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Abstract

Many real-world phenomena or systems with temporally changing dynamics can be effectively

characterized by time-varying models — typically ensembles of simple models (modes) among

which the active mode switches over time. Coupling different modes through switching

increases the model capacity so that more complex behaviors can be explained, but this

meanwhile brings new challenges: one cannot simply study the entire model by looking at

individual modes separately, and the coupling structures need to be factored in. Because

of this, recent advances for simple time-invariant models such as data-driven methodologies

and sharp finite-sample guarantees are yet to be generalized to time-varying models.

An important class of time-varying models is given by the Markov jump linear systems

(MJSs), where each MJS is made up of a collection of linear modes and a Markov chain

modeling their switching. MJSs strike a good balance between describing complex temporal

variations in dynamics and possessing simple solutions to many classical control problems.

This dissertation focuses on MJSs and revisits classical problems including the identifica-

tion, data-driven control, and model reduction for MJSs. With recent advances in machine

learning, optimization, and statistics, this work seeks to address challenges incurred by the

mode switching in MJSs and bring new perspectives to these problems. For an MJS with un-

known dynamics, we propose an identification scheme to develop its model, which requires

only a single data trajectory and is guaranteed to have near-optimal sample complexity.

Then, by establishing novel perturbation analysis, two classical control problems, certainty

equivalent control and adaptive control, are studied with focus on solving for the linear

quadratic regulator (LQR) problems. For the latter, the proposed adaptive control method

invokes our identification scheme and is guaranteed to achieve performance with sublinear

regret. Sometimes, a designed or learned MJS may suffer from complexities incurred by the

sheer number of modes. Using clustering techniques from unsupervised learning, we develop

a model reduction scheme that constructs a reduced-mode MJS by grouping modes with

similar dynamics, which provably and empirically approximates the original system.

x



Chapter 1

Introduction

Many real-world systems have behaviors that can change over time. For example, some

systems have dynamics determined by the environment, such as the dependency of solar

panel power output on the sunlight radiation. Certain systems may have components that

naturally deteriorate, e.g., rubber aging, metal corrosion, battery drain, etc., which can

affect the overall system dynamics. Distributed systems that operate based on information

transmitted through communication networks may suffer from occasional packet losses or

delays, either of which may drastically and adversely impact system operations. Outside of

engineering, time-varying behaviors also show up in economic indicators, pandemic infection

rates, chemical reaction rates, etc.

Time-invariant models are well studied and understood theoretically and practically, but

they fall short of capturing dynamics that can change over time. One workaround is to

reactively build a new temporary model every time changes in the dynamics are detected

via expert knowledge. This approach lacks responsiveness and does not exploit the recurring

nature of the dynamics. Moreover, due to the short lifespan of each temporary model,

performing control would necessarily be “myopic” and yield suboptimal performance in the

long run and, even worse, destabilize the system.

On the other hand, using time-varying models that proactively take future variations of

dynamics into consideration is a more systematic choice. A time-varying model is typically

an ensemble of simple models (modes) with only one mode being active at a time, and the

active mode can switch over time. One important class of time-varying models is known

as the discrete-time Markov jump linear systems (MJSs). An MJS is composed of a col-

lection of linear modes and a Markov chain that governs the switching of the active mode.

MJSs strike a balance between describing complex behaviors with temporal variations and

possessing simple solutions to many classical control problems. MJSs have applications in

power electronics (Stankovic et al., 1995), power systems (Loparo and Abdel-Malek, 1990;

Ugrinovskii and Pota, 2005), manufacturing (Boukas and Liu, 2001), economics and finance

(Cajueiro, 2002; Hatjispyros and Yannacopoulos, 2005), solar thermal receiver (Sworder and

1



Rogers, 1983), networked control with packet losses (Sinopoli et al., 2005; Truong et al.,

2021), etc.

Having modes that can switch allows MJSs to characterize a wider class of real-world

systems but also poses new challenges to a variety of problems.

• Identification: In an MJS, the Markov chain that models the mode switching is a

random process by itself. This introduces inherent randomness and makes the MJS

a stochastic system. Because of this, the stability of an MJS is typically considered

in the expectation sense. Though the probability is small, an MJS that is stable

in expectation may still produce unstable trajectory realizations. This calls for new

analytical tools to study sample complexities of learning an MJS, since existing tools

usually require deterministic stability.

• Control: The algebraic Riccati equation (ARE) is the key to solving for optimal

control problems such as the linear quadratic regulator (LQR) problems. ARE per-

turbation analysis helps understand the suboptimality incurred by having imperfect

knowledge of the model, which can happen when such knowledge is obtained from

estimation using a finite amount of data. In terms of an MJS with switched modes, its

ARE is a set of coupled equations, each of which correspond to an individual mode.

The coupling structure in the ARE adds to the difficulty of establishing perturbation

analysis.

• Model Reduction: Compared with non-switched systems, MJSs may suffer from a

new type of model complexity: the number of modes. Having more modes increases the

computation cost in the analysis and controller design, thus it is imperative to study

mode reduction for MJSs. Though there is preliminary work on reducing Markov

chains or hidden Markov models, this problem is yet to be systematically studied for

MJSs.

1.1 Related Work

Many classical control problems for linear time-invariant (LTI) systems find their counter-

parts for MJSs. Optimal quadratic control for MJSs, where one seeks to design inputs to

minimize a quadratic cost function in terms of both the states and inputs, has been studied

in works such as Chizeck and Ji (1988); Abou-Kandil et al. (1995); Costa and do Val (2002),

and the constrained case is considered in Costa et al. (1999); Vargas et al. (2013). When the

state of the MJS is only partially observed, the state estimation in real time is known as fil-

tering, which has been discussed in Ackerson and Fu (1970); Chang and Athans (1978); Blom

2



(1984); Allam et al. (2001); Smith and Seiler (2003). When one wants to perform optimal

control on a partially observed MJS, the optimal solution usually follows from the separa-

tion principle — the optimal control and optimal filtering are conducted separately and then

combined together to yield the optimal performance (Caines and Chen, 1985; Caines and

Zhang, 1995; De Farias et al., 2000). When there are model uncertainties or system delays,

sometimes the worst-case control performance is of interest. This is known as robust control

and studied in Costa and do Val (1996); Cao and Lam (1999); Boukas et al. (2001); de Farias

et al. (2002).

The aforementioned control problems require exact (or at least coarse) knowledge of the

MJS model, which includes the dynamics of all modes and the underlying Markov chain

transition probabilities. When the model, however, is unknown, one needs to learn the

dynamics from one or more data trajectories generated by the MJS, which is known as the

identification problem and studied in Cao and Lam (1999); Cinquemani et al. (2007); Özkan

et al. (2014); Barao and Marques (2011); Lale et al. (2021). However, their contributions

are mainly methodological and lack theoretical results in terms of finite-sample analysis.

Toward this end, recent work (Sarkar et al., 2019) considers identifying the partially observed

stochastic switched system with unknown orders, which can be considered as a simplified MJS

with independent mode switching. Though finite-sample guarantees are provided, strong

assumptions on the system stability and multiple independent trajectories are needed.

As for the MJS adaptive control, where the goal is to control an unknown-dynamics

MJS, earlier works (Yang et al., 1990; Caines and Zhang, 1995; Xue and Guo, 2001; Tan

et al., 2005; Baltaoglu et al., 2016) are more interested in closed-loop stability guarantees

and asymptotic analysis. Lacking non-asymptotic suboptimality analysis makes it difficult to

compare the performance of two adaptive control schemes that are both stabilizing. Jansch-

Porto et al. (2020) proposes a model-free approach based on the policy gradient and provides

suboptimality guarantees, but it requires multiple independent rollout trajectories to obtain

an accurate enough estimate of the gradients, which can be impossible in practice.

When the model complexity of the MJS, e.g., the dimension of the states or the number

of the modes, is large, it can make the computations intractable for tasks such as analysis,

verification, or controller design. To address this issue, one can construct a reduced system

with smaller model complexity and use it as a surrogate for the original one in the compu-

tations. In terms of the model reduction for MJS, the majority of the work aims at order

reduction, i.e., the reduction of state dimension, using methods such as the H∞ reduction,

H2 reduction, and balanced truncation (Zhang et al., 2003; Kotsalis and Rantzer, 2010; Sun

and Lam, 2016). However, model complexity incurred by the number of modes is rarely

studied.
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Other than the classical control scenarios, MJSs have been novelly applied to the conver-

gence analysis of stochastic optimization and reinforcement learning methods. In Hu et al.

(2017), it is shown that several stochastic optimization methods can be modeled by MJSs

with independent mode switching; in Hu and Syed (2019), a large family of temporal differ-

ence (TD) methods for reinforcement learning (RL) are shown to be well approximated by

MJSs. For both works, using control theoretic ideas developed for MJSs, sufficient conditions

for the algorithm convergence and the corresponding convergence rates are provided. This

MJS interpretation of optimization algorithms is further exploited in Zhang et al. (2021) to

analyze first-order methods for stochastic games.

1.2 Contributions and Organization

This dissertation has made contributions toward the following problems for MJSs.

• Identification (Chapter 3): The problem of learning an unknown-dynamics MJS using

a single data trajectory is considered. A method is proposed to learn the dynamics of

each individual mode of the MJS as well as the Markov chain that governs the mode

switching. Finite-sample guarantees are established, which show that the dynamics can

be learned with estimation error rate O(1/
√
T ) with T being the trajectory length.

Our analysis tackles the heavy-tailed statistical property of the data, which is a new

challenge for MJSs compared with LTI systems.

• Certainty Equivalent Control (Chapter 4): We consider the scenario of designing

controllers for LQR problems using inaccurate knowledge of the MJS dynamics. It

is shown that the performance degradation can be upper bounded by O(ϵ2) where

ϵ measures the knowledge inaccuracy. As an intermediate result, we also establish

perturbation analysis for the coupled algebraic Riccati equations, which can be of

independent interest and benefit problems such as filter design and the linear quadratic

Gaussian (LQG) problems.

• Adaptive Control (Chapter 5): We look into solving for the LQR control problem

without any prior knowledge of the MJS model. An epoch-based adaptive control

framework is proposed: each epoch is driven by a temporary controller, and at the

end of each epoch the model knowledge and the controller are updated. It is shown

that the proposed adaptive control scheme is guaranteed to achieve performance with

sublinear regret O(
√
T ), where T is the planning time horizon.

• Model Reduction (Chapter 6): For an MJS with a large number of modes, a

4



clustering-based model reduction scheme is developed, which constructs a reduced

MJS with fewer modes. The reduced MJS is guaranteed to approximate the original

MJS under various metrics. Furthermore, both theoretically and empirically, we show

how one can use the reduced MJS to analyze stability and design controllers with

significant computational cost reduction while achieving guaranteed accuracy.

The organization of this dissertation is as follows: Chapter 2 introduces the preliminaries

including notations and basics of Markov chains and MJSs; Chapter 3 - Chapter 6 respec-

tively present the works on identification, certainty equivalent control, adaptive control, and

model reduction for MJSs. Chapter 7 lists several future directions that can follow from the

established work in this dissertation.
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Chapter 2

Preliminaries

In this chapter, we introduce the preliminaries to be covered in this dissertation. The

notations are provided in Section 2.1. The basics of Markov chains including convergence

results and special properties are discussed in Section 2.2. Section 2.3 introduces the basics

of MJSs, notions of stability, and the LQR problem. Note that this chapter seeks to provide

supporting concepts and lemmas regarding Markov chains and MJSs to be used in this

dissertation and does not intend to cover every fundamental aspect of them. Interested

readers can refer to the references herein for more details.

2.1 Notations

2.1.1 Sets

We let R denote the set of real numbers and N := {0, 1, 2, . . .} denote the set of natural

numbers. Notations R+ and N+ are the sets of positive real numbers and positive integers

respectively. For some positive integer n ∈ N+, we let [n] := {1, 2, . . . , n}. When some

positive integer k ∈ N+ shows up as the superscript of some set S, this denotes the k-ary

Cartesian power of S, i.e., Sk := S × S × · · · × S︸ ︷︷ ︸
k

. We use Rn
∆ := {(x1, . . . , xn) ∈ Rn :∑

i xi = 1, xj ≥ 0,∀j} to denote the standard (n − 1)-simplex. Similarly, for the space

of n × n dimensional matrices where each row is in Rn
∆, we denote it by Rnxn

∆ . In this

dissertation, the positive (semi-)definiteness of matrices is discussed for symmetric matrices

only. Notations Sn
+ and Sn

++ denote the sets of n × n, positive semi-definite and positive

definite matrices respectively. We use a1:k as a shorthand notation for a sequence of variables

(or sets) (a1, a2, . . . , ak). Given a set S and a collection of its subsets Ω1:r, where each Ωi ⊆ S,

we say Ω1:r is an r-cluster partition of S if (i) Ωi ̸= ϕ for all i, (ii)
⋃r

i=1Ωi = S, and (iii)

Ωi

⋂
Ωj = ϕ for any i ̸= j. We let Ω(i) denote the cluster with i-th largest cardinality.

6



2.1.2 Linear Algebra

We use boldface uppercase letters to denote matrices and boldface lowercase letters to denote

vectors, e.g., matrix A and vector a. For a matrix A, A(i, j) indexes the (i, j)-th element

in A, A(i, :) denotes the row vector given by the i-th row of A, and A(:, j) denotes the

column vector given by the j-th column. A(i, j:k) denotes the row vector given by the i-th

row preserving only the j-th to k-th elements. For any index set I ⊂ N+, A(i, I) denotes
the row vector given by the i-th row preserving elements indexed by I.

The n-dimensional identity matrix is written as In, and the n-dimensional all-ones vector

is written as 1n, where the dimension subscript n may be omitted when it is clear from the

context. For a vector a, diag(a) stands for the diagonalization operator; for a matrix A

with n columns, we let vec(A) := [A(:, 1)⊺, . . . ,A(:, n)⊺]⊺ denote the vectorization operator.

The Kronecker product of two matrices A and B is denoted as A⊗B.

Notation ∥·∥p for 1 ≤ p ≤ ∞ denotes the p-norm for vectors or the induced p-norm for

matrices. For conciseness, when p = 2, we omit the subscript and simply use ∥·∥. We let

∥·∥+ := ∥·∥ + 1. The matrix Frobenius norm of a matrix is denoted by ∥·∥F. For a matrix

A, σi(A) denotes its i-th largest singular value, and its largest and smallest singular values

may also be represented by σ̄(A) and σ(A). If A is a square matrix, λi(A) denotes its i-th

largest eigenvalue in terms of magnitude, and ρ(A) denotes its spectral radius. When the

decomposition A = QΛQ−1 is referred to as the eigenvalue decomposition of the matrix A,

the eigenvalues on the diagonal of Λ are arranged in descending order of magnitude. The

same applies to the singular value decomposition A = UΣV⊺.

A sequence of matrices (A1, . . . ,As) sharing the same dimensions is compactly denoted

by A1:s. We let Rmxn
s := {A1:s : Ai ∈ Rmxn,∀ i}, Sn

s,+ := {A1:s : Ai ∈ Sn
+,∀ i}, and

Sn
s,++ := {A1:s : Ai ∈ Sn

++, ∀ i}. If A1:s ∈ Sn
s,+ (or A1:s ∈ Sn

s,++), we also say A1:s ⪰ 0

(or A1:s ≻ 0). Operator diag(A1:s) produces a block diagonal matrix whose i-th diagonal

block is given by matrix Ai. We define the norm operator ∥A1:s∥ := maxi∈[s] ∥Ai∥ and

∥A1:s∥+ = ∥A1:s∥+ 1. Given two sequences of matrices A1:s and B1:s, and scalars α, β ∈ R,
the notation αA1:s + βB1:s stands for the sequence (αA1 + βB1, . . . , αAs + βBs). Given

A1:s ∈ Rmxn
s , we let ξ(A1:s) := limk→∞ maxσ1:k∈[s]k ∥Aσ1 · · ·Aσk

∥ 1
k denote the joint spectral

radius of A1:s.

2.1.3 Probability

The multivariate Gaussian distribution with mean µ and covariance matrix Σ is denoted by

N (µ,Σ). For a zero-mean random vector x, we let Cov(x) := E[xx⊺] denote its covariance

matrix. Claims such as “for all j, with probability at least 1−δ, for all i, event Ei,j occurs” is
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equivalent to “for all j, P(∩iEi,j) ≥ 1−δ”. Given an event E , we let 1{E} denote the indicator

function for E . Orders of magnitude notation Ô(·) hides log(1/δ) or log2(1/δ) terms.

2.2 Markov Chains

In this dissertation, we restrict our attention to Markov chains that are discrete-time, time-

homogeneous, and have a finite number of states. We say the random process {ωt}t∈N
follows an s-state Markov chain if the state transition probabilities satisfy (i) P(ωt+1= it+1 |
ωt = it, ωt−1= it−1, · · · , ω0= i0) = P(ωt+1= it+1 | ωt = it) for all t ∈ N and i0:t+1 ∈ [s]t+2,

and (ii) P(ωt1+1 = i | ωt1 = j) = P(ωt2+1= i | ωt2 = j) for all t1, t2 ∈ N and i, j ∈ [s]. We

use the Markov transition matrix T ∈ Rsxs
∆ to collect those transition probabilities such that

T(i, j) := P(ωt+1= j | ωt= i), then the process can be described as “ωt ∼ MarkovChain(T)”.

We use the vector πt ∈ Rs
∆ to denote the transient state distribution of the Markov

chain such that πt(i) := P(ωt = i). Particularly, π0 is referred to as the initial distribution.

The evolution of πt is then given by π
⊺
t+1 = π

⊺
tT. We say the Markov chain is ergodic

if it is irreducible, positive recurrent, and aperiodic (Gallager, 2013). Under ergodicity, it

is known that regardless of the initial distribution π0, limt→∞ πt uniquely exists, i.e., the

Markov chain has a unique stationary distribution. We denote the stationary distribution

by π ∈ Rs
∆ such that π(i) := limt→∞ P(ωt = i) = limt→∞ πt(i). It is easy to see π

⊺ = π
⊺T.

Let πmax := maxi π(i) and πmin := mini π(i), then it is also known that πmin > 0 under

ergodicity.

2.2.1 Convergence of Markov Chains

To quantify the convergence rate of the Markov chain transient distribution to its stationary

distribution, i.e. πt → π as t→∞, we first introduce the following notion.

Definition 2.1 (Normalized Power Supremum). Consider an arbitrary square matrix A ∈
Rnxn. Given a free parameter ρ such that ρ ≥ ρ(A), define

τ(A, ρ) := sup
k∈N
∥Ak/ρk∥. (2.1)

We call τ(A, ρ) the power supremum of the matrix A normalized by ρ.

This notion is also studied in Mania et al. (2019). In the definition, ρ is a free parameter,

and different choices of ρ yield different τ(A, ρ). We can also see that τ(A, ρ) monotonically

decreases with respect to increasing ρ. Note that when ρ > ρ(A), limk→∞ ∥Ak/ρk∥ = 0

and ∥A0/ρ0∥ = 1, hence by definition τ(A, ρ) takes the supremum at some finite k. In
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other words, τ(A, ρ) compares the transient behaviors of ∥Ak∥ and ρk. It is easy to see

τ(A, ρ) is bounded as long as ρ > ρ(A). When the equal case is considered as well, i.e.,

ρ ≥ ρ(A), the boundedness of τ(A, ρ) can be guaranteed when eigenvalues with magnitudes

ρ(A) have equal geometric and algebraic multiplicities. In other words, the Jordan blocks

associated with the leading eigenvalues are trivial 1 × 1 matrices, i.e., scalars. When A

is diagonalizable, i.e., all the Jordan blocks are trivial, an explicit upper bound is given

by τ(A, ρ) ≤ ∥V∥∥V−1∥, where V is a matrix whose columns span the eigenspace of A.

Particularly, when A is normal, τ(A, ρ) = 1 by the spectral theorem. For general matrix A

that are not necessarily diagonalizable, by the Kreiss matrix theorem (Trefethen and Embree,

2005), τ(A, ρ) can be bounded by the Kreiss constant of the normalized matrix A/ρ. From

Definition 2.1, the following properties are immediate.

Lemma 2.2 (Properties of the Normalized Power Supremum). For the pair {ρ, τ(A, ρ)} in
Definition 2.1, we have the following.

(a) τ(A, ρ) ≥ 1.

(b) For all k ∈ N, ∥Ak∥ ≤ τ(A, ρ)ρk.

(c) If ρ(A) < 1 and ρ ∈ [ρ(A), 1),
∑∞

k=0 ∥Ak∥ ≤ τ(A,ρ)
1−ρ

.

As for the term τ(A,ρ)
1−ρ

shows up in the upper bound of Lemma 2.2, since increasing ρ

decreases τ(A, ρ), the freedom of selecting ρ makes it possible to attain the tightest upper

bound given by infρ∈[ρ(A),1)
τ(A,ρ)
1−ρ

. One will find the term τ(A,ρ)
1−ρ

shows up in theoretical results

throughout this dissertation.

Using the normalized power supremum in Definition 2.1, we define the following to ana-

lyze the convergence of Markov chains.

Definition 2.3 (Quantification of Markov Chain Convergence). Consider an ergodic Markov

chain with Markov matrix T ∈ Rs×s
∆ and stationary distribution π ∈ Rs

∆. Let R := T−1sπ
⊺.

Then for any ρMC ∈ [ρ(R), 1), let τMC := τ(R, ρMC), where τ(·, ·) is as in Definition 2.1.

By the Perron-Frobenius theorem and ergodicity, we know the leading eigenvalue of

the Markov matrix T is 1, and only one eigenvalue has magnitude equal to 1. It can be

verified that its eigenvalue component is given by 1sπ
⊺. We then see from the definition

that the matrix R shares the same eigenvalues and eigenvectors as T except for replacing

the eigenvalue 1 of T by 0. Hence, the spectral radius ρ(R) is nothing but the magnitude

of the second largest eigenvalue of T, which is strictly smaller than 1. This guarantees that

the range [ρ(R), 1) for ρMC in Definition 2.3 is valid. The pair {ρMC, τMC} can be used to

quantify the convergence of Markov chains, which is provided in the following lemma.
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Lemma 2.4 (Markov Chain Convergence). For {ρMC, τMC} in Definition 2.3, we have, for

all t ∈ N,
∥Tt − 1sπ

⊺∥ ≤ τMCρ
t
MC, (2.2)

and for any initial distribution π0, the transient distribution πt converges to the stationary

distribution π with at least the following rate:

∥πt − π∥ ≤ τMCρ
t
MC. (2.3)

Proof. From Definition 2.3 and Lemma 2.2, we have ∥(T− 1sπ
⊺)t∥ ≤ τMCρ

t
MC. From the

discussion above regarding the eigenvalues and eigenvectors of T, we can infer that (T −
1sπ

⊺)t = Tt − 1sπ
⊺, which gives (2.2). As for (2.3), by noticing πt = (

∑
i∈[s] π0(i)T

t(i, :

))⊺, we obtain ∥πt − π∥ ≤
∑

i∈[s] π0(i)∥Tt(i, :)⊺ − π∥ using the triangle inequality. For

each ∥Tt(i, :)⊺ − π∥, invoking (2.2) gives that ∥Tt(i, :)⊺ − π∥ ≤ ∥Tt − 1sπ
⊺∥ ≤ τMCρ

t
MC.

Combining these results, (2.3) can be shown.

Other than using {ρMC, τMC} to upper bound the convergence of Markov chains, the

convergence can also be studied in terms of the minimum number of time steps to reach

certain convergence tolerance, which is known as the mixing time.

Definition 2.5 (Markov Chain Mixing Time (Levin and Peres, 2017)). Consider an ergodic

Markov chain with Markov matrix T ∈ Rs×s
∆ and stationary distribution π ∈ Rs

∆. Define

tMC(ϵ) := min

{
t ∈ N : max

i∈[s]

1

2
∥(Tt(i, :)

⊺ − π∥1 ≤ ϵ

}
. (2.4)

When the argument ϵ is omitted, it denotes that tMC := tMC(
1
4
).

In the above definition, tMC(
1
4
) is of particular interest since one can upper bound tMC(ϵ)

for any ϵ < 1
4
using tMC(

1
4
) (see, for example, Zhang and Wang (2019, Lemma 5)). Using

Lemma 2.4, we can derive that the mixing time and the pair {ρMC, τMC} in Definition 2.3

are related by tMC(ϵ) ≤ max{0, log(2
√
sϵ/τMC)

log(ρMC)
}.

2.2.2 Some Special Markov Chains

Markov chains with the following special properties will be considered in Chapter 6 for the

reduction of MJSs.

Definition 2.6 (Reversibility (Gallager, 2013)). Consider an ergodic Markov chain with

Markov matrix T ∈ Rs×s
∆ and stationary distribution π ∈ Rs

∆. We say the Markov chain
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is reversible if the Markov matrix T and stationary distribution π satisfy π(i)T(i, j) =

π(j)T(j, i) for all i, j ∈ [s].

It can be seen that the condition for reversibility translates to diag(π)T = T⊺diag(π).

Reversibility tells that under the stationary distribution π, the random process {ωt}t∈N has

the same statistical properties as its time-reversed process. Sometimes, certain states in the

Markov chain can be lumped into a meta-state such that the process for these meta-states

also follows a Markov chain. This makes it possible to reduce a large-scale Markov chain to

a small-scale one. Such properties are characterized below.

Definition 2.7 (Lumpability and Aggregatability (Buchholz, 1994)). Consider a Markov

chain with Markov matrix T ∈ Rs×s
∆ . We say the Markov chain is lumpable with respect

to the r-cluster partition Ω1:r on the state space [s] if states in the same cluster have equal

probabilities of visiting any cluster, i.e., for any k, l ∈ [r] and i, i′ ∈ Ωk, we have∑
j∈Ωl

T(i, j) =
∑
j∈Ωl

T(i′, j). (2.5)

If they further have equal probabilities of visiting any state, i.e., T(i, j) = T(i′, j) for all

j ∈ [s], we say the Markov chain is aggregatable with respect to Ω1:r.

2.3 Markov Jump Systems

In this dissertation, we study the following discrete-time MJS with dynamics given by

Σ :=

{
xt+1 = Aωtxt +Bωtut +wt

ωt ∼ Markov Chain(T)
(2.6)

where xt ∈ Rn, ut ∈ Rp, and wt ∈ Rn denote the state, input, and process noise at

time t. We assume the noise {wt}t∈N
i.i.d.∼ N (0, σ2

wIn), i.e., i.i.d. zero mean Gaussian with

covariance σ2
wIn. The dynamics is time-varying and can switch among s modes {Ai,Bi}si=1

where Ai ∈ Rnxn and Bi ∈ Rnxp are state and input matrices for mode i. At time t, only

one mode is active, which is indexed by ωt ∈ [s]. The mode switching sequence {ωt}t∈N
follows a Markov chain with Markov matrix T ∈ Rsxs

∆ , i.e., for any t ∈ N, any i, j ∈ [s],

P(ωt+1= j | ωt = i) = T(i, j). The mode switching sequence {ωt}t∈N and the noise {wt}t∈N
are mutually independent. We assume the state xt and mode ωt can be observed at time t.

For the ergodic Markov matrix T underlying the MJS Σ, as in Section 2.2, we let πt,

π, and tMC denote its transient distribution, stationary distribution, and mixing time; let

πmax := maxi π(i) and πmin := mini π(i).
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In the remaining dissertation, we use the shorthand notation MJS(A′
1:s,B

′
1:s,T

′) to pa-

rameterize an arbitrary MJS in the form of (2.6) with mode dynamics {A′
i,B

′
i}si=1 and

Markov matrix T′. Particularly, we use Σ := MJS(A1:s,B1:s,T) to denote the target MJS

that is under study, e.g., the ground truth MJS that we want to identify, control, or perform

model reduction to.

In terms of the controller design for MJSs, a typical choice is to assign each mode i a

linear state-feedback controller Ki ∈ Rpxn such that the input is given by ut = Kωtxt. We

refer to the controller ensemble K1:s as a mode-dependent controller for MJS. We say an

MJS is autonomous if ut = 0 for all t and noise-free if wt = 0 for all t, or simply σw = 0.

Remark. As a slight abuse of terminology, we have used “state” to refer to both the Markov

chain state in Section 2.2 and the MJS state in this section. In the remaining dissertation,

“state” mainly refers to the MJS state xt. When it occasionally refers to the Markov chain

state, it should be clear from the context.

2.3.1 Stability

In this section, we introduce two types of stability commonly considered for MJSs: mean-

square stability and uniform stability.

2.3.1.1 Mean-Square Stability

Even in the autonomous and noise-free case, the state {xt}t∈N of an MJS is a random process

due to the inherent randomness induced by the Markovian mode switching sequence {ωt}t∈N.
Because of this, when we study the stability of an MJS, such randomness is also factored in.

Definition 2.8 (Mean-Square Stability (Costa et al., 2006, Definition 3.8)). We say the

MJS Σ in (2.6) is mean-square stable if, when setting ut = 0 for all t, there exists x∞ ∈
Rn,Σ∞ ∈ Sn

+ such that for any initial state x0 and mode ω0, as t→∞,

∥E[xt]− x∞∥ → 0, ∥E[xtx
⊺
t ]−Σ∞∥ → 0. (2.7)

In the above definition, the expectation is taken with respect to the mode switching se-

quence {ωt}t∈N and process noise {wt}t∈N. In the noise-free case, condition (2.7) is equivalent

to ∥E[xt]∥ → 0, ∥E[xtx
⊺
t ]∥ → 0, and the convergence rate is exponential (Costa et al., 2006,

Theorem 3.9). Mean-square stability only requires the convergence of the state xt in the

expectation sense, thus explosive state trajectory realizations may still occur with certain

probability. Furthermore, an MJS being mean-square stable does not imply each individual

mode, when treated as an LTI system, is Lyapunov stable. And every mode being Lyapunov
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stable does not imply the mean-square stability either. Below is an example for the former

claim.

Example 2.9. Consider the following scalar two-mode autonomous MJS.

Mode 1 : xt+1 = 1.1xt, Mode 2 : xt+1 = 0.7xt, x0 = 1, T =

[
0.6 0.4

0.3 0.7

]
. (2.8)

It is obvious that, individually Mode 1 and Mode 2 are unstable and stable respectively.

Fig. 2.1 shows the state trajectories under different mode switching sequences. We see even

though the state xt is explosive when Mode 1 is active all the time, but the state average is

decaying over time, which implies the mean-square stability.

Figure 2.1: Mean-Square stability demonstration. Thick blue and green curves: mode switching sequences
Ω1 = {1, 1, . . .} and Ω2 = {2, 2, . . .}. Thick orange curve: average over all realizations. Thin curves: possible
trajectory realizations.

Though the mean-square stability in Definition 2.8 is defined for open-loop autonomous

MJSs due to ut = 0, it also applies to closed-loop MJSs under the mode-dependent state-

feedback controller K1:s since the closed-loop dynamics xt+1 = (Aωt +BωtKωt)xt +wt is an

autonomous MJS. This brings the notion of stabilizability.

Definition 2.10 (Mean-Square Stabilizability). Given a mode-dependent controller K1:s for

the MJS Σ in (2.6), let L1:s denote the closed-loop state matrices such that Li = Ai +BiKi.

We say Σ is (mean-square) stabilizable if there exists a mode-dependent controller K1:s such

that the closed-loop MJS, i.e., MJS(L1:s, 0,T), is mean-square stable. And we say such a

controller K1:s stabilizes Σ or is a stabilizing controller for Σ.

The stabilizability of an MJS can be verified by solving for linear matrix inequalities

(Costa et al., 2006, Proposition 3.42). The verification of mean-square stability, on the other

hand, is much easier. It is well-known that the stability of a non-switched LTI system is
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related to the spectral radius of the state matrix. Similarly, mean-square stability of the

MJS in (2.6) relates to the spectral radius of the following block matrix.

Definition 2.11 (Augmented State Matrix for MJSs). For the the MJS Σ in (2.6), we define

the augmented state matrix A ∈ Rsn2xsn2
such that

A :=


T(1, 1) · (A1 ⊗A1) T(2, 1) · (A2 ⊗A2) · · · T(s, 1) · (As ⊗As)

T(1, 2) · (A1 ⊗A1) T(2, 2) · (A2 ⊗A2) · · · T(s, 2) · (As ⊗As)
...

...
...

...

T(1, s) · (A1 ⊗A1) T(2, s) · (A2 ⊗A2) · · · T(s, s) · (As ⊗As)

 (2.9)

For a mode-dependent controller K1:s and its corresponding closed-loop state matrices L1:s

such that Li = Ai + BiKi, we similarly define the augmented closed-loop state matrix L ∈
Rsn2xsn2

such that

L :=


T(1, 1) · (L1 ⊗ L1) T(2, 1) · (L2 ⊗ L2) · · · T(s, 1) · (Ls ⊗ Ls)

T(1, 2) · (L1 ⊗ L1) T(2, 2) · (L2 ⊗ L2) · · · T(s, 2) · (Ls ⊗ Ls)
...

...
...

...

T(1, s) · (L1 ⊗ L1) T(2, s) · (L2 ⊗ L2) · · · T(s, s) · (Ls ⊗ Ls)

 (2.10)

Then, we have the following results regarding mean-square stability.

Lemma 2.12 ((Costa et al., 2006, Theorem 3.9)). For the the MJS Σ in (2.6) and the

augmented state matrix A in (2.9), the following are equivalent.

(a) Σ is mean-square stable.

(b) ρ(A) < 1.

(c) There exists V1:s ∈ Sn
s,++ such that for all i ∈ [s],

Vi −A
⊺
i

( s∑
j=1

T(i, j)Vj

)
Ai ≻ 0. (2.11)

It is easy to see that when s = 1, these assertions reduce to the Lyapunov stability

criteria for LTI systems. From Lemma 2.12, we can trivially obtain the following corollary

regarding whether a given controller stabilizes the MJS.

Corollary 2.13. For the the MJS Σ in (2.6), a mode-dependent controller K1:s, the cor-

responding closed-loop state matrices L1:s, and the augmented closed-loop state matrix L in

(2.10), the following are equivalent.
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(a) K1:s is a stabilizing controller for Σ.

(b) ρ(L) < 1.

(c) There exists V1:s ∈ Sn
s,++ such that for all i ∈ [s],

Vi − L
⊺
i

( s∑
j=1

T(i, j)Vj

)
Li ≻ 0. (2.12)

The following Lemma 2.14 regarding the evolution of the state covariance E[xtx
⊺
t ] tells

how ρ(A) or ρ(L) would determine the mean-square stability. In Lemma 2.14, we consider

a more general case where the input ut is given the state-feedback term Kωtxt plus an

additional random noise term zt, which is also known as the random excitation. This applies

to cases when the input signal is sent to the system through some noisy channel or when

one wants to fully excite the system for better identification performance. The latter will be

covered in later chapters when the identification and adaptive control problems are studied.

Lemma 2.14 (State Covariance Dynamics). Consider the MJS Σ = MJS(A1:s,B1:s,T) in

(2.6) except for more general covariance Σw for wt. Let πt ∈ Rs
∆ denote the transient

distribution of the underlying Markov chain for the modes. Given a controller K1:s, suppose

the input is given by ut = Kωtxt+zt where {zt}t∈N
i.i.d∼ N (0,Σz), and {zt}t∈N is independent

of {wt}t∈N and {ωt}t∈N. Let L1:s and L respectively denote the individual and augmented

closed-loop state matrices. Define

Σt,i := E[xtx
⊺
t1{ωt=i}], Σt := E[xtx

⊺
t ], Πt := πt ⊗ In2 ,

st :=


vec(Σt,1)

...

vec(Σt,s)

 , Bt :=


∑s

j=1 πt−1(j)T(j, 1)(Bj ⊗Bj)
...∑s

j=1 πt−1(j)T(j, s)(Bj ⊗Bj).

 (2.13)

Then, st evolves as follows.

st = Ls0 +Btvec(Σz) +Πtvec(Σw). (2.14)

Propagating this backward gives

st = Lts0 + (Bt +LBt−1 + · · ·+Lt−1B1)vec(Σz)

+ (Πt +LΠt−1 + · · ·+Lt−1Π1)vec(Σw).
(2.15)

Proof. Note that the closed-loop MJS dynamics is given by xt+1 = Lωtxt + Bωtzt + wt.
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Taking outer-products of both sides followed by expectations gives

E[xt+1x
⊺
t+11{ωt+1=i}] =

s∑
j=1

E[Ljxtx
⊺
tLj1{ωt+1=i,ωt=j}]

+
s∑

j=1

E[Bjztz
⊺
tB

⊺
j1{ωt+1=i,ωt=j}] + E[wtw

⊺
t 1{ωt+1=i}],

(2.16)

where the mutual independence between {zt}t∈N, {wt}t∈N, and {ωt}t∈N. This equation can

be further written as

Σt+1,i =
s∑

j=1

T(j, i)LjΣt,jL
⊺
j +

s∑
j=1

πt(j)T(j, i)BjΣzB
⊺
j + πt+1(i)Σw. (2.17)

Vectorizing both sides of the above equation, we have

vec(Σt+1,i) =
s∑

j=1

T(j, i)(Lj ⊗ Lj)vec(Σt,j)

+
s∑

j=1

πt(j)T(j, i)(Bj ⊗Bj)vec(Σz) + πt+1(i)vec(Σw).

Stacking this for all i ∈ [s], we obtain
vec(Σ1,t+1)

...

vec(Σs,t+1))

 = L


vec(Σ1,t)

...

vec(Σs,t)

+Bt+1vec(Σz) +Πt+1vec(Σw), (2.18)

which concludes the proof.

Note that one can obtain the state covariance E[xtx
⊺
t ] from st simply through a linear

mapping. Hence, Lemma 2.14 describes the dynamics of the state covariance E[xtx
⊺
t ]. When

Σz = 0 and Σw = 0, it is the augmented matrix L only that governs the evolution and thus

convergence of E[xtx
⊺
t ]. From this, we can see why the spectral radii ρ(A) and ρ(L) would

determine the mean-square stability in Lemma 2.12.

From the definition of mean-square stability in Definition 2.8, we know mean-square

stability implies that E[xt] and E[xtx
⊺
t ] both converges; and from Lemma 2.14, we can

speculate their asymptotic convergence rates would be
√

ρ(L) (or
√

ρ(A)) and ρ(L) (or

ρ(A)). On the other hand, their non-asymptotic convergence behaviors are of interest to

finite-time or finite-sample analysis. This is studied in the next lemma.
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Lemma 2.15 (State and Covariance Bounds for MJS). Consider the setup in Lemma 2.14.

Assume the controller K1:s stabilizes Σ. For any ρ ∈ [ρ(L, 1), let τ := τ(L, ρ) denote the

power supremum of L normalized by ρ as in Definition 2.1. Let σ̄ :=
√
∥B1:s∥2∥Σz∥+ ∥Σw∥.

For E[∥xt∥2] and ∥Σt∥F, we have

E[∥xt∥2] ≤
√
nsτρtE[∥x0∥2] +

n
√
sτ σ̄2

1− ρ
, (2.19)

∥Σt∥F ≤
√
sτρtE[∥x0∥2] +

√
nsτσ̄2

1− ρ
. (2.20)

Proof. First we derive the upper bound for E[∥xt∥2]. The upper bound for ∥Σt∥F follows

similarly. For state xt, we have

E[∥xt∥2] =
s∑

i=1

E[∥xt∥21{ωt=i}] =
s∑

i=1

tr (E[xtx
⊺
t1{ωt=i}]) =

s∑
i=1

tr(Σt,i)

=
s∑

i=1

n∑
j=1

λj(Σt,i) ≤
√
ns

√√√√ s∑
i=1

n∑
j=1

λ2
j(Σt,i)

≤
√
ns

√√√√ s∑
i=1

∥Σt,i∥2F.

From the definition of st in (2.13), we see ∥
√∑s

i=1 ∥Σt,i∥2F∥ = ∥st∥. This gives

E[∥xt∥2] ≤
√
ns∥st∥. (2.21)

Now, plugging in the expression for st in (2.14) of Lemma 2.14 yields

E[∥xt∥2] ≤
√
ns

(
∥Lt∥∥s0∥+

t∑
t′=1

∥Lt−t′∥∥Bt′vec(Σz)∥+
t∑

t′=1

∥Lt−t′∥∥Πt′vec(Σw)∥
)

≤
√
nsτ

(
ρt∥s0∥+

t∑
t′=1

ρt−t′∥Bt′vec(Σz)∥+
t∑

t′=1

ρt−t′∥Πt′vec(Σw)∥
)
, (2.22)

where the second line follows from ∥Lt∥ ≤ τρt in Lemma 2.2.

Now, we evaluate the terms ∥s0∥, ∥Bt′vec(Σz)∥, and ∥Πt′vec(Σw)∥ in (2.22) separately.

