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ABSTRACT

To draw rigorous conclusions from scientific data, Bayesian statistics requires computationally
efficient methods for posterior inference as well as models that are both flexible and interpretable.
This dissertation investigates the use of Bayesian methods in cases with both mechanistic and
data-adaptive models. Mechanistic models are based on an interpretable understanding of the
underlying process that generated the data, whereas data-adaptive models can adapt to unknown
structure in the data but are often black-boxes that lack interpretability.

In the first half of this dissertation, we develop two methods for efficient and scalable Bayesian
inference for well-understood mechanistic models. In the second chapter, we present a mechanistic
state-space model of Argo float trajectories called ArgoSSM. ArgoSSM utilizes a physical model
of floats’ movement and incorporates daily ice-cover images and potential vorticity information
to infer the missing locations of Argo floats while under ice in the Southern ocean. Inference is
achieved by developing an efficient proposal distribution within sequential Monte Carlo (SMC).
In the third chapter, we present the Bayesian Light Source Separator (BLISS), a new probabilistic
method for detecting, deblending, and cataloging stars and galaxies. BLISS utilizes a mechanistic
model for the placement of stars and galaxies and a deep generative model of galaxy shapes. By
training neural networks via Forward Amortized Variational Inference (FAVI) for posterior infer-
ence, BLISS can perform fully Bayesian inference on megapixel images in seconds and produce
highly accurate catalogs.

The latter two chapters of this dissertation describe methods that provide interpretable results
while maintaining the flexibility of black-box data-adaptive models. In the fourth chapter, we
propose the ProbConserv framework for incorporating physical constraints into a black-box prob-
abilistic model. ProbConserv integrates the integral form of a conservation law into a Bayesian
update, with a detailed analysis provided on learning the challenging Generalized Porous Medium
Equation (GPME) family of partial differential equations. In the fifth chapter, we present FlowSe-
lect, a new method for controlled feature selection from black-box predictive models. FlowSelect
utilizes normalizing flows and a novel MCMC-based procedure to calculate p-values for each fea-
ture directly, demonstrating greater power and consistently controlling the false discovery rate
(FDR) compared to competing knockoff-based approaches. FlowSelect also correctly infers ge-
netic variants associated with specific soybean traits from GWAS data.
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CHAPTER 1

Introduction

In modeling scientific phenomena, ambiguities frequently arise which cannot be resolved with
available data. For example, in oceanography, Argo floats equipped with temperature and salinity
sensors can disappear under ice cover for months. In astronomy, an apparent bright object on
a telescope image could also be multiple dimmer objects that overlap visually. In genome-wide
association studies, neighboring genes are highly correlated making it challenging to tell which
gene is informative about the response.

By framing uncertainty and ambiguity in the language of probability, Bayesian methods offer
a compelling answer to the demands of scientific applications. In the Bayesian paradigm, the
practitioner specifies a generative model of the observed data and unobserved latent variables of
interest. Inference is achieved via the posterior distribution of the unseen variables conditioned on
the observed data. In this thesis, we explore two broad settings that differ in whether the generative
model is mechanistic or data-adaptive. In mechanistic models, the process that generated the
data is known and interpretable. For scientific applications, domain-awareness and interpretability
come naturally from the underlying mechanism, and the main challenge is solving the inference
problem of efficiently sampling the posterior distribution. We overcome this challenge either by
utilizing an efficient proposal distribution within sequential Monte Carlo (SMC) for inferring Argo
float trajectories in Chapter 2, or by carefully dividing an astronomical image into small “tiles” to
enable scalable amortized variational inference in Chapter 3.

In the latter two chapters, we use flexible neural networks to learn a data-adaptive genera-
tive model. Neural networks have recently achieved remarkable results in generating high-fidelity
examples of text and images (Vahdat and Kautz, 2020; Rombach et al., 2022). However, neu-
ral networks are black-boxes that lack the interpretability and domain-awareness of mechanistic
models, limiting their acceptance within the scientific community (Baker et al., 2019). We de-
velop two methods that address these limitations while maintaining the flexible power of neural
networks. In Chapter 4 we develop a method for enforcing conservation laws as a Bayesian update
to a black-box probabilistic model of physical functions. In Chapter 5 we develop a controlled
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feature selection method that makes use of any black-box predictive model, allowing practitioners
to interpret which features contain information about the response.

1.1 Bayesian generative models

In Bayesian inference, we formulate a generative model of the observed data x = x1:n and a latent
variable z = z1:m: 1

p(z, x) = p(z)p(x|z). (1.1)

The first density, p(z), is the prior, which describes the process in which the the unseen variable
z is generated. The second term, p(x|z), is the likelihood, which describes the distribution of the
data x conditional on a particular value of z. Inference is achieved via the posterior distribution
p(z|x); i.e. the distribution of the latent variable z conditional on the data x. The form of p(z|x)
follows from the application of Bayes’ rule to Equation 1.1:

p(z|x) = p(z)p(x|z)
p(x)

. (1.2)

Performing inference through the posterior distribution in Equation 1.2 has multiple advantages
compared to non-probabilistic methods. Bayesian inference encompasses uncertainty both from
epistemic sources, such as model uncertainty, and aleatoric sources, such as irreducible noise in the
data. Moreover, the posterior distribution in Equation 1.2 can be further updated with additional
information if it becomes available. In particular, this presents a principled way to seamlessly
incorporate different and possibly heterogeneous data sources containing information about z.

Classically, x and z are described by an interpretable, parametric model with an explainable
mechanism coming from the specific domain. In these mechanistic models, the latent variable z
represents an unknown quantity of interest, such as market volatility (Shephard, 1996), astronom-
ical catalogs (Regier et al., 2019; Liu et al., 2021), or states of infection in population (King et al.,
2008). In each respective example, x could be the market returns, astronomical image of the night
sky, or number of recorded infections in the population. We consider such mechanistic models in
the domains of oceanography and astronomy in Chapters 2 and 3, respectively.

With recent advances in the capability of neural networks, black-box generative models have
been proposed for the distribution of the data x. In this setting, neural network weights θ are set
to maximize the log-likelihood of the data log pθ(x). This deviates from a pure Bayesian setting
that encapsulates all unknown parameters and variables into z. In the case of the variational auto
encoder (VAE, Kingma and Welling (2019)), the latent variable z is low-dimensional and the prior

1Here, we borrow the notation of Blei et al. (2017), which is more familiar to the VI audience, but variable names
for may differ throughout different dissertation chapters.
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p(z) is set to follow an isotropic Gaussian distribution. A neural network, called the decoder, takes
z as input and outputs distributional parameters for pθ(x|z). The latent zi can be useful as a low-
dimensional representation for visualization and compression. The VAE is a non-linear analogue
to probabilistic PCA. In Chapter 3, we use a VAE to learn a low-dimensional representation of
galaxy shapes.

Black-box generative models are also useful for interpolating functional data without knowl-
edge of the underlying mechanics. In the neural process (Garnelo et al., 2018; Kim et al., 2019;
Louizos et al., 2019), the input data x ≡ (x1, y1) . . . , (xT , yT ) contains observations of a function
at particular input points, and z is a global state variable. Interpolation of the function at new inputs
is facilitated through the posterior distribution of z conditioned on observed data. In Chapter 4,
we use the attentive neural process (ANP, Kim et al. (2019)) to model physical systems of fluid
dynamics governed by partial differential equations with differing parameter values.

Finally, normalizing flows (Kobyzev et al., 2020) have recently emerged as a state-of-the-art
density estimation technique. Unlike the VAE and neural process, normalizing flows have no low-
dimensional latent variable. Instead, a normalizing flow is a deterministic, invertible mapping from
x to a random variable u of the same dimension with fixed distribution (Kobyzev et al., 2020). The
trained normalizing flow is a generative model of x, pθ(x), which can be used for Bayesian missing
data imputation. Specifically, if only part of x is observed, sampling the remaining components
of x follows the form of Equation 1.2. This forms the basis for our controlled feature selection
method in Chapter 5.

1.2 Posterior inference techniques

Unless a particular form for the prior and likelihood are chosen, the posterior distribution in Equa-
tion 1.2 is intractable. Thus, a method is needed to get an approximation. Formally, the goal of
any Bayesian inference is to calculate the expectation of a given function f : Rm → R over the
posterior distribution p(z|x):

E (f(z)|x) =
∫
f(z)p(z|x)dz. (1.3)

Quantities of interest such as the mean, variance, higher-order moments, median, and quantiles
arise from different choices of f . In most cases, there is no analytical solution to the above ex-
pectation, and there is no way to directly sample the posterior distribution. The gold standard for
Bayesian inference has been Markov chain Monte Carlo (MCMC). As the name implies, MCMC
constructs a Markov chain whose stationary distribution is the target p(z|x). MCMC is widely used
because the Cesaro average of f calculated over these draws converges almost surely to the target
expectation above under mild conditions (Smith and Roberts, 1993). However, this convergence
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can take a long time in high dimensions where neighboring draws of zi are autocorrelated.
In cases where z and x have a sequential structure, methods such as Sequential Monte Carlo

(SMC) can make use of this structure to more efficiently draw samples (Lopes and Tsay, 2011).
SMC is an extension of importance sampling. In importance sampling, samples are drawn from a
tractable proposal distribution, then reweighted with importance weights to match the intractable
target distribution. As the number of particles are increased, importance sampling is a consistent
estimator of the desired expectation (Owen, 2013). To avoid the distribution collapse that can occur
in high-dimensions, SMC works by targeting the distribution of zt at a particular time t given an
existing sample at time t − 1. New particles are drawn from a proposal distribution and then
reweighted and resampled based on importance weights from the true distribution. This procedure
produces consistent estimates as the number of particles increases. However, practical performance
hinges on the quality of the proposal distribution. In situations with a high signal-to-noise ratio,
lookahead strategies are necessary for good performance (Lin et al., 2013; Guarniero et al., 2017;
Naesseth et al., 2019). We develop such a strategy in our implementation of SMC in Chapter 2.

Variational Inference (VI) takes a different approach than MCMC and SMC. In VI, the goal is
to find a tractable distribution qϕ that minimizes the Kullback-Leibler (KL) divergence to p(z|x).
Finding the optimal parameter ϕ∗ is an optimization problem:

ϕ∗ = argminϕKL(qϕ(z)||p(z|x)),
= argminϕEqϕ(log qϕ(z)− log p(z|x)).

(1.4)

The KL divergence in eq. (1.4) is non-negative and zero if and only if p and qϕ are equal in distri-
bution. Since the density p(z|x) is not tractable, we cannot directly optimize eq. (1.4). However,
maximizing the evidence lower bound (ELBO) is equivalent to minimizing the KL divergence
(Blei et al., 2017):

ϕ∗ = argmaxϕEqϕ(log p(z, x)− log qϕ(z)). (1.5)

For some settings, there are particular choices of the variational family for which the ELBO can be
directly optimized via coordinate ascent (Blei et al., 2017). For other settings, the negative ELBO
is minimized via stochastic gradient descent (SGD).

One choice for the variational distribution q is a mean-field approximation, where each latent
parameter zk has its own variational parameter ϕk and the distribution is factorized:

qϕ(z) =
K∏
k=1

qϕk
(zk). (1.6)

However, when dealing with expanding data, a mean-field approximation requires fitting a new
variational parameter ϕk for each object. A recent innovation to improve the scaling of VI to
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Chapter Setting Generative model Posterior Inference

Chapter 2 Oceanography Mechanistic SMC2 (SMC+MCMC)
Chapter 3 Astronomy Mechanistic/Data-adaptive VI (FAVI)
Chapter 4 Fluid dynamics Data-adaptive VI (ELBO)
Chapter 5 Controlled feature selection Data-adaptive MCMC

Table 1.1: Summary of the settings and methods in each chapter of this dissertation. The first
three chapters present a Bayesian model, while Chapter 5 utilizes a black-box generative model to
implement a frequentist test of feature signifance (the conditional randomization test (CRT) from
Candès et al. (2018)).

massive datasets is to use an amortized variational distribution (Gershman and Goodman, 2014;
Kingma and Welling, 2019). In this scenario, the variational distribution still follows Equation
1.6. However, ϕk is not optimized directly, but rather it is the output of a function fϕ which is
optimized.

ϕk = fϕ(xk). (1.7)

Here, fϕ is a flexible function such as a neural network which takes in as input the data point
associated with the latent variable k. We utilize amortized variational inference trained on the
ELBO in Chapter 4.

Amortization also allows for the use of alternative objective functions to the ELBO. This is de-
sirable in cases where z is discrete, as optimizing discrete variables via stochastic gradient methods
poses a challenge. The usual reparameterization trick, which allows for relatively low variance es-
timates of the gradient, does not work with discrete variables. However, if we consider instead
the reverse KL divergence, this problem disappears. Instead of maximizing the ELBO, the varia-
tional parameters ϕ are optimized to minimize the expectation of the KL divergence between the
distributions over the generative model

ϕ̂ = argminϕEp(x)KL(p(z|x)||qϕ(z))
= argmaxϕEp(z,x) log q(z|x)

(1.8)

Because the expectation in Equation 1.8 is not taken over qϕ, the gradient can be moved inside
the expectation, and unbiased gradients can be calculated by simulating from the generative model
p(z, x). This optimization is called forward amortized variational inference (FAVI, Ambrogioni
et al. (2019)), and it has also appeared as part of the wake-sleep algorithm (Hinton et al., 1995; Le
et al., 2020). In particular, optimization of Equation 1.8 is called a “sleep-phase” update because
the samples are “dreamed up” from simulations of the generative model, rather than from real data.
The FAVI objective forms the basis of our inference model for detecting astronomical objects in
Chapter 3.
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1.3 Summary of contributions and organization of thesis

This dissertation presents Bayesian methods applied to a variety of scientific applications. These
methods utilize either mechanistic or black-box generative models, and each method uses different
posterior inference techniques tailored to the application. See Table 1.1 for a comparison.

In Chapter 2, we introduce ArgoSSM, a probabilistic state-space model of Argo ocean floats.
ArgoSSM infers the posterior distribution of a float’s position and velocity at each time based on
GPS, daily ice cover images, and potential vorticity data. This inference is achieved using Sequen-
tial Monte Carlo equipped with an efficient proposal distribution, which is effective despite the
high signal-to-noise ratio in the GPS data. We also infer a posterior distribution of model param-
eters using the SMC2 algorithm (Chopin et al., 2013; Duan and Fulop, 2015), which combines an
annealed importance sampling scheme with particle Markov chain Monte Carlo (Andrieu et al.,
2010) to sample the posterior distribution of model parameters. Compared to existing interpola-
tion approaches in oceanography, ArgoSSM more accurately predicts held-out GPS measurements.
Moreover, because uncertainty estimates are well-calibrated in the posterior distribution, ArgoSSM
enables more robust and accurate temperature and salinity field estimation. This is based on joint
work with Drew Yarger under submission (Hansen and Yarger, 2022).

In Chapter 3, we present a new probabilistic method for detecting, deblending, and cataloging
astronomical sources called the Bayesian Light Source Separator (BLISS). BLISS uses a mecha-
nistic model for the placement of stars and galaxies and a deep generative model of galaxy shapes.
For posterior inference, BLISS utilizes Forward Amortized Variational Inference (FAVI, Ambro-
gioni et al. (2019)). The BLISS inference routine is fast, requiring a single forward pass of the
encoder networks on a GPU once the encoder networks are trained. BLISS can perform fully
Bayesian inference on megapixel images in seconds, and produces highly accurate catalogs. This
is based on work presented at the Machine Learning for Astronomical Sciences workshop at ICML
2022 (Hansen et al., 2022b).

In Chapter 4, we propose PROBCONSERV, a framework for incorporating physical constraints
into a black-box probabilistic model. To do so, PROBCONSERV integrates the integral form of a
conservation law into a Bayesian update. We provide a detailed analysis of PROBCONSERV on
learning with the Generalized Porous Medium Equation (GPME), a widely-applicable parameter-
ized family of PDEs that illustrates the qualitative properties of both easier and harder PDEs from
the perspective of numerical methods. PROBCONSERV is effective for easy GPME variants, per-
forming well with state-of-the-art competitors; and for harder GPME variants it outperforms other
approaches that do not guarantee volume conservation. PROBCONSERV seamlessly enforces phys-
ical conservation constraints, maintains probabilistic uncertainty quantification (UQ), and deals
well with shocks and heteroscedasticity. In each case, it achieves superior predictive performance
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on downstream tasks. An abridged version of this work will appear at the Physics for Machine
Learning Workshop at ICLR 2023 (Hansen et al., 2023).

Finally, in Chapter 5, we develop a method for controlled feature selection from black-box
predictive models. Controlled feature selection aims to discover the features a response depends
on while limiting the false discovery rate (FDR) to a predefined level. Recently, multiple deep-
learning-based methods have been proposed to perform controlled feature selection through the
Model-X knockoff framework. We demonstrate, however, that these methods often fail to control
the FDR for two reasons. First, these methods often learn inaccurate models of features. Second,
the ”swap” property, which is required for knockoffs to be valid, is often not well enforced. We
propose a new procedure called FLOWSELECT to perform controlled feature selection that does not
suffer from either of these two problems. To more accurately model the features, FLOWSELECT

uses normalizing flows, the state-of-the-art method for density estimation. Instead of enforcing
the ”swap” property, FLOWSELECT uses a novel MCMC-based procedure to calculate p-values
for each feature directly. Asymptotically, FLOWSELECT computes valid p-values. Empirically,
FLOWSELECT consistently controls the FDR on both synthetic and semi-synthetic benchmarks,
whereas competing knockoff-based approaches do not. FLOWSELECT also demonstrates greater
power on these benchmarks. Additionally, FLOWSELECT correctly infers the genetic variants
associated with specific soybean traits from GWAS data. This is based on work in Hansen et al.
(2022a) published in Advances in Neural Information Processing Systems.
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CHAPTER 2

A Probabilistic Model of Ocean Floats under Ice

2.1 Introduction

Reliable measurements of the ocean are essential for scientific tasks such as modeling climate
change (Lyman and Johnson, 2014), estimating temperature and salinity fields (Chang et al., 2009),
and tracking the global hydrological cycle (Hosoda et al., 2009). However, measuring the vast
reaches of the ocean is a challenging task. Historically, measurements were taken by sensors on
board ships, but this limited most collection to popular routes, far from a comprehensive survey of
the ocean.

To address this issue, the Argo project (Argo, 2020) was started in 1998 as a multinational
collaboration to collect data about the world’s oceans. Instead of using ships, the Argo project
deploys floats that freely drift with the ocean’s currents at a depth of one kilometer. Every ten
days, a float descends to two kilometers and then ascends to the surface, measuring temperature,
salinity, and pressure at multiple depths along the way. At the surface, the float records its position
via GPS and transmits data via the Iridium satellite system to Argo data centers for processing.
Each iteration of this data collection process is called a profile.

The implementation of an ice avoidance program in Klatt et al. (2007) has enabled floats to
explore previously inaccessible regions such as the Southern Ocean near Antarctica. In these re-
gions, when ice cover is detected, an Argo float does not attempt to resurface to avoid damage.
While the float continues to take profiles as normal, GPS tracking can be lost for more than six
months. Because the float moves freely, GPS tracking is critical for pinpointing its whereabouts
when data is collected. Figure 2.1 illustrates both the extent and seasonality of missing locations
in the Southern Ocean. Profiles with missing locations make up 16% of the Argo dataset in the
Southern Ocean (Chamberlain et al., 2018; Reeve et al., 2019). Thus, simply removing the mea-
surements without locations leads to both spatial and seasonal biases in estimation tasks (Gray and
Riser, 2014; Reeve et al., 2016, 2019). In turn, these biases can affect our understanding of systems
in which the Southern Ocean plays an important role, such as the global climate (e.g. Gray et al.,
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Figure 2.1: (Left) Recorded locations of 46 selected floats in the Weddell Gyre, a region of the
Southern Ocean. Each dot represents a profile, a collection of temperature and salinity measure-
ments. In this plot, missing locations of profiles are linearly interpolated between valid location
measurements and do not reflect the floats’ true positions (or the positions’ uncertainties). (Right)
Number of profiles collected by these floats in each month of the year. Nearly all profiles collected
in the winter had missing locations.

2018).
The most common way to handle missing locations is to linearly interpolate between the nearest

two observed locations (Wong et al., 2020). Chamberlain et al. (2018) improved this technique by
interpolating a path based on local estimates of potential vorticity (PV), which takes into account
the effect of the Earth’s rotation on the ocean water column (see Section 7.7 of Talley et al., 2011,
for more information). In parallel, Chamberlain et al. (2018) showed how positioning data from
sound sources could constrain the locations using a velocity-driven linear state-space model (SSM),
but with fixed parameters and no PV component. While their underlying model is probabilistic,
they only use the predicted mean and do not report any model-estimated uncertainty.

All of these previous approaches fail to offer well-calibrated estimates of uncertainty alongside
their predictions. Chamberlain et al. (2018) estimated that location uncertainty can be as much as
116km. However, this estimate came from the error in held-out data estimates and is not available
for unseen data points actually under the ice. Moreover, these approaches do not offer a way to
incorporate location uncertainty into downstream estimation tasks, leading to overconfident final
estimates.

To solve both of these issues, we introduce a probabilistic state-space model of Argo float
movements. Our model, ArgoSSM, combines available GPS measurements with local conserva-
tion of potential vorticity (PV) to more accurately model the floats’ positions and velocities. In
addition, we use data on ice concentration in the Southern Ocean to further constrain the floats’
positions and directly characterize the missing data mechanism in our statistical model. Because
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ArgoSSM is a generative model, we infer a posterior distribution of the trajectory of each float as
well as model parameters given all available information. This inference is achieved via an effi-
cient particle filtering scheme that fully adapts to the high signal-to-noise ratio in the GPS data.
In a case study of Argo floats in the Southern Ocean, ArgoSSM more accurately predicts held-out
GPS measurements than previous interpolation methods. Moreover, ArgoSSM illuminates where
location data is particularly sparse and uncertain, quantifying a source of uncertainty for down-
stream estimates (e.g., temperature, salinity, or ocean circulation) that would have been ignored
with imputed location estimates. By providing a principled and flexible statistical framework to
handle missing location measurements, ArgoSSM can easily be incorporated into future scientific
study of the Southern Ocean.

2.2 A generative model of ocean float movement

To motivate the probabilistic framework of ArgoSSM, we start with a simple model of how Argo
floats move through the ocean. Profile data is collected at times t1 < t2 < . . . tN , approximately
ten days apart. At each time tn, let Xn be the geographic position in latitude and longitude at time
tn. We take into account the elapsed time ∆tn = tn − tn−1 when updating the position from Xn−1

to Xn. If the float’s position at n − 1 was Xn−1, we might expect that Xn will be close to Xn−1

with noise proportional to the time passed. This can be written explicitly as a two-dimensional
random walk (RW) model:

Xn = Xn−1 + ϵXn , (2.1)

where ϵXn follows a multivariate Gaussian distribution with zero mean and covariance ∆tnΣX .
For a given index n, the expected value of Xn conditioned on Xn−1 and Xn+1 is a time-

weighted average ofXn−1 andXn+1. Thus, the RW model is a generative model of float movement
where the optimal predictor for an unseen point is linear interpolation. Linear interpolation might
work well for short gaps in time, but it breaks down for large gaps in time that are seen in the
Southern Ocean. This because linear interpolation ignores local information such as momentum.
If we know the current has carried the float from position Xn−1 to position Xn, that same current
will likely carry the float further in the same direction. More specifically, each float has a veloc-
ity Vn that indicates where it is headed next. Thus, we modify Equation 2.1 to take velocity into
account:

Xn = Xn−1 +∆tnVn−1 + ϵXn . (2.2)

The velocity Vn also changes over time according to an auto-regressive (AR) model:

Vn = (1− α∆tn)v0 + α∆tnVn−1 + ϵVn , (2.3)
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where ϵVn follows a multivariate Gaussian distribution with zero mean and covariance ∆tnΣV . Two
parameters govern the velocity update: the long-run velocity of the float v0 and the autoregressive
term α ∈ [0, 1]. The parameter α determines how quickly the velocity reverts to the long-run
velocity v0.

We refer to Equations 2.2 and 2.3 collectively as the AR model. While the AR model is more
realistic than the RW model, it simplifies the true behavior of the floats. Notably, it ignores the
float’s vertical movement as it rises or drops in the ocean and intra-day movement on the ocean
surface. Thus, the velocity state-variable should be interpreted as the average direction of the float
over several days rather than a local estimate of the instantaneous velocity. The AR model is similar
to the state-space model introduced in Chamberlain et al. (2018), though with key differences. The
main modeling difference is that Chamberlain et al. (2018) updates the velocity according to a
random walk (corresponding to α = 1 in Equation 2.3). In Section 2.5, we find for many floats
that the inferred autoregressive parameter α is significantly less than 1. Moreover, Chamberlain
et al. (2018) fixes all parameter values, whereas we estimate them alongside the positions and
velocities.

Information about the float’s position comes from GPS measurements Yn corresponding to
each Xn:

Yn = Xn + ϵYn , (2.4)

where ϵYn is the measurement error that follows a multivariate Gaussian with zero mean and covari-
ance ΣY . With the Iridium satellite system, Argo GPS measurements are rated to be accurate to
within eight meters (Wong et al., 2020), so the variability of the measurement error ϵYn in Equation
2.4 will typically be magnitudes lower than that of the transition error ϵXn in Equation 2.2.

2.2.1 Missing due to ice cover

While GPS measurements accurately pin down the floats’ locations, they may not always be avail-
able. To represent this availability, letAn be an indicator variable that equals one if GPS is available
at time tn and zero otherwise. In the Southern Ocean, since the float only surfaces after three con-
secutive ice-free detections, An is mostly determined by the ice-avoidance algorithm (Klatt et al.,
2007), which depends on the concentration of ice in the area.

To model the availability indicator An, we first require an estimated probability of detecting
ice. We have available daily ice concentration estimates from Fetterer et al. (2017), which uses
remotely-sensed data from microwave instruments on satellites. Let E(x, t) be the concentration
of ice at position x and time t. Accounting for imperfect ice detection due to limited resolution,
the probability that the float detects ice at position x and time t is Ẽ(x, t) = pTPRE(x, t) + (1 −
pTNR)E(x, t), where pTPR is the “true positive rate” (correctly detecting ice) and pTNR is the “true
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Sn = 0 Sn = 1 Sn = 2 Sn = 3

1− Ẽn

Ẽn

Do not surface Surface

Figure 2.2: Transition diagram of the state Sn of the Argo ice detection algorithm. The transition
to the next state is determined based on whether ice is detected or not. The probability of detecting
ice, Ẽn ≡ Ẽ(Xn, tn), depends on both the geographic position Xn and the time tn. Surfacing
requires at least three consecutive ice-free detections.

negative rate” (correctly detecting no ice). We expect pTPR and pTNR to be close to 1, but since
detections are based on the temperature of the water, we expect to see more false positives than
false negatives (i.e. pTNR < pTPR).

With the probability of detecting ice at a particular time and location, we model the state of the
ice-avoidance algorithm as a Markov chain, illustrated in Figure 2.2. The state of the algorithm,
denoted Sn, can take one of four possible values in {0, 1, 2, 3}. If ice is detected, the state Sn

resets to 0. Otherwise, the state increments by one (i.e. Sn = (Sn−1 + 1) ∧ 3). The probability
of transitioning to Sn = 0 is equal to the probability of detecting ice Ẽ(Xn, tn). Likewise, the
probability of maintaining the streak of ice-free detections is 1 − Ẽ(Xn, tn). The ice-avoidance
state Sn determines whether the float surfaces, which directly impacts the availability of the GPS
measurement An. For Sn ∈ {0, 1, 2}, the float will not surface, so the measurement is missing
(An = 0) with probability 1. If Sn = 3, the ice-avoidance algorithm will no longer prevent the
float from surfacing. In this case, P (An = 1|Sn = 3) = (1− pMAR), where pMAR is the probability
that the GPS measurement is missing for reasons other than ice avoidance.

Even if not of direct interest, knowledge of the ice-avoidance state Sn provides information
about the float’s position. In particular, whenever Sn equals 0, there was most likely ice present at
position Xn, so it is more likely the float is in a region with high concentration of ice. Similarly,
if Sn ∈ {1, 2, 3}, then the float did not detect ice, so it is more likely the float is in a region with a
low concentration of ice. This relationship is naturally captured in the joint posterior distribution
of the three state variables (Xn, Vn, Sn) given the observed data. We discuss how this posterior
distribution is estimated in Section 2.3.
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2.2.2 Local conservation of potential vorticity

The motion of a freely-circulating object in the ocean conserves potential vorticity (PV) (Talley
et al., 2011). PV is a function of the depth of the ocean and the vorticity, or local spin, which it-
self is a function of latitude. Incorporating PV conservation is important for both generating more
realistic float trajectories and improving predictive performance in periods without GPS measure-
ments. To incorporate local conservation of PV into the state-space model, we frame it as a prob-
abilistic constraint. From a first-order Taylor approximation and Equation 2.2, we have that the
difference in PV between two positions Xn+1 and Xn is approximately ϵPV

n = ∇PV(Xn) ·∆tnVn,
where ∇PV(Xn) is the gradient of PV with respect to position. Since PV is a conserved quantity,
ϵPV
n should be close to zero, but not exactly zero due to the first-order approximation and imperfect

estimation of PV. To account for this, we suppose ϵPV
n follows a univariate Gaussian distribution

with mean 0 and standard deviation ∆tnσPV , with σPV determining the relative strictness of PV
conservation.

Because ϵPV
n is linear with respect to Vn and Gaussian, it is an implicit measurement of Vn that

can be incorporated as a Bayesian update of the autoregressive velocity update from Equation 2.3:

Vn|Xn, Vn−1 = B
(
(1− α∆tn)v0 + α∆tnVn−1

)
+B

1
2 ϵVn , (2.5)

whereB =
(
I + 1

σ2
PV

(∆tnΣV )∇PV(Xn)∇PV(Xn)
′
)−1

is a matrix that encompasses the effect of
PV conservation. The form of B follows from a conjugate Bayesian update with a Gaussian prior
and likelihood (see Appendix A.5). Notably, B shrinks the component of velocity in the direction
of∇PV(Xn) while leaving the other component unchanged. This discourages large changes in PV,
leading to more realistic predictions of under ice float trajectories. In turn, this improves predictive
performance during periods with no GPS measurements (Section 2.5).

The value of ∇PV(Xn) used in the update is estimated from known ocean depth and latitude.
We use bathymetry exported from the Southern Ocean State Estimate (SOSE) (Verdy and Mazloff,
2017). Potential vorticity is approximated by the expression PV(Xn) = f(Xn)/h(Xn) where
h(Xn) is the ocean depth at Xn and f(Xn) = 2Ω sin (πXn,lat/180) is the Coriolis parameter based
on the latitude of Xn and Ω = 7.292115 · 10−5. See Talley et al. (2011) for more specifics on how
PV is defined and its interpretation.

As in Chamberlain et al. (2018), we smooth the bathymetry to improve the results, and fur-
thermore we estimate the gradient of PV using local quadratic regression (Fan and Gijbels, 1996).
We use a bandwidth of 300 kilometers for local regression, though other bandwidths can easily be
integrated into our analysis pipeline. These regressions result in the smoothed estimates ĥ(·) of
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ocean depth and∇ĥ(·) of its gradient. With these values, the estimate of the PV gradient is

∇PV(Xn) =
2πΩcos

(
πXn,lat

180

)
180ĥ(Xn)

(
0

1

)
− f(Xn)

ĥ(Xn)2
∇ĥ(Xn) (2.6)

from the quotient derivative rule. These estimates are precomputed on a fine grid of locations, then
bilinearly interpolated for efficient inference. Further details are in Appendix A.4.

2.3 State and parameter estimation with sequential Monte Carlo

As a state-space model, the distribution of float trajectories defined by ArgoSSM is composed of
three parts: an initial distribution µθ(X1, V1, S1) in the float’s initial state, a conditional transition
distribution from the previous state to the current state fθ(Xn, Vn, Sn|Xn−1, Vn−1, Sn−1), and a
measurement distribution gθ(An, Yn|Sn, Xn). The parameter θ encapsulates the parameters of each
equation. The measurement distribution can be further decomposed into whether GPS is available
gAθ (An|Sn) and the distribution of the GPS reading gYθ (Yn|Xn) when An = 1. This allows the
distribution of the positions, velocities, and available measurements to factorize as follows:

pθ(X1:N , V1:N , S1:N , A1:N , Yn:An=1) = µθ(X1, V1, S1)
N∏

n=2

fθ(Xn, Vn, Sn|Xn−1, Vn−1, Sn−1)

N∏
n=2

gAθ (An|Sn)
∏
An=1

gYθ (Yn|Xn)

(2.7)

For the RW and AR models, the initial, transition, and measurement distributions are Gaussian,
the expected values of the transition and measurement distributions are affine functions of their
dependencies, and the missingness indicator An is assumed to be independent of Xn and Yn. This
means that both A1:N and S1:N can be integrated out of Equation 2.7 above, leaving the marginal
distribution of the remaining variables as a multivariate Gaussian with a sparse covariance ma-
trix. Thus, sampling from the posterior pθ(X1:N , V1:N |Y ) is tractable and efficient via a Kalman
smoother. See Appendix A.1 for more details of how the Kalman filter and smoother are derived.

Incorporating ice cover information and local conservation of PV introduces non-linearities
that make the Kalman filter inapplicable. Instead, to sample from the posterior, we use sequen-
tial Monte Carlo (SMC), or a particle filter, followed by the forward filtering backward sampling
(FFBS) procedure from Godsill et al. (2004). A full description of SMC and FFBS can be found
in Appendices A.2.1 and A.2.2, respectively. Briefly, SMC works by approximating the distribu-
tion of the state Zn ≡ (Xn, Vn, Sn) conditional on all data up to and including index n, denoted
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as Y n. These approximations are formed by updating simulated particles targeting the distribu-
tion at index n − 1 to particles targeting index n. Starting with an equally-weighted sample
Z̃i,n−1, i = 1, . . . , K targeting Pθ(Zn−1|Y n−1), new particles at index n are drawn from a pro-
posal distribution Zn ∼ q(·|Z̃i,n−1). These are then reweighted and resampled to target the filtered
distribution Pθ(Zi,n|Y n). With enough particles, SMC gives an arbitrarily close approximation to
the filtered distribution at each n. To recover the smoothed distribution of each state conditional
on all data points, Z1:N |Y N , we employ backward sampling over the existing samples from SMC
using the FFBS algorithm.

Choosing a good proposal distribution is important for efficient inference with SMC. A simple
choice is to propose particles from the transition equation fθ, which is blind to future observations
(Gordon et al., 1993). This so-called “bootstrap filter” works well in many settings but poses a
problem for the Argo data, because, as mentioned earlier, the GPS measurement noise in Equation
2.4 is much lower than the transition noise in Equation 2.3. The chance that a proposal from the
transition distribution will land close to the actual observed point is quite low. As a result, the
importance weights on each particle will be very uneven, frequently placing all probability mass
on a single particle. This leads to sample degeneracy and high variance in both the estimates of the
predicted path and the log-likelihood of the model for inference.

