to the simpler
and faster forward problem is that inverse optimization usually considers one or two parameters (a
single µa and µ′

s). This has made analysis using more expensive forward solvers such as MC possi-
ble as precomputed lookup tables can be generated and stored to quickly estimate optical properties
[72]. However, in more complicated geometries such as brain tissue, it may be required to consider
many more parameters in the forward problem as unknown (i.e., must consider different absorp-
tion, scattering, and thickness of many layers). Recovering multiple parameters in a large scale
inverse problem is one of the more computationally demanding problems in numerical comput-
ing [156]. Full and even partial lookup based approaches typically used in MC for homogeneous
models are impractical from a memory perspective. In the 2D case, the entire lookup table can be
stored in computer memory and each value in the problem space can be sampled in a reasonable
amount of time. For larger scale parameter estimation, it becomes difficult to store a reasonably
sized discrete parameter space without compromising on accuracy while not being able to iterate
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quickly through every value. For example, it takes over a second to sum a 700× 700× 700 matrix
while requiring almost 5.5 GB of memory. Therefore, all of these considerations make using either
MC based lookup approaches or existing layered solution unfeasible for real-time analysis limiting
most of the advantages of diffusion based models over MC methods.

1.4 Objectives

The first half of this thesis investigates the experimental approach for better sensitivity to deeper
absorption changes by developing and validating a time-domain optical spectroscopy system. The
second half focuses on developing a forward model for layered tissues. Both of these problems
have been previously studied, however, my pursuit was guided by a few overarching themes. First,
I wanted to pay careful attention to the implementation and translation of these analysis methods
to computer code. Therefore, the analysis methods should be easy to use, fast, correct, and well-
tested. Of course, these can never be 100% verified but all code is freely available with extensive
documentation online (https://github.com/heltonmc) and each algorithm is well tested with a suite
of continuous integration tests to ensure that any future modification retains at least somewhat the
desired functionally. All the programs are written in the Julia programming language [11]. At
a minimum, the language was chosen because it is open-source, easy to write high performance
code, the ability to fix bugs in the future without a license, and personal enjoyment.

The Chapters can be summarized by the following aims.

• Aim 1: Build and validate a time-domain diffuse optical spectroscopy system to quantify
optical properties from reflectance measurements.

• Aim 2: Develop novel data analysis methods for analyzing time-resolved optical data con-
sidering uncertainties in measured data from the system’s instrument response function.

• Aim 3: Develop a sufficiently fast data analysis scheme that can be used to analyze biological
tissue’s optical properties in complex media such as the brain in real-time.

• Aim 4: Extend layered analysis method to the correlation diffusion equation to quantify
depth dependent blood flow rates.

The pursuit of these aims has led to many other scientific contributions outside of diffuse op-
tics. For example, Aim 3 led to the development of a faster approach to compute the Bessel
function of the first kind and zero order. This work was continued to compute the more
general case of arbitrary order for Bessel and Modified Bessel functions of the first and sec-
ond kind. Routines to compute other special mathematical functions such as the Spherical
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Bessel functions, Hankel functions, Airy functions, and Struve functions were also developed
and openly available at https://github.com/JuliaMath/Bessels.jl. Additionally, different numeri-
cal techniques to perform the inverse Laplace transform were investigated and are available at
https://github.com/heltonmc/Laplace.jl. Therefore, this work led to the following aim.

• Aim 5: Develop fast and accurate computer algorithms for the computation of several special
mathematical functions common in physics.

The main body of the dissertation will focus on the first four aims.

1.5 Thesis Organization

The thesis is organized in two halves with Chapters 2 and 3 discussing novel analysis methods
and experimental results using time-resolved reflectance measurements in homogeneous media. In
Chapter 2, we introduce time-resolved DOS and introduce novel analysis procedures for estimat-
ing the reduced scattering coefficient (µ′

s) from reflectance measurements in turbid media. This
is a reprint of the published article ”Direct estimation of the reduced scattering coefficient from
experimentally measured time-resolved reflectance via Monte Carlo based lookup tables” [70]. In
Chapter 3, we expand on the analysis methods introduced in Chapter 2 using the standard dif-
fusion approximation while discussing the uncertainties related to the time axis of the instrument
response function. This is a reprint of the published article ”Reconstruction of optical coefficients
in turbid media using time-resolved reflectance and calibration-free instrument response functions”
[72].

The last half of the thesis, Chapters 4 and 5, is focused on light diffusion in planar layered
media. In Chapter 4, efficient methods for computation of light diffusion in the steady-state,
frequency-domain, and time-domain are developed. This Chapter is a reprint and reorganization
of the published article ”Efficient computation of the steady-state and time-domain solutions of
the photon diffusion equation in layered turbid media” [75]. Additional comments and expanded
discussion in some areas have been added that differ from the published article. Chapter 5 extends
these computational models to solve the correlation diffusion equation in layered media in both the
continuous-wave and time-domains. The model is also used in inverse problems to demonstrate
the ability to quantify data in real-time. This is a reprint of the published article ”A numerical
approach to quantify depth-dependent blood flow changes in real-time using the diffusion equation
with continuous-wave and time-domain diffuse correlation spectroscopy” [74]. A brief summary
of the dissertation and prospective on future work is provided in Chapter 6 along with a list of
scientific contributions.
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CHAPTER 2

Direct Estimation of the Reduced Scattering
Coefficient from Experimentally Measured

Time-Resolved Reflectance via Monte Carlo Based
Lookup Tables

This chapter was published in [70]. It introduces time-domain diffuse optical spectroscopy and
analysis methods for quantitation of the reduced scattering coefficient from Monte Carlo generated
lookup tables. The chapter was prepared in collaboration with Dr. Karthik Vishwanath and Dr.
Mary-Ann Mycek.

2.1 Abstract

A heuristic method for estimating the reduced scattering coefficient (µ′
s) of turbid media using

time-resolved reflectance is presented. The technique requires measurements of the distributions
of times-of-flight (DTOF) of photons arriving at two identical detection channels placed at unique
distances relative to a source. Measured temporal shifts in DTOF peak intensities at the two chan-
nels were used to estimate µ′

s of the medium using Monte Carlo (MC) simulation-based lookup
tables. MC simulations were used to compute temporal shifts in modeled reflectance at experi-
mentally employed source-detector separation (SDS) for media spanning a wide range of optical
properties to construct look up tables. Experiments in Intralipid (IL) phantoms demonstrated that
we could retrieve µ′

s with errors ranging between 6-25 % of expected (literature) values, using re-
flectance measured across 650-800 nm and SDS of 5-15 mm. Advantages of the technique include
direct processing of measured data without requiring iterative non-linear curve fitting. We also dis-
cuss applicability of this approach for media with low scattering coefficients where the commonly
employed diffusion theory analysis could be inaccurate, with practical recommendations for use.
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2.2 Introduction

Time-resolved reflectance spectroscopy (TRS) has the potential to directly provide bulk scattering
and absorbing coefficients of a turbid medium without making assumptions about the medium’s
composition or structure [36, 141, 2, 163]. In TRS, picosecond laser pulses (fired at MHz rates) are
injected into a turbid medium and the multiply scattered and attenuated diffusely reflected pulses
are detected using a fast single photon counting photodiodes that are usually coupled to time-
correlated single photon counting (TCSPC) boards to measure the photon distributions of times-
of-flight (DTOF) [163]. These measurements are then quantified using theoretical (or numerical)
approaches to extract the absorption (µa) and reduced scattering (µ′

s) coefficients of the medium
[141, 2, 163, 140]. In biological media, accurately and efficiently recovering the optical transport
coefficients can help parametrize a variety of functional and structural properties of biomedical
and clinical interest [181, 25].

Uncoupling µa and µ′
s using experimentally measured DTOF is known to be a difficult problem

that needs careful measurements and calibrations [36, 141, 2, 163, 140, 122, 142, 132]. The mea-
sured DTOF is a convolved response of the theoretical temporal point spread function (TPSF) and
the instrument response function (IRF) of the experimental system [182]. The TPSF represents the
(Green’s function) response of the tissue medium to an incident Dirac delta pulse, while the IRF
represents the finite temporal profile of the incident laser pulse measured as it propagates through
the detection optics [182]. Extraction of the optical properties is typically done by iteratively
convolving a theoretical TPSF with the experimentally measured IRF and fitting the convolved
response via non-linear least squares to the measured DTOF [122, 174, 114]. Since the theoreti-
cal TPSF is computed from known optical properties, the process yields optical properties for the
medium at convergence.

The above approach requires both having appropriate theoretical estimates to accurately model
the TPSF, and accurate estimates of the system IRF. Since the IRF is a function of the laser source,
fiber optics, and detection electronics used to deliver and collect signals, the IRF must be mea-
sured for all detection channels and wavelengths used experimentally [150, 131]. Curve fitting of
the DTOF using diffusion theory (DT) is usually the most common method for extracting optical
properties of turbid media using TRS [62]. Although the process requires iterative reconvolution
based reconstructions and are usually performed off-line, growth of computational resources could
render these methods to operate in real-time [62]. However, applications of such models to analyze
biological tissues have shown large variance in extracted coefficients [36, 141, 2, 131, 35] particu-
larly in scattering as reported recently [125]. Inverse methods using DT can also be computation-
ally intensive and have been reported to show crosstalk between the derived optical coefficients
[36, 2, 142, 132]. Thus, a method such as the one we have presented could potentially facilitate

9



improved fitting with DT.
Limiting crosstalk between recovered coefficients is critical for accurate estimation of opti-

cal properties, which in turn impact clinical and diagnostic utility of these methods. Different
approaches have been described to constrain inverse fitting algorithms and increase quantitative
accuracy of recovered optical parameters [33, 94, 46]. For example, measurements at multiple
wavelengths were used to constrain spectral properties of the medium in order to improve the ac-
curacy of recovered parameters [46]. Thus, methods that can extract (or even constrain) the optical
coefficients of the medium can help DT based models in estimation of optical properties.

Here, we present a simple-to-use, heuristic technique that facilitates estimation of the µ′
s of a

medium directly from experimentally measured DTOFs. This method uses lookup tables con-
structed using MC simulations and translates measured peak-to-peak time differences (∆t) in
DTOF obtained at two distinct SDS into µ′

s of the medium. We describe implementation of the
method and demonstrate its application to experimental data obtained from well-described tissue
simulating phantoms [114, 120, 157].

2.3 Materials and Methods

2.3.1 Instrumentation

Figure 2.1(a) shows the schematic of the experimental system, where the input pulse from a super-
continuum laser (SC400, NKT Photonics, DK) was spectrally filtered via a band-pass filter (Su-
perK VARIA, NKT Photonics, Denmark) and coupled into one end of an optical (source) fiber
(diameter = 400 µm; NA=0.22; length=1 m). The distal end of the source fiber illuminated a
medium of interest and formed the sensing head of a custom-fabricated optical probe (Gulf Pho-
tonics, FL). The sensing head had three detection channels (made from three optical fibers identical
to the source fiber) which were epoxied at distances of 5, 10, and 15 mm from the source fiber –
thus, our sensing probe had a fixed geometry. Reflectance measured from a selected channel (iden-
tified uniquely using the SDS) was coupled into a single-photon avalanche diode (SPAD) detector
(PMD-050, MPD, Italy), that was electronically coupled to a time-correlated single photon count-
ing (TCSPC) board (SPC-130, Becker & Hickl, Germany). The laser repetition rate was 40 MHz
and an electronic sync signal from the laser was used to trigger the TCSPC for signal acquisition.

Figure 2.1(b) shows representative time-resolved reflectance measurements at the three exper-
imental SDS used. Figure 2.1(c) shows a magnified view of the DTOF peaks. The IRF was
measured to ensure equality for each channel across all wavelengths by reflecting the source pulse
into the detecting fiber using a mirror with a white piece of paper placed over the detecting fiber.
Figure 2.1(d) shows the IRF measured at 650 nm for all three detector channels used. The average
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root mean square error (RMSE) calculated over three orders of magnitude for all IRFs measured
across all channels and wavelengths used was 0.008. For comparison, repeated scans from a fixed
target surface had RMSE of nearly 0.001, while DTOFs at differing absorption and scattering co-
efficients produce RMSE values larger than 0.1. Temporal stability of the peak position was also
monitored over several hours of continuous acquisition and was shown to vary less than 0.7 % per
hour.
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Figure 2.1: (a) Schematic of the time-resolved system used to obtain reflectance measurements.
Dashed lines represent where the different detecting fibers connected to a detector (SPAD – single-
photon avalanche diode; TCSPC – time-correlated single photon counter). (b) Time-resolved mea-
surements from an Intralipid phantom at the three experimental SDS. (c) Magnified view of data in
(b) to show peak-peak time differences observed between all SDS pairs. ∆t5,10 indicates the peak
time difference between SDS of 5 and 10 mm (∆t10,15: for 10 and 15 mm SDS; ∆t5,15: for 5 and
15 mm SDS). (d) Measured IRFs for the three SDS at 650 nm.
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2.3.2 Monte Carlo simulations

Although DT can be used to model TPSF measurements at multiple SDS, it is known to be inac-
curate for modeling reflectance at early times and small SDS [36, 163, 174, 114, 35]. Therefore,
a previously developed time-resolved Monte Carlo (MC) model [170] was used to calculate the
TPSF in a semi-infinite, homogenous geometry for 48 different tissue models. Each TPSF had
distinct µ′

s and µa values spanning 3–18 cm−1 and 1 × 10−3 − 0.5 cm−1, respectively. Tissue
models were generated by permuting six different µ′

s values (3, 6, 9, 12, 15, 18 cm−1) with eight
different µa values (1×10−3, 0.026, 0.050, 0.075, 0.18, 0.29, 0.39, 0.50 cm−1). Absorption values
were chosen on a log-scale to more accurately sample changes in absorption over several orders of
magnitude.

Simulations were run to generate the TPSF (with photons being launched into and detected from
the medium using optical fibers matching the experimental probe) at SDS of 5, 10 and 15 mm for
all 48 tissue models. A temporal resolution of 2 ps was used for simulations at SDS of 5 mm, while
the temporal resolution was 10 ps at SDS of 10 and 15 mm. Each MC run used 3×108 photons, an
anisotropy equal to 0.7 (using the Henyey-Greenstein phase function), an index of refraction equal
to 1.35 (to match the IL phantom) [120, 145, 54], and fiber diameters and numerical apertures of
400 µm and 0.22, respectively, to match experimental measurements. Simulated TPSF data were
resampled (using a cubic spline) to have a resolution of 0.1 ps. The peak-times calculated from
the cubic spline using two different temporal resolutions in generating the TPSF were compared to
ensure no errors were introduced by resampling.

Representative TPSFs from MC simulations are shown at two SDS in Fig. 2.2(a) (SDS = 5
mm) and Fig. 2.2(b) (SDS = 15 mm) for three different media (circles: µ′

s = 6, µa = 0.18 cm−1;
squares: µ′

s = 9, µa = 0.18 cm−1; triangles: µ′
s = 6, µa = 0.39 cm−1). Vertical lines show tmax for

each simulated reflectance (derived from the resampled data). These data show that in media with
identical µ′

s an increase in µa causes a decrease in tmax (by 7 % at SDS of 5 mm and 13 % for SDS
of 15 mm for media shown by circles vs. triangles), while in media with identical µa an increase in
µ′
s causes an increase in tmax (by 11 % at SDS of 5 mm and by 35 % at SDS of 15 mm for media

shown by circles vs. squares). These figures also show that at short SDS and low scattering, the
absorption coefficient only weakly influenced tmax.

The difference (∆t) between tmax at SDS pairs of 5-10 mm, 10-15 mm and 5-15 mm, were
obtained for each of the 48 simulations. For each SDS pair, ∆t values across the 48 simulated
tissue models were linearly interpolated to create 2D lookup tables of ∆t values for µa spanning
1 × 10−3 - 0.5 cm−1 (in 1 × 10−3 cm−1 increments) and µ′

s spanning 3-18 cm−1 (in 0.01 cm−1

increments). Several interpolations methods were tested (e.g. linear, cubic, spline) to create lookup
tables and showed less than 0.1 % variation in generated tables. These computed ∆t distributions
are shown for two different SDS pairs – in Fig. 2.2(c) (SDS pair of 5-10 mm) and Fig. 2.2(d) (SDS
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Figure 2.2: Monte Carlo simulated TPSF for three different media at SDS of (a) 5 mm and (b)
15 mm. Simulated data are shown in symbols while resampled splines (see text) are the solid
lines. Vertical lines show the tmax for each simulation. Interpolated peak time differences for
SDS of 5 and 10 mm (∆t5,10) and for SDS of 5 and 15 mm (∆t5,15) are shown in (c) and (d),
respectively. Note that the time-difference scales are different in Fig. 2.2(c) and Fig. 2.2(d) with
longer SDS having longer ∆t. ∆t5,15 computed from tmax shown in Fig. 2.2(a) and 2.2(b) are
marked on 2.2(d) (symbol, shape and color identify corresponding media). The grey rectangle in
Fig. 2.2(c) represents how the range of µ′

s is determined by a fixed value of ∆t (shown for ∆t5,10
= 50 ps).

pair of 5-15 mm). Symbols for ∆t5,15 values computed for data shown in Fig. 2.2(a) and 2.2(b)
are marked on the Fig. 2.2(d) (shape and color of the marker identifies the optical properties). The
horizonal grey line in Fig. 2.2(c) illustrates how a given ∆t value (calculated using SDS of 5 and
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10 mm) confines the range of µ′
s (shown by the shaded rectangle). In other words, ∆t5,10 = 50 ps

could represent media with µ′
s ranging between 7.1 – 10.7 cm−1 and µa varying from 1×10−3 and

0.5 cm−1.

2.3.3 Lookup method

Data shown in Fig. 2.2(c) and 2.2(d) form the crux of the lookup method. In the forward direction,
specific values for µ′

s (x-axis) and µa (color) identify a single point in the shaded region – the
ordinate of this point is ∆t. In the inverse sense, given a ∆t value (using a given SDS pair) it may
be associated with several pairs of µ′

s and µa values (identified by the horizontal line within the
shaded figure in Fig. 2.2(c)). Thus, translation of a measured ∆t for a pair of SDS into µ′

s would
require knowledge of µa, or vice-versa. As is evident from these figures, for fixed ∆t, the limits on
µ′
s are much more restrictive than the limits on µa. For the range of optical properties considered

here, the required ∆t for a SDS pair could be produced by media with µa that span the full range
of simulated values (1 × 10−3 – 0.5 cm−1) but had a much more confined range for possible µ′

s

values. In other words, the uncertainty in estimation of µ′
s given an incorrect guess of µa would be

much lower than the uncertainty in estimating µa given an incorrect guess of µ′
s. Thus, our lookup

method translates the measured ∆t (from a given SDS pair) directly into µ′
s via the interpolated

2D MC lookup table for the corresponding SDS, but needs an input value for the µa of the medium
to function.

2.3.4 Estimating the absorption coefficient

Two different approaches were used to estimate the µa required for using the lookup method. The
first approach, referred to here as the ‘tail method’, uses a limit derived from DT where the slope
of the natural logarithm of the DTOF at long time scales is assumed to be directly proportional to
µa (Eq. 2.1) [137]. shown in Eq. 2.1 represents the measured DTOF and for longer times, the value
of the estimated absorption from Eq. 2.1 would improve. Using this technique to accurately esti-
mate µa would require deconvolving the IRF from the measured DTOF and having the reflectance
signal span many nanoseconds. In practice, a limited dynamic range in the detection system and
the drawbacks in deconvolving the IRF from the DTOF reduces the accuracy of this approach in
estimating µa.

However, as we expect ∆t to only weakly depend on µa, the tail method provides a simple
and direct way to extract (even if crudely) a value for use with the lookup method to estimate µ′

s.
Further, due to a limited dynamic range of our instrumentation, the DTOF time scale was shifted
such that the peak occurred at t = 0, and Eq. 2.1 was applied to analyze the measured reflectance
signal from its peak value till it fell to 0.1 % of the peak value. Derivatives were numerically
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calculated between successive times, smoothed and translated to calculate µa for each measured
DTOF using Eq. 2.1 [137]. Because calculated numerical values were noisy and showed variations
for different SDS (in the same media), µa was estimated as the averaged tail-method estimate for
every scan, at all three SDS used.

µa ≈ −1

c
{d lnR(r, t)

dt
+

5

2t
} as t → ∞ (2.1)

In the second approach, referred to here as the ‘transmittance method’, the intrinsic absorption
coefficient of hemoglobin was calculated by measuring the collimated transmittance using a spec-
trophotometer at the varying concentrations of bovine hemoglobin used experimentally (described
in Sec. 2.5). µa was then calculated from the percent transmittance using Beer’s Law for each con-
centration, and the intrinsic absorption coefficient () was determined from the slope of the linear fit
of the calculated µa at each concentration. Expected (true) absorption coefficients of the medium
distinct from values obtained using Eq. 2.1 were then calculated using and the mass concentration
of absorber used. Dissolving large amounts of solid hemoglobin (≈ 255 mg for each concentra-
tion change) as well as uncertainties in cuvette calibrations in transmittance measurements could
impact the accuracy of the estimated µa by this method.

2.3.5 Phantom preparation and measurements

Liquid phantoms were prepared to experimentally validate the performance of the developed
method. Phantoms were prepared by mixing 40 mL of 20 % Intralipid (IL) (Sigma-Aldrich; MO,
USA) with 750 mL of de-ionized water while absorption was independently introduced by serial
additions of 250 mg of dry bovine hemoglobin (Hb) (H3760; Sigma-Aldrich; MO, USA) to the
above solution. Liquid phantoms were prepared in a cylindrical container (radius = 6 cm, height
= 12 cm) and preliminary experiments showed finite-boundary effects at low scattering solutions
(¡ 1 cm−1) and shallow depths (¡ 4cm). Therefore, the minimum µ′

s used for the experiments
was 5 cm−1 and the minimum distance between optical channel and container wall was ensured to
be greater than 5 cm to best approximate a semi-infinite medium as modeled by the MC lookup
tables.

Phantoms were created to have constant scattering coefficient with 5 % IL by volume [169, 10].
Since the optical properties of IL have been well described to be stable and reproducible [120, 157],
we could also use reference values from previous reports [114, 120, 157, 145] to directly compare
the reduced scattering coefficient we estimated to those reported previously. Hb was added five
times to create a set of 6 different phantom media having fixed scattering with step increases in the
absorption coefficient (corresponding to hemoglobin concentrations ranging between 0-250 µM).
This produced phantoms with expected µa values varying between 0.003-0.4 cm−1 for 650 nm,
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and between 0.022-0.14 cm−1 for 800 nm.
Each phantom solution was prepared in the container and mixed gently with a magnetic stirrer

during measurements. The sensing head of the probe (mounted on a custom probe holder) was
lowered until the surface tension of the solution was broken. The probe was clamped in place
and the following sequence of measurements was obtained for each phantom. First, the laser
wavelength was set to 650 ± 5 nm, the optical fiber for the channel with SDS of 5 mm was manually
coupled to the SPAD (via a standard SMA fiber socket) and three repeated scans were acquired.
Next, the bandpass was adjusted to illuminate the sample at 700 ± 5 nm, 750 ± 5 nm and 800
± 5 nm and three repeated TRS measurements were acquired. The same sequence of steps was
repeated by manually coupling fibers for the 10 and 15 mm SDS channels into the SPAD, across
the same four source illumination wavelengths. Each TRS acquisition was obtained by allowing
the TCSPC signal to acquire the signal for 30 s.

Thus, a total of 36 TRS measurements was obtained (3 scans per wavelength, for 4 wavelengths
across 3 channels), for each phantom solution. TRS scans collected at 650 nm are shown for all
detection channels used (with SDS of 5, 10 and 15 mm) in Fig. 2.1(b). The difference between
tmax of measured DTOF at 5 and 10 mm SDS is also shown and labelled as ∆t5,10 in Fig. 2.1(c).
A similar naming convention was adopted when peak differences were calculated using SDS of 5
and 15 mm (∆t5,15) and SDS of 10 and 15 mm (∆t10,15), as denoted in Fig. 2.1(c). Experimental
DTOF measurements were obtained with time-resolutions of 12 ps.

2.4 Results

As described above, the MC lookup table was used to convert the measured ∆t (for a given SDS
pair) into µ′

s, given an estimate of µa. We first tested the developed method to extract µ′
s for

phantom that was mostly scattering with very low absorption – i.e. a solution of 5 % IL in wa-
ter. Fig. 2.3 shows extracted µ′

s as a function of illumination wavelength for the phantom with 0
µM hemoglobin (5 % IL in water) using the lookup method at all three experimental SDS pairs
possible (circles: ∆t5,10; diamonds: ∆t5,15; squares: ∆t10,15; stars: literature average from Refs.
([114, 120, 157]). Input values for µa were estimated using the tail method from measured data.
Derived µ′

s values in Fig. 2.3 show expected wavelength dependent decreases in scattering for all
the three SDS pairs and tracked expected values from literature. Although ∆t5,10 produced µ′

s clos-
est to reference values, both ∆t5,15 and ∆t10,15 showed agreement (to better than 25 %) with the
reported intrinsic scattering parameters of IL [120]. Larger errors are observed at smaller SDS as
the uncertainty in derived µ′

s was high due to the uncertainty in correctly estimating the peak time
with the experimental temporal resolution of 12 ps (TCSPC bin-width). Error bars shown represent
the standard error from three repeated measurements for each concentration at each wavelength and
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SDS.

Figure 2.3: Estimated µ′
s values obtained from experimental ∆t measurements in a solution of

5 % IL in water (from each SDS pair) at each wavelength, together with expected (literature)
µ′
s values. Markers show the average of three repeated scans. Data obtained using ∆t5,10 most

closely matched expected values while those obtained from using ∆t5,15 and ∆t10,15 still closely
followed spectral trends predicted from literature values. The look up estimates were made by
obtaining absorption using the tail method (see text). The points are jittered if they share the same
independent variable. Error bars represent the standard error for the three repeated measurements
at each point (only one side of the error bar is shown for the derived values in the figure for clarity).