For ∥s0∥, following from ∥s0∥ =
√∑s

i=1 ∥Σ0,i∥2F, we have

∥s0∥ =

√√√√ s∑
i=1

πi(0)2∥E[x0x
⊺
0]∥2F ≤ ∥E[x0x

⊺
0]∥F ≤ E[∥x0x

⊺
0∥F] = E[∥x0∥2]. (2.23)
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Let [Bt′ ]i :=
∑s

j=1 πt−1(j)T(j, i)(Bj⊗Bj), i.e., the i-th block of Bt′ in (2.13). Then, following

from ∥Bt′vec(Σz)∥ =
√∑s

i=1 ∥[Bt′ ]ivec(Σz)∥2, we have

∥Bt′vec(Σz)∥ ≤
s∑

i=1

∥[Bt′ ]ivec(Σz)∥

=
s∑

i=1

∥
s∑

j=1

πt′−1(j)T(j, i)(Bj ⊗Bj)vec(Σz)∥

=
s∑

i=1

∥
s∑

j=1

πt′−1(j)T(j, i)(BjΣzB
⊺
j )∥F

≤ ∥B1:s∥2∥Σz∥ ·
s∑

i=1

∥
s∑

j=1

πt′−1(j)T(j, i)In∥F

= ∥B1:s∥2∥Σz∥ ·
s∑

i=1

∥πt′(i)In∥F

≤
√
n∥B1:s∥2∥Σz∥.

(2.24)

Lastly, we have

∥Π̃t′vec(Σw)∥ =

√√√√ s∑
i=1

∥πt′(i)vec(Σw)∥2 ≤ ∥vec(Σw)∥ = ∥Σw∥F =
√
n∥Σw∥. (2.25)

Plugging (2.23)–(2.25) into (2.22), we obtain

E[∥xt∥2] ≤
√
nsτ

(
ρtE[∥x0∥2] +

√
n∥B1:s∥2∥Σz∥

t∑
t′=1

ρt−t′ +
√
n∥Σw∥

t∑
t′=1

ρt−t′
)
,

≤
√
ns · τρt · E[∥x0∥2] + n

√
s(∥B1:s∥2∥Σz∥+ ∥Σw∥)

τ

1− ρ
,

(2.26)

which gives the bound for E[∥xt∥2] in (2.19).

To obtain the bound for ∥Σt∥F in (2.20), first notice that ∥Σt∥F = ∥
∑s

i=1 Σt,i∥F ≤√
s
√∑s

i=1 ∥Σt,i∥2F ≤
√
s∥st∥, then we can use similar steps to prove the claim.

2.3.1.2 Uniform Stability

As a stability notion in the weak sense, mean-square stability does not prevent certain mode

switching sequence from yielding explosive state realizations. There is a stronger type of

stability, namely uniform stability (Liberzon, 2003; Lee and Dullerud, 2006) that guarantees

the state convergence under an arbitrary switching sequence.
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Definition 2.16 (Uniform Stability). We say the MJS Σ in (2.6) is uniformly stable if the

joint spectral radius ξ(A1:s) < 1.

By definition of the spectral radius and the sub-multiplicative property of matrix norms,

it is easy to see a sufficient condition for uniform stability is ∥Ai∥ < 1 for all i. To quantify

the convergence rate of a uniformly stable MJS, similar to the normalized power supremum

in Definition 2.1, we define the following.

Definition 2.17 (Normalized Joint Power Supremum). Consider a sequence of matrices

A1:s ∈ Rnxn
s . Given a free parameter ξ such that ξ ≥ ξ(A1:s), define

κ(A1:s, ξ) := sup
k∈N

max
ω1:k∈[s]k

∥Aω1 · · ·Aωk
∥/ξk. (2.27)

We call κ(A1:s, ξ) the joint power supremum of matrices A1:s normalized by ξ.

By definition of the joint spectral radius, we see κ(A1:s, ξ) is finite for any ξ > ξ(A1:s).

Note that the pair {ξ, κ(A1:s, ξ)} for a sequence of matrices A1:s is just the counterpart of

{ρ, τ(A, ρ)} defined for a single matrix A. Similar to Lemma 2.2, we have the following

properties.

Lemma 2.18 (Properties of the Normalized Joint Power Supremum). For the pair {ξ, κ(A1:s, ξ)}
in Definition 2.1, we have the following.

(a) κ(A1:s, ξ) ≥ 1.

(b) For all k ∈ N and all ω1:k ∈ [s]k, ∥Aω1 · · ·Aωk
∥ ≤ κ(A1:s, ξ)ξ

k.

(c) If ξ(A1:s) < 1 and ξ ∈ [ξ(A1:s), 1),
∑∞

k=0 maxω1:k∈[s]k ∥Aω1 · · ·Aωk
∥ ≤ κ(A1:s,ξ)

1−ξ
.

2.3.2 Linear Quadratic Regulator

In this dissertation, the control problem we mainly consider for MJS is the linear quadratic

regulator (LQR) problem. Given positive semi-definite cost matrices Q1:s ∈ Sn
s,+ and R1:s ∈

Sp
s,+, we define the following cost function with respect to the tuple {xt,ut, ωt} from the MJS

Σ in (2.6).

JT = E

[
T−1∑
t=0

(
x
⊺
tQωtxt + u

⊺
tRωtut

)
+ x

⊺
TQωtxT

]
. (2.28)

Matrices Qωt and Rωt are mode-dependent cost matrices chosen by users. The expectation

is taken over the randomness of the initial state x0, noise {wt}t∈N and Markovian modes

{ωt}t∈N. The quadratic cost x⊺
tQωtxt usually represents the deviation of states, e.g. velocity,
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position, angle, from the target value, whereas u⊺
tRωtut represents the control effort, e.g.

battery/fuel consumption. Unlike classical LQR for LTI systems, where cost matrices are

usually fixed throughout the time horizon, the mode-dependent cost matrices in MJS-LQR

allows us to have different control goals under different modes. The goal is to design the

input ut such that the cost function is minimized.

min
u0:T−1

JT

s.t. xt, ωt ∼ Σ

xt, ωt observed at time t.

(2.29)

The constraint “xt, ωt ∼ Σ” denote that {xt, ωt}Tt=0 is generated by the MJS Σ under the

input {ut}⊺t=0. This problem is known as the finite-horizon MJS-LQR problem. It has seen

many real world applications, including networked control with random packet losses (Vargas

et al., 2010) or delays (Chan and Ozguner, 1995), single-link robot arm with time-varying

payloads and inertia (Palm and Driankov, 1998; Wu and Cai, 2006; Zhong et al., 2014),

optimal control for a solar thermal receiver (Costa et al., 2006), and public expenditure

policy-making (Costa et al., 2006).

To ease the discussion of its optimal solution, we define the following operators.

Definition 2.19 (Operators Related to MJS-LQR). Consider the MJS Σ = MJS(A1:s,B1:s,T)

and LQR cost matrices Q1:s and R1:s. For a sequence of positive semi-definite matrices

X1:s ∈ Sn
s,+, define the following operators: for all i ∈ [s]

φi(X1:s) :=
∑
j∈[s]

T(i, j)Xj, (2.30)

Ri(X1:s) := Qi +A
⊺
iφi(X1:s)Ai

−A
⊺
iφi(X1:s)

⊺
Bi

(
Ri +B

⊺
iφi(X1:s)Bi

)−1
B

⊺
iφi(X1:s)Ai, (2.31)

Ki(X1:s) := −
(
Ri +B

⊺
iφi(X1:s)Bi

)−1 (
B

⊺
iφi(X1:s)Ai

)
. (2.32)

Then, the optimal solution to the finite-horizon MJS-LQR problem (2.29) is given by the

following, which can be obtained by dynamic programming.

Lemma 2.20 (Optimal Solution to Finite-Horizon MJS-LQR (Costa et al., 2006, Theorem

4.2)). Consider the finite-horizon MJS-LQR problem (2.29) with MJS Σ = MJS(A1:s,B1:s,T)

and cost matrices Q1:s, R1:s. Its optimal solution is given by ut = K⋆
t,ωt

xt for all t where

{K⋆
t,1:s}T−1

t=0 is the optimal time-varying mode-dependent state-feedback controller computed
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as follows.

P⋆
T,i = Qi, ∀ i ∈ [s];

P⋆
t,i = Ri(P

⋆
t+1,1:s), ∀ t = 0, . . . , T − 1, ∀ i ∈ [s];

K⋆
t,i = Ki(P

⋆
t+1,1:s), ∀ t = 0, . . . , T − 1, ∀ i ∈ [s],

(2.33)

where the operators R1:s and K1:s are as in Definition 2.19.

Other than picking a finite horizon, one can also formulate the LQR problem using the

infinite horizon:

inf
u0,u1,...

lim sup
T→∞

1

T
JT

s.t. xt, ωt ∼ Σ,

xt, ωt observed at time t.

(2.34)

Here, the time-averaged cost is considered since it is possible that the cumulative cost

JT →∞ as T →∞ due to the presence of process noise wt. Let J
⋆ denote the optimal cost

in (2.34). Its optimal solution is related to the solution of the following Riccati equations.

Definition 2.21 (Coupled Discrete-Time Algebraic Riccati Equations (cDARE) for MJS-LQR).

Consider the MJS Σ = MJS(A1:s,B1:s,T) and LQR cost matrices Q1:s and R1:s. We call

the following set of equations the coupled discrete-time algebraic Riccati equations (cDARE)

X1 = R1(X1:s)

X2 = R2(X1:s)

...

Xs = Rs(X1:s)

(2.35)

with respect to positive semi-definite matrices X1:s ∈ Sn
+, where the operators R1:s are as in

Definition 2.19.

Throughout the dissertation, we use cDARE(A1:s,B1:s,T,Q1:s,R1:s) to parameterize the

cDARE with MJS(A1:s,B1:s,T) and cost matrices Q1:s,R1:s. In practice, cDARE can be

solved efficiently either with LMIs or via value iteration (Costa et al., 2006). The following

lemma discusses its solvability and the optimal solution to the infinite-horizon MJS-LQR

problem.

Lemma 2.22 (Optimal Solution to Infinite-Horizon MJS-LQR (Costa et al., 2006, Theorem

4.6 and Corollary A.21)). Consider the infinite-horizon MJS-LQR problem (2.34) and the

cDARE (2.35) with MJS Σ = MJS(A1:s,B1:s,T) and cost matrices Q1:s, R1:s. Assume that

(a) the cost matrices R1:s ≻ 0;

21



(b) for all i ∈ [s], the pair (Q
1
2
i ,Ai) is observable;

(c) the MJS Σ is stabilizable.

Then the cDARE has a unique solution P⋆
1:s in Sn

s,+, and the solution is positive definite,

i.e., P⋆
1:s ≻ 0. Consider the mode-dependent state-feedback controller K⋆

1:s such that

K⋆
i = Ki(P

⋆
1:s), ∀i ∈ [s], (2.36)

where the operators K1:s are as in Definition 2.19. Then K⋆
1:s stabilizes the MJS Σ. Assume

additionally that

(d) the Markov matrix T is ergodic.

Then, the optimal solution to the infinite-horizon MJS-LQR is given by ut = K⋆
ωt
xt for all

t. The resulting optimal cost is given by J⋆ = σ2
wtr(

∑
i∈[s] π(i)Pi) where π is the stationary

distribution of the Markov matrix T.

Throughout the dissertation, we use MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) to parameter-

ize an MJS-LQR problem with dynamics MJS(A1:s,B1:s,T) and cost matrices Q1:s,R1:s.

Whether it is finite-horizon (2.29) or infinite-horizon (2.34) will be explicitly mentioned.
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Chapter 3

System Identification

For an unknown system, using its data to obtain a mathematical model that characterizes

its dynamics is known as system identification. This typically involves applying estimation

techniques to find system parameters that best explain the given data. An accurate enough

model is fundamental to downstream tasks such as analyzing system properties and designing

controllers. In this chapter, we consider the system identification problem for MJSs. In

Section 3.1, we introduce the problem setup and related work. Our identification approach is

presented in Section 3.2, and its sample complexity guarantees are in Section 3.3. Section 3.5

provides experimental results that show the efficacy of our approach and support our theory.

3.1 Introduction and Related Work

Given an MJS, we study its identification problem with the following setup.

Problem P3.1 (System Identification for MJSs). Consider the MJS Σ = MJS(A1:s,B1:s,T)

in (2.6) with unknown state/input matrices A1:s,B1:s and Markov matrix T. The goal is to

design the input ut and then estimate A1:s,B1:s and T from a single trajectory of states,

inputs, and modes {xt,ut, ωt}Tt=0. Denoting the estimates by Â1:s, B̂1:s, and T̂, the second

goal is to analyze how the trajectory length T affects the estimation errors, i.e., ∥Âi −Ai∥,
∥B̂i −Bi∥, and ∥T̂−T∥∞.

In this problem, we want to estimate the unknown MJS dynamics from a single state-

input-mode trajectory. One has the flexibility to design the inputs so that the collected data

has nice statistical properties. Meanwhile, we seek to establish finite-sample analysis for the

estimation errors.

∗The contents of this chapter are published in Du et al. (2022c) and Sattar et al. (2021) and represent an
equal contribution from Zhe Du and Yahya Sattar. The proofs in this chapter are provided in Appendix A.
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3.1.1 Contribution

In this chapter, we look into Problem P3.1 and provide an algorithm in Section 3.2 to estimate

the MJS dynamics. In Section 3.3, we show that when the MJS is equipped with the mean-

square stability, the estimation error is guaranteed to have a rate of O((n+p) log(T )
√
s/T ),

where n and p are the state and input dimensions respectively, and the O(1/
√
T ) dependence

on the trajectory length T is optimal.

Our proof strategy introduces multiple innovations. To address Markovian mode switch-

ing, we introduce a mixing time argument to jointly track the approximate-dependence

across the states and the modes. This in turn helps ensure each mode has sufficient samples

and these samples are sufficiently informative. Secondly, due to the mean-square stability

which allows for unstable trajectory realizations (see Example 2.9), it becomes non-trivial

to determine whether the states have a light-tailed distribution (e.g., sub-Gaussian or sub-

exponential). To circumvent this, we develop intricate system identification arguments that

allow for heavy-tailed states. Such arguments can potentially benefit other problems involv-

ing heavy-tailed data.

3.1.2 Related Work

Learning dynamical models has a long history in the control community, with major the-

oretical results being either asymptotic (infinite sample) or non-asymptotic (finite sample)

but with strong assumptions on persistence of excitation (Ljung, 1999). The main obstacle

toward establishing non-asymptotic results using a single trajectory is the statistical depen-

dency between the data.

In terms of learning the non-switched LTI systems, there is a recent surge of interest

towards understanding the non-asymptotic performance from a single trajectory under mild

assumptions (Oymak and Ozay, 2021), using statistical tools like martingales (Sarkar and

Rakhlin, 2019; Simchowitz et al., 2018; Tsiamis and Pappas, 2019) or mixing time arguments

(Kuznetsov and Mohri, 2017; Mohri and Rostamizadeh, 2008). Recently, Jedra and Proutiere

(2020) provides precise rates for the finite-time identification of LTI systems using a single

trajectory.

The problem becomes harder for hybrid and switched systems where the initial focus was

on computational complexity as opposed to sample complexity of learning (Lauer and Bloch,

2018; Ozay et al., 2011). MJSs present unique statistical analysis challenges due to Markovian

jumps and the weak mean-square stability. Preliminary asymptotic consistency result is

established in Hespanhol and Aswani (2020) for the set-membership estimator. For stochastic

switched systems, a special case of MJSs where the modes switch in an independently and
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identically distributed manner, Lale et al. (2021) proposes a novel identification method

based on Lyapunov equations but without guarantees. Sarkar et al. (2019) is one of the

early works to provide finite-sample result for learning stochastic switched systems, but its

strong assumption on the system stability simplifies the statistical analysis and cannot be

generalized to the mean-square stability case.

3.2 Identification Approach

The proposed MJS identification procedure is given in Algorithm 1. We assume one has

access to an initial stabilizing controller K1:s to start the identification. This has been a

standard assumption in data-driven control (Abeille and Lazaric, 2018; Cohen et al., 2019;

Dean et al., 2018; Ibrahimi et al., 2012; Simchowitz and Foster, 2020) for LTI systems.

For MJSs, a thorough discussion on the validity of this assumption is provided later in

Section 3.4. Note that, if the open-loop MJS is already mean-square stable, then one can

simply set K1:s = 0 and carry out the rest of the MJS identification.

Algorithm 1: Identification of MJS

Input: A mean-square stabilizing controller K1:s; process and exploration noise
variances σ2

w and σ2
z; MJS trajectory {xt, zt, ωt}Tt=0 generated using input

ut = Kωtxt + zt with zt
i.i.d.∼ N (0, σ2

zIp); and data clipping thresholds cx, cz.
1 Estimate A1:s,B1:s: for all modes i ∈ [s] do

2 Si =
{
t
∣∣ ωt = i, ∥xt∥ ≤ cxσw

√
log(T ), ∥zt∥ ≤ czσz

}
// sub-sample data

3 Θ̂1,i, Θ̂2,i = argmin
Θ1,Θ2

∑
t∈Si
∥xt+1 −Θ1xt/σw −Θ2zt/σz∥2 // regress with data Si

4 B̂i = Θ̂2,i/σz, Âi = Θ̂1,i/σw − B̂iKi

5 Estimate T: T̂(i, j) =

∑T
t=1 1{ωt=j,ωt−1=i}∑T

t=1 1{ωt−1=i}
//empirical frequency of transitions

Output: Â1:s, B̂1:s, T̂

With the controller K1:s, the input to the MJS is given by ut = Kωtxt + zt, where

{zt}⊺t=0
i.i.d.∼ N (0, σ2

zIp) is known as the exploration noise. After collecting a length-T trajec-

tory {xt, zt, ωt}Tt=0, we sub-sample it and preserve data with bounded states xt and excita-

tions zt. By sub-sampling, the obtained samples will have manageable statistical properties,

which is a compromise made to establish the analysis under the mean-square stability. In

practice, one is free to use all the data without any sub-sampling.

After appropriate scaling, we regress over these samples to obtain the estimates Â1:s, B̂1:s.

Lastly, we use the empirical frequency of the mode sequence as the estimate T̂.
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3.3 Theory

The following theorem gives our main result on learning the dynamics of an unknown MJS

from finite samples obtained from a single trajectory. One can refer to Theorems A.6 and

A.22 in Appendix A for the detailed theorem statements and proofs. The result for estimating

T in (3.2) mainly comes as a corollary from the work Zhang and Wang (2019).

Theorem 3.1 (Identification of MJS). Assume the MJS Σ = MJS(A1:s,B1:s,T) to be

identified is stabilizable, and the Markov matrix T is ergodic. Let L denote the augmented

closed-loop state matrix of the MJS under the initial stabilizing controller K1:s as in (2.10).

For any ρ ∈ [ρ(L), 1), let τ := τ(L, ρ) denote the normalized power supremum of L as in

(2.1). Suppose we run Algorithm 1 with cx = O(
√
n), cz = O(

√
p), and the trajectory length

obeys T ≥ Ô
(√stMC log2(T )

πmin(1−ρ)
(n + p)

)
. Then, with probability at least 1 − δ, for all i ∈ [s], we

have

max{∥Âi −Ai∥, ∥B̂i −Bi∥} ≤ Ô
(

(σz + σw)

σz

(n+ p)τ log(T )

πmin(1− ρ)

√
s

T

)
, (3.1)

∥T̂−T∥∞ ≤ Ô
(

tMC

πmin

√
log(T )

T

)
. (3.2)

Corollary 3.2 (Identification with known B1:s). Consider the same setting of Theorem 3.1.

Additionally, suppose B1:s is known. Then, setting σz = 0 and solving only for the state

matrices leads to a stronger upper bound ∥Âi −Ai∥ ≤ Ô( (n+p)τ log(T )
πmin(1−ρ)

√
s
T
) for all i ∈ [s].

Proof Sketch. Our proof strategy addresses the key challenges introduced by MJS and mean-

square stability. We only emphasize the core technical challenges here. The idea is to think

of the set Si as a union of L subsets S
(ℓ)
i defined as follows:

S
(ℓ)
i := {ℓ+ kL

∣∣ ωℓ+kL = i, ∥xℓ+kL∥ ≤ cσw

√
n log(T ), ∥zℓ+kL∥ ≤ cσz

√
p}, (3.3)

where 0 ≤ ℓ ≤ L−1 is a fixed offset and k = 1, 2, . . . , ⌊T−L
L
⌋. The spacing of samples by L ≥ 1

in each subset S
(ℓ)
i aims to reduce the statistical dependence across the samples belonging

to that subset, to obtain weakly-dependent sub-trajectories. This weak dependence is due

to the Markovian mode switching sequence {ωt}t≥0 – unique to the MJS setting – and the

system’s memory (contributions from the past states). Thus L is primarily a function of

the mixing time (tMC) of the Markov chain and the spectral radius (ρ(L)) of the MJS. At a

high-level, by choosing sufficiently large L (e.g., O(log(T ))), we can upper/lower bound the

empirical covariance of the concatenated vector hℓk := [x⊺
ℓk
/σw z⊺ℓk/σz]

⊺ for all ℓk ∈ S
(ℓ)
i .

26



Unlike related works on system identification and regret analysis (Dean et al., 2018;

Lale et al., 2020a,b; Oymak and Ozay, 2021; Simchowitz et al., 2018), mean-square stability

does not lead to strong high-probability bounds, as one can only upper bound ∥xt∥ or xtx
⊺
t

in expectation. Therefore, in Algorithm 1, we sample only bounded state-excitation pairs

(xt, zt) on each mode i ∈ [s]. This boundedness enables us to control the covariance matrix

of hℓk , despite mean-square stability and potentially heavy-tailed states, via non-asymptotic

tool-sets (e.g., Vershynin (2012, Theorem 5.41)). When {zt}Tt=0
i.i.d.∼ N (0, σ2

zIp), it can be

easily shown that ∥zt∥ ≤ Ô(σz
√
p) for all 0 ≤ t ≤ T with high probability. We sample

bounded zt mainly for the simplicity of the analysis. The tightness of the upper bounds and

the empirical performance are not affected significantly by sub-sampling {zt}Tt=0 using the

threshold Ô(σz
√
p).

Heavy-tailed empirical covariance lower bound requires independence, and our sub-sampled

data are only “approximately independent” (coupled over modes and history). To make mat-

ters worse, the fact that we sub-sample only bounded states introduces further dependencies.

To resolve this, we introduce a novel strategy to construct (for the purpose of analysis) an

independent subset of processed states from this larger weakly-dependent set. The inde-

pendence is ensured by conditioning on the mode-sequence and truncating the contribution

of earlier states. We then use perturbation-based techniques (see e.g., Sattar and Oymak

(2022)) to deal with actual (non-truncated) states. The final ingredient is showing that,

for each mode i ∈ [s], with high probability, this carefully-crafted subset contains enough

samples to ensure a well-conditioned covariance (with excitation provided by zt and wt).

With this in place, after stitching together the estimation error from L sub-trajectories

{xℓk , zℓk , ωℓk}ℓk∈S(ℓ)
i

for 0 ≤ ℓ ≤ L− 1, least-squares will accurately estimate Ai and Bi from

{xt, zt, ωt}t∈Si
for all i ∈ [s].

Our system identification result achieves near-optimal (Ô(1/
√
T )) dependence on the

trajectory length T . However, the effective sample complexity of our system identification

algorithm is Ô(s(n+p)2 log2(T )/(π2
min(1−ρ)2)), that is, our sample complexity bound grows

quadratically in the state dimension n, which can potentially be improved to linear via

a more refined analysis of the state-covariance (see e.g., Dean et al. (2020); Simchowitz

et al. (2018) for standard LTI systems). It also grows with the inverse of the minimum

mode frequency as 1/π2
min. Note that, πmin dictates the trajectory fraction of the least-

frequent mode, thus, in the result 1/πmin multiplier is unavoidable. Moreover, our sample

complexity bound degrades as the Markov chain mixing time tMC or the spectral radius

ρ(L) of the augmented state matrix of the closed-loop MJS increase. This is because these

parameters control the rate of mixing of the underlying process and we are using mixing-

time arguments to derive our bounds. It is not desirable to have a sample complexity bound
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which degrades as tMC or ρ(L) increase. In the case of standard LTI systems, it is well

known that this behavior is qualitatively incorrect (Simchowitz et al., 2018). Interestingly,

the more unstable LTI systems are easier to estimate. However, a fundamental limitation of

mixing-time arguments is that the bounds deteriorate when the underlying process is slower

to mix (Foster et al., 2020; Boffi et al., 2021; Ziemann et al., 2022; Sattar and Oymak, 2022).

In Corollary 3.2, we show that, when B1:s is assumed to be known, A1:s can be estimated

regardless of the exploration strength σz. This is because the excitation for the state matrix

arises from noisewt. As we will see in Chapter 5, the distinct σz dependencies in Theorem 3.1

and Corollary 3.2 will lead to different regret bounds for MJS-LQR (albeit both bounds will

be optimal up to polylog(T )).

3.4 Discussion

Having access to an initial stabilizing controller has become a very common assumption

in system identification (see for instance Lee and Lamperski (2020) and references therein)

and adaptive control (Abeille and Lazaric, 2018; Cohen et al., 2019; Dean et al., 2018;

Ibrahimi et al., 2012; Simchowitz and Foster, 2020) for LTI systems. On the other hand, for

works where no initial stabilizing controller is required, there is usually a separate warm-

up phase at the beginning, where coarse dynamics is learned, upon which a stabilizing

controller is computed. Recent non-asymptotic system identification results (Faradonbeh

et al., 2018a; Sarkar and Rakhlin, 2019) on potentially unstable LTI systems can be used to

obtain coarse dynamics without a stabilizing controller. One can use random linear feedback

to construct a confidence set of the dynamics such that any point in this set can produce a

stabilizing controller by solving Riccati equations (Faradonbeh et al., 2018b). In the model-

free setting, Lamperski (2020) provides asymptotic results and relies on persistent excitation

assumption. Chen and Hazan (2021) designs subtle scaled one-hot vector input and collects

the trajectory to estimate the dynamics, then a stabilizing controller can be solved via semi-

definite programming. For MJS or general switched systems, to the best of our knowledge,

there is no work on stabilizing unknown dynamics using single trajectory with guarantees.

One challenge is the individual mode stability and overall mean-square stability does not

imply each other due to mode switching. However, as outlined below, we can approach this

problem leveraging what is recently done for the LTI case in the aforementioned literature

(modulo some additional assumptions).

Similar to the LTI case, suppose we could obtain some coarse dynamics estimate Â1:s, B̂1:s,

T̂, then we can solve for the optimal controller K̂1:s for the infinite-horizon MJS-LQR(Â1:s, B̂1:s,

T̂,Q1:s,R1:s) via coupled discrete-time algebraic Riccati equations. To investigate when K̂1:s
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can stabilize the MJS(A1:s,B1:s,T), the key is to obtain sample complexity guarantees for

this coarse dynamics, i.e. dependence of estimation error ∥Âi −Ai∥, ∥B̂i −B∥, and ∥T̂−T∥
on sample size. Fortunately Theorem 4.2 provides the required estimation accuracy under

which K̂1:s is guaranteed to be stabilizing. Thus, combining Theorem 4.2 with the estima-

tion error bounds (in terms of sample size), the required accuracy can be translated to the

required number of samples. Note that learning T is the same as learning a Markov chain,

thus using the mode transition pair frequencies in an arbitrary single MJS trajectory, we can

obtain an estimate T̂ as in Algorithm 1, and its sample complexity is given in Lemma A.6

in Appendix A. The more challenging part is the identification scheme and corresponding

sample complexity for Â1:s and B̂1:s. Here, we outline two potential schemes.

• Suppose we can generate N i.i.d. MJS rollout trajectories, each with length T (small

T , e.g. T = 1, is preferred to avoid potential unstable behavior and for the ease

of the implementation). We can obtain least squares estimates Â1:s, B̂1:s using only

{xT ,xT−1,uT−1, ωT−1} from each trajectory, which is similar to the scheme in Dean

et al. (2020) for LTI systems. Since only i.i.d. data is used in the computation, one

can easily obtain the sample complexity in terms of N .

• If each mode in the MJS can run in isolation (i.e. for any i ∈ [s], ωt = i for all t) so that

it acts as an LTI system, we can use recent advances on single-trajectory open-loop LTI

system identification (Faradonbeh et al., 2018a; Sarkar and Rakhlin, 2019) to obtain

coarse estimates together with sample complexity for Âi and B̂i for every mode i.

We also note that while finding an initial stabilizing controller is theoretically very in-

teresting and challenging, most results we know of are limited to simulated or numerical

examples (see for instance Lee and Lamperski (2020) and references therein). This is be-

cause, from a practical standpoint, an initial stabilizing controller is almost always required

in model-based approaches since running experiments with open-loop unstable plants can

be very dangerous as the state could explode quickly.

3.5 Experiments

We provide experiments to investigate the efficiency and verify the theory of the proposed

algorithms on synthetic datasets. Throughout, we show results from a synthetic experiment

where entries of the true system matrices (A1:s,B1:s) are generated randomly from a standard

normal distribution. We further scale each Ai to have ∥Ai∥ ≤ 0.5. Since this guarantees

the MJS itself is mean-square stable, as we discussed in Section 2.3.1.1, we set controller

K1:s = 0 in MJS identification Algorithm 1. The Markov matrix T ∈ Rs×s
∆ is sampled from
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a Dirichlet distribution Dir((s−1) ·Is+1), where Is denotes the identity matrix. We assume

that we have equal probability of starting in any initial mode.

Since for system identification, our main contribution is estimating A1:s and B1:s of

the MJS, we omit the plots for estimating T. Let Ψ̂i = [Âi, B̂i] and Ψi = [Ai,Bi]. We

use ∥Ψ̂ −Ψ∥/∥Ψ∥ := maxi∈[s] ∥Ψ̂i −Ψi∥/∥Ψi∥ to investigate the convergence behavior of

Algorithm 1. The clipping constants in this algorithm, cx, and cz are chosen based on their

lower bounds provided in Theorem 3.1. Fig. 3.1 provides the results that are averaged over

10 independent Monte Carlo runs.
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Figure 3.1: Performance of MJS identification algorithm. Influence of: (a) process noise σw, (b) exploration
noise σz, (c) state dimension n, and (d) number of modes s.

We first empirically evaluate the effect of the noise variances σw and σz. In particular,

we study how the estimation errors vary with (i) σw = 0.01, σz ∈ {0.01, 0.02, 0.1} and (ii)

σz = 0.01, σw ∈ {0.01, 0.02, 0.1}. The number of states, inputs, and modes are set to n = 5,

p = 3, and s = 5, respectively. Fig. 3.1 (a) and (b) demonstrate how the relative estimation

error ∥Ψ̂ −Ψ∥/∥Ψ∥ changes as T increases. Each curve on the plot represents a fixed σw

and σz. These empirical results are all consistent with the theoretical bound in (3.1). In

particular, the estimation errors degrade with increasing σw and decreasing σz, respectively.

Now, we fix σw = σz = 0.01 and investigate the identification performance with varying
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numbers of states, inputs, and modes. Fig. 3.1 (c) and (d) show how the estimation error

∥Ψ̂ − Ψ∥/∥Ψ∥ changes with (left) s = 5, n ∈ {5, 10, 20}, p = n − 2 and (right) n = 5,

p = n − 2, s ∈ {5, 10, 20}. As we can see, the performance is better with small n, p and s

which is consistent with (3.1).

3.6 Conclusion

This chapter considers the problem of learning an MJS from a single trajectory. An identifi-

cation method is proposed together with finite-sample guarantees. Numerical experimental

results demonstrate the performance of our method and support our theory. Our statisti-

cal analysis tackles data distribution with heavy-tail caused by the mean-square stability.

This allows us to provide high-probability non-asymptotic guarantees and may have further

implications on analyzing heavy-tailed data ariseing from other problems.
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Chapter 4

Certainty Equivalent Control

As in Chapter 3, the model of a real-world system is often obtained from learning from its

data, i.e. system identification. Since one can only have access to finitely many data, and

the data itself is noisy due to system process noise, there is usually an inevitable mismatch

between such obtained model and the ground truth one. Using such an approximate model

as a surrogate for the ground truth one to design control laws is known as certainty equivalent

control. Certainty equivalent control can have decent performance when the approximate

model is accurate enough. Perhaps, every model-based control in the real-world can be con-

sidered as certainty equivalent control since the exact model knowledge is never possible due

to, for example, rounding errors. On the other hand, when the approximate model is way off,

the resulting control law may destabilize thus endanger the ground truth system. Therefore,

it is of importance to understand when certainty equivalent control works, e.g., ensures sta-

bility, and how well it works, e.g., suboptimality. Analysis of this kind is sometimes referred

to as sensitivity or perturbation analysis.

Despite enormous studies on MJSs, theoretical understanding of MJS certainty equiv-

alent control is somewhat lacking. This chapter investigates the performance of certainty

equivalent control on MJS-LQR problems. Roughly speaking, suppose the mismatch level

of the approximate MJS is ϵ, then this chapter establishes perturbation results for (i) the

solution to the coupled Riccati equations and (ii) the cost in LQR problems, by providing

explicit perturbation bounds with orders O(ϵ) and O(ϵ2) respectively.
The outline is as follows: the certainty equivalent control scheme together with problems

of interest is presented in Section 4.2; Section 4.3 provides the main perturbation analysis;

numerical experimental results are in Section 4.4.

∗The contents of this chapter are published in Sattar et al. (2022) and represent an equal contribution
from Zhe Du and Yahya Sattar. The proofs in this chapter are provided in Appendix B.
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4.1 Introduction and Related Work

The LQR problems are both theoretically well understood and commonly used in practice

when the system dynamics are known. Its nice properties, e.g., admitting an elegant linear

state feedback solution, make it a popular benchmark problem in reinforcement learning

and adaptive control (Campi and Kumar, 1998; Abbasi-Yadkori and Szepesvári, 2011; Dean

et al., 2020; Mania et al., 2019; Simchowitz and Foster, 2020; Abeille and Lazaric, 2020; Lale

et al., 2020a).

A natural generalization of LTI systems are MJSs, which allow the dynamics of the

underlying system to switch between multiple linear systems according to an underlying

finite Markov chain. Similarly, a natural generalization of the LQR problem to MJS is to use

mode-dependent cost matrices, which enables different control goals under different modes.

While the optimal control for MJS-LQR is well understood when one has perfect knowledge of

the system dynamics (Chizeck et al., 1986; Costa et al., 2006), in practice we do not always

know the exact system dynamics and the transition matrix. For instance, one might use

system identification techniques to learn an approximate model for the system. Designing

optimal controllers for MJS-LQR with this approximate system dynamics and transition

matrix in place of the true ones leads to so-called certainty equivalent control which is used

extensively in practice. However, a theoretical understanding of the suboptimality of the CE

control for MJS-LQR is somewhat lacking. The main challenge here is the hybrid nature of

the problem that requires consideration of both the system dynamics uncertainty ϵ, and the

underlying Markov transition matrix uncertainty η.

The solution to the infinite-horizon MJS-LQR involves coupled algebraic Riccati equa-

tions. Our goal is to understand the sensitivity of the solution of these equations and the

corresponding optimal cost to perturbations in the system model. Toward this aim, we first

establish an explicit O(ϵ+ η) perturbation bound for the solution to coupled algebraic Ric-

cati equations that arise in the context of MJS-LQR. This in turn is used to establish an

explicit O((ϵ + η)2) suboptimality bound on the cost. Finally, numerical experiments are

provided to support our theoretical claims. Our proof strategy requires nontrivial advances

over those of Mania et al. (2019); Konstantinov et al. (1993). Specifically, the coupled nature

of these Riccati equations requires novel perturbation arguments, as they lack some of the

nice properties of the standard Riccati equations, like uniqueness of solution under certain

conditions or being amenable to matrix factorization based approaches.

Related Work: The performance analysis of certainty equivalent control for the classical

LQR problem for LTI systems relies on the perturbation/sensitivity analysis of the underly-

ing algebraic Riccati equations (ARE), i.e. how much the ARE solution changes when the
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parameters in the equation are perturbed. This problem is studied in many works (Kon-

stantinov et al., 2003b). Early results on ARE solution perturbation bound are presented

in Kenney and Hewer (1990) (continuous-time) and Konstantinov et al. (1993) (discrete-

time). Most literature, however, only discusses perturbed solutions within the vicinity of the

ground-truth solution. The uniqueness of such a perturbed solution is not discussed until

Sun (1998), which is further refined in Sun (2002) to provide explicit perturbation bounds

and generalization to complex equations. Tighter bounds are obtained (Zhou et al., 2009)

when the parameters have a special structure like sparsity.

Channelled by ARE perturbation results, the end-to-end certainty equivalent LQR con-

trol suboptimality bound in terms of the dynamics perturbation is established in Mania et al.

(2019). The field of certainty equivalent MJS-LQR control and the corresponding coupled

ARE (cARE) perturbation analysis, however, is not well studied. Two perturbation results

(Konstantinov et al., 2002, 2003a) for cARE only consider continuous-time cARE that arises

in robust control applications and they are not directly applicable in MJS-LQR setting. Our

work is also related to robust control for MJS (see, e.g., Shi et al. (1999); Costa et al. (2006)),

where the focus is to numerically compute a controller to achieve a guaranteed cost under a

given uncertainty bound. Whereas, we aim to characterize how the degradation in perfor-

mance depends on perturbations in different parameters when certainty equivalent control

is used. Therefore, our work contributes to the body of work in robust control and certainty

equivalent control of MJS from a different perspective, and also paves the way to use these

ideas in the context of learning-based adaptive control, which will be followed in Chapter 5.

4.2 Problem Formulation

In this chapter, we consider the certainty equivalent control for the infinite-horizon MJS-

LQR problem (2.34) with the ground truth MJS Σ = MJS(A1:s,B1:s,T) and cost matrices

Q1:s, R1:s. Following the notations in Lemma 2.22, let P⋆
1:s, K

⋆
1:s, J

⋆ respectively denote

the solution to the cDARE(A1:s,B1:s,T,Q1:s,R1:s), the optimal controller, and the optimal

LQR cost.

It is assumed that the model parameters, i.e., A1:s,B1:s,T, of the ground truth MJS Σ

is unknown, but some approximate parameters, Â1:s, B̂1:s, T̂, are accessible that satisfy

∥Âi −Ai∥ ≤ ϵ, ∥B̂i −Bi∥ ≤ ϵ, ∥T̂−T∥∞ ≤ η, ∀i ∈ [s]. (4.1)

In this chapter, we let Σ̂ := MJS(Â1:s, B̂1:s, T̂) denote the MJS parameterized by the ap-

proximate parameters.
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To perform certainty equivalent control, we solve for a controller using the approximate

MJS Σ̂ and then apply it to the ground truth MJS Σ. To ease the exposition, similar

to Section 2.3.2, we define the following perturbed operators. For a sequence of positive

semi-definite matrices X1:s ∈ Sn
s,+, for all i ∈ [s], define

φ̂i(X1:s) :=
∑
j∈[s]

T̂(i, j)Xj, (4.2)

R̂i(X1:s) := Qi + Â
⊺
i φ̂i(X1:s)Âi

− Â
⊺
i φ̂i(X1:s)

⊺
B̂i

(
Ri + B̂

⊺
i φ̂i(X1:s)B̂i

)−1

B̂
⊺
i φ̂i(X1:s)Âi, (4.3)

K̂i(X1:s) := −
(
Ri + B̂

⊺
i φ̂i(X1:s)B̂i

)−1 (
B̂

⊺
i φ̂i(X1:s)Âi

)
. (4.4)

We first solve for the following perturbed cDARE given by cDARE(Â1:s, B̂1:s, T̂,Q1:s,R1:s):

X1 = R̂1(X1:s)

X2 = R̂2(X1:s)

...

Xs = R̂s(X1:s)

(4.5)

with respect to positive semi-definite matrices X1:s ∈ Sn
s,+. Let P̂1:s ∈ Ss,n

+ denote the

solution. Then the certainty equivalent controller K̂1:s is given by

K̂i = K̂i(P̂1:s), ∀ i ∈ [s]. (4.6)

Lastly, we apply the input ût = K̂ωtxt to control the ground truth MJS Σ.

Let Ĵ denote the cost incurred by playing the certainty equivalent controller K̂1:s. In the

next section, we address the following questions.

(a) When is the perturbed cDARE in (4.5) guaranteed to have a unique positive semi-

definite solution P̂1:s?

(b) What is a tight upper bound on ∥P̂1:s −P⋆
1:s∥?

(c) When does K̂1:s stabilize the true MJS?

(d) How large is the suboptimality gap Ĵ − J⋆?
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4.3 Theory

In this chapter, the main assumption is as follows, which guarantees the existence of solution

to cDARE according to Lemma 2.22.

Assumption A4.1. The MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) problem satisfies the following.

(a) For all i ∈ [s], Qi ≻ 0 and Ri ≻ 0.

(b) The MJS Σ = MJS(A1:s,B1:s,T) is stabilizable.