To overcome this, we utilize twisted target distributions at each index n (Guarniero et al., 2017;
Naesseth et al., 2019), which amounts to weighting each particle by an additional function ψn(Zn)

before resampling. In this framework, the ideal proposal distribution qn(Zn|Zn−1) is equal to the
posterior distribution conditional on all available data, denoted Y N , and previous latent variables.
The ideal pre-weight function ψn(Zn) is equal to the predictive density of all future observations,
written Yn+1:N .

qn(Zn|Zn−1) = P(Zn|Zn−1, Y
N)

ψn(Zn) = P(Yn+1:N |Zn).
(2.8)

These settings will lead to importance sampling weights that are perfectly even and an exact esti-
mate of the model likelihood (Guarniero et al., 2017), which we show in Appendix A.2.3.

Although both terms in Equation (2.8) are intractable, they offer guidance: a good proposal will
be as close as possible to the posterior that looks ahead at all future data points. For ArgoSSM, we
can use the tractable posterior distribution from the AR model as a proposal distribution in each
step of SMC:

qn(Zn|Zn−1) = Pθ,AR(Zn|Zn−1, Y
N)

ψn(Zn) = Pθ,AR(Yn+1:N |Zn).
(2.9)
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(A) (B)

Figure 2.3: (A) Effective Sample Size (ESS) comparison from 1000 particles at the final observa-
tion for the bootstrap particle filter versus our adapted particle filter across each float used in the
first holdout experiment. Floats are identified by their World Meteorological Organization (WMO)
number. (B) The standard deviation of the estimated log-likelihood calculated across each float
used in the first holdout experiment. The dotted line represents the target threshold for inference.

Here, Pθ,AR is the posterior distribution of the AR model. The parameters of the AR model are
set to be equal to the equivalent parameters of ArgoSSM. Both terms are Gaussian, so its mean
and covariance can be efficiently calculated with a Kalman smoother (Lopes and Tsay, 2011) (c.f.
Appendix A.1). By looking ahead to all high signal-to-noise ratio (SNR) GPS measurements and
directly incorporating local PV information, our proposal allows for a more efficient sampling
procedure than the baseline bootstrap particle filter (Gordon et al., 1993). Unlike other look-ahead
methods such as Lin et al. (2013), our method takes advantage of the fact that the AR model is
close to the ArgoSSM model and is fully tractable via the Kalman smoother.

In addition to adapting to all GPS measurements, there are a few properties of ArgoSSM that
can be utilized to form an efficient proposal distribution. The ice-avoidance algorithm state Sn can
be integrated out by calculating P (Si,n = k|Xi,1:n) recursively:

P (Sn = k|X1:n, A1:n) =
gAθ (An|Sn = k)P (Sn = k|X1:n, A1:n−1)∑
k′ g

A
θ (An|Sn = k′)P (Sn = k′|X1:n, A1:n−1)

P (Sn = k|X1:n, A1:n−1) =
∑
k′

P (Sn = k|Xn, Sn−1 = k′)P (Sn−1 = k′|X1:n−1, A1:n−1)
(2.10)

Even if the probabilities of Sn were not of interest, they are necessary to calculate the log-probability
of the missingness indicator An given the other state variables (Xn, Vn). See Appendix A.3 for
more details.

While the likelihood is no longer exact after incorporating the non-linearities from ice cover
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Parameter Prior Distribution

α Beta(8.9, 0.99)
σ2

PV LogNormal(0.0, 3.0)
v0,1 Normal(0.0, 0.01)
v0,2 Normal(0.0, 0.01)

pMAR Beta(1.0, 9.0)
pTPR Beta(9.0, 1.0)
pTNR Beta(9.0, 1.0)

Table 2.1: Table of priors used for each float parameter. The priors for the transition covariance
ΣX and observation variance ΣY were set by fitting a gamma distribution to maximum-likelihood
estimates of the AR model on a small holdout set of floats.

and PV conservation, the adapted SMC procedure still yields low-variance estimates of the model
likelihood. Figure 2.3 shows an empirical comparison between the bootstrap filter and the proposal
used in AR across various floats. As expected, the bootstrap filter produces relatively few effective
samples due to the high signal-to-noise ratio (SNR) in the data. This translates into unacceptably
high variability in the Monte Carlo estimates of the model likelihood. With our proposal, the
effective sample size is much higher, and the standard deviation in the estimated log-likelihood is
well below 1 for the vast majority of floats, which is acceptable for parameter inference via SMC2

described next.

2.3.1 Bayesian parameter estimation via SMC2

In addition to the uncertainty in the state variables, there is also uncertainty in the parameters which
govern the dynamics, which we collectively refer to as θ. For ArgoSSM, these parameters are the
initial parameters µ1 and Σ1; the transition parameters ΣX , v0, α, σ2

PV , and ΣV ; the ice avoidance
parameters pTPR, pTNR, pMAR; and the observation variance Σ2

Y .
Estimating parameters for a general state-space model is challenging, because the model like-

lihood, P(YA|θ), requires evaluating an intractable integral over all state variables. A key feature
of SMC is that it provides an unbiased estimate of the likelihood, which can be used for either
maximum likelihood estimation or Bayesian inference on θ. See Lopes and Tsay (2011) for an
overview of some of these approaches.

Our goal is to infer the posterior distribution of both θ and the state variables for each float.
To start, we equip each model parameter with a prior distribution as shown in Table 2.1. Then, to
sample the posterior distribution of parameters on each float, we implement the SMC2 procedure
introduced in Chopin et al. (2013). Starting with samples from the prior P(θ), SMC2 sequentially
targets intermediate distributionsP1(θ), . . . ,PK(θ) via importance sampling such thatPK(θ) is the
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posterior distribution. Each intermediate distribution is constructed such that the Kullback-Leibler
(KL) distance between adjacent distributions is small. To pick the sequence of distributions, we
use the likelihood tempering scheme described in Duan and Fulop (2015). Each distribution is
defined by exponentiating the likelihood with a value ξ between 0 and 1:

Pk(θ|YA) ∝ P(θ)P(YA|θ)ξk ,where

ξ0 = 0 < ξ1 < · · · < ξK = 1.
(2.11)

When the importance weights drop below a set effective sample size (ESS), we resample and
use particle Markov chain Monte Carlo (PMCMC) (Andrieu et al., 2010) to propose new θ to
rejuvenate the sample.

2.4 Propagating uncertainty to spatiotemporal estimates

Through probabilistic modeling, ArgoSSM enables principled use of all data captured by Argo
floats, even if the locations are missing. In turn, ArgoSSM allows analysis in previously under-
explored areas of the ocean. For example, Gray and Riser (2014) remove parts of the Weddell Gyre
and other areas from their global estimates of ocean circulation due to lack of data, and both Reeve
et al. (2016) and Reeve et al. (2019) found it difficult to resolve seasonal effects in their models
due to winter ice cover blocking many of the GPS measurements.

To demonstrate the benefits of ArgoSSM in downstream analysis of ocean properties, we con-
sider two spatiotemporal estimation tasks: (1) temperature and salinity from Argo float data and
(2) circulation estimation from Argo trajectory data. In each of these tasks, the goal is to use the
irregularly-spaced Argo data to predict at unobserved locations, often on a regular grid. The tem-
perature and salinity estimation problem is scientifically relevant and well-studied; see Roemmich
and Gilson (2009) for a standard approach in oceanography and Reeve et al. (2016) for analysis
specific to the Weddell Gyre. Approaches for this problem roughly correspond to the methodol-
ogy for the task of spatial prediction in spatial statistics (Cressie, 1993), with specific application
to Argo demonstrated in Kuusela and Stein (2018). For circulation (i.e., velocity) estimation, the
Argo float trajectories between consecutive profiles are used to form an estimate of the horizontal
ocean circulation at the parking depth (about 1 kilometer under the ocean surface) of the floats.
Since the trajectory data is the primary object of interest here, missing location data can be more
detrimental, and previous analyses choose to mask or discard missing trajectory data (Gray and
Riser, 2014; Reeve et al., 2019). However, with ArgoSSM, velocity estimates are available at all
time points and can be directly used since they are state variables.

We describe our model for temperature, though we use similar approaches for salinity and
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ocean circulation. We combine data from all floats, using j = 1, . . . , J to index the float. At
indices n = 1, . . . , Nj , and conditional on the locations X = {Xj,n} taken at times {tj,n}, the
profile temperatures Tj,n at a particular depth in the ocean are generated from the following spatial
distribution:

Tn = µ(Xj,n, tj,n) + κ(Xj,n, tj,n) + ϵT,j,n, (2.12)

where µ is a smooth, deterministic mean function; κ is a zero-mean, spatiotemporally correlated
random field; and ϵT,j,n is measurement error that follows a normal distribution N (0, σ2

ϵT
). We

estimate µ(·, ·) using locally-constant regression with four seasonal dynamic functions to capture
seasonality in the estimates and a bandwidth of 250 kilometers. Following this, the covariance
structure of the residuals are analyzed assuming a multivariate Gaussian distribution and using a
Matérn covariance function in space and time (Guinness and Fuentes, 2016; Kuusela and Stein,
2018). Parameter estimates of the covariance function are obtained using maximum likelihood
estimation using a Vecchia’s approximation which eases computational burdens for spatial mod-
eling with a large number of observations (Katzfuss et al., 2020; Katzfuss and Guinness, 2021).
For velocity estimation, slight adjustments are made to this procedure since fewer floats will be
used: a locally-constant estimator with no time dynamics was used for the mean estimation with a
bandwidth of 400 kilometers, and the use of time in the covariance structure was removed so that
we estimate one time-averaged value at each location.

With missing locations, estimation is done by first drawing the locations X from the posterior
distribution of ArgoSSM, estimating parameters governing µ, κ, and ϵ conditional on each location
set, and then predicting from the distribution of temperature at an unobserved location conditional
on the observed data. By repeating this process for multiple samples ofX from ArgoSSM, one can
capture the influence of the location uncertainty into the downstream predictions of temperature in
a spirit similar to multiple imputation (see Rubin, 1987). We make two simplifying assumptions
about the posterior distribution of floats from ArgoSSM: the temperatures (T ) are weakly infor-
mative about the locations, and the dependence between floats is accounted for in the available
data:

P({Xk,1:Nk
, k = 1, . . . , K}|Y Nk , T ) =

K∏
k=1

P(Xk,1:Nk
|Y ) (2.13)

In reality, the trajectories of floats in similar spatial areas are positively correlated, which means the
assumptions in Equation 2.13 will lead to an over-dispersed joint distribution of locations, which
is acceptable for the task at hand. Incorporating dependencies between floats is a potential avenue
for future work.

For spatiotemporal estimation tasks, ArgoSSM offers two key advantages over standard in-
terpolation approaches for recovering missing locations. First, as demonstrated in held-out data
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experiments in Section 2.5, ArgoSSM more accurately predicts float trajectories. Second, Ar-
goSSM propagates uncertainty in location data into downstream estimates, capturing a source of
variability which would otherwise be ignored. After completing this analysis for multiple sample
outputs from ArgoSSM, we can form estimates of the expectation E(Tj,n) = E(E(Tj,n|X)) (us-
ing the law of total expectation) that takes into account the uncertainty in the missing locations.
More critically, as illustrated by the total law of variation, ArgoSSM allows us to quantify the full
uncertainty in downstream estimates:

Var(Tj,n) = E(Var(Tj,n|X)) + Var(E(Tj,n|X)). (2.14)

With fixed or imputed locations, only the first component of the total uncertainty would be ac-
counted for in final estimates, and it would not be properly averaged over the distribution of X .
With ArgoSSM, the second component is accounted for as well. As we will see in Section 2.5.2,
these two components of uncertainty have quite different spatial characteristics. Areas with a low
conditional variance can nonetheless have a high variance in their estimates because most floats in
that area were under ice.

2.5 Analysis of Argo floats in the Southern Ocean

As a case study for our method, we consider 46 floats that traversed a specific area in the Southern
Ocean, the Weddell Gyre, from 2002 to 2020 1. In this setting, our task is two-fold. First, we aim
to reconstruct accurate trajectories of where floats went while under ice. Because it is impossible
to verify how well ArgoSSM does on missing data points, we evaluate its performance on held-
out data points adjacent to under-ice periods (Section 2.5.1). Second, we illustrate how ArgoSSM
is useful for spatiotemporal estimation tasks by uncovering an additional source of uncertainty
(Section 2.5.2). This applies both to measurements of temperature and salinity taken by the sensors
and velocity estimates Vn calculated as part of the probabilistic model. Throughout this analysis,
we draw 200 samples of model parameters θ and use K = 2500 particles per parameter sample to
estimate the posterior distribution of float trajectories. The code used for performing this analysis
is publicly available on Github at https://github.com/dereklhansen/ArgoSSM.

2.5.1 Holdout experiment

To evaluate the empirical predictive performance of ArgoSSM under ice, we observe how well the
model predicts held-out GPS points. A single observation is held-out immediately before or after

1The float temperature, salinity, and trajectory data were downloaded from the Argo database on July 11, 2020
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Model RMSE Median

PV Interpolation (Chamberlain et al., 2018) 33.1 13.2
Linear Interpolation (RW) 18.0 11.4

AR 16.1 8.58
AR+Ice 15.7 8.92

ArgoSSM (AR+Ice+PV) 15.4 8.64

Table 2.2: The observed prediction error of each method in kilometers in held-out data experi-
ments. In the second, the floats had gone under the ice and additional measurements were held out.
Note that the RW (“Random Walk”) predictions are equivalent to linear interpolation.

the float has been under ice cover for a minimum of 36 days. This led to 197 independent holdout
trials from 44 of the 48 floats. On each holdout trial, we compare ArgoSSM to several baseline
models. These baseline models include the simple random walk (RW) model defined in Equation
2.1 and the autoregressive (AR) model defined in Equations 2.2 and 2.3. To further evaluate which
parts of ArgoSSM (AR+Ice+PV) lead to improvement, we consider a variant that just includes the
ice-cover data (AR+Ice). Finally, we compare to the PV interpolation method from Chamberlain
et al. (2018).

The results of these two holdout experiments are summarized in Table 2.2. Across each hold-
out, we compare each model’s prediction to the known true GPS measurements and calculate the
root mean squared error (RSME) in kilometers. We also consider the median squared error, which
suppresses the impact of extreme values. The AR and ArgoSSM outperform the baseline models
of linear interpolation and PV interpolation in both measures. While incorporating ice-cover and
PV into the model led to a slightly higher median RMSE than the baseline AR model, mean RMSE
is reduced by a much larger amount, suggesting that ArgoSSM is particularly useful in reducing
held-out measurements with larger sources of error.

Figure 2.4 provides a visual comparison of the performance of each model on float 5901717 2,
which was also investigated in Chamberlain et al. (2018). The random walk (RW) model, which
amount to linear interpolation, performs poorly because it uses no local information about momen-
tum, ice-cover, nor potential vorticity (PV). However, despite utilizing potential vorticity (PV), the
PV interpolation method from Chamberlain et al. (2018) also misses the target. We see the au-
toregressive model (AR) does better than the baselines because it takes into account momentum.
Compared to the difference between AR and the baseline models, the overall impact to predictive
performance of adding ice cover and PV information is modest, but it makes a noticeable differ-
ence in Figure 2.4. Here, the AR model predicts the float swinging out too far. Including either or

2With this float and throughout, we refer to floats through their World Meteorological Organization (WMO) num-
ber.
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Figure 2.4: Comparison of each different model on Argo float 5901717 in predicting a held-out
GPS measurement. The colored lines are the predicted paths from each model. Each black circle
is a GPS observation given to the model and the black triangle is the held-out point.

both ice-cover and PV information corrects for this, leading to a more accurate prediction.

2.5.2 Inference of spatiotemporal properties

With the posterior distribution of float trajectories, we show how the uncertainty in float locations
shown in Figure 2.5 leads to additional uncertainty in estimated temperature, salinity, and velocity
(circulation) fields that would otherwise be ignored by imputation methods. As a challenging
example for temperature and salinity, we calculate estimates on August 1, 2015, a date in the
middle of winter where many profiles have missing locations.

First, as described in Section 2.3.1, we infer the posterior distribution of model parameters
for each float separately. Figure 2.6 shows the marginal posterior distribution of parameters for
each float. This shows that the estimated parameter values for α and σ2

PV can vary significantly
between floats. For example, the high value of σ2

PV for floats 5905995 and 5905381 indicates that
the PV effect was not as strong as float 5901717. This illustrates the benefit of allowing different
parameters per-float. Figure 2.6 also shows the inferred true-positive-rate (TPR) and true-negative-
rate (TNR) ice detections. Like for the other parameters, these rates can differ significantly from
float to float. The majority of floats display a higher TPR than TNR, highlighting the conservative
nature of the ice-detection algorithm (Klatt et al., 2007).

Across multiple draws of model parameters, float locations are sampled using the FFBS method
from Godsill et al. (2004). Figure 2.5 (A) shows that the estimated locations have varying degrees
of uncertainty depending on location, time since the last observation, and float-specific parameters.
The regional differences between locations are particularly striking. In the southwestern part of
the map, profiles are both more sparse and have more missing locations, which adds significant
uncertainty to downstream estimates. In Figure 2.5 (B), we display the uncertainty in kilometers
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(A)

(B)

Figure 2.5: A view of selected Argo floats that had at least one observation in 2015, which were
used in constructing spatial estimates. In subfigure (A), each point represents a GPS observation,
while certain floats’ predicted trajectories are plotted in color. In subfigure (B), the median uncer-
tainty is plotted over time, with the shaded area representing the interval between the 5% and 95%
quantiles. Float 5903014 had missing locations for nearly two consecutive years (2014-2015),
while float 5904472 received GPS positioning twice during winter in late 2017.

as a random variable over time for several floats. We see that this uncertainty differs greatly be-
tween floats. This also underscores the need to incorporate downstream measurements, as median
location uncertainty is as high as 200km for some floats.

Temperature and salinity For temperature and salinity, we focus on Argo data taken at 150
decibars of pressure, or about 150 meters deep in the ocean. As described in Section 2.4, we re-
peatedly estimate the temperature field conditional on samples of locations from the posterior dis-
tribution of ArgoSSM. Figure 2.7 shows that estimated temperatures do not change much between
samples in areas that have many observations. However, in certain regions, there are noticeable
differences between samples that come solely from the uncertainty in locations. Figure 2.8 shows
the breakdown in temperature uncertainty using 20 samples from ArgoSSM. With one sample of
locations, the conditional standard deviation of predicted temperatures depends on the estimated
covariances and the proximity of nearby points. Figure 2.8 (A) shows an estimate of the mean
conditional standard deviation across the 20 location samples, which estimates the first quantity in
Equation 2.14. In contrast, Figure 2.8 (B) shows the standard deviation of temperature estimates
between samples, corresponding to the second quantity in Equation 2.14. Most areas in this plot
have relatively low standard deviation compared to those in Figure 2.8 (A). However, there is a
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(A) (B)

(C) (D)

Figure 2.6: Posterior distributions for select parameters across the floats used for spatiotemporal
function estimation. The black dot indicates the posterior mean while the black line indicates
one standard deviation. The selected parameters are: (A) the autoregressive coefficient α; (B) the
potential vorticity variance σ2

PV ; (C) the true positive rate (TPR) for the ice-detection algorithm;
and (D) the true negative rate (TNR) for the ice detection algorithm.
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Figure 2.7: Mean temperature estimates on August 1, 2015, taken on four different samples of lo-
cations. The black dots show the ArgoSSM sample of missing locations that was used to construct
the estimate. Estimates were constructed for a pressure of 150 decibars, corresponding to about
150 meters deep in the ocean.

(A) (B)

(C)

Figure 2.8: Spatial uncertainty in temperature estimated on August 1, 2015. (A) Average standard
deviation conditional on locations. (B) The standard deviation of mean temperature estimates
between samples of locations. (C) Total standard deviation accounting for both (A) and (B).
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Figure 2.9: Mean salinity estimates in practical salinity units (PSU) on August 1, 2015 taken on
four different samples of locations. The black dots show the ArgoSSM sample of missing locations
that was used to construct the estimate.

striking amount of uncertainty in the southern edges of the map, where there are few observations.
This uncertainty is large enough to significantly contribute to the total standard deviation shown in
Figure 2.8 (C). Without ArgoSSM, this contribution would be ignored.

Returning briefly to Figure 2.8 (A), we also see that the areas with less predictive variability
(near observed float locations) are more muted and indistinct when there is more location uncer-
tainty for nearby floats. That is, this component of the variance results from properly averaging
the spatially-predicted uncertainty across the distribution of missing locations. As a result, using
one fixed set of locations for Figure 2.8 (A) would lead to overconfident predictions near the fixed
locations and underconfident predictions near other plausible float locations. With ArgoSSM, im-
proved estimates of Figure 2.8 (A) and Figure 2.8 (B) comprehensively characterize the variability
of the estimated temperature field.

We plot the estimated salinity fields under four different samples from ArgoSSM in Figure
2.9. As with the temperature estimates, the location uncertainty has some effect on the estimated
salinity field, especially near missing locations. In Figure 2.10 (A) and Figure 2.10 (B), we plot the
respective plots of the variability in salinity suggested by Equation 2.14. In general, we see similar
results: Figure 2.10 (A) properly averages the prediction error over the distribution of missing
locations, smoothed over areas with uncertainty in float locations, and Figure 2.10 (B) represents
uncertainty added based on the uncertainty in locations, which primarily contributes when there
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(A) (B)

(C)

Figure 2.10: Spatial uncertainty in salinity estimated on August 1, 2015. (A) shows the average
standard deviation conditional on locations. (B) shows the standard deviation of mean temperature
estimates between samples of locations. (C) shows the total standard deviation accounting for both
(A) and (B).

are few floats in the bottom-left of the plot. Together, these describe the variance of salinity in a
principled manner that incorporates our understanding of the missing locations through ArgoSSM.

Ocean circulation For estimates of ocean circulation, we only use floats with parking depths
between 950 and 1050 meters to provide an estimate of the ocean circulation at approximately
1000 meters resulting in 26 floats, with locations plotted in Figure A.1.

Figure 2.11 shows results for the estimated zonal (east-west) velocity used to estimate ocean
circulation. As with temperature estimation, the zonal velocity is sensitive to missing locations. In
the left of Figure 2.11, we plot the conditional expectation based on the estimated spatial model for
zonal velocity, where a negative value represents movement west while a positive value represents
movement east. We compare with linearly-interpolated locations, for which the float velocities are
assumed constant while under-ice, as well as under-ice locations removed as done in Reeve et al.
(2019). While there are only slight differences between the methods in their mean estimates of
velocity, the conditional variance estimates show more drastic variation (Figure 2.11 B). Simply
removing the missing estimates leads to high uncertainty, while filling in the missing estimates
via linear interpolation leads to overconfident final estimates. Also, linear interpolation is more
conservative on the basin’s boundaries since Argo floats likely swing closer to the boundaries

27



(A) (B)

Figure 2.11: (A) Conditional expectation and (B) conditional standard deviation of zonal (east-
west) velocity under different approaches. “ArgoSSM” refers to our estimates after using Ar-
goSSM to take into account the variability in the locations.

compared to the linearly interpolated paths. Meanwhile, ArgoSSM provides a joint distribution of
the positions and velocities for each float at times when profiles are collected, allowing the use of
PV information while fully characterizing the uncertainty in the missing data.

2.6 Discussion

Before the Argo project, the Southern Ocean had been disproportionately under-observed com-
pared to other areas of the world’s oceans, especially during the winter (Roemmich and Gilson,
2009). Improving the use of existing and future observations in this region through technological
and methodological means at a low cost is an important scientific priority (Vernet et al., 2019;
Riser et al., 2018). A critical aspect of this is the use of profiles with missing location data while
under ice cover.

ArgoSSM improves upon existing approaches for under-ice location estimation in two ways.
First, it more realistically models how floats drift, which is validated by held-out data experiments.
Second, through inferring a posterior distribution of locations, ArgoSSM accounts for uncertainty
stemming from missing locations. These improvements lend confidence to areas with low esti-
mated uncertainty and signal areas where the variance is too high to draw conclusions. This could
focus future data-gathering endeavors to areas of maximum impact.

ArgoSSM will enable scientists to incorporate location or velocity uncertainty into their esti-
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mates. ArgoSSM posterior samples can be used to evaluate the sensitivity to location uncertainty,
which may vary from task to task (Riser et al., 2018; Chamberlain et al., 2018). Future work could
use ArgoSSM estimates to develop an “error-in-variables” approach to specific estimation tasks,
removing the need to repeatedly estimate under different samples of locations (Cervone and Pillai,
2015). However, since this literature primarily focuses on independent and identically-distributed
errors in the locations, such an approach may require care and methodological development. In
this setting, for the same float in the same winter, the missing locations can be strongly correlated.
We advocate for the sampling-based approach developed here since it considers this correlation
and can be employed naturally by statisticians and scientists alike.

The current version of ArgoSSM may oversimplify the dynamics of float movement. However,
ArgoSSM is a flexible framework that can be improved with better physical models and expanded
to accommodate more data as it becomes available. For example, one could pair ArgoSSM with
ocean circulation estimates instead of potential vorticity, though such estimates may be noisy in the
winter due to sparse measurements (Reeve et al., 2019). Also, one could estimate model parameters
and float positions using data from multiple floats simultaneously, which might further reduce
the size of ArgoSSM’s uncertainties. Additional location measurements could be incorporated as
they become available, such as RAFOS sound source data (Chamberlain et al., 2018). Through
these iterative improvements, ArgoSSM can utilize all available information to best predict float
locations, improving existing downstream tasks and enabling new ones.
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CHAPTER 3

Scalable Bayesian Inference for Detection and
Deblending in Astronomical Images

3.1 Introduction

The forthcoming generation of astronomical surveys will peer deeper into space, revealing many
more astronomical light sources than their predecessors. Because of the greater density of light
sources in these surveys’ images, many more light sources will visually overlap. Visually over-
lapping light sources, called “blends”, are expected to make up 62% of the galaxies imaged by
the upcoming Legacy Survey of Space and Time Sanchez et al. (2021). Blends are challenging
for traditional (non-probabilistic) astronomical image processing pipelines because they introduce
ambiguity into the interpretation of the image data.

We present a new probabilistic method for detecting, deblending, and cataloging astronomical
objects called the Bayesian Light Source Separator (BLISS). BLISS is based on deep generative
models, which embed neural networks within a Bayesian model and use deep learning to facilitate
posterior inference. BLISS generalizes StarNet (Liu et al., 2021), which can only analyze images
of starfields.

In the BLISS statistical model (Section 3.2), the latent space is interpretable: one random vari-
able encodes the number of stars and galaxies imaged, a random vector encodes the locations and
fluxes of these astronomical objects, and another random vector encodes the galaxy morphologies.
Conditional on these random variables, the data (i.e., the pixel intensities in a collection of astro-
nomical images) are modeled as Poisson or Gaussian. Owing to this Bayesian formulation, BLISS
requires no special logic to analyze blended galaxies.

For posterior inference (Section 3.3), BLISS uses a new form of variational inference based on
stochastic optimization, deep neural networks, and the forward Kullback-Leibler divergence. This
new methodology is known as “Forward Amortized Variational Inference” (FAVI) Ambrogioni
et al. (2019). In FAVI, a deep encoder network is trained on data simulated according to the
generative model to solve the inverse problem: predicting the latent variables that generated a
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particular synthetic astronomical image. FAVI has scaling advantages over Markov chain Monte
Carlo and achieves improved fidelity of the posterior approximation compared with traditional
variational inference in our application.

Algorithmically, inferences in BLISS are produced by a sequence of three deep convolutional
encoder networks, each conditioned on the output of the earlier network (Section 3.3.1). The first
encoder performs detection, estimating the number of light sources in particular regions. Con-
ditional on samples from the first encoder, the second encoder probabilistically classifies each
sampled source as a star or a galaxy. Conditional on sampling a galaxy by the second encoder, a
third encoder network estimates the shape/morphology. No restrictive assumptions are made about
the factorization of the posterior approximation, as is common in more traditional approaches to
variational inference.

The BLISS inference routine is fast, requiring a single forward pass of the encoder networks
on a GPU once the encoder networks are trained. BLISS can perform fully Bayesian inference
on megapixel images in seconds, and produces more accurate catalogs than traditional methods
do (Section 3.4). BLISS is highly extensible, and has the potential to directly answer downstream
scientific questions in addition to producing probabilistic catalogs (Section 3.5).

3.2 The Statistical Model

Our generative model consists of two parts: the prior distribution over all possible astronomical
catalogs and the likelihood of an image given a particular catalog.

3.2.1 Prior

Let Z be the collection of all possible catalogs, and let z ∈ Z be a particular realization. Our
prior over Z is a marked spatial Poisson process. Light sources arrive according to a homogeneous
Poisson process with rate µ, which is set based on prior knowledge. In other words, for a given
image of size H ×W , the number of sources S in this image follows the Poisson distribution:

S ∼ Poisson(µHW ). (3.1)

The locations of each of the sources s = 1, . . . , S are uniform in the image:

ℓs | S ∼ Uniform([0, H]× [0,W ]). (3.2)
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Each source s is either a star or galaxy:

as | S ∼ Bernoulli(ξ), (3.3)

where ξ is the proportion of imaged sources that are expected to be stars according to prior knowl-
edge.

Given the point spread function (PSF) at a particular location in the image, a star’s appearance
is fully characterized by its flux fs, which follows a truncated power law distribution:

fs,1 | S, as = 1 ∼ Pareto(fmin, α). (3.4)

Unlike stars, the shape of galaxies can vary greatly within an image. To flexibly model this
variety of shapes, we use a low-dimensional embedding following an uninformative prior to encode
a galaxy’s flux and shape:

vs | S, as = 0 ∼ Normal(0, ID×D), (3.5)

where D is a user-defined embedding dimension.

3.2.2 Likelihood

Let zs = {ℓs, as, fs, vs} denote the latent variables describing light source s. Let z = {S, {zs}Ss=1}
be a catalog sampled from the prior. Radiation from the light sources in catalog z is recorded as
the observed photoelectron count xn at each pixel n of the astronomical image. The photoelectron
count xn follows a Poisson distribution with rate λn(z)+γn, where λn(z) is a deterministic function
of the catalog and γn is background intensity. In practice, since the number of arrivals is large, we
use a normal approximation to the Poisson distribution:

xn | z ∼ Normal(λn(z) + γn, λn(z) + γn). (3.6)

The contribution of light source s to the intensity of pixel n, denoted λn(zs), depends on
whether source s is a star or a galaxy. If source s is a star, the PSF and flux give its intensity
at pixel n. If source s is a galaxy, then its contribution to pixel n comes from a decoder neural
network gθ(zs), which is trained according to the procedure in subsection 3.3.2.
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3.3 Variational Inference

We infer the posterior distribution of the catalog, p(z | x), by using variational inference (VI),
which allows for computationally efficient approximate inference (Blei et al., 2017; Zhang et al.,
2018). Rather than drawing samples like MCMC, VI turns the problem of posterior inference into
a numerical optimization problem. From a family of tractable distributions qϕ, parameterized by
ϕ ∈ Φ, VI aims to find the approximating distribution qϕ∗ that minimizes a divergence metric to
the posterior distribution.

The generative model defined in Section 3.2 is transdimensional, because the number of light
sources can vary significantly for a given image size. Inference on transdimensional probability
distributions can be challenging. To make inference more tractable, we divide the image into sub-
images called “tiles” (Liu et al., 2021), indexed by t = 1, . . . , T . The number of objects that appear
in each tile t, denoted at, are independent, as well as the latent variables associated with each tile,
zt. This leads to a variational distribution that factorizes across tiles:

q({at, zt}) =
T∏
t=1

qt(at, zt)

qt(at, zt) = (αtqt(zt))
at (1− αt)

1−at

qt(zt) = qℓt(ℓt)q
b
t (bt|ℓt)qft (ft|ℓt, bt)btqvt (vt|ℓt, bt)1−bt

(3.7)

For tractability, the distribution of at is truncated so that at most one object appears with probability
αt. Given the object appears, i.e. at = 1, its location within the tile ℓt follows a truncated normal
distribution with mean µt and diagonal covariance Σt. The object type bt follows a Bernoulli
distribution and the shape variables ft, vt are normal.

3.3.1 Amortization and model architecture

With traditional VI, fitting a variational distribution would require running a computationally in-
tensive iterative optimization procedure once for each tile. Instead, BLISS utilizes amortized vari-
ational inference (Kingma and Welling, 2014; Zhang et al., 2018). For each tile t = 1, . . . , T , we
let xt denote the corresponding padded tile: the 52× 52-pixel cropped sub-image centered around
the 4 × 4-pixel tile with index t. In our amortized inference procedure, a sequence of encoder
neural networks is trained to transform each padded tile xt into distributional parameters for the
latent variables at, zt on that tile. The padded tile xt is first fed to the detection encoder, which
infers whether a source was generated (at), the location of that source ℓt, and the flux of that source
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Figure 3.1: The BLISS encoder sequence.

if it is a star ft:

at ∼ Bernoulli(αt)

ℓt ∼ qℓt
D
= N (µℓ

t,Σ
ℓ
t)

αt, µ
ℓ
t,Σ

ℓ
t, µ

f
t ,Σ

f
t = gϕ,detect(xt).

(3.8)

After sampling the location, each padded tile is centered around that location and fed to the classi-

fication encoder, which infers whether the light source is a star or a galaxy.

bt ∼ qbt
D
= Bernoulli(βt)

βt = gϕ,class(xt, ℓt).
(3.9)

Finally, fluxes fi,t are sampled from the distribution parameters if the source is a star:

log ft ∼ qft
D
= N (µf

t ,Σ
f
t ) (3.10)

and galaxy morphology parameters are sampled from the galaxy encoder:

vt ∼ qvt
D
= N (µv

t ,Σ
v
t )

µv
t ,Σ

v
i,t = gϕ,galaxy(xt, ℓt).

(3.11)
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Further architectural details on each of the encoder networks are available in Appendix B.1.
Amortized variational inference enables fast inference on unseen data. Because training the in-

ference networks happens only once, the average cost of training per-data point is reduced as more
data is processed. Also, amortized inference allows for stochastic optimization with subsamples
of the image data; during each optimization iteration, it is far more efficient to load a small part of
the image and to compute gradients with respect to it than do so for the entire image.

3.3.2 Training procedure

BLISS has two training stages. First, we learn a tractable generative model of single galaxy shapes
by fitting a variational autoencoder (VAE) (Kingma and Welling, 2014) to simulations from GalSim
(Rowe et al., 2015). Second, we train each of the aforementioned encoder networks (i.e., the
location encoder, the classification encoder, and the galaxy encoder) on simulated data sampled
from the generative model.