The values of µa used to derive µ′
s shown in Fig. 2.3 were estimated using the tail method and

could yield inaccurate results. We therefore examined the impact of changing the input µa on the
extracted value of µ′

s, for any given DTOF. This was done by first, using an initial µa0 (obtained
for example using the tail method) to derive the scattering coefficient µ′

s0 using the lookup method.
This value of µa0 was then decreased by 20 - 100 % in five equal intervals (where a decrease of 100
% was the smallest simulated µa = 1× 10−3 cm−1) to determine an updated absorption coefficient
µa1 and then using µa1 as the input to the lookup method to determine the corresponding updated
scattering coefficient µ′

s1.
Percent errors in µ′

s1 (relative to µ′
s0) are shown in Fig. 2.4, as a function of percent changes

in input µa0, for the three experimental SDS pairs (bars) used here. Data in Fig. 2.4 represent
DTOFs obtained from four different (representative) media – Medium 1 (Fig. 2.4(a)): µ′

s0 = 10,
µa0 = 0.05 cm−1; Medium 2 (Fig. 2.4(b)): µ′

s0 = 10, µa0 = 0.16 cm−1, Medium 3 (Fig. 2.4(c)): µ′
s0

17



= 13, µa0 = 0.05 cm−1; Medium 4 (Fig. 2.4(d)): µ′
s0 = 13, µa0 = 0.16 cm−1). DTOFs to estimate

µ′
s0 in Fig. 2.4(a) and 2.4(c) were obtained from the pure scattering phantom (no hemoglobin)

for illumination with 800 and 650 nm, respectively. DTOF used in Fig. 2.4(b) corresponds to
the phantom with 256 µM Hb for 800 nm illumination, while DTOF for Medium 4 (Fig. 2.4(d))
was from the phantom with 53 µM Hb with illumination at 650 nm (these phantoms were selected
because their absorption coefficients for the wavelengths and concentrations used were comparable
to each other).

Figure 2.4: The change in the estimated scattering coefficient given a decrease in the initial ab-
sorption coefficient used in the lookup table is shown. Four different media are shown representing
optical properties at 800 nm (µ′

s = 10 cm−1; (a) and (b)) and 650 nm (µ′
s = 13 cm−1; (c) and (d)).

µa0 values used as input into the lookup table was 0.05 cm−1 for (a) and (c) while µa = 0.16 cm−1

for (b) and (d). Input absorption coefficient were decreased by 20 % of the initial value in five
steps and the percent change in retrieved µ′

s are shown.

It is clear to see from Fig. 2.4 that the derived µ′
s using ∆t5,10 varied less than 8 % as the input
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µa values were varied by 100 % in media with lower absorption (Fig. 2.4(a) and 2.4(c)), as was
expected from the MC simulations. Additionally, even for the longest SDS pair (10-15mm) used,
the change in extracted µ′

s was lower than 20 % as the input absorption coefficients changed by
100 %. However, when µ′

s0 was obtained with higher absorption coefficients (µa0 of 0.16 cm−1,
Fig. 2.4(b) and 2.4(d)) the changes in the medium’s absorption translated to larger variations in
extracted µ′

s. In general, the larger the error (or uncertainty) in knowledge of a medium’s true µa

the larger the error in the recovered µ′
s.

Next, we tested the performance of the lookup technique to estimate µ′
s in phantoms as the

absorption coefficient was varied. Acquired DTOF’s using all available SDS and illumination
wavelengths (with three SDS pairs and four wavelengths) were analyzed using the MC lookup
method to translate the measured values of ∆t into µ′

s, in each of the 6 experimental phantoms
prepared. Fig. 2.5(a) shows the µ′

s extracted by the lookup method (for each SDS pair) in phantoms
with varying hemoglobin concentrations for illumination with 750 nm and obtaining the input µa

coefficients from the DTOFs using the tail method. Fig. 2.5(b) shows these data for the same
phantoms shown in Fig. 2.5(a) but used the transmittance method (described in Section 2.4) to
determine input µa. Both Fig. 2.5(a) and 2.5(b) indicate that that the µ′

s values obtained from ∆t5,10

with the lookup method matched the expected (literature) values (shown as dashed horizontal lines
[114, 120, 157]). Further, all three SDS pairs extracted consistent µ′

s values in all the six phantom
media that had different absorption properties.

Table 2.1 shows the mean percent errors between lookup table derived µ′
s and literature values

averaged across all wavelengths, for each SDS pair while using the tail method to determine the µa

used in the lookup table. Percent errors reported in Table 2.1 varied lesser than 7 % of the values
obtained when the transmittance method was used to estimate µa. Largest deviations between the
two approaches were observed in media with highest absorption where the influence of the IRF
impacts the derived values most significantly.

Table 2.1: Percent errors between estimated and expected (true) values of µ′
s for each source-

detector pair averaged across all experimentally measured wavelengths. µ′
s was recovered using

the decay rate of the DTOF tail to determine the µa used in the MC lookup table (see text).

Source Detector Pair
Concentration of Hemoglobin

0µM 0µM 0µM 0µM 0µM 0µM mean

∆5,15
8.2 %

(SD = 4.2)
7.7 %

(SD = 6.4)
6.4 %

(SD = 4.1)
8.2 %

(SD = 5.9)
10.9 %

(SD = 3.3)
14.6 %

(SD = 6.6)
9.4 %

(SD = 5.4)

∆5,10
2.9 %

(SD = 3.1)
4.6 %

(SD = 2.0)
2.3 %

(SD = 1.8)
3.9 %

(SD = 3.3)
9.3 %

(SD = 8.5)
10.5 %

(SD = 11.0)
5.6 %

(SD = 6.6)

∆10,15
10.8 %

(SD = 6.5)
11.7 %

(SD = 10.2)
10.4 %

(SD = 7.6)
11.4 %

(SD = 8.6)
13.8 %

(SD = 6.7)
15.8 %

(SD = 8.8)
12.3 %

(SD = 6.9)

mean
7.3 %

(SD = 5.6)
8.1 %

(SD = 7.1)
6.4 %

(SD = 5.8)
7.8 %

(SD = 6.6)
11.4 %

(SD = 6.2)
13.7 %

(SD = 8.0)
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Figure 2.5: Estimated µ′
s at 750nm are shown across six concentrations of hemoglobin utilizing

two separate methods to determine the µa used in the lookup table: (a) the slope of the DTOF tail
and (b) measured transmittance of pure hemoglobin. The true (expected) µ′

s is shown as a dashed
horizontal black line. Estimated values using ∆t5,10 most closely tracked expected values, but all
three SDS pairs once again produced consistent estimates of µ′

s across the six phantoms. Points
are shown as jittered if they share the same independent variable and only one side of error bar are
shown here for clarity. Error bars represent the standard error of the estimated scattering coefficient
by using each of the three repeated scans for each SDS (in the SDS pair) to estimate ∆t.

At wavelengths of 750 and 800 nm, estimating µa via the tail method provided improved ac-
curacy in estimating µ′

s. However, at wavelengths of 650 and 700 nm, calculating µa using the
tail method decreased accuracy in estimating µ′

s (µa obtained via transmittance data yielded lower
errors in extracted µ′

s in these cases). Best accuracy was obtained for media with low µa and by
using SDS pairs closest to the source (these data cells are highlighted in Table 2.1).

2.5 Discussion

We have described a heuristic technique capable of assessing the reduced scattering coefficient of
a homogenous medium directly from experimentally measured TRS signals. We have shown that
an experimentally measured peak-time difference between DTOFs at two different SDS can be
translated to obtain a robust estimate of the medium’s scattering coefficient using preconstructed
MC lookup tables. Although our method requires an input (estimated) value for the absorption
coefficient, the derived µ′

s using our approach is only weakly dependent on the input absorption
coefficient. Application to experiments with tissue phantoms showed that we could estimate the
expected (true) scattering coefficients in media with errors ranging from 5 % -25 %.

A principal advantage of the presented technique is its inherent speed and simplicity of use

20



(i.e. directly being able to translate measurements into the reduced scattering coefficient of the
medium). However, it is worth noting that there are important instrumentation calibration and
prerequisite conditions that must be satisfied for it to function accurately. Although our method
does not use the IRF for translating measurements into the medium’s scattering coefficient, it is
not independent of it. It is critical for the IRF (i.e. the intrinsic temporal shape of the incident
laser pulse) to remain stable across the duration of experiments and also be identical for each
measurement channel used. In our case, each channel used the same length and type of fiber and
were all detected by a common detector and as shown in Fig. 2.1(c) were identical across channels
for all wavelengths. Systems that use different fiber lengths and/or employ multiple photodetectors
that seek to use this technique might need to consider such issues carefully during development of
lookup tables.

Phantom results showed that errors between literature (expected) values and derived values were
(on average) lower than 6 % when data from SDS of 5 and 10 mm were used and were as high as
25 % when data from SDS of 10 and 15 mm were used. Thus, utilizing smaller SDS would yield
the best estimates of scattering, consistent with previous reports [140, 144, 164, 116]. We note
that accurately resolving peak time-differences for small SDS requires higher temporal resolution
of measured data. Further, non-linear distortions in tmax (from the convolved IRF response) could
impact longer SDS measurements more and may explain our findings.

Our findings are consistent with previous reports showing that the peak arrival time (tmax)
of the DTOF is strongly sensitive to µ′

s and only weakly to µa [131, 35], especially for shorter
SDS. It also builds off separate work seeking to mitigate the influence of the IRF in TRS analysis
[122, 182, 99]. Data shown in Fig. 2.2(a) and 2.2(b) reflect these findings, where both µ′

s and µa

impact the peak time to varying degrees, but as denoted in Fig. 2.2(c) (shaded bar), a fixed value
for ∆t (for a given SDS pair) tightly binds the range of allowed µ′

s values, but not µa. Although
the technique needs an input estimate for µa, this can be derived by applying Eq. 2.1 directly to the
measured DTOF. Accurately using Eq. 2.1 to estimate µa would require a large dynamic range in
the detecting system and deconvolving the IRF.

Here, we have shown (Fig. 2.4) that only a rough estimate of µa is needed as it weakly affects the
peak position. Utilizing smaller SDS decreases the effect of absorption on the peak time difference
leading to more accurate estimates of µ′

s by reducing the probed volume. Therefore, small SDS
would be more sensitive to shallower layers of the medium, while longer SDS could differentially
be used to probe deeper tissues. The extension of this method to inhomogeneous media will be
addressed in future investigations. Although not experimentally studied here, any fiber geometry
with at least two detector channels with unique SDS would be amenable for use with the lookup
method presented. Further, using this method to derive the scattering by setting µa=0 could be
used to obtain a lower bound on µ′

s.
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We also note that the SDS must be well defined (within 0.5 mm) to accurately estimate µ′
s. Peak

times between DTOF’s at 10 and 11 mm SDS could vary by ≈ 50 % translating into recovered
error of ≈ 80 % in µ′

s. Additionally, although MC simulations and experimental geometries must
be matched (i.e. we need experimental measurements from large volumes to represent semi-infinite
media) we note a specific advantage of this method in “finite” geometries as only the earliest
arriving photons determine ∆t – and thus, could be robust against boundary effects.

The described method could be used to bootstrap (or confine the range of µ′
s) other analyti-

cal inverse solvers to quantify optical properties from TRS measurements, especially in weakly
scattering media where DT-based approaches are typically more vulnerable to higher errors
[36, 141, 2, 131, 35]. Uncertainty in the index of refraction of the medium also weakly affects
the relative peak-time difference. Lastly, since this method works by establishing the temporal
peak of measured DTOF reflectance profiles, it should be possible to sparsely sample the DTOF
histogram to acquire data faster. These topics will be subject of future investigations.

2.6 Conclusion

An easy-to-use approach to extract µ′
s of turbid media that overcomes current limitations in TRS

analysis was presented. By using a pair of short SDS (< 10 mm), we show that µ′
s can be estimated

within 6 % of reference values with reasonable estimations of µa. The approach could be further
extended to include timing differences of later arriving photons as well as aid traditional inverse
solvers in further parameterizing optical properties. The method shows great promise in recovering
a medium’s optical transport properties via TRS in regimes where common techniques fail, while
facilitating quantitation in real-time without directly measuring the IRF.
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CHAPTER 3

Reconstruction of Optical Coefficients in Turbid
Media Using Time-Resolved Reflectance and

Calibration-Free Instrument Response Functions

This chapter was published in [72]. It introduces three approaches to reconstruct the optical prop-
erties of turbid media from time-resolved reflectance measurements considering an uncertainty in
the time scale of the instrument response function. This chapter extends methods discussed in
Chapter 2 [70] and was prepared in collaboration with Dr. Karthik Vishwanath and Dr. Mary-Ann
Mycek.

3.1 Abstract

Measurements of time-resolved reflectance from a homogeneous turbid medium can be employed
to retrieve the absolute values of its optical transport coefficients. However, the uncertainty in the
temporal shift of the experimentally determined instrument response function (IRF) with respect to
the real system response can lead to errors in optical property reconstructions. Instrument noise and
measurement of the IRF in a reflectance geometry can exacerbate these errors. Here, we examine
three reconstruction approaches that avoid requiring direct measurements of photon launch times.
They work by (a) fitting relative shapes of the reflectance profile with a pre-determined constraint
on the scattering coefficient, (b) calibrating launch-time differences via a reference sample, and
(c) freely fitting for the launch-time difference within the inverse problem. Analysis methods that
can place a tight bound on the scattering coefficient can produce errors within 5-15 % for both
absorption and scattering at source-detector separations of 10 and 15 mm. Including the time-
shift in the fitting procedure also recovered optical coefficients to under 20 % but showed large
crosstalk between extracted scattering and absorption coefficients. We find that the uncertainty
in the temporal shift greatly impacts the reconstructed reduced scattering coefficient compared to
absorption.
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3.2 Introduction

Time-domain diffuse optical spectroscopy (TD-DOS) measures the distribution of times-of-flight
(DTOF) of photons propagating through the sample from a source to a detector [186, 140]. DTOFs
are obtained statistically using time-correlated single photon counting (TCSPC) [186, 163] and
several short (picosecond) laser pulses detected using a fast single photon avalanche diode (SPAD)
[140, 62, 32]. TD-DOS has been widely applied for biosensing applications in diffuse optical
imaging (DOI) and diffuse reflectance spectroscopy (DRS) [62, 32, 180, 92]. In most biomedical
applications for in vivo tissue sensing, near-infrared (NIR) light is used to provide functional (e.g.,
hemodynamics) and structural (e.g., cell size/density) information about the underlying biological
tissue by quantifying the medium’s absorption coefficient µa and reduced scattering coefficient
µ′
s [181, 90]. When acquired in the time-domain, experimental measurements are better able to

decouple µa and µ′
s while also allowing for depth discrimination of absorption changes, compared

to continuous wave measurements [140, 38].
To determine a medium’s optical properties from a measured DTOF, a theoretical (forward)

solution to the time dependent photon diffusion equation [62, 125] is used iteratively as an inverse
model to fit measurements for known source-detector separations (SDS) and tissue geometries
[186, 62, 125]. A Green’s function approach [30, 85] is used to develop an analytical solution –
the medium’s temporal point spread function (TPSF) – to an idealized delta-function input, δ(t−t0)

with t0 = 0 ns. To account for experimental temporal shapes of sources and response of detectors,
the forward model is computed with a convolution of the TPSF and a measured Instrument Re-
sponse Function (IRF) [62, 125]. The inverse problem is known to be significantly dependent on
both the shape and temporal position of the IRF [97, 143]. Therefore, for accurate reconstructions,
it is critical to carefully measure both the temporal shape and absolute temporal position of the IRF
relative to the measured DTOF, for each wavelength and detector channel [97, 143].

Because experimental DTOFs are fit with a forward model comprised of the convolution of the
TPSF and the IRF, it is important to know when the injected pulse enters the medium (i.e., t0 in
Fig. 3.1(a)). The difficulty in measuring t0 is schematically illustrated in Fig. 3.1. We note that the
IRF is impacted by both its temporal position t0 and shape. Each collection geometry can also pro-
duce an IRF with a different shape due to the inclusion of a thin diffusor (Fig. 3.1(a) vs 3.1(b)) or
from a larger distribution of possible photon paths (Fig. 3.1(c)). When measured with the configu-
ration shown in Fig. 3.1(a), t0 is taken to be the peak or barycenter of the measured IRF [143]. In
practice, the configuration shown in Fig. 3.1(b) is used, where a strongly scattering and attenuation
layer is placed between the source and detecting fibers which introduces some small delay ∆t1,
in the barycenter of the IRF, relative to Fig. 3.1(a) [143]. However, in reflectance spectroscopy,
custom probes are epoxied at the sample end leading to immovable relative configurations of the
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Figure 3.1: Left column: Experimental configurations for measuring the instrument response func-
tion (IRF) in different geometries. Right column: temporal relationships between the measured
IRF and the distribution of times-of-flight (DTOF) for photons from an arbitrary turbid medium
for each corresponding experimental configuration. (a) The ideal (best possible) geometry for mea-
suring the IRF – by directly coupling the source and detection fiber. t0 represents the launch time
of the incident photon pulse into the medium. (b) A practically used configuration – by introduc-
ing attenuating and diffusing layers between the source and detector fiber. This introduces a time
delay ∆t1 relative to the configuration in Fig. 3.1(a). (c) Reflectance configuration – by directing
the incident pulse onto a surface and reflecting the incident pulse into detector. This introduces a
larger time delay ∆t2, with ∆t2 > ∆t1.

source and detector fibers. Thus, acquisition of the IRF requires collection in reflection geometry
(Fig. 3.1(c)) and from an appropriate reflecting material [62, 143]. This increases the IRF barycen-
ter position by ∆t2 relative to Fig. 3.1(a). In order to fit a measured DTOF, knowledge of ∆t2 is
needed, and thus requires careful calibration for quantitative reconstructions [143, 9].

Several approaches have been explored to analyze collected DTOFs in terms of the optical prop-
erties as well as to quantitate functional changes and depth sensitivities while limiting the contri-
bution from the IRF [173, 100, 98, 99]. In addition to fitting the entire DTOF using a theoretical
model, methods for reducing the dimensionality of the collected DTOF have been developed such
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as exploiting time-dependent mean partial pathlengths [4, 39], integrated photon counts in various
time windows [173, 154], moment analysis [173, 100, 99], and Fourier components of the DTOF
[129]. Moment analysis has particularly been shown as a promising technique to limit the errors
arising from IRF measurements, as those discussed above, while also being sensitive to identifying
depth-dependent absorption changes in media [173, 100].

Here, we examine three approaches to reconstruct measured DTOFs without requiring direct
experimental measurements of ∆t. 1) A constrained Monte-Carlo Diffusion Theory (MC-DT)
approach that operates by shifting the DTOF and the convolved TPSF and IRF to peak at t =
0 while strongly restricting µ′

s values in the inverse model. The imposed constraint on µ′
s was

achieved using a recently developed technique [70] that translates the measured differences of
DTOF peak times at two different SDS from Monte-Carlo lookup tables (MCLUT) into µ′

s. 2) A
calibrated-DT approach that uses a reference sample to calculate ∆t as described previously [62].
This calculated ∆t is used to shift the IRF before inverse fitting for each target phantom. 3) A
free-shift DT approach – here a third parameter ts is included to be freely fitted with µ′

s and µa in
the inverse procedure. A time-variable is introduced into the DT-model to provide the TPSF for
a delta-function input at ts. Relative merits and drawbacks of each technique using performance
metrics across a large set of tissue simulating phantoms are discussed.

3.3 Materials and methods

3.3.1 Hardware

The instrumentation used for experimental measurements is as described previously [70]. Briefly, a
super-continuum laser (SC400, NKT Photonics, DK) with a pulse duration < 100 ps was spectrally
filtered using a band-pass filter (SuperK VARIA, NKT Photonics, DK) with a repetition rate of
40 MHz. Laser pulses were delivered to and collected from the sample by 400- µm diameter
optical fibers placed with center-center separation ρ and in contact with the sample surface. The
reflectance was measured using a SPAD detector (PMD-050, MPD, IT) that was electronically
coupled to a time-correlated single photonic counting (TCSPC) board (SPC-130, Becker & Hickl,
DE). The IRF was obtained in reflectance geometry by reflecting the source from a mirror into the
detecting fiber that was covered by a piece of paper, as described previously [70]. The full-width
half maximum of the IRF for each detection channel and wavelength was measured to be less than
80 ps. A custom optical fiber probe was used that consisted of 4 colinear optical fibers (400 µm,
NA 0.22) to form 3 detection channels. Each channel had a SDS of 5, 10, and 15 mm (measured
from one fiber, at the edge of the collinear array, set to be the source). Because our system used a
single detector, the detecting fiber head was manually switched to select for any specific SDS.
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3.3.2 Phantom tests

For the measurements, a cylindrical glass container (8-cm diameter and 8-cm height) was filled
with an aqueous solution of 20 % Intralipid (IL) (Sigma-Aldrich; MO, USA) and dried bovine
hemoglobin (Hb) (H3760; Sigma-Aldrich; MO, USA). Optical characterization of µ′

s was taken
from the average values of the intrinsic reduced scattering coefficient of 20 % IL performed by
multiple independent research groups [158, 120]. The accuracy of this optical characterization
was confirmed by a comparison between experimental data of pure IL solutions and Monte Carlo
simulations [70]. The intrinsic absorption coefficient of Hb was calculated by measuring the trans-
mittance at four concentrations using a spectrophotometer and then extracting the intrinsic absorp-
tion coefficient from the linear fit. The absorption coefficient of the medium was then calculated
by the intrinsic absorption coefficient along with hemoglobin’s relative mass fraction to water and
IL [158]. Two separate phantom sets with two different scattering levels were prepared by using
20 mL of 20 % IL (set 1) and 40 mL of 20 % IL (set 2) mixed with 750 mL of deionized water. The
absorption coefficients in each set were independently varied by eight serial additions of ≈ 250

mg of dry bovine hemoglobin. For each laser wavelength used, a total of 18 different samples of
optical properties, combining nine values of (per set) µa with each set having one of two levels
of µ′

s. Four laser wavelengths were used (with center wavelengths of 650 nm, 700 nm, 750 nm
and 800 nm ± 5 nm) to create 72 different phantom tissue models with known optical properties.
Three repeated measurements were performed on each sample, at all available SDS (ρ = 5, 10, 15
mm), and signals were acquired for 30 s per sample.

3.3.3 Data analysis

Collected DTOFs were analyzed using a known solution from diffusion theory to simulate the
reflectance in a semi-infinite homogeneous medium [62, 109]:

R(t) =
ν

2A

(
1

4πDt

) 3
2

exp

(
− ρ2

4Dt
− µaνt

)
×
[
exp

(
−

z2+
4Dt

)
− exp

(
−

z2−
4Dt

)]
(3.1)

where ν is the speed of light in the medium, D is the optical diffusion coefficient 1/(3(µa+µ′
s)),

ρ is the source-detector separation, A accounts for the index mismatch between the detector and
medium [30], z+ = zs and z− = −2ze − zs with zs = 1/µ′

s and ze = 2A/(3µ′
s). Diffusion theory

serves as a good approximation of photon propagation when ρ is much larger than zs and when
µ′
s ≫ µa [186, 109]. The expression in Eq. 3.1 represents the medium’s response to a source rep-

resented by a delta-function δ(t− t0) when t0 = 0, and measured as in Fig. 3.1(a). Experimentally
collected DTOFs represent the phantom’s response to an experimental IRF, R̃(t), which is given
by the convolution of Eq. 3.1 with the system’s IRF, i.e., R̃(t) = R(t)

⊗
IRF (t, t0 + ∆t) where
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t0 represents the photon launch time and ∆t represents a time delay in the measured IRF due to
non-ideal measurement geometries shown in Fig. 3.1(b) and 3.1(c).

As discussed in Fig. 3.1, the time t0 represents the photon launching time, which is typically
considered as the peak or barycenter of the measured IRF when the IRF is measured by directly
coupling the source and detecting fiber. Typically, the use of a t0 parameter in Eq. 3.1 is not needed
because t0 for IRF and the DTOF measurements are equal. Thus, convolution of the IRF with R(t)

puts R̃(t) on the correct time scale, relative to the DTOF. In our experiments, the IRF was col-
lected as shown in Fig. 3.1(c) (in a reflection geometry) since the fiber probe was configured for
reflectance measurements. This introduced a shift ∆t in the IRF time scale. Thus, without knowl-
edge of those time-shifts, R̃(t) could not be directly compared to measured DTOFs. We consider
three different procedures to recover both µs and µa using time-resolved reflectance obtained at
one or more SDS, that do not depend on directly requiring ∆t or t0 for reconstructions and refer to
them as (a) MC-DT (b) Calibrated-DT, and (c) Free-shift DT.

In the MC-DT approach, both R̃(t) and the DTOF are shifted so that they peak at t = 0 ns.
A constraint is then placed on µ′

s in the inverse model using a previously described approach to
estimate µ′

s from relative peak-time differences with MCLUTs [70]. The fitting bound for µ′
s

was calculated from the MCLUT using µa = 0.001 and 0.5 cm−1 as a lower and upper bound,
respectively given a measured ∆tmax at SDS of 5 and 10 mm. Such an approach does not require
absolute time scales as it operates on the relative difference between peak arrival times at two SDS
which is a primary requirement for this study.

The calibrated-DT approach indirectly calculates ∆t by fitting R̃(t) to a DTOF collected from
a calibration reference phantom with known optical properties [62] for which ∆t is considered a
fit parameter that minimizes the least-square error between measurements and reconstructions. A
∆t is estimated for each wavelength and SDS to shift the IRF time scale before fitting the DTOFs
from target phantoms.