Let L⋆
1:s denote the closed-loop state matrices under the optimal controller K⋆

1:s such that

L⋆
i := Ai + BiK

⋆
i . Similar to the augmented state matrix in (2.10), define the augmented

closed-loop state matrix L⋆ as

L⋆ :=


T(1, 1) · (L⋆

1 ⊗ L⋆
1) T(2, 1) · (L⋆

2 ⊗ L⋆
2) · · · T(s, 1) · (L⋆

s ⊗ L⋆
s)

T(1, 2) · (L⋆
1 ⊗ L⋆

1) T(2, 2) · (L⋆
2 ⊗ L⋆

2) · · · T(s, 2) · (L⋆
s ⊗ L⋆

s)
...

...
...

...

T(1, s) · (L⋆
1 ⊗ L⋆

1) T(2, s) · (L⋆
2 ⊗ L⋆

2) · · · T(s, s) · (L⋆
s ⊗ L⋆

s)

 . (4.7)

From Lemma 2.22, we know the closed-loop MJS is mean-square stable, thus ρ(L⋆) < 1

by Corollary 2.13. For any ρ ∈ [ρ(L⋆), 1), let τ := τ(L⋆, ρ) denote the normalized power

supremum of L⋆ as in Definition 2.1. Table 4.1 summarizes some notations that will be used

in the statements of the main results.

Table 4.1: Notations — MJS-LQR Certainty Equivalent Control

ξ min{∥B1:s∥-2+ ∥R−1
1:s∥−1

+ ∥L⋆
1:s∥-2+ , σ(P⋆

1:s)}
Cϵ 6∥A1:s∥2+∥B1:s∥+∥P⋆

1:s∥2+∥R−1
1:s∥+

Cu
ϵ 6C−1

ϵ ∥B1:s∥-2+ ∥P⋆
1:s∥−1

+ ∥R−1
1:s∥−1

+

Cη 2∥A1:s∥2+∥B1:s∥4+∥P⋆
1:s∥3+∥R−1

1:s∥2+
Cu

η 6C−1
η

Γ⋆ max{∥A1:s∥+, ∥B1:s∥+, ∥P⋆
1:s∥+, ∥K⋆

1:s∥+}
ϵ̄K

1−ρ
2
√
sτ(1+2∥L⋆

1:s∥)∥B1:s∥

In the following, we will show that despite being coupled, cDARE for MJS-LQR satisfies

nice local Lipschitz properties. To be more precise, we show that if the approximate MJS

is accurate enough, i.e., ϵ and η are sufficiently small, we can guarantee that, not only

the positive definite solution P̂1:s to the perturbed cDARE uniquely exists, but also P̂1:s is

guaranteed to be close to P⋆
1:s.
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Theorem 4.1. Suppose Assumption A4.1 holds and ϵ ≤ min
{

Cu
ϵ ξ(1−ρ)2

204nsτ2
, ∥B1:s∥

}
, η ≤

Cu
η ξ(1−ρ)2

48nsτ2
. Then, the perturbed cDARE in (4.5) is guaranteed to have a unique solution

P̂1:s in Sn
s,+ such that P̂i ≻ 0 for all i and

∥P̂1:s −P⋆
1:s∥ ≤

√
nsτ

1− ρ
(Cϵϵ+ Cηη). (4.8)

From the constants, we see we would have milder requirements on ϵ and η and a tighter

bound on ∥P̂1:s −P⋆
1:s∥ when (i) ∥A1:s∥, ∥B1:s∥, (ii) ∥L⋆

1:s∥, τ , and (iii) ∥R−1
1:s∥ are smaller.

These translate to the cases when (i) the true MJS is easier to stabilize; (ii) the closed-loop

MJS under the optimal controller is more stable; and (iii) the input dominates more in the

cost function. The role of τ in this theorem is closely related to the damping property in

ARE perturbation analysis (Kenney and Hewer, 1990). The coefficients for ϵ and η on the

RHS of (4.8) are also known as condition numbers in algebraic Riccati equation sensitivity

literature (Sun, 2002).

Note that the perturbation upper bound in Theorem 4.1, when setting s = 1 and η = 0,

is consistent with (Mania et al., 2019, Proposition 1) developed for the LTI case except

that we suffer an additional
√
n term. This is because, due to the coupled nature of P̂1:s

through cDARE, we proceed by first vectorizing and stacking cDARE into a single equa-

tion to evaluate [vec(P̂1)
⊺, · · · ,vec(P̂s)

⊺]⊺, then convert it back to P̂1:s through reshaping.

Certain norm equivalency arguments (Fact B.2) are needed to carry perturbation results

through these back-and-forth reshaping steps, which produces this additional
√
n. On the

other hand, these steps and thus the
√
n term are not needed for the LTI case, since only a

single Riccati equation is involved.

It is easy to extend this result to the cases when an approximate Q̂1:s with ∥Q̂1:s −Q1:s∥ ≤
ϵ is used in place of Q1:s in the computations, which can be useful when the cost includes

a term of the form ∥yt∥2 where yt = Cωtxt represents the output, and we only have an

approximate parameter Ĉ1:s. In this case, Qi = C⊺
iCi and Q̂i = Ĉ⊺

i Ĉi.

In the next result, we leverage Theorem 4.1 to show how the controller K̂1:s computed

from a perturbed cDARE solution deviates from the optimal one, i.e., how ∥K̂1:s −K⋆
1:s∥

depends on ϵ and η, and when K̂1:s stabilizes the true MJS (such that Ĵ will be bounded).

Moreover, with the help of (Jansch-Porto et al., 2020, Lemma 3), which provides a relation

between suboptimality gap Ĵ−J⋆ and ∥K̂1:s −K⋆
1:s∥, we establish an upper bound for Ĵ−J⋆

in terms of ϵ and η.

Theorem 4.2. Suppose Assumption A4.1 holds, the Markov matrix T is ergodic, and ϵ, η

satisfy the bounds in Theorem 4.1 and Cϵϵ+Cηη ≤ (1−ρ)min{Γ⋆,σ(R1:s)2ϵ̄K}
28

√
nsτΓ3

⋆(σ(R1:s)+Γ3
⋆)

. Then, the certainty
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equivalent controller K̂1:s stabilizes the ground truth MJS Σ and

∥K⋆
1:s − K̂1:s∥ ≤ 28

√
nsτΓ3

⋆

(σ(R1:s) + Γ3
⋆)

(1− ρ)σ(R1:s)2
(Cϵϵ+ Cηη) (4.9)

Ĵ − J⋆ ≤ 1600n1.5s2.5min{n, p}τ 3Γ6
⋆

(∥R1:s∥+ Γ3
⋆)

3

(1− ρ)3σ(R1:s)4
(Cϵϵ+ Cηη)

2σ2
w. (4.10)

This result states that the suboptimality has quadratic dependency on the uncertainties

ϵ and η, and degrades when the MJS has larger number of modes s, system order n, or noise

variance σ2
w. Similar to the earlier discussion, Theorem 4.2 is also consistent with its LTI

counterpart (Mania et al., 2019, Theorem 1) except the n term.

Our suboptimality result has important implications in data-driven control for MJS.

Suppose the uncertainties ϵ and η in the system dynamics and the transition matrix are due

to estimation errors induced by a system identification procedure that uses T samples. Then,

if the estimation error decays as O(1/
√
T ) (which is typical for ϵ as in learning LTI systems

(Oymak and Ozay, 2021; Sarkar and Rakhlin, 2019) and for η in learning Markov chains

(Zhang and Wang, 2019)), Theorem 4.2 implies that the suboptimality decays as O(1/T ).
Thus, given a desired suboptimality level for the certainty equivalent controller, one can use

this relation to infer the required number of samples, which has been employed in Chapter 5

to establish regret analysis for adaptive control.

4.4 Experiments

In this section, we present some numerical results to support our proposed theory. We fix

n = 10 and p = 5. The true system matrices (A1:s,B1:s) were generated randomly from

the standard normal distribution. We scaled each Ai to have a spectral radius equal to 0.3

to obtain a mean square stable MJS. We set Qi = Q
i
Q⊤

i
,Ri = RiR

⊤
i , Âi = Ai + ϵAAi,

and B̂i = Bi + ϵBBi, where Qi
, Ri, Ai, and Bi were generated randomly from the standard

normal distribution; and ϵA and ϵB are some fixed scalars. Here we experimentally study the

influences of perturbation on A1:s and B1:s separately with ϵA and ϵB. Note that ϵ defined

in (4.1) is equal to max{ϵA, ϵB}. The true Markov transition matrix T was sampled from a

Dirichlet distribution Dir((s − 1) · Is + 1), and we let the approximate T̂ = T + E, where

the perturbation E = ηT(Dir((s− 1) · Is + 1))− T̂) for ηT ∈ [0, 1].

We study how the Riccati equation solution perturbation and suboptimality gap vary with

ϵA, ϵB, ηT ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.3} and the number of modes s ∈ {10, 20, 30, 40}. For
each choice of ϵA, ϵB, and ηT, we run 100 experiments and record the respective maximums

of ∆P := maxi ∥P̂i−P⋆
i ∥/∥P⋆

i ∥ and ∆J := (Ĵ −J⋆)/J⋆ over all 100 runs. In Figures 4.1 and
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Figure 4.1: Riccati solution perturbation. Left to right: ϵB = ηT = 0, ϵA = ηT = 0, ϵA = ϵB = 0, and
ϵ = ϵA = ϵB = ηT.

4.2, we have four plots showing ∆P and ∆J versus uncertainties (i) ϵA (ϵB = ηT = 0), (ii)

ϵB (ϵA = ηT = 0), (iii) ηT (ϵA = ϵB = 0), and (iv) ϵ = ϵA = ϵB = ηT.

Figure 4.1 presents four plots that demonstrate how ∆P changes as ϵA, ϵB, ηT, and ϵ

increase, respectively. Each curve on the plot represents a fixed number of modes s. These

empirical results are all consistent with (4.8). In particular, Figure 4.1 (right) shows that

given the uncertainty in the system matrices and in the Markov transition matrix is bounded

by ϵ, the perturbation bound to coupled Riccati equations has the rate O(ϵ) which degrades

linearly as ϵ increases. Further, it can be easily seen that the gaps indeed increase with

the number of modes in the system. Figure 4.2 demonstrates the relationship between the

relative suboptimality ∆J and the five parameters ϵA, ϵB, ηT, ϵ and s. As can be seen in

Figure 4.2 (right), given the uncertainty in the system matrices and in the Markov transition

matrix is bounded by ϵ, the perturbation bounds to the optimal cost decay quadratically

which is consistent with our theory.

4.5 Conclusion

In this chapter, we provide a perturbation analysis for cDARE, which arises in the solution

of MJS-LQR, and an end-to-end suboptimality guarantee for certainty equivalence control

for MJS-LQR. Our results show the robustness of the optimal policy to perturbations in

system dynamics and establish the validity of the certainty equivalent control in a neigh-

borhood of the original system. This chapter opens up multiple future directions. First,
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Figure 4.2: Suboptimality gap. Left to right: ϵB = ηT = 0, ϵA = ηT = 0, ϵA = ϵB = 0, and ϵ = ϵA = ϵB =
ηT.

with proper system identification algorithms, e.g., Chapter 3, we can analyze model-based

online/adaptive algorithms where control policy is updated continuously over a single trajec-

tory. Second, a natural extension would be to study MJS with output measurements where

states are only partially observed, i.e., the LQG setting. This will require considering the

dual coupled Riccati equations for filtering.
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Chapter 5

Adaptive Quadratic Control

Learning how to effectively control unknown dynamical systems from data is crucial for

intelligent autonomous systems. This task becomes a significant challenge when the under-

lying dynamics are changing with time. Motivated by this challenge, this chapter considers

solving the MJS-LQR problem with unknown MJS dynamics in an online way. By taking a

model-based perspective, we consider identification-based adaptive control for MJS.

We then propose an adaptive control scheme that incorporates the system identification

procedure in Chapter 3 together with the certainty equivalent control in Chapter 4 to adapt

the controllers in an episodic fashion. Combining our identification sample complexity results

with perturbation results for certainty equivalent control, we prove that when the episode

lengths are appropriately chosen, the proposed adaptive control scheme achieves O(
√
T )

regret.

This chapter is organized as follows: the problem formulation is in Section 5.2; the adap-

tive control scheme is proposed in Section 5.3 with performance guarantees in Section 5.4;

Section 5.5 presents experimental results that demonstrate the performance of our approach

and support our theory.

5.1 Introduction and Related Work

A canonical problem at the intersection of machine learning and control is that of adaptive

control of an unknown dynamical system. An intelligent autonomous system is likely to

encounter such a task; from an observation of the inputs and outputs, it needs to both learn

and effectively control the dynamics. A commonly used control paradigm is the LQR prob-

lem, which is theoretically well understood when system dynamics are linear and known.

LQR also provides an interesting benchmark, when system dynamics are unknown, for re-

inforcement learning (RL) with continuous state and action spaces and for adaptive control

∗The contents of this chapter are published in Du et al. (2022c) and Sattar et al. (2021). The proofs in
this chapter are provided in Appendix C.
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(Abbasi-Yadkori and Szepesvári, 2011; Abeille and Lazaric, 2020; Campi and Kumar, 1998;

Dean et al., 2020; Lale et al., 2020a; Mania et al., 2019).

While the MJS-LQR problem is also well understood when one has perfect knowledge of

the system dynamics (Chizeck et al., 1986; Costa et al., 2006), in practice, it is not always

possible to have a perfect knowledge of the system dynamics and the Markov transition

matrix. For instance, a Mars rover optimally exploring an unknown heterogeneous terrain,

optimal solar power generation on a cloudy day, or controlling investments in financial mar-

kets may be modeled as MJS-LQR problems with unknown system dynamics (Blackmore

et al., 2005; Cajueiro, 2002; Loparo and Abdel-Malek, 1990; Svensson and Williams, 2008;

Ugrinovskii and Pota, 2005).

Earlier works have aimed at analyzing the asymptotic properties (i.e., stability) of adap-

tive controllers for unknown MJSs both in continuous-time (Caines and Zhang, 1995) and

discrete-time (Xue and Guo, 2001) settings, however, despite the practical importance of

MJSs, non-asymptotic sample complexity results and regret analysis for MJSs are lacking.

In the case of stochastic jump systems, (which are the switched dynamical systems where the

switching of modes are i.i.d.), when the only unknown is the mode distribution, recent works

study data-driven stability verification (Gatsis and Pappas, 2021) and stabilization (Schu-

urmans et al., 2019) with non-asymptotic guarantees. However, it is difficult to generalize

these approaches to general MJSs as well as MJSs with unknown dynamics.

The high-level challenge here is the hybrid nature of the problem that requires consider-

ation of both the system dynamics and the underlying Markov transition matrix. A related

challenge is that, typically, the stability of MJS is understood only in the mean-square sense.

This is in stark contrast to the deterministic stability (e.g., as in LQR), where the system

is guaranteed to converge towards an equilibrium point in the absence of noise. In contrast,

the convergence of MJS trajectories towards an equilibrium depends heavily on how the

switching between modes occurs. As we have discussed in Example 2.9, an MJS that is

mean-square stable may still have an explosive trajectory realization under an unfavorable

mode switching sequence. High probability light-tail bounds are, therefore, not applicable

without very strong assumptions on the joint spectral radius of different modes (cf. Sarkar

et al. (2019)). Perhaps more surprisingly, there are examples of MJS with all modes individ-

ually stable, however due to switching, the system exhibits an unstable behavior on average,

and the MJS is not mean-square stable (see Example 3.17 of Costa et al. (2006)). There-

fore, finding controllers to individually stabilize the mode dynamics does not guarantee that

the overall system will be stable when mode switches over time. This more relaxed notion

of mean-square stability presents major challenges in learning, controlling, and statistical

analysis.
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5.1.1 Contribution

In this chapter, by incorporating the system identification method in Chapter 3, we propose

an adaptive control scheme to solve MJS-LQR problems with unknown MJS dynamics and

provide its performance guarantees in terms of regret analysis, while assuming only mean-

square stability. Specifically, our theoretical contributions are as follows1:

• O(
√
T )-regret bound: When the system dynamics are unknown, we show that the

certainty-equivalent adaptive MJS-LQR Algorithm (Algorithm 2) achieves a regret

bound of O(
√
T ). Remarkably, this coincides with the optimal regret bound for the

standard LQR problem obtained via certainty equivalence (Mania et al., 2019).

• O(polylog(T ))-regret with partial knowledge: We also consider the practically

relevant setting where the state matrices are unknown but the input matrices are

known. We show that the regret bound can be significantly improved toO(polylog(T )).
This bound also coincides with the poly-logarithmic regret bound for the standard LQR

with the knowledge of the input matrix B (Cassel et al., 2020).

5.1.2 Related Work

There are mainly two types of approaches for solving the optimal control problem with

unknown system dynamics: model-based and model-free ones. Model-based ones rely on

system identification to obtain an estimate of the system dynamics, based on which the

controllers are designed. Model-free ones solve for the controller directly from the data

without relying on model estimates. A comparison with the related works, in the LQR

setting, is provided in Table 5.1.

• Model-Based Approaches: For LTI systems, there have been a large body of

work on model-based adaptive control, and they have sophisticated control performance

guarantees from the regret perspective (Abbasi-Yadkori et al., 2019; Abbasi-Yadkori and

Szepesvári, 2011; Dean et al., 2020; Faradonbeh et al., 2020b; Hazan et al., 2020; Mania

et al., 2019). Specifically, Simchowitz and Foster (2020) achieves O(
√
T ) regret lower bound

for adaptive LQR control with unknown system dynamics, while Cassel et al. (2020) and

Lale et al. (2020b) achieve logarithmic regret upper bound, with partial knowledge of the

system and persistence of excitation assumption, respectively, as no additional exploration

noise is needed to guarantee learnability of the system. However, in the MJS setting, due to

the lack of well established identification analysis, prior works (Caines and Zhang, 1995; Xue

and Guo, 2001) are only able to provide guarantees from the stability aspect. The case of

1orders of magnitude here are up to poly-logarithmic factors
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input design without system state dynamics is considered in Baltaoglu et al. (2016), which

can be thought of as a generalization of linear bandits to have a Markovian structure in the

reward function without any continuous dynamic structure. However, only a regret lower

bound is provided in Baltaoglu et al. (2016). Finally, we refer the reader to the survey pa-

pers (Gaudio et al., 2019; Matni et al., 2019; Recht, 2019) for a broad overview of the recent

developments on non-asymptotic system identification, adaptive control and reinforcement

learning from the perspective of optimization and control.

•Model-Free Approaches: Somehow orthogonal to the above developments, but still

highly relevant, are approaches that sidestep system identification and try to learn an optimal

controller (policy) directly (among many others, see e.g., Fazel et al. (2018); Mohammadi

et al. (2020); Zhang et al. (2020); Zheng et al. (2021)). These works analyze the optimiza-

tion landscape of LQR and related optimal control problems and provide polynomial-time

algorithms that lead to a globally convergent search in the space of controllers. Importantly,

these optimization algorithms do not require the knowledge of the system parameters as

long as relevant quantities like gradients can be approximated from simulated system tra-

jectories. More recently, this line of work is extended to MJSs in Jansch-Porto et al. (2020),

significantly expanding their utility. However, these works require multiple trajectories to

estimate the gradients as opposed to a controller that adapts at run-time, therefore, they

provide a complementary perspective to the single trajectory adaptation and regret analysis

in our work.

Table 5.1: Comparison with prior works in the LQR setting.

Model Reference Regret Computational Cost Stabilizability/
Complexity Controllability

LTI

Abbasi-Yadkori and Szepesvári (2011)
√
T Exponential Strongly Convex Controllable

Ibrahimi et al. (2012)
√
T Exponential Convex Controllable

Abeille and Lazaric (2018) (one dim. systems)
√
T Polynomial Strongly Convex Stabilizable

Dean et al. (2018) T 2/3 Polynomial Convex Stabilizable

Mania et al. (2019)
√
T Polynomial Strongly Convex Controllable

Cohen et al. (2019)
√
T Polynomial Strongly Convex Strongly Stabilizable

Faradonbeh et al. (2020a); Simchowitz and Foster (2020)
√
T Polynomial Strongly Convex Stabilizable

Cassel et al. (2020) (known A or B) polylog(T ) Polynomial Strongly Convex Strongly Stabilizable

MJS
Ours s2

√
T Polynomial Strongly Convex Mean-square stabilizable

Ours (known B1:s) s2polylog(T ) Polynomial Strongly Convex Mean-square stabilizable

5.2 Problem Formulation

In this chapter, we consider the following adaptive control for finite-horizon MJS-LQR prob-

lems.

Problem P5.1 (Adaptive Control for MJS-LQR). Solve the finite-horizon MJS-LQR prob-

lem (2.29) with unknown MJS Σ = MJS(A1:s,B1:s,T) and known LQR cost matrices Q1:s
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and R1:s.

The solution to the above problem usually involves procedures of learning, either the

dynamics or directly the controllers. Adaptive control suffers additional costs as (i) the lack

of the exact knowledge of the system and (ii) the exploration-exploitation trade-off – the

necessity to sacrifice short-term input optimality to boost learning, so that overall long-term

optimality can be improved.

Because of this, to evaluate the performance of an adaptive scheme, one is interested in

the notion of regret – how much more cost it will incur if one could have applied the optimal

controllers? In our setting, we compare the resulting cost against the optimal cost T · J⋆

where J⋆ is the optimal infinite-horizon average cost in Lemma 2.22.

Compared to the regret analysis of adaptive LQR problem (Dean et al., 2018) for LTI

systems, the cost analysis here requires additional consideration of Markov chain mixing,

which is addressed in this chapter.

5.3 Approach

Our adaptive MJS-LQR control scheme is given in Algorithm 2. It is performed on an

epoch-by-epoch basis; a fixed controller is used for each epoch, and from epoch to epoch, the

controller is updated using the trajectory generated in the most recent epoch. Note that a

new epoch is just a continuation of previous epochs instead of restarting the MJS. Similar

to the discussion in Section 3.2, we assume, at the beginning of epoch 0, that one has access

to a stabilizing controller K
(0)
1:s. During epoch q, the controller K

(q)
1:s is used together with

additive exploration noise z
(q)
t

i.i.d.∼ N (0, σ2
z,qIp) to boost learning. At the end of epoch q, the

trajectory during that epoch is used to obtain a new MJS dynamics estimate A
(q)
1:s,B

(q)
1:s,T

(q)

using the MJS identification Algorithm 1. Then, we set the controller K
(q+1)
1:s for epoch q+1

to be the optimal controller for the infinite-horizon MJS-LQR(A
(q)
1:s,B

(q)
1:s,T

(q),Q1:s,R1:s),

which can be computed as in Lemma 2.22. Note that cDARE may not be solvable for

arbitrary MJS models or cost matrices, but our theory guarantees that when epoch lengths

are appropriately chosen, cDARE parameterized by A
(q)
1:s,B

(q)
1:s,T

(q),Q1:s,R1:s is solvable for

every epoch q. This control design based on the estimated dynamics is also referred to as

certainty equivalent control.

To achieve theoretically guaranteed performance, i.e., sublinear regret, the key is to have

a subtle scheduling of epoch lengths Tq and exploration noise variance σ2
z,q. We choose Tq to

increase exponentially with rate γ > 1, and set σ2
z,q = σ2

w/
√

Tq, which collectively guaran-

tee Ô(
√
T ) regret when combined with the system identification result from Theorem 3.1.

Intuitively, this scheduling can be interpreted as follows: (i) the increase of epoch lengths

45



Algorithm 2: Adaptive MJS-LQR

Input: Initial epoch length T0; initial stabilizing controller K
(0)
1:s; epoch incremental

ratio γ > 1; and data clipping thresholds cx, cz
1 for q = 0, 1, 2, . . . do
2 Set epoch length Tq = ⌊T0γ

q⌋.
3 Set exploration noise variance σ2

z,q =
σ2
w√
Tq
.

4 Evolve the MJS for Tq steps with u
(q)
t = K

(q)

ω(q)(t)
x
(q)
t + z

(q)
t with

z
(q)
t

i.i.d.∼ N (0, σ2
z,qIp) and record the trajectory {x(q)

t , z
(q)
t , ω(q)(t)}Tq

t=0.

5 A
(q)
1:s,B

(q)
1:s,T

(q) =

MJS Identification Algorithm 1(K
(q)
1:s, σ

2
w, σ

2
z,q, {x

(q)
t , z

(q)
t , ω(q)(t)}Tq

t=0, cx, cz).

6 Set the controller K
(q+1)
1:s for the next epoch to be the optimal controller for the

infinite-horizon MJS-LQR(A
(q)
1:s,B

(q)
1:s,T

(q),Q1:s,R1:s).
7 end

guarantees we have more accurate MJS estimates thus more optimal controllers; (ii) as the

controller becomes more optimal we can gradually decrease the exploration noise and deploy

(exploit) the controller for a longer time. Note that the scheduling rate γ has a similar role

to the discount factor in reinforcement learning: smaller γ aims to reduce short-term cost

while larger γ aims to reduce long-term cost.

5.4 Theory

In this chapter, the main assumption is as follows, which guarantees the existence of optimal

solution to the MJS-LQR problem according to Lemma 2.22.

Assumption A5.1. The MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) problem satisfies the following.

(a) For all i ∈ [s], Qi ≻ 0 and Ri ≻ 0;

(b) The MJS Σ = MJS(A1:s,B1:s,T) is stabilizable.

(c) The Markov matrix T is ergodic.

We define filtration F−1,F0,F1, . . . such that F−1 := σ(x0, ω0) is the sigma-algebra

generated by the initial state and initial mode, and Fq := σ(x0, ω0, {{ω(j)(t)}Tj

t=1}
q
j=0,w0,

{{w(j)
t }

Tj

t=1}
q
j=0, z0, {{z

(j)
t }

Tj

t=1}
q
j=0) is the sigma-algebra generated by the randomness up to

epoch q. Note that the initial state x
(q)
0 of epoch q is also the final state x

(q−1)
Tq−1

of epoch q−1,
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therefore, x
(q)
0 is Fq−1-measurable, and so is ω(q)(0). Suppose time step t belongs to epoch

q, then we define the following conditional expected cost at time t as,

ct = E[x⊺
tQωtxt + u

⊺
tRωtut | Fq−1]. (5.1)

The cost for epoch q is defined as J(q) :=
∑

t ∈ epoch q ct, and the cumulative cost is defined

as JT :=
∑

q J(q). We define the total regret and epoch-q regret as,

Regret(T ) := JT − TJ⋆, Regret(q) := J(q) − TqJ
⋆. (5.2)

Then, we have, Regret(T ) = O(
∑O(logγ(T/T0))

q=1 Regret(q)), where regret of epoch 0 is ignored

as it does not scale with time T . In the definition of the regret, we evaluate the expected

cost conditioning on the randomness up to the previous epoch. This is the middle ground

between the expected cost E[
∑

t x
⊺
tQωtxt + u⊺

tRωtut] (Cassel et al., 2020) and random cost∑
t x

⊺
tQωtxt + u⊺

tRωtut (Lale et al., 2020b) typically considered in previous online learning

works. We show in the next subsection that under certain stronger stability of the MJS,

regret based on the random cost can also be bounded.

Let K⋆
1:s denote the optimal controller for the infinite-horizon MJS-LQR(A1:s,B1:s,T,

Q1:s,R1:s) problem. L(0) and L⋆ denote the augmented closed-loop state matrices (2.10)

under the initial controller K
(0)
1:s and the optimal controller K⋆

1:s respectively. For a free

parameter ρ̄ ∈ [max{ρ(L(0)), ρ(L⋆)}, 1), let τ̄ := max{τ(L(0), ρ̄), τ(L⋆, ρ̄)}, where τ(·, ·) is

the normalized power supremum in Definition 2.1. With these definitions, we have the

following sublinear regret guarantee. Please refer to Theorem C.11 in Appendix C for the

complete version and proof.

Theorem 5.1 (sublinear regret). Assume that the initial state x0 = 0, and Assumption A5.1

holds. In Algorithm 2, suppose hyper-parameters cx = O(
√
n), cz = O(√p), and T0 ≥

Ô
(√

stMC log2(T0)
πmin(1−ρ̄)

(n+ p)
)
. Then, with probability at least 1− δ, Algorithm 2 achieves

Regret(T ) ≤ Ô
(
s2p(n2 + p2)τ̄ 2σ2

w

π2
min(1− ρ̄)2

log2(T )
√
T

)
+O

(√
ns log3(T )

δ

)
. (5.3)

Proof Sketch. For simplicity, we only show the dominant Ô(·) term here and leave the com-

plete proof to appendix. Define the estimation error after epoch q as

ϵ
(q)
A,B := max

j∈[s]
max{∥A(q)

j −Aj∥, ∥B(q)
j −Bj∥}, ϵ

(q)
T := ∥T(q) −T∥∞.
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Using Theorem 4.2, we can bound epoch-q regret as

Regret(q) ≤ O
(
Tqσ

2
z,q + Tqσ

2
w

(
ϵ
(q−1)
A,B + ϵ

(q−1)
T

)2)
. (5.4)

Plugging in the exploration noise variance σ2
z,q =

σ2
w√
Tq
, the upper bounds on the estimation

errors ϵ
(q)
A,B ≤ Ô

(
σz,q+σw

σz,qπmin

√
s(n+p)τ̄ log(Tq)

(1−ρ̄)
√

Tq

)
and ϵ

(q)
T ≤ Ô

(√
log(Tq)

Tq

)
from Theorem 3.1, we have

Regret(q) ≤ Ô
(

s2p(n2+p2)τ̄2σ2
w

π2
min(1−ρ̄)2

γ
√
Tq log

2(Tq)
)
. Finally, since Tq = O(T0γ

q) from Algorithm 2,

we have

Regret(T ) =

O(logγ(
T
T0

))∑
q=1

Regret(q),

≤ Ô

(
s2p(n2 + p2)τ̄ 2σ2

w

π2
min(1− ρ̄)2

√
T log(

T

T0

)

( √
γ

√
γ − 1

)3(
γ log(

T

T0

)−√γ log(γ)
))

,

≤ Ô
(
s2p(n2 + p2)τ̄ 2σ2

w

π2
min(1− ρ̄)2

polylog(T )
√
T

)
. (5.5)

Note that the state dimension n, the input dimension p, number of modes s, and spec-

tral radius ρ̄ affect the regret bound in Theorem 5.1 and the identification error bound

in Theorem 3.1 in a similar way. The factor that exclusively affects the regret bound is

the epoch incremental ratio γ. One can see the interplay between T and γ from the term( √
γ

√
γ−1

)3 (
γ log( T

T0
)−√γ log(γ)

)
in the proof sketch. Specifically, when horizon T is smaller,

a smaller γ minimizes the upper bound, and vice versa. This further provides a mathemati-

cal justification for γ being similar to the discount factor in reinforcement learning in early

discussions. In our regret upper bound, there is a heavy-tailed probability term 1/δ. In the

next subsection, we discuss how this term is unavoidable under mean-square stability, but

can be improved to sub-exponential tail term log(1/δ) when stronger stability exists.

5.4.1 Two Special Cases

5.4.1.1 Regret under uniform stability

Note that the second term in the regret upper bound (5.3) in Theorem 5.1 depends on the

failure probability δ through 1/δ. Though this term has a much milder dependency on the

time horizon T , when setting δ to be small, it can still easily outweigh the Ô(·) term in
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(5.3), which only has sub-exponential tail log(1/δ) dependency, and can result in overly

pessimistic regret bounds. The main cause of this 1/δ term is that, in the regret analysis,

one needs to factor in the cumulative impact of initial state of every epoch, i.e.
∑

q ∥x
(q)
0 ∥2.

Since mean-square stability guarantees the stability and state convergence only in the mean-

square sense, we can, at best, only bound E[∥x(q)
0 ∥2] and then use the Markov inequality:

with probability at least 1− δ, ∥x(q)
0 ∥2 ≤ E[∥x(q)

0 ∥2]/δ. Furthermore, in Appendix C.5.1, we

construct an MJS example that is mean-square stable, but dependency no better than 1/δ is

possible. Fortunately, there exists an easy workaround to get rid of this 1/δ dependency if the

MJS is uniformly stable (Definition 2.16), which enforces stability under arbitrary switching

sequences, thus is stronger than mean-square stability. It allows us to bound x
(q)
0 using tail

inequalities much tighter than the Markov inequality and obtain ∥x(q)
0 ∥2 ≤ O(log(1/δ)) with

probability at least 1 − δ. As a result, the 1/δ dependency in the regret bound can be

improved to log(1/δ).

One type of uniform stability assumption that can help us in this case is related to the

closed-loop MJS under the optimal controllers. We let K⋆
1:s denote the optimal controller for

the infinite-horizon MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) and define closed-loop state matrices

L⋆
i = Ai + BiK

⋆
i for all i ∈ [s]. We let θ⋆ denote the joint spectral radius of L⋆

1:s, i.e.

θ⋆ := liml→∞maxω1:l∈[s]l ∥L⋆
ω1
· · ·L⋆

ωl
∥ 1

l , and we say L⋆
1:s is uniformly stable if and only if

θ⋆ < 1. Let θ̄ := 1+θ⋆

2
. The resulting regret bound is outlined in the following theorem, with

its complete version and proof provided in Theorem C.12 of Appendix C.5.1.

Theorem 5.2 (Regret under uniform stability). Assume that the initial state x0 = 0, As-

sumption A5.1 holds, and L⋆
1:s is uniformly stable. If hyper-parameters T0, cx, and cz are

chosen as sufficiently large, with probability at least 1− δ, Algorithm 2 achieves

Regret(T ) ≤ Ô
(
s2p(n2 + p2)τ̄ 2σ2

w

π2
min(1− ρ̄)2

log2(T )
√
T

)
. (5.6)

Another benefit of assuming uniform stability is that we can establish a sublinear bound

for the regret defined using the random cost. Denote the random cost at time t as c◦t , the

random cost for epoch q as J◦
(q), and random regret as Regret◦(T ), defined as follows:

c◦t := x
⊺
tQωtxt + u

⊺
tRωtut, J◦

(q) :=
∑

t ∈ epoch q

c◦t , Regret◦(T ) :=
∑
q

J◦
(q) − TJ⋆. (5.7)

Since we already have an upper bound for the Regret(T ) =
∑

q J(q) − TJ⋆ in Theorem 5.2,

it suffices to upper bound
∑

q J
◦
(q) − J(q) to establish an upper bound for the Regret◦(T ). In

each summand J◦
(q) − J(q), we see J(q) = E[J◦

(q) | Fq−1] where Fq−1 affects the expectation

only through the initial state x
(q)
0 , initial mode ω(q)(0), and the controller K

(q)
1:s. Thus,
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the summand J◦
(q) − J(q) measures the deviation of the epoch’s random cost J◦

(q) from its

conditional expectation with given initial conditions and controllers. Under the uniform

stability assumption, we can show that J◦
(q) is sub-exponential, which allows us to obtain

J◦
(q)−J(q) ≤ O(

√
Tq log(1/δ)) and Regret◦(T ) ≤ O(

√
T log(1/δ)). On the other hand, in the

case of mean-square stability, for similar reasons we discussed above, J◦
(q) can be heavy-tailed,

and the dependency on δ can at best be 1/δ. The formal result is provided below and the

proof is provided in Appendix C.5.2

Theorem 5.3 (Random regret under uniform stability). Under the same setup of Theo-

rem 5.2, with probability at least 1− δ, Algorithm 2 achieves

Regret◦(T ) ≤ Ô
(
s2p(n2 + p2)τ̄ 2σ2

w

π2
min(1− ρ̄)2

log2(T )
√
T +

(np)1.5

(1− θ̄)2
σ2
w

√
T

)
. (5.8)

5.4.1.2 Partial knowledge of dynamics

In practice, the input matrices B1:s correspond to the actuators. One may have their knowl-

edge either from the manufacturers or through various estimation techniques designed for

non-dynamical models. From Corollary 3.2, we know that when B1:s is known, no further

exploration noise is needed to identify the state matrices A1:s or Markov transition matrix

T. This can also be applied to the adaptive MJS-LQR setting, and the resulting regret

bound can improve (from Ô(log2(T )
√
T ) to Ô(log3(T ))), since exploration noise incurs ad-

ditional costs. The result is given in the following corollary, and we omit the proof due to

its similarity to the proofs of Theorems 5.1 and 5.2.

Corollary 5.4 (Poly-logarithmic regret). When B1:s is known, it suffices to set the explo-

ration noise to be σz,q = 0 for all q in Algorithm 2. Then, the regret bound in Theorem 5.1

becomes, Regret(T ) ≤ Ô
(

s2p(n2+p2)τ̄2σ2
w

π2
min(1−ρ̄)2

log3(T )
)
+ O

(√
ns log3(T )

δ

)
. Additionally, the regret

bound in Theorem 5.2 becomes, Regret(T ) ≤ Ô
(

s2p(n2+p2)τ̄2σ2
w

π2
min(1−ρ̄)2

log3(T )
)
.

As for the other special case when A1:s is known but B1:s is unknown, the exploration

noise is still needed. One can analyze it as a special case of the general case when neither

of them is known. For LTI systems, under certain strong assumptions, e.g. controller non-

degeneracy, it is shown that poly-logarithmic regret is attainable for this case (Cassel et al.,

2020). We speculate similar assumptions can lead to poly-logarithmic regret for MJS as well

and leave this to the future work.
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Figure 5.1: Performance of adaptive MJS-LQR. Influence of: (a) process noise σw, (b) number of modes s,
(c) state dimension n.

5.5 Experiments

We provide experiments to investigate the efficiency and verify the theory of the proposed

algorithms on synthetic datasets. Throughout, we show results from a synthetic experiment

where entries of the true system matrices A1:s,B1:s are generated randomly from a standard

normal distribution. We further scale each Ai to have ∥Ai∥ ≤ 0.5. Since this guarantees

the MJS itself is mean-square stable, as we discussed in Section 2.3.1.1, we set the initial

stabilizing controller K
(0)
1:s = 0 in adaptive MJS-LQR Algorithm 2. For the cost matrices

(Q1:s,R1:s), we set Qi = Q
i
Q

⊺

i
, and Ri = RiR

⊺
i where Q

i
∈ Rn×n and Ri ∈ Rp×p are

generated from a standard normal distribution. The Markov matrix T ∈ Rs×s
∆ is sampled

from a Dirichlet distribution Dir((s− 1) · Is + 1), where Is denotes the identity matrix. We

assume that we have equal probability of starting in any initial mode. The depicted results

are averaged over 10 independent Monte Carlo runs. In our experiments, we explore the

sensitivity of the regret bounds to the system parameters. We set the initial epoch length

T0 = 2000 and incremental ratio γ = 2. We select five epochs to run Algorithm 2. As

an intermediate step for computing controller K
(q+1)
1:s in Algorithm 2, the coupled Riccati
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equations (2.35) are solved via value iteration, and the iteration stops when the parameter

variation between two iterations falls below 10−6, or iteration number reaches 104.

Fig. 5.1 demonstrates how regret bounds vary with (a) σw ∈ {0.001, 0.002, 0.01, 0.02},
n = 10, p = s = 5; (b) σw = 0.01, n = 10, p = 5, s ∈ {4, 6, 8, 10}, and (c) σw = 0.01, s = 10,

p = 5, n ∈ {4, 6, 8, 10}. We see that the regret degrades as σw, n, and s increase. We also

see that when σw is large (T is small), the regret becomes worse quickly as n and s grow

larger. These results are consistent with the theoretical bounds in Theorem 5.1.

5.6 Conclusion

This chapter considers solving the optimal quadratic control problem for MJSs with unknown

dynamics. We propose a model-based adaptive control scheme that alternates between sys-

tem identification (Chapter 3) and certainty equivalent control (Chapter 4) on an epoch-by-

epoch basis. Sublinear regret guarantees are established for the proposed scheme, which can

be improved to poly-logarithmic regret when partial knowledge of the MJS is available. As

a future work, it would be interesting and of practical importance to investigate the case

when mode is not observed, which makes both system identification and adaptive quadratic

control problems non-trivial.
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Chapter 6

Mode Reduction

Switched systems are capable of modeling processes with underlying dynamics that may

change abruptly over time. To achieve accurate modeling in practice, one may need a large

number of modes, but this may in turn increase the model complexity drastically. Existing

work on reducing system complexity mainly considers state space reduction, whereas reduc-

ing the number of modes is less studied. In this chapter, we consider the mode complexity

for MJSs. Specifically, inspired by clustering techniques from unsupervised learning, we are

able to construct a reduced MJS with fewer modes that approximates the original MJS well

under various metrics. Furthermore, both theoretically and empirically, we show how one

can use the reduced MJS to analyze stability and design controllers with significant reduction

in computational cost while achieving guaranteed accuracy.

This chapter is organized as follows: we present the preliminaries and mode reduction

problem setup in Section 6.3; an clustering-based reduction approach is proposed in Sec-

tion 6.4; in Section 6.5, we discuss how the reduced MJS approximates the original one

under setups; Section 6.6 and 6.7 respectively show that one can use the reduced MJS as a

surrogate to evaluate stability and design LQR controllers for the original MJS; simulation

experiments are presented in Section 6.8.