Galaxy VAE We use a variational autoencoder to learn a low-dimensional representation v ∈ RD

of centered galaxies. To generate centered galaxies for training, we place a prior on the flux, ellip-
ticity, and size of the bulge and disk components as well as the angle of rotation. These parameters
are rendered into single, centered galaxies using the GalSim simulation package. Collectively, this
defines the empirical distribution p(x) of centered galaxy images. Separate encoder gϕ and decoder
fθ networks are trained to minimize the evidence lower bound (ELBO):

L(θ, ϕ) = Ep(x)Eqvt (v)
(log pθ(x|v) + log p(v)− log q(v|x))

pθ(x|v) D
= N (µx,Σx)

µX ,Σx = fθ(v)

qϕ(v|x) D
= N (µv,Σv)

µV ,Σv = gϕ(x).

(3.12)

The specific architectures for fθ and gθ are described in Figure B.3 in Appendix B.1. After training,
the learned decoder network fθ is subsequently included as a component of our overall generative
model and used for training the BLISS galaxy encoder network. To account for the presence of
other objects, the galaxy encoder is re-trained on centered images of galaxies from the generative
model (Section 3.2) while holding the learned decoder fθ fixed.

Encoder networks The location and classification encoders are trained using forward amortized
variational inference (FAVI) (Ambrogioni et al., 2019). FAVI uses the expected forward KL diver-
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gence as its training objective:

ϕ⋆ ≡ argminϕEp(x,a,z) (KL (p(a, z|x)||qϕ(a, z|x))) . (3.13)

This is equivalent to maximizing the expected log-density of the variational distribution over full
samples from the generative model:

ϕ⋆ = argmaxϕEp(x,a,z) log qϕ(a, z|x) = argmaxϕL(ϕ). (3.14)

The FAVI objective has several advantages. First, it leads to a better optimization path than the
traditional VI objective. An unbiased estimate of the gradient of Equation 3.14 can be obtained
by drawing (a, z, x) from the generative model described in Section 3.2 and then calculating the
gradient of qϕ(a, z|x). This lets us avoid using the high-variance REINFORCE gradient estimator
(Liu et al., 2021). Second, the learned distribution from FAVI tends to be overdispersed. This is
typically more desirable than being underdispersed, which is a common problem when optimizing
the ELBO (Blei et al., 2017; Liu et al., 2021). Third, training with FAVI leads to correct estimates
of the marginal posterior distribution of latent variables, implicitly integrating over nuisance pa-
rameters such as the latent properties of light sources below the detection threshold (Ambrogioni
et al., 2019).

3.4 Experiments

To illustrate the performance of BLISS, we run the trained encoder network on a 1489×2048 frame
(run 94, camcol 1, field 12) from stripe 82 of the Sloan Digital Sky Survey (SDSS). After training
for 5.5 hours with synthetic data (a one-time upfront training cost), BLISS inferred a probabilistic
catalog for this SDSS frame in just 10.5 seconds.

Although BLISS is probabilistic and outputs a distribution of catalogs, we use the mode of the
variational distribution as a point estimate for comparison to non-probabilistic catalogs. We let the
coadd catalog from SDSS (henceforth, COADD) for this frame serve as a proxy for ground truth.
COADD based its estimates on all the filter bands of numerous frames, whereas BLISS used just
the r-band of one frame; we expected COADD to serve as reasonable, though imperfect, proxy
for the ground truth in our benchmarks. This approach to benchmarking was developed in Regier
et al. (2019), where it is described in great depth. We compare BLISS with PHOTO Lupton et al.
(2005), which utilizes the same SDSS frame as BLISS, but has access to all five filter bands.

Table 3.1 compares the detection accuracy of BLISS and PHOTO. To qualify as a match, a
source must be within one pixel of the other in L∞ distance. Overall, BLISS detects 571 out of the
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BLISS PHOTO

Mag Ground Truth TP FP TP FP

17 - 18 31 31 1 28 0
18 - 19 39 38 2 37 2
19 - 20 64 59 9 55 12
20 - 21 117 111 20 104 20
21 - 22 232 187 45 185 44
22 - 23 386 126 91 117 47
Overall 889 571 175 545 130

Table 3.1: Catalog comparison of BLISS to PHOTO, treating COADD as ground truth. Each row
is a particular bin of galaxies based on their magnitude according to COADD. “TP” refers to true
positives and “FP” refers to false positives.

BLISS PHOTO

Mag Tot Gal Star Tot Gal Star

17 - 18 0.97 1.00 0.96 0.96 1.00 0.95
18 - 19 1.00 1.00 1.00 1.00 1.00 1.00
19 - 20 0.98 1.00 0.96 1.00 1.00 1.00
20 - 21 0.94 0.91 0.98 0.90 0.86 0.98
21 - 22 0.81 0.86 0.73 0.83 0.81 0.87
22 - 23 0.63 0.74 0.50 0.66 0.70 0.63
Overall 0.84 0.87 0.80 0.85 0.84 0.86

Table 3.2: Accuracy of classifications made by BLISS and PHOTO.

889 total sources in the SDSS frame. The vast majority of sources that BLISS did not find were
faint (magnitude ≥ 21), making them harder to detect. Of the 7 sources greater than 20 magnitude
that were not matched by BLISS, 4 sources were missed due to errors in COADD, 2 sources had
unusual shapes, and 1 source was in a particularly difficult blend with many other sources. This
was determined by manually checking discrepancies with the more recent DECaLS survey Dey
et al. (2019). Similarly, of the 12 sources that BLISS detected that were unmatched in COADD, 10
were due to errors in COADD, and 2 were mistakes by BLISS. These latter two mistakes were both
cases where a source’s center straddled adjacent tiles, leading to a prediction in both. These types
of errors are quite rare, and could be fixed by a post-processing step that conditions on neighboring
tiles, or by a more complex variational approximation.

Table 3.2 compares the source-type classification accuracy of BLISS and PHOTO. Overall,
BLISS correctly classifies most sources. When sources are dimmer and more ambiguous, BLISS
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Figure 3.2: Images of BLISS detections near the 50% detection threshold in SDSS images (left)
and their reconstructions (right). Example (a) was detected in COADD. (b) was not present in
COADD but found in the DECaLS catalog.

sensibly defers to the prior, labeling most of them as galaxies. In SDSS images without much
blending, BLISS identifies more sources than PHOTO, despite having less access to less data
(only one of five bands), with the advantage of producing calibrated uncertainties for every predic-
tion. While BLISS appears to produce more “false positives” than PHOTO, these all arise in the
dimmest magnitude bin 22 − 23 where more ambiguity is present. In this scenario, mistakes in
COADD (our imperfect proxy of ground truth) likely favor PHOTO as both COADD and PHOTO
are both produced by the same software pipeline. We found several cases where BLISS detected
a dim object that was not present in COADD, but confirmed its existence in the DECaLS survey.
Figure 3.2b is one example of a COADD mistake. More importantly, BLISS correctly identifies
the ambiguity in these situations, as most of the “false positives” BLISS finds have probabilities
close to the detection threshold. Setting this detection threshold allows practitioners to decide the
level of certainty they require in sources for use in downstream tasks.

3.5 Conclusion

BLISS is a fundamentally different approach to interpreting astronomical images. It uses deep
learning to enable scalable and accurate Bayesian inference. BLISS performs well at detecting
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and deblending light sources in SDSS images. BLISS is also highly extensible in that its inference
routine requires little modification if the underlying statistical model is revised or extended. The
software used to run these experiments is available from https://github.com/prob-ml/

bliss.
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CHAPTER 4

Learning Physical Models that Respect Conservation
Laws

4.1 Introduction

Conservation laws are ubiquitous in science and engineering, where they are used to model physi-
cal phenomena ranging from heat transfer to wave propagation to fluid flow dynamics, and beyond.
These laws can be expressed in two complementary ways: in a differential form; or in an integral
form. They are most commonly expressed as partial differential equations (PDEs) in a differential
form,

ut +∇ · F (u) = 0,

for an unknown u and a nonlinear flux function F (u). This differential form of the conservation
law can be integrated over a spatial domain Ω using the divergence theorem to result in an integral
form of the conservation law,

Ut = −
∫
Γ

F (u) · ndΓ,

where U =
∫
Ω
u(t, x)dΩ and Γ denotes the boundary of Ω. As examples: in the case of heat

transfer, u denotes the temperature, and U the conserved energy of system; and in the case of
porous media flow, u denotes the density, and U the conserved mass of the porous media.

Global conservation states that the rate of change in time of the conserved quantity U over
a domain Ω is given by the flux across the boundary Γ of the domain. Local conservation arises
naturally in the numerical solution of PDEs. Traditional numerical methods (e.g., finite differences,
finite elements, and finite volume methods) have been developed to solve PDEs numerically, with
finite volume methods being designed for (and being particularly well-suited for) conservation laws
(LeVeque, 1990, 2002, 2007). Finite volume methods divide the domain Ω into control volumes
and apply the integral form locally. They enforce that the time derivative of the cell-averaged
unknown is equal to the difference of the in-flux and out-flux over the control volume. (This
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local conservation—so-called since the out-flux that leaves one cell equals the in-flux that enters
a neighboring cell—can be used to guarantee global conservation over the whole domain.) This
numerical approach should be contrasted with finite difference methods, which use the differential
form directly, and which are thus not guaranteed to satisfy the conservation condition.

This discussion is relevant for machine learning (ML) since there has been an interest recently
in Scientific ML (SciML) in incorporating the physical knowledge or physical constraints into
neural network (NN) training. A popular example of this is the so-called Physics-Informed Neural
Networks (PINNs) (Raissi et al., 2019). This approach uses a NN to approximate the PDE solution
by incorporating the differential form of the PDE into the loss function, basically as a soft con-
straint or regularization term. Other data-driven approaches, including DeepONet (Lu et al., 2021)
and Neural Operators (NOs) (Li et al., 2021a; Gupta et al., 2021), train on simulations and aim
to learn the underlying function map from initial conditions or PDE coefficients to the solution.
Other methods such as Physics-Informed Neural Operator (PINO) attempt to make the data-driven
Fourier Neural Operator (FNO) “physics-informed,” again by adding the differential form into the
supervised loss function as a soft constraint regularization term (Li et al., 2021b; Goswami et al.,
2022).

Challenges and limitations for SciML of this soft constraint approach on model training were
recently identified (Krishnapriyan et al., 2021; Edwards, 2022). The basic issue is that, unlike
numerical finite volume methods, these ML and SciML methods do not guarantee that the physical
property of conservation is satisfied. This is a consequence of the fact that the Lagrange dual form
of the constrained optimization problem does not in general satisfy the constraint. This results in
very weak control on the physical conservation property, resulting in non-physical solutions that
violate the governing conservation law.

In this work, we frame the problem of learning physical models that can respect conservation
laws via a “finite-volume lens” from scientific computing. This permits us to use the integral form
of the governing conservation law to enforce conservation conditions for a range of SciML prob-
lems. In particular, for a wide range of initial and boundary conditions, we can express the integral
form as a time-varying linear constraint that is compatible with existing ML pipelines. This per-
mits us to propose a two-step framework. In the first step, we use an ML model with a mean and
variance estimate to compute a predictive distribution for the solution at specified target points.
Possible methods for this step include: classic estimation methods (e.g., Gaussian Processes (Ras-
mussen and Williams, 2006)); methods designed to exploit the complementary strengths of clas-
sical methods and NN methods (e.g., Neural Processes (Kim et al., 2019)); as well as computing
ensembles of NN models (to compute empirical estimates of means and variances). In the second
step, we apply a discretization of the integral form of the constraint as a Bayesian update in order to
enforce the physical conservation constraint on the black-box unconstrained output. We illustrate

41



our framework, PROBCONSERV, by using an Attentive Neural Process (ANP) (Kim et al., 2019) as
the probabilistic deep learning model in the first step paired with a global conservation constraint
in the second step. In more detail, the following are our main contributions:

• Integral form for conservation. We propose to use the integral form of the governing con-
servation law via finite volume methods, rather than the commonly used differential form,
to enforce conservation subject to a specified noise parameter. Through an ablation study,
we show that adding the differential form of the PDE as a soft constraint to the loss function
does not enforce conservation in the underlying unconstrained ML model.

• Strong control on the conservation constraint. By using the integral form, we are able to en-
force conservation via linear probabilistic constraints, which can be made arbitrarily binding
or sharp by reducing the variance term σ2

G. In particular, by adjusting σ2
G, one can balance

satisfying conservation with predictive metrics (e.g., MSE), with PROBCONSERV obtaining
exact conservation when σ2

G = 0.
• Effective for “easy” to “hard” PDEs. We evaluate on a parametric family of PDEs, which

permits us to explore “easy” parameter regimes as well as “medium” and “hard” parameter
regimes. We find that our method and the baselines do well for “easy” problems (although
baselines sometimes have issues even with “easy” problems, and even for “easy” problems
their solutions may not be conservative), but we do seamlessly better as we go to “harder”
problems, with a 5× improvement in MSE.

• Uncertainty Quantification (UQ) and downstream tasks. We provide theoretical guaran-
tees that PROBCONSERV increases predictive log-likelihood (LL) compared to the original
black-box ML model. Empirically, we show that PROBCONSERV consistently improves
LL, which takes into account both prediction accuracy and well-calibrated uncertainty. On
“hard” problems, this improved control on uncertainty leads to better insights on downstream
shock position detection tasks.

There is a large body of related work, too much to summarize here; see Appendix C.1 for a
summary.

4.2 A Probabilistic Approach to Conservation Law Enforce-
ment

In this section, we present our framework, PROBCONSERV, for learning physical models that can
respect conservation laws. Our approach centers around the following two sources of information:
an unconstrained ML algorithm that makes mean and variance predictions; and a conservation con-
straint (in the form of Equation 4.4 below) that comes from knowledge of the underlying physical
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Algorithm 4.1 PROBCONSERV

Input: Constraint matrix G, constraint value b, non-zero noise σG and input points
(t1, x1), . . . (tN , xN)
Step 1: Calculate black-box prediction over output grid: µ,Σ = fθ((t1, x1), . . . (tN , xN);D)
Step 2: Calculate µ̃ and Σ̃ according to Equation 4.8.
Output: µ̃, Σ̃

system. See Algorithm 4.1 for details of our approach. In the first step, we compute a set of mean
and variance estimates for the unconstrained model. In the second step, we use those mean and
variance estimates to compute an update that respects the conservation law. The update rule has a
natural probabilistic interpretation in terms of uncertainty quantification, and it can be used to sat-
isfy the conservation constraint to a user-specified tolerance level. As this tolerance goes to zero,
our method gracefully converges to a limiting solution that satisfies conservation exactly (Theorem
4.1).

4.2.1 Integral Form of Conservation Laws as a Linear Constraint

Here, we first derive the integral form of a governing conservation law from the corresponding
differential form (a la finite volume methods), and we then show how this integral form can be
expressed as a linear constraint (for PDEs with specific initial and boundary conditions, even for
certain nonlinear differential PDE operators) for a broad class of real-world problems.

Consider the differential form of the governing equation:
Fu(t, x) = 0, x ∈ Ω,

u(0, x) = h(x),

u(t, x) = g(t, x), x ∈ Γ,

,∀ t ≥ 0, (4.1)

where Γ denotes the boundary of the domain Ω, h(x) the initial condition, and g(t, x) the Dirichlet
boundary condition. Recently-popular SciML methods, e.g., PINNs (Raissi et al., 2019), PINOs
(Li et al., 2021b; Goswami et al., 2022), focus on incorporating this form of the constraint into the
NN training procedure. In particular, the differential form of the PDE Fu(t, x) could be added as
a soft constraint to the loss function L, as follows:

min
θ
L(u) + λ∥Fu∥,

where L denotes a loss function measuring the error of the NN approximated solution relative
to the known initial and boundary conditions (and potentially any observed solution samples), θ
denotes the NN parameters, and λ denotes a penalty or regularization parameter.
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For conservation laws, the differential form is given as:

Fu = ut +∇ · F (u), (4.2)

for some given nonlinear flux function F (u). The corresponding integral form of a conservation
law is given as: ∫

Ω

u(t, x)dΩ =

∫
Ω

h(x)dΩ−
∫ t

0

∫
Γ

F (u) · ndΓdt. (4.3)

See Appendix C.2 for a derivation.
In one-dimension, the boundary integral of the flux can be computed analytically, as the differ-

ence of the flux in and out of the domain:∫
Ω

u(t, x)dΩ︸ ︷︷ ︸
Gu(t,x)

=

∫
Ω

h(x)dΩ +

∫ t

0

(Fin − Fout)dt︸ ︷︷ ︸
b(t)

,
(4.4)

where Ω = [x0, xN ], Fin = F (u, t, x0)|u=g(t,x0), and Fout = F (u, t, xN)|u=g(t,xN ). In two and higher
dimensions, we do not have an analytic expression, but one can approximate this boundary integral
as the sum over the spatial dimensions of the difference of the in and out fluxes on the boundary in
that dimension. This methodology is well-developed within finite volume discretization methods,
and we leave this extension to future work.

In many applications (including those we consider), by using the prescribed physical boundary
condition u(t, x) = g(t, x) for x ∈ Γ, it holds that the in and out fluxes on the boundary do
not depend on u, and instead they only depend on t. This is known as a boundary flux linearity

assumption since, when it holds, one can use a simple linear constraint to enforce the conservation
law. This assumption holds for a broad class of problems—even including nonlinear conservation
laws with nonlinear PDE operators F (See Appendix C.3 for the initial/boundary conditions, exact
solutions, exact linear global conservation constraints and Table C.2 for a summary). In these
cases, Equation 4.4 results in the following linear constraint equation:

Gu(t, x) =
∫
Ω

u(t, x)dΩ = b(t), (4.5)

which can be used to enforce global conservation. See Appendix C.4.1 for details on how this
integral equation can be discretized into a matrix equation.

In other applications, of course, the flux linearity assumption along the boundary of the do-
main will not hold. For example, the flux may not be known and/or the boundary condition may
depend on u(t, x). In these cases, we will not be able to not apply Equation 4.5 directly. How-
ever, nonlinear least squares methods may still be used to enforce the conservation constraint. This
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methodology is also well-developed, and we leave this extension to future work.

4.2.2 Step 1: Unconstrained Probability Distribution

In Step 1 of PROBCONSERV, we use a supervised black-box ML model to infer the mean µ and co-
variance Σ of the unknown function u from observed dataD. For example,D can include values of
the function u observed at a small set of points. Over a set of N input points (t1, x1), . . . , (tN , xN),
the probability distribution of u := [u(t1, x1), . . . u(tN , xN)] ∈ RN conditioned on data D has
mean µ := E(u|D) and covariance Σ := Cov(u|D) given by the black-box model fθ, i.e.,

µ,Σ = fθ ((t1, x1), . . . , (tN , xN);D) . (4.6)

This framework is general, and there are possible choices for the model in Equation 4.6. Gaussian
Processes (Rasmussen and Williams, 2006) are a natural choice, assuming that one has chosen an
appropriate mean and kernel function for the specific problem. The ANP model (Kim et al., 2019),
which uses a transformer architecture to encode the mean and covariance, is another choice. A third
option is to perform repeated runs, e.g., with different initial seeds, of non-probabilistic black-box
NN models to compute empirical estimates of mean and variance parameters.

4.2.3 Step 2: Enforcing Conservation Constraint

In Step 2 of PROBCONSERV, we incorporate a discretized and probabilistic form of the constraint
given in Equation 4.5:

b = Gu+ σGϵ, (4.7)

where G denotes a matrix approximating the linear operator G (see Appendix C.4.1), b denotes a
vector of observed constraint values, and ϵ denotes a noise term, where each component has unit
variance. The parameter σG ≥ 0 controls how much the conservation constraint can be violated
(see Figure C.5 for details), with σG = 0 enforcing exact adherence. Step 2 outputs the following
updated mean µ̃ and covariance Σ̃ that respect conservation, given as:

µ̃ = µ− ΣGT (σ2
GI +GΣGT )−1(Gµ− b), (4.8a)

Σ̃ = Σ− ΣGT (σ2
GI +GΣGT )−1GΣ, (4.8b)

where µ and Σ denote the mean and covariance matrix, respectively, from Step 1 (Equation 4.6).
The update rule given in Equation 4.8 can be justified from two complementary perspectives.
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From a Bayesian probabilistic perspective, Equation 4.8 is the posterior mean and covariance of the
predictive distribution of u after incorporating the information given by the conservation constraint
via Equation 4.7. Since both the prior and conservation constraint are Gaussian, Equation 4.8
takes the same form as the observation update step in the Kalman filter, where the Kalman gain is
ΣGT (σ2

GI + GΣGT )−1 (Lopes and Tsay, 2011, Equation 8). From an optimization perspective,
Equation 4.8 is the solution to a least-squares problem that places a binding inequality constraint
on the conserved quantity Gu (i.e., ∥Gu − b∥2 ≤ c for some c ∈ (0, ∥Gµ− b∥2)). See Appendix
C.6 for more details on these two complementary perspectives.

We emphasize that, for σG > 0, the final solution does not satisfy Gu = b exactly. Adher-
ence to the constraint can be gracefully controlled by shrinking σG. Specifically, if we consider a
monotonic decreasing sequence of constraint values σG,n ↓ 0, then the corresponding sequence of
posterior means µ̃n is well-behaved, and the limiting solution can be calculated. This is shown in
the following theorem.

Theorem 4.1. Let µ and Σ be the mean and covariance of u obtained at the end of Step 1. Let

σG,n ↓ 0 be a monotonic decreasing sequence of constraint values and let µ̃n be the corresponding

posterior mean at the end of Step 2 shown in Equation 4.8. Then:

1. The sequence µ̃n converges to a limit µ̃⋆ monotonically; i.e., ∥µ̃n − µ̃⋆∥Σ−1 ↓ 0.

2. The limiting mean µ̃⋆ is the solution to a constrained least-squares problem: argminy∥y −
µ∥Σ−1 subject to Gy = b.

3. The sequence Gµ̃n converges to b in L2; i.e., ∥Gµ̃n − b∥2 ↓ 0.

Moreover, if the conservation constraint Gu = b holds exactly for the true solution u, then:

4. The distance between the true solution u and the posterior mean µ̃n decreases as σG,n → 0,

i.e., ∥µ̃n − u∥Σ−1 ↓ ∥µ̃⋆ − u∥Σ−1 .

5. For sufficiently small σG,n, the log-likelihood LL(u; µ̃n, Σ̃n) is greater than LL(u;µ,Σ) and

increases as σG,n → 0.

See section C.7 for a proof of Theorem 4.1. Importantly, Theorem 4.1 holds for any mean and
covariance estimates µ,Σ, whether they come from a Gaussian Process, ANP, or repeated runs of
a black-box NN. It also shows that we are guaranteed to improve in log-likelihood (LL), which we
also verify in the empirical results (see Figure C.5).

We should also emphasize that, in addition to conservation, Equation 4.7 can incorporate other
inductive biases, based on knowledge of the underlying PDE. To take but one practically-useful
example, one typically desires a solution that is free of artificial high-frequency oscillations. This
smoothing can be accomplished by penalizing large absolute values of the second derivative via a
second order central finite difference discretization in the matrix G̃ (see Appendix C.4.2).
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4.3 Empirical results
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Figure 4.1: Illustration of the “easy-to-hard” paradigm for PDEs, for the GPME family of con-
servation equations: (a) “easy” parabolic smooth (diffusion equation) solutions, with constant
parameter k(u) = k ≡ 1; (b) “medium” degenerate parabolic PME solutions, with nonlinear
monomial coefficient k(u) = um, with parameter m = 3 here; and (c) “hard” hyperbolic-like
(degenerate parabolic) sharp solutions (Stefan equation) with nonlinear step-function coefficient
k(u) = 1u≥u⋆ , where 1E is an indicator function for event E .

In this section, we provide an empirical evaluation to illustrate the main aspects of our proposed
framework PROBCONSERV. We choose the ANP model (Kim et al., 2019) as our black-box, data-
driven model in Step 1, and we refer to this instantiation of our framework as PROBCONSERV-
ANP.1 Unless otherwise stated, we use the limiting solution described in Equation 4.8, with σG =

0, so that conservation is enforced exactly through the integral form of the PDE. We organize our
empirical results around the following questions:

1. Integral vs. differential form?

2. Strong control on the enforcement of the conservation constraint?

3. “Easy” to “hard” PDEs?

4. Uncertainty Quantification (UQ) for downstream tasks?

Generalized Porous Medium Equation. The parametric Generalized Porous Medium Equation
(GPME) is a family of conservation equations, parameterized by a nonlinear coefficient k(u). It
has been used in applications ranging from underground flow transport to nonlinear heat transfer
to water desalination and beyond (Vázquez, 2007). The GPME is given as:

ut −∇ · (k(u)∇u) = 0, (4.9)

1The code is available at https://github.com/amazon-science/probconserv.
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where F (u) = −k(u)∇u is a nonlinear flux function, and where the parameter k = k(u) can be
varied. Even though the GPME is nonlinear in general, for specific initial and boundary conditions,
it has closed form self-similar solutions (Vázquez, 2007; Maddix et al., 2018b,a). This enables ease
of evaluation by comparing each competing method to ground truth solutions.

By varying the parameter k(u) in the GPME family, one can obtain PDE problems with widely-
varying difficulties, from “easy” (where finite element and finite difference methods perform well)
to “hard” (where finite volume methods are needed), and exhibiting many of the qualitative prop-
erties of smooth/easy parabolic to sharp/hard hyperbolic PDEs. See Figure 4.1 for an illustration.
In particular: the Diffusion equation is parabolic, linear and smooth, and represents an “easy”
case (Sec. 4.3.1); the Porous Medium Equation (PME) has a solution that becomes sharper (as
m ≥ 1, for k(u) = um, increases), and represents an “intermediate” or “medium” case (Sec. 4.3.2);
and the Stefan equation has a solution that becomes discontinuous, and represents a “hard” case
(Sec. 4.3.3).

We consider these three instances of the GPME (Diffusion, PME, Stefan) that represent increas-
ing levels of difficulty. In particular, the challenging Stefan test case illustrates the importance of
developing methods that satisfy conservation conditions on “hard” problems, with non-smooth and
even discontinuous solutions, as well as for downstream tasks, e.g., the estimation of the shock po-
sition over time. This is important, given the well-known inductive bias that many ML methods
have toward smooth/continuous behavior.

See Appendix C.8 for more on the GPME; see Appendix C.9 for details on the PROBCONSERV-
ANP model schematic (Figure C.4), model training, data generation and the ANP; and see Ap-
pendix C.10 for additional empirical results on the GPME and the hyperbolic linear advection
equation.

Baselines. We compare our results to the following baselines:

• ANP: Base unconstrained ANP (Kim et al., 2019), trained to minimize the negative evidence
lower bound (ELBO):

L = −ED,u∼pEz∼qϕ log pθ(u, z|D)− log qϕ(z|u,D),

where qϕ denotes the variational distribution of the data used for training, and pθ denotes the
generative model. The ANP learns a global latent representation z that captures uncertainty
in global parameters, which influences the prediction of the reference solution u. At infer-
ence time, the distribution of u given z (pθ(u|z,D)) outputs a mean and diagonal covariance
for Step 1.

• SOFTC-ANP: In this “Physics-Informed” Neural Process ablation, we include a soft con-
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strained PDE in the loss function, as is done with PINNs (Raissi et al., 2019), to obtain:

L+ λEz∼qϕ∥Fµz∥22,

whereF denotes the underlying PDE differential form in Equation 4.1, µz denotes the output
mean of the ANP, and λ denotes a hyperparameter controlling the relative strength of the
penalty. (See Appendix C.10.1.2 for details on the hyperparameter tuning of λ.)

• HARDC-ANP: In this hard-constrained Neural Process ablation, we project the ANP mean
to the nearest solution in L2 satisfying the integral form of conservation constraint. This
method is inspired by the approach taken in Négiar et al. (2022) that projects the output of
a neural network onto the nearest solution satisfying a linear PDE system. HARDC-ANP is
an alternative to Step 2 that solves the following constrained least-squares problem:

µHC = argminu∥u− µ∥22 s.t. Gu = b

= µ−GT (GGT )−1(Gµ− b).

HARDC-ANP is equivalent to the limiting solution of the mean of PROBCONSERV as σG →
0 in Equation 4.8a, if the variance from Step 1 is fixed to be the same for each point, i.e.,
Σ = I .

Evaluation. At test time, we select a value of the PDE parameter α that lies within the range
of PDE parameters used during training (i.e., α ∈ A). For each value of α, we generate multiple
independent draws of (Di, ui, bi) in the same manner as the training data. At a particular time-
index tj in the training window, we report the following prediction metrics: conservation error
(CE) (Gµ− b)tj ; mean-squared error (MSE) 1

M
∥utj ,· − µtj ,·∥2; and predictive log-likelihood (LL)

− 1
2M
∥utj ,· − µtj ,·∥Σ−1 − 1

2M

∑
i log σ

2
tj ,i
− log 2π, where M denotes the number of spatial points.

We report the average of each metric over ntest = 50 independent runs. Our convention for bolding
the CE metric is binary on whether conservation is satisfied exactly or not. For the LL and MSE
metrics, we bold the methods whose mean metric is within one standard deviation of the best mean
metric.

4.3.1 Diffusion Equation: Constant k

The diffusion equation is the simplest non-trivial form of the GPME, with constant diffusivity
coefficient k(u) = k > 0 (see Figure 4.1(a)). We train on values of k ∈ A = [1, 5]. The diffusion
equation is also known as the heat equation, where in that application the PDE parameter k denotes
the conductivity and the total conserved quantity denotes the energy. In our empirical evaluations,
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Figure 4.2: The total mass U(t) =
∫
Ω
u(t, x)dΩ as a function of time t for the (“easy”) diffusion

equation with constant diffusivity coefficient k ∈ A = [1, 5] and test-time parameter value k = 1.
The true U(t) is zero at all times since there is zero net flux from the domain boundaries and
mass cannot be created or destroyed on the interior. Both PROBCONSERV-ANP and HARDC-
ANP satisfy conservation of mass exactly. The other baselines violate conservation and result in a
non-physical mass profile over time. ANP and SOFTC-ANP are not even zero at time t = 0.

CE LL MSE

ANP 4.68 (0.10) 2.72 (0.02) 1.71 (0.41)
SOFTC-ANP 3.47 (0.17) 2.40 (0.02) 2.24 (0.78)
HARDC-ANP 0 (0.00) 3.08 (0.04) 1.37 (0.33)

PROBCONSERV-ANP 0 (0.00) 2.74 (0.02) 1.55 (0.33)

Table 4.1: Mean and standard error for CE ×10−3 (should be zero), LL (higher is better) and MSE
×10−4 (lower is better) over ntest = 50 runs for the (“easy”) diffusion equation at time t = 0.5
with variable diffusivity constant k parameter in the rangeA = [1, 5] and test-time parameter value
k = 1.

we use the diffusion equation notation, and refer to the conserved quantity as the mass.
Figure 4.2 illustrates that the unconstrained ANP solution violates conservation by allowing

mass to enter and exit the system over time. Physically, there is no in-flux or out-flux on the
boundary of the domain, and thus the true total mass of the system U(t) =

∫
Ω
u(t, x)dΩ is zero at

all times. Surprisingly, even incorporating the differential form of the conservation law as a soft
constraint into the training loss via SOFTC-ANP violates conservation and the violation occurs
even at t = 0.

Enforcing conservation as a hard constraint in our PROBCONSERV-ANP model and HARDC-
ANP guarantees that the system total mass is zero, and also leads to improved predictive per-
formance for both methods. In particular, Table 4.1 shows that these methods exactly obtain the
lowest MSE and the highest LL. The success of these two approaches that enforce the integral
form of the conservation law exactly, along with the failure of SOFTC-ANP that penalizes the
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m = 1 m = 3 m = 6
CE LL MSE CE LL MSE CE LL MSE

ANP 6.67 (0.39) 3.49 (0.01) 0.94 (0.09) −1.23 (0.29) 3.67 (0.00) 1.90 (0.04) −2.58 (0.23) 3.81 (0.01) 7.67 (0.09)
SOFTC-ANP 5.62 (0.35) 3.11 (0.01) 1.11 (0.14) −0.65 (0.30) 3.46 (0.00) 2.06 (0.03) −3.03 (0.26) 3.49 (0.00) 7.82 (0.09)
HARDC-ANP 0 (0.00) 3.16 (0.04) 0.43 (0.04) 0 (0.00) 3.44 (0.03) 1.86 (0.03) 0 (0.00) 3.40 (0.05) 7.61 (0.09)

PROBCONSERV-ANP 0 (0.00) 3.56 (0.01) 0.17 (0.02) 0 (0.00) 3.68 (0.00) 2.10 (0.07) 0 (0.00) 3.83 (0.01) 10.4 (0.04)

Table 4.2: Mean and standard error for CE ×10−3 (should be zero), LL (higher is better) and
MSE ×10−4 (lower is better) over ntest = 50 runs for the (“medium”) PME at time t = 0.5
with variable m parameter in the range A = [0.99, 6]. For test-time parameter m = 1, where
conservation by the unconstrained ANP is violated the most, PROBCONSERV-ANP leads to a
substantial 5.5× improvement in MSE and log-likelihood. For test-time parameters m = 3, 6, the
MSE for PROBCONSERV-ANP increases due to the error concentrated at the sharper boundary
while the desired log-likelihood and conservation metrics improve.

differential form, demonstrates that physical knowledge must be properly incorporated into the
learning process to improve predictive accuracy. Figure C.6 in Appendix C.10.1.1 illustrates that
these conservative methods perform well on this “easy” case since the uncertainty from the ANP is
relatively homoscedastic throughout the solution space; that is, the estimated errors are mostly the
same size, and the constant variance assumption in HARDC-ANP holds reasonably well.

4.3.2 Porous Medium Equation (PME): k(u) = um

The Porous Medium Equation (PME) is a subclass of the GPME in which the coefficient, k(u) =
um, is nonlinear and smooth (see Figure 4.1(b)). The PME is known to be degenerate parabolic,
with differing behaviors depending on the value of m. We train on values of m ∈ A = [0.99, 6].

Table 4.2 compares the CE, MSE, and LL results for m = 1, 3, 6. These three values of m re-
flect “easy,” “medium,” and “hard” scenarios, respectively, as the solution profile becomes sharper.
Despite achieving relatively low MSE for m = 1, the ANP model violates conservation the most.
The error profiles as a function of x in Figure C.8 in Appendix C.10.1.2 illustrate the cause:
the ANP consistently overestimates the solution to the left of the shock. Enforcing conservation
consistently fixes this bias, leading to errors that are distributed around 0. Our PROBCONSERV-
ANP method results in an ≈ 82% improvement in MSE, and HARDC-ANP results in an ≈ 54%

improvement over the ANP. Since HARDC-ANP shifts every point equally, it induces a negative
bias in the zero (degeneracy) region of the domain, leading to a non-physical solution.

For m = 3, 6, while the MSE for PROBCONSERV-ANP increases compared to the ANP, the
LL for PROBCONSERV-ANP improves. The increase in LL for PROBCONSERV-ANP indicates
that the uncertainty is better calibrated as a whole. Figure C.8 in Appendix C.10.1.2 illustrates that
PROBCONSERV-ANP reduces the errors to the left of the shock point while increasing the error
immediately to the right of it. This error increase is penalized more in the L2 norm, which leads to
an increase in MSE. The LL metric improves because our PROBCONSERV-ANP model takes into
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account the estimated variance at each point. It is expected that the largest uncertainty occurs at
the sharpest part of the solution, since that is the area with the largest gradient. This region is more
difficult to be captured as the shock interface becomes sharper when m in increased.