In the free-shift DT approach, Eq. 3.1 is modified by making the replacement t → t− ts and ts
is used as an additional parameter in the inverse model to optimize for along with µ′

s and µa. This
has the effect of introducing an additional parameter in the forward model that allows for R̃(t− ts)

time scale to be moved to appropriately match the DTOF. Analysis for all three methods utilized
the following procedure. Collected DTOFs and R̃(t) were normalized by their maximum count
rate, optical properties were then determined by fitting the DTOF with R̃(t) utilizing a Levenberg-
Marquardt procedure to minimize the least-square error [62, 131]. The sample was considered to
have a refractive index of 1.35 to match reported values for IL solutions [120] with an external
index of refraction of 1.5 to match the glass optical fibers. The fitting range included all count
rates higher than 60 % of the peak value on rising edge of the DTOF and 0.1 % on the tail. The
range of optical properties in the fitting procedure was taken to be between 1 ≤ µ′

s ≤ 60 cm−1
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and 0.001 ≤ µa ≤ 0.5 cm−1. Twenty random start values in the described ranges were utilized in
the inverse procedure, and the calculated µa and µ′

s that showed the lowest least-square error were
taken as the converged optical properties. A one-way ANOVA test was performed for the three
analysis methods considering the recovered absorption and scattering coefficients separately at
each SDS. Data was averaged across all experimental concentrations and wavelengths and a post-
hoc Tukey honestly significant difference test was performed to indicate significant differences
between analysis methods.

3.4 Results

Example fits for the three methods (a) MC-DT, (b) Calibrated DT, and (C) Free-shift DT are shown
in Fig. 3.2 considering the same experimental DTOF and IRF with expected (true) optical proper-
ties of µ′

s = 11.1 cm−1 and µa = 0.19 cm−1. In the MC-DT approach (Fig. 3.2(a)), the IRF, DTOF,
and R̃(t) are shifted to peak at t = 0. By constraining µ′

s, the MC-DT approach had the largest
residuals in fitting (R2 = 0.94) due to the poor fit at early times (before the peak). However, it
often resulted in higher accuracy in the recovered optical properties. The calibrated-DT approach
is shown in Fig. 3.2(b). ∆t was calculated from a solid phantom [108, 18] reference and used to
shift the IRF time scale. The time scales of both the DTOF and IRF are translated so the IRF peaks
at t = 0 as shown in Fig. 3.2(b). A main difference between the calibrated DT and free-shift DT is
the time scales between Fig. 3.2(b) and 3.2(c). In Fig. 3.2(c), the time scale of the IRF and DTOF
are the same as the TCSPC measurements. The difference between the IRF and DTOF peak times
in Fig. 3.2(b) and 3.2(c) are due to not accounting for the ∆t shift in Fig. 3.2(c).

In Fig. 3.3, we show the recovered optical properties for the three methods across the entire set
of phantoms measured, at a SDS of 15 mm and illumination at 700 nm. These trends (not shown)
were similar for other wavelengths used. The top and bottom row in Fig. 3.3 show the 2.5 % IL and
5 % IL scattering levels, respectively. The left and right columns show the recovered µa and µ′

s,
respectively, as functions of the true µa of the medium. In all three reconstructions, the recovered
µ′
s showed largest variability while all three approaches consistently tracked linear recovery of µa.

MC-DT showed the best consistency and accuracy for recovery of µ′
s, given the constraints placed

on reconstructions. The calibrated-DT also consistently tracked (an unchanging) µ′
s but showed a

change in slope from true values in µa. The free-shift DT method showed considerable crosstalk
between ts and µ′

s (not shown), but this minimally impacted recovery of µa.
In general, all of these approaches performed better at the higher scattering level (5 % IL vs

2.5 % IL) in accordance with diffusion theory serving as a better approximation in higher scat-
tering media. Within each scattering level, similar trends and accuracy were observed at the four
wavelengths used. In total, the absolute accuracy in recovered µa was better (< 4 % points) at
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Figure 3.2: Example diffusion theory fits of an experimental DTOF using three different ap-
proaches: (a) MC-DT, (b) calibrated DT, and (c) Free-shift DT. The true optical properties are µ′

s

= 11.1 cm−1 and µa = 0.19 cm−1. The recovered optical properties and the sum of squares of the
residuals, R2, for each approach are listed in the figure.
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750 nm than 650 nm. However, in the phantoms, the expected absorption values at 650 nm were
roughly double those at 750 nm, thus impacting accuracy of DT based analysis. All approaches
showed expected linear changes in absorption as shown in Fig. 3.3. The MC-DT and free-shift DT
approaches increasingly underestimated µa for larger absorption values, whereas the calibrated DT
approach systemically overestimated µa. Although the free-shift DT approach showed the largest
errors in µ′

s, this did not appear to significantly affect the recovery of µa. In most situations, the
free-shift DT approach matched the accuracy of the MC-DT approach in recovering µa while being
significantly more accurate than the calibrated DT approach.

Figure 3.3: Optical properties recovered at the two scattering levels for the 15 mm SDS channel
at 700 nm for the three different analysis methods. Each row represents one scattering level for
a single wavelength. The left column shows the measured µa against the true µa while the right
column shows the measured µ′

s against the true µa for the MC-DT, calibrated DT, and free-shift
DT approaches. The MC-DT had the best linearity and recovery of absolute optical properties.

Percent errors in the absorption coefficient were calculated as δµa = 100 × |true −
measured|/|true| and shown in Fig. 3.4 for the calibrated DT (sky blue), free-shift DT (orange),
and MC-DT (navy) approaches. These values represent the mean δµa across all phantoms and
wavelengths used and error bars represent the standard deviation in δµa . Large errors were noted
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for short SDS (ρ = 5 mm), displaying the well-known limitation of DT at such distances. The
Calibrated and Free-shift DT methods were not statistically different (p > 0.05) when ρ = 5 mm.
However, all other groups were statistically different (p < 0.05) for each SDS when using a post-
hoc Tukey HSD test. Errors were at nearly 10 % for ρ = 10 and 15 mm with the MC-DT, which is
comparable to ranges reported previously [62]. Free-shift DT was less accurate than MC-DT with
δµa of 15-20 % at ρ = 10 and 15 mm . The calibrated DT approach showed the largest mean errors
at 40-50 %. Surprisingly, the calibrated DT approach did not show improvements in recovery of
absorption when increasing SDS between 10 and 15 mm.
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Figure 3.4: Calculated percent error in the recovered absorption coefficient (δµa ) using calibrated
DT (sky blue), free-shift DT (orange) and MC-DT (navy). δµa is shown for each experimental
source-detector separation where error bars represent the standard deviation when averaging across
all wavelengths and scattering levels. Large errors are seen when ρ = 5 mm , however δµa is ≈ 10
% when ρ = 10 and 15 mm using MC-DT and ≈ 15 − 20 % using free-shift DT. The MC-DT
approach was able to provide more accurate estimates at all SDS and wavelengths.

As noted previously, all approaches performed better at the higher scattering level (5 % IL). Al-
though δµa for the two scattering groups from the MC-DT approach were not significantly different,
the calibrated DT approach performed better at the higher scattering level with the free-shift ap-
proach performing similarly at each scattering level as shown in Table 3.1. For ρ = 5 mm , accurate
recovery of optical coefficients was not possible from any of the approaches. Though somewhat
of an improved accuracy was seen in the MC-DT approach when using lower wavelengths (higher
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scattering): δµa = 26.1 ± 5.5 at 650 nm compared to δµa = 67.75 ± 6.6 at 800 nm. At ρ = 10 and 15
mm, there was no significant difference between these wavelengths.

Table 3.1: Percent error in recovered absorption coefficients (δµa) at two scattering levels. δµa in the
MC-DT approach had a small dependence on scattering level, whereas calibrated DT performed
significantly better at the higher scattering level (5 % IL).

SDS
MC-DT Free-shift DT Calibrated DT

δa(2.5%IL) δa(5%IL) δa(2.5%IL) δa(5%IL) δa(2.5%IL) δa(5%IL)
5 mm 52± 22 57± 20 156± 73 143± 68 272± 131 132± 61
10 mm 11± 4 9± 4 18± 6 15± 4 58± 15 62± 11
15 mm 6± 2 8± 2 15± 4 11± 4 112± 25 35± 8

Figure 3.5 shows δµ′
s

averaged across all phantoms for the four wavelengths and two scattering
levels, at each SDS using calibrated DT (sky blue), free-shift DT (orange), and MC-DT (navy).
Recovered δµ′

s
was less than 8 % across all wavelengths and SDS using MC-DT with slight im-

provements at longer SDS: δµ′
s

= 5.6 ± 1.5 for ρ = 5 mm and δµ′
s

= 3.5 ± 0.8 for ρ = 15 mm . No
differences were observed amongst wavelengths within the two scattering levels.

On the other hand, the recovered scattering coefficient using calibrated DT only produced accu-
rate measurements (< 10 %) of µ′

s at ρ = 15 mm . The free-shift DT approach provide reasonable
estimates (< 20 %) at both ρ = 10 and 15 mm . The calibrated DT and MC-DT approach were not
statistically different (p > 0.02) for ρ = 15 mm , however, each of the remaining groups at each
SDS were statistically different (p < 0.001). Recovered µ′

s values were not directly correlated to
estimates of µa, as the approaches produced different estimates of µ′

s for similar values of µa. This
is particularly highlighted in Fig. 3.3 where the free-shift DT and MC-DT approach could produce
values of µ′

s 20 % apart, but still yield values of µa to within 3 % of each other. Additionally, the
increase in the accuracy of µ′

s using the calibrated DT approach at 15 mm did not translate to any
increased accuracy in recovery of µa, as seen in Fig. 3.4 and Fig. 3.5.

3.5 Discussion

In this work, we compared three methods: 1) MC-DT, 2) Calibrated DT, and 3) Free-shift DT
to calculate both the µ′

s and µa from experimentally collected DTOFs. These techniques worked
without knowledge of the photon launch time t0. The metric for comparisons was gauged using
percent errors of recovered optical properties from DTOFs measured in phantoms relative to their
true values. All three approaches could use a system IRF that could be measured in a configuration
different from that used to acquire the DTOFs. In other words, all three approaches account for
an uncertainty of having a different launch time of the incident photon pulse t0 from the IRF. The
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Figure 3.5: Calculated percent error in the recovered reduced scattering coefficient (δµ′
s
) using

calibrated DT (sky blue), free-shift DT (orange) and MC-DT (navy). δµ′
s

is shown for each ex-
perimental source-detector separation where error bars represent the standard deviation when av-
eraging across all wavelengths and scattering levels. The MC-DT approach was able to produce
accurate estimates (< 10 %) for all SDS, while the free-shift DT was able to produce estimates
< 20 % when ρ = 10 and 15 mm. Calibrated DT was only able to provide accurate estimates (< 10
%) at ρ = 15 mm.

calibrated and free-shift DT approaches accounted for this uncertainty with a calibration phantom
or by introducing a third time-shift ts parameter in the inverse problem, respectively. The MC-DT
approach shifted the IRF and DTOF time scale to peak at t = 0.

In Fig. 3.6, we show the nature of the ill-posed inverse problem in recovering the optical coef-
ficients using the reduced chi-squared (χ2

R) maps for each method. The χ2
R maps for each method

(MC-DT: Fig. 3.6(a); calibrated DT: Fig. 3.6(b); free-shift DT: Fig. 3.6(c)) were computed for an
experimentally measured DTOF from a phantom with expected optical properties µ′

s = 10.2 cm−1

and µa = 0.17 cm−1 at ρ = 15 mm using the three analysis methods over a range of optical coeffi-
cients. For the MC-DT and calibrated DT approach, χ2

R maps are shown as functions µa and µ′
s.

While, for the free-shift DT approach (Fig. 3.6(c)), we show χ2
R as a function of all three fitting

parameters µa, µ′
s, and ts. In both Fig. 3.6(a) and Fig. 3.6(c), we can see the impact of seeking

to optimize χ2
R in the inverse space, when t0 is unknown. In the MC-DT approach this manifests

with χ2
R showing no well-defined minimum making convergence highly dependent on the initial

starting values (or constraints). In the free-shift approach, although a global minimum is present,
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it shows the inherent crosstalk between ts and µ′
s. It also shows why the crosstalk did not signif-

icantly impact recovery of µa (i.e., the minimum contour mainly runs along the ts and µ′
s plane).

On the other hand, knowing t0 as with the calibrated DT approach gives a well-defined global
minimum (Fig. 3.6(b)). Figure 3.6(a) also demonstrates why a constraint on µ′

s provides stability
and therefore improved performance of the MC-DT approach.

Alternatively, as is done with the calibration-DT approach, the temporal position of the IRF
can be determined indirectly using reference standard of known optical properties [62]. Although
the approach shows clear advantage in the optimization of the inverse problem (Fig. 3.6(b)) it is
limited by the accuracy of the calibrated time shift. In our analyses, the calibrated-DT approach
systemically overestimated the absorption coefficient which can be explained directly as a conse-
quence of an inaccurate time-shift calibration. These inaccuracies can arise due to differences in
the optical properties of the reference phantom, or the method used to determine baseline opti-
cal properties for each phantom. In our case, we used commercially given optical properties for
the reference solid phantom [18] whereas the Intralipid phantoms were determined from averaged
literature values and spectrophotometer measurements. Better results were reported previously
for the calibrated-DT based approach [62]. Imposing additional spectral constraints on scattering
coefficients when fitting calibrated time-shifts could help improve such estimates.

Introducing a time-shift as a third (free) parameter in the fitting process offers the simplest way
to account for uncertainties in t0. However, this comes at the cost of weakening the fit (Fig. 3.6(c)),
increasing computational time and potentially having significant crosstalk between recovered µ′

s

and recovered time shifts [131, 36]. In this study, we did not observe notable differences in con-
vergence time across the three methods (all three methods converged < 100 ms). For the free-shift
DT approach, we allowed ts to be shifted by a maximum of 1 ns in the modeled R̃(t− ts). Strong
crosstalk between ts and µ′

s were observed that limited the accuracy of recovered µ′
s using this

approach. However, it would be possible to further constrain ts (e.g., for known experimental
configurations) that could increase accuracy of recovered µ′

s.
As shown in Fig. 3.6(a), shifting the time scales of the IRF and DTOF to peak at 0 creates a

highly ill-posed inverse problem. To overcome this, a constraint on µ′
s was imposed using a pre-

viously reported technique [70]. This approach had the best accuracy in recovery of both optical
coefficients. Although the performance here was good, some limitations of this technique are to be
noted. The maxima of the DTOF has the highest photon count-rates, but the shot-noise contribution
in detector-electronics is proportional to

√
N , where N is the count-rate [139]. Thus, determination

of the peak time is prone to electronic noise and these could be exacerbated by having different
count-rates for different SDS and/or transport coefficients. Further, timing resolutions caused by
photon counting jitter, can also vary across detectors. For example, photomultiplier tubes provide
timing resolutions larger than 100 ps [138] while superconducting nanowire single-photon detec-
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tors can be under 5 ps [87]. Here, SPAD detectors were used and signal acquisition used long
integration times (of 30 s) which typically provided timing resolutions of tens of picoseconds [17].
As the peak-time differences measured were much larger than instrument resolution, the approach
worked. However, choices of different detectors and timing electronics can significantly impact
the MC-DT approach. A similar approach as the MC-DT used here, but based on diffusion theory
and using photomultiplier tubes has been reported previously [130]. The MC-DT approach also
assumes the DTOF peak-time is equally affected by the IRF at each detecting channel (for the 2
SDS used for the peak-time difference) and thus could impact its extension to multi-channel sys-
tems. Finally, the MC-DT approach does not scale well for larger µ′

s as peak-time differences map
a larger range of possible µ′

s values which necessitates the use of short SDS channels that limit the
sensitivity to only superficial layers [19].

The previous discussion focused on the impact of the temporal shift of the IRF relative to the
real system response, and analysis methods to account for such uncertainty. In practice, there
are additional sources of error that can impact each of the three approaches. We have used the
well-established diffusion approximation to analyze our results, but DT can be severely limited
at the SDS studied here and at modelling early arriving photons [131]. We note that reconstruc-
tions using DT are strongly influenced by the temporal fit range due to DT not having uniform
validity across each photon arrival time. Additionally, the shape of the IRF in addition to the
temporal position can greatly impact recovered optical properties. Non-ideal boundary conditions
between the DT modelling and the experimental system could also impact results. Specifically,
the Calibrated-DT approach had different boundary conditions when collecting measurements on
the reference solid phantom (epoxy on resin) compared to the experimental water-based phantoms
(epoxy slightly submerged in water). Finally, the influence of using shorter integration times and
therefore increasing noise levels in data was not investigated. All of these potential sources of error
can impact results.

3.6 Conclusion

We investigated three approaches to overcoming the difficulties in accurately measuring the In-
strument Response Function (IRF) in time-resolved reflectance spectroscopy. Particular focus was
given to overcoming the uncertainties in measuring the launch time t0 of the incident photon pulse
in reflectance geometries. We compared approaches that (a) operate by shifting the peaks of both
the measured DTOFs and theoretical forward model after convolution with the IRF by overlapping
them at t = 0, (b) calculate t0 from a reference standard with known optical properties, and (c)
introduce ts as a fitting parameter in the inverse problem. We find that each approach has a set of
unique advantages and shortcomings. When considering the three approaches and their respective
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inverse problem, having accurate knowledge of t0 will provide the most well-posed reconstruc-
tion of optical properties (Fig. 3.6(b) vs 3.6(a) and 3.6(c)) leading to more accurate and reliable
fitting procedures. As mentioned previously [131, 36], the quantification of µ′

s is more adversely
impacted by uncertainties in t0 than µa. We show that recovery of absolute values of optical prop-
erties is still possible from time-domain reflectance using IRF measurements that are not exactly
calibrated or that become uncalibrated in the presence of instrumental drift over the course of an
experiment. Depending on the experimental setup and calibrations employed, accurate results can
be achieved with all three methods to varying degrees.
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Figure 3.6: χ2
R distributions when fitting R̃(t) to a single DTOF plotted for the three methods:

(a) MC-DT, (b) Calibrated DT, and (c) Free-shift DT. A unique minimum is not observed in the
MC-DT approach while the calibrated DT approach produces a well-defined minimum. Although
the free-shift approach produced a minimum, there is considerable crosstalk between µ′

s and ts.
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CHAPTER 4

Efficient Computation of the Steady-State and
Time-Domain Solutions of the Photon Diffusion

Equation in Layered Turbid Media

This chapter was published in [75]. It discusses light diffusion in a layered cylinder with an arbi-
trary number of layers. Particular focus is given on the numerical implementation of the solution
in terms of accuracy and speed. The validity of the diffusion approximation in layered media is
tested against Monte Carlo in three tissue geometries. This article was prepared in collaboration
with Samantha Zerafa, Dr. Karthik Vishwanath, and Dr. Mary-Ann Mycek.

4.1 Abstract

Accurate and efficient forward models of photon migration in heterogeneous geometries are im-
portant for many applications of light in medicine because many biological tissues exhibit a lay-
ered structure of independent optical properties and thickness. However, closed form analytical
solutions are not readily available for layered tissue-models, and often are modeled using com-
putationally expensive numerical techniques or theoretical approximations that limit accuracy and
real-time analysis. Here, we develop an open-source accurate, efficient, and stable numerical rou-
tine to solve the diffusion equation in the steady-state and time-domain for a layered cylinder tis-
sue model with an arbitrary number of layers and specified thickness and optical coefficients. We
show that the steady-state (< 0.1 ms) and time-domain (< 0.5 ms) fluence (for an 8-layer medium)
can be calculated with absolute numerical errors approaching machine precision. The numerical
implementation increased computation speed by 3 to 4 orders of magnitude compared to previ-
ously reported theoretical solutions in layered media. We verify our solutions asymptotically to
homogeneous tissue geometries using closed form analytical solutions to assess convergence and
numerical accuracy. Approximate solutions to compute the reflected intensity are presented which
can decrease the computation time by an additional 2-3 orders of magnitude. We also compare our
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solutions for 2, 3, and 5 layered media to gold-standard Monte Carlo simulations in layered tissue
models of high interest in biomedical optics (e.g. skin/fat/muscle and brain). The presented routine
could enable more robust real-time data analysis tools in heterogeneous tissues that are important
in many clinical applications such as functional brain imaging and diffuse optical spectroscopy.

4.2 Introduction

Optical properties can be used as indicators of pathological and physiological conditions of biolog-
ical tissue [80, 171]. Accurate quantitation of these properties from experimental measurements
depend on analytical models that need to account for the structural complexity of the tissue sys-
tem. Therefore, it is important to consider the optical heterogeneity of biological tissues, which
are usually approximated as optically homogeneous to facilitate data analysis [153, 51]. Experi-
mentally, light propagation measurements are made by illuminating the tissue surface with either a
continuous, frequency modulated, or pulsed light source and collecting measurements of the scat-
tered light after it has propagated through the tissue medium [110, 70]. Measured optical signals
are translated into absorption and scattering properties of the medium by utilizing an appropriate
forward model of light transport that best represents the measured data [175, 72].

Light propagation in random media such as biological tissues is theoretically modeled using
the Radiative Transfer Equation (RTE) [123, 4, 52]. Due to the highly scattering nature of these
media, the RTE can be reduced to the diffusion equation, which gives analytical solutions in ho-
mogeneous, semi-infinite, or infinite slab geometries [30, 85]. The RTE can also be solved by
the Monte Carlo method which remains the gold-standard approach to calculate light transport in
media with complex geometries [113] but is computationally expensive [191]. Although paral-
lel implementations have significantly decreased the computational time of forward Monte Carlo
simulations down to several seconds [50, 49, 188, 183], they still broadly remain non-viable as in-
verse solvers to obtain optical properties from experimental measurements in real-time (¡ 1 second)
which require thousands of forward simulations at different modelling parameters [50, 188].

Theoretical approaches that account for structural complexity in tissues provide improved re-
construction of optical properties using diffuse optical measurements when studying brain hemo-
dynamics [31]. Although Monte Carlo methods can simulate light propagation in realistic head
geometries derived from magnetic resonance imaging (MRI) data [50], modeling the head as lay-
ered homogeneous slabs, each with their own set of optical properties, provided similar accuracy
in reconstruction of optical properties [153]. Further, diffuse optical measurements are applicable
to various parts of the body that exhibit a layered structure (e.g. skin over top muscle, scalp and
skull surrounding brain tissue). Therefore, an accurate, versatile and efficient analytical approach
to model spatially and/or temporally resolved diffuse reflectance in layered media would enhance
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optical property reconstructions from diffuse optical measurements obtained in such layered media
in vivo. [153].

Several methods to solve the diffusion equation for layered media have been reported in liter-
ature by using integral transforms [104, 103, 102, 86], method of images [166], eigenfunctions
[111, 112], or finite differences [8]. These methods do not give closed-form expressions directly in
the spatial or time-domains for the photon fluence. Instead, the fluence in real-space is computed
using numerical transforms [86] or root-finding techniques [111] which tend to increase numerical
errors and computational costs [184]. For example, the integral transform approach [86] solves the
diffusion equation in the spatial-frequency domain which then must be inverse space-transformed
(e.g. 2-D inverse Fourier) for real-space calculations. An additional inverse time Fourier transform
is required for computation in the time-domain [86]. Both of these transforms make calculations
of the steady-state and time-domain solutions difficult to compute for a wide range of optical and
geometrical inputs [86, 104]. Other approaches have been developed to compute geometries with
large layer thicknesses and high scattering coefficients and/or spatial frequencies but rely on ap-
proximations [59, 84, 83, 104]. Given these challenges, the fastest reported computational times
for time-domain fluence in multi-layered media range between 0.5-5 seconds, depending on the
number of layers and numerical accuracy required [176, 102, 111, 59]. Such computational per-
formance would preclude direct use of such layered analytical solutions for real-time analysis as
optimization of multiple parameters in layered media would take several minutes [60].

In this report, we present an accurate and efficient procedure for computing the photon fluence
in a layered cylinder using solutions to the diffusion equation [102]. Our code is open-source
and well documented for ease of use. We overcome the computational difficulties noted above by
modifying the solutions [102] in the spatial-frequency domain for numerical stability, which al-
lows for computation of arbitrarily sized inputs without approximations. Lastly, we use an inverse
Laplace transform for better convergence in the time-domain which improved the numerical accu-
racy while decreasing the computational cost by several orders of magnitude [106, 177]. Below
we describe: (a) implementation of the numerical solutions in the steady-state and time-domain
for diffuse optical reflectance and transmittance measurements in N-layered media, (b) verification
of the numerical accuracy and stability of the approach in calculating photon fluence for sev-
eral source-detector configurations and tissue models, and (c) validation by direct comparisons to
Monte Carlo simulations of fluence in multi-layered tissue models.

4.3 Theory

We use the integral transform approach [102] to solve the diffusion equation for a N-layered cylin-
drical model as shown in Fig. S4.1. A collimated source-beam is approximated by an isotropic
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point source located at a distance of z0 = 1/µ′
s1 from the location of incidence of the beam and

boundary with µ′
s1 representing the reduced scattering coefficient in the first layer.
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Figure 4.1: Schematic of the N−layered turbid medium with a source located onto the center of
the cylinder top.

The steady-state diffusion equation can be given by

D∇2Φ(r⃗)− µaΦ(r⃗) = −S(r⃗) (4.1)

where Φ, D = 1/(3µ′
s), and µa denote the fluence rate, the diffusion coefficient, and the ab-

sorption coefficient, respectively [102].
The source function S(r⃗) can be expressed as a Dirac delta function in cylindrical coordinates.