6.1 Introduction and Related Work

Switched systems generalize time-invariant systems by allowing the dynamics to switch over

time. However, this is accompanied by new complexity challenges: the number of modes that

is needed to model systems accurately and thoroughly may grow undesirably large. For ex-

ample, for controlled plants composed of multiple components, if we model each combination

of health statuses, e.g. working and faulty, of all components as a mode, then the number

of modes grows exponentially with the number of components. Given this rate, there can

∗The contents of this chapter are published in Du et al. (2022b) and Du et al. (2022a). The proofs in this
chapter are provided in Appendix D.
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be a huge amount of modes even with a moderate number of components. Given a system

with this many modes, analysis can become computationally intractable. For example, in

finite-horizon LQR problems with horizon T , the total number of controllers to be computed

is sT where s denotes the number of modes. This lack of scalability calls for systematic and

theoretically guaranteed ways to reduce the number of modes.

Existing work on (switched) system reduction mainly focuses on reducing the state di-

mension (Zhang et al., 2003) or constructing finite abstractions for the continuous state

space (Zamani and Abate, 2014). Reducing the mode complexity, however, is still mainly

an uncharted territory.

In this chapter, we study how one can perform mode reduction for MJSs. Our main

contributions are the following:

• We propose a clustering-based method that takes mode dynamics as features and use

the estimated clusters to construct a reduced-mode MJS.

• The reduced MJS is proved to well approximate the original MJS under several ap-

proximation metrics.

• We show the reduced MJS can be used as a surrogate for the original MJS to analyze

stability and design controllers with guaranteed performance and significant reduction

in computational cost.

Our work adds a new dimension, i.e., reduction of modes, to the research of switched system

reduction. This framework can be generalized to other problems such as robust and opti-

mal control, invariance analysis, partially observed systems, etc. Other than constructing

and analyzing the reduced MJS, the technical tools we develop in this chapter regarding

perturbations can be applied to cases when there are model mismatches.

6.2 Related Work

Depending on the problems of interest and methodologies, the work on reduction for stochas-

tic (switched) systems can be roughly divided into three categories: bisimulation, symbolic

abstraction, and order reduction.

Bisimulation: To evaluate the equivalency between two stochastic switched systems, no-

tions of (approximate) probabilistic bisimulation are proposed in Larsen and Skou (1991);

Desharnais et al. (2002, 2004). Approximation metrics (Abate, 2013) from different perspec-

tives are developed to compare two systems, e.g. one(multi)-step transition kernels (Abate

et al., 2011) and trajectories (Girard and Pappas, 2007; Tkachev and Abate, 2014; Julius and
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Table 6.1: Related Work on Reduction for Stochastic Switched Systems

Reference Model
Reduction
Target

Exact
Bisimulation
Condition

Reduction
Method

Approximation
Metric

(Desharnais et al., 2004) Controlled Markov Process

State Space
Cardinality

Yes

N.A.

Formula Metric

(Tkachev and Abate, 2014)
(Bian and Abate, 2017) Labelled Markov Chains

(autonomous)
Trajectory

(Lun et al., 2018)

Clustering(Zhang and Wang, 2019)
(Du et al., 2019a)
(Bittracher and Schütte, 2021)

Markov Chains N.A.

(Zamani and Abate, 2014) Switching Stochastic Sys.
State Space
Discretization

Trajectory

(Abate et al., 2011) Stochastic Hybrid
System (autonomous)

N.A.

Transition Kernel

(Soudjani and Abate, 2011) Invariance Probability

(Julius et al., 2006)
(Julius and Pappas, 2009)
(Zamani et al., 2016)

Jump Linear
Stochastic System

State Space
Dimension
(Order)

(Bi)simulation
Function

Trajectory

(Zhang et al., 2003)
(Shen et al., 2019)

MJS

H∞ Reduction
H∞ norm

(Kotsalis and Rantzer, 2010) Balanced Truncation

(Sun and Lam, 2016) H2 Reduction H2 norm

This Chapter MJS Modes Yes Clustering Trajectory

Pappas, 2009). Based on the approximate bisimulation notion in Bian and Abate (2017), a

technique for reducing the state space of labeled Markov chains through state aggregation

is proposed in Lun et al. (2018). Unlike existing work that typically defines the notions of

(approximate) bisimulation on the state space, we provide an algorithm that constructs a

reduced system by aggregating the mode space, which provably approximates the original

one. Our work shares the idea of aggregation of Markov chains with Lun et al. (2018), but

we also seek to recover the best aggregation partition which is otherwise assumed as prior

knowledge in Lun et al. (2018).

Symbolic Abstraction: Given a system with continuous state space, abstraction (Alur

et al., 2000) considers discretizing the state space and then constructing a finite state sym-

bolic model, which can be used as a surrogate for model verification (Clarke Jr. et al., 2018;

Kurshan, 2014) or controller synthesis (Maler et al., 1995). The work on abstraction for

stochastic hybrid systems starts with the autonomous cases. Under uniform discretization,

Abate et al. (2010) and Abate et al. (2011) provide approximation guarantees that depend

on the discretization width. An adaptive partition scheme is proposed in Soudjani and Abate

(2011), which mitigates the curse of dimensionality suffered by uniform sampling. Since the

systems under consideration are autonomous, these works mainly serve verification purposes,

but fall short toward controller synthesis goals. Zamani and Abate (2014) addressed this by

allowing inputs in the systems. The idea of partitioning the continuous state space is similar

to our work except that our partition is performed on the mode space, i.e., the discrete state

space in hybrid systems, which provides a new yet closely related dimension to the existing
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abstraction work.

Order Reduction: Another important line of research on system reduction is order reduc-

tion (Gugercin and Antoulas, 2004), where one seeks to reduce the dimension of the state

space to satisfy certain criteria. With the help of linear matrix inequalities (LMIs), various

methods have been applied for MJS, including H∞ reduction (Zhang et al., 2003), balanced

truncation (Kotsalis and Rantzer, 2010), and H2 reduction (Sun and Lam, 2016), etc. Order

reduction is also applied to more complex models with time-varying transition probabilities

(Shen et al., 2019).

The reduction of Markov chains, a class of simplified yet fundamental stochastic switched

models, has also attracted the learning and statistics communities. Several notions of lumpa-

bility are proposed in Buchholz (1994), which coincide with the notion of bisimulation in

Larsen and Skou (1991). Lumpability allows one to reduce the original Markov chain to

a smaller scale yet equivalent Markov chain by lumping the Markovian states. Similar re-

search focusing on the equivalence metrics and bounding the difference of transition kernel,

can be found in Hoffmann and Salamon (2009); Schulman and Gaveau (2001); Gaveau and

Schulman (2005) under the name of coarse graining. Compared with the bisimulation work

for general stochastic systems, which is mostly conceptual, the restriction to Markov chains

allows for practical “low-rank + clustering” methods (Meilă and Shi, 2001) to uncover the

lumpability structure. Zhang and Wang (2019) considers the case when the Markov matrix

is estimated from a trajectory, and the approximate lumpability case is studied in Du et al.

(2019a); Bittracher and Schütte (2021). Furthermore Du et al. (2019a) studies the reduction

of Markov chains that are embedded in switched autoregressive exogenous models, but the

overall dynamical models are not reduced. Based on the ideas in Du et al. (2019a), our work

further extends the reduction to the overall MJS.

A comprehensive comparison of the related work together with our work is listed in

Table 6.1. The entry “exact bisimulation condition” tells whether ideal case sufficient con-

ditions are provided under which a system can be reduced without introducing any model

inaccuracy, i.e., they are bisimilar. In practice, when the reduced system is constructed,

these principled conditions can help gain more insight into the original system. In practice,

these model reduction methods developed under different perspectives can be combined to

achieve overall better performance. For example, for the continuous state space, one can

apply order reduction followed by finite abstraction (the former can help remove the curse of

dimensionality for the latter), and meanwhile our work can further help reduce the discrete

mode space.
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Figure 6.1: Illustration of MJS mode reduction

6.3 Problem Formulation

In this chapter, we consider the MJS Σ in (2.6) but without process noise. In other words,

Σ is given by

Σ :=

{
xt+1 = Aωtxt +Bωtut

ωt ∼ Markov Chain(T)
(6.1)

We assume the Markov matrix T is ergodic. In the remainder of this chapter, we use

Σ := MJS(A1:s,B1:s,T) to denote the groundtruth MJS in (6.1) that we want to study, and

similarly use notation MJS(·, ·, ·) to parameterize any noiseless MJS with expressions given

in (6.1).

This chapter will consider Markov chains for the Markov matrix T with the following

properties: lumpability and aggregatability (Definition 2.7). Lumpability of a Markov chain

coincides with the definition of probabilistic bisimulation in Desharnais et al. (2002), which

describes an equivalence relation on the Markovian state space [s], i.e., two members are

equivalent if they belong to the same cluster. For a Markov chain T that is lumpable with

respect to partition Ω1:s, we use ζt ∈ [r] to index the active cluster at time t, i.e., ζt = k if

and only if ωt ∈ Ωk, and use ζ0:t to denote the active cluster sequence. The implication of

lumpability is that ζ0:t also follows a Markov chain.

6.3.1 Problem Setup

With the notions of Markov chain lumpability and aggregatability, in this chapter, we con-

sider reducing the number of modes for Σ under the following two problem settings.

Problem P6.1 (Lumpable Case). Assume the dynamics of Σ = MJS(A1:s,B1:s,T) is
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known. Suppose there exists a hidden partition Ω1:r on [s] and ϵA, ϵB, ϵT ≥ 0 such that∑
k∈[r]

∑
i,i′∈Ωk

∥Ai −Ai′∥F ≤ ϵA,∑
k∈[r]

∑
i,i′∈Ωk

∥Bi −Bi′∥F ≤ ϵB,
(6.2)

∑
k,l∈[r]

∑
i,i′∈Ωk

∣∣∣∑
j∈Ωl

T(i, j)−
∑
j∈Ωl

T(i′, j)
∣∣∣ ≤ ϵT. (6.3)

Then, given {Ai,Bi}si=1,T and r, we seek to estimate the partition Ω1:r by clustering the

modes, construct a reduced MJS for Σ, and provide guarantees on the behavior difference

incurred by the reduction.

Throughout this chapter, we refer to ϵA, ϵB, and ϵT as perturbations. When ϵT = 0,

by Definition 2.7, the Markov matrix T is lumpable with respect to the partition Ω1:r.

Thus, in condition (6.3), one can view T as approximately lumpable. One can think of

{ωt,xt} ∈ [s]×Rn as a hybrid state (Abate et al., 2011). Then, condition (6.3) guarantees the

existence of an approximate equivalence relation in the discrete domain [s], while condition

(6.2) guarantees this in the continuous domain Rn. More discussions for the special case

when ϵA = ϵB = ϵT = 0 follow in the next subsection.

For the aggregatable case, we separately formulate a similar problem in Problem P6.2.

Problem P6.2 (Aggregatable Case). In Problem P6.1, replace the condition in (6.3) with∑
k∈[r]

∑
i,i′∈Ωk

∥T(i, :)⊺ −T(i′, :)⊺∥1 ≤ ϵT.

When ϵT = 0, by Definition 2.7, the Markov matrix T is aggregatable with respect to

the partition Ω1:r. P6.2 differs from P6.1 in terms of ϵT, which quantifies the violation of

lumpability and aggregatability respectively for the matrix T. Consider a 3-state Markov

matrix T with rows T(1, :) = [0.2, 0.4, 0.4], T(2, :) = [0.7, 0.1, 0.2], and T(3, :) = [0.7, 0, 0.3].

Then for the partition Ω1 = {1},Ω2 = {2, 3}, we obtain ϵT = 0 in P6.1 but ϵT = 0.4 in

P6.2. In other words, T is exactly lumpable but non-aggregatable with a violation level of

0.4. In P6.2, ϵT = 0 only when T(i, :) = T(i′, :) for all i, i′ ∈ Ωk, i.e. the rows are equal.

On the other hand, in P6.1, ϵT = 0 is possible even if no row equalities exist. Hence, being

ϵT-aggregatable in P6.2 is a stronger assumption than being ϵT-lumpable in P6.1. As a

result, in Section 6.4, the clustering guarantee for P6.2 is stronger and more interpretable

than that of P6.1.
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6.3.2 Equivalency between MJSs

To compare the original and reduced-mode MJSs as mentioned in P6.1, we need a notion of

equivalency between two MJSs with different numbers of modes. This is provided below via

a surjection from modes of the larger MJS to the smaller one, which extends the bijection

idea in Julius and Pappas (2009); Zhang et al. (2003) that can only compare two MJSs with

equal amounts of modes.

Definition 6.1 (Equivalency between MJSs). Consider two MJSs Σ1 and Σ2 with the same

state and input dimensions n, p, but different number of modes s1 and s2 respectively.

WLOG, assume s1 > s2. Let {x(1)
t ,u

(1)
t , ω

(1)
t } and {x(2)

t ,u
(2)
t , ω

(2)
t } denote their respective

state, input, and mode index. Σ1 and Σ2 are equivalent if there exists a partition Ω1:s2 on

[s1] such that Σ1 and Σ2 have the same transition kernels, i.e. for any time t, any mode

k, k′ ∈ [s2], any x,x′ ∈ Rn, and any u ∈ Rp

P
(
ω
(1)
t+1 ∈Ωk′ ,x

(1)
t+1 =x′ | ω

(1)
t ∈Ωk,x

(1)
t =x,u

(1)
t =u

)
= P

(
ω
(2)
t+1 = k′,x

(2)
t+1=x′ | ω

(2)
t = k,x

(2)
t =x,u

(2)
t =u

)
. (6.4)

The trivial perturbation-free case, i.e., ϵA, ϵB, ϵT = 0, provides a sufficient condition that

guarantees that an MJS can be reduced to a smaller MJS with equivalency between them.

Definition 6.2 (Mode-reducibility Condition). If in P6.1, ϵA, ϵB, ϵT = 0, we say Σ is

mode-reducible with respect to Ω1:r.

If this condition holds for Σ, we can construct a reduced-mode MJS Σ̆ := MJS(Ă1:r, B̆1:r, T̆)

such that for any k, l ∈ [r], any i ∈ Ωk, Ăk = Ai, B̆k = Bi, and T̆ ∈ Rrxr with

T̆(k, l) =
∑

j∈Ωl
T(i, j), which is illustrated in Fig. 6.1. Let {x̆t, ŭt, ω̆t} denote the state,

input, and mode index for the reduced Σ̆. Then, the following fact shows that Σ̆ and Σ are

equivalent according to Definition 6.1.

Fact 6.3. Suppose Σ is mode-reducible and Σ̆ is constructed as above. Consider the case when

Σ and Σ̂ have (i) initial mode distributions satisfy P(ω0 ∈ Ωk) = P(ω̆0 = k) for all k ∈ [r],

(ii) the same initial states (x0 = x̆0), and (iii) the same input sequences (u0:t−1 = ŭ0:t−1).

Then, these two MJSs have the same mode and state transition kernels, i.e. P(ωt ∈ Ωk,xt =

x) = P(ω̆t = k, x̆t = x) for all t, all k ∈ [r] and x ∈ Rn. Particularly, there exists a special

type of reduced Σ̆ such that the modes are synchronized: for all t, ω̆t = ζt. In this case,

x̆t = xt for all t.
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Proof. For Σ, using its dynamics in (6.1), we obtain

xt =

( t−1∏
h=0

Aωh

)
x0 +

t−2∑
t′=0

( t−1∏
h=t′+1

Aωh

)
Bωt′

ut′ +Bωt−1ut−1

=

( t−1∏
h=0

Ăζh

)
x0 +

t−2∑
t′=0

( t−1∏
h=t′+1

Ăζh

)
B̆ζt′

ut′ + B̆ζt−1ut−1.

(6.5)

Similarly, for the reduced Σ̆, we have x̆t =
(∏t−1

h=0 Ăω̆h

)
x̆0 +

∑t−2
t′=0

(∏t−1
h=t′+1 Ăω̆h

)
B̆ω̆t′

ŭt′ +

B̆ω̆t−1ŭt−1. Note that when initial conditions x0 = x̆0 and input sequence u0:t−1 = ŭ0:t−1 are

fixed, xt depends on ζ0:t−1 in the same way as x̆t depends on ω̆0:t−1. Thus to prove the claim

P(ωt ∈ Ωk,xt = x) = P(ω̆t = k, x̆t = x), it suffices to show sequences ζ0:t−1 and ω̆0:t−1 have

the same distributions, i.e.

P(ζ0:t−1 = σ0:t−1) = P(ω̆0:t−1 = σ0:t−1) (6.6)

for any possible sequence σ0:t−1 ∈ [r]t. We will show this through induction. Note that due

to the assumption for the same initial conditions, we have P(ζ0 = σ0) = P(ω̆0 = σ0). Now,

suppose P(ζ0:h−1 = σ0:h−1) = P(ω̆0:h−1 = σ0:h−1), then to complete the induction argument,

by Bayes’ theorem, it suffices to show P(ζh = σh | ζ0:h−1 = σ0:h−1) = P(ω̆h = σh | ω̆0:h−1 =

σ0:h−1). For the LHS,

P(ζh = σh | ζ0:h−1 = σ0:h−1)

=
∑

ω∈Ωσh−1

P(ωh ∈ Ωσh
, ωh−1 = ω | ζ0:h−1 = σ0:h−1)

=
∑

ω∈Ωσh−1

P(ωh ∈ Ωσh
| ωh−1 = ω)P(ωh−1 = ω | ζ0:h−1 = σ0:h−1)

=T̆(σh−1, σh)
∑

ω∈Ωσh−1

P(ωh−1 = ω | ζ0:h−1 = σ0:h−1)

=T̆(σh−1, σh).

(6.7)

For the RHS, by the Markov property, we have P(ω̆h = σh | ω̆0:h−1 = σ0:h−1) = P(ω̆h = σh |
ω̆h−1 = σh−1) = T̆(σh−1, σh). The induction and proof are complete.

Fact 6.3 first shows the equivalency between Σ and Σ̆ in terms of the transition kernels,

which is then extended to trajectory realizations if certain synchrony exists between ζ0:t

and ω̆0:t. The condition ω̆t = ζt in Fact 6.3 essentially establishes a coupling between the

Markov chains ω0:t and ω̆0:t such that P(ωt ∈ Ωk, ω̆t = k) = P(ωt ∈ Ωk) = P(ω̆t = k).
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Establishing coupling between the stochastic systems usually allows for stronger equivalency

and approximation result. Similar coupling scheme is implicitly used in Julius and Pappas

(2009); Zhang et al. (2003); an optimal coupling by minimizing Wasserstein distance is

discussed in Tkachev and Abate (2014); and a weaker coupling using the idea of HMM is

discussed in Shen et al. (2019).

In Definition 6.1 and Fact 6.3, viewing {ωt,xt} ∈ [s] × Rn as a hybrid state, T being

lumpable guarantees the existence of an equivalence relation in the discrete domain [s] as in

Definition 2.7, while state/input matrices being the same guarantees this in the continuous

domain Rn.

6.4 Clustering-based Mode Reduction

In this section, we first propose Algorithm 3 to estimate the latent partition Ω1:r and con-

struct the reduced MJS for Problem P6.1 and P6.2, and then provide its theoretical guar-

antees for partition estimation in Section 6.4.1.

Algorithm 3: Mode Reduction for MJS

Input: A1:s,B1:s,T,π, r, and non-negative tuning weights αA, αB, αT that sum to 1
1 Construct feature matrix Φ: ∀i ∈ [s],
2 case Problem P6.2 do
3 Φ(i, :) = [αAvec(Ai)

⊺, αBvec(Bi)
⊺, αTT(i, :)].

4 case Problem P6.1 do

5 H = diag(π)
1
2Tdiag(π)-

1
2

6 Wr ← top r left singular vectors of H

7 Sr = diag(π)-
1
2Wr

8 Φ(i, :) = [αAvec(Ai)
⊺, αBvec(Bi)

⊺, αTSr(i, :)]

9 Ur ← top r left singular vectors of Φ

10 Solve k-means problem: Ω̂1:r, ĉ1:r = argminΩ̂1:r,ĉ1:r

∑
k∈[r]

∑
i∈Ω̂k
∥Ur(i, :)− ĉk∥2

11 Construct Σ̂, ∀k, l ∈ [r] Âk =
1

|Ω̂k|

∑
i∈Ω̂k

Ai, B̂k =
1

|Ω̂k|

∑
i∈Ω̂k

Bi,

T̂(k, l) = 1

|Ω̂k|

∑
i∈Ω̂k,j∈Ω̂l

T(i, j)

Output: Σ̂ : MJS(Â1:r, B̂1:r, T̂)

We treat the estimation of partition Ω1:r essentially as a mode clustering problem with

the dynamics matrices Ai, Bi and transition distribution T(i, :) serving as features for mode

i. In Algorithm 3, we first construct the feature matrix Φ from Line 2 to Line 8, with

Φ(i, :) denoting the features of mode i. For the aggregatable case in Problem P6.2, we

simply stack the vectorized Ai, Bi and T(i, :), and use αA, αB, αT to denote their weights

respectively. One way to choose these weights is as a normalization, e.g. αA ∝ 1/maxi ∥Ai∥,
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so that these three features would have the same scales. Though in the aggregatable case

P6.2, similarities among the rows of T shed light on the groundtruth partition Ω1:r, this is

no longer valid in the lumpable case P6.1 as two modes belonging to the same cluster can

still have different transition probabilities T(i, :), even if ϵT = 0. According to (6.3), the

groundtruth partition Ω1:r is only embodied in the mode-to-cluster transition probabilities∑
j∈Ωl

T(i, j) constructed using the groundtruth partition itself. This leaves us in a “chicken-

and-egg” dilemma. To deal with this, from Line 5 to 8, we compute the first r left singular

vectors Wr of matrix diag(π)
1
2Tdiag(π)-

1
2 , and then weight it by diag(π)-

1
2 to obtain

matrix Sr ∈ Rsxr, which is used to construct features in Φ for the lumpable case P6.1. We

will later justify using Sr as features by showing row similarities in Sr reflect the partition

under certain assumptions.

With the feature matrix Φ, to recover the partition, we resort to k-means: in Line 10,

k-means is applied to the first r left singular vector Ur of Φ. The typical algorithm for k-

means is Lloyd’s algorithm, where the cluster centers and partition membership are updated

alternately. Based on the solution Ω̂1:r obtained via k-means, we construct the reduced Σ̂

by averaging modes within the same estimated cluster. A more subtle averaging scheme is

through the weights provided in the stationary distribution π which describes the frequency

of each mode being active in the long run. Σ̂ generated by this scheme (or any weighted

averaging) would have the same performance guarantees as the uniform averaging, which is

provided in Section 6.4.1.

In practice, if we have no good prior knowledge which model of Problem P6.1 and P6.2

would yield the best model reduction performance, we can first obtain the partitions for

both cases and then pick the one that yields smaller hindsight perturbations ϵA, ϵB, ϵT in

Problem P6.1 and P6.2. When one picks αA = αB = 0, i.e only the Markov matrix T is

used to cluster the modes, then our clustering scheme under the aggregatable case P6.2 is

equivalent to Zhang and Wang (2019) which studies clustering for Markov matrices that is

estimated from a single trajectory. The lumpable case P6.1, on the other hand, is based on

preliminary analysis in Meilă and Shi (2001).

We note that several aspects of this algorithm we have guarantees for do not directly

consider the metrics important to this problem; for example averaging dynamics matrices

within the same cluster may not yield the dynamics that gives an optimal fit for prediction

or controller design. That said, even for this straightforward approach, Section 6.5 provides

several strong approximation guarantees. We are hopeful that future generalizations will

be able to build on this theory and further improve the control performance of our mode-

reduction approach.
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6.4.1 Theoretical Guarantees for Clustering

In this section, we discuss the clustering performance by comparing the estimated partition

Ω̂1:r and the true Ω1:r. As k-means algorithms are known to have local convergence properties

(Bottou and Bengio, 1994), we instead assume for the k-means problem in Algorithm 3, a (1+

ϵ) approximate solution can be obtained, i.e.,
∑

k∈[r],i∈Ω̂k
∥Ur(i, :)− ĉk∥2 ≤ (1+ϵ)minΩ′

1:r,c
′
1:r∑

k∈[r],i∈Ω′
k
∥Ur(i, :)− c′k∥2. Many efficient algorithms have been developed that can provide

(1 + ϵ) approximate solutions. For ϵ = 1, a linear time (in terms of r and s) algorithm

is provided in Gonzalez (1985). For smaller ϵ, Kumar et al. (2004) proposes a linear time

algorithm using random sampling; Song and Rajasekaran (2010) gives a polynomial time

algorithm with computational complexity independent of s. We later show how ϵ affects the

overall clustering performance.

To evaluate the performance of partition estimation, we define misclustering rate (MR)

as MR(Ω̂1:r) = minh∈H
∑

k∈[r]
|{i:i∈Ωk,i/∈Ω̂h(k)}|

|Ωk|
, where H is the set of all bijections from [r] to

[r] so that the comparison finds the best cluster label matching. The error metric MR counts

the total misclustered modes normalized by the cluster sizes, which implies clustering errors

occurring in smaller clusters would yield larger MR.

We define the following averaged feature matrix Φ̄ based on the underlying partition

Ω1:r: for all i ∈ [s] (suppose i ∈ Ωk for some k ∈ [r]), Φ̄(i, :) = 1
|Ωk|
∑

i′∈Ωk
Φ(i′, :). By

construction, there are up to r unique rows in Φ̄, hence rank(Φ̄) ≤ r. We first present the

clustering guarantee for Problem P6.2, i.e., the aggregatable case.

Theorem 6.4. Consider Problem P6.2 and Algorithm 3. Suppose Ω̂1:r is a (1+ϵ) k-means so-

lution. Let ϵ2Agg := α2
Aϵ

2
A+α2

Bϵ
2
B+α2

Tϵ
2
T. Then, if rank(Φ̄) = r and ϵAgg ≤

σr(Φ̄)
√

|Ω(r)|+|Ω(1)|

8
√

(2+ϵ)|Ω(1)|
,

we have

MR(Ω̂1:r) ≤ 64(2 + ϵ)σr(Φ̄)-2ϵ2Agg. (6.8)

Additionally, if ϵAgg ≤ σr(Φ̄)

8
√

(2+ϵ)|Ω(1)|
, then MR(Ω̂1:r) = 0.

The key term ϵAgg measures how modes within the same cluster differ from each other, i.e.,

inner-cluster distance. On the other hand, the singular value σr(Φ̄) measures the differences

of modes from different clusters, i.e., inter-cluster distance. This is because when modes

belonging to different clusters have similar features, their corresponding rows in the averaged

feature matrix Φ̄ will also be similar, which could give small σr(Φ̄). Particularly, if two

different clusters share the same features, then rank(Φ̄) = r − 1 and σr(Φ̄) = 0. In the

theorem, when the inner-cluster distance is small compared to the inter-cluster distance, the

misclustering rate can be bounded by their ratio ϵAgg/σr(Φ̄). By definition of misclustering

rate, the smallest nonzero value it can take is given by 1
|Ω(1)|

. Therefore, whenever the upper
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bound in (6.8) is smaller than 1
|Ω(1)|

, one can guarantee MR(Ω̂1:r) = 0, which yields the final

claim in Theorem 6.4.

The clustering guarantee for the lumpable case in Problem P6.1 is more involved than

the aggregatable case. We first provide a few more notions and definitions that can help the

exposition. We say a Markov matrix T is reversible if there exists a distribution π ∈ Rs

such that π(i)T(i, j) = π(j)T(j, i) for all i, j ∈ [s]. This condition translates to diag(π)T =

T⊺diag(π) when T is ergodic with stationary distribution π. For a reversible Markov matrix

that is also lumpable, we have the following property.

Lemma 6.5 ((Meilă and Shi, 2001, Appendix A)). For a reversible Markov matrix T that

is also lumpable with respect to partition Ω1:r, it is diagonalizable with real eigenvalues. Let

S ∈ Rsxs denote an arbitrary eigenvector matrix of T. Then, there exists an index set A ⊆ [s]

with |A| = r such that for all k ∈ [r], for all i, i′ ∈ Ωk, we have S(i,A) = S(i′,A).

We say T in Lemma 6.5 has informative spectrum if A = [r] and |λr(T)| > |λr+1(T)|,
which implies that the r eigenvectors that carry partition information in Lemma 6.5 cor-

respond to the r leading eigenvalues. For lumpable Markov matrices, we define the ϵT-

neighborhood of T:

L(T,Ω1:r, ϵT) :=
{
T0 ∈ Rsxs : T0 is Markovian,

∥T0 −T∥∞ ≤ ϵT, ∥T0 −T∥F ≤ ϵT,

∀k, l ∈ [r],∀i ∈ Ωk,
∑
j∈Ωl

T0(i, j) =
1

|Ωk|
∑
i′∈Ωk
j∈Ωl

T(i′, j)
}
.

(6.9)

Under the approximate lumpability condition in (6.3), one can show this neighborhood set

is non-empty. Related discussions are provided in Appendix D.2. To find such a T0 ∈
L(T,Ω1:r, ϵT), one only needs to solve a feasibility linear programming problem. Then we

provide the clustering guarantee for the lumpable case.

Theorem 6.6. Consider Problem P6.1 and Algorithm 3. Define notations γ1 :=
∑s

i=2
1

1−λi(T)
,

γ2 := min{σr(H) − σr+1(H), 1}, γ3 :=
16γ1

√
rπmax∥T∥F
γ2π2

min
, and ϵ2Lmp := α2

Aϵ
2
A + α2

Bϵ
2
B + α2

Tγ
2
3ϵ

2
T.

Assume there exists an ergodic and reversible T0 ∈ L(T,Ω1:r, ϵT) with informative spec-

trum. Suppose Ω̂1:r is a (1 + ϵ) k-means solution. Then, if rank(Φ̄) = r, ϵT ≤ πmin

γ1
,

ϵLmp ≤
σr(Φ̄)
√

|Ω(r)|+|Ω(1)|

8
√

s(2+ϵ)|Ω(1)|
, we have

MR(Ω̂1:r) ≤ 64(2 + ϵ)σr(Φ̄)-2ϵ2Lmp. (6.10)
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Additionally, if ϵLmp ≤ σr(Φ̄)

8
√

(2+ϵ)|Ω(1)|
, then MR(Ω̂1:r) = 0.

Theorem 6.6 for the lumpable case is similar to Theorem 6.4 for the aggregatable case

with an additional γ3 term. This is a result of using Sr and T to construct features in

Algorithm 3 for these two cases. γ3 describes how much the lumpability perturbation ϵT

on T affects the row equalities of its spectrum-related matrix Sr in Lemma 6.5. The as-

sumption on the existence of T0 with informative spectrum guarantees (i) the partition Ω1:r

information is carried by the leading eigenvectors of T0 as introduced in Lemma 6.5, and

(ii) this information can still be preserved in Sr as long as T is close to T0. Because of

this, Theorem 6.6 may not hold for arbitrary lumpable T, but only those close to Markov

matrices with informative spectra.

6.5 Approximation Guarantees

With perturbations ϵA, ϵB, ϵT, the reduced Σ̂ may not be equivalent to the original Σ as in

Fact 6.3. In this case, if certain approximation guarantees can be established, they can be

used in verification tasks such as safety (Julius and Pappas, 2009) and invariance (Soudjani

and Abate, 2011) evaluations. In this section, we show that the reduced system Σ̂ can

be guaranteed to well approximate the original system Σ under metrics such as transition

kernels (distributions) and trajectory realizations. Particularly, these metrics reach 0 when

ϵA, ϵB, ϵT = 0, i.e., the mode-reducibility condition in Definition 6.2 holds. We have shown in

Theorem 6.4 and 6.6 that MR(Ω̂1:r) = 0 when perturbations ϵA, ϵB, ϵT are small. Hence, in

this section together with Section 6.6 and 6.7, we assume Ω1:r = Ω̂1:r for simplicity. In these

sections, the theory holds for perturbations ϵA, ϵB, ϵT introduced in either P6.1 or P6.2.

We study the approximation in a setup where Σ and Σ̂ start with the same initial con-

dition and are driven by the same input.

Setup S1 (Initialization-Excitation Setup). Systems Σ and Σ̂ have (i) initial mode distri-

butions satisfy P(ω0 ∈ Ω̂k) = P(ω̂0 = k) for all k ∈ [r]; (ii) the same initial states, i.e.,

x0 = x̂0, and (iii) the same inputs ut = ût for all t.

Note that when Σ and Σ̂ have fixed and shared initial conditions and inputs as in setup

S1, we can at most evaluate the difference between xt and x̂t in terms of their distributions

(or, the transition kernels of Σ and Σ̂). However, the actual realizations of xt and x̂t, i.e.,

when we only generate a single sample for each, can be very different. This is because xt

and x̂t are driven not only by the input excitation, but also the mode switching sequences

ω0:t−1 and ω̂0:t−1; thus, xt and x̂t are likely to be far away from each other if the realizations
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of ω0:t−1 and ω̂0:t−1 are different. On the other hand, if the reduced model Σ̂ is to be used

online to predict the future behavior of Σ, and if the mode ωt can be observed at run-time,

we can assume the following and derive stronger relations on the state realization difference

∥xt − x̂t∥.

Setup S2 (Mode Synchrony). Mode ω̂t of Σ̂ is synchronous to ωt of Σ, i.e., for all t, if

ωt ∈ Ω̂k then ω̂t = k.

Mode synchrony setup essentially establishes the strongest possible coupling between ω0:t

and ω̂0:t as discussed in Section 6.3.2. When the mode sequence ω̂0:t of Σ̂ is synchronized

with that of Σ, this amounts to having Σ̂ being driven by an external switching signal ω0:t.

In the following, we provide bounds on how close Σ̂ is to Σ in terms of the following

approximation metrics: (i) under the mean-square stability of Σ, the difference ∥xt − x̂t∥ in
trajectories (Theorem 6.7); (ii) under uniform stability, the difference in trajectories (Theo-

rem 6.8 (T1)) and the difference of transition kernels (Theorem 6.8 (T2)).

6.5.1 Result with Mean-square Stability

From Lemma 2.12, we know the MJS Σ is mean-square stable if and only if the the augmented

state matrix A in (2.9) has spectral radius ρ(A) < 1. For any ρ ≥ ρ(A), let us define

τ := τ(A, ρ), where τ(·, ·) is the normalized power supremum in Definition 2.1. Keep

in mind that τ depends on the choice of the free parameter ρ. We let Ā := maxi ∥Ai∥,
B̄ := maxi ∥Bi∥. The following theorem provides an upper bound for ∥xt − x̂t∥ under mean-

square stability.

Theorem 6.7. Consider setup S1 and S2 where the shared initial state x0 and inputs u0:t can

be arbitrary as long as for all t, ut is bounded, i.e., ∥ut∥ ≤ ū. Assume Σ is mean-square stable

and Ω̂1:r = Ω1:r in Algorithm 3. For any ρ ∈ [ρ(A), 1) and its corresponding τ , let ρ0 :=
1+ρ
2
. For perturbation, assume ϵA ≤ min{Ā, 1−ρ

6τĀ∥T∥
} and ϵB ≤ B̄. Then, E[∥xt − x̂t∥] ≤

4
√
n
√
sτϵmss

t where ϵmss
t := ρ

t−1
2

0

√
tĀ∥T∥ϵA∥x0∥+

√
B̄ū
( √

ρ0
(1−√

ρ0)2

√
Ā∥T∥ϵA +

√
2

1−√
ρ0

√
ϵB
)
.

In this theorem, ϵmss
t is the key element in the upper bound. In its definition, the first

term describes the effect of ϵA through initial the state x0. Since ρ < 1 due to Σ being

mean-square stable, we know ρ0 < 1, which implies exponential decay. The rest of the

terms in ϵmss
t characterize the effects of ϵA and ϵB through the inputs. And if there is no

input, the trajectory difference ∥xt − x̂t∥ converges to 0 exponentially with t. The condition

ϵA ≤ 1−ρ

6
√
sτĀ

is used to guarantee perturbation ϵA is small such that Σ̂ is also mean-square

stable, as otherwise the difference will grow exponentially, and no meaningful results can
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be established in this case. Conditions ϵA < Ā and ϵB ≤ B̄ are only used to simplify the

expressions, and similar bounds can be established without them.

Fact 6.3 provides a sanity check for Theorem 6.7: when ϵA = ϵB = 0, we have xt = x̂t. In

the autonomous case, i.e., ut = 0, as a direct corollary of Theorem 6.7, we can further obtain

a probabilistic bound on the difference over an entire trajectory using Markov inequality:

with probability at least 1− δ,
∑∞

t=0 ∥xt − x̂t∥ ≤
4
√
npτ∥x0∥

√
ĀϵA

δ(1−√
ρ0)2

.

6.5.2 Results with Uniform Stability

Mean-square stability in Section 6.5.1 is a weak notion of stability in that it only requires

stability in expectation while still allowing a set of mode switching sequences that result

in explosive xt, even a set with nonzero probability. In this section, we consider uniform

stability, which guarantees stable xt even with an arbitrary switching sequence. Uniform

stability allows us to further build approximation results without enforcing mode synchrony

as in S2.

From Definition 2.16, we know the MJS Σ is uniformly stable if the matrices A1:s have

joint spectral radius ξ(A1:s) < 1. For any ξ ≥ ξ(A1:s), let us define κ := κ(A1:s, ξ), where

κ(·, ·) is the normalized joint power supremum in Definition 2.17. Furthermore, we let

T̄ := maxi,j T(i, j).

We formally define the transition kernels for Σ and Σ̂ and their distance. Under fixed

initial state x0 and input sequence u0:t−1, we let Xt := {xt : x0:t is a solution to Σ, ∀ ω0:t−1 ∈
[s]t} denote the reachable set of Σ. Then we define the t-step transition kernel as pt(x) :=

P(xt = x) for all x ∈ Xt. Note that both Xt and pt(x) depend on the choice of the initial

state and input sequence as well. We omit this dependency in the notation not only for

simplicity but also because the approximation results we provide hold for arbitrary initial

state and input sequence. Similarly, for the reduced Σ̂, we use X̂t to denote the reachable

set at time t, and for x̂ ∈ X̂t, we let p̂t(x̂) := P(x̂t = x̂). Then, for ℓ ≥ 1 the ℓ-Wasserstein

distance Wℓ(pt, p̂t), between distributions pt and p̂t is defined as the optimal objective value

of the following mass transportation problem:

min
f≥0

(∑
x∈Xt,x̂∈X̂t

f(x, x̂)∥x− x̂∥ℓ
)1/ℓ

s.t.
∑

x∈Xt
f(x, x̂) = p̂t(x̂), ∀ x̂∑

x̂∈X̂t
f(x, x̂) = pt(x), ∀ x.

(6.11)

The constraints describe the transportation of probability mass distributed according to pt

to the support of p̂t so that the mass after transportation distributes the same as p̂t. We can
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view f(x, x̂) as the mass that is transported from point x to x̂ and ∥x− x̂∥ as the distance

it travels. When ℓ = 1, the goal is to minimize the total weighted travel distance, and the

resulting W1 is also known as the earth mover’s distance. Now we are ready to present our

results for the uniform stability assumption.

Theorem 6.8. Consider setup S1 where the shared initial state x0 and inputs u0:t can be

arbitrary as long as for all t, ut is bounded, i.e., ∥ut∥ ≤ ū. Assume Σ is uniformly stable and

Ω̂1:r = Ω1:r in Algorithm 3. For any ξ ∈ [ξ(A1:s), 1) and its corresponding κ, let ξ0 := 1+ξ
2
.

For perturbation, we assume ϵA ≤ 1−ξ
2κ

and ϵB ≤ B̄. Then, we have the following results.

(T1) Under S2, ∥xt − x̂t∥ ≤ ϵust := tξt−1
0 κ2∥x0∥ϵA +

2(1+tξt0)κ
2B̄ū

1−ξ0
ϵA + κū

1−ξ
ϵB almost surely.

(T2) Consider the autonomous case, i.e., B1:s = 0. (S2 is not mandatory.) Then,

Wℓ(pt, p̂t) ≤ tξt−1
0 κ2∥x0∥ϵA + 2r2tκ∥x0∥rt(κϵA + ξ)t(T̄ + ϵT)

(t−2)/ℓϵ
1/ℓ
T .

In Theorem 6.8, condition ϵA ≤ 1−ξ
2κ

guarantees the reduced Σ̂ is uniformly stable with

joint spectral radius upper bounded by ξ0. The condition ϵB ≤ B̄ simplifies the expression,

and similar results can be obtained when it is relaxed. (T1) upper bounds the realization

difference with the mode synchrony setup. We can see the similarity between the upper

bounds ϵust and ϵmss
t of Theorem 6.7 under the mean-square stability assumption. The fact

that uniform stability and mean-square stability upper bound ∥xt − x̂t∥ deterministically and

in expectation respectively is a manifestation of the difference between these two stability

notions for MJS.

In (T2), we bound the Wasserstein distance between pt and p̂t. This bound depends

on both perturbations ϵA and ϵT. Let µ and S denote the mean and covariance for xt;

and similarly define µ̂ and Ŝ for x̂t. From Kuhn et al. (2019, Theorem 4), we obtain

∥µ− µ̂∥2+d(S, Ŝ) ≤ W2(pt, p̂t)
2, where d(S, Ŝ) := tr(S+Ŝ−2(S 1

2 ŜS
1
2 )

1
2 ) is a metric between

S and Ŝ. Hence, by setting ℓ = 2 in (T2), we also obtain upper bounds for the differences

between pt and p̂t in terms of their first and second order moments, i.e., ∥µ− µ̂∥ and d(S, Ŝ).