For control on the enforcement of conservation constraint, see Figure C.2 in Figure C.5, where
we show empirically that the log likelihood is always increasing, as stated in Theorem 4.1. Note
that there are optimal values of σ2

G, in which case the MSE can be better optimized.

4.3.3 Stefan Problem: Discontinuous Nonlinear k(u)

CE LL MSE

ANP -1.30 (0.01) 3.53 (0.00) 5.38 (0.01)
SOFTC-ANP -1.72 (0.04) 3.57 (0.01) 6.81 (0.15)
HARDC-ANP 0 (0.00) 2.33 (0.06) 5.18 (0.02)

PROBCONSERV-ANP 0 (0.00) 3.56 (0.00) 1.89 (0.01)

Table 4.3: Mean and standard error for CE×10−2 (should be zero), LL (higher is better), and MSE
×10−3 (lower is better) over ntest = 50 runs for the (“hard”) Stefan variant of the GPME at time
t = 0.05. Each model is trained with the parameter u⋆ in the range A = [0.55, 0.7] and test-time
parameter value u⋆ = 0.6. PROBCONSERV-ANP leads to an increase in log-likelihood and a 3×
decrease in MSE.

The most challenging case of the GPME is the Stefan problem. In this case, the coefficient k(u)
is a discontinuous nonlinear step function k(u) = 1u≥u⋆ , where 1E denotes an indicator function
for event E and u⋆ ∈ R+. The solution is degenerate parabolic and develops a moving shock over
time (see Figure 4.1(c)). We train on values of u⋆ ∈ A = [0.55, 0.7] and evaluate the predictive
performances of each model at u⋆ = 0.6.

Unlike the PME test case, where the degeneracy point (x∗(t) = t) is the same for each value of
m, the shock position for the Stefan problem depends on the parameter u⋆ (See Figure C.1 in sec-
tion C.3). This makes the problem more challenging for the ANP, as it can no longer memorize the
shock position. On this “harder” problem, the unconstrained ANP violates the physical property of
conservation by an order of magnitude larger in CE than in the “easier” diffusion and PME cases.
By enforcing conservation of mass, PROBCONSERV-ANP results in substantial ≈ 65% improve-
ment in MSE (Table 4.3). In addition, Figure 4.3(a) shows that the solution profiles associated with
ANP and the other baselines are smoothed and deviate more from the true solution than the solu-
tion profile of our PROBCONSERV-ANP model. Similar to our previous two case studies, adding
the differential form of the PDE via SOFTC-ANP does not lead to a conservative solution (see Fig-
ure C.9 in Appendix C.10.1.3). In fact, Table 4.3 shows that surprisingly, conservation is violated
more by SOFTC-ANP than with the ANP, with a corresponding increase in MSE. These results
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demonstrate that physics-based constraints, e.g., conservation need be incorporated carefully (via
finite volume based ideas) into ML-based models.

Table 4.3 shows that the LL for PROBCONSERV-ANP increases only slightly, compared to
that of the ANP (3.56 vs 3.53), and it is slightly less than SOFTC-ANP. Figure 4.3(a) shows that
enforcing conservation of mass creates a small upward bias in the left part of the solution profile
for x ∈ [0, 0.2]. Since the variance coming from the ANP is smaller in that region, this bias
is heavily penalized in the LL. This bias is worse for HARDC-ANP, which assumes an identity
covariance matrix and ignores the uncertainty estimates from the ANP. HARDC-ANP adds more
noticeable upward bias to the x ∈ [0, 0.2] region, and it even adds bias to the zero-density region
to the right of the shock. Compared to PROBCONSERV-ANP, HARDC-ANP only leads to a
slight reduction in MSE (3%) and a much lower LL (2.33). This shows the benefit of using the
uncertainty quantification from the ANP in our PROBCONSERV-ANP model for this challenging
heteroscedastic case.

Downstream task: Shock point estimation. While quantifying predictive performance in terms
of MSE or LL is useful in ML, these metrics are typically not of direct interest to practitioners. To
this end, we consider the downstream task of shock point estimation, which is an important prob-
lem in fluids, climate, and other areas. The shock position for the Stefan problem x⋆(t) depends
on the parameter u⋆. Hence, for a given function at test-time, the shock position x⋆(t) is unknown
and must be predicted from the estimated solution profile.

We define the shock point at time t as the first spatial point (left-to-right) where the function
equals zero:

x⋆(t) = inf
x
{u(t, x) = 0}. (4.10)

On a discrete grid, we approximate the infimum using minimum. The advantage of a probabilistic
approach is that we can directly quantify the uncertainty of x⋆(t) by drawing samples from the
posterior distributions of our PROBCONSERV-ANP model and the baselines.

Figure 4.3(b) shows the corresponding histograms of the posterior of the shock position. We
see that our PROBCONSERV-ANP posterior is centered around the true shock value. By under-
estimating the solution profile, the ANP misses the true shock position wide to the left, as do
the other baselines SOFTC-ANP and HARDC-ANP. Remarkably, neither adding the differential
form as a soft constraint (SOFTC-ANP) nor projecting to the nearest conservative solution in L2

(HARDC-ANP) helps with the task of shock position estimation. This result highlights that both
capturing the physical conservation constraint and using statistical uncertainty estimates in our
PROBCONSERV-ANP model are necessary on challenging problems with shocks, especially when
the shock position is unknown.
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Figure 4.3: (a) Stefan solution profiles at time t = 0.05 with training parameter values u⋆ ∈
A = [0.55, 0.7] and test-time parameter u⋆ = 0.6. PROBCONSERV-ANP results in a sharper
solution profile and the solution is mean-centered around the shock position. (b) The corresponding
histogram of the posterior of the shock position computed as the mean plus or minus 3 standard
deviations. PROBCONSERV-ANP reduces the level of underestimation and the induced negative
bias at the shock interface to result in more accurate shock position prediction.

4.4 Conclusion

We have formulated the problem of learning physical models that can respect conservation laws
from the finite volume perspective, by writing the governing conservation law in integral form
rather than the commonly-used (in SciML) differential form. This permits us to incorporate the
global integral form of the conservation law as a linear constraint into black-box ML models; and
this in turn permits us to develop a two-step framework that first trains a black-box probabilistic
ML model, and then constrains the output using a probabilistic constraint of the linear integral
form. Our approach leads to improvements (in MSE, LL, etc.) for a range of “easy” to “hard” pa-
rameterized PDE problems. Perhaps more interestingly, our unique approach of using uncertainty
quantification to enforce physical constraints leads to improvements in challenging shock point
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estimation problems. Future extensions include support for local conservation in finite volume
methods, where the same linear constraint approach can be taken by computing the fluxes as latent
variables; imposing boundary conditions as linear constraints (Saad et al., 2022); and extension
to other physical constraints, including nonlinear constraints, e.g., enstrophy in 2D and helicity in
3D, and inequality constraints, e.g., entropy (Tezaur et al., 2017).
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CHAPTER 5

Normalizing Flows for Knockoff-free Controlled
Feature Selection

5.1 Introduction

Researchers in machine learning have made much progress in developing regression and classifi-
cation models that can predict a response based on features. In many application areas, however,
practitioners need to know which features drive variation in the response, and they need to do so
in a way that limits the number of false discoveries. For example, in genome-wide association
studies (GWAS), scientists must consider hundreds of thousands of genetic markers to identify
variants associated with a particular trait or disease. The cost of false discoveries (i.e., selecting
variants that are not associated with the disease) is high, as a costly follow-up experiment is often
conducted for each selected variant. Another example where controlled feature selection matters
is analyzing observational data about the effectiveness of educational interventions. In this case,
researchers may want to select certain educational programs to implement on a larger scale and
require confidence that their selection does not include unacceptably many ineffective programs.
As a result, researchers are interested in methods that model the dependence structure of the data
while providing an upper bound on the false discovery rate (FDR).

Model-X knockoffs (Candès et al., 2018) is a popular method for controlled variable selection,
offering theoretical guarantees of FDR control and the flexibility to use arbitrary predictive mod-
els. However, even with knowledge of the underlying feature distribution, the Model-X knock-
offs method is not feasible unless the feature distribution is either a finite mixture of Gaussians
(Gimenez et al., 2019) or has a known Markov structure (Bates et al., 2020). Hence, a body of
research explores the use of empirical approaches that use deep generative models to estimate the
distribution ofX and sample knockoff features (Jordon et al., 2019; Liu and Zheng, 2018; Romano
et al., 2020; Sudarshan et al., 2020).

The ability of these methods to control the FDR is contingent on their ability to correctly
model the distribution of the features. By itself, learning a sufficiently expressive feature model
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can be challenging. However, the knockoff procedure requires learning a knockoff distribution
that satisfies the swap property, which is a much stronger requirement. Formally, let X ∈ RD be
a sample from the feature distribution and X̃ ∈ RD be a sample from the knockoff distribution
conditioned on X . The swap property stipulates that the joint distribution (X, X̃) ∈ R2D must be
invariant to swapping the positions of any subset of features S ∈ {1, . . . , D}:

(X, X̃)swap(S)
D
= (X, X̃) (5.1)

Here, swap(S) means exchanging the positions of Xj and X̃j for all j ∈ S. For example, in
the case D = 3 and S = {1, 3}, the joint distribution is (X, X̃) = (X1, X2, X3, X̃1, X̃2, X̃3),
and the swapped joint distribution is (X, X̃)swap(S) = (X̃1, X2, X̃3, X1, X̃2, X3). Note that, for
S = {1, . . . , D}, the swap property implies that X̃ D

= X . See Candès et al. (2018) for a more
detailed description of the swap property.

Even if a distribution were found satisfying the swap property, it may not provide enough
power to make discoveries. For example, both properties are trivially satisfied by constructing
exact copies of the features as knockoffs, but the resulting procedure has no power.

In situations where a valid knockoff distribution is available to sample from, knockoffs are
computationally appealing because they require only one sample from a knockoff distribution to
assess the relevance of all p features. However, in situations where the joint density of the features
is unknown, we show that empirical approaches to knockoff generation (Jordon et al., 2019; Liu
and Zheng, 2018; Romano et al., 2020; Sudarshan et al., 2020) fail to characterize a valid knockoff
distribution and therefore do not control the FDR. We further show that even with a known co-
variate model, it is not straightforward to construct a valid knockoff distribution unless a specific
model structure is known.

We propose a new feature selection method called FLOWSELECT (section 5.3), which does not
suffer from these problems. FLOWSELECT uses normalizing flows to learn the joint density of the
covariates. Normalizing flows is a state-of-the-art method for density estimation; asymptotically, it
can approximate any distribution arbitrarily well (Papamakarios et al., 2021; Kobyzev et al., 2020;
Huang et al., 2018). Additionally, FLOWSELECT circumvents the need to sample a knockoff dis-
tribution by instead applying a fast variant of the conditional randomization test (CRT) introduced
in Candès et al. (2018). Samples from the complete conditionals are drawn using MCMC, ensuring
they are unbiased with respect to the learned data distribution.

Asymptotically, FLOWSELECT computes correct p-values to use for feature selection (sec-
tion 5.4). Our proof assumes the universal approximation property of normalizing flows and the
convergence of MCMC samples to the Markov chain’s stationary distribution. Under the same as-
sumptions as the CRT, which includes a multiple-testing correction as in Benjamini and Hochberg
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(1995), a selection threshold can be picked which controls the FDR at a pre-defined level. Empir-
ically, on both synthetic (Gaussian) data and semi-synthetic data (real predictors and a synthetic
response), FLOWSELECT controls the FDR where other deep-learning-based knockoff methods do
not. In cases in which competing methods do control the FDR, FLOWSELECT shows higher power
(section 5.5). Finally, in a challenging real-world problem with soybean genome-wide association
study (GWAS) data, FLOWSELECT successfully harnesses normalizing flows for modeling discrete
and sequential GWAS data, and for selecting genetic variants the traits depend on (section 5.5.4).

5.2 Background

FLOWSELECT brings together four existing lines of research, which we briefly introduce below.

Normalizing flows Normalizing flows is a general framework for density estimation of a multi-
dimensional distribution with arbitrary dependencies (Papamakarios et al., 2021). A normalizing
flow starts with a simple probability distribution (e.g., Gaussian or uniform), which is called the
base distribution and denoted Z, and transforms samples from this base distribution through a se-
ries of invertible and differentiable transformations, denoted G, to define the joint distribution of
X ∈ RD ∼ PX . A normalizing flow with enough transformations can approximate any multi-
variate density, subject to regularity conditions detailed by Kobyzev et al. (2020). Compared to
other density-estimation methods, normalizing flows are computationally efficient. Details about
the specific normalizing flow architecture used in FLOWSELECT are provided in Appendix D.1.

Controlled feature selection Consider a response Y which depends on a vector of features X ∈
RD. Depending on how the features are chosen, it is plausible that only a subset of the features
contains all relevant information about Y . Specifically, conditioned on the relevant features in X ,
Y is independent of the remaining features in X (i.e. the null features). The goal of the controlled
feature selection procedure is to maximize the number of relevant features selected while limiting
the number of null features selected to a predefined level. If we denote the total number of selected
features R, then we can decompose R into V , the number of relevant features selected, and S, the
number of null features selected.

Conditional randomization test Controlled feature selection can be seen as a multiple hypoth-
esis testing problem where there are p null hypotheses, each of which says that feature Xj is
conditionally independent of the response Y given all the other features X−j . Explicitly, the test
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of the following hypothesis is conducted for each feature j = {1, . . . , D}:

H0 : Xj ⊥ Y |X−j versus H1 : Xj ̸⊥ Y |X−j. (5.2)

To test these hypotheses, one can use a conditional randomization test (CRT) (Candès et al., 2018).
For each feature tested in a conditional randomization test, a test statistic Tj (e.g., the LASSO
coefficient or another measure of feature importance) is first computed on the data. Then, the null
distribution of Tj is estimated by computing its value T̃j based on samples X̃j drawn from the
conditional distribution of Xj given X−j . Finally, the p-value is calculated based on the empir-
ical CDF of the null test statistics, and features whose p-values fall below the threshold set by
the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) are selected. Though the
CRT is introduced as a computationally inefficient alternative to knockoffs, the CRT nonetheless
has appeal because it requires only knowledge of the feature distribution, which can be learned
empirically by maximum likelihood.

Holdout randomization test The holdout randomization test (HRT) (Tansey et al., 2021) is a fast
variant of the CRT; it uses a test statistic that requires fitting the model only once. Let θ represent
the parameters of the chosen model, and let T (X, Y, θ) be an importance statistic calculated from
the model with input data. For example, T , could be the predictive likelihood Pθ(Y

test|X test) or
the predictive score R2. To use the HRT, first fit model parameters θ̂ based on the training data.
Next, for each covariate j, calculate the test statistic T ∗j ← T (X test, Y test, θ̂). Then, generate k null
samples and compute Tj,k ← T (X test

(j←jk)
, Y test, θ̂), where X test

(j←jk)
replaces the j-th covariate with

the k-th generated null sample. Finally, calculate the p-value as in the CRT, based on the empirical
CDF of the null test statistics.

5.3 Methodology

FLOWSELECT implements the CRT for arbitrary feature distributions by using a normalizing
flow to fit the feature distribution and Markov chain Monte Carlo (MCMC) to sample from each
complete conditional distribution. Performing controlled feature selection with FLOWSELECT

consists of the three steps below.

Step 1: Model the predictors with a normalizing flow

Starting with the observed samples of the features X1, . . . , XN ∼ PX , we fit the parameters of a
normalizing flow Gθ to maximize the log likelihood of the data with respect to a base distribution
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Algorithm 5.1 Step 2 of the FLOWSELECT procedure for drawing K null features X̃i,j|Xi,−j for
feature j at observation i.

Input: Feature matrix X ∈ RN×D, observation index i, feature index j, number of samples K,
fitted normalizing flow pθ̂, MCMC proposal qj
Output: Null features X̃i,j,k for k = 1, . . . , K
for k = 1, . . . , K do

Propose: X⋆
i,j,k ∼ qj(·|X̃i,j,k−1, Xi,−j)

ri,j,k ←
pθ̂(X

⋆
i,j,k,Xi,−j)qj(X̃i,j,k−1|X⋆

i,j,k,Xi,−j)

pθ̂(X̃i,j,k−1,Xi,−j)qj(X⋆
i,j,k|X̃i,j,k−1,Xi,−j)

Sample: Ui,j,k ∼ Bernoulli(ri,j,k ∧ 1)
if Ui,j,k = 1 then
X̃i,j,k ← X⋆

i,j,k

else
X̃i,j,k ← X̃i,j,k−1

end if
end for

pZ :

θ̂ = argmax
θ

N∑
i=1

log pθ(Xi)

where pθ(Xi) = pZ(Gθ(X))

∣∣∣∣det(∂Gθ(X)

∂X

)∣∣∣∣ .
(5.3)

The resulting density pθ̂ is a fitted approximation to the true density PX . The specific normal-
izing flow architecture we use in our first two experiments consists of a single Gaussianization
layer (Meng et al., 2020) followed by a masked autoregressive flow (MAF) (Papamakarios et al.,
2017). The first layer can learn complex marginal distributions for each covariate, while the MAF
learns the dependencies between them. More detail on normalizing flows and on this particular
architecture can be found in appendix D.1.

Step 2: Sample from the complete conditionals with MCMC

For each feature j, we aim to sample corresponding null features X̃i,j,k for all k ∈ {1, . . . , K}
that are equal in distribution to pθ̂(Xi,j|Xi,−j), but independent of Yi. However, directly sampling
from this conditional distribution is intractable. Instead, we implement an MCMC algorithm that
admits it as a stationary distribution. The samples drawn from MCMC are autocorrelated, but
any statistic calculated over these samples will converge almost surely to the correct value. The
choice of the MCMC proposal distribution qj is flexible. Because each Markov chain is only one-
dimensional, a Metropolis-Hastings Gaussian random walk with the standard deviation set based
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on the covariance can be expected to mix rapidly. Alternatively, information from pθ̂, such as
higher-order derivatives, could be used to construct a more efficient proposal. algorithm 5.1 details
how to implement step 2.

Step 3: Test for significance with the HRT

As in the CRT, feature j has high evidence of being significant if, under the assumption that j is
a null feature, the probability of realizing a test statistic greater than the observed Tj(X) is low.
Formally, letting [X̃j, X−j] be the observed feature matrix with the observed feature Xj swapped
out with the null feature X̃j , we can write this as a p-value αj:

αj ≡ PX̃j |X−j

(
Tj(X) < Tj([X̃j, X−j])

)
. (5.4)

However, the above p-value αj is not tractable. For each sample X̃·,j,k drawn using MCMC, we
calculate the corresponding feature statistic and compare it to the real feature statistic, leading to
an approximated p-value α̂j:

α̂j ≡
1

K + 1
(1 +

K∑
k=1

1[Tj(X) < Tj([X̃j,k, X−j])). (5.5)

To control the FDR, we use the Benjamini-Hochberg procedure to establish a threshold for the
observed p-values. Specifically, we set the threshold to s(γ) ≜ maxj{α̂j : α̂j ≤ j

D
γ}, and select

all features j such that αj ≤ s(γ).
The Benjamini-Hochberg correction only guarantees FDR control provided that the p-values

have either positive or zero correlation. Thus, the FDR control of FLOWSELECT depends on these
assumptions being met. A more conservative correction from Benjamini and Yekutieli (2001)
allows for arbitrary dependencies in p-values, but it suffers from low power. The Benjamini-
Hochberg correction is widely used and empirically robust (Tansey et al., 2021), so we report
results using it. Across our synthetic and semi-synthetic benchmarks in section 5.5, we also find
that FLOWSELECT maintains empirical FDR control.

Provided that the Benjamini-Hochberg assumptions are met, the FDR will be controlled, but
the power of the test depends on Tj being higher when j is a significant feature. For example,
if Y is expected to vary approximately linearly with respect to X , Tj(X) could be the absolute
estimated regression coefficient |β̂j| for the linear model Y = Xβ + ϵ. Another choice is the HRT
feature statistic described earlier.
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5.4 Asymptotic results

The ability of FLOWSELECT to control the FDR relies on its ability to produce estimated p-values
that converge to the correct p-values for the hypothesis test in eq. (5.2).

Theorem 5.1. Let X ∈ RN×D be a random feature matrix, where each row Xi,· is independent

and identically distributed; x ∈ RN×D be the observed feature matrix; and αj be the p-value as

defined in eq. (5.4) with test statistic Tj(X). Suppose there exists a sequence of functions (Gn)∞n=1

and a base random variable Z satisfying the following conditions:

1. Each Gn is continuously differentiable and invertible.

2. Gn → G pointwise for some map G that is triangular, increasing, continuously differen-

tiable, and satisfies G(Xi,·)
D
= Z.

For n = 1, 2, . . . , let Xn be the random feature matrix where each row i is independent and has

distribution Xn
i,· = (Gn)−1(Z). Then, the p-value in eq. (5.5) calculated using K MCMC samples

targeting Xn
·,j | Xn

·,−j = x·,−j converges to the correct p-value αj with probability 1.

Here we sketch the proof. A full proof can be found in Appendix D.2. First, by construction
each Gn defines a distribution Xn

i,·
D
= (Gn)−1(Z) that in turn implies a conditional distribution

Xn
·,j|Xn

·,−j = x·,−j . We show these conditional distributions converge to the true conditional distri-
bution ofX·,j givenX·,−j = x·,−j . Consequently, the probability of observing a higher test statistic
under the approximated null distribution X̃n

·,j
D
= Xn

·,j , written αn
j , will converge to the probability

under the true null distribution X̃·,j|X·,−j = x·,−j , i.e. αj . Next, the Cesaro average of K samples
from an MCMC algorithm targeting X̃n

·,j|X·,−j = x·,−j , written α̂j,K,n will converge to αn
j with

probability 1 as K →∞. Combining these two convergences leads to the stated result.
Assuming the limiting p-values {αj} satisfy the chosen multiple-hypothesis-testing assump-

tions, Theorem 5.1 specifies additional conditions that are sufficient for FDR control. These con-
ditions are not strictly fewer than those required for empirical model-X knockoff-based methods to
control FDR, but they may be easier to satisfy adequately in practice. For example, the condition
that there exists a sequence (Gn)

∞
n=1 converging to the true mapping G is satisfied asymptotically

by many flow architectures that are universal distribution approximators, including the Gaussian-
ization Flows and Masked Autoregressive Flows used in our experiments (Huang et al., 2018;
Meng et al., 2020; Kobyzev et al., 2020). In practice, it is unlikely that an exact mapping G will be
learned, as doing so could require infinite training data, infinitely deep transformations, and exact
nonconvex optimization. Nonetheless, normalizing flows work extremely well in practice; ?? 5.1
gives intuition for the good performance of FLOWSELECT that we observe empirically.
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Figure 5.1: A density plot of the feature distribution with coordinate j = 1 on the x-axis and co-
ordinate j = 2 on the y-axis. The ground truth density is compared to the normalizing flow fitted
within FLOWSELECT and the distribution of each knockoff method (DeepKnockoff, Knockoff-
GAN, MASS, and DDLK). To have FDR control, each distribution should match the distribution
of the features.

5.5 Experiments

5.5.1 Synthetic experiment with a mixture of highly correlated Gaussians

We compare FLOWSELECT to the aforementioned knockoff methods with synthetic data drawn
from a mixture of three highly correlated Gaussian distributions with dimension D = 100.1 For
each knockoff method, we use the exact implementation described in their respective papers, and
we utilize the code made publicly available by the authors (c.f. appendix D.2.2 for further details).
For further comparison, we also implement the MASS knockoff procedure from Gimenez et al.
(2019) and the RANK knockoff procedure from Fan et al. (2020). These methods estimate the
unknown feature distribution using either a mixture of Gaussians (MASS) or a sparse precision
matrix (RANK), and then sample the knockoffs directly as in Candès et al. (2018).

To generate the data, we draw N = 100, 000 highly correlated samples. For i = 1, . . . , N , we
sample

Xi
i.i.d∼
∑3

m=1
πmpN (Xi;µm,Σm), (5.6)

with mixing weights π = (0.371, 0.258, 0.371), mean vector µ = (0, 20, 40), and covariance
matrices Σm. Each covariance Σm follows an AR(1) pattern such that (Σm)i,j = ρ

|i−j|
m where

ρ = (0.982, 0.976, 0.970). The response Yi is linear in fi(Xi) for some function fi and coefficient
vector β i.e., Yi = fi(Xi)β + ϵi. Each coefficient βj equals 100√

N
Bj , where Bj = 0 with probability

0.8, Bj = 1 with probability 0.1, and Bj = −1 with probability 0.1. We consider two different
schemes for the fi that connect the features to the response. In our linear setting, fi is equal to
the identity function. In our nonlinear setting, fi(x) is set equal to sin(5x) for odd i and fi(x) =

1Software to reproduce our experiments is available at https://github.com/dereklhansen/flowselect.
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cos(5x) for even i.
The experimental setting we have described so far is adapted from Sudarshan et al. (2020).

However, we found that the N = 2000 they used was too few observations for any of the methods
to do well in a general non-linear setting. Moreover, in many situations where controlled feature
selection is deployed, neighboring features will be highly correlated. To reflect this, we also in-
creased the base correlation between features within each mixture to create a more challenging
example. We show results under the original settings of Sudarshan et al. (2020) in appendix D.9.

For each model, we use 90% of the data for training to generate null features and the remain-
ing 10% for calculating the feature statistics. To define the feature statistics, we use the holdout
randomization test (HRT) described at the end of section 5.2. For the HRT, we employ different
predictive models for each response type (“linear” and “nonlinear”). Specifically, for the linear
response, we use the predictive log-likelihood from the LASSO (Tibshirani, 1996), and for the
nonlinear response, we use the predictive negative mean-squared error from a random forest re-
gressor (Breiman, 2001).

First, we look at how each procedure models the covariate distribution in fig. 5.1. In order
to be valid knockoffs, the distribution of two knockoff features needs to be equal to that of the
covariates. In this challenging example, each of the empirical knockoff methods fails to match the
ground truth. In particular, DDLK and DeepKnockoffs are over-dispersed, while KnockoffGAN
suffers from mode collapse. These findings for DeepKnockoffs and KnockoffGAN are similar
to those reported by Sudarshan et al. (2020). Other than MASS, which directly fits a mixture of
Gaussians, FLOWSELECT is the only method that matches the basic structure of the ground truth.

fig. 5.2 shows that the empirical knockoff procedures fail to control the FDR for both linear
and nonlinear responses. One explanation for this lack of FDR control is the inability of the deep-
learning-based methods to accurately model a knockoff distribution (c.f., fig. 5.1). As a result, the
assumptions for the knockoff procedure will not hold, and FDR control is not guaranteed.

The effects of misspecification are clearly visible in the case of RANK, which approximates the
mixture-of-Gaussians data with a multivariate Gaussian. However, even MASS, when given access
to the correct data distribution, does not achieve across-the-board FDR control. This highlights
the potential sensitivity of knockoffs to parameter misfit even when the underlying distributional
family of the features is known. This is confirmed by the fact that, when provided with the true
parameters, the oracle Model-X maintains FDR control, though with significantly less power than
FLOWSELECT. (c.f. Appendix D.6).
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Mixture-of-Gaussians scRNA-seq

Figure 5.2: Comparison of power and false discovery rate (FDR) control of FLOWSELECT to
knockoff methods on the Mixture-of-Gaussians dataset (left) and the scRNA-seq dataset (right)
at targeted FDRs of 0.05, 0.1, and 0.25 (indicated by the dashed lines). Each point indicates the
mean power and FDR across 20 replications and the error bars span one standard deviation either
direction. In the top row, the response depends linearly on the features, and the feature statistics
are calculated using the HRT with the LASSO. In the bottom row, the response depends non-
linearly on the features, and the feature statistics are calculated using the HRT with random forest
regression.

5.5.2 Semi-synthetic experiment with scRNA-seq data

In this experiment, we use single-cell RNA sequencing (scRNA-seq) data from 10x Genomics
(Genomics, 2017). Each variable Xn,g is the observed gene expression of gene g in cell n. These
data provide an experimental setting that is both realistic and, because gene expressions are often
highly correlated, challenging. More background information about scRNA-seq data can be found
in Agarwal et al. (2020).

We normalize the gene expression measurements to lie in [0, 1], and we add a small amount
of Gaussian noise so that the data is not zero-inflated. As in the semi-synthetic experiment from
Sudarshan et al. (2020), we pick the 100 most correlated genes to provide a challenging, yet re-
alistic example. We simulate responses that are both linear and nonlinear in the features. fig. 5.2
shows that FLOWSELECT maintains FDR control across multiple FDR target levels, feature statis-
tics, and generated responses. In cases in which the knockoff methods control FDR successfully,
FLOWSELECT has higher power in discovering the features the response depends on.

An advantage of knockoffs over CRT-based methods like FLOWSELECT is that the predictive
model only needs to be evaluated once. Hence, while FLOWSELECT has a faster runtime than
DDLK for this experiment, it is slower than DeepKnockoff and KnockoffGAN. However, fig. 5.2
shows that these two models fail to reliably control FDR and have much less power than FLOWS-
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ELECT; it is not clear how additional computational resources could be leveraged to improve the
performance of these competing methods. A full table of runtimes on the scRNA-seq dataset can
be found in appendix D.4.

The need to compute a different predictive model for each feature within the CRT is mitigated
by using efficient feature statistics such as the HRT (Tansey et al., 2021) and the distilled CRT (Liu
et al., 2020). These methods fit a larger predictive model once, then evaluate either the residuals or
test mean-squared-error for each feature individually. Moreover, the ability to scale to large feature
dimensions D is more limited by fitting the feature distribution than computational burden, a trait
shared by both knockoff- and CRT-based methods.

FLOWSELECT provides asymptotic guarantees of FDR control assuming sufficient MCMC
samples have been drawn for the p-values to converge. In this experiment, the consequence of
terminating MCMC sampling before convergence is low power, rather than loss of FDR control
(see fig. D.5 in appendix D.8). Even for small numbers of MCMC samples, the FDR stabilizes
below the target rate, while the power steadily increases with the number of samples. Because the
MCMC run is initialized at the true features, we speculate that the sampled features will be highly
correlated with the true features in the beginning of the run, making it harder to reject the null
hypothesis that a feature is unimportant.

5.5.3 Ablation Study

FLOWSELECT differs from the competing knockoff-based approaches in two ways: using normal-
izing flows with MCMC to model the feature distribution for sampling null features and using the
CRT for feature selection. To illustrate the impact of each of these components separately, we com-
pare to the procedure used in Tansey et al. (2021), which uses mixture density networks (MDNs)
to model the complete conditional distribution of each feature P(Xj|X−j) separately. They then
sample null features from these learned distributions directly and use the HRT for feature selection.
Since both FLOWSELECT and this procedure utilize the HRT, this allows us to evaluate whether
the performance improvement of FLOWSELECT over empirical knockoffs is solely due to use of
the HRT.

We compare the MDN-based approach to FLOWSELECT on the mixture-of-Gaussians (sec-
tion 5.5.1) and scRNA-seq (section 5.5.2) datasets. A plot of this comparison can be found in
appendix D.5. While the MDN-based approach was able to match the performance of FLOWSE-
LECT on the scRNA-seq dataset, it failed to control FDR at any level on the Mixture-of-Gaussians
dataset, indicating that MDNs are less flexible than normalizing flows. In aggregate, these results
show that both the normalizing flows paired with MCMC and the use of the HRT for significance
testing are key to the performance of FLOWSELECT.
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5.5.4 Real data experiment: soybean GWAS

Genome-wide association studies are a way for scientists to identify genetic variants (single-
nucleotide polymorphisms, or SNPs) that are associated with a particular trait (phenotype). We
tested FLOWSELECT on a dataset from the SoyNAM project (Song et al., 2017), which is used
to conduct GWAS for soybeans. Each feature Xj takes on one of four discrete values, indicating
whether a particular SNP is homozygous in the non-reference allele, heterozygous, homozygous
in the reference allele, or missing. A number of traits are included in the SoyNAM data; we con-
sidered oil content (percentage in the seed) as the phenotype of interest in our analysis. There are
5,128 samples and 4,236 SNPs in total.

To estimate the joint density of the genotypes, we used a discrete flow (Tran et al., 2019).
Modeling of genomic data is typically done with a hidden Markov model (Xavier et al., 2016);
however, such a model may fail to account for long range dependence between SNPs, which a
normalizing flow is better suited to handle. Having a more flexible model of the genome enables
FLOWSELECT to provide better FDR control for assessing genotype/phenotype relationships. For
the predictive model, we used a feed-forward neural network with three hidden layers. Additional
details of training and architecture are presented in Appendix D.3.

A graphical representation of our results is shown as a Manhattan plot in fig. 5.3, which plots
the negative logarithm of the estimated p-values for each SNP. At a nominal FDR of 20%, we iden-
tified seven SNPs that are associated with oil content in soybeans. We cross-referenced our dis-
coveries with other publications to identify SNPs that have been previously shown to be associated
with oil content in soybeans. For example, FLOWSELECT identifies one SNP on the 18th chro-
mosome, Gm18_1685024, which is also selected in Liu et al. (2019). FLOWSELECT also selects
a SNP on the 5th chromosome, Gm05_37467797, which is near two SNPs (Gm05_38473956
and Gm05_38506373) identified in Cao et al. (2017) but which are not in the SoyNAM dataset.
Sonah et al. (2014) identifies eight SNPs near the start of the 14th chromosome, and we select
multiple SNPs in a nearby region on the 14th chromosome (seen in the peak of dots on chromo-
some 14 in fig. 5.3). However, the dataset in Sonah et al. (2014) is much larger (≈ 47, 000 SNPs),
which prevents an exact comparison. A list of all SNPs selected by our method is provided in Ap-
pendix D.3. For this experiment, FLOWSELECT tests over 4000 features in 10 hours using a single
GPU. None of the empirical knockoff procedures (Sudarshan et al., 2020; Jordon et al., 2019; Ro-
mano et al., 2020) tested more than 387 features. This shows the potential for FLOWSELECT for
high-dimensional feature selection with FDR control in a reasonable amount of time. Additional
details about this experiment are available in Appendix D.3.
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Figure 5.3: Manhattan plot for oil content in soybean GWAS experiment (Turner, 2018). p is
the estimated p-value from the FLOWSELECT procedure, and the blue line indicates the rejection
threshold for a nominal FDR of 20%.

5.6 Discussion

FLOWSELECT enables scientists and other practitioners to discover features a response depends on
while controlling false discovery rate, using an arbitrary predictive model; even large-scale non-
linear machine learning models can be utilized. By making fewer false discoveries for a fixed sen-
sitivity level, FLOWSELECT can reduce the cost of follow-up experiments by limiting the number
of irrelevant features considered. In contrast to the original model-X knockoffs method, FLOWS-
ELECT does not require the feature distribution to be known a priori, nor does it require the feature
distribution to have a particular form (e.g., Gaussian). Neither of these conditions are often satis-
fied in practice.