Eq. 4.1 can then be rewritten in cylindrical coordinates as

∂2

∂ρ2
Φ +

1

ρ

∂

∂ρ
Φ +

1

ρ2
∂2

∂ϕ2
Φ +

∂2

∂z2
Φ− µa

D
Φ = − 1

Dρ
δ(ρ− ρ0)δ(ϕ− ϕ0)δ(z − z0) (4.2)

with the abbreviation Φ = Φ(ρ, ϕ, z). The derivative with respect to ϕ in Eq. 4.2 can be elimi-
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nated using a cosine transform and then reduced to an ordinary differential equation by using the
finite Hankel transform of mth order [101]. These two transforms can be expressed together by
[102]

Φ(sn, ϕ,m) =

2π∫
0

a′∫
0

ρΦ(ρ, ϕ′)Jm(snρ) cos(m(ϕ− ϕ′)) dρ dϕ′ (4.3)

using an extrapolated boundary condition at ρ = a′ for the upper limit of the integral transform
with a′ = a+ zb1 where a is the radius of the cylinder. The extrapolation length can be calculated
with zbk = 2ADk where A is proportional to the fraction of photons that are internally reflected at
the boundary [30]. The subscript k signifies the kth layer of the cylinder with distinct absorption
µak and scattering µ′

sk in each layer. Applying Eq. 4.3 to Eq. 4.2 yields an ordinary differential
equation

∂2

∂z2
Φ− (

µa

D
+ s2n)Φ = − 1

D
Jm(snρ0) cos(m(ϕ− ϕ0))δ(z − z0) (4.4)

for Φ = Φ(sn, ϕ,m, z) after applying a finite Hankel transform relation [101]. Jm is the
Bessel function of first kind and order m and each sn is determined from the roots of Jm such
that Jm(a′sn) = 0, n = 1, 2, ...,.

A Green’s function approach is used solve Eq. 4.4 for the fluence in a specific layer assuming
that the isotropic source (from an incident pencil beam) is located within the first layer (0 ≤ z0 <

l1). We then seek separate Green’s functions in each layer where the solution for the first layer
G1(sn, z) is composed of a homogenous and particular part while the solutions for the remaining
k layers have only a homogeneous solution. Therefore, the Green’s function G1(sn, z) in the top
layer becomes

∂2

∂z2
G1(sn, z)− α2G1(sn, z) = − 1

D1

δ(z − z0) (4.5)

when z is within the first layer 0 ≤ z < l1. For the N th layer, GN(sn, z) becomes

∂2

∂z2
GN(sn, z)− α2GN(sn, z) = 0 (4.6)

when z is located in the bottom layer
∑N−1

k=1 lk ≤ z <
∑N

k=1 lk. These equations can be used to
reduce Eq. 4.4 to

Φk(sn, ϕ,m, z) = Gk(sn, z)Jm(snρ0) cos(m(ϕ− ϕ0)) (4.7)

We use the boundary conditions previously described [102] but provide solutions for G1(sn, z)

and GN(sn, z) purely in terms of exponentially decaying functions. This form of expression pro-
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vides stability in numerical calculations and is in contrast to previously derived expressions [102]
which contain hyperbolic trigonometric functions that can easily produce overflow-errors. We also
note that the solutions we derive are exact and do not require any approximations for calculation,
as is required by previous reports [59, 104, 84]. Expanding hyperbolic functions as exponentials
also allows for simplifying several other terms that serve to reduce the computational time.

The Green’s function G1 in the first layer (0 ≤ z < l1) is given by

G1(sn, z) =
e−α1|z−z0| − e−α1(z+z0+2zb1)

2D1α1

+
eα1(z+z0−2l1)(1− e−2α1(z0+zb1))(1− e−2α1(z+zb1))

2D1α1

× D1α1n
2
1β3 −D2α2n

2
2γ3

D1α1n2
1β3(1 + e−2α1(l1+zb1)) +D2α2n2

2γ3(1− e−2α1(l1+zb1))
(4.8)

where αk =
√

µak/Dk + s2n. In general, the quantities β3 and γ3 are obtained by downward
recurrence relations with start values

βN = DN−1αN−1n
2
N−1(1 + e−2αN−1lN−1)(1− e−2αN (lN+zb2 ))

+DNαNn
2
N(1− e−2αN−1lN−1)(1 + e−2αN (lN+zb2 ))

γN = DN−1αN−1n
2
N−1(1− e−2αN−1lN−1)(1− e−2αN (lN+zb2 ))

+DNαNn
2
N(1 + e−2αN−1lN−1)(1 + e−2αN (lN+zb2 ))

(4.9)

with the downward recurrence given by

βk−1 = Dk−2αk−2n
2
k−2(1 + e−2αk−2lk−2)βk +Dk−1αk−1n

2
k−1(1− e−2αk−2lk−2)γk

γk−1 = Dk−2αk−2n
2
k−2(1− e−2αk−2lk−2)βk +Dk−1αk−1n

2
k−1(1 + e−2αk−2lk−2)γk

(4.10)

We note that we seek just the terms β3 and γ3 which must be determined recursively if the total
number of layers N is larger than 3. In that case, Eq. 4.9 is used to generate starting values in
the recurrence relation, then Eq. 4.10 is used recursively until β3 and γ3 are obtained. If N = 2,
β3 = 1− e−2α2(l2+zb2) and γ3 = 1+ e−2α2(l2+zb2). For N = 3, only Eq. (4.9) is needed to calculate
β3 and γ3.

The solution to Eq. 4.6 for GN is

GN(sn, z) =

n2
N2

N−2

N−1∏
i=2

(Diαin
2
i ) exp(α1(z0 − l1) + αN(LN + zbN − z)− ξ2)

D1α1n2
1β3(1 + e−2α1(l1+zb1)) +D2α2n2

2γ3(1− e−2α1(l1+zb1))
(4.11)

The quantity ξ2 is computed with start values ξN = αN(lN+zb2) and with downward recurrence
relations ξk−1 = ξk + αk−1lk−1 such that for N = 2, ξ2 = α2(l2 + zb2) and for N = 3, ξ2 =

α2l2 + α3(l3 + zb2) and so on. We note that our routine has unrolled these relations completely for
N = 4 to improve performance.
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For solutions in real-space, Φ(ρ, z) we apply the inverse relation of Eq. 4.3 to Eq. 4.7 such that
the fluence in real space can be written as [102]

Φk(ρ, z) =
1

πa′2

∞∑
n=1

Gk(sn, z)J0(snρ)J
−2
1 (a′sn) (4.12)

for the special case of a point source that is incident at the center top of the cylinder.

Solutions in the time-domain

Given a sinusoidally modulated source at frequency f , the real and imaginary parts of the fluence
Φ(ρ, ω) can be calculated using the same formula for Φ(ρ) and adding a complex absorption term
[86]

αk =
√

µak/Dk + s2n + iω/(Dkc) (4.13)

where c is the speed of light in the medium and i =
√
−1. The real and imaginary parts are used

to calculate the phase angle and modulation.
For solutions in the time-domain, the real and imaginary parts of the fluence in the frequency

domain must be calculated at many frequencies (400-4,000x) [106, 86] and inverse Fourier trans-
formed into the time-domain [101]. The Fourier integral is slowly converging and the number of
frequency evaluations needed is highly dependent on ρ, µ′

s and t [106].
Alternately, an inverse Laplace transform can be applied to Eq. 4.12 [106, 177] by making

the substitution iω → s̄ in Eq. 4.13 and numerically integrating the Bromwich complex contour
integral

f(t) =
1

2πi

∫
B

es̄tF (s̄) ds̄ (4.14)

In Eq. 4.14, B denotes the Bromwich path where s̄ is a complex number along the contour. We
note we use a bar s̄ to avoid confusion with sn. The corresponding solution for the time-domain
fluence is then

Φk(ρ, t) =
1

πa′2

∞∑
n=1

1

2πi

[∫
B

es̄tGk(sn, z, s̄) ds̄

]
× J0(snρ)J

−2
1 (a′sn) (4.15)

The Bromwich line can be deformed into a Hankel contour that begins and ends in the left half-
plane, such that Re z → −∞ [177]. On such a contour, the exponential in Eq. 4.14 ensures that
the integrand decays rapidly and renders the integral well-suited for approximation using a simple
trapezoidal rule. We utilized a hyperbola countour [177] parameterized by s(θ) = µ+ iµ sinh(θ+

imφ) where s′(θ) = iµ cosh(θ + iφ) to evaluate the time-domain solutions. For non-complex
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time-domain signals, application of the midpoint rule gives:

f(t) =
h

π

[
N−1∑
k=0

F (s̄k) exp(s̄kt)s̄
′
k

]
(4.16)

where s̄k = s̄(θk) for θk = (k + 1/2)h and h being the uniform node spacing with N being the
number of nodes along the hyperbola in the upper half-plane Re(s) > 0.

The parameters µ and φ as well as node spacing h are obtained for computing f(t) across many
time values in t ∈ (t1, t2) by considering a single (fixed) integration path for all time values. The
time-independent parameters are expressed by:

µ =
4πφ− π2

A(φ)

N

t2
(4.17)

A(φ) = arcosh

[
(π − 2φ)Λ + 4φ− π

(4φ− π) sinφ

]
(4.18)

where Λ = t2/t1. The uniform node spacing becomes h = A(φ)/N with the previously
optimized [106] parameter φ = 1.09.

Approximate solutions for z ≈ z0

n
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Figure 4.2: We show the convergence of three separate terms in Eq. 4.8 by showing the value of
the nth term in the sequence when summing over j0,n. Each term converges at a much different
rate with the overall convergence being highly dependent on µ′

s1 when z = 0.
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A limitation of computing Φ1(ρ, z) using G1(sn, z) in Eq. 4.8 is the slow convergence when
z ≈ z0. This is of particular importance for reflectance measurements when we must compute
Φ1(ρ, z) when z = 0. Unfortunately, when z = 0 and µ′

s1 is large, the routine is limited by slow
convergence requiring thousands of terms in Eq. 4.12. The convergence of Eq. 4.12 for Φ1(ρ, z)

can be analyzed by separating Eq. 4.8 into three terms

G
(1)
1 (sn, z) =

e−α1|z−z0|

2D1α1

(4.19)

G
(2)
1 (sn, z) =

−e−α1(z+z0+2zb1)

2D1α1

(4.20)

G
(3)
1 (sn, z) =

eα1(z+z0−2l1)(1− e−2α1(z0+zb1))(1− e−2α1(z+zb1))

2D1α1

× D1α1n
2
1β3 −D2α2n

2
2γ3

D1α1n2
1β3(1 + e−2α1(l1+zb1)) +D2α2n2

2γ3(1− e−2α1(l1+zb1))

(4.21)

where G1(sn, z) = G
(1)
1 (sn, z) + G

(2)
1 (sn, z) + G

(3)
1 (sn, z). In Fig. S4.2, we show the value of

the three terms an as we iterate over the nth root of j0,n. Here, we show a specific example when
µ′
s1 = 20 cm−1, µ′

s2 = 15 cm−1, µa1 = 0.1 cm−1, µa2 = 0.2 cm−1, a = 10 cm, l1 = 0.5 cm,
and l2 = 5 cm. We can see that G(3)

1 (sn, z) is rapidly decaying and just a few terms are needed
for accurate computation. It should also be noted that this term is the only term affected by the
optical properties of deeper layers k ≥ 2 and therefore the dominate convergence of Eq. 4.8 is
only affected by the optical properties of the first layer. However, because the three terms decay
at such a different rate, for the highest numerical accuracy it is recommended to sum these terms
separately and combine them once the infinite sum is terminated. As we can see, the convergence
is dominated by the slow decay of G(1)

1 (sn, z) when z = 0. This convergence becomes slower as
µ′
s1 becomes larger.

However, when z ≈ z0 we can sum the particular solution G
(1)
1 (sn, z) over n exactly in closed

form yielding the infinite space Green’s function caused by an isotropic point source. This allows
us to write the fluence Φ1(z ≈ z0) as

Φ1(ρ) =
e−κ1|r|

4πD1|r|
+ Φ

(h)
1 (ρ) (4.22)

where r =
√

ρ2 + (z − z0)2 and κ1 =
√

µa1/D1. The first term in Eq. 4.22 is the infinite space
Green’s function. The homogenous part Φ(h)

1 (ρ) can be computed with Eq. 4.12 and G
(h)
1 (sn, z)

computed with G1(sn, z) = G
(2)
1 (sn, z) + G

(3)
1 (sn, z). We note that this solution is only approxi-

mate if we want to consider the fluence on the boundary z = 0, but to calculate the fluence inside
the first layer when z = z0 it represents the exact solution. This significantly reduces the number
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of terms needed in Eq. 4.12, however G(2)
1 (sn, z) now limits the overall convergence rate which

also decays at a slow rate when z = 0 and for increasing µ′
s1. However, a similar approximation

can be made which allows for the exact summation of G(1)
1 (sn, z) + G

(2)
1 (sn, z) in closed form

which represents the steady-state solution for a semi-infinite medium. Therefore, it is appropriate
to rewrite the fluence as

Φ1(ρ, z = 0) ≈ ΦSI(ρ, z) +
1

πa′2

∞∑
n=1

G
(3)
1 (sn, z)J0(snρ)J

−2
1 (a′sn) (4.23)

where ΦSI(ρ, z) is the steady-state fluence in a semi-infinite medium (Equation 3 given
in Kienle and Patterson [85]). The optical properties of ΦSI(ρ, z) are that of the first layer
(µ′

s1, µa1). We test this approximation in Fig. S4.3 as a function of µ′
s1 and ρ by summing

G
(1)
1 (sn, z) + G

(2)
1 (sn, z) for n = 50, 000 in octuple precision using Eq. 4.12 and comparing the

absolute and relative errors to the closed form semi-infinite Green’s function. Each of these forms
only contain terms that represent the top layer optical properties (µ′

s1, µa1). In Fig. S4.4, we com-
pare the approximation to the exact solution for two tissue models: (a) µ′

s1 = 10 cm−1, µ′
s2 = 13

cm−1, µa1 = 0.1 cm−1, and µa2 = 0.2 cm−1 and (b) µ′
s1 = 60 cm−1, µ′

s2 = 40 cm−1, µa1 = 0.01
cm−1, and µa2 = 0.08 cm−1. We use the same layer thicknesses, l1 = 1 and l2 = 5 cm with a
cylinder radius of 20 cm.
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Figure 4.3: The (left) relative and (right) absolute error between the closed-form semi-infinite
Green’s function and G

(1)
1 (sn, z) + G

(2)
1 (sn, z) when summed over 50,000 terms using Eq. 4.12.

This approximation also gives absolute errors below the machine precision in double precision
calculations when µ′

s1 > 2 cm−1.

Theoretically, this solution becomes more accurate when z = 0 as µ′
s1 → ∞. We find this

approximation to be accurate for relative errors greater than 10−14 for µ′
s1 > 2 cm−1 which is

within the relative errors provided by the exact forms when double precision arithmetic is used.
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different tissue geometries. The absolute error is shown in the below plot displaying that these
solutions give absolute errors below the machine precision in double precision calculations. The
solutions were computed in octuple precision for accurate comparison.

Even for very low µ′
s1 = 0.1 cm−1, this approximation can give at least 3 digits of accuracy.

The advantage of this approach is that just 150 roots were used in the approximate form when
µ′
s = (10, 13) cm−1 where 3,500 roots were needed in the exact form. When µ′

s = (60, 40) cm−1

the approximation only needed 200 roots at all values of ρ compared to 20,000 roots required in the
exact form. However, if only a couple digits of accuracy are needed the approximate form can give
reasonable convergence in less than 50 roots even for very large scattering coefficients. This results
in computational times being 2-3 orders of magnitude faster allowing for computation in less than
one microsecond for a wide range of optical properties. Therefore, it is highly recommended to
use such an approximation for µ′

s1 > 2 cm−1.

Computational details

To efficiently compute Eq. 4.12, it is important to optimize the three terms,
Gk(sn), J0(snρ), J

−2
1 (a′sn). First, sn must be determined such that J0(a′sn) = 0, n = 1, 2, ...,.

Calculating these roots at runtime is expensive. Instead, sn should be calculated from the
precomputed roots of J0 using the relation sn = j0,n/a

′ where j0,n is the nth root of J0(x). It
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is then possible to remove the runtime computation of J−2
1 (a′sn) because a′sn = j0,n, therefore,

J−2
1 (j0,n) is constant and can be precomputed. A table of j0,n and J−2

1 (j0,n) are computed up
to n = 1, 000, 000 and are loaded for use during precompilation. Now, the runtime is directly
proportional to the time it takes to compute Gk(sn) and J0(x). It appears that the Green’s function
term is the most expensive when looking at Eq. 4.8, but calls to an external special function library
within a hot loop can be costly. To assess the computational cost of computing J0(x), Eq. 4.12 was
timed using n = 5, 000 before and after replacing J0(x) with sin(x). It was found that computing
J0(x) instead of sin(x) took 2.6x as long meaning that the simple computation of J0(x) accounted
for ≈ 58% of the total runtime. The baseline implementation of J0(x) was provided by fdlibm
(https://netlib.org/fdlibm).

For the calculation of J0(x), a custom optimized routine based on a previously described al-
gorithm [66] was developed. This routine is detailed in the Appendices and can be found at
https://github.com/JuliaMath/Bessels.jl. Incorporating this routine instead of using fdlibm de-
creased the total runtime by ≈ 54%. We note that the custom routine and the algorithm provided
by fdlibm give similar error tolerances. Additionally, the computation of the Bessel function (in
double precision) occurs in two main branches with a cutoff at x ≈ 26. The asymptotic expan-
sion for large arguments is over twice as fast so the dependence on the total computation on the
Bessel function calculation will also be a function of how many terms are considered in the sum.
For larger roots, the Bessel function will be computed at larger arguments resulting in much faster
calculation compared to smaller roots. Naturally, the roots should be in order to take advantage of
branch prediction during the Bessel function calculation for the best speedup. With the new rou-
tine, computing J0(x) in Eq. 4.12 accounts for just ≈ 5% of the total runtime. This optimization is
also crucial for fast calculation of the fluence at multiple spatial locations. However, it is important
to detail a further optimization if designing the algorithm for a specific experimental system. Typ-
ically, the source-detector separation, ρ is fixed and known ahead of time allowing for the product
J0(snρ)J

−2
1 (a′sn) to be precomputed for several values of ρ by approximating that a′ ≈ a if the

cylinder radius is large which avoids any Bessel function calls during the routine. Additionally,
the rounding of snρ during the calculation of J0(snρ) limits the accuracy of solutions to absolute
errors around the machine precision. It could then be beneficial to precompute J0(snρ) in higher
precision to decrease the lower bound error tolerances.

Any optimization of the final term, G(sn), should be performed while maintaining numerical
accuracy. The greatest loss of significance occurs when subtracting values with different magni-
tudes. Although the expressions are given to maintain numerical stability (i.e., they avoid terms
overflowing to infinity), terms like (1− exp(x)) and (exp(−aα)− exp(−bα)) can lead to loss of
precision. Therefore, it is best to express these in terms of exp(x) − 1 which is typically a built
in library function expm1(x) in programming languages. This has the advantage of being more
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accurate and faster as it reduces the number of terms to compute and allows for easier use of SIMD
instinsincs. Using fastmath flags can also decrease the total runtime by about 10 % in the steady-
state and 20 % in the time-domain. These types of optimizations should be done with care to
maintain accuracy, but were tested to give identicial results when used to compute G(sn). Though,
they were not used for any results presented or in any benchmarks shown here. The additional gain
in using fastmath in the time-domain is the faster complex arithmetic and division where both the
spatial and time-domain benefit from a faster instrinsinc exp(x). Another optimization that was
not yet considered is vectorizing the for loop which sums the expression over the Bessel roots.
This will require a vectorized version of J0(x) which was not implemented. However, these types
of optimization could result in large speed gains with the availabity of vector math libraries and
proper handling of the reduction and termination criteria within the loop.

Verification of numerical algorithm and validation with Monte Carlo

To calculate the steady-state fluence in real space, a finite inverse Hankel transform (equa-
tion (4.12)) must be numerically computed. Calculations of solutions in the time-domain requires
equation (4.12) to be evaluated at N complex valued absorption terms during the numerical in-
version of the Laplace transform in equation (4.15). The numerical accuracy and efficiency of the
procedure depend on the convergence and difficulty of computing the two sums. Since both the
computation of the steady-state and time-domain fluence depends on equation (4.12), the accuracy
and computational speed depend primarily on how many terms n of the infinite sum are retained in
equation (4.12). To allow for computation over an arbitrary number of terms we have expanded the
hyperbolic functions given previously [102] in terms of exponential functions which also reduces
the computational time by simplifying the expressions. Additionally, we have precomputed the
roots of J0 and developed a custom procedure for calculation of J0(x) which reduces the compu-
tational time substantially.

As exact, closed-form solutions for the photon fluence in layered media are not available, we
validate our solutions in layered media to closed-form homogeneous solutions for semi-infinite
media [85]. In these validations, each layer in our tissue-model was set to have the same optical
properties as the homogeneous medium along with large lateral boundaries. This allows us to
precisely quantify numerical errors and determine convergence of our solutions in terms of the
number of terms retained in the sum in equation (4.12). We first compare equation (4.12) evaluated
with 2 and 8 layers of similar optical properties to the semi-infinite solution [85] and to Monte
Carlo simulations in a semi-infinite medium. Next, we compare the accuracy of equation (4.12)
as a function of the number of terms n considered in the summation for different input parameters
µ′
s1, µ

′
s2, µa1, µa2, z, and a. The accuracy is compared to the computation when using n = 50, 000
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terms in quadruple precision.
Solutions in the time-domain require computing both the infinite sum in equation (4.12) as well

as numerically performing the inverse Laplace transform in equation (4.15). Strategies to invert
the Laplace transform could allow for significantly faster convergence compared to the Fourier
transform [89, 106], however the obtention of the inverse Laplace transform is not always an easy
or even possible task to perform [89]. Therefore, the accuracy of the numerical approach to invert
the Laplace transform must be rigorously tested. We focus on two attributes in performing the nu-
merical integration in equation (4.15) that affect both the convergence and numerical accuracy: (a)
the number of Laplace space evaluations N used to evaluate the Laplace integral in equation (4.15)
and (b) the contour width determined from Λ = t2/t1 where t ∈ (t1, t2). The effect of both of
these parameters on the convergence and numerical accuracy are again examined by comparison
to closed-form homogeneous analytical solutions. We show the reconstruction of the time-domain
signal for high scattering and high absorbing media at short and long distances and times where the
numerical reconstruction has been difficult to perform [106, 83]. We have included in Appendix
A extended discussion on how to efficiently compute equation (4.12), which also directly affect
the computation of equation (4.15), and the advantages compared to other routines [104]. Addi-
tionally, we give approximations for reflectance simulations (z = 0) that are accurate for double
precision arithmetic (see Supplementary Fig. S3) which can decrease the computational time by
2-3 orders of magnitude.

All the numerical routines and figures presented here were developed using the Julia program-
ming language (v1.7.0) [11]. Numerical simulations were performed on a MacBook Pro with an
Apple M1 chip (MacOS version 11.1) and 16 GB of memory. Simulations in the steady-state uti-
lized a single core while the inverse Laplace transform in the time-domain used multi-threaded
parallelism. Here, the Laplace space evaluations were evenly distributed across the 4 cores and 8
threads of the M1 chip. All benchmarks are done in double precision arithmetic using v0.8.0 of
LightPropagation.jl.

To validate the derived analytical solutions, the fluence is compared with results obtained from
Monte Carlo simulations. The Monte Carlo method simulates the propagation of photons through
the scattering medium using appropriate probability functions and random number generation [50,
191]. In the limit of an infinitely large number of photons used in the simulations, the Monte
Carlo method is an exact solution of the RTE [191]. We utilized an independent open-source
Monte Carlo code provided by the Virtual Photonics Technology Initiative [67] to validate the
layered diffusion theory model. The optical properties used were taken from literature using three
biologically relevant tissue models with an isotropic emitting source at a depth of z0 = 1/µ′

s1 and a
Henyey-Greenstein phase function. The anisotropic factor was assumed to be g = 0.8 for all layers.
The Monte Carlo simulations used 5× 107 photons for each simulation which visually reduced the
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effect of stochastic noise for all bin widths in the spatial and time domain. For all comparisons the
refractive index of the medium is assumed to be nr = 1.4 where the external medium is assumed
to be air nr = 1.0. The fluence as a function of t and/or ρ and z was recorded in discrete bin widths
of ∆t = 0.02 ns, ∆ρ = 0.99 mm, and ∆z = 0.27 mm.

4.4 Results

Numerical accuracy of the layered diffusion equation

In Fig. 4.5, the fluence on the top boundary (z = 0) in a semi-infinite medium with optical coeffi-
cients µa = 0.1 cm−1, µ′

s = 10 cm−1, g = 0.8, nr = 1.4 is simulated using Monte Carlo methods
in the steady-state and time-domain. We compare the results to solutions of the diffusion equation
in a semi-infinite medium [85] and to equations (4.12) and (4.15) when solved for a 2 and 8 layered
medium with the same optical coefficients in each layer. Here, we used a cylinder radius of a = 20

cm and a total cylinder length L of 10 cm (i.e., the thickness of each layer in the 2 and 8 layered
model was 5 and 1.25 cm, respectively) to approximate a semi-infinite medium. As previously
shown [85], diffusion theory exhibits excellent agreement with relative errors (|1 − ΦDT/ΦMC |)
< 0.05 compared to Monte Carlo simulations given enough scattering events. Equation (4.12) also
shows excellent agreement to the closed-form semi-infinite solution [85] in both the steady-state
and time-domain giving similar relative errors to the Monte Carlo results.