These metrics can be used to obtain performance bounds in other control problems such as

covariance steering (Chen et al., 2015; Goldshtein and Tsiotras, 2017; Okamoto et al., 2018)

and ensemble control (Li and Qi, 2015).
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6.6 Stability Analysis

In this section, we study whether the stability properties of Σ can be deduced from those

of Σ̂. Recall that the mean-square stability of Σ depends on ρ(A), the spectral radius

of its augmented state matrix A, and its uniform stability depends on ξ(A1:s), the joint

spectral radius of state matrices A1:s. Similarly, for Σ̂, we define its augmented state matrix

Â ∈ Rrn2xrn2
with its (i, j)-th n2× n2 block given by [Â]ij := T̂(j, i) · Âj ⊗ Âj and let ρ(Â)

denote its spectral radius; we let ξ(Â1:r) denote the joint spectral radius of state matrices

Â1:r. With these notations, we want to analyze when ρ(Â) (or ξ(Â1:r)) can be taken as an

approximation for ρ(A) (or ξ(A1:s)) since computing or approximating ρ(Â) and ξ(Â1:r)

may require much less computation compared with ρ(A) and ξ(A1:s) as Σ̂ has much fewer

number of modes than Σ.

To begin with, we first construct an intermediate MJS by expanding the reduced Σ̂: we

let Σ̄ := MJS(Ā1:s, B̄1:s, T̄) such that T̄ ∈ L(T, Ω̂1:r, ϵT), and for all i ∈ [s] (suppose i ∈ Ω̂k),

Āi = Âk, B̄i = B̂k. By definition of L(T, Ω̂1:r, ϵT), we can solve for T̄ through a linear

programming feasibility problem with constraints given by the definition of L(·, ·, ·) in (6.9).

Particularly, if it is the aggregatable case P6.2, it suffices to let T̄(i, :) := |Ω̂k|−1
∑

i∈Ω̂k
T(i, :)

if i ∈ Ω̂k. Note that by construction, Σ̄ is mode-reducible with respect to Ω̂1:r and can be

reduced to Σ̂. According to Fact 6.3, Σ̄ has the same dynamics as Σ̂. Since Σ̄ has the

same number of modes as Σ, we can use Σ̄ as a bridge to compare Σ and Σ̂. We let

ρ(Ā) denote the spectral radius of Ā ∈ Rsn2xsn2
whose (i, j)-th n2 × n2 block is given by

[Ā]ij := T̄(j, i) · Āj ⊗ Āj and let ξ(Ā1:s) denote the joint spectral radius of Ā1:s. The

following preliminary result (proof omitted due to its simplicity) says Σ̄ and Σ̂ have the

same stability properties.

Lemma 6.9. For Σ̂ and Σ̄, we have ρ(Â) = ρ(Ā) and ξ(Â1:s) = ξ(Ā1:s).

One implication of Lemma 6.9 is that if an MJS is mode-reducible, the reduced MJS has

the same mean-square stability and uniform stability as the original MJS in terms of (joint)

spectral radius. When Σ is not exactly mode-reducible, Lemma 6.9 allows us to compare the

stability properties of Σ̂ and Σ via the intermediate expanded Σ̄ as presented in Theorem 6.10.

For analysis purposes, similar to τ and κ defined for Σ, we define τ̄ := supk∈N ∥Āk∥/ρ̂k for

any ρ̂ ≥ ρ(Â) and κ̄ := supk∈N maxω1:k∈[r]k ∥Āω1 · · · Āωk
∥/ξ̂k for any ξ̂ ≥ ξ(Â1:s)

Theorem 6.10 (Stability Analysis). Assume Ω̂1:r = Ω1:r in Algorithm 3, then Σ and Σ̂ have

the following relations.

(T1) (Mean-square stability) For any ρ ≥ ρ(A) and its corresponding τ , any ρ̂ ≥ ρ(Â) and
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its corresponding τ̄ , we have

ρ(Â)− ρ(A) ≤ τϵρ + (ρ− ρ(A))

ρ(A)− ρ(Â) ≤ τ̄ ϵρ + (ρ̂− ρ(Â))
(6.12)

where ϵρ :=
√
s((2Ā+ ϵA)ϵA + Ā2ϵT).

(T2) (Uniform stability) For any ξ ≥ ξ(A1:s) and its corresponding κ, any ξ̂ ≥ ξ(Â1:r) and

its corresponding τ̄ , we have

ξ(Â1:r)− ξ(A1:s) ≤ κϵA + (ξ − ξ(A1:s))

ξ(A1:s)− ξ(Â1:r) ≤ κ̄ϵA + (ξ̂ − ξ(Â1:r)).
(6.13)

Proof. From Lemma 6.9, it suffices to prove

ρ(Ā) ≤ τϵρ + ρ, ρ(A) ≤ τ̄ ϵρ + ρ̂. (6.14)

ξ(Ā1:s) ≤ κϵA + ξ, ξ(A1:s) ≤ κ̄ϵA + ξ̂. (6.15)

Since we assume Ω̂1:r = Ω1:r, then for Σ and Σ̄, we have ∥Āi −Ai∥ ≤ ϵA, ∥B̄i −Bi∥ ≤ ϵB,

and ∥T̄−T∥∞ ≤ ϵT. Consider matrix Ā and A, we have [Ā]ij − [A]ij = T̄(j, i)Āj ⊗
Āj −T(j, i)Aj ⊗Aj = T̄(j, i)(Āj ⊗ Āj −Aj ⊗Aj) + (T̄(j, i)−T(j, i))Aj ⊗Aj. Note that

Āj ⊗ Āj −Aj ⊗Aj = (Āj −Aj)⊗Aj +Aj ⊗ (Āj −Aj) + (Āj −Aj)⊗ (Āj −Aj), which

gives ∥Āj ⊗ Āj −Aj ⊗Aj∥ ≤ (2Ā + ϵA)ϵA. Then, we have ∥[Ā]ij − [A]ij∥ ≤ T̄(j, i)(2Ā +

ϵA)ϵA + |T̄(j, i) − T(j, i)|Ā2. To simplify the notation, we let c1 := (2Ā + ϵA)ϵA and

c2 := Ā2. By Cauchy-Schwarz inequality, we have
∑

i ∥[Ā]ij − [A]ij∥2 ≤ (c1∥T̄(j, :)∥ +
c2∥T̄(j, :)−T(j, :)∥)2. Thus, ∥Ā −A∥ ≤

√
smaxj(

∑
i ∥[Ā]ij − [A]ij∥)0.5 ≤

√
s(c1+c2ϵT) =:

ϵρ.

With Corollary D.9 in the appendix, we have ∥Āk∥ ≤ τ(τϵρ+ρ)k. By Gelfand’s formula,

ρ(Ā) = lim supk→∞ ∥Āk∥ 1
k ≤ τϵρ + ρ, which shows the left inequality of (6.14). If we

use Corollary D.9 the other way, we have ∥Ak∥ ≤ τ̄(τ̄ ϵρ + ρ̂)k, which similarly implies

ρ(A) ≤ τ̄ ϵρ + ρ̂. With these results, (6.14) is proved. (6.15) can be shown similarly by

noticing ∥Āi −Ai∥ ≤ ϵA and then using Lemma D.8 in the appendix.

Theorem 6.10 provides upper bounds on |ρ(Â) − ρ(A)| and |ξ(Â1:r) − ξ(A1:s)|. By

definition, τ decreases when ρ increases, and the same applies to the pairs {τ̄ , ρ̂}, {κ, ξ},
and {κ̄, ξ̂}. Hence, for fixed ϵρ and ϵA, by tuning the free parameters ρ, ρ̂, ξ, and ξ̂, one

may obtain tighter upper bounds in Theorem 6.10. When ρ = ρ(A), ρ̂ = ρ(Â), the bound
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in (T1) becomes tight at ϵρ = 0 as the upper and lower bounds meet at 0. Note that these

results hold for both stable and unstable Σ, and does not require perturbation ϵA, ϵB, ϵT to

be small, which is in contrast to approximation results in Theorem 6.7 and 6.8.

Now we briefly compare the complexities for computing or approximating ρ(A), ρ(Â), ξ(A1:s),

and ξ(Â1:r). Since A has dimension sn2×sn2, the complexity to compute its spectral radius

ρ(A) is O(s3n6), but it only requires O(r3n6) for ρ(Â). Computation of the joint spectral

radius is in general undecidable (Jungers, 2009). An iterative approach (Parrilo and Jad-

babaie, 2008) provides an approximation for ξ(A1:s) with computational complexity O(s),
whereas it only requires O(r) for ξ(Â1:r).

6.7 Controller Design with Case Study on LQR

When the mode of an MJS can be observed at run-time, one can use mode-dependent con-

trollers. A mode-dependent controller is essentially a collection of individual controllers, one

per mode, and the deployed controller switches with corresponding modes. Therefore, if we

can reduce the modes, that would also reduce the number of controllers in a mode-dependent

control. That is, with the reduced Σ̂, we can design mode-dependent controller K̂1:r for Σ̂

and then associate every mode i in Σ with K̂k if i ∈ Ω̂k. Since Σ̂ has a smaller scale than

Σ, the computational cost may be reduced but the question is how this simplified controller

performs on the original system Σ. In this section, we show how this idea can be used for

the infinite-horizon LQR problems for MJS and provide suboptimality guarantees for the

reduced controller.

We consider the infinite-horizon MJS-LQR problem (2.34) with mode-independent cost

matrices, i.e, Q1:s = Q and R1:s = R. The main assumption in this section is as follows,

which guarantees the existence and uniqueness of the optimal solution to the MJS-LQR

problem according to Lemma 2.22.

Assumption A6.1. The problem MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) satisfies the following.

(a) For all i ∈ [s], Qi = Q and Ri = R for some Q,R ≻ 0.

(b) The MJS Σ = MJS(A1:s,B1:s,T) is stabilizable.

To design controllers with the reduced Σ̂ = MJS(Â1:r, B̂1:r, T̂), we can first compute

controller K̂1:r by solving LQR problem with Σ̂ as the MJS dynamics. To ease the exposition,

similar to Section 2.3.2, we define the following operators. For a collection of positive semi-

71



definite matrices X1:r ∈ Sn
r,+, for all i ∈ [r], define

φ̂i(X1:r) :=
∑
j∈[r]

T̂(i, j)Xj, (6.16)

R̂i(X1:r) := Q+ Â
⊺
i φ̂i(X1:r)Âi

− Â
⊺
i φ̂i(X1:r)

⊺
B̂i

(
R+ B̂

⊺
i φ̂i(X1:r)B̂i

)−1

B̂
⊺
i φ̂i(X1:r)Âi, (6.17)

K̂i(X1:r) := −
(
R+ B̂

⊺
i φ̂i(X1:r)B̂i

)−1 (
B̂

⊺
i φ̂i(X1:r)Âi

)
. (6.18)

We first solve for the following cDARE:

X1 = R̂1(X1:r)

X2 = R̂2(X1:r)

...

Xr = R̂r(X1:r)

(6.19)

with respect to positive semi-definite matrices X1:r ∈ Sn
r,+. Let P̂1:r ∈ Sn

r,+ denote the

solution. Then we compute controller K̂1:r as

K̂i = K̂i(P̂1:r), ∀ i ∈ [r]. (6.20)

To apply the controller K̂1:r to the original MJS Σ, we simply let ut = K̂kxt if ωt = k.

Note that in MJS-LQR problems, the number of coupled Riccati equations is the same as

the number of modes, the computational cost for Σ is O(s) while only O(r) for Σ̂, thus the
saving is prominent when r ≪ s.

Next, we analyze the suboptimality when applying controllers computed with Σ̂. We will

take the expanded and mode-reducible MJS Σ̄ constructed with Σ̂ and Ω̂1:r in Section 6.6 as

a bridge. To begin with, similar to the notations for Σ̂, we define φ̄1:s, R̄1:s, K̄1:s, P̄1:s, and

K̄1:s. In terms of LQR solutions, the relation between Σ̂ and Σ̄ is given below.

Lemma 6.11. Assume the Riccati solution P̄1:s exists and P̄i ≻ 0 for all i. Then, (i) there

exists a unique Riccati solution P̂1:r in Sn
r,+; (ii) P̂k = P̄i, K̂k = K̄i for any i ∈ Ω̂k for any

k.

Proof. We consider the Riccati operator iteration defined as follows: P̄
(0)
i = Q, P̄

(h+1)
i =

R̄i(P̄
(h)
i ) for all i ∈ [s], h ∈ N and P̂

(0)
k = Q, P̂

(h+1)
i = R̂i(P̂

(h)
i ) for all k ∈ [r], h ∈ N. Then,

note that by construction, for all i ∈ Ω̂k and all l ∈ [r], we have
∑

j∈Ω̂l
T̄(i, j) = T̂(k, l).

Through induction and algebra, it is easy to show that for all h ∈ N, and for any i, i′ ∈ Ω̂k
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for any k, we have P̄
(h)
i = P̄

(h)
i′ = P̂

(h)
k .

Since P̄i≻0, by Fact B.4 in the appendix, we know P̄1:s is the unique solution among Sn
s,+,

and K̄1:s stabilizes Σ̄. According to Costa et al. (2006, Proposition A.23), the stabilizability

of Σ̄ and the fact Q,R≻0 imply limh→∞ P̄
(h)
i = P̄i. Combining this convergence result with

the Riccati iteration results we just showed, we further have, for any i, i′ ∈ Ω̂k and any k,

we have P̄i = P̄i′ = P̂k. Then, it is easy to show that K̄i = K̄i′ = K̂k. The uniqueness of

P̂1:s can be shown by contradiction.

With this lemma, we have the following suboptimality guarantees in terms of applying

controller K̂1:r to Σ.

Theorem 6.12 (LQR Suboptimality). Suppose A6.1 holds, and Σ has additive Gaussian

noise N (0, σ2
wIn) that is independent of the mode switching. Let J⋆ and Ĵ respectively denote

the infinite time average cost incurred by the optimal controller K⋆
1:s and controller K̂1:r (at

time t, ut = K̂kxt if ωt ∈ Ω̂k). Then, there exists constants ϵ̄A,B, ϵ̄T, CA,B, and CT, such

that when max{ϵA, ϵB} ≤ ϵ̄A,B and ϵT ≤ ϵ̄T,

Ĵ − J⋆ ≤ σ2
w(CA,B max{ϵA, ϵB}+ CTϵT)

2 (6.21)

Let J⋆
∞ and Ĵ∞ denote the infinite time cumulative cost incurred by K⋆

1:s and K̂1:r respectively.

Then, when σw = 0, ϵT ≤ ϵ̄T, and max{ϵA, ϵB} ≤ ϵ̄A,B,

Ĵ∞ − J⋆
∞ ≤ (C ′

A,Bmax{ϵA, ϵB}+ C ′
TϵT)∥x0∥2, (6.22)

for some constants C ′
A,B and C ′

T.

Proof. We will use Lemma 6.11 and Σ̄ and K̄1:s as a bridge to compare K̂1:r and K⋆
1:s.

First, we prove (6.21). Comparing Σ̄ and Σ, one can see ∥Āi −Ai∥ ≤ ϵA, ∥B̄i −Bi∥ ≤ ϵB,

and ∥T̄−T∥∞ ≤ ϵT. Then, from Theorem 4.1 we know when max{ϵA, ϵB} ≤ ϵ̄A,B and

ϵT ≤ ϵ̄T for some constants ϵ̄A,B and ϵ̄T, the Riccati solution P̄1:s uniquely exists among

Sn
s,+ and are positive definite, and the cost J̄ when applying K̄1:s to Σ has suboptimality

J̄−J⋆ ≤ σ2
w(CA,Bmax{ϵA, ϵB}+CTϵT) for some constants CA,B and CT. Using Lemma 6.11,

we know P̂1:r uniquely exists Sn
s,+, and K̂k = K̄i for any i belonging to any Ω̂k, which implies

applying K̄1:s is equivalent to applying K̂1:r as in the theorem statement. Thus J̄ = Ĵ , and

Ĵ − J⋆ = J̄ − J⋆ ≤ σ2
w(CA,Bmax{ϵA, ϵB}+ CTϵT).

Next, we prove (6.22). Similar as above, we let J̄∞ denote the cumulative cost when

applying K̄1:s to Σ, then we have Ĵ∞ = J̄∞. From the proof of Costa et al. (2006, Theorem

4.5), we have J̄∞− J⋆
∞ =

∑∞
t=0 E[∥Mωt(K̄ωt −K⋆

ωt
)xt∥2] where Mi = R+B⊺

iφi(P1:s)Bi and
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xt is driven by controller K̄1:s. From Theorem 4.1, we know when max{ϵA, ϵB} ≤ ϵ̄A,B and

ϵT ≤ ϵ̄T, then K̄1:s is a stabilizing controller and ∥K̄1:s −K⋆
1:s∥ ≤ CK

A,Bmax{ϵA, ϵB}+CK
T ϵT

for some constants CK
A,B and CK

T . Following from Lemma 2.15, we know
∑∞

t=0 E[∥xt∥2] ≤
Cx∥x0∥2 for some constant Cx. Combining these results, the suboptimality is bounded by

Ĵ∞−J⋆
∞ ≤ ∥M1:s∥∥K̄1:s −K⋆

1:s∥
∑∞

t=0 E[∥xt∥2] ≤ ∥M1:s∥Cx(C
K
A,Bmax{ϵA, ϵB}+CK

T ϵT)∥x0∥2.

In Theorem 6.12, constants ϵ̄A,B, ϵ̄T, CA,B, CT, C
′
A,B, and C ′

T only depend on the original

MJS Σ and cost matrices Q and R, and their exact expressions can be obtained following

the proof and corresponding references. As a sanity check, when there is no perturbation,

i.e., mode-reducible case, then we have Ĵ = J⋆ and Ĵ∞ = J⋆
∞, which can also be implied

from Lemma 6.11. For the reduced MJS Σ̂, its Riccati solution P̂1:r and thus controllers

K̂1:r are guaranteed to exist when perturbation ϵA, ϵB, and ϵT are small enough as required

in Theorem 6.12.

In the noisy case, both Ĵ∞ and J⋆
∞ are infinite, so the cumulative suboptimality Ĵ∞−J⋆

∞

is only studied for the noise-free case as in (6.22). On the other hand, in the noise-free case,

we have not only J⋆ = Ĵ as implied by (6.21), but also J⋆ = Ĵ = 0 as long as K̂1:r is

stabilizing.

6.8 Experiments

In this section, we present synthetic experiments to evaluate the main results in this chapter.

We evaluate the clustering performance of Algorithm 3 and the LQR controller designed with

the reduced MJS Σ̂ as discussed in Section 6.7. All the experiments are performed using

MATLAB R2020a on a laptop with Xeon E3-1505M CPU. We use the kmeans() function

from the Statistics and Machine Learning Toolbox in MATLAB for the k-means problem in

Algorithm 3.

6.8.1 Clustering Evaluation

We consider the uniform partition Ω1:r, i.e. |Ωi| = s̄ := s/r for any i. The system Σ is

randomly generated according to P6.1 or P6.2 with desired levels of perturbation ϵA, ϵB, ϵT

so that in (6.2) each summand ∥Ai −Ai′∥ ≤ ϵA/(rs̄
2). The same applies to B1:s and T.

Specifically, we first randomly generate a small scale MJS Σ̆ = MJS(Ă1:r, B̆1:r, T̆): we sample

each matrix element in Ăk and B̆k from standard Gaussian distributions and then scale the

matrices so that each ∥Ăk∥ = 0.5 and ∥B̆k∥ = 1 unless otherwise mentioned; and each T̆(i, :)

is sampled from the flat Dirichlet distribution. Then, we generate Σ by augmenting Σ̆. For
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every mode i ∈ Ωk, we let Ai = Ăk +Ei and Bi = B̆k +Fi where we sample elements in Ei

and Ei from standard Gaussian and then scale them so that ∥Ei∥F = ϵA
2rs̄2

and ∥Fi∥F = ϵB
2rs̄2

.

The generation of T is a bit involved. For the aggregatable case P6.2, we first generate a

Markov matrix T̄ ∈ Rsxs such that for every i ∈ Ωk, T̄(i,Ωl) = ak,lT̆(k, l) where ak,l ∈ R1x|Ωl|

is sampled from the flat Dirichlet distribution; then we let T(i, :) = (1− ϵT
2rs̄2

)T̄(i, :) + ϵT
2rs̄2

bi

where bi ∈ R1xs is again sampled from the flat Dirichlet distribution. The same steps are

used to generate T for the lumpable case P6.1 except that T̄(i,Ωl) = ai,lT̆(k, l). Following

these steps, Σ satisfies the perturbation conditions in P6.1 and P6.2.

To evaluate Algorithm 3, we fix n = 5, p = 3, r = 4 and record the misclustering rate

(MR) defined in Section 6.4.1 over 100 runs. Fig. 6.2 presents the clustering performances

under different number of modes s and perturbations ϵA, ϵB and ϵT. In the plots, we nor-

malized the perturbation on the x-axis by s2 so that the trends under different s can be

better visualized. This also follows from the experiment setup: each summand in (6.2) has

∥Ai −Ai′∥ ≤ O(ϵA/s2). It is clear that the clustering performance degrades with increasing

s and perturbations. We can also observe that when the perturbation is small, there are no

misclustered modes.
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Figure 6.2: MJS mode reduction — clustering performance. MR (median, first and third quartiles) vs number
of modes s vs perturbation level. First row: aggregatable case P6.2. Second row: lumpable case P6.1. First
column: ϵT = 0.5s2, αA∝1/maxi∥Ai∥, αB∝1/maxi∥Bi∥, αT∝ 0.01/∥T∥. Second column: ϵA, ϵB = 0.5s2,
αA∝0.01/maxi∥Ai∥, αB∝0.01/maxi∥Bi∥, αT∝1/∥T∥.
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Figure 6.3: MJS reduction — LQR suboptimality. (a) LQR suboptimality (median) vs perturbations; (b)
LQR computation time (median) for the original MJS Σ and the reduced MJS Σ̂ with different number of
modes and clusters. (We omit the quartiles as they are very close to the median.)

6.8.2 LQR Controller Design

Then, we implement the idea of designing LQR controllers for the original Σ through the

reduced Σ̂ as discussed in Section 6.7. We let r = 4, n = 10, p = 5, and the system dynamics

is generated the same way as the previous section. The process noise variance is σ2
w = 0.1,

and the initial state is x0 = 1. Fig. 6.3a shows the suboptimality against perturbations for

s = 100. As one would expect, the suboptimality increases with the perturbation levels and

is 0 when there is no perturbation. The trend on ϵT is evident when ϵA and ϵB are small but

imperceptible for larger values of ϵA and ϵB. Fig. 6.3b shows the time to compute controllers

via Riccati iterations using Σ and Σ̂ as a function of s. The computation terminates when

the controller difference between two consecutive iterations falls below 10−12. We see when

s is large, Σ needs significantly more time than Σ̂.

Next, we consider a more practical scenario where one has no knowledge of the true

number of cluster r, and replace it in Algorithm 3 with a hyper-parameter r̂ as the number

of modes in Σ̂. We fix s = 100 and r = 30, and the rest of the experiment setup is the same

as Fig. 6.3. We record the suboptimality and computation time under different choices of r̂ in

Table 6.2. When increases r̂, the suboptimality achieves the minimum when r̂ = r = 30 and

then gradually increases until r̂ = s, i.e. no reduction is performed at all. This comes as a bit

of surprise as one would expect no worse performance when using more clusters than needed.

Further investigation suggests that when r̂ > r, misclustering occurs more frequently than

the case of r̂ = r, which is likely to account for the performance degradation. In practice,

to find the best r̂, one could try multiple r̂ in Algorithm 3, plug in the resulting partitions

into P6.1 and P6.2, and select the one that gives the smallest perturbation ϵA, ϵB, ϵT.
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Table 6.2: Suboptimality vs computation time vs selected number of modes in Σ̂

r̂ 10 20 30 40 50
Ĵ−J⋆

J⋆ 1.2e−1 3.8e−2 4.1e−7 6.9e−5 8.9e−4
Time (sec) 3.7e−2 6.8e−2 1.4e−1 2.2e−1 3.2e−1

r̂ 60 70 80 90 100
Ĵ−J⋆

J⋆ 7.1e−3 1.6e−2 2.1e−2 1.5e−2 0

Time (sec) 6.8e−1 8.4e−1 1.0e0 1.1e0 1.2e0

6.8.3 Trajectory Approximation

In this section, we evaluate the trajectory approximation results from Section 6.5. Let

θ = π/16, Ă1 = [[cos(θ), sin(θ)]⊺, [− sin(θ), cos(θ)]⊺]⊺, Ă2 = [[0.8, 0]⊺ , [0, 0.8]⊺]⊺, and Ă3 =

[[1.2, 0]⊺, [0, 1.2]⊺]⊺. Then, we construct an autonomous MJS Σ with 6 modes: for k =

{1, 2, 3}, A2k−1 = Ăk + [[0.1, 0]⊺, [0, 0.1]⊺]⊺ and A2k = Ăk − [[0.1, 0]⊺, [0, 0.1]⊺]⊺. The uniform

partition {{1, 2}, {3, 4}, {5, 6}} gives ϵA = 0.6
√
2 according to P6.1. Define T such that for

all i, T(i, j) = 0.2 if j ∈ {1, 2, 3, 4} and T(i, j) = 0.1 if j ∈ {5, 6}. By relevant definitions in

Section 6.5, the constructed Σ is mean-square stable but not uniformly stable.

We fix the initial state x0 = [1, 1]⊺, generate 500 independent trajectories for states xt

and x̂t, and record the difference ∥xt − x̂t∥. In Fig. 6.4, each thin solid line represents the

difference, in log-scale, for each trajectory, the yellow dashed line shows their average, and

the blue dashed line depicts the upper bound in Theorem 6.7. Throughout the time horizon,

though not very tight, the theoretical upper bound stays above the averaged difference. Note

that, for a given δ, by Markov inequality, shifting the upper bound in the plot upward by

log(δ) would give a bound on the individual error trajectories with probability 1 − δ. As

seen in the figure, even the non-shifted version serves a good bound for individual error

trajectories.

Figure 6.4: MJS reduction — trajectory difference and the upper bound
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6.9 Conclusion

In this chapter, we propose a clustering-based method to reduce the number of modes in an

MJS. The reduced MJS provably well approximates the original MJS in terms of trajectory,

transition kernels, stability, and controller optimality. One future direction could be the

generalization of the offline controller design scheme in Section 6.7 to settings where con-

trollers need to be computed in the runtime, such as model predictive control and adaptive

control. In these problems, the savings of computation time would be even more prominent.

Another potential future direction could be the extension of the fully observed MJS in this

chapter to partially observed MJS, i.e., the state xt is observed through yt = Cωtxt for

some mode-dependent output matrices C1:s. As a side note, the similarity between MJS

and Markov decision processes (MDP) hints that the framework and principles developed

for MJS in this chapter may also help the complexity reduction of MDP and reinforcement

learning problems.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Markov jump systems (MJSs) provide a systematic paradigm to model systems with time-

varying dynamics. In this dissertation, several problems regarding MJSs are studied, in-

cluding system identification, certainty equivalent control, adaptive quadratic control, and

model reduction. We show how recent advances in statistics, online optimization, and ma-

chine learning can bring new solutions, insights, and analyses to these problems. Specifically,

finite-sample analysis is developed for the identification of MJS dynamics using a single tra-

jectory. Based on this, we propose a model-based adaptive control scheme to solve for LQR

problems with unknown MJS dynamics and establish performance guarantees in terms of

the regret. Finally, we show how clustering techniques from unsupervised learning can help

reduce the mode complexity of an MJS.

We hope this dissertation could encourage and facilitate more studies in MJSs and the

fusions between control and other fields. Though mode switching complicates the formula-

tion and computation of many problems, MJSs have preserved solutions and guarantees as

neat as LTI systems. Besides, the computational costs that scale with the number of modes

may be brought down by our work on mode complexity reduction. In other words, there is

almost no harm in choosing MJSs over LTI systems when it comes to modeling, especially

when the underlying dynamics is time-varying. On the other hand, there have been many

connections and intersections between control and learning problems, e.g., model order re-

duction vs. principal component analysis, system stability vs. gradient descent convergence,

stochastic control vs. reinforcement learning. This dissertation pushes forward the frontiers

by revisiting classical problems for MJSs. We believe this is a direction with many potentials

and interesting problems, which would lead to a promised land. Some future directions are

listed below.
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7.2 Future Work

In this section, we list a few future directions that follow from the established work in this

dissertation.

Identification with unobserved mode: When the mode ωt in the MJS is unobserved, it

poses significant challenges to the identification of an MJS. Without the knowledge of mode

switching information ωt, we can no longer collect the data generated by a specific mode and

feed it to estimation algorithms as in Chapter 3.. In this case, one may need to estimate both

the mode dynamics and mode switching sequence simultaneously. Similar problems have

been studied for scalar switched autoregressive exogenous (SARX) systems in offline fashion

(Ozay et al., 2011, 2015) using algebraic methods. Unlike the Markovian mode switching in

MJS, the mode in SARX is typically assumed to be active for a minimum amount of dwell

time before switching to a new mode. Thus, to adapt these approaches developed for SARX

to MJS would require additional consideration of the underlying Markov chains. Another

approach motivated by Bemporad et al. (2018) and our earlier work Du et al. (2018) is to

alternate between dynamics and mode estimations:

• Repeat until convergence

– given certain estimates of the MJS dynamics Â1:s, B̂1:s, T̂, we can use them to

obtain mode sequence estimates ω̂1:t from the trajectory according to certain

criteria, e.g. prediction error, likelihood.

– given the the obtained mode sequence estimates ω̂1:t, we can use them as the

true mode sequence and apply Algorithm 1 to update the dynamics estimates

Â1:s, B̂1:s, T̂.

In the ideal case, both the dynamics estimates Â1:s, B̂1:s, T̂ and mode sequence estimates

ω̂1:t will converge to the ground truth ones. The initialization of the dynamics Â1:s, B̂1:s, T̂

may be important as only local convergence is shown in Du et al. (2018) for SARX systems.

Earlier works on time series clustering (Aghabozorgi et al., 2015) and recent advances in

MJS mode filtering (Vergés and Fragoso, 2020) might be of help in the development of

methodologies and analyses.

Learning a reduced-mode MJS: Given an unknown-dynamics MJS with a large number

of modes, one can follow Chapter 6 to learn its dynamics from the data and then Chapter 6

to obtain a reduced-mode MJS. However, this two-step procedure may not be the most

data-efficient approach if a reduced-mode MJS is the ultimate goal — for modes that are

similar, data generated by them can be used collectively to learn a mode in the reduced
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MJS. Hence, it would be interesting to develop a more principled method that can learn a

reduced-mode MJS directly from the data. This problem involves estimating mode clustering

and dynamics simultaneously, which shares ideas similar to the identification problem with

unobserved mode discussed above. Both problems consist of estimation and clustering except

that the former problem seeks to cluster the data while this problem aims at clustering the

modes. Being able to solve one problem would surely bring insights to and shed light on the

other.

Partially observed state in adaptive control: In practice, the state xt in the MJS may

only be observed through yt = Cωtxt + vt where the observation yt ∈ Rm is generated by

the mode-dependent output matrices C1:s subject to measurement noise vt. Since direct

feedback using the ground truth state xt is no longer possible, the optimal control problems

now require online estimation of the state xt. This is known as the filtering problem and can

be solved via the Kalman filters. Extending the adaptive control framework in Chapter 5

to this model would require additional effort to study the perturbation of the state filtering.

This part can benefit from the established perturbation results in Chapter 4 since the Kalman

filters also involve solving for coupled Riccati equations.
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Appendix A

Proofs for Results in Chapter 3

A.1 Supporting Lemmas

In this section, we provide a list of lemmas that will be useful for the subsequent proofs.

Lemma A.1. Suppose z ∼ N (0,Σz) with Σz ∈ Rp×p. For any t ≥ (3 + 2
√
2)p, we have

P(∥z∥2 ≥ 3∥Σz∥t) ≤ e−t.

Proof. From Hsu et al. (2012, Proposition 1), we have for any t > 0,

P(∥z∥2 ≥ tr(Σz) + 2
√

tr(Σ2
z)t+ 2∥Σz∥t) ≤ e−t,

which implies

P(∥z∥2 ≥ p∥Σz∥+ 2
√
p∥Σz∥

√
t+ 2∥Σz∥t) ≤ e−t.

We can see that when t ≥ (3 + 2
√
2)p, we have p + 2

√
p
√
t ≤ t, which implies p∥Σz∥ +

2
√
p∥Σz∥

√
t ≤ ∥Σz∥t. Therefore, we have P(∥z∥2 ≥ 3∥Σz∥t) ≤ e−t.

Lemma A.2. Let xt be the MJS state and define the noise-removed state x̃t = xt − wt−1

which is independent of wt−1. Let E[∥x̃t∥] ≤ B and wt has i.i.d. entries with variance σ2
w

bounded in absolute value by cwσw for some cw > 0. Consider the conditional random vector

yt ∼ {xt | ∥xt∥ ≤ 3B, ωt = i}.

If cwσw

√
n ≤ B, then E[yty

⊺
t ] ⪰ σ2

wIn/2.

Proof. Observe that ∥wt∥ ≤ cwσw

√
n ≤ B. Define the events

E1 = {∥xt∥ ≤ 3B}, E2 = {∥x̃t∥ ≤ 2B}. (A.1)
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Clearly E2 ⊂ E1 as ∥wt−1∥ ≤ B and on the event E2, x̃t and wt−1 are independent. Now,

observe that

E[yty
⊺
t ] ⪰ E[yty

⊺
t | E2]P(E2). (A.2)

Note that P(E2) ≥ 1/2 from Markov bound as E[∥x̃t∥] ≤ B. Additionally, on the event E2,

x̃t and wt−1 are independent. Similarly, ωt and wt−1 are also independent. Thus, we further

have

E[yty
⊺
t ] ⪰ E[yty

⊺
t | E2]P(E2),

= E[xtx
⊺
t | ∥x̃t∥ ≤ 2B, ωt = i]P(∥x̃t∥ ≤ 2B),

⪰ E[wt−1w
⊺
t−1 | ∥x̃t∥ ≤ 2B, ωt = i]P(∥x̃t∥ ≤ 2B),

⪰ (1/2)E[wt−1w
⊺
t−1] (A.3)

⪰ σ2
wIn/2. (A.4)

This completes the proof.

Lemma A.3. Let z ∼ N (0, σ2
zIp). Consider the conditional random vector y ∼ {z | ∥z∥ ≤

cσz
√
p}, where c ≥ 6 is a fixed constant. Then E[yy⊺] ⪰ σ2

zIp/2.

Proof. This proof gives a lower bound on the covariance of truncated Gaussian vector z |
∥z∥ ≤ cσz

√
p. Note that, z′ = z/σz is N (0, Ip). Set variable X = ∥z′∥2. We have the

following Lipschitz Gaussian tail bound (we use Lipschitzness of the ℓ2 norm and use minor

calculus and relaxations)

P(∥z′∥2 ≥ 4tp) ≤

1 if t ≤ 1

e−tp/2 if t ≥ 1.

This implies the following tail bound for X

Q(t) = P(X ≥ t) ≤

1 if t ≤ 4p

e−t/8 if t ≥ 4p.

Fix κ ≥ 4. Using integration-by-parts, this implies that

E[X | X ≥ κp]P(X ≥ κp) = −
∫ ∞

κp

xdQ(x) = −[xQ(x)]∞κn +

∫ ∞

κp

Q(x)dx,

≤ (κp+ 8)e−κp/8. (A.5)
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The final line as a function of κp is decreasing when κp ≥ 36. Specifically it is upper bounded

by 1/2 when κ ≥ 36 (as p ≥ 1). Now define the event

Ez = {∥z∥ ≤ σz

√
κ
√
p}.

For
√
κ ≥ 6,

√
κ will map to the c in the statement of the lemma. Observe that this is also

the event X ≤ κp. Following (A.5), this implies

E[∥z∥2 | Ec
z]P(Ec

z) ≤ E[σ2
zX | Ec

z]P(Ez
c)

≤ σ2
zE[X | Ec

z]P(Ec
z)

≤ σ2
z/2.

This also yields the covariance bound of the tail event

E[zz⊺ | Ec
z]P(Ec

z) ⪯ E[∥z∥2Ip | Ec
z]P(Ec

z) ⪯ σ2
zIp/2.

Finally, from the conditional decomposition, observe that

E[zz⊺] = E[zz⊺ | Ec
z]P(Ec

z) + E[zz⊺ | Ez]P(Ez) =⇒ E[zz⊺ | Ez]P(Ez) ⪰ σ2
zIp/2.

To conclude, observe that E[zz⊺ | Ez] = E[yy⊺], where y is the conditional vector defined by

truncating z. Thus, we found

E[yy⊺
]P(Ez) ⪰ σ2

zIp/2 =⇒ E[yy⊺
] ⪰ σ2

zIp/2.

Theorem A.4. (Vershynin, 2012, Theorem 5.41 (Isotropic)) Let X be an N × d matrix

whose rows xi ∈ Rd are independent isotropic. Let m be such that ∥xi∥ ≤
√
m almost surely

for all i ∈ [N ]. Then, for every t ≥ 0, with probability 1− 2d · e−ct2, we have

√
N − t

√
m ≤ σ(X) ≤ ∥X∥ ≤

√
N + t

√
m.

Corollary A.5 (Non-isotropic). Let X be an N × d matrix whose rows xi ∈ Rd are inde-

pendent with covariance Σi. Suppose each covariance obeys

σ2
min ≤ σ(Σi) ≤ ∥Σi∥ ≤ σ2

max.

Let m be such that ∥xi∥ ≤
√
m almost surely for all i ∈ [N ]. Then, for every t ≥ 0, with
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probability 1− 2d · e−ct2, we have

σmin

√
N − t

√
m ≤ σ(X) ≤ ∥X∥ ≤ σmax

√
N + t

σmax

σmin

√
m.

Proof. Let x′
i = Σ

−1/2
i xi. Observe that x′

i are independent isotropic. Define the matrix X′

with rows x′. Note that ∥x′
i∥ ≤ ∥xi∥/σmin ≤ σ−1

min

√
m. Thus, applying Theorem A.4 on X′,

for every t ≥ 0, with probability 1− 2d · e−ct2 , we have

√
N − tσ−1

min

√
m ≤ σ(X′) ≤ ∥X′∥ ≤

√
N + tσ−1

min

√
m. (A.6)

Next, observing that X⊺X =
∑N

i=1 xix
⊺
i =

∑N
i=1

√
Σix

′
ix

′
i

⊺√
Σi, we find that

σ2
minX

′⊺X′ = σ2
min

N∑
i=1

x′
ix

′
i

⊺ ⪯ X
⊺
X =

N∑
i=1

√
Σix

′
ix

′
i

⊺√
Σi

⪯ σ2
max

N∑
i=1

x′
ix

′
i

⊺
= σ2

maxX
′TX′,

which implies that

σminσ(X
′) ≤ σ(X) ≤ ∥X∥ ≤ σmax∥X′∥.

Plugging this into (A.6) completes the proof.

We first list in Table A.1 a few shorthand notations to be used in this appendix. They are

mainly used in the fictional sub-trajectories analysis in Appendices A.3 and A.4. Notations

on the inside the parentheses are arguments to be replaced with context-depending variables.

A.2 Estimating T

The following theorem adapted from Zhang and Wang (2019, Lemma 7) provides the sample

complexity result for estimating Markov matrix T, which is a corresponds to the sample

complexity on ∥T̂−T∥ in Theorem 3.1.

Theorem A.6. Suppose we have an ergodic Markov chain T ∈ Rs×s with mixing time tMC

and stationary distribution π∞ ∈ Rs. Let πmax := maxi∈[s] π∞(i) and πmin := mini∈[s] π∞(i).