One limitation shared by both the conditional randomization test (CRT) and knockoffs is low
power in cases in which important features are highly correlated with other important features. To
mitigate this limitation, the CRT can be applied to test the significance of groups of correlated fea-
tures rather than individual features. Within the FLOWSELECT framework, this entails modifying
the MCMC step to draw null samples of groups of features conditioned on the others. The group’s
p-value can then be calculated with the same holdout randomization test (HRT) statistic used for
testing individual features. Group feature selection has also been explored for knockoffs (Dai and
Barber, 2016; Liu et al., 2020).

Another limitation of FLOWSELECT stems from its reliance on normalizing flows. The flexibil-

68



ity of normalizing flows, though often beneficial, comes at a cost: sufficient training examples are
needed to learn the feature distribution, limiting applicability in data-starved regimes. Fortunately,
as we show in appendix D.9, FLOWSELECT fares no worse than competing methods in low-data
settings. In these regimes, FLOWSELECT could also use other density estimation techniques such
as autoregressive models.

Furthermore, learning the feature distribution (potentially from limited data) is not the sole
difficulty that the deep-learning-based knockoff methods face. To demonstrate that there are ad-
ditional sources of difficult for knockoff-based methods, we gave DDLK, which typically fits the
data distribution as part of its training procedure, access to the the exact joint density; neither the
empirical FDR nor the power improved significantly (c.f. appendix D.7). This result points to a
failure of DDLK to enforce the swap property, which is a challenging task as the number of swaps
grows exponentially with the number of features. FLOWSELECT, on the other hand, achieves FDR
control under a different set of conditions that often are simpler to satisfy adequately in practice.
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CHAPTER 6

Conclusion and Future Work

Throughout this thesis, we have presented Bayesian methods for scientific applications that take
advantage of the interpretability and robustness of Bayesian statistics. At several points, we illus-
trate that deep learning can alleviate the traditional challenges in implementing Bayesian methods,
either by accelerating the inference of mechanistic models or by accomodating unknown structure
via black-box generative models. On the other hand, Bayesian methods enrich the output of deep
learning pipelines, whether by quantifying uncertainty or enforcing physical constraints. This
is crucial for scientific applications as, in addition to predictive accuracy, they demand domain-
awareness, interpretability, and robustness (Baker et al., 2019). Below, we present a few future
directions based on the chapters of this work that expand upon these goals.

Variational inference for Argo floats The Bayesian inference procedure for predicting the tra-
jectory of Argo floats presented in Chapter 2 was performed for each float separately using Se-
quential Monte Carlo (SMC). This procedure yields asymptotically exact results, and our Kalman
smoother proposal already performs well by fully adapting to the high signal-to-noise-ratio GPS
measurements. However, the algorithm is costly, especially as more particles are used, and the
sequential nature of the algorithm limits how parallelizable the algorithm can be. A solution to
better computational scalability is to use amortized variational inference to fit the float trajectories.
Recent works have combined deep neural networks with Kalman filtering (Fraccaro et al., 2017;
de Bézenac et al., 2020), which could be used to define a more expressive variational distribution.

Enforcement of local conservation in black-box models The PROBCONSERV framework pre-
sented in Chapter 4 is quite general, but we only consider global conservation of mass in exper-
iments. A follow-up direction is to consider probabilistic enforcement of local conservation in
an analogous manner to finite volume methods. This could lead to even more accurate solution
profiles that satisfy physical conservation laws at multiple resolutions. While this accuracy would
come at the cost of increased compute power, this would be a controllable trade-off in the hands of
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the practitioner. In Chapter 2, we utilized knowledge about potential vorticity (PV) to locally con-
strain the velocity of floats via a Bayesian update. Applying this approach to a black-box model,
however, will be more challenging, since we utilize a mechanistic model of float trajectories that
treats velocity as a latent variable. Nevertheless, we could explore generalizing this approach into
the black-box PROBCONSERV framework.

Multiple layers of tiles in BLISS The key to the performance of the BLISS encoder in Chapter 3
is decomposing a large astronomical image into small tiles that define the variational distribution.
A challenge to this approach, however, is when an object appears right at the boundary of multiple
tiles. The computed probabilities can change dramatically if the image is shifted by an amount less
than the width of a tile (i.e. placing the object in the center of a tile rather than at the boundary).
A solution to this problem could be considering multiple layers of tiles that overlap. By carefully
constraining the variational distribution, one could favor placing objects in the center of tiles rather
than at the boundaries, leading to less ambiguity in the estimation procedure.
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APPENDIX A

Appendix for Chapter 2

A.1 Kalman filter equations

In this section, we show how a linear state-space model can be efficiently estimated via the Kalman
filter. Consider the following set of equations:

Zn = g0 +GZn−1 + ϵZn , (A.1)

Yn = f + FZn + ϵYn . (A.2)

, where Z1 ∼ N (µ1,Σ1), F is a dz × dz matrix, G is a dy × dz matrix, ϵZn ∼ N (0,ΣZ) and
ϵYn ∼ N (0,ΣY ).

Together, Z1:n, Y1:n follow a multivariate Gaussian. However, for large enough n, deriving con-
ditional distributions we are interested in can become computationally challenging. The Kalman
filter exploits the Markov structure of the problem to achieve efficient inference.

We start with the following lemma:

Lemma A.1. Let Z ∼ N (µ,Σ) and Y |Z ∼ N (f0 + FZ,ΣY ). Then Z|Y is normally distributed

with mean and variance as follows:

E(Z|Y ) = µ− ΣF T (ΣY + FΣF T )−1F (Fµ− Y + f0)

Cov(Z|Y ) = Σ− ΣF T (ΣY + FΣF T )−1FΣ

Proof A more detailed derivation for a similar result is shown in Appendix C via Lemma C.1
and Lemma C.2. The mean and covariance have the following updated form (Gelman et al., 2015,
Chapter 3.5):

Cov(Z|Y ) =
(
Σ−1 + F TΣ−1Y F

)−1
= A−1Σ

E(Z|Y ) =
(
Σ−1 + F TΣ−1Y F

)−1 (
Σ−1µ+ F TΣ−1Y (Y − f0)

)
= A−1

(
µ+ ΣF TΣ−1Y (Y − f0)

)
.
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where A−1 = (Σ−1 + F TΣ−1Y F )−1Σ−1. Next, we transform A−1 using the following corollaries
to the Woodbury identity: (I + CB)−1 = I − C(I + BC)−1C and (C + BBT )B = C−1B(I +

BTC−1B)−1 (Petersen et al., 2008):

A−1 = (I + ΣF TΣ−1Y F )−1

= I − ΣF T (I + Σ−1Y FΣF T )−1Σ−1F

= I − ΣF T (ΣY + FΣF T )−1F.

A−1ΣF TΣ−1Y =
(
Σ−1 + F TΣ−1Y F

)−1
F TΣ−1Y

=
(
Σ−1 + F TLLTF

)−1
F TLLT

= ΣF TL
(
I + LTFΣF TL

)−1
LT

= ΣF T
(
(LT )−1L−1 + FΣF T

)−1
= ΣF T

(
ΣY + FΣF T

)−1
,

where LLT = ΣY is the Cholesky decomposition of ΣY . Substituting these two equalities into the
expressions for Cov(Z|Y ) and E(Z|Y ) leads to the desired result. □.

Forward filtering The Kalman filter is defined recursively. Let µn ≜ E(Zn|Y1:n) and Σn ≜

Cov(Zn|Y1:n) be the filtered mean and covariance, respectively. We show how to derive µn+1 and
Σn+1. We start by calculating the mean and covariance of Zn+1 conditioned on Y1:n:

at ≜ E(Zn+1|Y1:n) = E(g0 +GZn + ϵXn |Y1:n) = g0 +Gµn, (A.3)

Rt ≜ Cov(Zn+1|Y1:n) = Cov(g0 +GZn + ϵXn |Y1:n) = GΣnG
T + ΣZ . (A.4)

From Lemma A.1 we have:

µn+1 = an −RnF
T
(
ΣY + FRnF

T
)−1

(Fan − Yn + f0), (A.5)

Σn+1 = Rn −RnF
T
(
ΣY + FRnF

T
)−1

FRn. (A.6)

The term RtF
T
(
ΣY + FRtF

T
)−1 is commonly called the Kalman gain. The conditional log-

likelihood is
logP (Yn|Y1:n−1) = logPN(Yn; f0 + Fan,ΣY + FRnF

T ), (A.7)

where PN denotes the multivariate normal density.

Backward smoothing Next, we want to derive the smoothed distribution of Zn conditional on
all observations, written Zn|Y1:N . This is also efficiently calculated by recursing backward from
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the end of the filtering step.
Using our lemma,

hn ≜ E(Zn|Zn+1, Y1:N) = E(Zn|Zn+1, Y1:n), (A.8)

= µn − ΣnG
T
(
ΣZ +GΣnG

T
)−1

(g0 +Gµt − Zn+1) , (A.9)

= µn − ΣnG
TR−1n+1 (g0 +Gµt − Zn+1) , (A.10)

Hn ≜ Cov(Zn|Zn+1, Y1:N) = Cov(Zn|Zn+1, Y1:n), (A.11)

= Σn − ΣnG
TR−1n+1GΣn. (A.12)

We can then integrate out Zn+1 to get the desired quantities.

µ̃n ≜ E(Zn|Y1:N) = E(hn|Y1:n), (A.13)

= µn − ΣnG
TR−1n+1 (g0 +Gµt − E(Zn+1|Y1:N)) , (A.14)

= µn − ΣnG
TR−1n+1 (g0 +Gµt − µ̃n+1) (A.15)

Σ̃n ≜ Cov(Zn|Y1:N) = E(Hn|Y1:N) + Cov(hn|Y1:N) (A.16)

= Hn + ΣnG
TR−1n+1Σ̃n+1R

−1
n+1G

TΣn (A.17)

= Σn − ΣnG
TR−1n+1

(
Rn+1 − Σ̃n+1

)
R−1n+1G

TΣn (A.18)

Finally, we need to draw from the conditional distribution Zn+1|Zn, Y1:N for downstream tasks and
for use within the proposal distribution for SMC. The conditional mean and variance are:

E(Zn+1|Zn, Y1:n) = µ̃n+1 − Vn+1,nΣ̃
−1
n (µ̃n − Zn) (A.19)

Cov(Zn+1|Zn, Y1:n) = Σ̃n+1 − Vn+1,nΣ̃
−1
n V T

n+1,n. (A.20)

The term Vn+1,v is the conditional covariance between Zn+1 and Zn, which is derived as follows:

Vn+1,n ≜ Cov(Zn+1, Zn|Y1:N) (A.21)

= Cov(Zn+1,E(Zn|Zn+1, Y1:N)|Y1:N) (A.22)

= Cov(Zn+1, hn|Y1:N) (A.23)

= Cov(Zn+1, µn − ΣnG
TR−1n+1(g0 +Gµn − Zn+1)|Y1:N) (A.24)

= Cov(Zn+1,ΣnG
TR−1n+1Zn+1|Y1:N) (A.25)

= Cov(Zn+1, Zn+1|Y1:N)R−1n+1G
TΣn (A.26)

= Σ̃n+1R
−1
n+1G

TΣn. (A.27)
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A.2 Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a technique for estimating a state-space model in the case that
either the state transition or the observation kernel is non-linear and/or non-Gaussian, preventing
the use of the Kalman filter. The states Z1:N and observations Y1:N come from the following model:

Z1 ∼ µθ,

Zn|Zn−1 ∼fθ(·|Zn−1),

Yn|Zn ∼ gθ(·|Zn).

(A.28)

Like the Kalman filter, the goal of SMC is to obtain an estimate of the filtered distribution Zn|Y1:n
via importance sampling. Samples from the smoothed distribution Zn|Y1:N can be obtained via
the forward-filtering backward sampling (FFBS) algorithm from Godsill et al. (2004). We briefly
summarize the steps for forward filtering and backward smoothing below.

A.2.1 Forward filtering

Here, we briefly summarize the steps for forward filtering. Because our eventual goal is to sample
the smoothed distribution, we utilize twisted Sequential Monte Carlo to target different interme-
diate distributions than the filtered distribution. See Naesseth et al. (2019) for a more detailed
overview.

Initialization For particles 1, . . . , K, we sample

Zi,1 ∼ q1(·), (A.29)

where q1 is the initial proposal distribution. We then calculate importance weights:

wi,1 =
µθ(Zi,1)gθ(Y1|Zi,1)

q1(Z1)
. (A.30)

Together, the collection of particles and weights {(Zi,1, wi,1)} target the distribution Z1|Y1. Con-
cretely, this means that, as K → ∞, the weighted average over particles converges to the true
expectation:

lim
K→∞

1∑K
i=1wi,1

K∑
i=1

wi,1h(Zi,1) = E(h(Z1)|Y1) (A.31)

In general, these importance sampling estimates are only asymptotically unbiased (consistent) as
K → ∞. However, an unbiased estimate of the likelihood L1 ≈ P (Y1) can be obtained by
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averaging the weights:

L1 =
1

K

K∑
i=1

wi,1. (A.32)

Filtering For n > 1, we start with a collection of particles (Zi,n−1, wi,n−1) targeting the distribu-
tion Zn|Yn. We start by normalizing the weights attached to each particle:

πi,n−1 =
wi,n−1ψn−1(Zi,n−1)∑k

j=1wj,n−1
. (A.33)

We further modify the weights with a non-negative function ψn−1.

π⋆
i,n−1 =

πi,n−1ψn−1(Zi,n−1)∑k
j=1 πi,n−1ψn−1(Zi,n−1)

. (A.34)

We discuss later the optimal choice for ψn−1. If the effective sample size (ESS) of {πi,n−1} is
below a set threshold, we resample:

Z̃i,n−1 ∼
K∑
j=1

π⋆
i,n−1δZj,n−1

(·),

w̃i,n−1 = 1.

(A.35)

Otherwise, we do not:

Z̃i,n−1 = Zi,n−1

w̃i,n−1 = π⋆
i,n−1.

(A.36)

New particles are proposed from the proposal distribution qn:

Zi,n ∼ qn(·|Z̃i,n−1). (A.37)

Importance weights are calculated:

wi,n = w̃i,n−1
fθ(Zi,n|Z̃i,n−1)gθ(Yn|Zi,n)

qn(Zi,n|Z̃i,n−1)ψn−1(Z̃i,n−1)
. (A.38)

An unbiased estimate of the conditional log-likelihood is:

Ln =

(
1

K

K∑
i=1

wi,n

)(
K∑
i=1

ψn−1(Zi,n−1)πi,n−1

)
. (A.39)
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A.2.2 Backward smoothing

We briefly summarize the forward filtering backward sampling algorithm from Godsill et al. (2004).
We start with a sequence of particles and weights (Zi,n, wi,n) targeting the filtered distribution
P(Zi,n|Y1:n). Recursing backwards, at index n, we suppose we have a sample Z̃n+1 ∼ P(·|Y1:N).
For each i, we calculate the following importance weights and normalize them:

wi,n|n+1 = wi,ngθ(Zi,n, Z̃n+1)

πi,n|n+1 =
wi,n|n+1∑K
j=1wj,n|n+1

.
(A.40)

A new sample Z̃j is then drawn from the empirical distribution
∑K

i=1 πi,n|n+1δZi,n
(·). This proce-

dure is repeated for each draw required from the smoothed distribution.

A.2.3 Derivation of optimal preweight and proposal

When estimating ArgoSSM, we set qn(Zn|Zn−1) ≡ PAR(Zn|Zn−1, YA) andψn(Zn) ≡ PAR(YA>n|Zn).
These choices are motivated by Guarniero et al. (2017), since these are the optimal choice if we
exclude the PV and ice-cover components from our model. We calculate each of the log-likelihood
estimates Ln at each step n = 1, . . . , N , and show that their product is equal to P(YA). In this
scenario, since both the ArgoSSM and AR model follow the same probability law, we write the
different distributions (µθ, fθ, gθ,PAR) as simply pθ.

Case 1: n = 1 After sampling from initial state Zi,1 ∼ q1 ≡ pθ(·|Y1:N), we calculate the initial
weights wi,1:

wi,1 =
pθ(Zi,1)pθ(Y1|Zi,1)

pθ(Zi,1|Y1:N)

=
pθ(Zi,1)pθ(Y1|Zi,1)pθ(Y1:N)

pθ(Zi,1)pθ(Y1:N |Zi,1)

= pθ(Y1:N)
pθ(Y1|Zi,1)

pθ(Y1:N |Zi,1)

= pθ(Y1:N)
1

pθ(Y2:N |Zi,1)

Then, we have our estimated log-likelihood L1:

L1 = pθ(Y1:N)
1

K

K∑
i=1

1

pθ(Y2:N |Zi,1)
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Moreover, the normalized weights πi,1 are equal to:

πi,1 =
1∑K

i=1
1

pθ(Y2:N |Xi,1,Vi,1)

1

P(Y2:N |Xi,1, Vi,1)
.

Case 2: n = 2, . . . , N−1 We use the inductive assumption that the previous normalized weights
πi,n−1 are equal to the following:

πi,n−1 =
1∑K

j=1
1

pθ(Yn:N |Zj,n−1)

1

pθ(Yn:N |Zi,n−1)
.

The pre-weights are equal to:

ψn−1(Zi,n−1) ≡ pθ(Yn:N |Zi,n−1).

By choice of pre-weights, the normalized resampling weights π⋆
i,n−1 are equal to 1. Thus, the

effective sample size threshold is not triggered, and no resampling is performed.

πi,n−1ψn−1(Zi,n−1) =
1∑K

j=1
1

pθ(Yn:N |Zj,n−1)

,

π⋆
i,n−1 ≡ 1.

After propagating the particles forward to n, the importance weights at time n are:

wi,n =
pθ(Zi,n|Zi,n−1)pθ(Yn|Zi,n)

pθ(Zi,n|Zi,n−1, Y1:N)ψ(Zi,n−1)

=
pθ(Zi,n|Zi,n−1)pθ(Yn|Zi,n)pθ(Yn:N |Zi,n−1)

pθ(Zi,n|Zi,n−1)pθ(Yn:N |Zi,n, Zi,n−1)ψ(Zi,n−1)

=
pθ(Yn|Zi,n)pθ(Yn:N |Zi,n−1)

pθ(Yn:N |Zi,n, Zi,n−1)ψ(Zi,n−1)

=
pθ(Yn|Zi,n)

pθ(Yn:N |Zi,n, Zi,n−1)

=
pθ(Yn|Zi,n)

pθ(Yn:N |Zi,n)

=
1

pθ(Yn+1:N |Zi,n)
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This leads to the following estimate of the conditional log-likelihood pθ(Yn|Y1:n−1) (Pitt, 2002; Pitt
et al., 2012):

Ln =
1

K

K∑
i=1

1

pθ(Yn+1:N |Zi,n)

K∑
i=1

πi,n−1,

=

∑K
i=1

1
pθ(Yn+1:N |Zi,n)∑K

i=1
1

pθ(Yn:N |Zi,n−1)

.

We then calculate the estimated log-likelihood of observations up to and including n, pθ(Y1:n):

Ln = Ln−1Ln = pθ(Y1:N)
1

K

K∑
i=1

1

pθ(Yn:N |Zi,n−1)

∑K
i=1

1
pθ(Yn+1:N |Zi,n)∑K

i=1
1

pθ(Yn:N |Zi,n−1)

= pθ(Y1:N)
1

K

K∑
i=1

1

pθ(Yn+1:N |Zi,n)

Case 3: n = N For the last time step at N , the derivations are almost the same as in Case 2.
Since Yn:N = Yn, the terms in the numerator and denominator are equal, meaning:

wi,N = 1.

Consequently, the conditional log-likelihood estimate is:

LN =
1

K

(
K∑
i=1

1

)
K∑

1
pθ(YN |Zi,N−1)

,

=
K∑

1
pθ(YN |Zi,N−1)

.

Finally, the estimated log-likelihood of all observations (i.e. up to N ) is exactly equal to the
likelihood:

L =
N∏

n=1

LN = LN−1LN

= pθ(Y1:N)
1

K

K∑
i=1

1

pθ(YN |Zi,N−1)

K∑
1

pθ(YN |Zi,N−1)

= pθ(Y1:N).
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A.3 Derivation of ice update

We show how the filtered probabilities of the ice states can be integrated out to obtain Equa-
tion 2.10. First, we apply Bayes’ rule to the filtered distribution of Sn given all previous positions
X1:n and missingness indicators A1:n (where An ∈ {0, 1}):

P(Sn = k|X1:n, A1:n) =
P(An|Sn = k,X1:n)P(Sn = k|X1:n, A1:n−1)∑
k′ P(An|Sn = k′, X1:n)P (Sn = k′|X1:n, A1:n−1)

.

=
gθ(An|Sn = k)P(Sn = k|X1:n, A1:n−1)∑
k′ gθ(An|Sn = k′)P (Sn = k′|X1:n, A1:n−1)

.

(A.41)

The distribution P(An|Sn = k) is as summarized in Section 2.2.1 and repeated here:

P(An = 1|Sn = k) =

0 if k ∈ {0, 1, 2}
1− pMAR if k = 3

. (A.42)

Next, we derive the distribution P(Sn = k|X1:n, A1:n−1) by integrating over Sn−1:

P(Sn = k|X1:n, V1:n, A1:n−1) =
∑
k′

P(Sn = k|Xn, Sn−1 = k′)P(Sn−1 = k′|X1:n, V1:n, A1:n−1)

(A.43)

P(Sn−1 = k′|X1:n, V1:n, A1:n−1) =
P(Sn−1 = k′|X1:n−1, V1:n−1, A1:n−1)P(Xn, Vn|Sn−1 = k′, X1:n−1, V1:n−1, A1:n−1)∑

k′′ P(Sn−1 = k′′|X1:n−1, A1:n−1)P(Xn, Vn|Sn−1 = k′′, X1:n−1, A1:n−1)

=
P(Sn− 1 = k′|X1:n−1, V1:n−1, A1:n−1)P(Xn, Vn|Xn−1, Vn−1)∑

k′′ P(Sn−1 = k′′|X1:n−1, A1:n−1)P(Xn, Vn|Xn−1, Vn−1)

= P(Sn−1 = k′|X1:n−1, V1:n−1, A1:n−1).

(A.44)

Thus, all that is required is recording the values of P(Sn−1 = k|X1:n, V1:n, A1:n−1) for each possi-
ble value of k. When applying measurement weights, we calculate the probabilityP(An|X1:n, V1:n)

by integrating over each state Sn = k:

P(An = 1|X1:n, V1:n, A1:n−1) =
∑
k

P(An = 1|Sn = k)P(Sn = k|X1:n, V1:n, A1:n−1)

=
∑
k

P(An = 1|Sn = k)P(Sn = k|X1:n−1, V1:n−1, A1:n−1).

(A.45)

.
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A.4 Calculation of potential vorticity

Here we will describe how the function PV(Xn, Vn−1), which appears in the ArgoSSM velocity
update, is calculated from known ocean depth and latitude. We use bathymetry (ocean depth) data
exported from the Southern Ocean State Estimate (SOSE) (Verdy and Mazloff, 2017). Potential
vorticity is approximated by the expression f(x0)/h(x0) where f is the Coriolis parameter and
h(x0) is the water depth at location x0 = (x0,1, x0,2). The values of f(x0) do not depend on
longitude x0,1 and are defined by

f(x0) = 2Ω sin
(
x0,2 ·

π

180

)
where x0,2 is the latitude (in degrees) and Ω = 7.292115 · 10−5. See Talley et al. (2011) for more
specifics on how PV is defined and its interpretation. While PV can be directly computed from the
provided quantities, the resulting field is too rough, and as in Chamberlain et al. (2018) we smooth
the bathymetry to improve the results. In addition, we provide a direct, smoothed estimate of the
gradient of PV that is supplied to ArgoSSM.

From the quotient rule, an estimate of PV and its gradient can be written

PV(x0) =
f(x0)

ĥ(x0)

∇PV(x0) =
2πΩcos

(
x0,2 · π

180

)
180 · ĥ(x0)

(
0

1

)
− f(x0)

ĥ(x0)2
∇ĥ(x0)

where ĥ(x0) is a smoothed estimate of the ocean depth and ∇ĥ(x0) ∈ R2 an estimate of its
gradient. We estimate these quantities using local quadratic regression as described below.

Let xn be the location of the nth grid point, with xn,1 and xn,2 be its longitude and latitude,
respectively. For a fixed location x0, we compute ĥ(x0) = β̂0, ∇ĥ(x0) = (β̂1,1, β̂2,1) which come
from the solution β̂ = (β̂0, β̂1,1, β̂2,1, β̂1,2, β̂2,2) of

min
β

N∑
n=1

Kb(xn − x0)
(
h(xn)− β0 −

2∑
d=1

2∑
j=1

(xn,d − x0,d)jβd,j
)2

(A.46)

where Kb(x) = max
{
0, 1

b
3
4
(1− ∥x∥2 /b2)

}
is the Epanechnikov kernel with bandwidth b based

on distance in kilometers. The quadratic terms in Equation A.46 ensure that the gradient estimate
is stable, and the solution is computed directly by weighted least squares. For more information
on local polynomial estimation, see Fan and Gijbels (1996).

We have used b = 300 kilometers, though this could be more carefully chosen, and other band-
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widths can easily be integrated into our analysis pipeline. These estimates are precomputed on a
fine grid, then bilinearly interpolated on the fly in ArgoSSM, which uses the estimated PV to in-
form the velocity in ArgoSSM. Since the direction perpendicular to the gradient is only identifiable
up to a sign, we take the direction closer to the direction of the previous velocity Vn−1.

A.5 Derivation of PV update

In this section, we derive the PV-informed velocity transition equation shown in Equation 2.5.
First, we restate Equation 2.3 alongside the PV constraint:

Vn|Xn, Vn−1 ∼ N
(
(1− α∆tn)v0 + α∆tnVn−1,∆tnΣV

)
, (A.47)

b|Xn, Vn ∼ N (∇PV(Xn) ·∆tnVn, (∆tn)2σ2
PV ). (A.48)

Conditioning on b = 0, and applying Lemma A.1, we get:

Vn|Xn, Vn−1, {b = 0} = B
(
(1− α∆tn)v0 + α∆tnVn−1

)
+B

1
2 ϵVn , (A.49)

where

B =

(
I +

1

σ2
PV

(∆tnΣV )∇PV(Xn)∇PV(Xn)
′
)−1

(A.50)

=
1

(σ2
PV + ∥∇PV(Xn)∥22)

∆tnΣV∇PV(Xn)∇PV(Xn)
′. (A.51)

B is a matrix that encompasses the effect of PV conservation. As σ2
PV → 0, Equation A.51 shows

that B converges to a projection onto the linear subspace where∇PV (Xn)
′Vn = 0.

At a specific location, the PV is calculated as a function of the depth and latitude. A body
freely circulating in the ocean tends to maintain PV. Thus, absent of other forces, a float will move
perpendicular to the gradient of PV.

A.6 Approach for velocity

This section details the circulation estimation, which is mostly similar to the analysis of temper-
ature and salinity. First, we describe the selected floats used in the analysis. Most Argo floats’
parking depth is at 1000 meters, though floats often drift at 800 meters in the Weddell Gyre, which
Reeve et al. (2019) consider. Since there are more floats with linear interpolated values at 1000
meters, we focus on these floats only, keeping only trajectories with parking depths between 950
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Figure A.1: Float trajectories used for velocity estimation, with (from top left, clockwise) Ar-
goSSM mean, linearly interpolated values, a sample from ArgoSSM, and with missing trajectories
removed.

and 1050 meters. This leaves 26 floats from which to estimate velocities, plotted in Figure A.1.
Also, we do not correct for drifting at the ocean surface during data transmission as is done in
Reeve et al. (2019). Conceivably such an adjustment could be built into the ArgoSSM framework,
but doing so is not straightforward or the main focus of this work.

Our approach for the meridional (north-south) and zonal (east-west) Argo velocities follows
similarly from those presented in the temperature and salinity field estimation. We assume that the
directions are independent; this is a simplification. Due to a reduction in the amount of data used,
we make the following changes: a locally-constant estimator was used for the mean estimation with
a bandwidth of 400 kilometers, and the use of time in the covariance structure was removed so that
we estimate one time-averaged value at each location. In addition to using linear interpolation
and ArgoSSM samples, we complete the analysis with linear interpolated velocities removed in a
manner similar to Reeve et al. (2019).
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APPENDIX B

Appendix for Chapter 3

B.1 Architecture details

In this section, we elaborate on the specific architecture used in each neural network encoder inside
BLISS.

Detection encoder The detection encoder introduced in Equation 3.8, gϕ(xi,t) takes a padded tile
xi,t as input. This padded tile has two channels: the astronomical image itself and the background
value at each tile. It outputs the probability that a source is in the tile αi,t and the mean and variance
of the location of that source µℓ

i,t, Σ
ℓ
i,t. An initial convolution layer has an output of 8 channels,

followed by batch normalization applied across the channel dimension (BatchNorm2D) (Ioffe and
Szegedy, 2015) and the ReLU function ReLU(x) = max(x, 0). We then apply three “ConvBlock”
layers, shown in Figure B.1(a), which optionally halve the height and width of the input while
doubling the number of channels. This output is then flattened and passed into a fully-connected
neural network “FCNet”, shown in Figure B.1(b).

Binary encoder The binary encoder neural network introduced in Equation 3.9 has an almost
identical architecture to the detection encoder, with two key differences. First, the padded tile is
centered around the location of the object ℓi,t using bilinear interpolation. Second, the output of
the “FCNet” is the probability that the object is a star βi,t.

Galaxy variational autoencoder The galaxy variational autoencoder, shown in Figure B.3, con-
sists of an encoder network and a decoder network. The encoder network consists of two convolu-
tional 2d layers with a kernel size of 5 and a stride of 3 that double the number of channels. This
is followed by a flattening step and two linear layers. Between each layer, we use the LeakyReLU
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non-linearity citepmaasRectifierNonlinearitiesImprove2013:

LeakyReLU(x) =

x if x ≥ 0

0.02x otherwise.

The output of the final layer has double the dimension of the latent variable z since it is both the
mean µz and scale σZ . To ensure σz is positive, we apply the softplus function log(1 + exp(x)).
For the decoder, we use an analogous architecture to the encoder in reverse order; i.e. using
ConvTranspose2D in place of Conv2D. For both the encoder and decoder, we re-parameterize the
neural network weights using weight normalization for improved training (Salimans and Kingma,
2016).
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BatchNorm2D

Conv2D(in=in, out=out, kernel=3, stride=stride)

ReLU

BatchNorm2D

Conv2D(in=out,out=out,kernel=3,stride=1)

+

(a) ConvBlock

BatchNorm

Linear(in=in, out=128)

ReLU

BatchNorm

Linear(in=128, out=128)

ReLU

Linear(in=128, out=out)

y

(b) FCNet

Figure B.1: Building block layers for the BLISS encoder. (a) The ConvBlock layer features two
stacks of convolution layers followed by batch normalization and ReLU, with an additive skip
connection at the end. The first convolutional layer may have a stride greater than 1, leading to an
image with half the height and width; in this case, a convolution layer is applied to the input before
the skip connection. (b) The FCNet layer is a standard two-layer multi-layer perceptron (MLP)
with batch normalization and ReLU between dense linear layers.
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Conv2D(in=2, out=8. kernel=3, stride = 1)

BatchNorm2D

ReLU

ConvBlock(8, 8, kernel=3, stride=2)

ConvBlock(8, 16, kernel=3, stride=2)

ConvBlock(16, 32, kernel=3, stride=2)

Flatten

FCNet(in=., out=., hidden=[128, 128])

(a) Detection encoder

Conv2D(in=2, out=8, kernel=3, stride = 1)

BatchNorm2D

ReLU

ConvBlock(in=8, out=8, kernel=3, stride=2)

ConvBlock(in=8, out=16, kernel=3, stride=2)

ConvBlock(in=16,out=32,kernel=3,stride=2)

Flatten

FCNet(in=., out=1, hidden=[128, 128])

CenterTile

(b) Binary encoder

Figure B.2: BLISS detection encoder architecture.
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Conv2D(in=2, out=4, kernel=5, stride = 3)

LeakyReLU()

Conv2D(in=4, out=8, kernel=5, stride = 3)

LeakyReLU()

Flatten

Linear(in_size, h)

LeakyReLU()

Linear(32, h)

LeakyReLU()

Linear(h, in_size)

UnFlatten()

ConvTranspose2D(in=8, out=4, kernel=5, stride=3)

LeakyReLU()

LeakyReLU()

Linear(in_size, d_z * 2) ConvTranspose2D(in=4, out=2, kernel=5, stride=3)

Figure B.3: Diagram of variational autoencoder architecture used for encoding and decoding cen-
tered galaxy images as part of BLISS.
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APPENDIX C

Appendix for Chapter 4

C.1 Related Works

Our method involves combining in a novel way ideas from several different literatures. As such,
there is a large body of related work, each of which approaches the problems we consider from
somewhat different perspectives. Here, we summarize some of the most related. Table C.1 pro-
vides an overview of the comparisons of these methods.

Method Conservative UQ
Inference with different

Initial Conditions
Inference with different

PDE coefficients
Resolution

independent

Numerical methods ✓ ✗ ✗ ✗ ✗

PINNs ✗ ✗ ✗ ✗ ✓
Neural Operators ✗ ✗ ✓ ✓ ✓
Conservative ML models ✓ ✗ ✓ ✗ ✗

PROBCONSERV (our approach) ✓ ✓ ✓ ✓ ✓

Table C.1: Summary of different properties of numerical and SciML methods for physical systems.

C.1.1 Numerical methods

Numerical methods aim to approximate the solution to partial differential equations (PDEs) by
first discretizing the spatial domain Ω into N gridpoints {xi}Ni=1 with spatial step size ∆x. Then,
at each time step, we integrate the resulting semi-discrete ODE in time with temporal step size
∆t to iteratively compute the solution at final time T , i.e., {u(T, xi)}Ni=1. By the Lax Equivalence
theorem for linear problems, convergence to the true solution, i.e., the norm of the error tending to
zero, can be proven to occur when ∆t,∆x → 0 (N → ∞) for methods that are both stable and
consistent (LeVeque, 2007).