In contrast to the semi-infinite solution [85], the numerical accuracy of equation (4.12) is af-
fected by the termination of an infinite sum after n terms. For example, given a large amount of
terms (n ≈ 1, 500), the layered simulations shown in Fig. 4.5 can approximate the closed-form
semi-infinite solution close to the limits of the numerical precision (detailed below). In practice,
the sum should be terminated once a desired precision is reached. For example, to achieve similar
relative tolerances to the Monte Carlo results in Fig. 4.5a, the steady-state fluence used n = 500

for ρ < 2 cm, n = 1000 for ρ < 7 cm, and n = 1500 for ρ < 10 cm whereas in Fig. 4.5b we use
just n = 50 for both the 2 and 8 layer simulations in the time-domain for ρ = 1.5 cm. In general, to
simulate lower fluence values a larger number of roots in equation (4.12) will be required to achieve
similar relative errors. Consequently, the number of terms n required in equation (4.12) will be
dependent to varying degrees on the input optical properties and cylinder dimensions considered.

In Fig. 4.6, we investigated the convergence properties of equation (4.12) as a function of the
number of terms n used in the summation. We considered an example 2-layer medium with base-
line optical properties of µ′

s1 = µ′
s2 = 10 cm−1, µa1 = µa2 = 0.1 cm−1, ρ = 1.0, l = (0.1, 20)

cm, z = 0 cm, and a = 8 cm. The fluence was calculated as a function of summation terms
n ∈ (50, 3500) for varying ranges of 6 input parameters (µ′

s1, µ
′
s2, µa1, µa2, z, a) while keep-
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Figure 4.5: Equations (4.12) and (4.15) computed for both 2 and 8 layers agree with Monte Carlo
simulations within relative errors of 0.05 which matches the errors achieved with the semi-infinite
(SI) solution [85]. We show the (a) steady-state and (b) time-resolved fluence calculated with
Monte Carlo simulations and diffusion theory for a semi-infinite medium with optical coefficients
µa = 0.1 cm−1, µ′

s = 10 cm−1, g = 0.8, nr = 1.4 and z = 0 cm. We considered the same optical
properties in each layer and laterally infinite geometries in (4.12) and (4.15) to approximate semi-
infinite media. The relative error between the diffusion theory results and Monte Carlo are shown
below.

ing all other variables constant. The absolute difference between this calculation which was done
in double precision and a calculation done in quadruple precision with n = 50, 000 is shown in
Fig. 4.6. The convergence of equation (4.12) is highly dependent on the scattering coefficient in
the first layer µ′

s1 as seen in Fig. 4.6a. Increasing µ′
s1 severely diminishes the convergence of equa-

tion (4.12) when z = 0 (see Supplementary material in Appendix A for extended discussion). On
the other hand, for the range of values shown here, µa1, µa2, and µ′

s2 had a negligible effect on the
convergence. There is a close relationship between µ′

s1 and z as shown in Fig. 4.6a and 4.6e and
their effect on the convergence of equation (4.12). When z ≈ z0 with z0 = 1/µ′

s1, equation (4.12)
requires a high number of terms to converge. This is also the primary reason why increasing the
scattering coefficient also requires significantly more terms when z = 0 as z0 ≈ z. Additionally,
increasing a results in slower convergence due to smaller values of sn during the sum. The routine
can be made accurate down to absolute errors of the machine precision used in the calculation.
For example, Fig. 4.6 was calculated using double precision arithmetic with machine precision
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Figure 4.6: The rate of convergence of the infinite sum in equation (4.12) depends mostly on input
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on µa1, µa2, and µ′

s2. We show the absolute error between equation (4.12) when calculated in
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s = 10 cm−1, µa = 0.1 cm−1, l = (1.0, 20.0) cm,

a = 10 cm, and ρ = 1 cm.
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ϵ ≈ 10−16. The loss of precision in calculating J0(snρ) in equation (4.12) is the primary limi-
tation of the routine. For typical µ′

s1 found in biological tissue (µ′
s1 < 50 cm−1), n < 1, 000 is

usually sufficient. For example, only 50 terms were used in Fig. 4.5b resulting in similar relative
errors compared to Monte Carlo simulations when using 5,000 terms. However, the numerical
procedure should check for convergence during the summation of equation (4.12) so that n can be
dynamically determined during the routine.

The accuracy of the time-domain solution given in equation (4.15) is affected by both the ter-
mination of the sum in equation (4.12) as previously discussed and the numerical inversion of the
Laplace integral in equation (4.15). We focus on two main attributes for the convergence of the
inverse Laplace transform: (a) the hyperbola contour size (proportional to Λ = t2/t1) and (b) the
number of Laplace space evaluations N used to evaluate the Laplace integral in equation (4.15) by
comparing the time-resolved fluence simulated with equation (4.15) to the semi-infinite solution
[85]. The fluence is simulated at ρ = 1 cm on the top boundary (z = 0) using a 4-layer model with
layer thicknesses of lk = (0.5, 1.5, 3.0, 5.0) cm, µ′

s = 10 cm−1 and µa = 0.1 cm−1 with a radius
of 15 cm to approximate a semi-infinite geometry. Typically, the time-domain signal is required at
many values in some range t ∈ (t1, t2) where it becomes significantly more efficient to use a single
contour for all time points [106].

In Fig. 4.7a, we show the absolute (top) and relative (bottom) errors between equation (4.15)
and the semi-infinite solution [85] at a single instant of time t = 1.0 ns as a function of N , for
four different values of Λ. Variable values of Λ are achieved by using different t1 values of 1.0,
0.1, 0.01, and 0.001 ns such that Λt1 = 5 ns is fixed and t = 1 ns is within the bounds of (t1, t2).
The absolute errors were similar for any t value within t ∈ (t1, t2) while the relative error was
dependent on the value of t (i.e. larger relative errors are observed at long times when the fluence
is lowest). Less than 20 Laplace evaluations were needed to give absolute errors < 10−8 even
for large values of Λ. We can also see that the sum exponentially converges allowing it to be
accurately computed with the midpoint rule [165]. The main limitation is that the function must
be evaluated at very small and large values along the contour which leads to floating point errors
limiting the procedure to absolute errors approaching the machine precision. Additionally, the
integration nodes along the contour depend on the total number of evaluations N which inhibits
reuse of evaluations if a higher number of points are needed. Therefore, for the best computational
performance N must be determined before the computation.

In Fig. 4.7b, we considered a single contour Λ = 200 to reconstruct 600 time points in t ∈
(0.03, 6.0) and we show these for four different values of N . A larger N improved the overall
accuracy and was relatively independent of the time point t ∈ (0.03, 6.0) for a given N . For larger
contours Λ = t2/t1 a higher number of N are needed to reconstruct the time-domain signal over
the whole time window t ∈ (t1, t2) for a given absolute error. For example, Fig. 4.7b shows the
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Figure 4.7: (a) The (top) absolute and (bottom) relative errors for the time-domain reconstruction
at a single time value t = 1 ns in (t1,Λt1) between the time-domain solution in equation (4.15)
and the semi-infinite solution as a function of the number of Laplace space evaluations N . Larger
contour sizes (∝ Λ) require higher values of N to reach similar accuracies. (b) Reconstruction of
the time-domain signal at 600 time points in t ∈ (0.03, 6.0) corresponding to Λ = 200 considering
four different values of N . The semi-infinite solution is shown as black circles with the result-
ing absolute error between the semi-infinite and layered solution shown in the bottom plot. The
absolute error is dependent on N , which is similar for all time values considered in t ∈ (t1, t2)

same Λ but reconstructs the time-domain signal for different values of N . However, smaller values
of N are not able to reconstruct accurately over the entire time window due to the lower fluence
values Φ(ρ, t) at later times. A given N reconstructs the time-domain signal over the entire window
at a relatively fixed absolute error. Therefore, larger relative errors will be observed at later times
when the fluence is lowest.

We note that calculations in Fig. 4.7b are only shown up to the point where the time-domain
signal is not accurately reconstructed. Therefore, it is recommended to use a t1 as late as possi-
ble and choose N based on the dynamic range of time-domain signal required. For example, 12
Laplace evaluations were typically required to reconstruct the time-domain signal with a dynamic
range of 3 orders of magnitude where 24 evaluations can provide roughly 6 orders of magnitude
which represent typical dynamic ranges of time-domain systems [72, 62]. Increasing the number
of evaluations does not decrease absolute errors once the errors reach the machine precision. Co-
incidentally, we have found that the numerical inversion of the Laplace transform is also limited
by absolute errors approaching the machine precision, similar to the numerical computation in the
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Figure 4.8: Equation 4.15 can be computed to absolute errors up to the machine precision com-
pared to homogeneous closed form models at high scattering over a wide range of times and dis-
tances away from the source. (a) Time-resolved fluence from a 4-layered highly scattering media
with optical properties µ′

s = 80.0 cm−1 and µa = 0.1 cm−1 at ρ = 0.2 and ρ = 3.5 cm. Computation
was performed using double precision arithmetic. (b) Time-resolved fluence at the top boundary
of a 4- layered media with optical properties µ′

s = 10.0 cm−1 and µa = 0.6 cm−1 at ρ = 3 and ρ = 6
cm. Computation was performed using octuple precision arithmetic. The semi-infinite solution is
shown as markers with the absolute error between the two solutions shown below.

spatial domain.
The previous examples have focused on modest values of µ′

s, µa, ρ, and layer thicknesses. In
Fig. 4.8, we reconstruct the time-domain signal for high scattering media and large layer thick-
nesses over a wide range of times which has previously been previously difficult due to numerical
overflow [184, 59, 84]. In Fig. 4.8a, the time-domain signal on the top boundary (z = 0) for a high
scattering medium µ′

s = 80 cm−1 and µa = 0.1 cm−1 at ρ = 0.2 and ρ = 3.5 cm is shown. We con-
sidered a 4-layered medium with the same optical properties in each layer with layer thicknesses
lk = (0.5, 1.5, 3.5, 30.0) cm and a cylinder radius of 15 cm for comparison to a semi-infinite model
[85]. We used n = 1, 000 roots in equation (4.12) with N = 24 Laplace evaluations at ρ = 3.5
cm and N = 72 evaluations at ρ = 0.2 cm. Although the fluence at ρ = 0.2 cm is significantly
larger, we considered t ∈ [0.004, 6.0] resulting in a Λ = 1500 whereas at ρ = 3.5 we considered
t ∈ [0.8, 6.0] giving Λ = 7.5. This again highlights that the number of Laplace space evaluations
is highly dependent on Λ. Even considering a very large layer thickness l4 = 30 cm and large
reduced scattering coefficient µ′

s = 80 cm−1, the time-resolved fluence can be easily simulated in
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double precision arithmetic, very close to the source, and at both early and late times.
In Fig. 4.8b we show calculation of the time-domain fluence at the surface (z = 0) for very

low fluence values from a high absorption medium (µ′
s = 10.0 cm−1 and µa = 0.6 cm−1) at

two detector locations of ρ = 3.0 cm and 6.0 cm and for t ∈ [0.1, 6.0]. These calculations were
performed in octuple precision using N = 168 Laplace evaluations and only n = 600 roots
in equation (4.12) which reconstructed the time-domain signal over 50 orders of magnitude in
dynamic range with high numerical accuracy. The absolute error is relatively constant for t ∈
(t1, t2) which leads to a higher relative error at lower fluence values. An increase in amount of
Laplace evaluations is needed for very low fluence values and can also be observed by extrapolating
the asymptote of convergence in Fig. 4.7 to very low absolute errors. Lastly, the roots of J0 must
be calculated in higher precision to achieve the shown absolute errors.

59



Φ
(ρ

)

10
− 11

10
− 7

10
− 3

10
1

ρ (cm)

0 2 4 6 8 10

re
l.
 e

rr
or

− 0.05

0.0

0.05

Φ
(ρ

,t
)

10
− 6

10
− 4

10
− 2

10
0

t (ns)

0 1 2 3 4

re
l.
 e

rr
or

− 0.35

0.0

0.35

a b

Φ
(ρ

)

10
− 8

10
− 5

10
− 2

10
1

ρ (cm)

0 2 4 6 8 10

re
l.
 e

rr
o
r

− 0.05

0.0

0.05

Φ
(ρ

,t
)

10
− 9

10
− 6

10
− 3

10
0

t (ns)

0 1 2 3 4

re
l.
 e

rr
or

− 0.35

0.0

0.35

c d

Φ
(ρ

)

10
− 11

10
− 7

10
− 3

10
1

ρ (cm)

0 2 4 6 8 10

re
l.
 e

rr
or

− 0.05

0.0

0.05

Φ
(ρ

,t
)

10
− 9

10
− 6

10
− 3

10
0

t (ns)

0 1 2 3 4

re
l.
 e

rr
or

− 0.35

0.0

0.35

e f

Monte Carlo

DT − 2 Layer

ρ = 0.45 cm

ρ = 1.45 cm

ρ = 3.05 cm

Monte Carlo

DT − 3 Layer

ρ = 0.45 cm

ρ = 1.45 cm

ρ = 3.05 cm

Monte Carlo

DT − 5 Layer

ρ = 0.45 cm

ρ = 1.45 cm

ρ = 3.05 cm

Figure 4.9: Comparison of the (left column) steady-state and (right column) time-domain fluence
using diffusion theory (lines) simulated using equations (4.12) and (4.15) and the Monte Carlo
method (symbols) for the tissue geometries representing a (top row) 2-layer, (middle row) 3-layer
muscle, and (bottom row) 5-layer brain tissue models. The relative error between the Monte Carlo
results and diffusion model are shown in the plots below. The diffusion approximation displayed
relative errors less than 0.1 over a large domain of arguments suggesting it could be used in a
variety of diverse tissue geometries.
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Comparison to Monte Carlo Simulations

Next, we compared the solutions obtained from equations (4.12) and (4.15) to Monte Carlo simula-
tions for both the steady-state and time-domain. We consider three different tissue geometries that
are of high clinical interest and have been extensively used to model light propagation in different
organ systems previously: a 2-layer model [86], a 3-layer model representing a skin/fat/muscle
layer[83], and a 5-layer brain model [56] representing a scalp, skull, cerebrospinal fluid (CSF),
and a gray and white matter layer.

The optical properties considered in the 2-layer model are µa1 = 0.2 cm−1, µa2 = 0.1 cm−1,
µ′
s1 = 13 cm−1, and µ′

s2 = 12 cm−1 with layer thicknesses of l1 = 6 mm and l2 = 90 mm. We
report the optical properties of the 3-layer muscle and 5-layer brain model in Table 4.1. For all
tissue models, we consider the index of refraction for each layer to be nr = 1.4 with the external
index of refraction being air (nr = 1). The anisotropy g = 0.8 was consistent for all layers in
the Monte Carlo simulations. In all cases we compare the fluence on the top boundary (z = 0)
as a function of ρ for the steady-state calculations and as a function of t in the time-domain for
ρ = 0.45, 1.45, and 3.05 cm.

Table 4.1: Optical properties and layer thicknesses for the 3 layer skin/fat/muscle [83] and 5 layer
brain tissue used in the Monte Carlo simulations [56]. The diffusion model utilized the same
parameters except a µ′

s = 3.5 cm−1 was used in the CSF layer [37].

Skin, Fat, Muscle Model [83] Brain Model [56]

µa cm
−1 µ′

s cm
−1 l (cm) µa cm

−1 µ′
s cm

−1 l (cm)

skin 0.15 15 0.12 scalp 0.18 19 0.5

fat 0.02 12 0.38 skull 0.16 16 0.8

muscle 0.2 5 10.0 CSF 0.04 0.25 0.2

- - - - Gray 0.36 22 0.5

- - - - White 0.14 9.1 4

In Fig. 4.9, we compare the steady-state and time-domain fluence when simulated using the
Monte Carlo method and diffusion theory. The left column shows the steady-state fluence Φ(ρ)

for ρ ∈ (0.15, 10) cm simulated using equation (4.12). Excellent agreement (relative errors < 0.1)
is observed for all three tissue models, however the agreement is not uniform. The 2-layer model
showed the best agreement for all values of ρ where the results asymptotically agreed with the
Monte Carlo method. The 3-layer muscle model showed good agreement for ρ < 5 cm, but
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did not asymptotically agree. These results are consistent with recent reports [107] that showed
a breakdown in diffusion theory when the mean free path approaches the thickness of the top
layer. Here, a top layer thickness of 1.2 mm was used. Although the significance of these errors
were not studied on the reconstruction of optical properties, the relative errors between Monte
Carlo solutions are less than 0.1 for ρ < 6 cm. Diffuse optical measurements are not usually
collected at such large distances due to low signal to noise. A similar effect is observed in the
brain model Fig. 4.9e where agreement (relative error < 0.1) is observed for ρ < 6 cm, however
longer distances show higher errors. These errors can be mostly attributed to the limitations of
diffusion theory to accurately model the low scattering CSF layer [37]. Our analytical solutions
utilized µ′

s = 3.5 cm−1 to most accurately model the low scattering CSF layer with diffusion theory
as previously suggested [37], though the choice of µ′

s significantly affects the resulting fluence
calculated with diffusion theory for ρ > 6 cm. If µ′

s is less than 4 cm−1, a severe overestimation
of the fluence is seen. Practically, for ρ > 6 cm it may become unrealistic to consider the CSF and
other brain layers as parallel planes. We note that all models had similar disagreements for ρ < 0.5

cm which is a known limitation of diffusion theory [85].
In the right column of Fig. 4.9, we show the time-domain fluence for ρ = 0.45, 1.45, 3.05 cm

simulated using equation (4.15) and compare to Monte Carlo results. The 2-layer model is well
approximated by diffusion theory in the time-domain for each value of ρ given enough scattering
events illustrated by the uniform agreement across a wide range of time values. As in the spatial
domain, the time domain results for the 3-layered model do not asymptotically converge to Monte
Carlo simulations due to the small top layer thickness. The agreement is not uniform for each value
of ρ as shorter distances are better approximated until much later arrival times. This is in contrast
to the 5-layer model where the errors are relatively flat at all times and distances. This could be
attributed to only presenting results in the time-domain for ρ < 3.05 cm, whereas the effect of
the low scattering CSF layer is more significant for ρ > 6 cm. We note that the precise choice of
µ′
s in the CSF layer for the distances and times shown do not significantly affect the time-domain

simulations compared to the steady-state results. Additionally, decreasing the discretization of t, ρ
and z and simulating for more photons in the Monte Carlo method will reduce the noise, however,
smaller discretization will not improve agreement between diffusion and Monte Carlo where they
do not asymptotically agree.

Computational Time

In Table 4.2, we show the amount of time in microseconds to compute the steady-state fluence in
the top layer, Φ1(ρ, z = 0), for a given number of terms n considered in the sum in equation (4.12)
for 2, 4, 8 and 16 layers. Different values of optical properties do not significantly affect the
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computation time (when n is fixed), which is instead dependent on the number of roots n used
in the sum. Though, increasing n does not linearly increase the computational time as shown in
Table 4.2 because it is faster to compute J0(snρ) at large arguments with asymptotic expansions.
This affects the total run time because the calculation of J0(snρ) accounts for nearly 40 % of
the run time where the computation of G1(sn, z) takes most of the remaining time. For realistic
applications where less than 1,000 roots are needed, the fluence can be calculated in less than ≈
100 µs for up to 8 layers.

Table 4.2: MacOS M1 CPU: Number of microseconds to compute steady-state fluence where n is
number of roots in equation (4.12).

Layers n = 100 n = 500 n = 1,000 n = 5,000

2 6 25 47 215

4 8 32 55 225

8 11 40 70 280

16 16 65 110 470

Table 4.3: Intel CPU: Number of microseconds to compute steady-state fluence where n is number
of roots in equation (4.12).

Layers n = 100 n = 500 n = 1,000 n = 5,000

2 6 30 55 240

4 8 35 65 275

8 12 50 85 370

16 19 80 140 620

Table 4.4: Mac M1: Number of microseconds to compute the time-domain fluence where N is the
number of Laplace space evaluations.

Layers N = 8 N = 16 N = 32 N = 64
2 250 470 920 1,840
4 320 600 1,100 2,300

The time-domain routine must compute the steady-state routine for N (≈ 12−24) complex ab-
sorption values. This procedure lends itself well to parallelism as each computation is independent
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Table 4.5: Intel CPU: Number of microseconds to compute the time-domain fluence where N is
the number of Laplace space evaluations.

Layers N = 12 N = 24 N = 36 N = 72
2 270 540 800 1,600
4 340 695 1,030 2,090

and can be used at each time point needed. Therefore, performance is limited by the runtime listed
in Table 4.2, however using a complex absorption term increases the runtime by 2.5x. In Table 4.2,
we show the runtime in microseconds for the time-domain fluence as a function of the Laplace
space evaluations N for 2 and 4 layered media considering n = 600 roots in equation (4.12) and
1024 time points. We note that the time values do not have to be linearly spaced as when using the
Fast Fourier Transform.

If a dynamic range of 3 orders of magnitude is needed (N ≈ 12), the fluence can be simulated in
less than 300 µs. The performance in the time-domain is highly dependent on the CPU used and its
multi-core performance. When using an Intel CPU 8700k with 6 cores and 12 threads the runtimes
can be decreased by 30% compared to using a MacBook Pro M1 as shown in Tables 4.4 and 4.5.
The number of Laplace evaluations used should be in multiples of the available number of threads.
We note that the load times for multi-threaded applications represent a significant portion of the
total runtime. For a low number of Laplace evaluations (¡16) these computational times can be
reached within 2x using a single core. The advantage of these procedures is that rapid simulation
can be performed on a personal laptop while allowing for time-domain runtimes to be significantly
reduced with higher end CPUs.

4.5 Conclusion

Limitations of homogeneous tissue-models to describe light transport in layered biological media
have been discussed previously [51, 55]. Although analytical models that incorporate heteroge-
neous optical properties are becoming more frequent, [65, 59, 13] their use, particularly in inverse
calculations, is limited by their floating point accuracy accuracy and efficiency [184]. Therefore,
homogeneous models are typically used given their simplicity and efficiency in solving inverse
problems that require 100-1,000 evaluations of the forward model to reach convergence. Neural
networks can also be used to quickly (≈ 50 milliseconds) estimate tissue optical properties in in-
verse problems [78]. However, they require long training times and are roughly 1,000x slower
than the presented analytical model for forward calculations [78, 61]. Several solutions for photon
diffusion in layered media have been reported, but present technical difficulties for numerical com-
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putation. We have investigated a previously developed model [101, 102] that has received wide
interest [65, 59, 13, 58]. However, the model relies on numerical inverse transforms for obtaining
the photon fluence for both steady-state and time-domain simulations which limits the numerical
accuracy and speed. For example, the computation of the steady-state fluence requires the inversion
of a Bessel-type 1-D inverse transform (equation 4.12) over the kth root of the zeroth order Bessel
function J0. The discrete version has several advantages compared to using Gaussian integration
[86, 104] as the roots can be precomputed to improve the overall speed of the routine and can be
implemented with strict convergence criteria for accurate computation over a wide range of input
arguments using a variable number of roots. This is important because the convergence of equa-
tion (4.12) is highly dependent on the model inputs (Fig. 4.6), where different optical properties
and tissue geometries require a different number of roots to be used. However, these expressions
require numerical integration over hyperbolic functions that can numerically overflow for large
input arguments or at large roots of J0.

In this work, we provide numerically stable expressions for the Green’s functions in terms of
exponentially decaying functions, which facilitates accurate computation for large input arguments
(e.g., scattering, layer thickness, spatial frequency) over any root of J0 without approximations or
loss of generality that are usually required to numerically compute equation (4.12) [59, 84]. As
shown in Fig. 4.6, the accuracy and speed of computed solutions is determined by the number n
of roots used in the sum in equation (4.12) which is most dependent on µ′

s1, a, and z. In prac-
tice, the values used for the cylindrical radius of the tissue-model a (Fig. 4.6f) should be kept as
small as possible to increase convergence but should be large enough to accurately represent lat-
eral boundary conditions. Although the total number of n largely dictates the speed and accuracy
of the routine, the algorithm is limited to simulating equation (4.12) with absolute errors up to
the machine precision in the calculation. This is largely due to the finite precision used in the
calculation of J0(snρ) in equation (4.12) which is limited to absolute tolerances approaching the
machine precision. For higher precision calculations, it is important to calculate the roots of J0 in
the desired precision to simulate fluence values down to the machine precision. For experimental
measurements with background noise, fluence values below the epsilon value of double precision
(ϵ ≈ 10−16) are rarely needed. Additionally, computing J0 accounts for the majority of the rou-
tine’s runtime especially when the fluence is required at multiple spatial locations, as is the case in
many tomography [47] or functional imaging [163] applications. New numerical routines for the
computation of J0 were developed that decrease computational time by at least 3x [66] compared
to using standard routines [3]. An advantage of the routine presented is that computing the fluence
at 10 arbitrarily specified spatial locations takes only 3x longer than the times reported in Table 4.2.
Although it can be difficult to directly compare computational times of different routines, as they
depend highly on the computational resources and effort put into them, we were able to simulate
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the steady-state fluence 500-1,000x faster than previously reported [104, 58]. We note that these
times are achieved on a personal laptop using a single core.

Computation of the time-domain signal requires an additional inverse time transform which
is usually performed with the Fourier Transform [59]. Here, we have used the inverse Laplace
transform [106, 177] for faster and more accurate reconstructions of the time-domain signal. We
have found that 12-24 terms in the Laplace integral are needed in equation (4.15) to reconstruct
the time-domain signal with dynamic ranges of 3-6 orders of magnitude, which is the range of
current experimental systems [72, 62]. Due to the decreased number of evaluations needed in the
inverse time transform, the computational times for time-domain simulations are 1,000-10,000x
faster than what is usually reported depending on the number of layers considered and accuracy
required [176, 111, 102]. Most of the performance gain can be attributed to utilizing the faster
converging Laplace transform instead of the Fourier transform [106] while other improvements
come from other numerical optimizations for the steady-state calculation and threaded parallelism
as further discussed in Appendix A in the Supplementary material. The Laplace transform can
also evaluate the time-domain fluence up to absolute errors approaching the machine precision as
shown in Fig. 4.7. The number of terms needed in the Laplace transform for adequate convergence
will depend highly on the contour size Λ = t2/t1 which is recommended to be kept as small as
possible for faster reconstructions.