Given a state sequence ω0, ω1, . . . , ωT of the Markov chain, define the empirical estimator T̂

of the Markov matrix as follows,

T̂(i, j) =

∑T−1
t=1 1{ωt=i,ωt+1=j}∑T−1

t=1 1{ωt=i}
,
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Table A.1: Notations — Sampling Periods

cw(T, δ)
√
2 log(nT ) +

√
2 log(2/δ)

β+(ρ, τ, cw)
√

2
√
s(c2w+C2

z∥B1:s∥2)τ
1−ρ

β′
+(ρ, τ, cw,K1:s) cw + β+(ρ, τ, cw)(∥A1:s∥+ ∥B1:s∥∥K1:s∥) + Cz

√
p/n∥B1:s∥

Csub,x(x̄0, δ, T, ρ, τ)
2

log(ρ−1)
+ 2

log(ρ−1) log(T )
log
(

24n
√
sτ max{x̄2

0,σ̄
2}

δ(1−ρ)

)}
Csub,x̄ (δ, T, ρ, τ)

1
log(ρ−1)

+ 1
log(ρ−1) log(T )

log(72
√
ns1.5τ
δ

)

Csub,N (x̄0, δ, T, ρ, τ) max
{
CMC , Csub,x(x̄0,

δ
2
, T, ρ, τ), Csub,x̄ (δ, T, ρ, τ)

}
Lid,t0

(x̄0, ρ, τ, cw)
log
(
(1−ρ)x̄2

0/(c
2
wσ̄2

w+σ̄2
z∥B1:s∥)

)
1−ρ

Lid,cov(ρ, τ, cw,K1:s) 1 +
2 log
(
8c2β+(ρ,τ,cw)β′

+(ρ,τ,cw,K1:s)n
√
nsτ
)

1−ρ

Lid,tr1(δ, T, ρ, τ, cw,K1:s) 1 +
2 log
(
2
√
nsτTβ′

+(ρ,τ,cw,K1:s)/(β+(ρ,τ,cw)δ)
)

1−ρ

Lid,tr2(δ, T, ρ, τ, cw,K1:s) 1 + 2
(1−ρ)

log
(192c2τβ′

+(ρ,τ,cw,K1:s)(1+β+(ρ,τ,cw))n
√

s(n+p)T

πminδ

)
Lid,tr3(δ, T, ρ, τ, cw,K1:s) 1 + 2

(1−ρ)
log
( cwσwβ′

+(ρ,τ,cw,K1:s)τn
√
nsT 2

δ(1+β+(ρ,τ,cw))
√

(n+p)
(
Cσw

√
n+p+C0

√
log(2s/δ)

))
Lid (x̄0, δ, T, ρ, τ, cw,K1:s, L) max

{
Lid,t0

(x̄0, ρ, τ, cw), Lid,cov(ρ, τ, cw,K1:s),

Lid,tr1(
δ

36L
, T, ρ, τ, cw,K1:s), Lid,tr2(

δ
36L

, T, ρ, τ, cw,K1:s),

Lid,tr3(
δ

36L
, T, ρ, τ, cw,K1:s), Csub,N

(
x̄0,

δ
2L
, T, ρ, τ

)
log(T )

}
Assume for some δ > 0, T ≥ TMC,1(CMC ,

δ
4
) :=

(
68CMCπmaxπ

−2
min log(

4s
δ
)
)2
, where CMC is

defined in Table C.1. Then, we have with probability at least 1− δ,

∥T̂−T∥ ≤ 4π−1
min∥T∥

√
17πmaxCMC log(T )

T
log

(
4sCMC log(T )

δ

)
. (A.7)

Proof. We first consider estimators computed using a sub-trajectory of ω0, ω1, . . . , ωT , then

combine them together to show the error bound for T̂ in the claim. For CMC defined in

Table C.1, let L = CMC log(T ). Then, for ℓ = 0, 1, . . . , L − 1, define T̂(ℓ) ∈ Rsxs such that

[T̂(ℓ)](i, j) =

∑⌊T/L⌋
k=1 1{ωkL+ℓ=i,ωkL+1+ℓ=j}∑⌊T/L⌋

k=1 1{ωkL+ℓ=i}
. In other words, T̂(ℓ) is the estimator computed using

data with sub-sampling period L. Following the proof of (Zhang and Wang, 2019, Lemma

7), we know for any ϵ < πmin/2, suppose L ≥ 6tMC log(ϵ−1).

P
(
∥T̂(ℓ) −T∥ ≤ 4π−1

min∥T∥ϵ
)
≥ 1− 4s exp

(
− Tϵ2

17πmaxL

)
. (A.8)

By setting δ = 4s exp
(
− Tϵ2

17πmaxL

)
, one can also interpret the above result as: for all δ > 0,
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suppose

L ≥ 3tMC log

(
T

17πmaxL log(4s
δ
)

)
, (A.9)

then when

T ≥ 68Lπmaxπ
−2
min log(

4s

δ
), (A.10)

we have with probability at least 1− δ

∥T̂(ℓ) −T∥ ≤ 4π−1
min∥T∥

√
17πmaxCMC log(T ) log(4s

δ
)

T
. (A.11)

One can verify (A.9) holds by plugging in L = CMC log(T ) and using definition CMC := tMC ·
max{3, 3−3 log(πmax log(s))}; (A.10) holds under the premise condition T ≥ TMC,1(CMC ,

δ
4
) :=(

68CMCπmaxπ
−2
min log(

4s
δ
)
)2
.

Note that by definition, T̂ can be viewed as a convex combination of T̂(ℓ) for all ℓ =

0, 1, . . . , L, thus by triangle inequality and union bound, we have with probability 1− Lδ,

∥T̂−T∥ ≤ 4π−1
min∥T∥

√
17πmaxCMC log(T ) log(4s

δ
)

T
. (A.12)

Finally, by replacing Lδ with δ, we could show (A.7) and conclude the proof.

A.3 Estimation of A1:s and B1:s from Single Trajectory

(Main SYSID Analysis)

A.3.1 Architecture of the proof

Let ht := [x⊺
t /σw z⊺t /σz]

⊺ be the (scaled) concatenated state vector and define Θ⋆
ωt

:=

[σwLωt σzBωt ]. Then, the closed-loop MJS is governed by the following state equation,

xt+1 = Θ⋆
ωt
ht +wt s.t. ωt ∼ Markov Chain(T). (A.13)

Hence, to estimate Θ⋆
i , for each i ∈ [s], we sub-sample the bounded samples correspond-

ing to ωt = i from the given MJS trajectory {xt, zt, ωt}Tt=0 to obtain s sub-trajectories

{(xt+1,xt, zt, ωt)}t∈Si
, for i = 1, . . . , s and solve s regression problems given by Θ̂i =

(argminΘi
∥Yi −HiΘ

⊺
i ∥2F)

⊺, where the rows of Yi and Hi are {x⊺
t+1}t∈Si

and {h⊺
t }t∈Si

, re-

spectively. Similarly, the rows of Wi are {w⊺
t }t∈Si

. Then, the estimation error of the least-

squares estimator can be bounded as ∥Θ̂i −Θ⋆
i ∥ ≤ ∥H

⊺
iWi∥/λmin(H

⊺
iHi). Since Hi has
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non-i.i.d. rows, it is therefore not straightforward to upper bound ∥H⊺
iWi∥ and lower bound

λmin(H
⊺
iHi) directly. To resolve this issue, we rely on the assumption of mean-square stabil-

ity and use perturbation-based techniques to indirectly bound these terms. For the ease of

analysis, we first derive our estimation error bounds with Assumption A1.1 which assumes

bounded noise, that is, we have ∥wt∥∞ ≤ cwσw for some cw > 0. Later on, we will remove

this assumption to extend our results to the Gaussian noise. The main ingredients of our

proof are as follows:

• Definition A.8 splits each sub-trajectory {(xt+1,xt, zt, ωt)}t∈Si
into L sub-trajectories

{(xℓk+1,xℓk , zℓk , ωℓk)}ℓk∈S(ℓ)
i

through shifting by 0 ≤ ℓ ≤ L−1 and sub-sampling by L ≥
1, that is, given the set Si =

{
t
∣∣ ωt = i, ∥xt∥ ≤ O(σw

√
n log(T )), ∥zt∥ ≤ O(σz

√
p)
}

from Algorithm 1, we split it into L sub-sets, defined as S
(ℓ)
i :=

{
ℓk := ℓ+ kL

∣∣ ωℓk =

i, ∥xℓk∥ ≤ O(σw

√
n log(T )), ∥zℓk∥ ≤ O(σz

√
p)
}
, where k = 1, 2, . . . , ⌊T−L

L
⌋ and

Si =
⋃L−1

ℓ=0 S
(ℓ)
i .

• Lemma A.9 bounds the covariance matrix of the states belonging to the sub-trajectory

{(xℓk+1,xℓk , zℓk , ωℓk)}ℓk∈S(ℓ)
i
.

• Using Definition A.8 and triangle inequality, we have ∥H⊺
iWi∥ ≤

∑L−1
ℓ=0 ∥H

(ℓ)⊺
i W

(ℓ)
i ∥.

Similarly, using Definition A.8 along-with Weyl’s inequality for Hermitian matrices,

we have λmin(H
⊺
iHi) ≥

∑L−1
ℓ=0 λmin

(
H

(ℓ)⊺
i H

(ℓ)
i

)
, where the rows of H

(ℓ)
i and W

(ℓ)
i are

{h⊺
ℓk
}
ℓk∈S

(ℓ)
i

and {w⊺
ℓk
}
ℓk∈S

(ℓ)
i
, respectively. Hence, we can upper bound the estimation

error by upper bounding ∥H(ℓ)⊺
i W

(ℓ)
i ∥ and lower bounding λmin

(
H

(ℓ)⊺
i H

(ℓ)
i

)
for each

0 ≤ ℓ ≤ L− 1.

• Observe that the rows of H
(ℓ)
i are still not independent. However, if we choose L to be

large (Ô(log(T ))), then they are weakly dependent (conditioned on the modes) due to

mean-square stability. Therefore, for the purposes of analysis, for each state xℓk , where

ℓk ∈ S
(ℓ)
i , Definition A.10 introduces its fictional proxy x̄ℓk , called truncated state,

by resetting xℓk′+1 = 0 but preserving the mode switching sequence ωt′ , the excitation

zt′ and the noise wt′ from ℓk′ + 1 to ℓk − 1, where ℓk′ denotes the largest time index

smaller than ℓk in S
(ℓ)
i . One can view x̄ℓk as the zero-initial-state response starting

from time ℓk′ + 1, and xℓk − x̄ℓk as the zero-input response.

• Definition A.11 truncates the states in sub-trajectories {(xℓk+1,xℓk , zℓk , ωℓk)}ℓk∈S(ℓ)
i

to obtain the truncated sub-trajectories {(x̄ℓk+1, x̄ℓk , zℓk , ωℓk)}ℓk∈S(ℓ)
i
. Let the rows

of H̄
(ℓ)
i be {h̄⊺

ℓk
:= [x̄⊺

ℓk
/σw z⊺ℓk/σz]}ℓk∈S(ℓ)

i
. Then using triangle inequality, we have

∥H(ℓ)⊺
i W

(ℓ)
i ∥ ≤ ∥H̄

(ℓ)⊺
i W

(ℓ)
i ∥ + ∥H

(ℓ)⊺
i W

(ℓ)
i − H̄

(ℓ)⊺
i W

(ℓ)
i ∥. Let v be the eigenvector of
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H
(ℓ)⊺
i H

(ℓ)
i with eigenvalue λmin(H

(ℓ)⊺
i H

(ℓ)
i ). We have v⊺H

(ℓ)⊺
i H

(ℓ)
i v = v⊺H̄

(ℓ)⊺
i H̄

(ℓ)
i v +

v⊺(H
(ℓ)⊺
i H

(ℓ)
i −H̄

(ℓ)⊺
i H̄

(ℓ)
i )v =⇒ λmin(H

(ℓ)⊺
i H

(ℓ)
i )∥v∥2 ≥ λmin(H̄

(ℓ)⊺
i H̄

(ℓ)
i )∥v∥2−|v⊺(H

(ℓ)⊺
i H

(ℓ)
i −

H̄
(ℓ)⊺
i H̄

(ℓ)
i )v|. This implies λmin(H

(ℓ)⊺
i H

(ℓ)
i ) ≥ λmin(H̄

(ℓ)⊺
i H̄

(ℓ)
i )−∥H(ℓ)⊺

i H
(ℓ)
i − H̄

(ℓ)⊺
i H̄

(ℓ)
i ∥.

• Theorem A.16 provides an upper bound on (a) ∥H̄(ℓ)⊺
i W

(ℓ)
i ∥, and a lower bound on

(b) λmin(H̄
(ℓ)⊺
i H̄

(ℓ)
i ) as follows:

(a) Using Lemma A.12, when L is large, we have ∥h̄ℓk∥ ≤ O(
√
(n+ p) log(T )).

This implies ∥H̄(ℓ)
i ∥ ≤ ∥H̄

(ℓ)
i ∥F ≤ O(

√
T (n+ p) log(T )). Let H̄

(ℓ)
i has singular

value decomposition UΣVT with ∥Σ∥ ≤ O(
√

T (n+ p) log(T )). Since W
(ℓ)
i has

i.i.d. sub-Gaussian entries, UTW
(ℓ)
i ∈ R(n+p)×n has i.i.d. sub-Gaussian columns.

As a result, applying Theorem 5.39 of Vershynin (2012), we have ∥UTW
(ℓ)
i ∥ ≤

Ô(σw

√
n+ p). Therefore, ∥H̄(ℓ)⊺

i W
(ℓ)
i ∥ ≤ ∥Σ∥∥UTW

(ℓ)
i ∥ ≤ Ô(σw(n+p)

√
T log(T )).

(b) By construction, conditioned on the modes, the rows of H̄
(ℓ)
i contains a subset

of independent rows. Definition A.13 introduces this subset as {h̄⊺
ℓk
}
ℓk∈S̄

(ℓ)
i
,

where S̄
(ℓ)
i :=

{
ℓk := ℓ + kL

∣∣ ωℓk = i, ∥xℓk∥ ≤ O(σw

√
n log(T )), ∥x̄ℓk∥ ≤

O((1/2)σw

√
n log(T )), ∥zℓk∥ ≤ O(σz

√
p)
}
. Let the rows of H̃

(ℓ)
i be {h̄⊺

ℓk
}
ℓk∈S̄

(ℓ)
i
.

Lemma A.14 proves that the rows of H̃
(ℓ)
i are independent, and Lemma A.15

shows that they have bounded covariance. These enable us to use Theorem

5.41 of Vershynin (2012) (by specializing it to non-isotropic rows), to obtain

λmin(H̄
(ℓ)⊺
i H̄

(ℓ)
i ) ≥ λmin(H̃

(ℓ)⊺
i H̃

(ℓ)
i ) ≥

√
|S̄(ℓ)

i |/2− Ô(
√
s(n+ p) log(T )).

• Theorem A.17 upper bounds the perturbation terms ∥H(ℓ)⊺
i W

(ℓ)
i − H̄

(ℓ)⊺
i W

(ℓ)
i ∥ and

∥H(ℓ)⊺
i H

(ℓ)
i − H̄

(ℓ)⊺
i H̄

(ℓ)
i ∥. Both of these terms decay exponentially with L. Hence,

by picking large L (e.g., Ô(log(T ))), they can be upper bounded up to the scale of

∥H̄(ℓ)⊺
i W

(ℓ)
i ∥ and λmin

(
H̄

(ℓ)⊺
i H̄

(ℓ)
i

)
, respectively.

• Theorem A.18 provides finite time estimation error bounds, assuming enough number

of independent rows in H̄
(ℓ)
i , specifically, |S̄(ℓ)

i | ≥ O(πminT/L), and the noise satisfies

Assumption A1.1.

• Lemma A.19 extends the results of Theorem A.18 to the setting of Gaussian noise.

Moreover, Lemma A.21 proves that, with high probability |S̄(ℓ)
i | ≥ O(πminT/L), given

T is sufficiently large. Putting these results together we state our main result on the

finite time identification of MJS in Theorem A.22.

We lower bound |S(ℓ)
i | and |S̄

(ℓ)
i | in Appendix A.4. The proofs of all intermediate theorems

and lemmas are provided in Appendix A.5.
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A.3.2 Preliminaries

Before, we present the proof of Theorem 3.1, we present some preliminary results which cap-

ture the properties of the samples used to estimate the MJS dynamics in Algorithm 1. Given

a stabilizing controller K1:s, under the input ut = Kωtxt + zt, the MJS state equation (2.6)

becomes,

xt+1 = (Aωt +BωtKωt)xt +Bωtzt +wt = Lωtxt +Bωtzt +wt, (A.14)

where {zt}∞t=0
i.i.d.∼ N (0, σ2

zIp) is the i.i.d. excitation for exploration and we let Lωt :=

Aωt + BωtKωt . To estimate the unknown system dynamics (A1:s,B1:s), we run the closed-

loop MJS (A.14) for T time-steps and collect the trajectory (xt, zt, ωt)
T
t=0. Then, we run

Algorithm 1 on the collected trajectory to obtain the estimates (Â1:s, B̂1:s). For the ease of

analysis, we first derive our estimation error bounds with the following assumption on the

noise.

Assumption A1.1 (Bounded noise). Let {wt}T−1
t=0

i.i.d.∼ Dw. There exists σw > 0 and cw ≥ 1

such that, each entry of wt is i.i.d. zero-mean sub-Gaussian with variance σ2
w and we have

∥wt∥∞ ≤ cwσw.

Later on, we will relax this assumption to get the estimation error bounds with the

Gaussian noise. To proceed, we first show that the Euclidean norm of the states xt in

(A.14) can be upper bounded in expectation. The following result, which is a corollary of

Lemma 2.15, accomplishes this.

Corollary A.7 (Bounded states). Let xt be the state at time t of the MJS (A.14), with

initial state x0 ∼ Dx. Suppose Assumption A5.1 on the system and the Markov chain and

Assumption A1.1 on the process noise hold. Suppose {zt}∞t=0
i.i.d.∼ N (0, σ2

zIp). Let Cz :=

σz/σw be a constant, ht := [x⊺
t /σw z⊺t /σz]

⊺ be the concatenated state and define

t0 :=
log
(
(1− ρL)E[∥x0∥2]/(c2wσ2

w + σ2
z∥B1:s∥)

)
1− ρL

, (A.15)

β2
+ :=

2
√
s(c2w + C2

z∥B1:s∥2)τL
1− ρL

. (A.16)

Then, for all t ≥ t0, we have

E[∥xt∥2] ≤ σ2
wβ

2
+n and E[∥ht∥2] ≤ (1 + β2

+)(n+ p). (A.17)

To use mixing-time arguments to estimate the unknown system dynamics (A1:s,B1:s)

from a single trajectory (xt, zt, ωt)
T
t=0 of (A.14), we split the trajectory (xt, zt, ωt)

T
t=0 into

multiple weakly dependent sub-trajectories, defined as follows.
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Definition A.8 (Sub-trajectories of bounded states). Let sampling period L ≥ 1 be an

integer. Let ℓk := ℓ + kL be the sub-sampling indices, where 0 ≤ ℓ ≤ L − 1 is a fixed offset

and k = 1, 2, . . . , ⌊T−L
L
⌋. We sub-sample the trajectory (xt, zt, ωt)

T
t=0 at time indices ℓk ∈ S

(ℓ)
i ,

where

S
(ℓ)
i := {ℓk

∣∣ ωℓk = i, ∥xℓk∥ ≤ cσwβ+

√
n, ∥zℓk∥ ≤ cσz

√
p}, (A.18)

to obtain the ℓth sub-trajectory {(xℓk+1,xℓk , zℓk , ωℓk)}ℓk∈S(ℓ)
i
.

Note that, Si =
⋃L−1

ℓ=0 S
(ℓ)
i , where Si is as defined in Algorithm 1. This shows that a

single trajectory with bounded states and excitations {(xt+1,xt, zt, ωt)}t∈Si
is composed of

L weakly dependent sub-trajectories {(xℓk+1,xℓk , zℓk , ωℓk)}ℓk∈S(ℓ)
i

for 0 ≤ ℓ ≤ L − 1. To

proceed, we first lower and upper bound the covariance of the states belonging to the weakly

dependent sub-trajectories {(xℓk+1,xℓk , zℓk , ωℓk)}ℓk∈S(ℓ)
i
.

Lemma A.9 (Covariance of bounded states). Consider the same setup of Corollary A.7.

Let t0 and β+ be as in (A.15) and (A.16) respectively. Let S
(ℓ)
i be as in Definition A.8 and

c ≥ 6 be a fixed constant. Then, for all ℓk ∈ S
(ℓ)
i such that ℓk = ℓ+ kL ≥ t0, we have

(σ2
w/2)In ⪯ Σ[xℓk ] := E[xℓkx

⊺
ℓk
] ⪯ c2σ2

wβ
2
+nIn, (A.19)

(1/2)In+p ⪯ Σ[hℓk ] := E[hℓkh
⊺
ℓk
] ⪯ c2(1 + β2

+)(n+ p)In+p. (A.20)

To proceed, let ht be as in Corollary A.7 and Θ⋆
i := [σwLi σzBi] for all i ∈ [s]. Then the

output of each sample in {(xt+1,xt, zt, ωt)}t∈Si
can be related to the inputs as follows,

xt+1 = Θ⋆
ωt
ht +wt for all t ∈ Si. (A.21)

Next, to carry out finite sample identification of Θ⋆
i using the method of linear least squares,

we define the following concatenated matrices,

Yi =


x⊺
t1+1

x⊺
t2+1
...

x⊺
t|Si|+1

 , Hi =


h⊺
t1

h⊺
t2
...

h⊺
t|Si|

 , Wi =


w⊺

t1

w⊺
t2
...

w⊺
t|Si|

 , (A.22)

that is, Yi has {x⊺
t+1}t∈Si

on its rows, Hi has {h⊺
t }t∈Si

on its rows and Wi has {w⊺
t }t∈Si

on its

rows. Similarly, we also construct Y
(ℓ)
i , H

(ℓ)
i and W

(ℓ)
i by (row-wise) stacking {x⊺

ℓk+1}ℓk∈S(ℓ)
i
,

{h⊺
ℓk
}
ℓk∈S

(ℓ)
i

and {w⊺
ℓk
}
ℓk∈S

(ℓ)
i

respectively. We have Yi = HiΘ
⋆⊺
i + Wi and the regression
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problem in Algorithm 1 is alternately represented as

Θ̂
⊺
i = argmin

Θi

1

2|Si|
∥Yi −HiΘ

⊺
i ∥2F. (A.23)

The least squares estimator Θ̂⊺
i = H†

iYi =
(
H⊺

iHi

)−1
H⊺

iYi has the following estimation

error,

∥Θ̂i −Θ⋆
i ∥ ≤ ∥

(
H

⊺
iHi

)−1∥∥H⊺
iWi∥ =

∥H⊺
iWi∥

λmin

(
H⊺

iHi

) (a)
=

∥
∑L−1

ℓ=0 H
(ℓ)⊺
i W

(ℓ)
i ∥

λmin

(∑L−1
ℓ=0 H

(ℓ)⊺
i H

(ℓ)
i

) ,
(b)
=

∑L−1
ℓ=0 ∥H

(ℓ)⊺
i W

(ℓ)
i ∥∑L−1

ℓ=0 λmin

(
H

(ℓ)⊺
i H

(ℓ)
i

) , (A.24)

where we obtain (a) from the fact that Si =
⋃L−1

ℓ=0 S
(ℓ)
i and (b) follows from using triangular

inequality and Weyl’s inequality for Hermitian matrices. If we upper bound the terms

∥H(ℓ)⊺
i W

(ℓ)
i ∥ and lower bound the terms λmin

(
H

(ℓ)⊺
i H

(ℓ)
i

)
, for all 0 ≤ ℓ ≤ L − 1, we can use

(A.24) to upper bound the estimation error ∥Θ̂i −Θ⋆
i ∥. However, because H

(ℓ)
i has non-i.i.d.

rows, it is not straightforward to bound the terms ∥H(ℓ)⊺
i W

(ℓ)
i ∥ and λmin

(
H

(ℓ)⊺
i H

(ℓ)
i

)
directly.

To resolve this issue, we rely on the notion of stability and use perturbation based techniques

to indirectly bound these terms in the following sub-sections.

A.3.3 Truncated Sub-trajectories

Definition A.10 (Truncated state vector (Oymak, 2019)). Consider state equation (A.14).

Given, t ≥ L > 0, for each state xt, we define its fictional proxy xt,L by resetting xt−L = 0 but

preserving the excitation zt′, noise wt′, and modes ωt′ for t′ = t− L, . . . , t− 1. Alternately,

xt,L is obtained by driving the system with excitation z′t′ and additive noise w′
t′ until time

t− 1, where

z′t′ =

0 if t′ < t− L

zt′ else
, and w′

t′ =

0 if t′ < t− L

wt′ else
. (A.25)

We call the obtained state xt,L as the L-truncated (or simply truncated) state at time t.

Using Definition A.10, we can obtain independent samples (for the purpose of analysis

only) from a single trajectory which will be used to capture the effect of learning from a

single trajectory. With high probability over the mode observation, truncated states can be

made very close to the original states with sufficiently large truncation length. To show this,
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we expand the closed-loop MJS state equation (A.14) as follows,

xt =


Lω0x0 +Bω0z0 +w0 if t = 1,∏t−1

j=0 Lωj
x0 +

∑t−2
t′=0

∏t−1
j=t′+1 Lωj

Bωt′
zt′ +Bωt−1zt−1

+
∑t−2

t′=0

∏t−1
j=t′+1 Lωj

wt′ +wt−1 if t ≥ 2,

(A.26)

where x0 denotes the state at time t = 0. Using (A.26), the difference between xt and xt,L

is given by

xt − xt,L =
t−1∏

j=t−L

Lωj
xt−L. (A.27)

As a corollary of Lemma 2.15, observe that for a closed loop autonomous system xt+1 =

Lωtxt, mean-square stability implies that, for any initial conditions x0 and ω0, we have

E[∥xt∥2] ≤
√
nsτLρ

t
L∥x0∥2. Combining this argument with (A.27), we have

E[∥xt − xt,L∥2] = E[∥
t−1∏

j=t−L

L+
ωj
xt−L∥2] ≤

√
nsτLρ

L
L∥xt−L∥2,

=⇒ E[∥xt − xt,L∥] ≤
√

(ns)1/2τLρLL∥xt−L∥ ≤
√
nsτLρ

L/2
L ∥xt−L∥, (A.28)

where the expectation is over the Markov modes {ωj}t−1
j=t−L and we get the last relation by

using Jensen’s inequality. Moreover, if we also have ∥xt−L∥ ≤ cσwβ+

√
n, then we can make

E[∥xt − xt,L∥] arbitrarily small by picking a sufficiently large truncation length L ≥ 1. We

have

E[∥xt − xt,L∥ | ∥xt−L∥ ≤ cσwβ+

√
n] ≤ τLρ

L
L∥xt−L∥ ≤ cσwβ+n

√
sτLρ

L/2
L . (A.29)

To proceed, we carry out the truncation of the sub-trajectories introduced in Definition A.8

to get the truncated sub-trajectories defined as follows.

Definition A.11 (Truncated sub-trajectories). Let sampling period L ≥ 1 be an integer.

Let ℓk := ℓ + kL be the sub-sampling indices, where 0 ≤ ℓ ≤ L− 1 is a fixed offset and k =

1, 2, . . . , ⌊T−L
L
⌋. Let S(ℓ)

i be as in Definition A.8. For each ℓk ∈ S
(ℓ)
i , let ℓk′ ∈ S

(ℓ)
i denotes the

largest time index smaller than ℓk. Given the ℓth sub-trajectory {(xℓk+1,xℓk , zℓk , ωℓk)}ℓk∈S(ℓ)
i

from Definition A.8, we truncate each state xℓk by ℓk − ℓk′ − 1 to get the ℓth truncated

sub-trajectory {(x̄ℓk+1, x̄ℓk , zℓk , ωℓk)}ℓk∈S(ℓ)
i
, where

x̄ℓk := xℓk,ℓk−ℓk′−1 and x̄ℓk+1 := Lωℓk
x̄ℓk +Bωℓk

zℓk +wℓk . (A.30)
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If ℓk is the smallest time index in S
(ℓ)
i , we set ℓk′ = 0.

Note that ℓk − ℓk′ ≥ L by definition. Hence, the truncation lengths used to obtain

{x̄ℓk}ℓk∈S(ℓ)
i

are always larger than L − 1. Next, we show that when L is sufficiently large

enough, then the truncated states {x̄ℓk}ℓk∈S(ℓ)
i

as well as the Euclidean distance between the

truncated and non-truncated states can be bounded with high probability over the modes.

Lemma A.12 (Bounded states (truncated)). Consider the same setup of Corollary A.7. Let

{xℓk}ℓk∈S(ℓ)
i

be the bounded states and {x̄ℓk}ℓk∈S(ℓ)
i

be the truncated states from Definition A.8

and A.11 respectively. Let

β′
+ := cw + β+∥L1:s∥+ Cz

√
p/n∥B1:s∥, (A.31)

Ltr1(ρL, δ) := 1 +
2 log

(
2
√
nsτLTβ

′
+/(β+δ)

)
1− ρL

, (A.32)

and L ≥ max{t0, Ltr1(ρL, δ)}. (A.33)

Then, with probability at least 1− δ over the modes, for all ℓk ∈ S
(ℓ)
i and all i ∈ [s], we have

∥xℓk − x̄ℓk∥ ≤ (1/2)cσwβ+

√
n and ∥x̄ℓk∥ ≤ (3/2)cσwβ+

√
n. (A.34)

By construction, conditioned on the modes, x̄ℓk = xℓk,ℓk−ℓk′−1 only depends on the exci-

tation and noise {zt,wt}ℓ+kL−1
t=ℓ+k′L+1. Note that the dependence ranges [ℓ+ k′L+1, ℓ+ kL− 1]

are disjoint intervals for each (k, k′) pairs. Hence, {x̄ℓk}ℓk∈S(ℓ)
i

should all be independent of

each other. However, this is not the case because {x̄ℓk}ℓk∈S(ℓ)
i

are obtained by truncating only

bounded states {xℓk}ℓk∈S(ℓ)
i
. Therefore, we will look for a subset of independent truncated

states within {x̄ℓk}ℓk∈S(ℓ)
i
, as follows.

Definition A.13 (Subset of bounded states). Let sampling period L ≥ 1 be an integer.

Let ℓk = ℓ + kL be the sub-sampling indices, where 0 ≤ ℓ ≤ L − 1 is a fixed offset and

k = 1, 2, . . . , ⌊T−L
L
⌋. We sub-sample the trajectory (xt, zt, ωt)

T
t=0 at time indices ℓk ∈ S̄

(ℓ)
i ,

where

S̄
(ℓ)
i := {ℓk

∣∣ ωℓk = i, ∥xℓk∥ ≤ cσwβ+

√
n, ∥x̄ℓk∥ ≤ (1/2)cσwβ+

√
n, ∥zℓk∥ ≤ cσz

√
p},
(A.35)

to obtain a subset of the ℓth sub-trajectory, denoted by {(xℓk+1,xℓk , zℓk , ωℓk)}ℓk∈S̄(ℓ)
i
.

Next, we show that, conditioned on the modes, the samples in {(x̄ℓk+1, x̄ℓk , zℓk , ωℓk)}ℓk∈S̄(ℓ)
i

are independent.
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Lemma A.14 (Conditional independence). Consider the MJS in (A.14). Suppose {zt}∞t=0
i.i.d.∼

N (0, σ2
zIp) and {wt}∞t=0

i.i.d.∼ Dw satisfies Assumption A1.1. Suppose the sampling period L

satisfies (A.33). Let S
(ℓ)
i and S̄

(ℓ)
i be as in Definition A.8 and A.13 respectively. Then, with

probability at least 1− δ over the mode, we have, (a) {x̄ℓk}ℓk∈S̄(ℓ)
i

is a subset of {x̄ℓk}ℓk∈S(ℓ)
i
,

(b) conditioned on the modes, {x̄ℓk}ℓk∈S̄(ℓ)
i

are all independent, (c) conditioned on the modes,

{x̄ℓk}ℓk∈S̄(ℓ)
i
, {zℓk}ℓk∈S̄(ℓ)

i
and {wℓk}ℓk∈S̄(ℓ)

i
are all independent of each other.

Next, we state a lemma similar to Lemma A.9 to show that the truncated states have

nice covariance properties.

Lemma A.15 (Covariance of truncated states). Consider the setup of Corollary A.7. Let

t0, β+ and β′
+ be as in (A.15), (A.16) and (A.31) respectively. Let c ≥ 6 be a fixed constant

and {x̄ℓk}ℓk∈S̄(ℓ)
i

be as in Lemma A.14. Define

Lcov(ρL) := 1 +
2 log

(
8c2β+β

′
+n
√
nsτL

)
1− ρL

, (A.36)

and suppose, the sampling period L obeys,

L ≥ max{t0, Lcov(ρL)}. (A.37)

Then, for all ℓk ∈ S̄
(ℓ)
i , we have

(σ2
w/4)In ⪯ Σ[x̄ℓk ] := E[x̄ℓk x̄

⊺
ℓk
] ⪯ 2c2σ2

wβ
2
+nIn. (A.38)

(1/4)In+p ⪯ Σ[h̄ℓk ] := E[h̄ℓkh̄
⊺
ℓk
] ⪯ 2c2(1 + β2

+)(n+ p)In+p. (A.39)

To proceed, consider the ℓth truncated sub-trajectory {(x̄ℓk+1, x̄ℓk , zℓk , ωℓk)}ℓk∈S(ℓ)
i

given

by Definition A.11. Let h̄ℓk := [x̄⊺
ℓk
/σw z⊺ℓk/σz]

⊺. Similar to (A.22), we construct Ȳ
(ℓ)
i , H̄

(ℓ)
i

and W
(ℓ)
i by (row-wise) stacking {x̄⊺

ℓk+1}ℓk∈S(ℓ)
i
, {h̄⊺

ℓk
}
ℓk∈S

(ℓ)
i

and {w⊺
ℓk
}
ℓk∈S

(ℓ)
i

respectively. As

an intermediate step, in the following, we will lower bound λmin

(
H̄

(ℓ)⊺
i H̄

(ℓ)
i

)
and upper bound

∥H̄(ℓ)⊺
i W

(ℓ)
i ∥. This will, in turn, allow us to lower and upper bound the non-truncated terms

λmin

(
H

(ℓ)⊺
i H

(ℓ)
i

)
and ∥H(ℓ)⊺

i W
(ℓ)
i ∥ respectively via,

λmin

(
H

(ℓ)⊺
i H

(ℓ)
i

)
≥ λmin

(
H̄

(ℓ)⊺
i H̄

(ℓ)
i

)
− ∥H(ℓ)⊺

i H
(ℓ)
i − H̄

(ℓ)⊺
i H̄

(ℓ)
i ∥, (A.40)

∥H(ℓ)⊺
i W

(ℓ)
i ∥ ≤ ∥H̄

(ℓ)⊺
i W

(ℓ)
i ∥+ ∥H

(ℓ)⊺
i W

(ℓ)
i − H̄

(ℓ)⊺
i W

(ℓ)
i ∥. (A.41)

For this purpose, our next lemma lower bounds the eigenvalues of the matrix H̄
(ℓ)⊺
i H̄

(ℓ)
i and

upper bounds the error term ∥H̄(ℓ)⊺
i W

(ℓ)
i ∥.
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Theorem A.16 (Bounding λmin(H̄
(ℓ)⊺
i H̄

(ℓ)
i ) and ∥H̄(ℓ)⊺

i W
(ℓ)
i ∥). Consider the setup of Corol-

lary A.7. Let t0, β+, β
′
+, Ltr1(ρL, δ) and Lcov(ρL) be as in (A.15), (A.16), (A.31), (A.32)

and (A.36), respectively. Let C,C0 > 0 and c ≥ 6 be fixed constants. Let H̄
(ℓ)
i , H̃

(ℓ)
i and

W
(ℓ)
i be constructed by (row-wise) stacking {h̄⊺

ℓk
}
ℓk∈S

(ℓ)
i
, {h̄⊺

ℓk
}
ℓk∈S̄

(ℓ)
i

and {w⊺
ℓk
}
ℓk∈S

(ℓ)
i

respec-

tively. Suppose the sampling period L and the number of independent samples |S̄(ℓ)
i | satisfy

the following lower bounds,

L ≥ max{t0, Ltr1(ρL, δ), Lcov(ρL)}, (A.42)

|S̄(ℓ)
i | ≥ 16c2(1 + β2

+) log
(2s(n+ p)

δ

)
(n+ p). (A.43)

Then, with probability at least 1− 3δ, for all i ∈ [s], we have

λmin(H̄
(ℓ)⊺
i H̄

(ℓ)
i ) ≥ λmin(H̃

(ℓ)⊺
i H̃

(ℓ)
i ) ≥ |S̄

(ℓ)
i |
16

, (A.44)

∥H̄(ℓ)⊺
i W

(ℓ)
i ∥ ≤ 2c(1 + β+)

√
|S(ℓ)

i |(n+ p)

(
Cσw

√
n+ p+ C0

√
log
(2s
δ

))
. (A.45)

A.3.4 Bounding the Estimation Error

Coming back to the initial problem of estimating the unknownMJS dynamics from dependent

samples, by solving the regression problem (A.23), observe that the estimation error in (A.24)

can be upper bounded as follows,

∥Θ̂i −Θ⋆
i ∥ ≤

∑L−1
ℓ=0 ∥H

(ℓ)⊺
i W

(ℓ)
i ∥∑L−1

ℓ=0 λmin(H
(ℓ)⊺
i H

(ℓ)
i )

,

≤
∑L−1

ℓ=0

(
∥H̄(ℓ)⊺

i W
(ℓ)
i ∥+ ∥H

(ℓ)⊺
i W

(ℓ)
i − H̄

(ℓ)⊺
i W

(ℓ)
i ∥
)∑L−1

ℓ=0

(
λmin(H̄

(ℓ)⊺
i H̄

(ℓ)
i )− ∥H(ℓ)⊺

i H
(ℓ)
i − H̄

(ℓ)⊺
i H̄

(ℓ)
i ∥
) . (A.46)

To upper bound the estimation error ∥Θ̂i −Θ⋆
i ∥ in (A.46), we need to upper bound the

impact of truncation, captured by ∥H(ℓ)⊺
i W

(ℓ)
i − H̄

(ℓ)⊺
i W

(ℓ)
i ∥ and ∥H

(ℓ)⊺
i H

(ℓ)
i − H̄

(ℓ)⊺
i H̄

(ℓ)
i ∥ for

all i ∈ [s] and all 0 ≤ ℓ ≤ L− 1. This is done by the following theorem.

Theorem A.17 (Small impact of truncation). Consider the same setup of Corollary A.7. Let

t0, β+, β
′
+ and Ltr1(ρL, δ) be as in (A.15), (A.16), (A.31) and (A.32), respectively. Suppose

the sampling period L obeys L ≥ max{t0, Ltr1(ρL, δ)}. Let H̄
(ℓ)
i and W

(ℓ)
i be constructed by

(row-wise) stacking {h̄⊺
ℓk
}
ℓk∈S

(ℓ)
i

and {w⊺
ℓk
}
ℓk∈S

(ℓ)
i

respectively. Then, with probability at least
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1− δ over the modes, for all i ∈ [s], we have

∥H(ℓ)⊺
i H

(ℓ)
i − H̄

(ℓ)⊺
i H̄

(ℓ)
i ∥ ≤

3c2β′
+(1 + β+)τLρ

(L−1)/2
L n

√
s(n+ p)|S(ℓ)

i |T
δ

, (A.47)

∥H(ℓ)⊺
i W

(ℓ)
i − H̄

(ℓ)⊺
i W

(ℓ)
i ∥ ≤

ccwσwβ
′
+τLρ

(L−1)/2
L n

√
ns|S(ℓ)

i |T
δ

. (A.48)

Combining Theorems A.16 and A.17, we obtain our result on the estimation of MJS in

(A.14) from finite samples obtained from a single trajectory.

Theorem A.18 (Learning with bounded noise). Consider the setup of Corollary A.7. Let

t0, β+, β′
+, Ltr1(ρL, δ) and Lcov(ρL) be as in (A.15), (A.16), (A.31), (A.32) and (A.36),

respectively. Let S
(ℓ)
i and S̄

(ℓ)
i be as in Definition A.8 and A.13 respectively and assume

|S̄(ℓ)
i | ≥ πminT

2L
, for all i ∈ [s], with probability at least 1− δ. Suppose ∥K1:s∥ ≤ CK for some

constant CK > 0. Let C,C0 > 0, and c ≥ 6 be fixed constants. Define

Ltr2(ρL, δ) := 1 +
2

(1− ρL)
log
(192c2τLβ′

+(1 + β+)n
√
s(n+ p)T

πminδ

)
, (A.49)

Ltr3(ρL, δ) := 1 +
2

(1− ρL)
log
( cwσwβ

′
+τLn

√
nsTT

δ(1 + β+)
√
(n+ p)

(
Cσw

√
n+ p+ C0

√
log(2s/δ)

)).
(A.50)

Suppose the sampling period L and the trajectory length T satisfy

L ≥ max{t0, Lcov(ρL), Ltr1(ρL,
δ

18L
), Ltr2(ρL,

δ

18L
), Ltr3(ρL,

δ

18L
)} (A.51)

T ≥ 32L

πmin

c2(1 + β2
+) log

(36sL(n+ p)

δ

)
(n+ p). (A.52)

Then, solving the least-squares problem (A.23), with probability at least 1−δ/2, for all i ∈ [s],

we have

∥Âi −Ai∥ ≤
(σz + CKσw)

σz

192c(1 + β+)

πmin

√
L(n+ p)

T

(
C
√
n+ p+ (C0/σw)

√
log
(36sL

δ

))
,

∥B̂i −Bi∥ ≤
σw

σz

192c(1 + β+)

πmin

√
L(n+ p)

T

(
C
√
n+ p+ (C0/σw)

√
log
(36sL

δ

))
. (A.53)

Next, we use the following lemma to relax the Assumption A1.1 on the noise.