Finite volume methods. Finite volume methods are designed for conservation laws. These
methods divide the domain into control volumes, where the integral form of the governing equation
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is solved (LeVeque, 1990, 2002). By solving the integral form at each control volume, these meth-
ods enforce flux continuity, i.e., that the out-flux of one cell is equal to the in-flux of its neighbor.
This results in local conservation, which guarantees global conservation over the entire domain.
Maddix et al. (2018b) show that the degenerate parabolic Generalized Porous Medium Equation
(GPME) has presented challenges for classical averaged-based finite volume methods, e.g., arith-
metic and harmonic averaging. These numerical artifacts include artificial temporal oscillations,
and locking or lagging of the shock position. To eliminate these artifacts on the more challenging
Stefan problem, Maddix et al. (2018a) show that information about the shock location needs to be
incorporated into the scheme to satisfy the Rankine-Hugoniot condition. Other complex methods
that explicitly track the front, e.g., front-tracking methods (Al-Rawahi and Tryggvason, 2002; Li
et al., 2003) and level set methods (Osher and Sethian, 1988) that implicitly model the interface as a
signed distance function, have also been applied to the Stefan problem for modeling crystallization
(Sethian and Strain, 1992; Chen et al., 1997). A limitation of numerical methods is that to obtain
higher accuracy, fine mesh resolutions must be used, which can be computationally expensive in
higher dimensions. In addition, for changes in PDE parameters, the simulations need to be re-run.
These classical methods are also deterministic, and they do not provide uncertainty quantification.

Reduced Order Models (ROMs). Reduced Order Models (ROMs) have been a popular alter-
native to full order model numerical PDE simulations for computational efficiency. ROMs aim to
approximate the solution in a lower dimensional subspace by computing the proper orthogonal de-
composition (POD) basis using the singular value decomposition (SVD). Similar to deep learning
models, there is no way to enforce that unconstrained ROMs are conservative and non-oscillatory.
Tezaur et al. (2017) investigate enforcing conservative, entropy and total variation diminishing
(TVD) constraints for ROMs as constrained nonlinear least squares problems. These methods are
coined “structure preserving” ROMs via physics-based constraints (Sargsyan, 2016).

C.1.2 Scientific Machine Learning (SciML) Models

Here we describe the recent work in using ML models to solve PDEs. At a high-level, these works
can be divided into three categories: 1. Physics-Informed Neural Networks (PINNs), which aim to
incorporate PDE information as a soft constraint in the loss function; 2. Neural Operators, which
aim to learn the solution mapping from PDE coefficients or initial conditions to solutions; and 3.
Hard-constrained conservative ML models, which aim to incorporate different types of constraints
to enforce conservation into the architecture.

Physics-informed ML methods. Physics-informed neural networks (PINNs) (Raissi et al., 2019)
parameterize the solution to PDEs with a neural network (NN). These methods impose physical
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knowledge into neural networks by adding the differential form of the PDE to the loss function as
a soft constraint or regularizer. Purely data-driven approaches include DeepONet (Lu et al., 2021)
and Neural Operators (NOs) (Li et al., 2020, 2021a; Gupta et al., 2021), which aim to learn the
underlying function map from initial conditions or PDE coefficients to the solution. Learning this
mapping enables these methods to be resolution independent, i.e., train on a coarse resolution and
perform inference on a finer resolution. These methods only use PDE knowledge implicitly by
training on simulations. The Physics-Informed Neural Operator (PINO) attempts to address that
the physics are not directly enforced in the model by making the data-driven Fourier Neural Oper-
ator (FNO) “physics-informed.” To do so, they again add the differential form into the supervised
loss function as a soft constraint regularization term (Li et al., 2021b; Goswami et al., 2022).

Recently Krishnapriyan et al. (2021); Edwards (2022) identified several challenges and limita-
tions for SciML of this soft constraint approach on the training procedure for several PDEs with
large parameter values. In particular, Krishnapriyan et al. (2021) show that the sharp and non-
smooth loss surface loss surface created by adding the PDE directly as a regularizer can be more
difficult to optimize. Relatedly, PINO has been shown to perform worse than the base FNO without
the differential form of the PDE as a soft constraint in the loss (Li et al., 2021b; Saad et al., 2022).
Motivated by these observations, Négiar et al. (2022) propose a solution for linear PDEs that en-
forces the differential form of the PDE as a hard constraint; and Subramanian et al. (2022) propose
another solution using an adaptive update of collocation points. In addition, Wang et al. (2022)
examine training issues associated with the spectral bias in PINNs (Jacot et al., 2018). Edwards
(2022) discusses the broader-scale impacts of these results for the SciML field, and motivates the
need for better solutions that capture the underlying continuous physics.

Machine Learning Models for Conservation Laws. Enforcing the PDE as a soft constraint
gives very weak control on the physical conservation property, resulting in non-physical solutions
that can violate governing conservation law. Jekel et al. (2022) aim to satisfy conservation by
adding the continuity equation as a soft regularizer via the PINNs approach, and they show that
this does not improve performance. To try to remedy this, Mao et al. (2020); Jagtap et al. (2020)
propose conservative PINNs (cPINNs) for conservation laws, which aim to enforce flux continuity,
i.e., the out-flux of one cell equals the in-flux of the neighboring cell, for a type of local conser-
vation. Again, however, this condition on the flux is added to the loss function as a regularization
term, i.e., as a soft constraint in a Lagrange dual form, and so the conservation condition is in
general not exactly satisfied.

Motivated by the importance of satisfying conservation laws in climate applications, Bolton
and Zanna (2019); Zanna and Bolton (2020); Beucler et al. (2021) have proposed building known
linear physical constraints directly into deep learning architectures. Beucler et al. (2021) propose
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a model that forces the output of a neural network into the null space of the constraint matrix.
While the solution exactly satisfies the constraints, the constraints depend on the resolution of the
data, and they are an approximation to the true physical quantity that needs to be constrained.
Surprisingly, Beucler et al. (2021) also finds that the reconstruction error is not always improved
with adding constraints. Other methods to enforce conservation include the following. Sturm
and Wexler (2022) enforce the flux continuity equation in the last layer of the neural network to
model the balance of atoms. Müller (2022) enforce conservation by encoding symmetries using
Noether’s theorem. Richter-Powell et al. (2022) propose so-called Neural Conservation Laws,
to enforce conservation by design by using parametizations of deep neural networks similar to
the approaches in Négiar et al. (2022); Sturm and Wexler (2022); Müller (2022). In particular,
Richter-Powell et al. (2022) use a change of variables that combines time and space derivatives into
the divergence operator to create a divergence-free model, and they then use auto-differentiation
similar to the Neural ODEs approach (Chen et al., 2018). This optimize-then-discretize approach
has been shown to have related difficulties (Krishnapriyan et al., 2022; Ott et al., 2021; Onken and
Ruthotto, 2020).

C.2 Derivation of the Integral Form of a Conservation Law

To obtain the integral form of a conservation law, given in Equation 4.3 as:∫
Ω

u(t, x)dΩ =

∫
Ω

h(x)dΩ−
∫ t

0

∫
Γ

F (u) · ndΓdt, (C.1)

we first integrate the differential form of the conservation law, given in Equation 4.2 as:

Fu = ut +∇ · F (u), (C.2)

over the spatial domain Ω. From this, we obtain an expression for the rate of change in time of the
total conserved quantity in terms of the fluxes on the boundary, given as:

d

dt

∫
Ω

u(t, x)dΩ =

∫
Ω

ut(t, x)dΩ (C.3a)

= −
∫
Ω

∇ · F (u)dΩ (C.3b)

= −
∫
Γ

(F (u) · n)dΓ, (C.3c)

where the last step is obtained by applying the divergence theorem to the flux term, and n is the
outward pointing unit normal on the boundary Γ.
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We then integrate Equation C.3 over the temporal domain [0, t]. Doing this to Equation C.3a
yields: ∫ t

0

∫
Ω

ut(t, x)dΩ =

∫
Ω

u(t, x)dΩ−
∫
Ω

u(0, x)dΩ,

where u(0, x) = h(x) denotes the initial condition. By equating this quantity to the temporal
integral of the right hand side of Equation C.3c, we obtain the corresponding integral form of a
conservation law: ∫

Ω

u(t, x)dΩ =

∫
Ω

h(x)dΩ−
∫ t

0

∫
Γ

F (u) · ndΓdt,

which is Equation C.1.

C.3 Exact solutions and Linear Conservation Constraints for
Conservation Laws

In this section, we provide the exact solutions to to a wide range of conservation laws:
ut +∇ · F (u)︸ ︷︷ ︸

Fu

= 0, x ∈ Ω,

u(0, x) = h(x),

u(t, x) = g(t, x), x ∈ Γ,

,∀ t ≥ 0, (C.4)

for general nonlinear flux F (u), nonlinear differential operator F , initial condition h(x) and pre-
scribed boundary conditions on the boundary Γ of the spatial domain Ω. These exact solutions are
used to generate the solution samples for the training data in the experiment Figure 5.5.

The integral form of the conservation law in Equation 4.4 is given as:∫
Ω

u(t, x)dΩ︸ ︷︷ ︸
Gu(t,x)

=

∫
Ω

h(x)dΩ +

∫ t

0

(Fin − Fout)dt︸ ︷︷ ︸
b(t)

,
(C.5)

where Ω = [x0, xN ], Fin = F (u, t, x0)|u=g(t,x0), Fout = F (u, t, xN)|u=g(t,xN ) and g(t, x) is the
prescribed Dirichlet boundary condition in Equation C.4. We provide the exact formulation of our
linear constraint Gu(t, x) = b(t). Table C.2 provides a summary, showing that our boundary flux
linearity assumption holds for a broad class of problems—even including nonlinear conservation
laws with nonlinear PDE operators F .

93



PDE Type F (u) h(x) g(t, x) Ω Γ b(t)

Diffusion Linear parabolic
(“easy”)

−k∇u, k ∈ R+ sin(x) {0, 0} [0, 2π] {0, 2π} 0

PME
Nonlinear degenerate
parabolic (“medium”) −um∇u, m ∈ Z+ 0 {(mt)1/m, 0} [0, 1] {0, 1} m1+1/m

m+1
t1+1/m

Stefan
Nonlinear degenerate

parabolic (“hard”)

{
−∇u, u ≥ u⋆

0, otherwise
, u⋆ ∈ R+ 0 {1, 0} [0, 1] {0, 1} 2c1

√
t/π

Advection
Linear hyperbolic

(“medium”) βu, β ∈ R+

{
1, x ≤ 0.5

0, otherwise
{1, 0} [0, 1] {0, 1} 1

2
+ βt

Burgers’
Nonlinear

hyperbolic (“hard”)
1
2
u2

{
−ax, x ≤ 0, a ∈ R+

0, otherwise
{a, 0} [−1, 1] {−1, 1} (a/2)(1 + at)

Table C.2: Classification of PDE conservation laws ranging from “easy” to “hard”, and corre-
sponding total time-varying conserved value b(t) in the integral form of Equation C.5 for specified
flux function F (u), initial and boundary conditions h(x) and g(t, x), respectively in Equation C.4.
See Section C.3.1.3 for the value of the constant c1 ∈ R.

C.3.1 GPME Family of Conservation Laws

In this subsection, we consider the (degenerate) parabolic GPME family of conservation laws given
in Equation 4.9 as:

ut −∇ · (k(u)∇u) = 0,

with flux F (u) = −k(u)∇u. Figure C.1 shows the effects of the various PDE parameters k(u) at
a fixed time t on the solution on three instances of the GPME ranging from the “easy” to “hard”
cases, i.e., the diffusion equation, PME and Stefan, respectively.
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(a) k: Diffusion equation at t = 1
(“easy”).
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(b) m: PME at t = 0.5 (“medium”).
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(c) u⋆: Stefan at t = 0.08 (“hard”).

Figure C.1: Effect of PDE parameters on the three “easy” to “hard” instances of the GPME at fixed
time t.

C.3.1.1 Diffusion Equation

The heat or diffusion equation is a simple linear parabolic PDE with constant coefficient k(u) = k,
which represents an “easy” task. Figure C.1(a) illustrates the effect of the constant diffusivity
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(conductivity) parameter k on solutions to the diffusion (heat) equation. For larger values of k, we
see that the solution more quickly dissipates toward the constant smooth zero steady state.

Exact Solution. We use the same diffusion test problem from Krishnapriyan et al. (2021) with
the following initial condition and periodic boundary conditions:

u(0, x) = h(x) = sin(x),∀x ∈ Ω = [0, 2π],

u(t, 0) = u(t, 2π),∀t ∈ [0, T ],

respectively. The exact solution is given as

u(t, x) = FT−1(FT (h(x))e−kn
2t),

where FT denotes the Fourier transform, and n denotes the frequency in the Fourier domain.

Global Conservation. The total mass (energy) is constant and zero over all time, since there is
no in or out flux to the domain. Then, Equation C.5 reduces to the following linear homogeneous
system:

Gu(t, x) =
∫ xN

x0

u(t, x)dx = 0 = b(t). (C.6)

To derive the above relation, we see by using separation of variables that the solution u(t, x) =
sin(x)T (t) is a damped sine curve over time. The flux F (u) = −k∇u = − cos(x)T (t), where
T (t) denotes a decaying exponential function. Then, the integral form in Equation C.5 is given as:∫

Ω

u(t, x)dΩ =

∫
Ω

h(x)dΩ +

∫ t

0

[F (u, t, x0 = 0)− F (u, t, xN = 2π)]dt

=

∫ 2π

0

sin(x)dΩ− k
∫ t

0

[cos(0)T (t)− cos(2π)T (t)]dt = 0,

by periodicity.

C.3.1.2 Porous Medium Equation

In the Porous Medium Equation (PME), the nonlinearity and small values of the coefficient k(u) =
um, for m ≥ 1, cause challenges for current state-of-the-art SciML baselines as well as classical
numerical methods on this degenerate parabolic equation. The difficulty increases as the exponent
m increases, and the solution forms sharper corners. In particular, the solution gradient is finite for
m = 1, and it approaches infinity near the front for m > 1. Figure C.1(b) illustrates the effect of
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the parameter m on the solution, with solutions for m > 1 being sharper, and having a different
profile than those for the piecewise linear solution for m = 1.

Exact Solution. We test the locking problem (TLP) of the PME from Lipnikov et al. (2016);
Maddix et al. (2018b) with the following initial and growing in time Dirichlet left boundary con-
ditions for some final time T ≤ 1:

u(0, x) = h(x) = 0,∀x ∈ Ω = [0, 1],

u(t, 0) = g(t, 0) = (mt)1/m,∀t ∈ [0, T ],

u(t, 1) = g(t, 1) = 0,∀t ∈ [0, T ],

respectively. The exact solution is given as:

u(t, x) = (m(t− x)+)1/m. (C.7)

Global Conservation. We write the specific form of the linear conservation constraint in Equa-
tion C.5 for the PME as:

Gu(t, x) =
∫ xN

x0

u(t, x)dx =
m1+1/m

m+ 1
t1+1/m = b(t), (C.8)

by using the fact that the total mass of the initial condition is zero, and that u(t, xN = 1) = 0 on
the right boundary for t ≤ xN = 1.

Global conservation is driven by the in-flux at the growing in left boundary, where

Fin = F (u, t, x0)|u=g(t,x0),x=x0 = −g(t, x0)m∇u|x=x0 = −mt∇u|x=x0 .

The boundary flux at the right boundary is 0, since we assume that the shock is contained in the
domain and t > x, hence u(t, 1) = 0 and

Fout = F (u, t, xN)|u=g(t,xN ),x=xN
= −g(t, xN)m∇u|x=xN

= 0.

The first integral on the righthand side in Equation C.5 consisting of the initial mass is 0, since
h(x) = 0, and we are left only with the in-flux term:
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∫
Ω

u(t, x)dΩ =

∫ t

0

Fin(t)dt

= −
∫ t

0

g(t, x0 = 0)m∇u|x=x0dt

=

∫ t

0

(mt)(mt)1/m−1dt

= m1/m

∫ t

0

t1/mdt

=
m1+1/m

m+ 1
t1+1/m,

where∇u|x=x0 = −(m(t− x))1/m−1|x=x0 = −(mt)1/m−1.

C.3.1.3 Stefan Problem

The Stefan problem is the most challenging problem in the GPME degenerate parabolic family of
conservation equations since the coefficient k(u) is a nonlinear step function of the unknown u,
given as:

k(u) =

kmax, u ≥ u⋆,

kmin, u < u⋆,
(C.9)

for constants kmax, kmin ∈ R and u(t, x∗(t)) = u∗ ∈ R+ for shock position x∗(t). In this problem,
the solution is a shock or moving interface with a finite speed of propagation that does not dissipate
over time. Figure C.1(c) illustrates the effect of the parameter u⋆ on the solution and shock position,
with smaller values of u⋆ resulting in a faster shock speed.

Exact Solution. We use the Stefan test case from van der Meer et al. (2016); Maddix et al.
(2018a) with kmax = 1, kmin = 0 in Equation C.9, and the following initial and Dirichlet boundary
conditions for some final time T :

u(0, x) = h(x) = 0,∀x ∈ Ω = [0, 1],

u(t, 0) = g(t, 0) = 1,∀t ∈ [0, T ],

u(t, 1) = g(t, 1) = 0,∀t ∈ [0, T ],

respectively. The exact solution is given as:

u(t, x) = 1u≥u⋆

(
1− c1Φ[x/(2

√
kmaxt)]

)
, (C.10)
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where 1E denotes an indicator function for event E , Φ(x) = erf(x) =
∫ x

0
ϕ(y)dy denotes the error

function with ϕ(y) = (2/
√
π) exp(−y2), and constant c1 = (1−u∗)/Φ[α/(2

√
kmax)]. A nonlinear

solve for α̃: (1 − u∗)/
√
π = u∗Φ(α̃)α̃ exp(α̃2), is used to compute α = 2

√
kmaxα̃. The exact

shock position is x∗(t) = α
√
t.

Global Conservation. We write the linear G conservation constraint in Equation C.5 for the
Stefan equation as:

Gu(t, x) =
∫ xN

x0

u(t, x)dx = 2c1

√
kmaxt

π
= b(t). (C.11)

We use the fact that the solution is monotonically non-increasing to compute the coefficient values
at the boundaries, i.e., u(t, x0) ≥ u⋆ ≥ u(t, xN), where 0 = x0 ≤ x⋆ ≤ xN = 1 and x∗(t) denotes
the shock position. It follows that k(u(t, x0)) = kmax and k(u(t, xN)) = 0. Then the out-flux
Fout = k(u(t, xN))∇u = 0. The first integral on the righthand side of Equation C.5 consisting of
the initial mass is 0, since h(x) = 0, and we are left only with the in-flux term as follows:∫

Ω

u(t, x)dΩ =

∫ t

0

Fin(t)dt

= −kmax

∫ t

0

∇u|x=x0dt

= c1

√
kmax

π

∫ t

0

t−1/2dt

= 2c1

√
kmaxt

π
,

where

∇u|x=x0 = −c1Φ′[x0/(2
√
kmaxt)]/(2

√
kmaxt)

= −c1/
√
πkmaxt exp[x

2
0/(4kmaxt)]

= −c1/
√
πkmaxt,

for x0 = 0.

C.3.2 Hyperbolic Conservation Laws

In this section, we consider hyperbolic conservation laws, where solutions exhibit shocks and
smooth initial conditions self-sharpen over time (LeVeque, 1990, 2002).
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C.3.2.1 Linear Advection

The linear advection (convection) equation:

ut + βux = 0, (C.12)

is a hyperbolic conservation law with flux F (u) = βu, where a fluid with density u is transported
or advected by some constant velocity β ∈ R. For larger values of β, the shock moves faster.

Exact Solution. Here we consider the test case with the following initial and boundary condi-
tions:

u(0, x) = h(x) = 1x≤0.5,∀x ∈ Ω = [0, 1],

u(t, 0) = g(t, 0) = 1,∀t ∈ [0, T ],

u(t, 1) = g(t, 1) = 0,∀t ∈ [0, T ],

respectively, and 1E denotes an indicator function for event E . Note that the linear advection
(convection) problem is also studied in Krishnapriyan et al. (2021) with smooth h(x) = sin(x)

and periodic boundary conditions. Here we consider the more challenging case, where the initial
condition is already a shock.

In our case, the exact solution,

u(t, x) = h(x− βt),

is simply the initial condition shifted to the right, which is a shock wave traveling to the right with
speed β > 0.

Global Conservation. We write the linear conservation constraint in Equation C.5 for linear
advection as:

Gu(t, x) =
∫ xN

x0

u(t, x)dx =
1

2
+ βt = b(t). (C.13)

The out-flux Fout = u(t, 1) = g(t, 1) = 0, by the fixed right Dirichlet boundary condition, and we
are left with the following terms:∫

Ω

u(t, x)dΩ =

∫
Ω

h(x)dx+

∫ t

0

Fin(t)dt

=

∫ 0.5

0

dx+ β

∫ t

0

u(t, 0)dt

=
1

2
+ βt,
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by using the Dirichlet boundary condition u(t, 0) = g(t, 0) = 1 in the second term in the last step.
We see that the time rate of change in total mass is constant over time.

C.3.2.2 Burgers’ Equation

Burgers’ Equation, given as:

ut +
1

2
(u2)x = 0, (C.14)

is a commonly used nonlinear hyperbolic conservation law with flux F (u) = 1
2
u2. Among other

things, it is used in traffic modeling.

Exact Solution. We consider the test case from Tezaur et al. (2017), where a = 1, with the
following initial and boundary conditions:

u(0, x) = h(x) =


a, x ≤ −1,
−ax, −1 ≤ x ≤ 0,

0, x ≥ 0,

∀x ∈ Ω = [−1, 1],

u(t,−1) = g(t,−1) = a,∀t ∈ [0, T ],

u(t, 1) = g(t, 1) = 0,∀t ∈ [0, T ],

respectively for constant, positive parameter slope a ≥ 1. For larger values of a, the slope of the
initial condition is steeper, and a shock is formed faster.

We write the nonlinear Burgers’ Equation C.14 in non-conservative form as

ut + uux = 0.

We see that this is the advection Equation C.12 with speed β = u. Hence, similarly the exact
solution is given by u(t, x) = h(x− ut) when the characteristics curves do not intersect, by using
the method of characteristics (Evans, 2010). We then obtain the following solution:

u(t, x) =


a, x− ut ≤ −1,
−a(x− ut), −1 ≤ x− ut ≤ 0,

0, x− ut ≥ 0.

We use the second case to solve this implicit equation explicitly for u, i.e., u = −a(x− ut) ⇐⇒
u = −ax

1−at . Then x− ut = x
1−at , where the denominator 1− at > 0 for t < 1/a. We then solve the
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inequalities and substitute this in to obtain:

u(t, x) =


a, x ≤ at− 1,

ax
at−1 , at− 1 ≤ x ≤ 0,

0, x ≥ 0,

for 0 ≤ t < 1/a. We see that as time increases the linear part of the solution self-sharpens with a
steeper slope until the characteristics intersect at breaking time

tb =
−1

infx h′(x)
= 1/a,

and a shock is formed. This is known as the waiting time phenomenon (Maddix et al., 2018a). The
rightward moving shock forms with weak solution given as:

u(t, x) =

a, x ≤ 1
2
(at− 1),

0, x ≥ 1
2
(at− 1),

for t ≥ 1/a. The shock speed x′(t) is given by the Rankine-Hugoniot (RH) condition (Evans,
2010). The RH condition simplifies for Burgers’ Equation as follows:

x′(t) =
f(uR)− f(uL)

uR − uL
=

1

2

u2R − u2L
uR − uL

=
1

2

(uR − uL)(uR + uL)

uR − uL
=
uR + uL

2
=
a

2
,

where uL = a denotes the solution value to the left of the shock and uR = 0 denotes the solution
value to the right of the shock. Lastly, to obtain the shock position x(t), we solve the simple ODE
x′(t) = a/2 with initial condition x(tb = 1/a) = 0 to obtain x(t) = at

2
+ c, where x(1/a) =

1
2
+ c = 0, and so c = −1

2
. This results in x(t) = 1

2
(at− 1), as desired.

Global Conservation. We write the linear conservation constraint in Equation C.5 for Burgers’
equation as:

Gu(t, x) =
∫ xN

x0

u(t, x)dx =
a

2
(1 + at) = b(t). (C.15)
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The out-flux is Fout =
1
2
u(t, 1)2 = 1

2
g(t, 1)2 = 0, by the fixed right Dirichlet boundary condition,

and we are left with the following terms:∫
Ω

u(t, x)dΩ =

∫
Ω

h(x)dx+

∫ t

0

Fin(t)dt

= −a
∫ 0

−1
xdx+

1

2

∫ t

0

u(t,−1)2dt

=
a

2
(1 + at),

by using the Dirichlet boundary condition u(t,−1) = g(t,−1) = a in the second term in the last
step. We again see that the time rate of change in total mass is constant over time.

C.4 Discretizations of the Integral Operator G for Conserva-
tion and Additional Linear Constraints

In this section, we first describe common discretization schemes G for the integral operator G in
Equation 4.5 given as:

Gu(t, x) =
∫
Ω

u(t, x)dΩ = b(t), (C.16)

to form a linear matrix constraint equation Gu = b. Then, we show how to incorporate other
types of linear constraints into our framework PROBCONSERV. In particular, we consider artificial
diffusion, which is a common numerical technique to smooth numerical artifacts through the matrix
G̃ arising from the second order central finite difference scheme of the second derivative.

C.4.1 Discretizations of the Integral Operator G
Here, we provide examples of the discrete matrixG ∈ RT×MT , which approximates the continuous
integral operator G in Equation C.16. We useM to denote the number of spatial points, T to denote
the number of time points, and we set N =MT .

We form a discrete linear system from the continuous integral conservation law, i.e,. Gu = b,
where each row i ofG acts as a Riemann approximation to the integral Gu(t, x) at time ti. At infer-
ence time, we assume we have an ordered output grid {(t1, x1), . . . , (t1, xM), . . . , (tT , x1), . . . , (tT , xM)}
with spatial grid spacing ∆xj = xj+1−xj for j = 1, . . . ,M −1. We want to compute the solution
at these corresponding grid points given as:

u = [u(t1, x1), . . . , u(t1, xM), . . . , u(tT , x1), . . . , u(tT , xM)]T ∈ RMT .
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The known right-hand side is given as:

b = [b(t1), . . . , b(tT )]
T ∈ RT .

We now proceed to provide examples of specific matrices G corresponding to common numer-
ical spatial integration schemes (Burden et al., 2016).

Left Riemann Sum. For G arising from the common first-order left Riemann sum

M−1∑
j=1

u(ti, xj)∆xj,

at time ti, we have the following expression:

Gij =

∆xj, (i− 1)M + 1 ≤ j ≤ iM − 1,

0, otherwise.

In other words, it uses the left function value u(t, xj) on the interval [xj, xj+1]. The right Riemann
sum (

∑M
j=2 u(t, xj)∆xj−1 at time t) is a simple extension that shifts the column indices by 1 to

(i− 1)M + 2 ≤ j ≤ iM to use the right value u(ti, xj+1) on the interval [xj, xj+1].

Trapezoidal Rule. For G arising from the second order trapezoidal rule

Gu =
M−1∑
j=1

u(ti, xj) + u(ti, xj+1)

2
∆xj,

at time ti, we have the following expression:

Gij =



∆xj

2
, j = (i− 1)M + 1,

∆xj−1+∆xj

2
, (i− 1)M + 2 ≤ j ≤ iM − 1,

∆xj−1

2
, j = iM,

0, otherwise.

(C.17)

We use the trapezoidal discretization of G in Equation C.17 in our experiments. Note that higher
order schemes, e.g., Simpson’s Rule may also be used, as well as more advanced numerical tech-
niques. These can help to reduce the error in the spatial integration approximation, including shock
tracking schemes in Maddix et al. (2018a) on the more challenging sharper problems with shocks
that we see for high values of m in the PME and Stefan.
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C.4.2 Adding artificial diffusion into the discretization

In addition to various discretization schemes to compute the integral operator G, our PROBCON-
SERV framework can incorporate other inductive biases based on the knowledge of the underlying
PDE, e.g., to bypass undesirable numerical artifacts. One common technique that has been used
widely in numerical methods for this purpose is adding artificial diffusion (Maddix et al., 2018b).
This artificial diffusion can act locally at sharp corners such as shock interfaces, where numeri-
cal methods tend to suffer from high frequency oscillations. Other common numerical methods
to avoid numerical oscillations include total variation diminishing (TVD), i.e., TV(u(ti+1, x)) ≤
TV(u(ti, x)), ∀i, or total variation bounded (TVB), i.e., TV(u(ti+1, x)) ≤ C, C > 0, ∀i, where
TV(u) =

∫
Ω
|∂u
∂x
|dΩ and is approximated as

∑M−1
j=1 |u(ti, xj+1)−u(ti, xj)| (LeVeque, 1990; Tezaur

et al., 2017). Note that enforcing these inequality constraints is a direction of future work.
In machine learning, artificial diffusion is analogous to adding a regularization penalty on the

L2 norm of the second derivative
∫
{ ∂2

∂x2u(ti, x)}2dx (Hastie et al., 2013). This can be written as
the L2 norm of a linear operator applied to u, ∥G̃(u)∥22, where G̃(u)(ti) := ∂2

∂x2u(ti, x). Thus, we
can incorporate this penalty term into PROBCONSERV in the same manner as the integral operators
by discretizing G̃ via a matrix G̃. Let G̃ be the second order central finite difference three-point
stencil at time ti over M spatial points:

(G̃u)j =

(
u(ti, xj+2)− u(ti, xj+1)

∆xj+1

)
−
(
u(ti, xj+1)− u(ti, xj)

∆xj

)
.

for j = 1, . . . ,M − 2. For simplicity of notation, we assume ∆xj := ∆x for all xj , though this
need not be the case in general. This results in the following three-banded matrix:

G̃ =
1

∆x


1 −2 1 0 . . .

0 1 −2 1 . . .
...

...
...

...
...

 . (C.18)

Since our goal is to penalize large differences in the solution, we set the constraint value b to zero:

G̃u+ σG̃ϵ = 0,

where σG̃ > 0 denotes the constraint value for the artificial diffusion. Since the mechanism is
exactly the same with a linear constraint, artificial diffusion can be applied using Equation 4.8a
with b = 0, where µ̃ and Σ̃ are the mean and covariance after applying the conservation constraint
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as follows:

µ̃diffusion = µ̃− Σ̃G̃T (σ2
G̃
I +GΣ̃GT )−1(G̃µ̃),

Σ̃diffusion = Σ̃− Σ̃G̃T (σ2
G̃
I +GΣ̃GT )−1(G̃Σ̃).

Moreover, the guarantees of Theorem Theorem 4.1 still hold. Smaller values of σG̃ lead to smaller
values of ∥G̃µ̃diffusion∥22, which results in a smoother solution.

Unlike the case of enforcing conservation, it is typically not desirable when applying artificial
diffusion to set σG̃ to zero, as this will lead to a simple line fit (Hastie et al., 2013). We set the
variance for each row of G̃ as follows: Let σ2

i := Var(un) be the variance of target value un from
the Step 1 procedure:

σ2
G̃,i

:= Var((G̃u)i) = Var(ui − 2ui+1 + ui+2)

= σ2
i + 4σ2

i+1 + σ2
i+2 − 4ρ (σiσi+1 + σi+1σi+2) + 2ρ2σiσi+2,

where ρ ∈ [0, 1] determines the level of auto-correlation between neighboring points. Higher
values of ρ lead to lower values of σ2

G̃,i
, and hence a higher penalty.

C.5 Control on Conservation Constraint

Figure C.2 illustrates that Theorem 4.1 holds empirically for the the PME in subsection 4.3.2,
where both the norm of the conservation error (CE2) monotonically decreases to zero and the pre-
dictive log likelihood (LL) monotonically increases as the constraint precision σ2

G → 0 (1/σ2
G →

∞). We that for MSE, the trend depends on the difficulty of the problem. For “easy” scenarios,
where m = 1, the MSE also monotonically improves (decreases) as σ2

G → 0 (1/σ2
G → ∞). For

“medium” difficulty problems, where m = 3, we see that there is an optimal value for σ2
G around

10−5, and enforcing the constraint exactly does not result in the lowest MSE. For the “harder”
m = 6 case, we see that a looser tolerance on the constraint results in better MSE. However, in
this case the solution is non-physical since it does not satisfy conservation. Note that in the sharper
m = 6 case, the accuracy may be able to be improved by using more advanced approximations for
the integral operator G that take the sharp corners into account (Maddix et al., 2018a).
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Figure C.2: Illustration of the norm of the conservation error CE2 (lower is better) in top row,
the predictive log likelihood (LL) in middle row (higher is better), and the mean-squared error
(MSE) (lower is better) in the bottom row, as a function of the constraint precision 1

σ2
G

for the
PME in subsection 4.3.2, where M denotes the number of spatial points and tj denotes the time-
index in the training window at which the metrics are reported. Each column indicates results
for a different values of PDE parameter m ∈ {1, 3, 6}, corresponding to “easy”, “medium”, and
“hard” scenarios, respectively. In all three cases, CE2 monotonically decreases to zero and LL
monotonically increases as σ2

G → 0 (1/σ2
G → ∞), illustrating Theorem 4.1. The biggest gains

in log-likelihood are for m = 1, where conservation was also violated the most. In contrast, the
relationship between MSE and 1

σ2
G

is not guaranteed to be monotonic, and it qualitatively changes,
depending on the value of m.
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C.6 Derivation of constrained mean and covariance

In this section, we provide two interpretations for the Step 2 procedure of PROBCONSERV from
Equation 4.8 given as:

µ̃ = µ− ΣGT (σ2
GI +GΣGT )−1(Gµ− b), (C.19a)

Σ̃ = Σ− ΣGT (σ2
GI +GΣGT )−1GΣ. (C.19b)

While Equation 4.8 is well-defined in the case that σ2
G = 0, for simplicity we assume σ2

G > 0

throughout this section. In Lemma C.1, we show how Step 2 is justified as a Bayesian update of
the unconstrained normal distribution from Step 1 by adding information about the conservation
constraint contained in Equation 4.7, i.e., b = Gu+σGϵ in Step 2. In Lemma C.2, we show how the
posterior mean µ̃ and Σ̃ can be re-expressed in a numerically stable and computationally efficient
form given in Equation C.19. This form is equivalent to the observation update step seen in the
Kalman filter. Finally, Lemma C.3 shows that this is equivalent to a least-squares optimization
with an upper bound on the conservation error.

Note: µ ∈ RMT ,Σ ∈ RMT×MT , G ∈ RT×MT , b ∈ RT , where N =MT denotes the number of
spatio-temporal output points, M denotes the number of spatial points and T denotes number of
constraints or in this case time steps to enforce the conservation constraint.

Lemma C.1 (Step 2 as Bayesian update). Assume the predictive distribution of u conditioned only

on observed data D is normal with mean µ and covariance Σ. Let b be the known conservation

quantity that follows a normal distribution with mean Gu and covariance σ2
GI , where σ2

G > 0.

Then the posterior distribution of u conditional on both data D and conservation quantity b is

normal with mean µ̃ and covariance Σ̃ given as:

u|b,D ∼ N (µ̃, Σ̃),

Σ̃ = A−1Σ,

µ̃ = A−1(µ+
1

σ2
G

ΣGT b),

where A = I + 1
σ2
G
ΣGTG.