A primary limitation of the layered solutions presented here is that a large amount (500-5,000x)
of terms are required in the computation of equation (4.12) when z = 0 which is required for
reflectance calculations. As seen in Fig. 4.6, increasing the top layer scattering coefficient will
significantly increase the number of terms required in equation (4.12), while the convergence is
mostly independent of deeper layer optical properties. This can be explained by the slow conver-
gence of the particular solution of the Green’s function when z ≈ 1/µ′

s1. When z is farther away
from the source depth z0 as seen in Fig. 4.6e, only a few terms are needed. However, if we approxi-
mate that z ≈ z0, it becomes possible to sum the particular solution of the Green’s function exactly
which improves convergence significantly. We present detailed derivations of this approximation
in Appendix A in the Supplementary material and show that such an approximation when µ′

s1 > 2

cm−1 and z = 0 can simulate the fluence with relative errors down to 10−14 (Supplementary Fig.
S3), which is as accurate as the exact forms in double precision arithmetic due to floating point
errors. Therefore, it is highly recommended to use such an approximation in double precision
arithmetic which can decrease computational times by 2-3 orders of magnitude depending on the
input µ′

s1, allowing for computation of the steady-state fluence in less than a microsecond ((Sup-
plementary Fig. S4). This approximate form also allows for very accurate simulation for large
scattering coefficients where it is difficult for the exact expressions to converge due to the slow
exponential decay of the sum.
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Finally, in addition to testing the numerical accuracy and efficiency, we have tested the physical
approximation of diffusion theory compared to the Monte Carlo method by using three previously
reported layered tissue models that approximate several different organ systems [86, 83, 56]. We
note that solutions to the RTE in layered media have been presented which are more accurate than
the diffusion approximation but, like Monte Carlo methods, come at increased computational cost
[107]. Additionally, the situations presented in Fig. 4.9 represent the simplest forms of heteroge-
neous media consisting of layered slabs which may be a rather crude approximation of complex
biological media. Though, the use of such a simple approximation has been shown to provide
similar accuracy to more realistic tissue geometries in a brain model using atlas based meshes
[153]. The primary disadvantages of diffusion theory are the inability to correctly predict photon
fluence for short time scales and source-detector separations and the requirement that µ′

s >> µa

[4, 52]. A recent report also indicated that the diffusion approximation could increase inaccuracies
far away from the source in layered models where layer thicknesses are small compared to the
mean scattering length [107]. We found that for a top layer thickness of 1.2 mm, these predictions
were in agreement with the results reported in Fig. 4.9, but we also find that such errors were only
significant at distances of ρ > 5 cm for steady-state calculations. These errors were not apparent
in the time-domain for ρ = 0.45, 1.45, 3.05 cm when t < 4 ns (Fig. 4.9). We also find that our
solutions from diffusion theory agree well with Monte Carlo simulations for a 5-layer model of the
brain even when considering a thin CSF layer of low scattering (Fig. 4.9).

In conclusion, we have developed and verified an open-source, easy-to-use numerical algorithm
to accurately and efficiently compute solutions of the diffusion equation in layered media. The ab-
solute errors of the routine can be made arbitrarily accurate and can simulate both the steady-state
and time-domain fluence 3 to 4 orders of magnitude faster than previously reported. Therefore,
the routine could be used in inverse procedures to recover optical properties of measured data in
real-time (1-10 Hz). It can also be employed for rapid generation of the intensity profile in layered
media at multiple spatial locations and varying optical properties, as required in tomography and
functional imaging applications. These solutions are also easily amendable to solve the correlation
diffusion equation in layered media. An additional advantage of the routine is that the computa-
tional time marginally increases with the addition of a new layer, as a 4-layered medium can be
computed within 10% of the time to compute 2-layers. This could allow for more accurate simu-
lations in highly layered media such as the brain at little cost to total run times. Additionally, we
showed good agreement between diffusion theory and Monte Carlo simulations in three separate
tissue geometries of clinical interest.
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CHAPTER 5

Numerical Approach to Quantify Depth-Dependent
Blood Flow Changes in Real-Time Using the

Diffusion Equation with Continuous-Wave and
Time-Domain Diffuse Correlation Spectroscopy

This chapter was published in [74]. It discusses solutions to the correlation diffusion equation
in layered media in both the continuous wave and time-domain using the methods described in
Chapter 4. Focus is also given to the inverse problem and comparing diffusion theory with Monte
Carlo. This chapter was prepared in collaboration with Suraj Rajasekhar, Samantha Zerafa, Dr.
Karthik Vishwanath, and Dr. Mary-Ann Mycek.

5.1 Abstract

Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique that can measure brain
perfusion by quantifying temporal intensity fluctuations of multiply scattered light. A primary lim-
itation for accurate quantitation of cerebral blood flow (CBF) is the fact that experimental measure-
ments contain information about both extracerebral scalp blood flow (SBF) as well as CBF. Sep-
arating CBF from SBF is typically achieved using multiple source-detector channels when using
continuous-wave (CW) light sources, or more recently with use of time-domain (TD) techniques.
Analysis methods that account for these partial volume effects are often employed to increase CBF
contrast. However, a robust, real-time analysis procedure that can separate and quantify SBF and
CBF with both traditional CW and TD-DCS measurements is still needed. Here, we validate a data
analysis procedure based on the diffusion equation in layered media capable of quantifying both
extra- and cerebral blood flow in the CW and TD. We find that the model can quantify SBF and
CBF coefficients with less than 5% error compared to Monte Carlo simulations using a 3-layered
brain model in both the CW and TD. The model can accurately fit data at a rate of ¡10 ms for CW
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data and < 250 ms for TD data when using a least-squares optimizer.

5.2 Introduction

Adequate cerebral blood flow (CBF) is required for delivery of oxygen and other nutrients to brain
tissue, allowing CBF to serve as a biomarker for brain function and health [44]. The quantitation of
CBF is therefore important for managing and diagnosing brain injury or other diseases associated
with ischemia or inadequate vascular autoregulation [20]. Diffuse correlation spectroscopy (DCS)
is an optical technology that noninvasively measures blood flow by quantifying temporal speckle
fluctuations of a coherent light field illuminating the tissue surface, usually in the near-infrared
spectrum [43, 92, 181]. Detected photons in such applications must propagate through the extra-
cerebral scalp and skull layers to reach brain tissue [152, 184]. The backscattered light intensity
temporally fluctuates and is quantified via its temporal autocorrelation function [14, 20]. Analytical
solutions of the correlation equation are then obtained using diffusion theory and are used to fit
measured autocorrelation functions to extract a quantitative blood flow index (BFi, cm2/s), which
has been shown to be a good surrogate for CBF measured in vivo [20, 189, 43, 15, 21].

Traditionally, DCS systems have used continuous-wave (CW) light sources which require long
source-detectors separations to increase sensitivity to CBF [147, 151] as the CW-DCS signal is
significantly impacted by shallower extracerebral scalp blood flow (SBF) changes [20, 152]. More
recently, using picosecond pulsed lasers as sources has allowed DCS to operate in the time-domain
(TD), which can increase sensitivity to deeper tissues by gating the photons time of flight to
measure the autocorrelation at different time windows [160, 134, 29, 115]. Several studies have
demonstrated the potential advantage of TD-DCS compared to CW-DCS for measuring deeper
flow changes at shorter source-detector separations [161, 115, 29, 160]. However, although TD-
DCS signals can select for longer pathlengths, these photons still traverse the superficial layers at
least twice which must be accounted for in data analysis [148].

A major challenge in using DCS for neuromonitoring is that the detected light intensity in-
teracts with all of the tissue layers in the propagation path (e.g., scalp, skull, cerebrospinal fluid
(CSF), brain) [184, 189, 57, 147]. Homogeneous diffusion models are typically used for their
simplicity and speed, but extracted BFi metrics have been shown to non-linearly depend on the
flow properties of each layer [147]. Several analysis methods have been developed to account
for these partial volume effects by using differential path-length factors [42, 45, 168], selecting
longer photon pathlengths by weighting fits to shorter correlation times [152, 45], or by using
pressure modulation procedures [7, 119]. Although useful for enhancing sensitivity to CBF, these
methods do not eliminate top layer flow contributions as they still assume some level of tissue
homogeneity [168]. Alternatively, using heterogeneous brain models simulated with Monte Carlo
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(MC) methods [152, 184] or analytical solutions to the multi-layered correlation diffusion equa-
tion [45, 81, 95, 57, 189, 168] have shown promise for more robustly separating SBF from CBF
[57, 184, 189].

The increase in available computational resources has led to the MC approach becoming more
popular due to its higher accuracy at short source-detector separations and ability to accommodate
complex tissue geometries [184, 148, 185]. Additionally, the MC method may be more robust
than layered analytical models which can be numerically unstable [184]. However, for DCS to be
employed to monitor patients in clinical settings, data analysis tools must be able to continuously
and accurately quantify CBF changes for rapid treatment in the clinic [184]. A major limitation
of MC is its high computational cost which mostly precludes its use in real-time data analysis
[191, 50, 184].

Layered analytical models can provide a good compromise between reconstructive accuracy
[153] and computational speed, yet they still remain significantly slower to compute than homoge-
neous models and are not typically used in inverse problems [184]. Forward models for TD-DCS
in layered media have also been derived [96], but to the best of our knowledge have not yet been
applied as inverse solvers, as TD solutions require orders of magnitude higher computational effort
than CW approaches [60]. Currently, most applications employ homogeneous tissue models with
diffusion theory for both CW- and TD-DCS [160], or use heuristic exponential based fitting for
quantifying the BFi [148].

In this report, we develop and apply diffusion theory based analytical solutions of DCS signals
in layered media to overcome existing challenges and validate its: (1) physical accuracy compared
to MC simulations, (2) numerical stability and computational speed, and (3) use in inverse solutions
to recover BFi from signals measured in layered head-tissue models. We present the theoretical
framework for both CW- and TD-DCS based on the diffusion equation for an N-layered turbid
medium [102, 75]. The model’s performance is verified by comparisons to MC simulations across
a range of source-detector separations for both the CW and TD. We examine using the forward
model as an inverse solver and benchmark quantitative recovery of both SBF and CBF from a
3-layered brain model. We conclude by discussing the advantages of CW and TD systems from
the results, establishing the sensitivities of CW- and TD-DCS in recovery of SBF and CBF, and
investigating the impact of source-detector separations and delay times on these sensitivities.
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5.3 Methods

5.3.1 Diffusion theory in layered media

The motion of scattering particles is associated with the unnormalized electric field temporal au-
tocorrelation function G1 which in highly scattering turbid media such as biological tissue can be
approximated with the correlation diffusion equation [43]. Solutions to the correlation diffusion
equation can be obtained by first solving the regular photon diffusion equation

D∇2Φ(r⃗)− µaΦ(r⃗) = −S(r⃗) (5.1)

and then replacing the absorption coefficient with a dynamic absorption term µd
a → µa+2µ′

sDBk
2
0τ

[14]. Φ, D , S(r⃗) and µa denote the fluence rate, the photon diffusion coefficient, the source config-
uration, and the absorption coefficient, respectively, where D = (3µ′

s)
−1 and µ′

s the reduced scat-
tering coefficient. DB is the Brownian flow-diffusion coefficient, k0 = 2πn/λ is the wavenumber
and λ is the wavelength of the light source [79]. It is assumed that the mean-square displacement
of the scattering particles over time τ undergoes Brownian motion (i.e., ⟨∆r2(τ)⟩ = 6DBτ ).

Because solutions to the photon diffusion equation can be used to calculate G1 by a simple re-
placement, existing methods to solve the diffusion equation for specific geometries and boundary
conditions can be extended for calculating autocorrelation using diffusion theory [14, 160]. Here,
we extend our computationally efficient method [75] to solve the diffusion equation using extrap-
olated boundary conditions for fast calculation of the autocorrelation function in an N-layer tissue
model made up of axially layered cylinders, each with independent µa, µ′

s, and thickness l [102].
Assuming an incident beam onto the center of the topmost cylindrical layer can be approximated
by an isotropic point source located at a distance of z0 = 1/µ′

s from the incident surface, Eq. 5.1
can be solved in real space [75] by

Φ(ρ, z = 0) ≈ ΦSI(ρ) +
1

πa′2

∞∑
n=1

Ĝ(sn, z)J0(snρ)J
−2
1 (a′sn) (5.2)

where Jm is the Bessel function of first kind and order m and sn is determined from the roots
of Jm for Jm(a′sn) = 0 where n = 1, 2, ... is the nth root of Jm. z is the location of the detector
within the medium in cylindrical coordinates and ΦSI(ρ) is the steady-state fluence for a semi-
infinite medium [85]. An extrapolated boundary is determined using a′ = a + zb where a is the
radius of the cylinder and zb = 2AD where A is proportional to the fraction of photons that are
internally reflected at the boundary [30]. For clarity on nomenclature, G1 represents the unnormal-
ized temporal autocorrelation function whereas Ĝ represents the Green’s function in the top layer
due to an isotropic source located in the top layer.
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For the solutions presented here, we utilize the approximate forms in Eq. 5.2 given previously
[75] which are accurate when z ≈ z0. We have shown that given µ′

s1 > 2 cm−1 and a >> ρ at
z = 0 these forms are accurate to at least 16 digits which is exact in double precision arithmetic
[75]. The expression for the Green’s function Ĝ in the top layer in Eq. 5.2 is

Ĝ(sn, z) =
eα1(z+z0−2l1)(1− e−2α1(z0+zb1))(1− e−2α1(z+zb1))

2D1α1

× D1α1n
2
1β3 −D2α2n

2
2γ3

D1α1n2
1β3(1 + e−2α1(l1+zb1)) +D2α2n2

2γ3(1− e−2α1(l1+zb1))

(5.3)

where αk =
√

(µak + 2µ′
skDBkk2

0)/Dk + s2n. The subscript k signifies the kth layer of the
cylinder with distinct absorption µak and scattering µ′

sk in each layer. In general, the quantities β3

and γ3 are obtained by downward recurrence relations with start values

βN = DN−1αN−1n
2
n−1(1 + e−2αN−1lN−1)(1− e−2αN (lN+zb2 ))

+DNαNn
2
n(1− e−2αN−1lN−1)(1 + e−2αN (lN+zb2 ))

γN = DN−1αN−1n
2
n−1(1− e−2αN−1lN−1)(1− e−2αN (lN+zb2 ))

+DNαNn
2
n(1 + e−2αN−1lN−1)(1 + e−2αN (lN+zb2 ))

(5.4)

with the downward recurrence given by

βk−1 = Dk−2αk−2n
2
k−2(1 + e−2αk−2lk−2)βk +Dk−1αk−1n

2
k−1(1− e−2αk−2lk−2)γk

γk−1 = Dk−2αk−2n
2
k−2(1− e−2αk−2lk−2)βk +Dk−1αk−1n

2
k−1(1 + e−2αk−2lk−2)γk

(5.5)

We note that we seek just the terms β3 and γ3 which must be determined recursively if the total
number of layers N is larger than 3. In that case, Eq. (5.4) is used to generate starting values in
the recurrence relation, then Eq. (5.5) is used recursively until β3 and γ3 are obtained. If N = 2,
β3 = 1−e−2α2(l2+zb2) and γ3 = 1+e−2α2(l2+zb2). For N = 3, only Eq. (5.4) is needed to calculate β3

and γ3. Presenting the coefficients in terms of exponentially decaying functions prevents numerical
overflow in the inverse transforms and increases numerical stability [75].

For solutions in the time-domain, an inverse Laplace transform is performed using the substi-
tution µa → µa + s̄/c with c being the speed of light in the medium. The time-dependent fluence
Φ(ρ, t) can be expressed by

Φ(ρ, t, z = 0) ≈ ΦSI(ρ, t) +
1

πa′2

∞∑
n=1

1

2πi

[∫
B

es̄tĜ(sn, s̄) ds̄

]
× J0(snρ)J

−2
1 (a′sn) (5.6)

where ΦSI(ρ, t) is the time-domain fluence in a semi-infinite medium [85]. B denotes the
Bromwich path where s̄ is a complex number along the contour. We use a hyperbola contour as

72



detailed previously [75, 106]. Such a contour forces rapid decay in the integrand leading to more
accurate and faster computation of the inverse time transform [75].

At this point, we need to relate the unnormalized electric field temporal autocorrelation function
G1 to the fluence rates previously derived. In this study, as well as most experimental settings, we
are interested in the reflected light intensity at the top boundary (z = 0). The diffuse reflectance is
typically calculated as the current across the boundary or the flux [85]

Rf (ρ) = −D∇Φ(ρ, z) · (−z)|z=0 (5.7)

Alternatively, the reflectance can be written as a combination of both the fluence and flux terms
[85] and for a medium of refractive index 1.4, the combined reflectance can be written as

R(ρ) = 0.118Φ(ρ) + 0.306Rf (ρ) (5.8)

The unnormalized temporal autocorrelation of the electric field function G1 is simply calculated
from the reflectance by replacing µa → µd

a

G1(ρ, τ,Db) = R(ρ, µd
a) (5.9)

The normalized electric field temporal autocorrelation function g1 is then calculated by

g1(ρ, τ,Db) = G1(ρ, τ)/G1(ρ, τ = 0) (5.10)

For solutions in the time-domain, the TD fluence given in Eq. 5.6 is used to calculate the re-
flectance in either Eq.5.7 or Eq. 5.8, which are then translated to G1 using Eq. 5.9.

5.3.2 Baseline flow tissue models using Monte Carlo simulations

To assess the accuracy and robustness of the described diffusion theory model to extract depth-
dependent flow parameters, we consider a physiologically relevant 3-layer brain model consisting
of the scalp, skull, and brain layer, as reported previously [189]. In this work, we only consider
variations in BFi coefficients for scalp blood flow (SBF) and cerebral blood flow (CBF). All other
parameters including the optical properties and layer thicknesses were held constant as shown
in Figure 5.1. The refractive index of each layer was also kept constant at 1.4 and the external
medium’s refractive index equal to 1.0 to simulate air. Blood flow in the skull layer was assumed
to be negligible (BFi = 0).
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𝜌
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Figure 5.1: Schematic of the optical properties and layer thicknesses of the 3-layer brain model
used in the Monte Carlo simulations. The scalp and cerebral blood flow coefficients are varied
while keeping all labeled properties constant.

Using the optical properties and layer thicknesses shown in Fig. 5.1, the MC method was used
to simulate a set of CW and TD normalized autocorrelation functions g1. A previously developed
MC code for photon propagation in laterally infinite layered media [172] was used to simulate
the unnormalized autocorrelation function G1(τ, ρ, t). The bin widths for ∆t and ∆ρ were ± 5
ps and 0.5 mm, respectively. 500 million photons were used for each simulation. For CW-DCS,
G1(τ, ρ) was obtained by summing G1(τ, t) across the total time-of-flight simulated (from 0 ns
to 7.5 ns) [160]. Following previous reports [189], we used 10 evenly spaced values for CBF
∈ [20, 90] cm2/Gs and 10 values of SBF ∈ [2.5, 30] cm2/Gs such that SBF ∈ [1/8, 1/3]× CBF.
For the case when SBF = 30 cm2/Gs, only 6 values of CBF from 20 − 58 cm2/Gs were used.
This resulted in 96 total combinations of tissue flow models that were stored for source-detector
separations ρ ∈ [0.1, 3.05] in step sizes of 0.05 cm. The normalized autocorrelation functions g1(τ)
was obtained by dividing G1(τ, t) by G1(0, t).
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Simulated MC g1(τ) were then fit to recover the SBF and CBF of the top-most and bottom-most
layer using Eq. 5.10 with both reflectance models Rf (ρ) given by Eq. 5.7 and R(ρ) with Eq. 5.8.
These fits were performed for varying ρ in the CW domain and for different t values in the TD.
Each fit set the range of fitting for τ where 0.02 < g1(τ) < 0.98 as the fit window. Estimates
of SBF and CBF were retrieved using a non-linear fitting tool in the Julia programming language
[12] based on the Levenberg-Marquardt algorithm [124]. Forward solutions were computed using
the numerical model (Eq. 5.7 and Eq. 5.8). The optical properties and layer thicknesses of all the
layers were considered known and were required as inputs to the inverse solver.

5.3.3 Noise model and sensitivity analysis

We briefly consider the sensitivity of g1(τ) to a change in the analytical model’s respective BFi
(e.g., SBF and CBF). The effect of noise on the sensitivity metric is considered using a previously
accepted noise model [190, 34]. We use a simplified version where the standard deviation of the
noise in g1(τ) is proportional to

σ(τ) ≈ exp(ρ) ·

√
(1 + exp(−γτ))

Tint

(5.11)

where Tint is a combination of the correlator bin time interval and integration time (i.e., mea-
surement duration), ρ is the source-detector separation, and γ is the decay rate of g1(τ) [34]. The
noise was added to g1(τ) after multiplying the standard deviation with a random number between
[-1, 1]. In Fig. 5.2, we show examples of the added noise on g1(τ) for two source-detector sepa-
rations, ρ = 1 and 3 cm, with constant optical properties, µ′

s = 10 cm−1 and µa = 0.1 cm−1. We
consider homogeneous flow values of 1 and 20 cm2/Gs in g1(τ) and g∗1(τ), respectively, for better
visualization. Two noise models, σ1(τ) and σ2(τ), were calculated using Eq. 5.11 with Tint values
of 1 and 5. γ was calculated from the decay rate of g1(τ).
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Figure 5.2: Example flow models at two source detector separations, g1(τ, ρ = 1 cm) and g∗1(τ, ρ =
3 cm), with two levels of added noise, σ1(τ) and σ2(τ), computed with Eq. 5.11 using Tint = 1
and 5, respectively.

The sensitivity of g1(τ, BFi) to a flow change, ∆BFi, was estimated by calculating the relative
change in g1(τ), (1 − g1(τ, BFi + ∆BFi)/g1(τ, BFi)), due to the perturbation. This allows for
sensitivity estimates of CW- and TD-DCS to separate changes in SBF and CBF with noise. We note
that the sensitivity can also be affected by τ, ρ, µa, and µ′

s. Here, we compare the sensitivity for
ρ ∈ (0.1, 3.5) cm with fixed optical properties, µ′

s = 10 cm−1 and µa = 0.1 cm−1. The dependence
on τ was accounted for by averaging the relative change across a logarithm scaled array of τ values
corresponding to 0.05 < g1(τ) < 0.95.
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5.4 Results
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Figure 5.3: Comparison of the continuous-wave normalized autocorrelation function g1(τ, ρ) sim-
ulated with the (symbols) Monte Carlo method and diffusion theory using the (blue solid line) R(ρ)
or (orange dash line) Rf (ρ) reflectance models at two source-detector separations and at flow rates
of (a) SBF = 6 cm2/Gs; CBF = 20 cm2/Gs and (b) SBF = 27 cm2/Gs; CBF = 20 cm2/Gs. The
model using R(ρ) in Eq. 5.8 showed better agreement relative to Rf (ρ) in Eq. 5.7 for the shorter
source-detector separations and larger τ .
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In Figure 5.3, we compare the CW normalized autocorrelation function g1(ρ, τ) simulated with the
MC method and those calculated with diffusion using Eq. 5.7 and Eq. 5.8. Comparisons are shown
for two different flow models at two source-detector separations of 0.4 and 3 cm. For Fig. 5.3a,
flow parameters of 6 and 20 cm2/Gs were used for the SBF and CBF, respectively whereas a SBF
and CBF of 27 and 20 cm2/Gs, respectively are shown in Fig. 5.3b. Optical properties and layer
thicknesses are as shown in Fig. 5.1.
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Figure 5.4: Comparison of the time-domain normalized autocorrelation function g1(τ, ρ, t) simu-
lated with the (symbols) Monte Carlo method and diffusion theory using the (blue solid line) R(ρ)
or (orange dash line) Rf (ρ) reflectance models at two time values and at source-detector separa-
tions of (a) ρ = 0.2 cm and (b) ρ = 2 cm. A single flow model is considered where SBF = 18
cm2/Gs and CBF = 43 cm2/Gs. Both reflectance models showed similar accuracy.

The largest difference between the two reflectance models can be observed at the shorter source-
detector separations. Excellent agreement between MC and diffusion theory is observed when
using Eq. 5.8, even at short distances of ρ = 4 mm. A larger difference is observed when using
just the flux term described by Eq. 5.7 at short distances, however this expression becomes more
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accurate farther away from the source. At the longer distance ρ = 3 cm, both expressions show
good agreement to the MC method. However, there is a small deviation for small g1 values (¡0.2)
when using Rf whereas R is able to match the MC simulations over the full τ window.

In Figure 5.4, we compare the solutions for the TD-DCS g1(ρ, τ, t) when simulated with the MC
method and calculated from diffusion theory using both reflectance models R and Rf . Data in each
figure are shown for a tissue model that has a SBF and CBF of 18 and 43 cm2/Gs, respectively for
two time values of 0.79 and 2.49 ns. The figures show these data at two source-detector separations,
0.2 and 2 cm (as noted in axis labels) in Fig. 5.4a and Fig. 5.4b, respectively. In contrast to the
CW domain, the choice in using Eq. 5.7 or Eq. 5.8 showed little difference between each other
to calculate g1(ρ, τ, t). Either calculation had very good agreement to the MC method showing
only small deviations from each other when g1(ρ, τ, t) < 0.1. Larger differences between Monte
Carlo and diffusion theory were observed for shorter source-detector distance and longer time gates
(Fig. 5.4a, t = 2.49 ns). However, it is also useful to note that MC simulations exhibit higher noise
for longer times which could be causing these differences.