Lemma A.19 (From Bounded to Unbounded Noise). Let g
i.i.d.∼ N (0, σ2

wInT ) and a be two

independent vectors. Let g′ be the truncated Gaussian distribution g′ ∼ {g | ∥g∥∞ ≤ cwσw}.
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Let Sg,a be the indicator function of an event defined on vectors g, a s.t.

E[Sg′,a] ≥ 1− δ/2.

That is, the event holds, on the bounded variable g′, with probability at least 1− δ/2. Then,

if the bound above holds for cw > Cδ :=
√

2 log(nT ) +
√
2 log(2/δ), we also have that

E[Sg,a] ≥ 1− δ.

That is, the probability that event holds on the unbounded variable g is at least 1− δ.

Combining Theorem A.18 and Lemma A.19, we get the following result on learning the

MJS dynamics when the process noise is Gaussian.

Corollary A.20 (Learning with un-bounded noise). Consider the same setup of Theo-

rem A.18 except that Assumption A1.1 is replaced with {wt}∞t=0
i.i.d.∼ N (0, σ2

wIn) and the

threshold for bounding the noise satisfies,

cw ≥ Cδ :=
√
2 log(nT ) +

√
2 log(2/δ). (A.54)

Suppose ∥B1:s∥ ≤ CB for some CB > 0 and the trajectory length T satisfies,

T ≳
τL
√
sL

πmin(1− ρL)

(
C2

δ + C2
zC

2
B

)
log
(36sL(n+ p)

δ

)
(n+ p). (A.55)

Then, solving the least-squares problem (A.23), with probability at least 1− δ, for all i ∈ [s],

we have

∥Âi −Ai∥

≲
(σz + CKσw)

σz

τL
(
Cδ + CzCB

)
πmin(1− ρL)

√
sL(n+ p)

T

(
C
√
n+ p+ (C0/σw)

√
log
(36sL

δ

))
,

∥B̂i −Bi∥

≲
σw

σz

τL
(
Cδ + CzCB

)
πmin(1− ρL)

√
sL(n+ p)

T

(
C
√
n+ p+ (C0/σw)

√
log
(36sL

δ

))
. (A.56)

At this point, we are only left with verifying the assumption that, for all i ∈ [s], with

probability at least 1−δ, we have |S̄(ℓ)
i | ≥ πminT

2L
for some choice of L and T . In the following,

we will state a lemma to show that the above assumption indeed holds for certain choice of

L and T . The detailed analysis for obtaining a lower bound on |S̄(ℓ)
i | is given in Section A.4.
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Specifically, the following result can be obtained by applying union bound to Lemma A.27

over ℓ = 0, 1, . . . , L− 1.

Lemma A.21. Let S̄
(ℓ)
i be as in Definition A.13 and consider the setup of Algorithm 1. As-

sume cx ≥ cx(ρL, τL), cz ≥ cz, L ≥ Csub,N

(
β0

√
n, δ

L
, T, ρL, τL

)
log(T ), and T ≥ TN(

L
log(T )

, δ
L
, ρL, τL),

where cx(ρ, τ), cz, and TN(C, δ, ρ, τ) are defined in Table C.1, and Csub,N (x̄0, δ, T, ρ, τ) is de-

fined in Table A.1. Then with probability at least 1−δ, for all i ∈ [s] and all ℓ = 0, 1, . . . , L−1
we have

|S̄(ℓ)
i | ≥

πminT

2L
. (A.57)

A.3.5 Finalizing the SYSID: Proof of Theorem 3.1

To finalize, we combine Corollary A.20 and Lemma A.21 to get our main result on learning

the unknown MJS dynamics. The following theorem is a more refined and precise version of

our main system identification result in Theorem 3.1.

Theorem A.22 (Main result). Consider the MJS (A.14), with initial state x0 ∼ Dx. Sup-

pose Assumption A5.1 on the system and the Markov chain holds. Suppose {zt}∞t=0
i.i.d.∼

N (0, σ2
zIp), {wt}∞t=0

i.i.d.∼ N (0, σ2
wIn) and the threshold for bounding the noise satisfies,

cw ≥ Cδ :=
√
2 log(nT ) +

√
2 log(2/δ). (A.58)

Suppose ∥B1:s∥ ≤ CB and ∥K1:s∥ ≤ CK for some CB, CK > 0. Let t0, β+, β
′
+, Ltr1(ρL, δ),

Lcov(ρL), Ltr2(ρL, δ) and Ltr3(ρL, δ) be as in (A.15), (A.16), (A.31), (A.32), (A.36), (A.49)

and (A.50), respectively. Suppose cx ≥ cx(ρL, τL), cz ≥ cz, where cx(ρ, τ) and cz are defined

in Table C.1. Let C,C0 > 0, and c ≥ 6 be fixed constants. Suppose the trajectory length T

satisfies

T ≳ max

{
τL
√
sL

πmin(1− ρL)

(
C2

δ + C2
zC

2
B

)
log
(36sL(n+ p)

δ

)
(n+ p), TN(

L

log(T )
,
δ

L
, ρL, τL)

}
(A.59)

where, L ≥ max

{
t0, Lcov(ρL), Ltr1(ρL,

δ

18L
), Ltr2(ρL,

δ

18L
), Ltr3(ρL,

δ

18L
),

Csub,N

(
β0

√
n,

δ

L
, T, ρL, τL

)
log(T )

}
, (A.60)

where TN(C, δ, ρ, τ) and Csub,N (x̄0, δ, T, ρ, τ) are defined in Table C.1 and A.1 respectively.

Then, solving the least-squares problem (A.23), with probability at least 1− δ, for all i ∈ [s],
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we have

∥Âi −Ai∥

≲
(σz + CKσw)

σz

τL
(
Cδ + CzCB

)
πmin(1− ρL)

√
sL(n+ p)

T

(
C
√
n+ p+ (C0/σw)

√
log
(36sL

δ

))
,

∥B̂i −Bi∥

≲
σw

σz

τL
(
Cδ + CzCB

)
πmin(1− ρL)

√
sL(n+ p)

T

(
C
√
n+ p+ (C0/σw)

√
log
(36sL

δ

))
. (A.61)

Remark A.23. Note that in Theorem A.22, with the shorthand notations defined in Tables

C.1 and A.1, the premise conditions (A.58), (A.59), and (A.60) can also be interpreted as

the following.

cw = cw(T, δ) (A.62)

T ≥ T id,N(L, δ, T, ρL, τL) (A.63)

L ≥ Lid

(
β0

√
n, δ, T, ρL, τL, cw(T, δ),K1:s, L

)
. (A.64)

From the definition of Lid, one can see there exists L = Õ(log(T )) such that (A.64) holds by

choosing L = L. Define shorthand notation T id,N,L(δ, T, ρ, τ) := T id,N(L, δ, T, ρL, τL), then

the premise conditions (A.58), (A.59), and (A.60) can be implied by by the single condition

T ≥ T id,N,L(δ, T, ρ, τ), under which the main results in Theorem A.22 still hold.

A.3.6 Discussion

• Sample complexity: Here, a few remarks are in place. First, the result appears to be

convoluted however most of the dependencies are logarithmic (specifically dependency on the

failure probability δ and log(T ) terms). Besides these, the dominant term (when estimating

A) reduces to
(σz + CKσw)

σz

τL(n+ p)

πmin(1− ρL)

√
s

T
.

which is identical to our statement in Theorem 3.1. Note that the overall sample complexity

grows as T ≳ s(n+p)2/π2
min. We remark that, this quadratic growth is somewhat undesirable.

A degrees-of-freedom counting argument would lead to an ideal dependency of T ≳ s(n +

p)/πmin. The reason is that, each vector state equation we fit has n scalar equations. The

total degrees of freedom for each dynamics pair (Ai,Bi) is n × (n + p). Additionally, for

the least-frequent mode, in steady-state, we should observe πminT equations. Putting these

together, we would minimally need n × πminT ≥ n × (n + p), which means we need T ≥
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s(n + p)/πmin samples to estimate s dynamic pairs (A1:s,B1:s). Our analysis indicates that

this suboptimality (at least the quadratic growth in n) can be addressed to achieve optimal

dependence by establishing a stronger control on the state covariance (e.g. refining (A.19))

as well as a better control on the degree of independence across sampled states (this issue

arises during the proof of Theorem A.16).

• To what extent sub-sampling is necessary? We recall that our argument is based

on mixing time arguments which are well-studied in the literature. In Algorithm 1, we sub-

sample the trajectory for bounded samples and use them to estimate the unknown MJS

dynamics. Unfortunately, such a sub-sampling seems unavoidable as long as we don’t have a

good tail control on the distribution of the state vectors. Specifically, as long as the feature

vectors (in our case state vectors) are allowed to be heavy-tailed, existing – to the best of

our knowledge – minimum singular value concentration guarantees for the empirical covari-

ance apply under the assumption of boundedness (Vershynin, 2012). More recently, self-

normalized martingale arguments are employed to address temporal dependencies (Sarkar

and Rakhlin, 2019; Simchowitz et al., 2018). We remark that, using martingale-based argu-

ments, it may be possible to mitigate the spectral radius dependency by shaving a factor of

1/(1− ρL) (e.g. martingale based arguments have milder ρL dependence (Simchowitz et al.,

2018; Sarkar and Rakhlin, 2019)). We have left this as a possible future work.

A.4 Lower Bounding |S̄(ℓ)
i |

To begin, we define sub-sampling period L = Csub log(T ), sub-sampling indices ℓk = ℓ+ kL

for k = 1, 2, . . . , ⌊T/L⌋, and the time index set

S
(ℓ)
i =

{
ℓk
∣∣ ωℓk = i, ∥xℓk∥ ≤ cx

√
∥Σw∥ log(T ), ∥zℓk∥ ≤ cz

√
∥Σz∥

}
(A.65)

by bounding ∥xt∥ and ∥zt∥, which is used to estimate A1:s and B1:s through least squares

(Here we generalize isotropic noise wt ∼ N (0, σ2
wIn) and zt ∼ N (0, σ2

zIp) to N (0,Σw) and

N (0,Σz), respectively.). A fundamental question is: Is |S(ℓ)
i | big enough such that there will

be enough data available when applying least squares? We provide answer to this question in

this section. Lemma A.24 acts as a building block for the later result; Lemma A.25 provides

the lower bound on |S(ℓ)
i |; Corollary A.26 gives a more interpretable lower bound on |S(ℓ)

i |
when cx and cz are large enough; and finally, Lemma A.27 shows how many samples in

S
(ℓ)
i are “weakly” independent, which is the quantity that essentially determines the sample

complexity of estimating A1:s and B1:s.

For clarity, we reiterate some definitions and define a few new ones here. We are given an
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MJS(A1:s,B1:s,T) with process noise wt ∼ N (0,Σw) and ergodic Markov matrix T. With

some stabilizing controller K1:s, the input is given by ut = Kωtxt + zt where zt ∼ N (0,Σz).

Let σ̄2 := ∥B1:s∥2∥Σz∥+∥Σw∥. Let Li := Ai+BiKi. LetL ∈ Rsn2×sn2
denote the augmented

closed-loop state matrix with (i, j)-th n2×n2 block given by [L]ij := T(j, i)Lj ⊗ Lj. Let

ρL ∈ [0, 1) and τL > 0 be two constants such that ∥Lk∥ ≤ τLρ
k
L. By definition, one available

choice for τL and ρL are τL and ρ(L), respectively. Let tMC(·) and tMC denote the mixing time

of T as in Definition 2.5. Let π∞ denote the stationary distribution of T, πmin = mini π∞(i),

and πmax = maxi π∞(i). Assume the initial state x0 satisfies E[∥x0∥2] ≤ x̄2
0 for some x̄0 ≥ 0.

Lastly, without loss of generality, we consider the sub-trajectory with zero shift, that is,

ℓ = 0, which is identical to any 0 ≤ ℓ ≤ L− 1.

Lemma A.24. Suppose the Markov chain trajectory {ω0, ω1, . . . } and a sequence of events

{A0, A1, . . .} are both adapted to filtration {F0,F1, . . .}, i.e. ωt and 1{At} are both Ft-

measurable. We assume E[1{ωt=j} | Ft−r] = P(ωt = j | ωt−r) for all j ∈ [s], t, and r < t. For

all i ∈ [s], let

Ni =

⌊T/L⌋∑
k=1

1{ωkL=i}1{AkL} (A.66)

and suppose

E[1{At} | Ft−L] ≥ 1− pt (A.67)

for some pt ∈ [0, 1) and L = Csub log(T ). Assume Csub ≥ CMC, and for some δ > 0, T ≥
TMC,1(Csub, δ), where CMC and TMC,1(C, δ) are defined in Tables C.1 and A.1, respectively.

Then we have

P

 s⋂
i=1

{
Ni ≥

Tπ∞(i)

Csub log(T )

(
1− 1

π∞(i)

√
log(

s

δ
)
17Csubπmax log(T )

T

)
−

⌊T/L⌋∑
k=1

pkL

} ≥ 1− δ.

Proof. For some ϵ < πmin/2, we temporarily let L ≥ 6tMC log(ϵ−1). From the proof of Du

et al. (2019b, Lemma 13 (47)), we know this guarantees L ≥ tMC(ϵ/2). By definition of

tMC(·), we know maxi ∥([TL](i, :))⊺ − π∞∥1 ≤ ϵ ≤ πmin/2, and since ([TL](i, :))1 = π
⊺
∞1 = 1,

we further have

max
i
∥([TL](i, :))

⊺ − π∞∥∞ ≤
ϵ

2
≤ πmin

4
. (A.68)

For simplicity, we assume ⌊T/L⌋ = T/L =: T̃ . To ease the notation, we let ω̃k := ωkL,

Ãk := AkL, and F̃k := FkL. Then, one can see ω̃k and Ãk are both F̃k-measurable. Define

δk,∆k ∈ Rs such that

δj(i) := 1{ω̃j=i}1{Ãj} − E[1{ω̃j=i}1{Ãj} | F̃j−1], (A.69)
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∆k(i) :=
k∑

j=1

δj(i). (A.70)

Note that for all i ∈ [s], {∆k(i), F̃k} forms a martingale as

E[∆k+1(i) | F̃k] = E[
k+1∑
j=1

δj(i) | F̃k]

=
k∑

j=1

δj(i) + E[1{ω̃k+1=i}1{Ãk+1} − E[1{ω̃k+1=i}1{Ãk+1} | F̃k] | F̃k]

=
k∑

j=1

δj(i) = ∆k(i),

(A.71)

thus δk(i) = ∆k(i) −∆k−1(i) can be viewed as the martingale difference sequence. Since

E[δk(i) | F̃k−1] = 0, we have E[δk(i)
2 | F̃k−1] = Var(δk(i) | F̃k−1) = Var(1{ω̃j=i}1{Ãj} |

F̃k−1) ≤ E[12
{ω̃k=i}1

2

{Ãk} | F̃k−1] ≤ E[1{ω̃k=i} | F̃k−1] = P(ω̃k = i | ω̃k−1) = [TL](ω(k−1)L, i).

By the choice of L, using (A.68), we know [TL](ω(k−1)L, i) ≤ π∞(i)+maxj ∥([TL](j, :))⊺ − π∞∥∞ ≤
2πmax. Thus,

T̃∑
k=1

E[δk(i)
2 | F̃k−1] ≤ 2πmaxT̃ . (A.72)

With this, and the fact that |δk(i)| < 1, we have

P

Ni −
T̃∑

k=1

E[1{ω̃k=i}1{Ãk} | F̃k−1] ≥ T̃
ϵ

2

 (i)
=P(∆T̃ (i) ≥ T̃ ϵ/2)

(ii)

≤ exp(− T̃ ϵ2/8

2πmax + ϵ/6
)

(iii)

≤ exp(− Tϵ2

17πmaxL
),

(A.73)

where (i) follows from the definition of Ni and ∆T̃ (i); (ii) follows from Freedman’s inequality
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(Freedman, 1975, Theorem 1.6), and (iii) follows since ϵ ≤ πmin/2. Note that∣∣∣∣∣∣
T̃∑

k=1

E[1{ω̃k=i}1{Ãk} | F̃k−1]− T̃π∞(i)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
T̃∑

k=1

E[1{ω̃k=i} | F̃k−1]− T̃π∞(i)

∣∣∣∣∣∣+
∣∣∣∣∣∣

T̃∑
k=1

E[1{ω̃k=i} | F̃k−1]− E[1{ω̃k=i}1{Ãk} | F̃k−1]

∣∣∣∣∣∣
≤T̃ max

j
|[TL](j, i)− π∞(i)|+

∣∣∣∣∣∣
T̃∑

k=1

E[1{Ãc
k} | F̃k−1]

∣∣∣∣∣∣
≤T̃ ϵ

2
+

T̃∑
k=1

pkL.

Then, combining this with (A.73) and applying union bound, we have with probability at

least 1− s exp(− Tϵ2

17πmaxL
),

s⋂
i=1

Ni ≥
T

L
π∞(i)− T

L
ϵ−

T/L∑
k=1

pkL

 (A.74)

when ϵ < πmin/2 and L ≥ 6tMC log(ϵ−1). Then, similar to the proof of Lemma A.6, we know

if we pick L = Csub log(T ) with Csub ≥ tMC · max{3, 3 − 3 log(πmax log(s))}, and for some

δ > 0, we pick the trajectory length T ≥
(
68Csubπmaxπ

−2
min log(

s
δ
)
)2
, with probability at least

1− δ, we have

s⋂
i=1

{
Ni ≥

Tπ∞(i)

Csub log(T )

(
1− 1

π∞(i)

√
log(

s

δ
)
17Csubπmax log(T )

T

)
−

T/L∑
k=1

pkL

}
. (A.75)

Lemma A.25. For some δ > 0, we assume Csub ≥ max{CMC , Csub,x(x̄0, δ, T, ρL, τL)},
cz ≥ (

√
3 +
√
6)
√
p, and T ≥ max{TMC,1(Csub,

δ
2
), T cl,1(ρL, τL)}, where CMC, TMC,1(C, δ)

and T cl,1(ρ, τ) are defined in Table C.1, and Csub,x(x̄0, δ, T, ρ, τ) is defined in Table A.1.

Then, with probability at least 1− δ, the following intersected events occur

s⋂
i=1

{
|S(ℓ)

i | ≥
Tπ∞(i)

Csub log(T )

(
1− 1

π∞(i)

√
log(

2s

δ
)
17Csubπmax log(T )

T

− 2n
√
sτLσ̄

2

π∞(i)c2x∥Σw∥ log(T )(1− ρL)
− 1

π∞(i)
e−

c2z
3

}
. (A.76)
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Proof. For simplicity, we assume ⌊T/L⌋ = T/L. We let Ft denote the sigma algebra gener-

ated by {{ωr}tr=0,w0:t, z0:t,x0}, and let At = {∥xt∥ ≤ cx
√
∥Σw∥ log(T ), ∥zt∥ ≤ cz

√
∥Σz∥},

then by Lemma A.24, when Csub ≥ CMC = tMC · max{3, 3 − 3 log(πmax log(s))} and T ≥
TMC,1(Csub,

δ
2
) =

(
68Csubπmaxπ

−2
min log(

2s
δ
)
)2
, with probability at least 1− δ

2
, we have

s⋂
i=1

{
|S(ℓ)

i | ≥
Tπ∞(i)

Csub log(T )
·
(
1− 1

π∞(i)

√
log(

2s

δ
)
17Csubπmax log(T )

T

)

−
T/L∑
k=1

P
(
Ac

t | x(k−1)L+1, ω(k−1)L

)
︸ ︷︷ ︸

=:P

}
. (A.77)

For term P , we have

P =

T/L∑
k=1

P
(
∥xkL∥ ≥ cx

√
∥Σw∥ log(T )

⋃
∥zkL∥ ≥ cz

√
∥Σz∥ | x(k−1)L+1, ω(k−1)L

)
≤

T/L∑
k=1

P
(
∥zkL∥ ≥ cz

√
∥Σz∥ | x(k−1)L+1, ω(k−1)L

)
︸ ︷︷ ︸

=:P1

+

T/L∑
k=1

P
(
∥xkL∥ ≥ cx

√
∥Σw∥ log(T ) | x(k−1)L+1, ω(k−1)L

)
︸ ︷︷ ︸

=:P2

.

(A.78)

For term P1, we know from Lemma A.1 that when cz ≥ (
√
3 +
√
6)
√
p, we have P1 =∑T/L

k=1 P
(
∥zkL∥ ≥ cz

√
∥Σz∥

)
≤ T

L
e−

c2z
3 . Now we consider term P2. From Lemma 2.15, we

know

E[∥xkL∥2 | x(k−1)L+1, ω(k−1)L] ≤
√
nsτLρ

L−1
L ∥x(k−1)L+1∥2 +

n
√
sτLσ̄

2

1− ρL
, (A.79)

thus by Markov inequality, we have

P2 ≤
T/L∑
k=1

1

c2x∥Σw∥ log(T )

(√
nsτLρ

L−1
L ∥x(k−1)L+1∥2 +

n
√
sτLσ̄

2

1− ρL

)

≤ 1

c2x∥Σw∥ log(T )

T

L

n
√
sτLσ̄

2

1− ρL
+
√
nsτLρ

L−1
L

T/L∑
k=1

∥x(k−1)L+1∥2
 .

(A.80)

Now, we seek to upper bound ρL−1
L

∑T/L
k=1 ∥x(k−1)L+1∥2 with high probability. Note that the
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assumption Csub ≥ Csub,x(x̄0, δ, T, ρL, τL) implies the following

L = Csub log(T ) ≥
1

log(ρ−1
L )

max

{
log(2), 2 log(

8
√
nsτLx̄

2
0

δ
), 2 log(4T

n
√
sτLσ̄

2

δ(1− ρL)
) + 2,

}
. (A.81)

Then, we have

P

ρL−1
L

T/L∑
k=1

∥x(k−1)L+1∥2 ≤
T

L

(1− ρL)

4Tn
√
sτLσ̄2

 (i)

≥ P

ρL−1
L

T/L∑
k=1

∥x(k−1)L+1∥2 ≤
T

L
ρ

L
2
−1

L


≥ P

T/L⋂
k=1

{
∥x(k−1)L+1∥2 ≤ ρ

−L
2

L

}
≥ 1−

T/L∑
k=1

P
(
∥x(k−1)L+1∥2 ≥ ρ

−L
2

L

)
(ii)

≥ 1−
T/L∑
k=1

ρ
L
2
L

(√
nsτLρ

(k−1)L+1
L x̄2

0 +
n
√
sτLσ̄

2

1− ρL

)
≥ 1− ρ

L
2
+1

L

√
nsτLx̄

2
0

1− ρLL
− T

L
ρ

L
2
L
n
√
sτLσ̄

2

1− ρL
(iii)

≥ 1− 2ρ
L
2
L
√
nsτLx̄

2
0 −

δ

4L
(iv)

≥ 1− δ

4
− δ

4
= 1− δ

2
,

where (i) follows from (A.81) which gives ρ
L
2
−1

L ≤ (1−ρL)
4Tn

√
sτLσ̄2 ; (ii) follows from Lemma 2.15

and Markov inequality; (iii) follows from (A.81) which gives ρLL ≤ 1
2
and ρ

L
2
L ≤

δ(1−ρL)
4Tn

√
sτLσ̄2 and

(iv) follows from (A.81) which gives ρ
L
2
L ≤ δ

8
√
nsτLx̄2

0
. Therefore, we have with probability at

least 1− δ
2

P2 ≤
1

c2x∥Σw∥ log(T )

(
T

L

n
√
sτLσ̄

2

1− ρL
+

1− ρL
4L
√
nσ̄2

)
, (A.82)

and thus,

P ≤ P1 + P2 ≤
1

c2x∥Σw∥ log(T )

(
T

L

n
√
sτLσ̄

2

1− ρL
+

1− ρL
4L
√
nσ̄2

)
+

T

L
e−

c2z
3

≤ 1

c2x∥Σw∥ log(T )

(
T

L

2n
√
sτLσ̄

2

1− ρL

)
+

T

L
e−

c2z
3 ,

(A.83)

where the second inequality follows from T ≥ T cl,1(ρL, τL). Plugging this into (A.77), we
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have with probability at least 1− δ,

s⋂
i=1

{
|S(ℓ)

i | ≥
Tπ∞(i)

Csub log(T )
·
(
1− 1

π∞(i)

√
log(

2s

δ
)
17Csubπmax log(T )

T

− 2n
√
sτLσ̄

2

π∞(i)c2x∥Σw∥ log(T )(1− ρL)
− 1

π∞(i)
e−

c2z
3 .

)}
, (A.84)

which concludes the proof.

Note that when T , cx, and cz are sufficiently large enough, we could obtain a more

interpretable version of Lemma A.25 which is presented as follows.

Corollary A.26. For some δ > 0, assume Csub ≥ max{CMC , Csub,x(x̄0, δ, T, ρL, τL)}, cx ≥
1
3
cx(ρL, τL), cz ≥ cz and T ≥ TN(Csub, 2δ, ρL, τL) := max{TMC(Csub, δ), T cl,1(ρL, τL)},

where cx(ρ, τ), cz, CMC, TMC(C, δ), T cl,1(ρ, τ) are defined in Table C.1 and Csub,x(x̄0, δ, T, ρ, τ)

is defined in Table A.1. Then, with probability at least 1−δ/2, the following intersected events

occur
s⋂

i=1

{
|S(ℓ)

i | ≥
Tπmin

2Csub log(T )

}
. (A.85)

Now we provide a result on how many data in S
(ℓ)
i are “weakly” independent, which is

the quantity that essentially determines the sample complexity of estimating A1:s and B1:s

in Algorithm 1. We first define a few notations. Let ℓi,1, . . . , ℓi,|S(ℓ)
i | denote the elements in

S
(ℓ)
i , and let ℓi,0 = 0. Define x̄ℓi,k such that

x̄ℓi,k =

ℓi,k−1∑
j=1

(
j−1∏
k=1

Lωt−k

)(
Bωt−j

zt−j +wt−j

)
+Bωℓi,k−1

zℓi,k−1 +wℓi,k−1. (A.86)

One can view x̄ℓi,k as follows: set xℓi,k−1
= 0, then propagate the dynamics to time ℓi,k fol-

lowing the same noise and mode switching sequences, wℓi,k−1:ℓi,k−1, zℓi,k−1:ℓi,k−1, {ωt′}
ℓi,k−1

t′=ℓi,k−1
.

Or, one can also view x̄ℓi,k as the contribution of noise xt and zt that propagate xℓi,k−1
to

xℓi,k . And it is easy to see that

xℓi,k − x̄ℓi,k =

ℓi,k−1∏
k=1

Lωt−k

xℓi,k−1
. (A.87)
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Define S̄
(ℓ)
i ⊆ S

(ℓ)
i such that

S̄
(ℓ)
i :=

{
ℓk
∣∣ωℓk = i, ∥xℓk∥ ≤ cx

√
∥Σw∥ log(T ), ∥zℓk∥ ≤ cz

√
Σz, ∥x̄ℓk∥ ≤

cx
√
∥Σw∥ log(T )

2

}
.

The next lemma provides a lower bound on |S̄(ℓ)
i |.

Lemma A.27. Assume cx ≥ cx(ρL, τL), cz ≥ cz, Csub ≥ Csub,N (x̄0, δ, T, ρL, τL) := max{CMC ,

Csub,x(x̄0,
δ
2
, T, ρL, τL), Csub,x̄ (δ, T, ρL, τL)}, and T ≥ TN(Csub, δ, ρL, τL), where cx(ρ, τ), cz,

Csub,x(x̄0, δ, T, ρ, τ), and Csub,x̄ (δ, T, ρ, τ) are defined in Table A.1, and CMS and TN(C, δ, ρ, τ)
are defined in Table C.1. Then with probability at least 1−δ, the following intersected events

occur
s⋂

i=1

{
|S̄(ℓ)

i | ≥
Tπmin

2Csub log(T )

}
. (A.88)

Proof. We define sets R
(ℓ)
i ⊆ S

(ℓ)
i and R̄

(ℓ)
i ⊆ S̄

(ℓ)
i such that

R
(ℓ)
i :=

{
ℓk
∣∣ωℓk = i, ∥xℓk∥ ≤

cx
√
∥Σw∥ log(T )

3
, ∥zℓk∥ ≤ cz

√
Σz

}
.

R̄
(ℓ)
i :=

{
ℓk
∣∣ωℓk = i, ∥xℓk∥ ≤

cx
√
∥Σw∥ log(T )

3
, ∥zℓk∥ ≤ cz

√
Σz, ∥x̄ℓk∥ ≤

cx
√
∥Σw∥ log(T )

2

}
.

Note that R̄
(ℓ)
i ⊆ R

(ℓ)
i . We will first (i) lower bound |R(ℓ)

i | and (ii) show |R̄(ℓ)
i | = |R

(ℓ)
i |, then

we could lower bound |S̄(ℓ)
i | since |S̄

(ℓ)
i | ≥ |R̄

(ℓ)
i | and conclude the proof.

Using Corollary A.26, we see under given assumptions, with probability at least 1− δ
2
,

s⋂
i=1

{
|R(ℓ)

i | ≥
Tπmin

2Csub log(T )

}
. (A.89)

Let ζi,1, . . . , ζi,|R(ℓ)
i | denote the elements inR

(ℓ)
i . It is easy to see {ζi,1, . . . , ζi,|R(ℓ)

i |} ⊆ {ℓi,1, . . . , ℓi,|S(ℓ)
i |}.

Consider an arbitrary ζi,j ∈ R
(ℓ)
i and ℓi,j′ ∈ S

(ℓ)
i denote the counterpart of ζi,j such that

ℓi,j′ = ζi,j. By definition of R
(ℓ)
i , we have

∥xℓi,j′
∥ ≤

cx
√
∥Σw∥ log(T )

3
. (A.90)

From (A.87), together with Lemma 2.15, we have

E[∥xℓi,j′
− x̄ℓi,j′

∥2] ≤
√
nsτLρ

ℓi,j′−ℓi,j′−1

L E[∥xℓi,j′−1
∥2]

≤
√
nsτLρ

L
L(c

2
x∥Σw∥ log(T )),

(A.91)
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where the second inequality follows from ℓi,j′ − ℓi,j′−1 ≥ L and ∥xℓi,j′−1
∥ ≤ cx

√
∥Σw∥ log(T )

by definition of S
(ℓ)
i . Then, by Markov inequality, we have

P

(
∥xℓi,j′

− x̄ℓi,j′
∥ ≤

cx
√
∥Σw∥ log(T )

6

)
≥ 1− 36

√
nsτLρ

L
L. (A.92)

Then, using union bound, we have

P

⋂
i∈[s]

⋂
j′

{
∥xℓi,j′

− x̄ℓi,j′
∥ ≤

cx
√
∥Σw∥ log(T )

6

}
≥1− 36

√
ns1.5|R(ℓ)

i |τLρLL

≥1− 36
√
ns1.5TτLρ

L
L

≥1− δ

2
,

(A.93)

where the last line follows from L = Csub log(T ) and Csub ≥ Csub,x̄ (δ, T, ρL, τL) in the

assumption. Note that ∥x̄ζi,j∥ = ∥x̄ℓi,j′
∥ ≤ ∥xℓi,j′

∥ + ∥xℓi,j′
− x̄ℓi,j′

∥. This together with

(A.90) and (A.93) gives, with probability at least 1− δ
2
,

⋂
i∈[s]

⋂
j∈[|R(ℓ)

i |]

{
∥x̄ζi,j∥ ≤

cx
√
∥Σw∥ log(T )

2

}
. (A.94)

This implies for any i, for any ℓk ∈ R
(ℓ)
i , we have ℓk ∈ R̄

(ℓ)
i , i.e. R

(ℓ)
i ⊆ R̄

(ℓ)
i . Thus, we have

R
(ℓ)
i = R̄

(ℓ)
i and |R(ℓ)

i | = |R̄
(ℓ)
i |. Combining this with (A.89), we have with probability at

least 1− δ,
s⋂

i=1

{
|R̄(ℓ)

i | ≥
Tπmin

2Csub log(T )

}
. (A.95)

Finally, we could conclude the proof by noticing |S̄(ℓ)
i | ≥ |R̄

(ℓ)
i |.
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A.5 Proofs of Intermediate Theorems and Lemmas

A.5.1 Proof of Corollary A.7

Proof. Recall from Lemma 2.15 that the states xt can be bounded in expectation as follows,

E[∥xt∥2] ≤ τL
√
s
(
ρtLE[∥x0∥2]

√
n+

c2wσ
2
w + σ2

z∥B1:s∥2

1− ρL
n
)
,

≤ 2σ2
w

√
s(c2w + C2

z∥B1:s∥2)τLn
1− ρL

, (A.96)

where we get the last inequality by choosing the timestep t to satisfy the following lower

bound,

ρtL ≤
(c2wσ

2
w + σ2

z∥B1:s∥2)
√
n

(1− ρL)E[∥x0∥2]
⇐= t ≥ t0 :=

log
(
(1− ρL)E[∥x0∥2]/(c2wσ2

w + σ2
z∥B1:s∥)

)
1− ρL

.

(A.97)

This gives the advertised upper bound on E[∥xt∥2] for t ≥ t0. Using Jensen’s inequality, this

further implies

E[∥xt∥] ≤ σw

√
2s1/2(c2w + C2

z∥B1:s∥2)τLn
1− ρL

for t ≥ t0. (A.98)

Next, using standard results on the distribution of squared Euclidean norm of a Gaussian

vector, we have E[∥zt∥2] = σ2
zp for all t ≥ 0. Combining this with (A.96), we get the following

upper bound on the expected squared norm of ht := [x⊺
t /σw z⊺t /σz]

⊺, that is, for all t ≥ t0,

we have

E[∥ht∥2] =
1

σ2
w

E[∥xt∥2] +
1

σ2
z

E[∥zt∥2] ≤
2
√
s(c2w + C2

z∥B1:s∥2)τLn
1− ρL

+ p,

≤
(
1 +

2
√
s(c2w + C2

z∥B1:s∥2)τL
1− ρL

)
(n+ p). (A.99)

This gives the advertised upper bound on E[∥ht∥2] for t ≥ t0. Using Jensen’s inequality, this

further implies

E[∥ht∥] ≤

√(
1 +

2s1/2(c2w + C2
z∥B1:s∥2)τL

1− ρL

)
(n+ p) for t ≥ t0. (A.100)

This completes the proof.
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A.5.2 Proof of Lemma A.9

Proof. Let xt be the state at time t of the MJS given by (A.14), with initial state x0 ∼ Dx

and define the noise-removed state x̃t = xt − wt−1 which is independent of wt−1. From

Corollary A.7, for all t ≥ t0, we have E[∥xt∥] ≤ σwβ+

√
n. Similarly, from Assumption A1.1,

we have ∥wt−1∥ ≤ cwσw

√
n. This implies

E[∥x̃t∥] ≤ E[∥xt∥] + E[∥wt−1∥] ≤ 2σwβ+

√
n. (A.101)

To proceed, consider the conditional random variable yt ∼ {xt | ∥xt∥ ≤ cσwβ+

√
n, ∥zt∥ ≤

cσz
√
p, ωt = i} ∼ {xt | ∥xt∥ ≤ cσwβ+

√
n, ωt = i}. To lower bound the covariance matrix

Σ[yt] := E[yty
⊺
t ], observe that ∥wt−1∥ ≤ cwσw

√
n ≤ σwβ+

√
n and E[∥x̃t∥] ≤ 2σwβ+

√
n,

where β+ is given by (A.16). Therefore, using Lemma A.2 from Section A.1 with B =

2σwβ+

√
n, we can lower bound Σ[yt] as follows,

Σ[yt] = E[yty
⊺
t ] ⪰ (σ2

w/2)In, (A.102)

where we use c ≥ 6 to get the last inequality. Next, we upper bound Σ[yt] as follows,

∥Σ[yt]∥ = ∥E[yty
⊺
t ]∥ ≤ E[∥yt∥2],

= E[∥xt∥2 | ∥xt∥ ≤ cσwβ+

√
n, ∥zt∥ ≤ cσz

√
p, ωt = i],

≤ c2σ2
wβ

2
+n, (A.103)

Combining (A.102) and (A.103), we get the first statement of the lemma. To proceed, con-

sider another conditional random variable z′t ∼ {zt | ∥xt∥ ≤ cσwβ+

√
n, ∥zt∥ ≤ cσz

√
p, ωt =

i} ∼ {zt | ∥zt∥ ≤ cσz
√
p}. Note that zt is independent of both xt and ωt. Then, using

similar arguments as above with Lemma A.2 replaced by Lemma A.3, we can show that,

when c ≥ 6,

(σ2
z/2)Ip ⪯ Σ[z′t] := E[z′tz

′⊺
t ] ⪯ (c2σ2

zp)Ip. (A.104)

Finally, combing the derived bounds for Σ[yt] and Σ[z′t], we get the second statement of the

lemma. This completes the proof.
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A.5.3 Proof of Lemma A.12

Proof. To begin, using Assumption A5.1 and (A.28), the impact of truncation can be

bounded in expectation over the modes as follows,

E[∥xℓk − x̄ℓk∥] = E[∥xℓ+kL − xℓ+kL,(k−k′)L−1∥] ≤
√
nsτLρ

((k−k′)L−1)/2
L ∥xℓ+k′L+1∥,

≤
√
nsτLρ

(L−1)/2
L ∥xℓk′+1∥, (A.105)

where we get the last inequality from the fact that k − k′ ≥ 1, and the expectation is over

the Markov modes at timesteps ℓ+ k′L+ 1, ℓ+ k′L+ 2, . . . ℓ+ kL− 1. To proceed, observe

that, for all ℓk ∈ S
(ℓ)
i , we have

∥xℓk+1∥ = ∥Lωℓk
xℓk +Bωℓk

zℓk +wℓk∥ ≤ max
i∈[s]
∥Li∥∥xℓk∥+max

i∈[s]
∥Bi∥∥zℓk∥+ ∥wℓk∥,

≤ cσwβ+

√
n∥L1:s∥+ cσz

√
p∥B1:s∥+ cwσw

√
n,

≤ cσw(cw + β+∥L1:s∥+ Cz

√
p/n∥B1:s∥)

√
n,

= cσwβ
′
+

√
n, (A.106)

where we set β′
+ := cw + β+∥L1:s∥ + Cz

√
p/n∥B1:s∥ and Cz := σz/σw. Combining (A.106)

with (A.105), for all ℓk ∈ S
(ℓ)
i and all i ∈ [s], we have

E[∥xℓk − x̄ℓk∥] ≤ cσwβ
′
+n
√
sτLρ

(L−1)/2
L , (A.107)

=⇒ P
(
∥xℓk − x̄ℓk∥ ≤

cσwβ
′
+n
√
sτLρ

(L−1)/2
L T

δ

)
≥ 1− δ, (A.108)

where we get the high probability bound by using Markov inequality and union bounding

over all bounded states. This further implies that, with probability at least 1 − δ over the

modes, for all ℓk ∈ S
(ℓ)
i and all i ∈ [s], we have

∥x̄ℓk∥ ≤ ∥xℓk∥+ ∥xℓk − x̄ℓk∥ ≤ cσwβ+

√
n+

cσwβ
′
+n
√
sτLρ

(L−1)/2
L T

δ
≤ (3/2)cσwβ+

√
n,

(A.109)

where we get the last inequality by choosing L ≥ 1 via

cσwβ
′
+n
√
sτLρ

(L−1)/2
L T

δ
≤ cσwβ+

√
n/2 ⇐⇒ ρ

(L−1)/2
L ≤ δβ+

2
√
nsτLTβ′

+

,

⇐= L ≥ 1 +
2 log

(
2
√
nsτLTβ

′
+/(β+δ)

)
1− ρL

. (A.110)
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This also implies that, with probability at least 1 − δ over the modes, for all ℓk ∈ S
(ℓ)
i and

all i ∈ [s], we have ∥xℓk − x̄ℓk∥ ≤ (1/2)cσwβ+

√
n. This completes the proof.

A.5.4 Proof of Lemma A.14

Proof. The first statement is a direct implication of Definition A.8 and A.13. To prove

the second statement, consider {xℓk}ℓk∈S(ℓ)
i

which contains states bounded by cσwβ+

√
n.