Proof This follows the same logic as a standard multivariate normal model with known covari-
ance; see Chapter 3.5 of Gelman et al. (2015). We outline the derivation below. Note that we mark
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the terms that are independent of the unknown u as constants.

log p(u|b,D) = log p(u|D)︸ ︷︷ ︸
Step 1

p(b|u)︸ ︷︷ ︸
Step 2

− log

∫
p(b|u)dp(u|D) (Bayes’ Rule)

= log p(u|D) + log p(b|u) + C1

= logN (u;µ,Σ) + logN (b;Gu, σ2
GI) + C1

= −1

2

(
∥u− µ∥2Σ−1 +

1

σ2
G

∥Gu− b∥22
)
+ C2

= −1

2

(
uTΣ−1u− 2uTΣ−1µ+ uT (

1

σ2
G

GTG)u− 2uT
1

σ2
G

GT b

)
+ C3

= −1

2

(
uT (Σ−1 +

1

σ2
G

GTG)u− 2uT (Σ−1µ+
1

σ2
G

GT b)

)
+ C3

= −1

2

(
uT (Σ−1 +

1

σ2
G

GTG)︸ ︷︷ ︸
Σ̃−1

u

− 2uT (Σ−1 +
1

σ2
G

GTG)︸ ︷︷ ︸
Σ̃−1

(Σ−1 +
1

σ2
G

GTG)−1(Σ−1µ+
1

σ2
G

GT b)︸ ︷︷ ︸
µ̃

)
+ C3

= −1

2

(
uT Σ̃−1u− 2uT Σ̃−1µ̃

)
+ C3

= logN (u; µ̃, Σ̃) + C4,

where

Σ̃ = (Σ−1 +
1

σ2
G

GTG)−1 = (I +
1

σ2
G

ΣGTG)−1Σ = A−1Σ, (C.20a)

µ̃ = (Σ−1 +
1

σ2
G

GTG)−1(Σ−1µ+
1

σ2
G

GT b) = Σ̃(Σ−1µ+
1

σ2
G

GT b) (C.20b)

= A−1Σ(Σ−1µ+
1

σ2
G

GT b) = A−1(µ+
1

σ2
G

ΣGT b), (C.20c)

C1 = − log

∫
p(b|u)dp(u|D), (C.20d)

C2 = C1 −
1

2

(
MT log 2π + log detΣ + T log π + log σ2

G

)
, (C.20e)

C3 = C2 −
1

2

(
µTΣ−1µ+

1

σ2
G

bT b

)
, (C.20f)

C4 = 0. (C.20g)

108



Note that C4 = 0 since the left-hand side and right-hand side are log-probability densities, so we
have the desired expression. □

Lemma C.2 (Numerically stable form for Step 2). Assume that σ2
G > 0. The posterior mean and

covariance µ̃ and Σ̃ can be written in a numerically stable form as:

µ̃ = µ− ΣGT (σ2
GI +GΣGT )−1(Gµ− b),

Σ̃ = Σ− ΣGT (σ2
GI +GΣGT )−1GΣ.

Proof We use the following two Searle identities (corollaries of the Woodbury identity) (Petersen
et al., 2008):

(I + CB)−1 = I − C(I +BC)−1C, (C.21a)

(C +BBT )−1B = C−1B(I +BTC−1B)−1, (C.21b)

for some matrices B,C. Using Equation C.21a, we re-write A−1:

A−1 = (I +
1

σ2
G

ΣGTG)−1 (C.22a)

= I − ΣGT (I +
1

σ2
G

GΣGT )−1
1

σ2
G

G (C.22b)

= I − ΣGT (σ2
GI +GΣGT )−1G. (C.22c)

The desired expression for Σ̃ immediately follows by combining Equation C.22c with Lemma
C.1. For µ̃, we break the expression into two parts, and then use the Searle identity shown in
Equation C.21b as follows:

µ̃ = A−1(µ+
1

σ2
G

ΣGT b) (C.23a)

= A−1µ+ A−1
1

σ2
G

ΣGT b, (C.23b)

A−1µ = (I − ΣGT (σ2
GI +GΣGT )−1G)µ, (C.23c)

A−1
1

σ2
G

ΣGT b = (Σ−1 +
1

σ2
G

GTG)−1
1

σ2
G

GT b (C.23d)

=
1

σ2
G

ΣGT (I +
1

σ2
G

GΣGT )−1b (C.23e)

= ΣGT (σ2
GI +GΣGT )−1b. (C.23f)

Adding the expressions in Equation C.23c and Equation C.23f yields the desired form for µ̃. □
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Observe that the matrix σ2
GI + GΣGT ∈ RT×T is invertible for all values of σ2

G (including
zero), since it is square in the smaller dimension and has full rank T . In addition, inverting σ2

GI +

GΣGT ∈ RT×T has reduced computational complexity compared to inverting A. The matrix
ΣGT (σ2

GI +GΣGT )−1 is commonly refered to as the Kalman gain, as it specifies how the prior µ
should be updated based on the observation error b−Gµ (Lopes and Tsay, 2011).

Lemma C.3 (Solution to constrained optimization). The expression for the posterior mean µ̃ with

σ2
G > 0 is equivalent to solving the following constrained least-squares problem for some value of

c > 0:

µ̃ = argminy

1

2
∥y − µ∥2Σ−1 ,

subject to 1
2
∥Gy − b∥22 < c, where c < 1

2
∥Gµ− b∥22.

Proof This is a standard result from ridge regression (Hastie et al., 2013).
Since c < 1

2
∥Gµ− b∥22, the complementary slackness condition requires that c = 1

2
∥Gy − b∥22.

Thus, we get the following Lagrangian:

L(y, λ) =
1

2
∥y − µ∥2Σ−1 + λ

(
1

2
∥Gy − b∥22 − c

)
.

Observe that, if we re-label y := u and λ := 1/σ2
G, then L(y, λ) is equal to − log p(u|b,D) + C2,

where C2 is a constant with respect to y. Thus, the optimal value of y is the posterior mean from
Equation C.19a, i.e.,

∇yL(y, λ) = 0 ⇐⇒ y = µ̃,

where
µ̃ = µ− ΣGT (

1

λ
I +GΣGT )(Gµ− b).

Next, we substitute the above expression for µ̃ into the remaining feasibility condition:

c =
1

2
∥Gµ̃− b∥22

= ∥G
(
µ− ΣGT (

1

λ
I +GΣGT )−1(Gµ− b)

)
− b∥22

= ∥Gµ−GΣGT (
1

λ
I +GΣGT )−1(Gµ− b)− b∥22

= ∥
(
I −GΣGT (

1

λ
I +GΣGT )−1

)
(Gµ− b)∥22.

The eigenvalues of matrix I−GΣGT [(1/λ)I+GΣGT ]−1 shrink to 0 as 1/λ→ 0. This establishes
that c and 1/λ have a monotonic relationship. Hence, one can find a value of c such that λ = 1/σ2

G.
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C.7 Proof of Theorem 4.1

In this section, we provide the proof for Theorem 4.1. We begin by first restating Theorem 4.1.

Theorem 4.1. Let µ and Σ be the mean and covariance of u obtained at the end of Step 1. Let

σG,n ↓ 0 be a monotonic decreasing sequence of constraint values and let µ̃n be the corresponding

posterior mean at the end of Step 2 shown in Equation 4.8. Then:

1. The sequence µ̃n converges to a limit µ̃⋆ monotonically; i.e., ∥µ̃n − µ̃⋆∥Σ−1 ↓ 0.

2. The limiting mean µ̃⋆ is the solution to a constrained least-squares problem: argminy∥y −
µ∥Σ−1 subject to Gy = b.

3. The sequence Gµ̃n converges to b in L2; i.e., ∥Gµ̃n − b∥2 ↓ 0.

Moreover, if the conservation constraint Gu = b holds exactly for the true solution u, then:

4. The distance between the true solution u and the posterior mean µ̃n decreases as σG,n → 0,

i.e., ∥µ̃n − u∥Σ−1 ↓ ∥µ̃⋆ − u∥Σ−1 .

5. For sufficiently small σG,n, the log-likelihood LL(u; µ̃n, Σ̃n) is greater than LL(u;µ,Σ) and

increases as σG,n → 0.

For the proof of Theorem 4.1, recall the following expression for the posterior mean from Equa-
tion 4.8a:

µ̃n = µ− ΣGT (σ2
G,nI +GΣGT )−1(Gµ− b).

Proof of 1. Define µ̃⋆ ≡ µ− ΣGT (GΣGT )−1(Gµ− b). We will show that µ̃n converges mono-
tonically to µ̃⋆ as follows:

µ̃n − µ̃⋆ = ΣGT
[
(GΣGT )−1 − (σ2

G,nI +GΣGT )−1
]
(Gµ− b) (C.24a)

= ΣGT
[
(GΣG)−1(−σ2

G,nI)(−σ2
G,nI −GΣGT )−1

]
(Gµ− b) (C.24b)

= σ2
G,nΣG

T
[
(GΣGT )−1(σ2

G,nI +GΣGT )−1
]
(Gµ− b) (C.24c)

= σ2
G,nΣG

T
[
σ2
G,nGΣG

T + I
]−1

(Gµ− b). (C.24d)

The above follows from the Searle identity

C−1 +B−1 = C−1(C +B)B−1,

where C = GΣGT , B = −(σ2
G,nI +GΣGT ), and C +B = −σ2

G,nI . Then,

∥µ̃n− µ̃⋆∥2Σ−1 = (Gµ−b)T
[
σ2
G(GΣG

T ) + I
]−1

σ2
GGΣΣ

−1ΣGTσ2
G

[
σ2
G(GΣG

T ) + I
]−1

(Gµ−b).
(C.25)
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Focusing on the matrix, we obtain:

Qn :=
[
σ2
G(GΣG

T ) + I
]−1

σ2
GGΣΣ

−1ΣGTσ2
G

[
σ2
G(GΣG

T ) + I
]−1

(C.26a)

=
[
σ2
G(GΣG

T ) + I
]−1

σ2
GGΣG

Tσ2
G

[
σ2
G(GΣG

T ) + I
]−1

(C.26b)

= σ2
G

[
σ2
G(GΣG

T ) + I
]−1

σ2
GGΣG

T
[
σ2
G(GΣG

T ) + I
]−1

(C.26c)

= σ2
G

[
σ2
G(GΣG

T ) + I
]−1 [ 1

σ2
G,n

(GΣGT )−1 + I

]−1
(C.26d)

= σ2
G,n

[
I + σ2

GGΣG
T +

1

σ2
G

(GΣG)−1 + I

]−1
(C.26e)

= σ4
G,n

[
2σ2

G,nI + σ4
GGΣG

T + (GΣGT )−1
]−1

. (C.26f)

Let λi, vi be an eigenvalue and associated eigenvector of GΣGT , respectively. Then vi is also an
eigenvector of matrix Qn with associated eigenvalue

σ4
G,n

2σ2
G,n + σ4

G,nλi + λ−1i

=
1

2σ−2G,n + λi + λ−1i σ−4G,n

.

Since all the eigenvalues are strictly decreasing as σG,n → 0, the value ∥µ̃n − µ̃⋆∥2Σ−1 = (Gµ −
b)TQn(Gµ− b) ↓ 0, as required. □

Proof of 2. Now, we show that µ̃⋆ = argminy∥y − µ̃⋆∥2Σ−1 subject to Gy = b. This constrained
least-squares problem can be cast into the following constrained least-norm problem:

minimize∥u∥22, subject to GΣ1/2u = b− Σ−1/2µ,

with the transformation u = Σ−
1
2 (y − µ) or y = µ+ Σ

1
2u.

The final solution is
µ− ΣGT (GΣGT )−1(Gµ− b),

which equals µ̃⋆. □

Proof of 3. We show that the L2 norm between the predicted conservation value and the true
value, ∥Gµ̃n − b∥22, converges monotonically to 0 as σ2

G,n → 0. We start by substituting the
expression for Equation 4.8a:

Gµ̃n − b = Gµ−GΣGT (σ2
G,nI +GΣGT )−1(Gµ− b)− b

= (I −GΣGT (σ2
G,nI +GΣGT )−1)(Gµ− b).

(C.27)
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Let vi be an eigenvector of GΣGT and λi the associated eigenvector. Then vi is also an eigenvector
of (I −GΣGT (σ2

G,nI +GΣGT )−1) with eigenvalue 1− λi/(σ2
G,i + λi). Since all the eigenvalues

are monotonically decreasing to zero as σ2
G,n → 0 monotonically, ∥Gµ̃n − b∥22 ↓ 0. For σ2

G = 0,
Gµ̃n − b = 0. □

Proof of 4. Define P := ΣGT (GΣGT )−1G, which is an orthogonal projection matrix since

P 2 = ΣGT (GΣGT )−1GΣGT (GΣGT )−1G = P

and

⟨x, Py⟩Σ−1 = xTΣ−1Py = xTGT (GΣGT )−1Gy = xTP TΣ−1y = ⟨Px, y⟩Σ−1 .

The norm ∥µ̃n − u∥Σ−1 can be decomposed into two parts:

∥µ̃n − u∥Σ−1 = ∥P (µ̃n − u)∥Σ−1 + ∥(I − P )(µ̃n − u)∥Σ−1 .

First, we show that the second term ∥(I−P )(µ̃n−u)∥Σ−1 equals ∥µ̃⋆−u∥Σ−1 for all n as follows:

(I − P )µ̃n = (I − P )µ− (I − P )ΣGT (σ2
GI +GΣGT )−1(Gµ− b)

= (I − P )µ− ΣGT (σ2
GI +GΣGT )−1(Gµ− b) + PΣGT (σ2

GI +GΣGT )−1(Gµ− b)
= (I − P )µ− ΣGT (GΣGT )−1(Gµ− b) + ΣGT (GΣGT )−1GΣGT (σ2

GI +GΣGT )−1(Gµ− b)
= (I − P )µ
= µ̃⋆ − ΣGT (GΣGT )−1b,

(I − P )u = u− ΣGT (GΣGT )−1Gu

= u− ΣGT (GΣGT )−1b,

Therefore,
(I − P )µ̃n − (I − P )u = µ̃⋆ − u.
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Next, we show that the first term ∥P (µ̃n − u)∥Σ−1 is equal to the distance between µ̃n and µ̃⋆. We
first compute:

Pµ̃n = Pµ− PΣGT (σ2
GI +GΣGT )−1(Gµ− b) (C.28a)

= ΣGT (GΣGT )−1Gµ− ΣGT (σ2
GI +GΣGT )−1(Gµ− b), (C.28b)

Pu = ΣGT (GΣG−1)Gu (C.28c)

= ΣGT (GΣG−1)b. (C.28d)

Then subtracting Equation C.28d from Equation C.28a gives:

Pµ̃n − Pu = ΣGT (GΣGT )−1Gµ− ΣGT (σ2
GI +GΣGT )−1(Gµ− b)− ΣGT (GΣGT )−1b

(C.29a)

=
(
ΣGT (GΣGT )−1 − ΣGT (σ2

GI +GΣGT )−1
)
(Gµ− b) (C.29b)

= µ̃n − µ̃⋆. (C.29c)

From part 1, ∥µ̃n − µ̃⋆∥Σ−1 ↓ 0 monotonically as σ2
G,n ↓ 0. Thus,

∥µ̃n − u∥2Σ−1 = ∥µ̃n − µ̃⋆∥2Σ−1 + ∥µ̃⋆ − u∥2Σ−1 ↓ ∥µ̃⋆ − u∥2Σ−1 .

□

Proof of 5. Recall that the predictive log-likelihood (LL) is defined as:

LL(u; µ̃n, Σ̃n) = −
1

2M
∥u− µ̃n∥Σ̃−1 − 1

2

∑
i

log Σ̃n,i,i −
1

2M
log 2π,

where M denotes the total number of points. Also recall that the precision is well-defined as:

Σ̃−1n = Σ−1 +
1

σ2
G,n

GTG,

so the first term of the predictive likelihood can be further decomposed as:

∥µ̃n − u∥2Σ̃−1
n

= (µ̃n − u)T Σ̃−1n (µ̃n − u) = (µ̃n − u)TΣ−1(µ̃n − u) + (µ̃n − u)T
1

σ2
G

GTG(µ̃n − u)

= ∥µ̃n − u∥2Σ−1 +
1

σ2
G

∥Gµ̃n − b∥22

= ∥µ̃n − u∥2Σ−1 + ∥ 1

σG
(Gµ̃n − b)∥22.
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Substituting the expression from Equation C.27, we get:

1

σG
(Gµ̃n − b) =

1

σG
(I −GΣGT (σ2

G,nI +GΣGT )−1)(Gµ− b). (C.30)

Let vi be an eigenvector of GΣGT and λi the associated eigenvector. Then vi is also an eigenvector
of 1

σG
(I −GΣGT (σ2

G,nI +GΣGT )−1)(Gµ− b) with eigenvalue:

1

σG

(
1− λi

σ2
G,i + λi

)
=

σG,n

σ2
G,n + λi

=
1

σG,n + λiσ
−1
G,n

.

For sufficiently small σG,n, the eigenvalues are monotonically decreasing to zero as σ2
G,n → 0.

Finally, log(Σ̃n)i,i is non-increasing with respect to σ2
G,n. From Equation 4.8b,

Σ̃n = Σ− ΣGT (σ2
G,nI +GΣGT )GTΣ,

(Σ̃n)i,i = Σi,i − eTi ΣGT (σ2
G,nI +GΣGT )GTΣei,

where ei denotes the i-th elementary vector. Since ΣGT (σ2
GI + GΣGT )−1GΣ is positive definite

with positive diagonal entries, and the eigenvalues of (σ2
GI +GΣGT )−1 increase monotonically as

σG,n → 0, the entry (Σ̃n)i,i decreases as σG,n → 0.

C.8 Additional Details on the Generalized Porous Medium Equa-
tion

In this section, we discuss in more detail the parametric Generalized Porous Medium Equation
(GPME). The GPME is a family of conservation equations, parameterized by a nonlinear coeffi-
cient k(u), and it has been used in several applications ranging from underground flow transport to
nonlinear heat transfer to water desalination and beyond. Among other things, it has the parametric
ability to represent pressure, diffusivity, conductivity, or permeability, in these and other applica-
tions (Vázquez, 2007). From the ML/SciML methods perspective, it has additional advantages,
including closed-form self-similar solutions, structured nonlinearities, and the ability to choose
the parameter k(u) to interpolate between “easy” and “hard” problems (analogous to but distinct
from the properties of elliptical versus parabolic versus hyperbolic PDEs).

The GPME Equation. The basic GPME is given as:

ut −∇ · (k(u)∇u) = 0, (C.31)
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where F (u) = −k(u)∇u is a nonlinear flux function, and where the parameter k = k(u) can be
varied (to model different physical phenomena, or to transition between “easy” PDEs and “hard”
PDEs). Even though the equation appears to be parabolic, for small values of k(u) in the nonlinear
case, it exhibits degeneracies, and it is is called “degenerate parabolic.” By varying k, solutions
span from “easy” to “hard,” exhibiting many of the qualitative properties of smooth/nice parabolic
to sharp/hard hyperbolic PDEs. Among other things, this includes discontinuities associated with
self-sharpening occurring over time, even for smooth initial conditions.
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Figure C.3: Illustration of the “easy-to-hard” paradigm for PDEs, for the GPME family of conser-
vation equations: (a) “easy” parabolic smooth (diffusion equation) solutions, with constant param-
eter k(u) = k ≡ 1; (b) “medium” degenerate parabolic PME solutions, with nonlinear monomial
coefficient k(u) = um, with parameter m = 3 here; and (c) “hard” hyperbolic-like (degenerate
parabolic) sharp solutions (Stefan equation) with nonlinear step-function coefficient k(u) = 1u≥u⋆ ,
where 1E is an indicator function for event E .

Figure C.3 (Figure 4.1 repeated here) provides an illustration of this “easy-to-hard” paradigm
for PDEs for the three classes of the GPME considered in the main text. In particular, Figure C.3(a)
illustrates an “easy” situation, with k(u) ≡ 1, where we have a simple parabolic solution to the
linear heat/diffusion equation, where a sine initial condition is gradually smoothed over time. Fig-
ure C.3(b) illustrates a situation with “medium” difficulty, namely the degenerate parabolic Porous
Medium Equation (PME) with nonlinear differentiable monomial coefficient k(u) = um. Here, for
m = 3, a constant zero initial condition self-sharpens, and it develops a sharp gradient that does
not dissipate over time (Maddix et al., 2018b). Finally, Figure C.3(c) illustrates an example of the
“hard” Stefan problem, where the coefficient k(u) is a nonlinear discontinuous step-function of
the unknown u defined by the unknown value u⋆ = u(t, x⋆(t)) = 0.5 at the discontinuity location
x⋆(t). In this case, the solution evolves as a rightward moving shock or moving interface over time
(Maddix et al., 2018a).

Here, we provide more details on these and other classes of the GPME.
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Heat/Diffusion Equation. Perhaps the simplest non-trivial form of the GPME, where the con-
ductivity or diffusivity coefficient

k(u) = k > 0,

is a constant, corresponds to the heat (or diffusion) equation. In this case, Equation 4.9 reduces
to the linear parabolic equation, ut = k∆u, where ∆ denotes the Laplacian operator. Solutions
of this equation are smooth due to the diffusive nature of the Laplacian operator, and even sharp
initial condition are smoothed over time.

Variable Coefficient Problem. The linear variable coefficient problem

k(u, x) = k(x),

is also a classical parabolic equation. The variable coefficient problem is commonly used in reser-
voir simulations to model the interface between permeable and impermeable materials, where k(u)
denotes the step-function permeabilities that depends on the spatial position x.

Porous Medium Equation (PME). Another subclass of the GPME, in which the coefficient is
nonlinear but smooth, is known as the Porous Medium Equation (PME). The PME is known to be
degenerate parabolic, and it becomes more challenging as m increases. The PME with m = 1 has
been widely used to model isothermal processes, e.g., groundwater flow and population dynamics
in biology. For m > 1, the PME results in sharp solutions, and it has been used to describe
adiabatic processes and nonlinear phenomena such as heat transfer of plasma (ionized gas).

Super-slow Diffusion Problem. Another subclass of the GPME, known as super-slow diffusion,
occurs when

k(u) = exp(−1/u).

Here, the diffusivity k(u) → 0 as u → 0 faster than any power of u. This equation models the
diffusion of solids at different absolute temperatures u. The coefficient k(u) represents the mass
diffusivity in this case, and it is connected with the Arrhenius law in thermodynamics.

Stefan Problem. The most challenging case of the GPME is when the coefficient k(u) is a
discontinuous nonlinear step function:

k(u) =

kmax, u ≥ u⋆

kmin, u < u⋆,
(C.32)
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for given constants kmax, kmin and u⋆ ∈ R, in which case it is known as the Stefan problem. The
Stefan problem has been used to model two-phase flow between water and ice, crystal growth, and
more complex porous media such as foams (van der Meer et al., 2016).

We conclude by noting that, even though the GPME is nonlinear in general, for specific initial
and boundary conditions, it has closed form self-similar solutions. For details, see Vázquez (2007);
Maddix et al. (2018b,a). This enables ease of evaluation by comparing each competing method to
the ground truth.

C.9 Detailed Experiment Settings

In this section, we review the basics of the Attentive Neural Process (ANP) (Kim et al., 2019)
that we use as the black-box deep learning model in Step 1 of our model PROBCONSERV-ANP in
the empirical results Figure 5.5. Figure C.4 illustrates a schematic for PROBCONSERV-ANP that
shows how in the first step the mean and covariance estimates µ,Σ from the ANP are fed into our
probabilistic constraint in the second step to output the updated mean and covariance estimates
µ̃, Σ̃.



...
 Attentive Neural

Process



...


Step1 Step 2

Probabilistic
constraint

Figure C.4: Schematic for the instantiation of our framework PROBCONSERV with the
ANP (PROBCONSERV-ANP) as the data-driven black box model in Step 1 that is used in the
empirical results. In Step 1, the ANP outputs a mean µ and covariance Σ (yellow) of the solution
profile u evaluated at the N target points (red). The ANP takes as input the context set D that
comprises ND labelled points (blue). The parameter θ encapsulates the neural network weights
within the ANP. In Step 2, the probabilistic constraint in Equation 4.8 is applied yielding an up-
dated mean µ̃ and covariance Σ̃ (green). The probabilistic constraint is determined by the matrix
G, value b, and variance σ2

G in Equation 4.7.

Model training. The model from Step 1 is data-driven, with parameter θ that needs to be learned
from data. Given an empirical data distribution, written as (u, b,D) ∼ p, we maximize the ex-
pected joint likelihood of the function u and the constraint b, conditioned on data D, as a function
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of the Step 1 parameter θ and Step 2 parameters σG and G as follows:

L(θ, σG, G) = Eu,b,D∼p log p(u, b|D)

= Eu,D∼p log pθ(u|D)︸ ︷︷ ︸
Step 1

+Eu,b log pσG,G(b|u)︸ ︷︷ ︸
Step 2

. (C.33)

This follows because the joint probability can be broken into conditional distributions using Bayes’
Rule. The Step 2 constraint only depends on the value u.

The Step 1 parameter θ is only present in the first term of the summation in Equation C.33.
Then, the optimal value for θ⋆ is found by optimizing the unconstrained log-likelihood from Step
1 over the empirical data distribution and is given as follows:

θ⋆ = argmax
θ

L(θ, σG, G)

= argmax
θ

Eu,D∼p log pθ(u|D).
(C.34)

Equation C.34 is simply the optimization target of several generative models, e.g., Gaussian pro-
cesses and the ANP. This justifies training the Step 1 black-box model with its original training
procedure before applying our Step 2.

Data Generation. For each PDE instance, we first generate training data for the data-driven
model in Step 1. We generate these samples, indexed by i, by randomly sampling ntrain values
of the PDE parameters αi from an interval A. To create the input data Di, the solution profile
corresponding to αi is evaluated on a set of ND points uniformly sampled from the spatiotemporal
domain [0, t] × Ω. Then, the reference solution for u with parameter αi, denoted ui, is evaluated
over another set of Ntrain uniformly-sampled points. The Step 1 model (ANP) is then trained
on these supervised input-output pairs, (Di, ui). Using Equation 4.5, the conservation value b in
Step 2 is calculated given the parameter αi. At inference time, we fix specific values of the PDE
parameters α that are of interest and generate new input-output pairs to evaluate the predictive
performance. The settings are the same as those at training, except that the reference solution is
evaluated on a fixed grid that evenly divides the time domain [0, t] into Ttest points and the spatial
domain Ω into Mtest points for a spatio-temporal grid of Ntest = Ttest ×Mtest points. For consistent
results, we repeat this procedure over ntest independent datasets for each α.

Table C.3 provides the training settings and Table C.4 provides the cor responding test settings.

We describe here how the input data D; input points (t1, x1), . . . , (tN , xN); and solution u

are created for a particular draw of PDE parameter α ∈ A. The input data (a.k.a. the context
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PDE Parameter A Time domain [0, t] Spatial domain Ω ntrain ND Ntrain

Diffusion k [1, 5] [0, 1] [0, 2π] 10,000 100 100

PME m [1, 6] [0, 1] [0, 1] 10,000 100 100

Stefan u⋆ [0.55, 7] [0, 0.1] [0, 1] 10,000 100 100

Table C.3: Training details for each instance of the GPME (Diffusion, PME, Stefan) used in the
experiments.

PDE Parameter values Test time Spatial domain Ω ntest ND Ttest Mtest Ntest

Diffusion k ∈ {1, 5} 0.5 [0, 2π] 50 100 201 201 40, 401

PME m ∈ {1, 3, 6} 0.5 [0, 1] 50 100 201 201 40, 401

Stefan u⋆ ∈ {0.6} 0.05 [0, 1] 50 100 201 201 40, 401

Table C.4: Testing details for each instance of the GPME (Diffusion, PME, Stefan) used in the
experiments.

set) D is generated as follows. First, draw samples from the spatiotemporal domain (tn, xn) ∼
Uniform([0, t]× Ω), for n = 1, . . . , ND. For each sample (tn, xn), evaluate the reference solution
un := u(tn, xn) for α. Then D = {(tn, xn, un)}n=1,...,ND

.
We create input points (t1, x1), . . . , (tN , xN) differently depending on whether we are training

or testing. At train-time, the input points are sampled uniformly from the spatiotemporal domain

(tn, xn) ∼ Uniform([0, t]× Ω),

for n = 1, . . . , Ntrain. At test-time, we divide up the time domain [0, t] into Ttest evenly-spaced
points and the spatial domain Ω into Mtest evenly-spaced points. We then take the cross product
of these as the set of input points, whose size is Ntest = Ttest ×Mtest. Finally, over the set of input
points, we evaluate the reference solution for α as: u = [u(tn, xn)]n=1,...,Ntrain .

Attentive Neural Processes (ANP). The Attentive Neural Process (ANP) (Kim et al., 2019)
models the conditional distribution of a function u at target input points {xn} := x1, . . . , xN for
xi ∈ RD+1 given a small set of context points D := {xi, ui}i∈C . The function values at each target
point xn, written as un, are conditionally independent given the latent variable z with the following
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distribution for un:

pθ(un|D) =

∫
z

pθ(un|z,D)pθ(z|D)dz,

pθ(un|z,D) = pN (un|µn, σ
2
n),

pθ(z|µz,Σz) = pN (z|µz,Σz),

µn, σn = fu
θ (xn, z, f

r
θ (xn, D)),

µz,Σz = f z
θ (D).

(C.35)

Here, pN (u|µ, σ2) := (2πσ2)−1/2 exp
(
− 1

2σ2 (x− µ)2
)

denotes the univariate normal distribution
with mean µ and variance σ2 and f z

θ , fu
θ , and f r

θ are neural networks whose architecture is described
in more detail below.

As standard in variational inference, the attentive neural process (ANP) is trained to maximize
the evidence lower bound (ELBO), which is a tractable lower bound to the marginal likelihood
Eu,D∼p log pθ(u|D) that we want to maximize in Equation C.34:

Eu,D∼p log pθ(u|D) ≥ Eu,D∼pEz∼qϕ log pθ(u, z|D)− log qθ(z|u,D),

qθ(z|u,D) = pN (z|µq
z,Σ

q
z),

µq
z,Σ

q
z = f z

θ (D ∪ {(t1, x1, u1), . . . (tN , xN , uN)}).
(C.36)

By concatenating the context set D with the target set, the ANP can use the same networks for
both the generative model pθ and the variational model qθ. This differs from methods such as the
variational auto-encoder (VAE) that train a separate network for the variational model.

In the experiments, we train the ELBO in Equation C.36 using stochastic gradient descent over
random mini-batches of the supervised pairs (u,D) and a sample of the latent variable z (using
the reparameterization trick for an unbiased gradient estimate). Specifically, we use the ADAM
optimizer with a learning rate of 1× 10−4 and a batch size of 250.

Further architectural details. Here, we briefly describe the architecture of the ANP used in
experiments; a more thorough description of the ANP in general can be found in the original paper
(Kim et al., 2019).
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Symbol Value Description

dx 2 Input dimension
du 1 Output dimension
dz 128 Latent dimension
h 128 Size of hidden layer
nheads 4 Number of heads in MultiHead
dh 128 Column dimension in MultiHead layers

Table C.5: ANP hyperparameters.

x 2x 2

x 3

Self-Attention

Mean

ReLU

Self-Attention

Cross Attention
K VQ

K VQK VQ

Cross Attention
K VQ

Sample

Sample

Figure C.5: Architectural diagram of the three main networks that make up the Attentive Neural
Process (ANP) that is used in the experiments as the Step 1 black-box model.

The ANP consists of three distinct networks:
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1. The latent encoder f z
θ takes the context set D = {xi, ui}i∈C as input and outputs a mean µz

and diagonal covariance Σz for the latent representation z. Note that f z
θ is invariant to the

order of the context set inputs in D.

2. The deterministic encoder f r
θ takes the context set D = {xi, ui}i∈C and the target points

{xn} as input, and outputs a set of deterministic representations {rn} corresponding to each
target point. Note that f r

θ is permutation-invariant to the order of the context set inputs in D,
and is applied pointwise across the target inputs {xn}.

3. The decoder fu
θ takes the outputs from the latent encoder, deterministic encoder, and the

target points {xn} as input, and outputs a set of mean and variances {µn, σn} corresponding
to each target point. The decoder is applied pointwise across the target inputs {xn} and
deterministic representation {rn}.

For reproducibility, Figure C.5 shows how each network is constructed. Each building blocks is
also briefly described below:

• Linear(din, dout): dense linear layer xA+ b.

• Mean: Averages the inputs of the input set; i.e., Mean({si}) = 1
|{si}|

∑
i si.

• ReLU: Applies ReLU activation pointwise.

• Cross-Attention and Self-Attention. These are multi-head attention blocks first introduced in
Vaswani et al. (2017). The three inputs to the multi-head attention block are the queries Q =

[q1| . . . |qdq ]⊤, keys K = [k1| . . . |qdk ]⊤, and values V = [v1| . . . |vdk ]⊤. The hyperparameters
are the number of heads, nheads and the number of columns of the matrices WQ

i ,W
K
i ,W

V
i ,

denoted as dh. We summarize the notations below:

Self-Attention(Q) := MultiHead(Q,Q,Q),

Cross-Attention(Q,K, V ), := MultiHead(Q,K, V ),

MultiHead(Q,K, V ) := [H1| . . . |Hnheads ]W
O,

Hi := Attention(QWQ
i , KW

K
i , V W

V
i ),

Attention(Q,K, V ) := softmax

(
QK⊤√
dk

)
V,

softmax



x1,1 . . . x1,n

... . . . ...
xm,1 . . . xm,n


 :=


exp(x1,1)∑n
i=j exp(x1,j)

. . . exp(x1,n)∑n
j=1 exp(x1,j)

... . . . ...
exp(xm,1)∑m
i=1 exp(xm,j)

. . . exp(xm,n)∑n
j=1 exp(xm,j)

 .
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C.10 Additional Empirical Results

In this section, we provide additional empirical results for the degenerate parabolic Generalized
Porous Medium (GPME) family of conservation laws as well as for hyperbolic conservation laws.

C.10.1 GPME Family of Conservation Laws

Here, we include additional solution profiles and conservation profiles over time for the GPME
family of equations, ranging from the “easy” diffusion (heat), “medium” PME, to the “hard” Stefan
equations.

C.10.1.1 Diffusion (Heat) Equation
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Figure C.6: Solution profiles for the diffusion (heat) equation at time t = 0.5 for diffusivity (con-
ductivity) test-time parameter k = 1 in the top row and k = 5 in the bottom row. Each model
is trained on samples of k ∈ A = [1, 5]. The shaded region illustrates ±3 standard deviation
uncertainty intervals. PROBCONSERV-ANP and HARDC-ANP both display tighter uncertainty
bounds than the baseline ANP, while SOFTC-ANP is more diffuse. The uncertainty is relatively
homoscedastic on this “easy” case.