In Figure 5.5, the results of the inverse fitting procedure for the CW domain are shown. Here,
the diffusion model is used as a forward model to fit for both SBF and CBF using the MC method
as baseline simulations. In Fig. 5.5a and Fig. 5.5b, the recovered SBF and CBF are shown, respec-
tively for all 96 of the flow tissue models recovered at two source-detector separations of 1 and 2.5
cm. For these figures we show just the fits using the Rf reflectance model as only small differences
between the two reflectance models are observed at these two source-detector separations. There
was a larger difference from true flow coefficients as determined by the MC simulations (black
dashed lines) and recovered coefficients using the diffusion model when SBF was larger, however
this did not appear to affect the accuracy of recovered CBF. A larger ρ = 2.5 cm was able to better
recover CBF, though, both ρ = 1 and 2.5 cm showed sensitivity to SBF and CBF.

In Fig. 5.5c and Fig. 5.5d, the average percent error 100×((BFiMC−BFiDT )/BFiMC) between
the recovered SBF and CBF, is shown averaged across all 96 tissue models for four source-detector
separations when using the two reflectance models. As shown in Fig. 5.3, at short distances (ρ =

0.5 cm), R(ρ) produces significantly more accurate results. Interestingly, the reflectance model
using just the flux Rf (ρ) produced slightly more accurate results at the longer distances (ρ > 1

cm). The error in recovered SBF also slightly increases at longer distances as the sensitivity to the
top layer decreases as we move farther away from the source. On the other hand, the recovered
CBF significantly improves as we move to larger separations (Fig. 5.5d).

The percent error in recovery of relative SBF and CBF are shown in Fig. 5.5e and Fig. 5.5f,
respectively for the two reflectance models at five source-detector separations. The relative error is
calculated by normalizing the values of the true and recovered BFi of the first tissue model shown
in Fig. 5.5a and Fig. 5.5b (SBF=2.5 cm2/Gs; CBF = 20 cm2/Gs), and averaging the percent error
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across all the tissue models. The choice to normalize to the first tissue model is rather arbitrary,
however the best absolute accuracy was observed for low SBF so this resulted in shifting absolute
values the least. Good recovery of SBF is observed even at very short distances (ρ = 2.5 mm)
while error increases after 1 cm due to the decrease in sensitivity to SBF. In this case, using R(ρ)

produced more accurate estimates of SBF. For CBF, large errors are observed at short distances
(ρ = 5 mm) due to the very limited sensitivity to deeper layers at short separations. This error
rapidly improves to less than 5% for ρ > 1 cm for both reflectance models.
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Figure 5.5: Results of inverse fits using CW-DCS diffusion theory fitted to MC simulated g1(τ, ρ)
curves. The recovered (a) SBF and (b) CBF coefficients are shown for two values of ρ where
the black dashed lines represent the true flow values used in the MC simulations, for each tissue
model, when recovered with the Rf reflectance model. The percent error between recovered abso-
lute values of (c) SBF and (d) CBF is averaged over all the tissue models at four source-detector
separations using both reflectance expressions (Eq. 5.7 and Eq. 5.8). The average error in relative
flow changes of (e) SBF and (f) CBF are shown when recovered values of the first tissue model (as
shown in (a) and (b)) are normalized to one.
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Figure 5.6: Results of the inverse fitting process when fitting the time-domain diffusion theory
model to simulated g1(τ, ρ, t) with the MC method. The recovered (a) SBF and (b) CBF coeffi-
cients are shown for three values of t when ρ = 1 cm where the black dashed lines represent the
true flow values used in the Monte Carlo simulations. The percent error between recovered abso-
lute values of (c) SBF and (d) CBF is averaged over all the tissue models at three source-detector
separations for three t values. We show just the error using the Rf (ρ, t) reflectance model as it was
similar to R(ρ, t). Averaged relative error normalized to the first tissue model is shown for values
of (e) SBF and (f) CBF.
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In Figure 5.6, the results of the inverse fitting procedure for the TD are shown. Similar to the
CW domain, the inverse problem fits for two parameters, SBF and CBF. However, we show results
using only the flux reflectance model, Rf , as the two reflectance models produced errors within
3% of each other for all simulations. Therefore, we focus on the recovery of the flow coefficients
at time values of 0.5, 1.5, and 2.5 ns. In Fig. 5.6a and Fig. 5.6b, we report results for all 96 tissue
models at a single source-detector separation of ρ = 1 cm for the three time values to recover
SBF and CBF, respectively. Similar to the CW results, the recovery of SBF depended on the
absolute SBF value as larger SBF values produced larger errors particularly for late time values.
However, recovery of CBF was not affected by higher errors in recovery of SBF. As expected,
shorter times were able to recover SBF better, while later times were better able to recover CBF.
Rather surprisingly, the short time (t = 0.5 ns) also showed large sensitivity to CBF.

The resulting percent error shown in Fig. 5.6a and Fig. 5.6b between the true MC values and
recovered values using diffusion theory were then averaged across all tissue models for source-
detector separation of ρ = 0.5, 1 and 2 cm. The average error in recovered SBF and CBF for
the three time values are shown in Fig. 5.6c and Fig. 5.6d, respectively. The late time value,
t = 2.5 ns, showed the highest and most volatile error in recovered SBF. This can be explained
by the inconsistent recovery at higher absolute values of SBF as shown in Fig. 5.6a. The error in
recovered SBF using t = 0.5 and 1.5 ns was less than 10% in all the source-detector separations
shown.
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Figure 5.7: The sensitivity of the CW g1(τ) to an increase of either (a) SBF or (b) CBF by three
times at two source-detector separations. A similar example is shown in (c) and (d) for the TD
g1(τ) at a single source-detector separation (ρ = 1 cm) and two time values for SBF and CBF,
respectively.

The recovered CBF was less than 4% at all time values when ρ = 0.5 cm, however for t = 0.5 ns
the error increased at larger source-detector separations to over 10% when ρ = 2 cm. In Fig. 5.6e
and Fig. 5.6f we show the percent error in relative changes in SBF and CBF, respectively when
normalizing the starting values to the first tissue model. In contrast to the CW results, the relative
errors were actually worse than absolute recovery due to the much noisier recovery of SBF at faster
flow rates. Though, recovery of CBF using t = 1.5 and 2.5 ns was less than 2%.

To better understand the results presented in Figures 5.5 and 5.6, in Figure 5.7 we show an
example flow model with baseline SBF and CBF of 20 and 60 cm/Gs, respectively in the (Fig. 5.7a
and Fig. 5.7b) CW domain at two source-detector separations (ρ = 0.5 and 4.5 cm) and in the
(Fig. 5.7c and Fig. 5.7d) TD at two delay times (t = 0.5 and 2.5 ns) at a single source-detector
separation (ρ = 1 cm). The baseline optical properties are as shown in Fig. 5.1. We next increase
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either SBF or CBF by three times to show the sensitivity of g1(τ) on the two flow parameters. In
the CW domain, increasing SBF by 3 times has an effect at both short (ρ = 0.5 cm) and long
(ρ = 4.5 cm) source-detector separations. However, the effect is more uniform at shorter distances
while longer distances are more affected at later delay times (Fig. 5.7a). On the other hand, the
short distances show little effect to changes in CBF (Fig. 5.7b) except at shorter delay times. This
effect is more pronounced at the longer source-detector distance where more sensitivity to CBF is
observed. In the TD, the shorter delay time (t = 0.5 ns) shows a large sensitivity to SBF changes
while showing less sensitivity to CBF. The later time (t = 2.5 ns) shows a much larger sensitivity
to CBF while only showing a minimal though non-negligible sensitivity to SBF.

Figure 5.8: The average relative change of g1(τ) from increasing the (left column) SBF and (right
column) CBF by two times in the (top row) CW and (bottom row) TD at two photon arrival times
(t = 0.5 and 2.5 ns) as a function of source-detector separation. Two noise models, σ1(τ) and
σ2(τ), were considered using a collection time, Tint, of 1 and 5 seconds, respectively, as computed
with Eq. (5.11). The CW domain shows a varying sensitivity to both SBF and CBF as a function
of source-detector separation whereas the TD shows a relatively constant sensitivity.

In Fig. 5.8, we quantitatively compared the sensitivity in CW- and TD-DCS from a relative
change in g1(τ) due to a doubling in the respective flow coefficient of interest (e.g., SBF and CBF)
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with other variables constant as a function of source-detector separation ρ ∈ [0.1, 3.5] cm. The
baseline optical properties and flow parameters are as described in Fig. 5.1 and Fig. 5.7. To account
for variable sensitivities to SBF and CBF as a function of τ , the relative change was averaged in
the window 0.05 < g1(τ) < 0.95. In Fig. 5.8a and Fig. 5.8b we show the sensitivity of CW-DCS
to an increase in SBF and CBF, respectively. In addition to the direct calculation of the forward
model, we compute the sensitivity metric after adding noise using Eq. 5.11 with two measurement
collection times, Tint = 1 and 5 labeled as σ1(τ) and σ2(τ), respectively. The error bars correspond
to the standard deviation after averaging over 50 samples of random noise generation. In Fig. 5.8c
and Fig. 5.8d the same is shown considering the sensitivity of TD-DCS to an increase in SBF and
CBF at two photon delay times of t = 0.5 and 2.5 ns as labeled directly for each group of noise
models. We note the black lines represent the sensitivity directly from the analytical model without
any added noise and do not have error bars.

For the SBF sensitivity shown in Fig. 5.8a, we can see that the CW model shows the highest sen-
sitivity to SBF at shorter distances while steadily decreasing at longer source-detector separations.
However, the TD shows a relatively constant sensitivity to SBF over the whole range of ρ. In fact,
the sensitivity slightly increases as we increase the source-detector distance. This can be explained
by the fixed photon path length within the medium and that to maintain the same path length in the
medium at longer distances from the source the average photon has to travel more in the shallower
layers. On the other hand, the CW model shows an increasing sensitivity to CBF as we increase the
source-detector separation (Fig. 5.8d). However, the sensitivity appears to have only logarithmic
growth. As in the SBF case, the TD CBF sensitivity is relatively independent to the source-detector
separation and only decreases slightly at larger distances. It was also worthwhile to observe that
the TD sensitivity seems to saturate quickly (for t > 2.5 ns), whereby increasing the time gates
only marginally increased CBF sensitivity. At larger source-detector separations the added noise
model significantly affects the expected sensitivity to both SBF and CBF.

5.5 Discussion

Layered analytical models have been employed with success in CW-DCS applications to recover
flow coefficients [57, 95, 168, 189] but are not typically used for TD-DCS analysis due to their
increased complexity and computational cost [96]. We have validated a layered diffusion model
based on our previous work [75] that allows for solving the inverse problem in both CW- and
TD-DCS. The main advantages of this approach is its better numerical stability, ability to provide
error tolerances, computational speed, and ability to provide fast gradient information [75]. This
allows for forward simulation of the CW and TD autocorrelation function in ≈ 20 and ≈ 150

microseconds, respectively. Typically, the inverse problem for the fits shown here took < 10 and
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< 250 milliseconds to fit for both SBF and CBF in the CW and TD, respectively. Although this
is orders of magnitude faster than both MC simulations and previously reported layered models
[60, 102, 184], using homogeneous models that only fit a single parameter are about 10x and
60x faster in the CW and TD, respectively. These reported times were all done using a single
core on a personal laptop. The computational time is also linearly dependent on the number of τ
values considered in the inverse problem and should be kept as sparse as possible for faster data
processing. Additionally, we only considered fitting two parameters (SBF and CBF) while other
coefficients were considered known. The effect of optical property errors have been previously
investigated [189, 57, 79]. However, the forward model simultaneously computes both the TD
reflectance along with g1(τ), allowing it be used with TD near-infrared spectroscopy measurements
to fit for optical properties along with DCS measurements to fit for flow coefficients [40, 6] with
similar forward computational times.

A disadvantage of the presented model are the limitations given by the validity of diffusion
theory [184]. The Monte Carlo method has become more popular as computing resources are more
readily available to overcome some of the concerns of diffusion theory at short source-detector
separations [184, 185]. However, we have found that the diffusion model can accurately recover
absolute flow coefficients at very short separations (ρ = 4 mm) in the CW domain while being able
to recover relative errors at even shorter separations, which is inline with previous research [172].
We investigated two equations that seek to model the reflectance as just the flux or a combination
of the fluence and flux [85]. We have found that for CW measurements, using both the fluence
and flux (Eq. 5.8) provides more accurate results at shorter source-detector separations and smaller
values of g1(ρ, τ). This translated to better recovered error (Fig. 5.5 c and d) at shorter separations,
however this did not provide better error for source-detector separations longer than 1 cm. On the
other hand, we did not find any significant differences between the two reflectance models when
computing the TD autocorrelation. At short source-detector separations (≈ 2 mm), we found the
time-domain model could be used more freely to model g1(τ, ρ, t) when selecting for later arriving
photons t > 0.5 ns (Fig. 5.4).

One of the primary reasons to use a layered model is the ability to recover and separate both
extracerebral and cerebral flow changes. In the CW domain, the diffusion theory model was able to
recover SBF within 10% of the Monte Carlo simulations for source-detector separations between
0.4 and 3 cm (Fig. 5.5c). The error slightly increases as we increase in source-detector separation
which can be explained by the decrease in sensitivity to SBF at longer distances (Fig. 5.8a). On
the other hand, increasing the source-detector separation rapidly improved the estimates of CBF
which was recovered within 10% for ρ > 2 cm. Perhaps most interesting is the rate at which
the error improves (Fig. 5.5d) in recovered CBF as we increase ρ, which could be explained by
the rate at which the sensitivity to CBF increases. In Fig. 5.8b, we see an almost logarithmic
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growth in sensitivity in the CW domain where a rapid rise in sensitivity is seen as we increase ρ

up to 2 cm with just a smaller marginal increase after. We briefly considered a simplified noise
model applied to both the CW and TD in Fig. 5.8. Although we showed steady improvements in
recovered CBF at longer distances with no noise, adding noise can significantly affect sensitivities
as we increase source-detector separation and decrease the measurement duration. Therefore, the
marginal increase in recovered accuracy at longer source-detector separations and the decrease
in expected sensitivity due to noise suggests that there is an optimal distance for measurement.
In other words, the optimal distance will be after a large gain in sensitivity but short enough to
maintain adequate signal to noise.

TD-DCS provides potential for better sensitivity to deeper tissues, and therefore CBF, by se-
lecting for later arriving photons [160]. When considering just g1(τ, ρ, t), we also demonstrated
the larger sensitivity to CBF when compared to CW g1(τ, ρ). Fig. 5.6d shows that the TD is able
to recover CBF within less than 5% error between source-detector separations of 0.5 and 2 cm. A
primary advantage is even using relatively short time windows of 0.5 and 1.5 ns contrast to CBF
is still high. As shown in Fig 5.8b, using very late time windows doesn’t substantially increase the
CBF sensitivity. This is experimentally important as using shorter time windows improves signal
to noise contrast, thus using moderate time gates (1-2 ns) could provide similar sensitivities to very
late gates while providing more contrast. Additionally, we found that the sensitivity and CBF re-
covery accuracy is mostly independent of the source-detector separation. We do note that the data
and sensitivities reported here are specific to the tissue geometry considered. Therefore, having
a larger extracerebral layer or higher scattering coefficients could influence these results. Finally,
making substantial claims on the ability of TD measurements to better quantify CBF compared to
CW is difficult [27]. In Fig. 5.8b, we show a theoretical comparison based on g1(τ) which does
show that TD measurements have a much larger sensitivity to CBF when ρ < 2.5 cm. However,
experimentally we measure g2(τ) which can be related to g1(τ) by the Siegert relation [43]. The
effect of β in the Siegert relation can dramatically affect the sensitivities of each domain to CBF
that we calculate in Fig. 5.8b and Fig. 5.8d [27, 28]. Therefore, comparing the CW and TD for
experimental measurements must consider the effects of the instrument response function, coher-
ence length, time gate, and noise. The simplified noise models we discuss in Fig. 5.8 must also
consider the effect of photon arrival time and gate width which we did not consider. Future stud-
ies will focus on more rigorous noise models and their effect within the inverse problem as well
as incorporating instrument response functions and finite coherence to properly compare absolute
sensitivity of CW and TD measurements.

We also found that the diffusion model in both the CW and TD showed a slight offset in re-
covered SBF as the absolute value of SBF approached that of CBF. However, we did not find that
this had any effect on recovered values of CBF. This could be explained by a more difficult in-
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verse problem when the two flow coefficients have similar values, however we did not observe any
crosstalk in the two coefficients as CBF was largely unaffected by these increased errors in SBF.
We also note the importance of absolute SBF values in sensitivity calculations. As SBF increases,
the sensitivity of both CW and TD g1(τ) become more sensitive to changes in SBF. We show a
typical physiological flow rate of SBF and CBF in Fig. 5.7 where SBF is a third of the speed of
CBF. In Fig. 5.7 we can see that every g1(τ) has some sensitivity to SBF even in the CW domain at
long source-detector separations (ρ = 4.5 cm) and in the time-domain at long delay times (t = 2.5

ns). This effect is more pronounced for higher SBF values, though if SBF was much less than a
third of CBF we would see less of a sensitivity to SBF. Although this fact is less important when
using layered models as they can more robustly model these changes, using homogeneous mod-
els will show variable sensitivities to both SBF and CBF depending on their absolute flow rates.
These findings suggest that more complicated models might be necessary even when selecting for
photons of longer pathlengths and larger source-detector separations.

5.6 Conclusion

We developed and verified a diffusion based layered analytical model that can be used to recover
estimates of both scalp and cerebral blood flow in real-time when using either continuous-wave
or time-domain diffusion correlation spectroscopy. Utilizing a reflectance model that uses both
the fluence and flux allows for absolute recovery of flow parameters at source-detector separations
as short as 4 mm whereas relative recovery was demonstrated down to separations of 2 mm for
continuous-wave measurements. The verified model was able to simultaneously recover SBF and
CBF within 5% of Monte Carlo simulations in under 10 ms and 250 ms in the continuous-wave
and time-domains, respectively allowing its use for real-time data analysis. All analysis tools are
openly available online [68].
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CHAPTER 6

Conclusion

6.1 Prospective and Future work

The broad goal of this thesis was to use noninvasive optical measurements to monitor and analyze
hemodynamics of deep biological tissue. Major focus was placed on monitoring the brain and
accounting for the contribution of surrounding superficial layers (e.g., scalp, skull, cerebrospinal
fluid). This problem is typically overcome in the experimental setup and/or during data analysis.
Experimentally, using multiple source-detector separations can vary the sensitivity to superficial
and deeper tissues [63]. Specifically, a short source-detector separation can be used that is sensitive
to only the extracerebral scalp layers. This channel can be analyzed to subtract out the sensitivity to
the shallow layers of the longer separation channel. Although the short channel can be positioned
to be strongly sensitive to just the shallow layers, the longer separation will always be composed
of the dynamics of all the layers limiting the depth sensitivity of optical measurements.

Alternatively, time-domain measurements can be used to select for later arriving photons that
increase sensitivity to deeper tissue [186]. Time-domain depth sensitivity is not dependent on
the source-detector separation but the delay time of the measurement. However, both approaches
are strongly limited by experimental noise which limits optical measurements to source-detector
separations less than several centimeters (< 4 cm) [140]. Additionally, the multi-distance and
time-domain approach cannot completely separate the effect of depth dependent optical changes
when using a homogeneous model.

Time-domain reflectance spectroscopy

In Chapters 2 and 3, the time-domain approach was given significant consideration. One of the
main drawbacks to time-domain systems, excluding cost, size, and setup complexity, is the neces-
sity to account for the system’s instrument response function. Theoretically, the detected measure-
ment is simply a convolution of the IRF and the impulse response of the tissue but practically the
IRF is difficult to measure. First, the IRF is a function of wavelength and detector channel so must
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be independently measured for each wavelength and channel used experimentally. The IRF can
change size and temporal position relative to the time the pulse enters the medium which was the
focus of both Chapters 2 and 3.

Usually the forward model is developed in relation to a delta function starting at time t = 0.
Experimentally, t = 0 corresponds to the time the pulse enters the medium. To analyze each time-
resolved measurement, the time the pulse enters the medium has to be precisely known (within
a couple of picoseconds). Practically, it is not possible to measure this for each measurement so
a single measurement is taken before the experiment which is used for all subsequent data. The
supercontinuum source used in this thesis was measured to be very stable as judged by analyzing
IRF time scales before, immediately after, and several months after an experiment. However, even
with this assumption holding true, it is difficult to precisely calibrate the start time when the probe
is in reflectance geometry. Measurement of the IRF is done by reflecting the pulse from the source
fiber into the detecting fiber while making sure to fill all of the modes of the detecting fiber. The
finite distance that the pulse has to travel outside of the optical fibers results in a shift of the time
scale that does not occur during experimental measurements when the source fiber is in direct
contact with the medium. Therefore, this time shift must be accounted for in all measurements
when using the measured IRF.

Much of Chapter 2 and 3 focused on the goal of avoiding this direct measurement and assuming
that the time scale was unknown. The biggest difficulty with this approach is that the start time
and temporal position of the detected signal strongly correlates with the scattering coefficient.
In other words, the scattering coefficient determines the width and delay of the pulse where the
absorption coefficient determines the slope of the later arriving photons. Removing information
about the delay time of the pulse makes the inverse problem more difficult as there are now more
combinations of µa and µ′

s that could reasonably fit the measured data. Therefore, a different
constraint on µ′

s was developed using relative peak time distances.
The challenge is that the photon count rate around the peak is not always smooth and prone to

noise so it is difficult to precisely measure. Measurements are collected with a finite time bin width
> 10 ps, but the peak time needs to be determined more accurately which requires interpolation of
sparse points to a finer grid. Using barycenters of the measured pulse would be more stable but the
later arriving photons contain more information about the absorption coefficient so the barycenter
becomes a looser constraint on µ′

s than the peak time. Additionally, early photons like the peak
time are less accurately modeled with diffusion theory which require the use of MC lookup tables
to determine the peak time difference. At this point, the analysis no longer becomes an elegant and
simple way to analyze time-resolved measurements.

Other approaches were also considered that avoided lookup tables altogether. Considering an
additional parameter that could shift the time scale during the optimization is a promising approach
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at the cost of slightly weakening the fits (i.e., fitting for three parameters increases the complexity
of the fitting procedure). Ideally, this time shift parameter could be constrained as much as possible
considering the setup of the IRF measurement which could improve fit quality. In practice, this
method is the simplest as it requires no calibration with other known phantoms, no generation of
lookup tables, and can accommodate any uncertainty in the IRF temporal position. An alternative
approach, which was not considered, may incorporate the advantages of each approach. It may
be expedient to fit all the measured source-detector separations simultaneously. Two different
approaches could be used in this process: (a) shift the start time of the shortest separation channel
to zero while shifting the longer channels the same amount (b) use the free-fitting time shift when
fitting all channels on their absolute time scale. Both approaches operate on the premise that
the IRF uncertainty only affects the absolute time scale but the relative time scale between source-
detector separations is accurate. However, it is still recommended to measure the temporal position
of the IRF as carefully as possible to avoid any of these approaches. These approaches were never
shown to match the accuracy of results with no uncertainty in the temporal position.

Multi-layer modeling

In Chapters 4 and 5, accounting for the differences in superficial and deeper tissues using a multi-
layered diffusion analytical model was investigated. Multi-layer models have received some atten-
tion in the past as they are a natural extension of the widely popular semi-infinite diffusion model
[153]. Broad adoption of these analytical models has been limited by their increased implementa-
tion complexity, numerical instability, increased computational time, and complex/noisier inverse
problem. Some of these issues can be solved by using more computational resources but the ben-
efit of using diffusion based approaches compared to numerical Monte Carlo methods for layered
tissues become less enticing when their analysis times approach similar orders of magnitude. This
has led other researchers [184] to prefer Monte Carlo modeling to diffusion theory. For example,
time-domain diffusion models in layered media are typically reported to take between 0.5-1 sec-
onds where the fastest MC results can be computed in several seconds [59, 183]. Of course, these
times compare computing analytical solutions on simple desktops to the highest end GPUs and
computing systems. However, the advantage of the MC method is it can handle complex shapes
and real anatomical data where analytical methods are limited to planar parallel slabs.

At this point, it is important to consider the potential clinical application of the optical tech-
nology. The demand of analysis tools will depend on how long data can be acquired for and how
fast the information is needed. Existing clinical optical technologies mostly rely on simpler ho-
mogeneous models as they are fast and reasonably accurate for geometries used in pulse oximetry.
However, brain monitoring requires the use of more advanced data modeling [153]. Monte Carlo
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methods may be adequate when diverse data can be acquired to deliver subject-specific models.
For example, complex meshes based on subject’s MRI scans allow for the MC method to sim-
ulate photon propagation through the subject with a high degree of accuracy [153]. An inverse
approach using a multi-layered, Monte Carlo based fitting scheme was used to improve estimates
of cerebral blood flow compared to traditional analytical fits [184]. This type of approach is highly
advantageous for subject-specific models where the shape and thickness of each optical layer of
the patient can be measured before and incorporated in the model. This type of care is slow, costly,
and still requires constraints on the tissue optical properties and flow rates of other layers to limit
the high dimension inverse problem. The advantage of MC over the layered based model’s is pri-
marily the inclusion of head curvature and the ability to simulate light transport in low scattering
media such as the cerebrospinal fluid layer. In this work, we have shown that even in the presence
of an embedded low scattering layer that diffusion theory can well approximate the RTE. Future
research should focus on the degree of approximation necessary to deliver highly accurate and ef-
ficient results of brain hemodynamics. The semi-infinite approximation has been shown to be too
crude but there has been some evidence that increasing the degree past a multi-layered model to a
high dimension mesh may not be needed [153]. Particular focus should be given on the degree of
curvature as a function of source-detector separation. All of these approaches should consider the
trade off between more accuracy and data processing speed.

Ignoring the approximate geometries, the layered solutions still present some numerical diffi-
culties. Typically they require evaluation of fractions including hyperbolic terms. When designing
a numerical algorithm, premature overflows occur when the program returns infinity but the final
solution can be represented in the desired precision. For example, dividing two large numbers
such as 1 × 10400/1 × 10200 should return 1 × 10200. However, 1 × 10400 can not be represented
in double precision so the program either returns an error or converts it to infinity. The other
case is when both numbers in the fraction are infinity which prompts the program to return not
a number (NaN) which usually occurs more frequently in the layered solutions as both numera-
tor and denominator go to infinity. This phenomena occurs often because we must numerically
transform these functions which require evaluation at large inputs. For example, sinh(x) overflows
for argument x >≈ 710. For simple cases like calculating exp(x)/ exp(y) overflow can usually
be avoided by just computing exp(x − y) instead. This becomes more complicated with more
terms that add, subtract, and then divide many exponential terms. The developed programs and
mathematical formulas were developed and coded with these considerations in mind while also
further simplifying expressions to reduce computational time. Further optimizations are available,
however, the largest performance gain will come from the exploration of vector instructions. The
summations in the numerical transforms are amendable for vectorization and utilization of single
instruction, multiple data (SIMD) instructions. This was partly explored and showed a decrease
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of roughly 50 % in the total computational time. However, this approach requires a good vector
implementation of the Bessel function which is more difficult. Additionally, more aggressive fast
math operations were also investigated that showed minimum improvement in the steady-state do-
main while giving moderate improvement (10-20 %) in the time-domain. This can be explained by
the larger increase in speed of complex arithmetic in fast math mode due to avoiding the handling
of over and underflow. These type of optimizations could be further investigated to improve the
performance of the algorithms further.

Additionally, future work should focus on the practical utility of the developed models for clin-
ical analysis. The advantage of the described approach is the broad utility and practicality in sev-
eral existing optical technologies in many domains of high interest (e.g., temporal and spatial do-
mains). Existing commercial systems have primarily focused on increasing signal-to-noise while
employing a homogeneous model. These simpler models have been shown to be highly sensitive
to superficial tissues [153] but incorporating the presented model into these existing technologies
could help improve the depth sensitivity to deeper brain tissues without using more complicated
or expensive hardware. Therefore, the model should be embedded into existing technologies to
improve contrast to deeper tissues. Chapter 5 demonstrated this capability in a narrow problem
without noise considering fitting just two parameters. In practice, the thicknesses and scattering
properties of the layers may not be known and incorporating a more complex inverse fitting scheme
may be required. Finally, significant consideration to standardization and calibration across optical
systems should be considered. All of the data analysis algorithms are provided open-source to help
overcome some of the ongoing challenges in optical technologies for gold standard characteriza-
tion of biological tissues.

6.2 Summary of major contributions

Chapter 2

• Construction of a time-domain diffuse optical spectroscopy system to recover tissue optical
properties within 15 % of baselines

• Development of a heuristic approach to quickly quantify µ′
s from turbid media without

knowledge of the absolute time scale of measured data

Chapter 3

• Extended analysis method developed in Chapter 2 to estimate both µ′
s and µa from time-

resolved reflectance measurements on relative time scales within 10 % of baseline values
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• Recovered absolute values of optical properties in the presence of errors in the time scale of
the instrument response function

Chapter 4

• Developed an open-source and fast numerical routine to compute the steady-state, frequency
domain, and time-domain fluence in a layered medium with an arbitrary number of layers

• The routine is an estimated 3 to 4 orders of magnitude faster than previously reported solu-
tions

• Approximate solutions were also developed that can speed up solutions by an additional
10-100 times in high scattering media

• Validated model against Monte Carlo simulations in geometries of high clinical interest
showing that the diffusion approximation is a good approach to model light transport through
muscle and brain tissue

Chapter 5

• Developed an open-source and fast numerical routine to compute the continuous-wave and
time-domain DCS signal in a layered signal

• The model was used in inverse problems to fit data at a rate of 100 Hz and 4 Hz in the CW-
and TD-DCS showing for the first time using a layered model to fit TD-DCS data.

6.3 Summary of other published work

This dissertation contained reprints of my first author published peer-reviewed work [70, 75, 72,
74]. In addition, a contribution as coauthor to other peer-reviewed work was also made [92] which
focused on developing and combining diffuse correlation spectroscopy and diffuse reflectance
spectroscopy in a portable and compact way to quantitatively monitor blood perfusion. My pri-
mary contribution to this work was in analysis of the DCS measurements and bench-top validation
of the instrument using optical phantoms. Many conference proceedings were also contributed
as first author [73, 76, 69, 71] and co-author [117, 179, 135, 136, 91] which contain supporting
details to the peer-reviewed work. Finally, much of the developed software is available open-
source for diffuse optics (https://github.com/heltonmc/LightPropagation.jl), inverse Laplace trans-
forms (https://github.com/heltonmc/Laplace.jl), and for computing special mathematical functions
(https://github.com/JuliaMath/Bessels.jl).
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APPENDIX A

Light Diffusion in Homogeneous Medium

The numerical implementations of solutions to the diffusion equation for homogeneous semi-
infinite and slab media are discussed. The development of more accurate solutions is required
for use in the approximate solutions derived for layered media in Chapter 4. Cancellation can oc-
cur when subtracting particular and homogeneous solutions of the layered equations resulting in
loss of relative tolerance. Therefore, it is necessary to develop a code to compute the semi-infinite
solution with as much accuracy as possible. Some of these techniques were also used in the de-
velopment of the layered code and have broad applicability to any translation of mathematical
formulas to computer implementations.

The following contains just the salient techniques used to code the semi-infinite and slab solu-
tions for steady-state sources. These techniques can also be applied to the time-domain solutions
as they have similar structure. Code snippets will be shown for these simpler cases to highlight
the technique, however, the full code for time-domain solutions in more domains can be found at
https://github.com/heltonmc/LightPropagation.jl.

The Green’s function solution to the steady-state diffusion equation [109] in a media bounded
by parallel planes (i.e., slab) is

Φ(r⃗) =
1

4πD

m=+∞∑
m=−∞

{
exp(−µeff

√
ρ2 + (z − z+m)

2)√
ρ2 + (z − z+m)

2
−

exp(−µeff

√
ρ2 + (z − z−m)

2)√
ρ2 + (z − z−m)

2

}
(A.1)

where r⃗ is the position vector, ν is the speed of light in the medium, and t is the time. µ′
s,

µa, and D ∼= 1/(3µ′
s) are the reduced scattering coefficient, absorption coefficient, and diffusion

coefficient, respectively. The sources are placed along the z-axis with locations z+m = 2m(s +

2zb) + z0 and z−m = 2m(s + 2zb)− 2zb − z0 with zb = 2AD and z0 = 1/µ′
s. s is the thickness of

the slab between the bounded parallel planes.
The solution is obtained through the method of images using an extrapolated boundary condi-

tion where we assume the fluence equal to zero on on an extrapolated surface 2AD. The semi-
infinite medium (s = ∞) is a special case requiring only the first dipole (m = 0). The following
code is a naive implementation of the semi-infinite solution.
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Listing A.1: Naive implementation for the CW fluence in a semi-infinite medium

function fluence_DA_semiinf_CW(r, mua, musp; z = 0.0)

mueff = sqrt(3 * mua * musp)

D = 1 / (3 * musp)

z0, zb = 1 / musp, 2 * D

phi = exp(-mueff * sqrt(rˆ2 + (z - z0)ˆ2))

/ (sqrt(rˆ2 + (z - z0)ˆ2))

phi -= exp(-mueff * sqrt(rˆ2 + (z + 2 * zb + z0)ˆ2))

/ (sqrt(rˆ2 + (z + 2 * zb + z0)ˆ2))

return phi / (4 * pi * D)

end

Numerical implementations of method of image like solutions must be examined to limit float-
ing point errors. In particular, subtracting terms of similar magnitude (the dipole term) can lead to
cancellation. This error will increase as the terms z+m and z−m become similar and can be examined
by comparing the results computed in higher precision to those obtained in double precision. The
absolute error can be quantified by taking the absolute difference, abs. error = |ybig − ydouble|, of
the computed values while the relative error rel. error = |1− ybig/ydouble| can be used to estimate
approximately the number of digits of accuracy. In general, we are more interested in the relative
errors while absolute error can be useful in functions that oscillate around zeros.

Fig. A.1 shows the computed fluence on the top boundary (z = 0) in a semi-infinite medium
with constant µa = 0.1 cm−1 for three µ′

s = 10.0, 50.0, 1000.0 cm−1. The absolute and relative
errors compared to the computation done in octuple precision are shown in the below plots.

The resulting fluence (top plot on log scale) decreases significantly for larger scattering coeffi-
cients while the absolute error (middle plot) decreases proportionally. The main feature is that as
the scattering coefficient increases the terms z+m ≈ z−m become similar leading to potentially more
cancellation. This is shown more explicitly in the relative errors (bottom plot) which are between
10−14 − 10−13 and 10−10 − 10−9 for µ′

s = 10 and 1000 cm−1, respectively. The exponent of the
relative error corresponds to roughly the number of digits of accuracy retained where a relative
error near ≈ 2×10−16 corresponds to a perfectly rounded result (i.e., the computation suffers from
no floating point errors).

It is important to consider what tolerances are desirable for the specific application. Though
not always true, any improvement in the numerical accuracy will come at some cost either in
development time or computational efficiency. The user only experiences increased runtimes but
at the gain of extra precision in the results where the development time is a single upfront cost. In
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Figure A.1: (top) Steady-state fluence calculated in high precision for a semi-infinite medium with
three scattering coefficients. The (middle) absolute and (bottom) relative error between the naive
implementation and higher precision routine.

this case, for µ′
s = 10 cm−1 the accuracy is better than 1 part per trillion which is vastly superior

to any experimental uncertainty. Therefore, the consideration must be at what point does the result
become catastrophic.

Usually it depends what the results of the computation are used for. Is that the final number?
Do we need that number in other computations? A good example of this is when we compute the
solution to the slab. Now, many of these dipole sources must be infinitely summed. Of course in
practice this sum is rapidly convergent (≈ 5 terms) and cancellation is minimal as each successive
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term is orders of magnitude less. The following is a naive implementation of the slab solution.

Listing A.2: Naive implementation for the CW fluence in a slab medium

function fluence_DA_slab_CW(r, mua, musp; z = 0.0, s = 1.0, xs = 30)

D, z0 = 1 / (3 * musp), 1 / musp

zb = 2*D

mueff = sqrt(3 * mua * musp)

return _sum_fluence_DA_slab_CW(xs, s, zb, z0, r, z, mueff, D)

end

function _sum_fluence_DA_slab_CW(xs, s, zb, z0, r, z, mueff, D)

phi = zero(eltype(mueff))

for m in -xs:xs

phi += _kernel_fluence_DA_slab_CW(m, s, zb, z0, r, z, mueff)

end

return phi / (4 * pi * D)

end

@inline function _kernel_fluence_DA_slab_CW(m, s, zb, z0, r, z, mueff)

tmp1 = 2 * m * (s + 2 * zb)

zmp = tmp1 + z0

zmm = tmp1 - 2 * zb - z0

a = sqrt(rˆ2 + (z - zmp)ˆ2)

b = sqrt(rˆ2 + (z - zmm)ˆ2)

phi = exp(-mueff * a) / a

phi -= exp(-mueff * b) / b

return phi

end

The implementation is fairly straightforward and just an extension of the semi-infinite solution
to sum over many source terms. Following a similar error analysis performed for the semi-infinite
medium, we show the fluence, absolute error, and relative error in a slab medium on the top sur-
face (z = 0) in a medium of constant absorption µa = 0.1 with three scattering coefficients
µ′
s = 10, 50, 100. In this case we considered a slab thickness of 0.5 cm and used 50 terms in the
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summation.
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Figure A.2: (top) Steady-state fluence calculated in high precision for a slab medium with three
scattering coefficients. Faint lines show the calculation in double precision where solid lines show
computation in higher precision. The (middle) absolute and (bottom) relative error between the
naive implementation and higher precision routine.

In the top plot of figure, the fluence is shown including both the fluence calculated in higher
precision (dark lines) and the fluence calculated in double precision (faint lines). Here, we begin to
see a deviation between computed results at smaller values. The absolute error is still decreasing (at
a slower rate than the fluence) but the relative errors dramatically increase as a function of source-
detector separation. Now instead of errors better than one part per trillion there are instances where
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not a single digit of accuracy is retained.
Now, of course, a specific example was chosen to highlight this fact as small slab thicknesses

(< 1 cm) are particularly prone to high numerical errors. It may not be obvious why that is the
case but it is important to note that the scattering coefficient did not have the same effect on the
relative errors as it did in the semi-infinite case. The thickness s only appears in the calculation of
the source locations z+m and z−m similar to the scattering coefficient but the value does not affect the
difference in value of the computed terms like the scattering coefficient. So the original observation
that these two terms become similar leading to more cancellation does not apply. In fact, if we
are summing positive terms each with their own error of 14 digits and each consecutive term is
decreasing we do not expect the error to increase as dramatically shown in the figure.

So what is going on here? Physically, it might help to consider the relation between the semi-
infinite model and the slab model. Remember that the semi-infinite model is a special case cor-
responding to just the m = 0 term which has no dependence on the slab thickness s. Therefore,
the expression corresponds to computing the semi-infinite solution and then subtracting the loss of
light from the finite s. As s gets smaller, the loss of light becomes larger and the medium becomes
less semi-infinite. However, because the computed term m = 0 doesn’t depend on s the value of
the summation considering all the terms besides m = 0 starts to approach the value of just m = 0

which must be subtracted. Even if we can compute the difference of individual dipoles exactly we
are still limited by the final subtraction of all the terms from m = 0.

Is there anything we can do about this? Bringing the attention back to the semi-infinite case
where the problem can be pretty easily simplified. We must essentially compute e−ax/a− e−bx/b

as accurately as possible with a and b of similar value. Each individual exponent can be computed
fairly exactly so it is the subtraction that must be avoided. However, the rounding of each term
before the subtraction leads to the error. We can avoid this by rearranging the formula through
factoring into a relation that tries to compute the terms before any rounding occurs. Essentially,
we must have some way of looking at the difference of a − b before computing the exponent of
individual values. One implementation is as follows by factoring out terms and using the expm1
function along with fused multiply adds.

Listing A.3: Improved implementation for the CW fluence in a semi-infinite medium

function fluence_DA_semiinf_CW(r, mua, musp; z = 0.0)

mueff = sqrt(3 * mua * musp)

D = 1 / (3 * musp)

z0, zb = 1 / musp, 2 * D

return _kernel_fluence_DA_semiinf_CW(mueff, r, z, z0, zb, D)

end

function _kernel_fluence_DA_semiinf_CW(mueff, r, z, z0, zb, D)
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a = hypot(r, z - z0)

b = hypot(r, z + 2 * zb + z0)

# the following tries to compute phi = exp(-mueff * a) / a - exp(-

mueff * b) / b more accurately

# h also tries to compute h = b - a more accurately

h = 4 * (z0 * z + z0 * zb + z * zb + zbˆ2) / (a + b)

phi = exp(-b * mueff) * fma(b, expm1(h * mueff), h) / (b * a)

return phi / (4 * pi * D)

end

The previous code listing contains some key differences from the first implementation of the
semi-infinite fluence. One is the particular absence of any subtractions. The subtraction is embed-
ded within the expm1 function which computes ex − 1 with a polynomial approximation avoiding
any loss of significance from the subtraction for small values of x. Another difference is using the
hypot function to compute

√
|x|2 + |y|2 more accurately while avoiding underflow. This change

affects the final outcome less because we are only using it to compute the product and sum of two
hypotenuses which is not a major source of error. However, this is due to being able to analytically
compute the difference of hypotenuses (through conjugation) analytically as a sum of different
terms instead of having to compute the differences of square roots. Fig. A.3 shows a comparison
between the improved version and initial naive implementation considering a similar setup with
µ′
s = 100.0.

This method suffers from almost no cancellation giving results that are between 4-5 digits more
accurate. It is important to note the performance differences as the naive and improved version run
in roughly 110 and 135 clock cycles which takes roughly 30 and 37 nanoseconds, respectively, to
compute the fluence at a single time point. This is roughly 23 % slower to gain around 4-5 digits
more accuracy. This trade off is most of the time worth it.
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Figure A.3: (top) Steady-state fluence calculated in a semi-infinite medium computed with the
improved and naive implementation. The (middle) absolute and (bottom) relative error between
the naive and improved implementation compared to the higher precision routine.
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APPENDIX B

Inverse Laplace Transforms

A brief comparison of the Fourier and Laplace transform will be presented using the infinite space
Green’s function. This function is used because the numerical inversion can be directly compared
to its known analytical form. Additionally, solutions in other geometries such as the semi-infinite
and layered solutions present similarly.

The significance of this discussion is that analytical solutions in the time-domain are limited to
relatively simple geometries such as infinite, semi-infinite, and slab geometries. In layered media
or in higher order solutions to the radiative transport equation, analytic solutions are not easily
derived relying on numerical transforms for computation given a known solution in the spatial or
spatial-frequency domain.

The predominate way to perform the transform from the frequency domain to the time-domain
is of course the Fourier transform given below.

f(t) =
1

2π

∫ ∞

−∞
F (ω)eiωtdω (B.1)

Therefore, the time-domain infinite space Green’s function can be calculated by numerically
performing the Fourier transform of the frequency domain solution. A simple computer code to
compute this using adaptive 1-D Gauss-Kronrod quadrature is as follows.

Listing B.1: Code to compute the Fourier transform with adaptive numerical integration

fluence_DA_inf_CW(rho, mua, musp) = 3 * musp * exp(-sqrt(3 * musp * mua

) * rho) / (4 * pi * rho)

function fluence_DA_inf_FD(rho, mua, musp; omega = 0.0)

mua_complex = mua + omega * im / 29.9792458

return fluence_DA_inf_CW(rho, mua_complex, musp)

end

# using the external library QuadGK.jl

using QuadGK
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TD_fluence_fourier(t, rho::T, mua::T, musp::T; rtol=sqrt(eps(T)),

maxevals=1e7) where T = real.(quadgk(omega -> 1/pi * exp(im*omega*t)

* fluence_DA_inf_FD(rho, mua, musp; omega = omega), zero(T), T(Inf)

, rtol=rtol, maxevals=maxevals)[1])

Considering a simple example with ρ = 1 cm, µa = 0.2 cm−1, and µ′
s = 12.0 cm−1, we can

compare the absolute and relative error of the numerical inversion of the Fourier transform to the
exact analytical solution in Fig. B.1

In this example we considered the error as a function of time t ∈ (0.01, 5.0) using different num-
bers of Fourier space evaluations during the numerical transform N = 500, 5000, 50000, 5000000.
First, a large number of evaluations (N > 5, 000) are required to reach absolute errors below
1 × 10−8 whereas over 50, 000 evaluations are needed to reach absolute errors below 1 × 10−15.
The nature of these transforms which evaluate functions at many different orders of magnitude
in inputs limit the absolute error to a minimum of the machine precision. Therefore, to achieve
absolute errors below ≈ 2× 10−16, higher precision is needed.

Alternatively, the inverse Laplace transform can be used which has the promise of forcing a
more rapid decay of the integrand [89].

F (s) :=

∫ ∞

0

e−stf(t)dt, Re(s) > σ0 (B.2)

where F (s) is computable on the real axis only and σ0 is the abscissa of convergence of F (s).
Using a Bromwhich contour along a hyperbola, we can compute the time-domain signal from the
Laplace space [106].

Listing B.2: Code to compute the inverse Laplace transform along a hyperbola contour

function hyperbola(f::Function, t::T; N::Int = 16) where T

a = zero(Complex{T})

h = T(1.081792140) / N

for k in 0:N-1

sk, dsk = s((k + T(0.5)) * h, N, t)

a += f(sk) * exp(sk * t) * dsk

end

return imag(a) * h / pi

end

function s(theta, N, t::T) where T

mu = T(4.492075287) * N / t
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Figure B.1: (top) Time-domain fluence computed with the exact analytical solution. The (middle)
absolute and (bottom) relative error between the numerical Fourier transform using a different
number (N) of terms and the exact analytical solution computed in higher precision.

phi = T(1.172104229)

a = theta + im * phi

s = mu + im * mu * sinh(a)

ds = im * mu * cosh(a) # derivitive of hyperbola contour

return s, ds

end

# use the solution in the steady-state space
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t = 0.5:0.5:5.0

y1 =map(t -> hyperbola(s -> fluence_DA_inf_CW(rho, mua + s /

29.9792458, musp), t, N=12), t)

In Fig. B.2, the example used for the Fourier transform is repeated but this time only using
N = 4, 8, 16, 24 Laplace space evaluations for the numerical inversion of the Laplace transform.

In this case, the absolute error is relatively flat across all time points while being a function of
the number of evaluations used. Similarly to the Fourier transform a the absolute error is lower
bounded by the machine precision of the calculation. Increasing the number of evaluations beyond
this point does not improve the error. In general, there is an optimal number of evaluations and in-
creasing past this point actually increases the error. The big difference is that the Fourier transform
requires over 3,000 times more evaluations than the inverse Laplace transform to reach the same
minimum absolute error.
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Figure B.2: (top) Time-domain fluence computed with the exact analytical solution. The (mid-
dle) absolute and (bottom) relative error between the numerical inverse Laplace transform using a
different number (N) of terms and the exact analytical solution computed in higher precision.
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APPENDIX C

Bessel Functions of the First Kind

The implementation of the layered diffusion approximation included a custom routine to
compute the Bessel function of the first kind and zero order, J0(x), which is available at
https://github.com/JuliaMath/Bessels.jl. As mentioned in Chapter 4, this function must be com-
puted several hundreds to thousands of times and can require over 60 % of the total runtime. The
original implementation of J0(x) was derived from FDLIBM and was accessed through openlibm
(https://github.com/JuliaMath/openlibm).

A new implementation of J0(x) was developed following the methods given in [66]. This
approach works by using asymptotic expansions for large arguments and custom minimax polyno-
mials around the function zeros for moderate arguments. In Fig. C.1, the absolute error between
the two routines is shown when compared to an arbitrary precision routine for 100,000 random
points between 0 and 200. The error is normalized by the machine precision (eps). The absolute
error here is relevant as the function oscillates around zero and is always less than 1. This routine
maintains better absolute error criteria than FDLIBM with a maximum error of ≈ 1.06 × 10−16.
The full distribution of the errors for all 200 points is shown in Fig. C.1. For all these comparisons
Julia v1.8.2, Bessels.jl v0.2.7, and SpecialFunctions.jl v1.8.7 were used with a Linux (x86-64-
linux-gnu) operating system and a CPU of an Intel Core i7-8700k 3.70 GHz.

As mentioned in Chapter 4, the computation of the Bessel function limits the routine to absolute
errors approaching the machine precision. This is not indicative of a poor quality implementation
of the Bessel function but that rounding of arguments before computing the Bessel function limits
the overall accuracy. This can not be avoided unless all computations are done in higher precision
as the loss of relative accuracy in the Bessel function propagates through the result.

Next, we compare the runtime to compute a Bessel function for each implementation. The
benchmarking code is included in the following listing which mimics the structure of the layered
diffusion code by accumulating a sum of random Bessel function computations. There are two
instances that should be checked as it can be controlled in what order the arguments of the Bessel
function are computed in. For example, the roots of the Bessel function are stored in order, there-
fore the argument will always be increasing. This is important as the Bessel function has different
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routines depending on the argument range where the asymptotic expansion for large arguments is
much more efficient. This consideration is important to improve the accuracy of branch prediction
in the algorithm

Figure C.1: Comparison of the error between a custom implementation (Bessels.jl) and the imple-
mentation provided by FDLIBM for computation of the Bessel function of the first kind and zero
order, J0(x).

Listing C.1: Benchmark for J0(x)

function bench(f; N=50000000, Order=false)

v = rand(N)*200

if Order

v = sort(v)

end

a = 0.0

tstart = time()

for _x in v

a += f(_x)

end
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tend = time()

t = (tend-tstart) / N * 1e9

return t, a

end

julia> bench(Bessels.besselj0)

(26.881136894226074, 235817.69395194543)

julia> bench(SpecialFunctions.besselj0)

(59.89438056945801, 238316.6774025267)

julia> bench(Bessels.besselj0, Order=true)

(16.909656524658203, 235914.11526594945)

julia> bench(SpecialFunctions.besselj0, Order=true)

(52.68270015716553, 235795.06369727102)

Averaging the results, its takes approximately 27 nanoseconds and 17 nanoseconds on average
to compute a single Bessel function over an unsorted and sorted array, respectively. For comparison
the FDLIBM routine takes approximately 60 and 53 nanoseconds corresponding to the custom
implementation being 2.2 times and 3.1 times faster.
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[57] Louis Gagnon, Michėle Desjardins, Julien Jehanne-Lacasse, Louis Bherer, and Frédéric
Lesage. Investigation of diffuse correlation spectroscopy in multi-layered media including
the human head. Optics express, 16(20):15514–15530, 2008.
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Herbert Rinneberg. Evaluation of optical properties of highly scattering media by moments
of distributions of times of flight of photons. Applied optics, 42(28):5785–5792, 2003.

[100] Adam Liebert, Heidrun Wabnitz, Jens Steinbrink, Hellmuth Obrig, Michael Möller, Rainer
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