Solution profiles. Figure C.6 shows the solution profiles for the “easy” diffusion equation, at
time t = 0.5, where a sine curve is damped over time for test-time parameter k = 1, 5 ∈ A = [1, 5].
Table C.6 shows the corresponding metrics.
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k = 1 k = 5
CE LL MSE CE LL MSE

ANP 4.68 (0.10) 2.72 (0.02) 1.71 (0.41) 1.76 (0.04) 3.28 (0.02) 0.547 (0.08)
SOFTC-ANP 3.47 (0.17) 2.40 (0.02) 2.24 (0.78) 2.86 (0.05) 2.83 (0.02) 1.75 (0.24)
HARDC-ANP 0 (0.00) 3.08 (0.04) 1.37 (0.33) 0 (0.00) 3.64 (0.03) 0.461 (0.07)

PROBCONSERV-ANP 0 (0.00) 2.74 (0.02) 1.55 (0.33) 0 (0.00) 3.30 (0.02) 0.485 (0.07)

Table C.6: Mean and standard error for CE×10−3 (should be zero), LL (higher is better) and MSE
×10−4 (lower is better) over ntest = 50 for the (“easy”) diffusion equation at time t = 0.5 with
variable diffusivity constant k parameter in the range A = [1, 5] and test-time parameter values
k = 1, 5.

C.10.1.2 Porous Medium Equation (PME)

Results for different λ for SOFTC-ANP. As is the case with PINNs (Raissi et al., 2019), the
SOFTC-ANP method has a hyper-parameter λ that controls the balance in the training loss between
the reconstruction and differential term. A higher value of λ places more emphasis on the residual
of the PDE term and less emphasis on the evidence lower bound (ELBO) from the ANP.

To investigate whether tuning λ will lead to significantly different results, we report results for
different values of λ for the SOFTC-ANP on the Porous Medium Equation (PME). Since these
results are presented on the same test dataset used in Table 4.2, it provides an optimistic case on
how tuning λ could improve the results for SOFTC-ANP. Table C.7 shows that the predictive
performance is roughly the same across different values of λ, with both MSE and LL worse than
the original ANP across the board and the conservation error (CE) Gµ − b at the final time worse
for m = 6.

m = 1 m = 3 m = 6
CE LL MSE CE LL MSE CE LL MSE

ANP (λ = 0) 6.67 3.49 0.94 −1.23 3.67 1.90 −2.58 3.81 7.62

SOFTC-ANP (λ = 0.01) 5.58 3.11 1.11 −0.61 3.46 2.03 −3.00 3.49 7.76
SOFTC-ANP (λ = 0.1) 5.58 3.11 1.11 −0.67 3.46 2.07 −3.01 3.49 7.87
SOFTC-ANP (λ = 1) 5.62 3.11 1.11 −0.65 3.46 2.06 −3.03 3.49 7.82
SOFTC-ANP (λ = 10) 5.52 3.11 1.08 −0.56 3.46 2.04 −3.02 3.49 7.76
SOFTC-ANP (λ = 100) 5.62 3.11 1.11 −0.59 3.46 2.03 −3.03 3.49 7.69

Table C.7: Investigation of the effect of the soft constraint penalty parameter λ in the SOFTC-
ANP baseline. The metrics CE ×10−3 (should be zero), LL (higher is better) and MSE ×10−4
(lower is better) are reported for the (“medium”) PME at time t = 0.5 with variable m parameter
in the range A = [0.99, 6] and test-time parameters m ∈ {1, 3, 6}. We see that the performance is
not significantly changed as a function of λ, and, surprisingly, that the unconstrained ANP (λ = 0)
performs better in most metrics than SOFTC-ANP.
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PROBCONSERV-ANP with diffusion. As described in subsection C.4.2, we explore adding
numerical diffusion for eliminating artificial small-scale noises when enforcing conservation. Ta-
ble C.8 shows that adding artificial diffusion improves both MSE and LL compared to the con-
servation constraint alone. Figures C.7-C.8 illustrate that by removing such artificial noises,
PROBCONSERV-ANP with diffusion leads to tighter uncertainty bounds as well as higher LL than
the other baselines.

m = 1 m = 3 m = 6
CE LL MSE CE LL MSE CE LL MSE

ANP 6.67 (0.39) 3.49 (0.01) 0.94 (0.09) −1.23 (0.29) 3.67 (0.00) 1.90 (0.04) −2.58 (0.23) 3.81 (0.01) 7.67 (0.09)
SOFTC-ANP 5.62 (0.35) 3.11 (0.01) 1.11 (0.14) −0.65 (0.30) 3.46 (0.00) 2.06 (0.03) −3.03 (0.26) 3.49 (0.00) 7.82 (0.09)
HARDC-ANP 0 (0.00) 3.16 (0.04) 0.43 (0.04) 0 (0.00) 3.44 (0.03) 1.86 (0.03) 0 (0.00) 3.40 (0.05) 7.61 (0.09)

PROBCONSERV-ANP 0 (0.00) 3.56 (0.01) 0.17 (0.02) 0 (0.00) 3.68 (0.00) 2.10 (0.07) 0 (0.00) 3.83 (0.01) 10.4 (0.04)
PROBCONSERV-ANP (w/diff) 0 (0.00) 4.04 (0.02) 0.15 (0.02) 0 (0.00) 3.96 (0.00) 1.43 (0.05) 0 (0.00) 4.03 (0.01) 7.91 (0.03)

Table C.8: Mean and standard error for CE×10−3 (should be zero), LL (higher is better) and MSE
×10−4 (lower is better) over ntest = 50 runs for the (“medium”) PME at time t = 0.5 with variable
m parameter in the range A = [0.99, 6]. We see that PROBCONSERV-ANP (w/diff) improves the
performance on PROBCONSERV-ANP by applying smoothing at the sharp boundary as the test-
time parameter m is increased.

Solution and error profiles. Figures C.7-C.8 illustrate the differing solution profiles and errors
for the PME for various values of m ∈ {1, 3, 6}, respectively. As expected, we see a gradient for
m > 1 that becomes sharper and approaches infinity for m = 6. Increasing m results in smaller
values of the PDE parameter denoting the pressure k(u) = um, which increases the degeneracy
for smaller values of k(u), i.e., larger values of m. In this case the problem also becomes more
challenging. For m = 1, we have a piecewise linear solution, and for m = 3, 6 we see sharper
oscillatory uncertainty bounds at the front or free boundary, resulting in some negative values at
this boundary as well. We see the value of the uncertainty quantification to reflect that the model
is certain in the parabolic regions to the left and right of the sharp boundary especially in the zero
(degeneracy) region, and is most uncertain at the boundary (degeneracy) point.
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Figure C.7: Solution profiles and uncertainty intervals for the PME predicted by our
PROBCONSERV-ANP and other baselines. The solutions are obtained for three scenarios with
increasing sharpness in the profile as m is increased from m = 1 to m = 6 from left to right, re-
spectively. The HARDC-ANP model, which assumes constant variance for the whole domain, re-
sults in too high uncertainty in the zero (degenerate) region, unlike our proposed PROBCONSERV-
ANP approach that incorporates the variance information to effectively handle this heteroscedas-
ticity. Adding diffusion to PROBCONSERV-ANP removes the oscillations locally at the degener-
acy, as desired.
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Figure C.8: The solution errors with uncertainty bounds as a function of x for our PROBCONSERV-
ANP and other baselines for the PME with parameter m ∈ {1, 3, 6} after training on m ∈ A =
[0.99, 6]. The shaded region indicates ±3 standard deviations as estimated by each model. For
m = 1, both PROBCONSERV-ANP with and without diffusion result in solutions with smaller
errors. While HARDC-ANP model reduces the error scale, it underestimates the zero portion of the
solution, which is nonphysical, as the solution quantity cannot be negative. For m ∈ {3, 6}, while
the error magnitude becomes dominant at the shock position for all methods, PROBCONSERV-
ANP with diffusion provides the lowest errors with the tightest confidence interval.

C.10.1.3 Stefan
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Figure C.9: True mass over time for each model. The true mass conservation profile over
time is matched exactly by our proposed method PROBCONSERV-ANP and the hard-constrained
HARDC-ANP by design. The unconstrained ANP and surprisingly even the differential form soft-
constrained SOFTC-ANP have a non-physical linear mass profile over time.
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Figure C.9 shows PROBCONSERV-ANP follows the true profile of conserved mass in the system
over time by design. We also see that the unconstrained ANP and surprisingly the soft-constrained
SOFTC-ANP that applied the differential form as a soft constraint does not result in conservation
being satisfied since it does not enforce it exactly. For these baselines, the mass profile over time
is linear and does not match the true profile which is proportional to

√
t.

C.10.2 Hyperbolic Equations

Here, we demonstrate that our approach PROBCONSERV-ANP also works for hyperbolic con-
servation laws by considering the linear advection problem (“medium”) and Burgers’ equation
(“hard”), which are both introduced in Table C.2 in section C.3.

C.10.2.1 Linear Advection

Figure C.10 displays the system total mass, U(t) =
∫
Ω
u(t, x)dΩ as a function of time, obtained by

our PROBCONSERV-ANP model and the other baselines and compared against the true curve. The
results are obtained for two values of test-time parameter β = 1, 3 denoting the velocity with train-
ing range β ∈ A = [1, 5]. The unconstrained ANP contradicts the system true mass at all times
including t = 0. By proper incorporation of the conservation constraint, both PROBCONSERV-
ANP and HARDC-ANP methods are able to predict the system mass and capture the actual trend
over time exactly while the soft-constrained differential form SOFTC-ANP baseline results in little
improvement.

Figure C.11 shows the predicted solution profiles and corresponding uncertainty intervals for
time t = 0.1 and test-time parameter β = 1, 3. Our PROBCONSERV-ANP model predicts
sharper shock profile centered around the actual shock position. On the contrary, both ANP and
HARDC-ANP lead to highly diffusive profiles which are shifted toward the left of actual shock
interface, leading to the under-estimation of the shock position on this downstream task. This
under-estimation becomes more evident in Figure C.12, which indicates the corresponding his-
tograms of shock position. The histograms associated with the ANP and HARDC-ANP models
are skewed to the left and both result in the averaged shock positions which are lower than the
actual value depicted by the solid vertical line. By proper leveraging of our finite volume based
physical constraint, our PROBCONSERV-ANP results in proper uncertainty quantification which
leads to accurate prediction of shock location compared to the other baseline models. Table C.9
also shows this accuracy improvement with a maximum improvement of 2.86× in MSE for β = 1.
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Figure C.10: System total mass as a function of time t for the linear advection problem with test-
time parameter β = 1, 3 and training parameter range A = [1, 5]. Both PROBCONSERV-ANP and
HARDC-ANP satisfy conservation of mass while the unconstrained ANP and soft-constrained
SOFTC-ANP baselines deviate from the actual trend completely at all times.
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Figure C.11: Solution profiles and uncertainty intervals for linear advection problem at time
t = 0.1 for test-time parameter β = 1, 3 and training parameter range A = [1, 5]. Despite
satisfaction of conservation constraint, HARDC-ANP predicts a highly diffusive profile and re-
markable underestimation of shock interface region especially for β = 1. The prediction error is
even higher for the unconstrained ANP model which does not enforce the conservation, and the
shock interface is shifted further away from the true solution. PROBCONSERV-ANP results in a
sharper profile than other the baselines and the predicted shock interface is around the actual shock
position leading to more accurate shock position estimation.
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Figure C.12: The histogram of shock position for the linear advection problem, computed as the
mean plus or minus 3 standard deviations. Due to the shift in the shock interface, both the ANP and
HARDC-ANP models underestimate the position of the shock, and the underestimation is more
significant for β = 1. The PROBCONSERV-ANP model provides a histogram distributed almost
symmetrically around the true shock interface and thus leads to an accurate estimate of the shock
position.

β = 1 β = 3
CE LL MSE CE LL MSE

ANP -0.136 (0.004) 0.96 (0.01) 5.72 (0.25) 0.042 (0.003) 0.51 (0.01) 2.03 (0.01)
SOFTC-ANP -0.137 (0.004) 1.58 (0.03) 7.64 (0.34) 0.013 (0.003) 2.31 (0.02) 2.87 (0.20)
HARDC-ANP 0 (0.00) -2.96 (0.34) 4.59 (0.17) 0 (0.00) 1.34 (0.21) 1.93 (0.07)

PROBCONSERV-ANP 0 (0.00) 1.06 (0.01) 2.00 (0.06) 0 (0.00) 0.52 (0.01) 1.62 (0.01)

Table C.9: Mean and standard error for CE (should be zero), LL (higher is better) and MSE×10−2
(lower is better) over ntest = 50 runs for the hyperbolic linear advection problem at time t = 0.1
with variable β parameter in the range A = [1, 5].

C.10.2.2 Burgers’ Equation

Figure C.13 illustrates that the total mass is linear over time, and in this case is approximately
satisfied by our PROBCONSERV-ANP and the baselines. Figure C.14 shows the waiting time
phenomenon, where the piecewise linear initial condition self-sharpens until the breaking time
tb = 1/a, where it forms a rightward moving shock. We see that the breaking time is inversely
proportional to the slope, and that the shock forms sooner for larger values of a.
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Figure C.13: True mass as a function of time t for the Burgers’ equation with test-time parameter
a = 1, 3 and training parameter range A = [1, 4].
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Figure C.14: Solution profiles and uncertainty intervals for Burgers’ equation at time t = 0.5 for
test-time parameter a = 1, 3 and training parameter range A = [1, 4].
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APPENDIX D

Appendix for Chapter 5

D.1 Normalizing flows

Normalizing flows (Papamakarios et al., 2021) represent a general framework for density estima-
tion of a multi-dimensional distribution with arbitrary dependencies. Briefly, suppose X ∼ PX is
a random variable in Rd. Now, let Z ∼ N (0, Id) be a multivariate standard normal distribution.
We assume there exists a mapping G that is triangular, increasing, and differentiable such that

G(X) = Z.

A formal treatment of when such a G exists can be found in Bogachev et al. (2005). However,
a sufficient condition is that the density of X is greater than 0 on Rd and the cumulative density
function of Xj , conditional on the previous components X≤j , is differentiable with respect to
Xj, X≤j (Papamakarios et al., 2021):

Ui = Gi(X) ≡ Fi(Xi|X≤i)

From this construction, each Ui is independent of all previous Ui and has distribution Unif[0, 1].
From there, we simply set Zi = Φ−1(Ui), where Φ is the CDF of the standard normal.

Since Gi(X) depends only on the elements in X up to i, it is triangular. Because pX > 0,
the conditional cdfs are strictly increasing, so G is an increasing map. Finally, since each cdf is
differentiable, the entire map G is differentiable, and its Jacobian is non-zero.

Because of the inverse mapping theorem, G is invertible and we can write

X = G(Z).

Normalizing flows are a collection of distributions that parameterize a family of invertible,
differentiable transformations Gθ from a fixed base distribution Z to an unknown distribution X .
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Using the change-of-variables theorem, we can express the distribution of X in terms of the base
distribution density pZ and the transformation Gθ:

pθ(X) = p(Gθ(X))

∣∣∣∣det(∂Gθ(X)

∂X

)∣∣∣∣
where ∂Gθ(X)

∂X
is the Jacobian of G. The goal is to find a parameter value θ̂ that maximizes the

likelihood of the observed X:
θ̂ = argmax

θ
pθ(X).

A key feature of normalizing flows is that they are composable.

D.1.1 Flow Architecture

In experiments, the first layerG is a Gaussianization flow (Meng et al., 2020) applied elementwise:

Gj(Xj) = Φ−1

(
M∑

m=1

σ

(
Xj − µj,m

sj,m

))
,

where Φ−1 is the standard normal inverse CDF. With sufficiently large M , this Gaussianization
layer can approximate any univariate distribution. This is composed with a Masked Autoregressive
Flow (MAF) F (Papamakarios et al., 2017), which consists of MADE layers interspersed with
batch normalization and reverse permutation layers:

MADEj,k = (Xj − µj,k) exp(−αj,k)

where µj = fµj,k
(X<j)

αj = fαj,k
(X<j)

F = MADEj,K ◦ BatchNorm ◦ Reverse ◦MADEj,K−1 ◦ · · ·BatchNorm ◦ Reverse ◦MADEj,1

Here, fµj
and fαj

are fully connected neural networks.
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D.2 Proof of convergence

Theorem 5.1. Let X ∈ RN×D be a random feature matrix, where each row Xi,· is independent

and identically distributed; x ∈ RN×D be the observed feature matrix; and αj be the p-value as

defined in eq. (5.4) with test statistic Tj(X). Suppose there exists a sequence of functions (Gn)∞n=1

and a base random variable Z satisfying the following conditions:

1. Each Gn is continuously differentiable and invertible.

2. Gn → G pointwise for some map G that is triangular, increasing, continuously differen-

tiable, and satisfies G(Xi,·)
D
= Z.

For n = 1, 2, . . . , let Xn be the random feature matrix where each row i is independent and has

distribution Xn
i,· = (Gn)−1(Z). Then, the p-value in eq. (5.5) calculated using K MCMC samples

targeting Xn
·,j | Xn

·,−j = x·,−j converges to the correct p-value αj with probability 1.

Proof of Theorem 1. Without loss of generality, we consider the first feature, which is indexed by
j = 1. Let pX be the density of each row of the matrix Xi,· and pZ the density of the base variable
Z. For each i.i.d observation at i = 1, . . . , N , we define F to be the cumulative distribution
function of Xi,1 conditional on the other features Xi,−1 = xi,−1:

F (x1) ≜ P(Xi,1 ≤ x1|Xi,−1 = xi,−1) =

∫ x1

−∞ pX(x
′
1, xi,−1)dx

′
1∫∞

−∞ pX(x
′
1, xi,−1)dx

′
1

=

∫ x1

−∞ pZ(G(x
′
1, xi,−1))|∂G(x′1, xi,−1)|dx′1∫∞

−∞ pZ(G(x
′
1, xi,−1))|∂G(x′1, xi,−1)|dx′1

.

(D.1)

For a particular mapping Gn, we define F n analogously:

F n(x1) ≜

∫ x1

−∞ pZ(G
n(x′1, xi,−1))|∂Gn(x′1, xi,−1)|dx′1∫∞

−∞ pZ(G
n(x′1, xi,−1))|∂Gn(x′1, xi,−1)|dx′1

. (D.2)

Since Gn and G are continuously differentiable,

pZ(G
n(x′1, xi,−1))|∂Gn(x′1, xi,−1)| → pZ(G(x

′
1, xi,−1))|∂G(x′1, xi,−1)| as n→∞. (D.3)

Then, by the dominated convergence theorem, F n → F pointwise.
Let Xn

i,1 ∼ F n. Since F n → F pointwise, and F is a distribution function, Xn
i,1 converges

in distribution to Xi,1 | Xi,−1 = xi,−1. Likewise, the joint distribution across all independent
observations, written Xn

·,1, converges in distribution to X·,1 | X·,−1 = x·,−1.
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Now, let X̃n
·,1 be equal in distribution to Xn

·,1, but sampled such that it is independent of the
outcome Y . It follows from the reasoning above that X̃n

·,1 converges to the desired null distribu-
tion X̃·,1|X·,−1 as n → ∞. Define g1(x̃·,1) ≜ 1[T1(X) < T1([x̃·,1, X·,−1])]. With the regularity
condition that T1 is discontinuous on a set of measure zero, the expectation converges:

lim
n→∞

EX̃n
·,1
(g1)→ EX̃·,1|X·,−1=x·,−1

(g1) = α1. (D.4)

The Cesaro average of g calculated over MCMC samples that target the distribution of X̃n
·,1

under the probability law of Gn converges almost surely to EX̃n
·,1
(g1) (Smith and Roberts, 1993).

That is,

lim
K→∞

α̂j,K,n = lim
K→∞

1

K

K∑
k=1

g1(X̃·,1,k) = EX̃n
·,1
(g1) w.p.1. (D.5)

Combining eq. (D.4) and eq. (D.5) gives the desired result.

D.2.1 Variable selection methods

Linear For the linear response, we estimate a linear model with an L1 penalty (aka the LASSO)
on training data:

β̂ = argmin
β

1

N
∥Xβ − Y ∥22 + λ

D∑
j=1

|βj| (D.6)

The penalization term λ is selected via 5-fold cross-validation.

Nonlinear For the nonlinear response, we fit a random forest on the training data. The hyperpa-
rameters are the defaults in the scikit-learn implementation.

Feature statistic If f̂(X) is the fitted regression function, then the feature statistic is the negative
mean-squared error:

T (X, Y ) = − 1

N
∥f̂(X)− Y ∥22.

D.2.2 Competing methods

For DDLK (Sudarshan et al., 2020), KnockoffGAN (Jordon et al., 2019), and DeepKnockoffs,
(Romano et al., 2020), we used the exact architecture and hyperparameter settings from their re-
spective papers. For the ablation study in section 5.5.3, we use the exact implementation in Tansey
et al. (2021). For these methods, we used the code that the researchers graciously made publicly
available:
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Method Link

DDLK https://github.com/rajesh-lab/ddlk/

DeepKnockoffs https://github.com/msesia/deepknockoffs/

HRT (MDN) https://github.com/tansey/hrt/

KnockoffGAN https://github.com/firmai/tsgan/tree/master/alg/knockoffgan

For MASS (Gimenez et al., 2019), we followed their described procedure and fit a mixture of
Gaussians to the feature distribution using scikit-learn, selecting the number of components via
the Akiake Information Criterion (AIC). We then used the knockoffs R package, available on
CRAN, to sample knockoffs using the estimated parameters for each component.

For RANK (Fan et al., 2020), we estimate the sparse precision matrix using the Graphical
LASSO (Friedman et al., 2008) implemented in sci-kit learn, using cross-validation to tune the
regularization parameter. We then use the knockoffs R package to sample the knockoffs with
this covariance.

D.3 Architecture and training details for soybean GWAS

Discrete flows For the discrete flows in the soybean example, we use a single layer of MADE
which outputs a dimension of size 4. µ is then set equal to the argmax of this output.

For training the flows, we use a relaxation of argmax with temperature equal to 0.1.

Discrete MCMC Each feature hasK = 4 values, so we can enumerate all four possible states for
each proposal and sample in proportional to these probabilities via a Gibbs Sampling procedure.
Setting the probabilities leads to an acceptance rate of 1, and the samples are uncorrelated since
the previous sample doesn’t enter into the proposal distribution

Predictive model For the predictive model of each trait conditional on the SNPs, we use a fully
connected neural network. This network has three hidden layers of size 128, 256, and 128. ReLU
activations are used between each fully connected layer. Dropout is used on both the input layer
and after each hidden layer with p = 0.2. The learning rate in ADAM was set to 1 × 10−5, with
early stopping implemented using a held-out validation set.

The feature statistic for each sample is the negative mean-squared error (MSE) for each obser-
vation.

Runtime To obtain sufficient resolution on roughly 4200 simultaneous tests, we drew 100,000
samples from our model. The runtime was 10 hours using a single NVIDIA 2080 Ti.
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Selected SNPs table D.1 shows the SNPs selected by FLOWSELECT that are associated with oil
content in soybeans.

Chromosome SNP p-value
4 Gm04 42203141 1.60e-04
5 Gm05 37467797 1.90e-04
8 Gm08 15975626 2.10e-04
14 Gm14 1753922 9.00e-05
14 Gm14 1799390 1.60e-04
14 Gm14 1821662 2.90e-04
18 Gm18 1685024 5.00e-05

Table D.1: Selected SNPs for soybean GWAS experiment.
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D.4 Runtime comparison of each controlled feature selection
method

Method Runtime (min)

DeepKnockoff 3.0
KnockoffGAN 3.73
MASS 12.6
DDLK 91.9
FLOWSELECT 59.4

Table D.2: The median runtime for each method on the scRNA-seq data with D = 100 features
and N = 100, 000 observations. All experiments were implemented using PyTorch, except for
KnockoffGAN, which was implemented in Tensorflow, and MASS, which we implemented using
scikit-learn and the knockoffs R package. The experiments were conducted using an Intel Xeon
Gold 6130 CPU and an NVIDIA GeForce RTX 2080 Ti GPU.
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D.5 Comparison to Holdout Randomization Test of Tansey et al.
(2021)

Mixture-of-Gaussians scRNA-seq

Figure D.1: Comparison of FLOWSELECT to the HRT procedure, which samples the complete
conditionals using multiple mixture-density-networks (MDNs). Each column shows the power
and observed false discovery rate (FDR) at targeted FDRs of 0.05, 0.1, and 0.25 (indicated by the
dashed lines). The experimental settings for each dataset are the same as in Figure 5.2.
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D.6 Oracle Model-X

Figure D.2: FDR control and power of Oracle Model-X knockoffs on the mixture-of-Gaussians
dataset (compare to Figure 5.2).

D.7 DDLK with true joint distribution

Figure D.3: FDR control and power of DDLK on the mixture-of-Gaussians dataset using the
ground truth feature density in training (compare to Figure 5.2).
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D.8 Observed Power and FDR control for given number of MCMC
samples

Figure D.4: FDR control and power of FLOWSELECT on the mixture-of-Gaussians dataset for a
given number of MCMC samples at targeted FDRs of 0.05, 0.1, and 0.25 (indicated by the dashed
lines). This suggests that the consequence of terminating the MCMC chain prematurely leads to a
drop in power but FDR control is still maintained.

Figure D.5: Power and FDR control of FLOWSELECT on the scRNA-seq dataset as a function of
the number of MCMC samples at targeted FDRs of 0.05, 0.1, and 0.25 (indicated by the dashed
lines). This suggests that the consequence of terminating the MCMC chain prematurely leads to a
drop in power but FDR control is still maintained.
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D.9 Mixture-of-Gaussians results for FDR and Power under
Sudarshan et al. (2020) settings

Figure D.6: Mixture-of-gaussians setup with ρ = (0.6, 0.4, 0.2) and N = 2000 to match the set-
tings in Sudarshan et al., 2020. In the linear response setting, which matches the data-generating
process of Sudarshan et al., 2020, all competing knockoff-based methods (i.e., DDLK, Knockoff-
GAN, and DeepKnockoff) as well as FlowSelect control the FDR at 5%, 10% and 25% levels and
achieve a power of about 0.75. In the non-linear response setting, none of the methods control
FDR, except for DeepKnockoffs which had nearly zero power. The good performance in the linear
setting can be explained by the LASSO feature statistic shrinking most null features to zero since
they have relatively low correlation. Since FDR control should hold for any response setting, these
findings suggest that none of the methods do well in modeling the underlying distribution with
N = 2000 observations.
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D.10 Learned normalizing flow mapping on mixture-of-Gaussians
and scRNA-seq datasets

Figure D.7: Plot of features mapped to flow space by the learned normalizing flow within FLOWS-
ELECT with j = 1 on the x-axis and j = 2 on the y-axis. Mapped features are shown for the
mixture-of-Gaussians and scRNA-seq datasets, and they are compared to samples from a true
standard Gaussian distribution.
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Négiar, G., Mahoney, M. W., and Krishnapriyan, A. S. (2022). Learning differentiable solvers for
systems with hard constraints. arXiv preprint arXiv:0902.0885.

Onken, D. and Ruthotto, L. (2020). Discretize-optimize vs. Optimize-discretize for time-series
regression and continuous normalizing flows. arXiv preprint arXiv:2005.13420.

151



Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algo-
rithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79:12–49.

Ott, K., Katiyar, P., Hennig, P., and Tiemann, M. (2021). ResNet after all: Neural ODEs and their
numerical solution. In International Conference on Learning Representations.

Owen, A. (2013). Importance Sampling. In Monte Carlo Theory, Methods and Examples.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning Re-
search, 22(57):1–64.

Papamakarios, G., Pavlakou, T., and Murray, I. (2017). Masked Autoregressive Flow for Density
Estimation.

Petersen, K. B., Pedersen, M. S., et al. (2008). The matrix cookbook. Technical University of
Denmark, 7(15):510.

Pitt, M. K. (2002). Smooth Particle Filters for Likelihood Evaluation and Maximisation. The
Warwick Economics Research Paper Series (TWERPS), University of Warwick, Department of
Economics.

Pitt, M. K., Silva, R. d. S., Giordani, P., and Kohn, R. (2012). On some properties of Markov
chain Monte Carlo simulation methods based on the particle filter. Journal of Econometrics,
171(2):134–151.

Raissi, M., Perdikaris, P., and Karniadakis, G. (2019). Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707.

Rasmussen, C. and Williams, C. (2006). Gaussian Processes for Machine Learning. MIT Press.

Reeve, K., Boebel, O., Kanzow, T., Strass, V., Rohardt, G., and Fahrbach, E. (2016). A gridded data
set of upper-ocean hydrographic properties in the Weddell Gyre obtained by objective mapping
of Argo float measurements. Earth System Science Data, 8:15–40.

Reeve, K. A., Boebel, O., Strass, V., Kanzow, T., and Gerdes, R. (2019). Horizontal circulation and
volume transports in the Weddell Gyre derived from Argo float data. Progress in Oceanography,
175:263–283.

Regier, J., Miller, A. C., Schlegel, D., Adams, R. P., McAuliffe, J. D., and Prabhat (2019). Ap-
proximate inference for constructing astronomical catalogs from images. The Annals of Applied
Statistics, 13(3):1884–1926.

Richter-Powell, J., Lipman, Y., and Chen, R. T. Q. (2022). Neural conservation laws: A divergence-
free perspective. arXiv preprint arXiv:2210.01741.

Riser, S. C., Swift, D., and Drucker, R. (2018). Profiling floats in SOCCOM: technical capabilities
for studying the Southern Ocean. Journal of Geophysical Research: Oceans, 123(6):4055–4073.

152



Roemmich, D. and Gilson, J. (2009). The 2004–2008 mean and annual cycle of temperature,
salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography,
82(2):81–100.

Romano, Y., Sesia, M., and Emmanuel Candès (2020). Deep knockoffs. Journal of the American
Statistical Association, 115(532):1861–1872.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-Resolution
Image Synthesis With Latent Diffusion Models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10684–10695.

Rowe, B. T., Jarvis, M., Mandelbaum, R., Bernstein, G. M., Bosch, J., Simet, M., Meyers, J. E.,
Kacprzak, T., Nakajima, R., Zuntz, J., et al. (2015). GALSIM: The modular galaxy image
simulation toolkit. Astronomy and Computing, 10:121–150.

Rubin, D. B., editor (1987). Multiple Imputation for Nonresponse in Surveys. Wiley Series in
Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, USA.

Saad, N., Gupta, G., Alizadeh, S., and Maddix, D. (2022). Guiding continuous operator learning
through Physics-based boundary constraints. arXiv preprint arXiv:2212.07477.

Salimans, T. and Kingma, D. P. (2016). Weight Normalization: A Simple Reparameterization to
Accelerate Training of Deep Neural Networks. In Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc.

Sanchez, J., Mendoza, I., Kirkby, D. P., and Burchat, P. R. (2021). Effects of overlapping sources
on cosmic shear estimation: Statistical sensitivity and pixel-noise bias. Journal of Cosmology
and Astroparticle Physics, 2021(07):043.

Sargsyan, S. (2016). Dimensionality hyper-reduction and machine learning for dynamical systems
with varying parameters. In Ph.D. Thesis, University of Washington.

Sethian, J. A. and Strain, J. (1992). Crystal growth and dendritic solidification. Journal of Com-
putational Physics, 98(2):231–253.

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In Time Series Models.
Chapman and Hall/CRC.

Smith, A. F. M. and Roberts, G. O. (1993). Bayesian Computation Via the Gibbs Sampler and
Related Markov Chain Monte Carlo Methods. Journal of the Royal Statistical Society: Series B
(Methodological), 55(1):3–23.

Sonah, H., ODonoughue, L., Cober, E., Rajcan, I., and Belzile, F. (2014). Identification of loci
governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping
in soya bean. Plant Biotechnology Journal, 13(2):211–221.

Song, Q., Yan, L., Quigley, C., Jordan, B. D., Fickus, E., Schroeder, S., Song, B.-H., Charles An,
Y.-Q., Hyten, D., Nelson, R., Rainey, K., Beavis, W. D., Specht, J., Diers, B., and Cregan, P.
(2017). Genetic characterization of the soybean nested association mapping population. The
Plant Genome, 10(2).

153



Sturm, P. O. and Wexler, A. S. (2022). Conservation laws in a neural network architecture: En-
forcing the atom balance of a Julia-based photochemical model (v0.2.0). Geoscientific Model
Development, 15:3417–3431.

Subramanian, S., Kirby, R. M., Mahoney, M. W., and Gholami, A. (2022). Adaptive self-
supervision algorithms for physics-informed neural networks. arXiv preprint arXiv:2207.04084.

Sudarshan, M., Tansey, W., and Ranganath, R. (2020). Deep direct likelihood knockoffs. In
Advances in Neural Information Processing Systems, volume 33.

Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H. (2011). Chapter 7 - Dynamical processes
for descriptive ocean circulation. In Descriptive Physical Oceanography (Sixth Edition), pages
187–221. Academic Press, Boston.

Tansey, W., Veitch, V., Zhang, H., Rabadan, R., and Blei, D. M. (2021). The holdout randomiza-
tion test for feature selection in black box models. Journal of Computational and Graphical
Statistics.

Tezaur, I. K., Fike, J. A., Carlberg, K. T., Barone, M. F., Maddix, D., Mussoni, E. E., and Balajew-
icz, M. (2017). Advanced fluid reduced order models for compressible flow. Sandia National
Laboratories Report, Sand No. 2017-10335.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society: Series B, 58:267–288.

Tran, D., Vafa, K., Agrawal, K. K., Dinh, L., and Poole, B. (2019). Discrete Flows: Invertible
Generative Models of Discrete Data. arXiv:1905.10347 [cs, stat].

Turner, S. (2018). Qqman: An R package for visualizing GWAS results using Q-Q and Manhattan
plots. The Journal of Open Source Software.

Vahdat, A. and Kautz, J. (2020). NVAE: A Deep Hierarchical Variational Autoencoder. Advances
in Neural Information Processing Systems, 33:19667–19679.

van der Meer, J., Kraaijevanger, J., Möller, M., and Jansen, J. (2016). Temporal oscillations in
the simulation of foam enhanced oil recovery. ECMOR XV - 15th European Conference on the
Mathematics of Oil Recovery, pages 1–20.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Vázquez, J. (2007). The Porous Medium Equation: Mathematical Theory. The Clarendon Press,
Oxford University Press, Oxford.

Verdy, A. and Mazloff, M. R. (2017). A data assimilating model for estimating Southern Ocean
biogeochemistry. Journal of Geophysical Research: Oceans, 122(9):6968–6988.

154



Vernet, M., Geibert, W., Hoppema, M., Brown, P. J., Haas, C., Hellmer, H. H., Jokat, W., Jullion,
L., Mazloff, M., Bakker, D. C. E., Brearley, J. A., Croot, P., Hattermann, T., Hauck, J., Hil-
lenbrand, C.-D., Hoppe, C. J. M., Huhn, O., Koch, B. P., and Lechtenfeld, O. J. ... Verdy, A.
(2019). The Weddell Gyre, Southern Ocean: present knowledge and future challenges. Reviews
of Geophysics, 57(3):623–708.

Wang, S., Yu, X., and Perdikaris, P. (2022). When and why PINNs fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449(110768).

Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson,
J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J.
J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., André, X., and Poffa, N. ... Park, H.-M.
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