From (A.26), observe that, each state can be decomposed into xℓk = x̄ℓk + x̃ℓk , where

x̄ℓk is the truncated state and x̃ℓk captures the impact of the past states at time index

ℓ + k′L + 1. When the sampling period L satisfies (A.33), then from Lemma A.12, with

probability at least 1 − δ over the modes, for all ℓk ∈ S
(ℓ)
i and all i ∈ [s], we have ∥x̃ℓk∥ ≤

(1/2)cσwβ+

√
n. Furthermore, from Definition A.13, for all ℓk ∈ S̄

(ℓ)
i and all i ∈ [s], we have

∥x̄ℓk∥ ≤ (1/2)cσwβ+

√
n. Combining these results, with probability at least 1 − δ over the

modes, for all ℓk ∈ S̄
(ℓ)
i and all i ∈ [s], we have, ∥xℓk∥ ≤ ∥x̄ℓk∥ + ∥x̃ℓk∥ ≤ cσwβ+

√
n. This

implies that, with probability at least 1 − δ over the modes, bounding xℓk by cσwβ+

√
n

will not introduce further dependence between x̄ℓk and x̃ℓk when ℓk ∈ S̄
(ℓ)
i . Secondly, by

construction, conditioned on the modes, x̄ℓk = xℓk,ℓk−ℓk′−1 only depends on the excitation

and noise {zt,wt}ℓ+kL−1
t=ℓ+k′L+1. Note that the dependence ranges [ℓ + k′L + 1, ℓ + kL − 1] are

disjoint intervals for each (k, k′) pairs. Hence, conditioned on the modes, the samples in the

set {x̄ℓk}ℓk∈S̄(ℓ)
i

are all independent of each other.

To show the independence of {x̄ℓk}ℓk∈S̄(ℓ)
i

and {zℓk}ℓk∈S̄(ℓ)
i
, observe that zℓk = zℓ+kL have

timestamps ℓ+ kL; which is not covered by [ℓ+ k′L+1, ℓ+ kL− 1] – the dependence ranges

of {x̄ℓk}ℓk∈S̄(ℓ)
i
. Identical argument shows the independence of {x̄ℓk}ℓk∈S̄(ℓ)

i
and {wℓk}ℓk∈S̄(ℓ)

i
.

Lastly, {zℓk}ℓk∈S̄(ℓ)
i

and {wℓk}ℓk∈S̄(ℓ)
i

are independent of each other by definition. Hence,

{x̄ℓk}ℓk∈S̄(ℓ)
i
, {zℓk}ℓk∈S̄(ℓ)

i
and {wℓk}ℓk∈S̄(ℓ)

i
are all independent of each other. This completes

the proof.

A.5.5 Proof of Lemma A.15

Proof. To begin, for all ℓk ∈ S̄
(ℓ)
i , we upper bound the difference between the covariance of

truncated and non-truncated states as follows,

∥E[x̄ℓk x̄
⊺
ℓk
− xℓkx

⊺
ℓk
]∥ = ∥E[x̄ℓk x̄

⊺
ℓk
− xℓk x̄

⊺
ℓk
+ xℓk x̄

⊺
ℓk
− xℓkx

⊺
ℓk
]∥,

≤ E[∥x̄ℓk∥∥xℓk − x̄ℓk∥] + E[∥xℓk∥∥xℓk − x̄ℓk∥],

≤ (1/2)cσwβ+

√
nE[∥xℓk − x̄ℓk∥] + cσwβ+

√
nE[∥xℓk − x̄ℓk∥],

≤ 2c2σ2
wβ+β

′
+n
√
nsτLρ

(L−1)/2
L , (A.111)
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where we use Definition A.13 to obtain the second last inequality and (A.107) to obtain the

last inequality. Combining this with Lemma A.9, for all ℓk ∈ S̄
(ℓ)
i , assuming c ≥ 6, we have

λmin(Σ[x̄ℓk ]) ≥ λmin(Σ[xℓk ])− ∥E[x̄ℓk x̄
⊺
ℓk
− xℓkx

⊺
ℓk
]∥,

≥ σ2
w/2− 2c2σ2

wβ+β
′
+n
√
nsτLρ

(L−1)/2
L ≥ σ2

w/4, (A.112)

where we get the last inequality by choosing L via

σ2
w/4 ≥ 2c2σ2

wβ+β
′
+n
√
nsτLρ

(L−1)/2
L ⇐⇒ ρ

(L−1)/2
L ≤ 1

8c2β+β′
+n
√
nsτL

,

⇐= L ≥ 1 +
2 log

(
8c2β+β

′
+n
√
nsτL

)
1− ρL

. (A.113)

This also implies that we have the following upper bound on the covariance spectral norm,

that is, for all ℓk ∈ S̄
(ℓ)
i , assuming c ≥ 6, we have

∥Σ[x̄ℓk ]∥ ≤ ∥Σ[xℓk ]∥+ ∥E[x̄ℓk x̄
⊺
ℓk
− xℓkx

⊺
ℓk
]∥ ≤ c2σ2

wβ
2
+n+ σ2

w/4 ≤ 2c2σ2
wβ

2
+n. (A.114)

Combining (A.112) and (A.114), we get the first statement of the lemma, which is combined

with (A.104) to obtain the second statement of the lemma. This completes the proof.

A.5.6 Proof of Theorem A.16

Proof. To begin, recall that not all the rows of H̄
(ℓ)
i are independent. Therefore, to lower

bound λmin(H̄
(ℓ)⊺
i H̄

(ℓ)
i ), we first consider the matrix H̃

(ℓ)
i which is constructed by (row-wise)

stacking {h̄⊺
ℓk
}
ℓk∈S̄

(ℓ)
i
. Observe that, conditioned on the modes, the matrix H̃

(ℓ)
i , which is a

sub-matrix of H̄
(ℓ)
i , has independent rows from Lemma A.14.

• Lower bounding σ(H̃
(ℓ)
i ): Using Lemma A.14, we observe that, conditioned on the

modes, the rows of H̃
(ℓ)
i are all independent. Secondly, by definition, each row of H̃

(ℓ)
i can

be deterministically bounded as follows: for all ℓk ∈ S̄
(ℓ)
i , we have

∥h̄ℓk∥2 ≤
1

σ2
w

∥x̄ℓk∥2 +
1

σ2
z

∥zℓk∥2 ≤ (1/4)c2β2
+n+ c2p ≤ c2(1 + β2

+)(n+ p). (A.115)

Thirdly, from Lemma A.15, when c ≥ 6 and L ≥ max{t0, Lcov(ρL)}, then for all ℓk ∈ S̄
(ℓ)
i ,

we have

(1/4)In+p ⪯ Σ[h̄ℓk ] = E[h̄ℓkh̄
⊺
ℓk
] ⪯ 2c2(1 + β2

+)(n+ p)In+p. (A.116)
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Therefore, we can use Corollary A.5 to lower bound σ(H̃
(ℓ)
i ). Specifically, using Corollary A.5

with σmin = 1/2 and m = c2(1 + β2
+)(n + p), with probability at least 1 − δ, for all i ∈ [s],

we have

σ(H̃
(ℓ)
i ) ≥

√
|S̄(ℓ)

i |
2

− c

√
(1 + β2

+)(n+ p) log
(2s(n+ p)

δ

)
≥

√
|S̄(ℓ)

i |
4

, (A.117)

as long as |S̄(ℓ)
i | satisfies the following lower bound,√

|S̄(ℓ)
i |

4
≥ c

√
(1 + β2

+)(n+ p) log
(2s(n+ p)

δ

)
⇐= |S̄(ℓ)

i | ≥ 16c2(1 + β2
+)(n+ p) log

(2s(n+ p)

δ

)
. (A.118)

• Lower bounding λmin(H̄
(ℓ)⊺
i H̄

(ℓ)
i ): Using Lemma A.14, we have, {h̄ℓk}ℓk∈S̄(ℓ)

i
is a subset

of {h̄ℓk}ℓk∈S(ℓ)
i
. As a result, (A.117) also implies that, with probability at least 1− δ, for all

i ∈ [s], we have

σ(H̄
(ℓ)
i ) ≥ σ(H̃

(ℓ)
i ) ≥

√
|S̄(ℓ)

i |
4

=⇒ λmin(H̄
(ℓ)⊺
i H̄

(ℓ)
i ) ≥ |S̄

(ℓ)
i |
16

, (A.119)

as long as |S̄(ℓ)
i | satisfies the lower bound in (A.118).

• Upper bounding ∥H̄(ℓ)⊺
i W

(ℓ)
i ∥: Using Lemma A.12, when L ≥ max{t0, Ltr1(ρL, δ)},

with probability at least 1 − δ over the modes, for all ℓk ∈ S
(ℓ)
i and all i ∈ [s], we have,

∥h̄ℓk∥2 ≤ c2(1 + (9/4)β2
+)(n+ p). This implies that, with probability at least 1− δ over the

modes, for all i ∈ [s], we have

∥H̄(ℓ)
i ∥ ≤ ∥H̄

(ℓ)
i ∥F ≤ c(1 + 2β+)

√
|S(ℓ)

i |(n+ p) ≤ 2c(1 + β+)

√
|S(ℓ)

i |(n+ p).

Let H̄
(ℓ)
i have singular value decomposition UΣV⊺ with ∥Σ∥ ≤ 2c(1 + β+)

√
|S(ℓ)

i |(n+ p).

Since W
(ℓ)
i has i.i.d. σw-sub-Gaussian entries (Assumption A1.1), U⊺W

(ℓ)
i ∈ R(n+p)×n has

i.i.d. σw-sub-Gaussian columns. As a result, applying Theorem 5.39 of (Vershynin, 2012),

with probability at least 1− δ, for all i ∈ [s], we have

∥U⊺
W

(ℓ)
i ∥ ≤ Cσw

√
n+ p+ C0

√
log
(2s
δ

)
. (A.120)
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This implies that, with probability at least 1− 2δ, for all i ∈ [s], we have

∥H̄(ℓ)⊺
i W

(ℓ)
i ∥ ≤ ∥Σ∥∥U

⊺
W

(ℓ)
i ∥ ≤ 2c(1 + β+)

√
|S(ℓ)

i |(n+ p)

(
Cσw

√
n+ p+ C0

√
log
(2s
δ

))
.

This completes the proof.

A.5.7 Proof of Theorem A.17

Proof. We begin by simplifying the the term ∥H(ℓ)⊺
i H

(ℓ)
i − H̄

(ℓ)⊺
i H̄

(ℓ)
i ∥ as follows,

∥H(ℓ)⊺
i H

(ℓ)
i − H̄

(ℓ)⊺
i H̄

(ℓ)
i ∥ = ∥

∑
ℓk∈S

(ℓ)
i

(
hℓkh

⊺
ℓk
− h̄ℓk h̄

⊺
ℓk

)
∥,

≤ |S(ℓ)
i | max

ℓk∈S
(ℓ)
i

∥hℓkh
⊺
ℓk
− h̄ℓkh̄

⊺
ℓk
∥,

= |S(ℓ)
i | max

ℓk∈S
(ℓ)
i

∥hℓkh
⊺
ℓk
− hℓkh̄

⊺
ℓk
+ hℓkh̄

⊺
ℓk
− h̄ℓkh̄

⊺
ℓk
∥,

≤ |S(ℓ)
i | max

ℓk∈S
(ℓ)
i

(
∥hℓk∥∥hℓk − h̄ℓk∥+ ∥h̄ℓk∥∥hℓk − h̄ℓk∥

)
. (A.121)

We will upper bound each of these terms separately and combine them together in (A.121)

to get the desired upper bound. First of all, observe that, for all i ∈ [s], each row of H
(ℓ)
i is

deterministically bounded as follows,

∥hℓk∥2 ≤
1

σ2
w

∥xℓk∥2 +
1

σ2
z

∥zℓk∥2 ≤ c2β2
+n+ c2p ≤ c2(1 + β2

+)(n+ p). (A.122)

Similarly, from Lemma A.12, when L ≥ max{t0, Ltr1(ρL, δ), with probability at least 1 − δ

over the modes, for all i ∈ [s], each row of H̄
(ℓ)
i can be bounded as follows,

∥h̄ℓk∥2 ≤
1

σ2
w

∥x̄ℓk∥2 +
1

σ2
z

∥zℓk∥2 ≤ c2(9/4)β2
+n+ c2p ≤ 4c2(1 + β2

+)(n+ p). (A.123)

To proceed, recall from (A.108) that, with probability at least 1− δ over the modes, for all

ℓk ∈ S
(ℓ)
i and all i ∈ [s], we have

∥hℓk − h̄ℓk∥ =
∥∥∥∥
[

1
σw

xℓk

1
σz
zℓk

]
−

[
1
σw

x̄ℓk

1
σz
zℓk

]∥∥∥∥ =
1

σw

∥xℓk − x̄ℓk∥ ≤
cβ′

+n
√
sτLρ

(L−1)/2
L T

δ
. (A.124)
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Combining (A.122), (A.123) and (A.124) into (A.121), with probability at least 1 − δ over

the modes, for all i ∈ [s], we have

∥H(ℓ)⊺
i H

(ℓ)
i − H̄

(ℓ)⊺
i H̄

(ℓ)
i ∥ ≤

3c2β′
+(1 + β+)τLρ

(L−1)/2
L n

√
s(n+ p)|S(ℓ)

i |T
δ

. (A.125)

Using a similar line of reasoning, with probability at least 1−δ over the modes, for all i ∈ [s],

we also have

∥H(ℓ)⊺
i W

(ℓ)
i − H̄

(ℓ)⊺
i W

(ℓ)
i ∥ = ∥

∑
ℓk∈S

(ℓ)
i

(
hℓkw

⊺
ℓk
− h̄ℓkw

⊺
ℓk
∥
)
,

≤ |S(ℓ)
i | max

ℓk∈S
(ℓ)
i

∥hℓk − h̄ℓk∥∥w
⊺
(jk)
∥,

≤
ccwσwβ

′
+τLρ

(L−1)/2
L n

√
ns|S(ℓ)

i |T
δ

. (A.126)

This completes the proof.

A.5.8 Proof of Theorem A.18

Proof. To begin, using Theorem A.16 along-with the assumption made in the statement of

the theorem regarding |S̄(ℓ)
i |, with probability at least 1− 4δ, for all i ∈ [s], we have

λmin(H̄
(ℓ)⊺
i H̄

(ℓ)
i ) ≥ |S̄

(ℓ)
i |
16
≥ πminT

32L
, (A.127)

as long as the trajectory length T satisfies the following lower bound,

T ≥ 32L

πmin

c2(1 + β2
+) log

(2s(n+ p)

δ

)
(n+ p). (A.128)

Combining this with Theorem A.17, with probability at least 1− 5δ, for all i ∈ [s], we have

λmin(H
(ℓ)⊺
i H

(ℓ)
i ) ≥ λmin(H̄

(ℓ)⊺
i H̄

(ℓ)
i )− ∥H(ℓ)⊺

i H
(ℓ)
i − H̄

(ℓ)⊺
i H̄

(ℓ)
i ∥,

≥ πminT

32L
−

3c2β′
+(1 + β+)τLρ

(L−1)/2
L n

√
s(n+ p)T 2

δL
,

≥ πminT

64L
, (A.129)
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where we get the last inequality by choosing L via,

πminT

64L
≥

3c2β′
+(1 + β+)τLρ

(L−1)/2
L n

√
s(n+ p)T 2

δL
,

⇐⇒ ρ
(L−1)/2
L ≤ πminδ

192c2τLβ′
+(1 + β+)n

√
s(n+ p)T

,

⇐= L ≥ 1 +
2 log

(
192c2τLβ

′
+(1 + β+)n

√
s(n+ p)T/(πminδ)

)
(1− ρL)

. (A.130)

Similarly, combing Theorems A.16 and A.17, with probability at least 1− 4δ, for all i ∈ [s],

we also have

∥H(ℓ)⊺
i W

(ℓ)
i ∥ ≤ ∥H̄

(ℓ)⊺
i W

(ℓ)
i ∥+ ∥H

(ℓ)⊺
i W

(ℓ)
i − H̄

(ℓ)⊺
i W

(ℓ)
i ∥,

≤ 2c(1 + β+)

√
T (n+ p)

L

(
Cσw

√
n+ p+ C0

√
log
(2s
δ

))
+

ccwσwβ
′
+τLρ

(L−1)/2
L n

√
nsT 2

δL
,

≤ 3c(1 + β+)

√
T (n+ p)

L

(
Cσw

√
n+ p+ C0

√
log
(2s
δ

))
, (A.131)

where we get the last inequality by choosing L via,

ccwσwβ
′
+τLρ

(L−1)/2
L n

√
nsT 2

δL
≤ c(1 + β+)

√
T (n+ p)

L

(
Cσw

√
n+ p+ C0

√
log
(2s
δ

))
⇐⇒ ρ

(L−1)/2
L ≤

δ(1 + β+)
√

TL(n+ p)
(
Cσw

√
n+ p+ C0

√
log(2s/δ)

)
cwσwβ′

+τLn
√
nsT 2

,

⇐= L ≥ 1 +
2

(1− ρL)
log
( cwσwβ

′
+τLn

√
nsTT

δ(1 + β+)
√

(n+ p)
(
Cσw

√
n+ p+ C0

√
log(2s/δ)

)).
(A.132)

Finally combining (A.129) and (A.131) into (A.24) and union bounding over all 0 ≤ ℓ ≤ L−1,
with probability at least 1− 9Lδ, for all i ∈ [s], we have

∥Θ̂i −Θ⋆
i ∥ ≤

∑L−1
ℓ=0 ∥H

(ℓ)⊺
i W

(ℓ)
i ∥∑L−1

ℓ=0 λmin

(
H

(ℓ)⊺
i H

(ℓ)
i

) ,
≤ 192c(1 + β+)

πmin

√
L(n+ p)

T

(
Cσw

√
n+ p+ C0

√
log
(2s
δ

))
. (A.133)
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To proceed, using standard result from linear algebra that the spectral norm of a sub-matrix

is upper bounded by the norm of the original matrix, with probability at least 1− 9Lδ, for

all i ∈ [s], we have

∥L̂i − Li∥ ≤
192c(1 + β+)

πmin

√
L(n+ p)

T

(
C
√
n+ p+ (C0/σw)

√
log
(2s
δ

))
,

∥B̂i −Bi∥ ≤
192c(1 + β+)

πmin

σw

σz

√
L(n+ p)

T

(
C
√
n+ p+ (C0/σw)

√
log
(2s
δ

))
,

=⇒ ∥Âi −Ai∥ ≤ ∥L̂i − Li∥+ ∥Ki∥∥B̂i −Bi∥,

≤ 192c(1 + β+)

πmin

(σz + CKσw)

σz

√
L(n+ p)

T

(
C
√
n+ p+ (C0/σw)

√
log
(2s
δ

))
. (A.134)

Finally replacing δ with δ/(18L) we get the statement of the theorem. This completes the

proof.

A.5.9 Proof of Lemma A.19

Proof. Let E be the event {g | ∥g∥∞ ≤ cwσw}. If cw ≥
√

2 log(nT ) +
√
2 log(2/δ), using

Gaussian tail bound and the fact that E[∥g∥∞] ≤ σw

√
2 log(nT ), observe that P(E) ≥

1− e−
(cwσw−E[∥g∥∞])2

2 ≥ 1− δ/2. Therefore, we have

E[Sg,a] ≥ E[Sg,a|E]P(E) = E[Sg′,a]P(E) ≥ (1− δ/2)2 ≥ 1− δ.

This completes the proof.
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Appendix B

Proofs for Results in Chapter 4

B.1 Useful Facts

Fact B.1 (Matrix Facts). For arbitrary matrices M,N,X with appropriate dimensions, we

have the following facts.

1. If M,N ⪰ 0, then

∥N(I+MN)−1∥ ≤ ∥N∥, (B.1)

∥(I+MN)−1∥ ≤ 1 + ∥N∥∥M∥. (B.2)

2. If M and M+N are invertible, then

(M+N)−1 = M−1 −M−1N(M+N)−1

= M−1 − (M+N)−1NM−1.
(B.3)

3. If I+M and I+N are invertible, then

(I+M)−1 − (I+N)−1 = (I+M)−1(N−M)(I+N)−1. (B.4)

4.

vec(MXN) = (N
⊺ ⊗M)vec(X). (B.5)

5. For a collection of matrices M1:s, and for all i ∈ [s],

∥φi(M1:s)∥ = ∥
∑s

j=1
T(i, j)Mj∥ ≤ ∥M1:s∥. (B.6)

In Fact B.1, (B.1) is due to (Mania et al., 2019, Lemma 7) (in their supplement); to see

(B.2), first note that (I +MN)−1 = I −MN(I +MN)−1 by matrix inversion lemma, and
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then apply (B.1). (B.3) and (B.4) also follow from matrix inversion lemma.

Fact B.2. For nxn matrices X1:s, let X = diag(X1:s). Let ˜vec(·) be the operator that

vectorizes all diagonal blocks of X into a vector, i.e. ˜vec(X) := (vec(X1), . . . ,vec(Xs)).

Let ˜vec−1 denote the inverse, i.e. ˜vec−1( ˜vec(X)) = X. Then,

∥ ˜vec∥ := sup
X=diag(X1:s),∥X∥=1

∥ ˜vec(X)∥ (i)
=
√
ns (B.7)

∥ ˜vec−1∥ := sup
∥x∥=1

∥ ˜vec−1(x)∥ (ii)
= 1. (B.8)

Fact B.2 follows by noting that (i) achieves the supremum when Xi = In for all i and

(ii) achieves the supremum when x = (1, 0, . . . , 0). For a matrix M and perturbation ∆, we

have the following result adapted from (Mania et al., 2019, Lemma 5).

Fact B.3. Let ρ := ρ(M) and τ := supk∈N ∥Mk∥/ρk. Then, (a) ρ(M+∆) ≤ τ∥∆∥+ ρ; (b)

∥(M+∆)k∥ ≤ τ
(
τ∥∆∥+ ρ

)k
.

Fact B.4. Consider a generic MJS-LQR problem given by MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s)

and its corresponding cDARE(A1:s,B1:s,T,Q1:s,R1:s). Assume Q1:s,R1:s ≻ 0 for all i ∈ [s].

If there exists a positive definite solution P1:s ≻ 0 to cDARE(A1:s,B1:s,T,Q1:s,R1:s), then

it is the unique solution among {P1:s : Pi ⪰ 0,∀ i ∈ [s]}.

To see this, first note that cDARE(A1:s,B1:s,T,Q1:s,R1:s) can be written as the Joseph

stabilized form (Lewis et al., 2012, (2.2-62)), i.e. Pi − L⊺
iφi(P1:s)Li = K⊺

iRiKi +Qi where

Ki = −
(
Ri +B⊺

iφi(P1:s)Bi

)−1
B⊺

iφi(P
⋆
1:s)Ai and Li := Ai +BiKi. Since Qi ≻ 0, we know

by Corollary 2.13 the closed-loop MJS xt+1 = Lωtxt is mean-square stable. Then one can

obtain Fact B.4 by invoking (Costa et al., 2006, Lemma A.14) which says cDARE has at

most one solution with resulting controller stabilizes the MJS.

B.2 Proof of Theorem 4.1

We first provide the road map of the proof.

(a) We construct an operator K(X1:s) using the difference between the ground truth

cDARE(A1:s,B1:s,T,Q1:s,R1:s) and perturbed cDARE(Â1:s, B̂1:s, T̂,Q1:s,R1:s), whose

fixed point X⋆
1:s (if exists) guarantees P̂1:s := P⋆

1:s +X⋆
1:s to be a solution to the per-

turbed cDARE(Â1:s, B̂1:s, T̂,Q1:s,R1:s).
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(b) We show when ϵ, η are small, K(X1:s) is a contraction mapping on a closed set Sν whose
radius ν is a function of ϵ and η. Thus, there exists a unique fixed point X⋆

1:s ∈ Sν and

∥P̂1:s −P⋆
1:s∥ = ∥X⋆

1:s∥ ≤ ν(ϵ, η).

(c) Finally, we show P̂1:s is unique by showing P̂i ≻ 0 and then invoking Fact B.4.

B.2.1 Construct operator K

First we define a few notations for the ease of exposition. For all i ∈ [s], let Si := BiR
−1
i B⊺

i

and Ŝi := B̂iR
−1
i B̂⊺

i . Define block diagonal matrices A, Â, B, B̂, Q, R, P⋆, P̂, K⋆, L⋆, S,

Ŝ, P, X, Φ(X), Φ̂(X) such that their i-th diagonal blocks are given by Ai, Âi, Bi, B̂i, Qi,

Ri, P
⋆
i , P̂i, K

⋆
i , L

⋆
i , Si, Ŝi, Pi, Xi, φi(X1:s), φ̂i(X1:s) respectively. Note that Pi,Xi ⪰ 0 are

just generic variables to be used in function arguments. We will see many equations that

hold for each single block also hold for the diagonally concatenated notations.

We have K⋆ = −(R + B⊺Φ(P⋆)B)−1B⊺Φ(P⋆)A from (2.36), then using the matrix

inversion lemma, we get

L⋆ = A+BK⋆ = (I+ SΦ(P⋆))−1A. (B.9)

Furthermore, by diagonally concatenating cDARE (2.35) and then applying the matrix in-

version lemma again, we have

X = A
⊺
Φ(X)(I+ SΦ(X))−1A+Q. (B.10)

Then, we define the following Riccati difference function using the difference between LHS

and RHS of (B.10), with P as argument and A,B,T as parameters:

F(P;A,B,T) := P−A
⊺
Φ(P)(I+ SΦ(P))−1A−Q. (B.11)

Though not explicitly listed, Φ and S on the RHS of (B.11) depend on T and B respectively.

Since P⋆
1:s is the solution to cDARE(A1:s,B1:s,T,Q1:s,R1:s), we have F(P⋆;A,B,T) = 0.

Similarly, if there exists solution P̂1:s to cDARE(Â1:s, B̂1:s, T̂,Q1:s,R1:s), then we also have

F(P̂; Â, B̂, T̂) = 0.

For X such that P⋆ +X ⪰ 0, we know I + S(P⋆ +X) is invertible. Then, for F(P⋆ +
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X;A,B,T), we have

F(P⋆ +X;A,B,T)

(B.3)
= P⋆ +X−A

⊺
Φ(P⋆ +X) ·

[
(I+ SΦ(P⋆))−1−

(I+ SΦ(P⋆ +X))−1︸ ︷︷ ︸
=:Γ

SΦ(X)(I+ SΦ(P⋆))−1
]
A−Q

=P⋆ +X−A
⊺
Φ(P⋆ +X)(I− ΓSΦ(X))(I+ SΦ(P⋆))−1A−Q

(B.9)
= P⋆ +X−A

⊺
Φ(P⋆ +X)(I− ΓSΦ(X))L⋆ −Q

(i)
=X−A

⊺
Φ(P⋆ +X)(I− ΓSΦ(X))L⋆ +A

⊺
Φ(P⋆)L⋆

=X−A
⊺
[Φ(P⋆ +X)(I− ΓSΦ(X))−Φ(P⋆)]L⋆

(B.9)
= X− L⋆⊺(I+Φ(P⋆)S) [Φ(P⋆ +X)(I− ΓSΦ(X))−Φ(P⋆)]L⋆

=X− L⋆⊺ (I+Φ(P⋆)S) [−Φ(P⋆)ΓS+ I−Φ(X)ΓS]︸ ︷︷ ︸
=:Λ

Φ(X)L⋆

where (i) follows fromP⋆−Q = A⊺Φ(X)L⋆ which can be seen from the fact F(P⋆;A,B,T) =

0. By expanding Λ, one can check Λ = I − Φ(X)ΓS. Plugging this back and using the

definition of Γ, we have

F(P⋆ +X;A,B,T) = X− L⋆⊺Φ(X)L⋆+

L⋆⊺Φ(X)(I+ SΦ(P⋆) + SΦ(X))−1SΦ(X)L⋆. (B.12)

If we define
T (X) = X− L⋆⊺Φ(X)L⋆,

H(X) = L⋆⊺Φ(X)(I+ SΦ(P⋆) + SΦ(X))−1SΦ(X)L⋆,
(B.13)

we can write F(P⋆ +X;A,B,T) as

F(P⋆ +X;A,B,T) = T (X) +H(X). (B.14)

We now study the invertibility of operator T . Let Yi := Xi − L⋆
i
⊺
φi(X1:s)L

⋆
i , and Y :=

diag(Y1:s), then we see Y = T (X) = X − L⋆⊺Φ(X)L⋆. Apply (B.5) to Yi, we have

vec(Yi) = (I − T(i, i) · L⋆
i
⊺ ⊗ L⋆

i
⊺
)vec(Xi) −

∑
j ̸=i T(i, j)L⋆

i
⊺ ⊗ L⋆

i
⊺
vec(Xj). Stacking this

equation for all i, we have (I−L⋆⊺) ˜vec(X) = ˜vec(Y), where ˜vec(·) is defined in Fact B.2.

We know ρ(L⋆⊺) < 1, thus (I − L⋆⊺) is invertible, and inverse operator T −1 exists and is

given by

X = T −1(Y) = ˜vec−1 ◦ (I−L⋆⊺)−1 ◦ ˜vec(Y), (B.15)
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where ◦ denotes operator composition, and ˜vec(·)−1 is defined in Fact B.2. With T −1, we

define the following operator:

K(X) := T −1
(
F(P⋆ +X;A,B,T)−F(P⋆ +X; Â, B̂, T̂)−H(X)

)
. (B.16)

Suppose there exists a fixed point X⋆ for K, then we see F(P⋆ + X⋆; Â, B̂, T̂) = F(P⋆ +

X⋆;A,B,T) − T (X⋆) − H(X⋆) = 0, i.e. P̂1:s = P⋆
1:s + X⋆

1:s is a solution to the perturbed

cDARE(Â1:s, B̂1:s, T̂,Q1:s,R1:s).

B.2.2 K is a Contraction

We will show K(X) is a contraction mapping on the closed set

Sν := {X : ∥X∥ ≤ ν,X = diag(X1:s),P
⋆ +X ⪰ 0} (B.17)

so that K(X) is guaranteed to have a fixed point in Sν . To do this, we first present the

following lemma (proof in Appendix B.4) regarding properties of K(X).

Lemma B.5. Assume ϵ ≤ min{∥B∥, 1}. Suppose X,X1,X2 ∈ Sν with ν ≤ min{1, ∥S∥−1},
then

∥K(X)∥ ≤
√
nsτ

1− ρ

(
∥L⋆∥2∥S∥ν2 +

Cϵϵ+ Cηη

2

)
, (B.18)

∥K(X1)−K(X2)∥ ≤
√
nsτ

1− ρ
∥X1 −X2∥

·
(
3∥L⋆∥2∥S∥ν + ∥B∥2+∥R−1∥+(51ϵ/Cu

ϵ + 2η/Cu
η )
)
. (B.19)

To use this lemma, we pick ν =
√
nsτ

1−ρ
(Cϵϵ+ Cηη) . We first show K maps Sν into itself

and then show it is a contraction mapping. Plugging in the upper bounds for ϵ and η in the

premises of Theorem 4.1, we have

ν ≤ min

{
1,

1

∥S∥
,

1− ρ

12
√
nsτ∥L⋆∥2∥S∥

,
σ(P⋆)

12

}
, (B.20)

Following the premise upper bound of ϵ in Theorem 4.1 we have ϵ ≤ min{∥B∥, 1}. This

together with (B.20) makes Lemma B.5 applicable, and we get ∥K(X)∥ ≤ 1
12
ν+ 1

2
ν = 7

12
ν by

cancelling off ϵ and η in (B.18) with the definition of ν, and applying the third upper bound

for ν in (B.20). We know ν ≤ σ(P⋆)/12 from (B.20), we have ∥K(X)∥ ≤ 7
144

σ(P⋆), thus

P⋆+K(X)≻0. This shows K(X) ∈ Sν , i.e. K maps Sν into itself. Plugging the premise upper

bounds for ϵ, η in Theorem 4.1 and the third upper bound for ν in (B.20) into (B.19) gives
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∥K(X1)−K(X2)∥ ≤ 13
24
∥X1 −X2∥, i.e. K(X) is a contraction mapping on Sν , which means

K(X) has a unique fixed point X⋆ ∈ Sν . From the discussion below (B.16), we know P̂1:s

is a solution to cDARE(Â1:s, B̂1:s, T̂,Q1:s,R1:s) and ∥P̂1:s −P⋆
1:s∥ = ∥X⋆

1:s∥ = ∥X⋆∥ ≤ ν,

which shows (4.8).

B.2.3 Uniqueness of P̂1:s

Note that X⋆ ∈ Sν gives ∥X⋆∥ < ν, and using (B.20), we have ∥X⋆∥ < σ(P⋆), thus P⋆ +

X⋆≻0. This implies P̂i = P⋆
i +X⋆

i≻0 for all i. By Fact B.4, we know P̂1:s is the only possible

solution to cDARE(Â1:s, B̂1:s, T̂,Q1:s,R1:s) among Sn
s,+.

B.3 Proof of Theorem 4.2

We first provide the road map of the proof.

(a) We bound the controller difference ∥K⋆
1:s − K̂1:s∥ in terms of ∥P̂1:s −P⋆

1:s∥ and provide

conditions under which K̂1:s stabilizes the true MJS(A1:s,B1:s,T).

(b) For Ĵ incurred by the stabilizing K̂1:s, we bound the suboptimality gap Ĵ−J⋆ in terms

of ∥K⋆
1:s − K̂1:s∥.

(c) We combine steps (a), (b) and Theorem 4.1 to obtain the final result.

B.3.1 Properties of K̂1:s

We show that when P̂1:s is close to P1:s, then K̂1:s is also close to K1:s.

Lemma B.6 (Controller mismatch). Suppose ∥P̂1:s −P⋆
1:s∥ ≤ f(ϵ, η) for some function

f(ϵ, η) such that max{ϵ, η} ≤ f(ϵ, η) ≤ Γ⋆. Then, under Assumption A5.1, we have

∥K⋆
1:s − K̂1:s∥ ≤ 28Γ3

⋆

(σ(R1:s) + Γ3
⋆)

σ(R1:s)2
f(ϵ, η) (B.21)

Proof. Recall

K⋆
i = −

(
Ri +B

⊺
iφi(P

⋆
1:s)Bi

)−1
B

⊺
iφi(P

⋆
1:s)Ai,

K̂i = −
(
Ri + B̂

⊺
i φ̂i(P̂1:s)B̂i

)−1
B̂

⊺
i φ̂i(P̂1:s)Âi.

As an auxiliary step, we define K̃i := −
(
Ri + B̂⊺

iφi(P̂1:s)B̂i

)−1 · B̂⊺
iφi(P̂1:s)Âi. Then, we

have

∥K⋆
i − K̂i∥ ≤ ∥K⋆

i − K̃i∥+ ∥K̃i − K̂i∥. (B.22)
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Note that ∥K⋆
1:s − K̂1:s∥ = maxi ∥K⋆

i − K̂i∥, thus it suffices to bound ∥K⋆
i − K̃i∥ and ∥K̃i − K̂i∥

respectively. For ∥K⋆
i − K̃i∥, we can see ∥K⋆

i − K̃i∥ ≤MδN + δMN where

M = ∥
(
Ri +B

⊺
iφi(P

⋆
1:s)Bi

)−1∥, N = ∥B̂⊺
iφi(P̂1:s)Âi∥

δM = ∥
(
Ri +B

⊺
iφi(P

⋆
1:s)Bi

)−1 −
(
Ri + B̂

⊺
iφi(P̂1:s)B̂i

)−1∥

δN = ∥B⊺
iφi(P

⋆
1:s)Ai − B̂

⊺
iφi(P̂1:s)Âi∥

We next upper bound M, δN , δM , and N . Since we assume Ri ≻ 0, it is easy to see M =

∥
(
Ri +B⊺

iφi(P
⋆
1:s)Bi

)−1∥ ≤ 1
σ(Ri)

. For δN , let ∆Ai
= Âi−Ai, ∆Bi

= B̂i−Bi, ∆Pi
= P̂i−P⋆

i ,

then we have

δN = ∥B⊺
iφi(P

⋆
1:s)Ai − B̂

⊺
iφi(P̂1:s)Âi∥

= ∥B⊺
iφi(P

⋆
1:s)Ai − (Bi +∆Bi

)
⊺

·
[
φi(P

⋆
1:s)Ai + φi(∆P⋆

1:s
)Ai + φi(P

⋆
1:s)∆Ai

+ φi(∆P⋆
1:s
)∆Ai

]
∥

= ∥B⊺
iφi(P

⋆
1:s)Ai −

[
B

⊺
iφi(P

⋆
1:s)Ai +B

⊺
iφi(∆P⋆

1:s
)Ai

+B
⊺
iφi(P

⋆
1:s)∆Ai

+B
⊺
iφi(∆P⋆

1:s
)∆Ai

+∆
⊺
Bi
φi(P

⋆
1:s)Ai

+∆
⊺
Bi
φi(∆P⋆

1:s
)Ai +∆

⊺
Bi
φi(P

⋆
1:s)∆Ai

+∆
⊺
Bi
φi(∆P⋆

1:s
)∆Ai

]
∥

(B.6)

≤ ∥Ai∥∥Bi∥f(ϵ, η) + ∥Bi∥∥P⋆
1:s∥ϵ+ ∥Bi∥f(ϵ, η)ϵ

+ ∥Ai∥∥P⋆
1:s∥ϵ+ ∥Ai∥f(ϵ, η)ϵ+ ∥P⋆

1:s∥ϵ2 + f(ϵ, η)ϵ2,

≤ 3Γ2
⋆f(ϵ, η),

where the last line follows from the assumption that ϵ < f(ϵ, η). For δM , we have

δM = ∥
(
Ri +B

⊺
iφi(P

⋆
1:s)Bi

)−1 −
(
Ri + B̂

⊺
iφi(P̂1:s)B̂i

)−1∥
(B.3)

≤ ∥
(
Ri +B

⊺
iφi(P

⋆
1:s)Bi

)−1∥ · ∥
(
Ri + B̂

⊺
iφi(P̂1:s)B̂i

)−1∥

· ∥B̂⊺
iφi(P̂1:s)B̂i −B

⊺
iφi(P

⋆
1:s)Bi∥

≤ 3Γ2
⋆f(ϵ, η)

σ(Ri)2
.
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Similarly, we have the following for N .

N = ∥B̂⊺
iφi(P̂1:s)Âi∥

= ∥B⊺
iφi(P

⋆
1:s)Ai +B

⊺
iφi(∆P⋆

1:s
)Ai +B

⊺
iφi(P

⋆
1:s)∆Ai

+B
⊺
iφi(∆P⋆

1:s
)∆Ai

+∆
⊺
Bi
φi(P

⋆
1:s)Ai +∆

⊺
Bi
φi(∆P⋆

1:s
)Ai

+∆
⊺
Bi
φi(P

⋆
1:s)∆Ai

+∆
⊺
Bi
φi(∆P⋆

1:s
)∆Ai

∥

≤
(
∥Ai∥∥Bi∥+ ∥Ai∥∥P⋆

1:s∥+ ∥Bi∥∥P⋆
1:s∥+ ∥Ai∥ϵ+ ∥Bi∥ϵ

+ ∥P⋆
1:s∥ϵ+ ϵ2) · f(ϵ, η

)
+ ∥Ai∥∥Bi∥∥P⋆

1:s∥

≤ 3Γ2
⋆f(ϵ, η) + Γ3

⋆.

Combining the bounds for M, δN , δM , and N we obtained thus far, we have ∥K⋆
i − K̃i∥ ≤

12Γ2
⋆
(σ(Ri)+Γ3

⋆)
σ(Ri)2

f(ϵ, η). Using similar techniques, for the other term on the RHS of (B.22),

we can show ∥K̃i − K̂i∥ ≤ 16Γ3
⋆
(σ(Ri)+Γ3

⋆)
σ(Ri)2

η. Recall we assume η ≤ f(ϵ, η), then by triangle

inequality, we have ∥K⋆
i − K̂i∥ ≤ 28Γ3

⋆
(σ(Ri)+Γ3

⋆)
σ(Ri)2

f(ϵ, η).

For K̂1:s, let L̂i := Ai + BiK̂i and define the augmented closed-loop state matrix L̂ ∈
Rsn2xsn2

with (i, j)-th n2×n2 block given by [L̂]ij := T(j, i)L̂j ⊗ L̂j.

Lemma B.7 (Stabilizability of K̂). Suppose ∥K̂1:s −K⋆
1:s∥ ≤

1−ρ
2
√
sτ(1+2∥L⋆

1:s∥)∥B1:s∥=:ϵ̄K, then

(a) ρ(L̂) < 1+ρ
2
, i.e. K̂1:s is a stabilizing controller; (b) ∥L̂k∥ ≤ τ(1+ρ

2
)k;

Proof. Let ∆Ki
:= K̂i −K⋆

i , then we have [L̂]ij − [L⋆]ij = T(j, i)[(Bj∆Kj
) ⊗ (Bj∆Kj

) +

(Bj∆Kj
)⊗L⋆

j + L⋆
j⊗(Bj∆Kj

)]. Taking the norms gives ∥[L̂]ij − [L⋆]ij∥ ≤ T(j, i)(∥Bj∥2 ·
∥∆Kj

∥2+2∥Bj∥∥L⋆
j∥∥∆Kj

∥) ≤ T(j, i)(1+2∥Lj∥)∥Bj∥∥∆Kj
∥ ≤ T(j, i) 1−ρ

2
√
sτ
. Using Cauchy-

Schwartz inequality gives ∥L̂ −L⋆∥ ≤
(∑

i,j ∥[L̂]ij − [L⋆]ij∥2
)0.5 ≤ 1−ρ

2τ
. Finally, we can

conclude the proof by invoking Fact B.3.

B.3.2 Ĵ − J⋆ vs. ∥K⋆
1:s − K̂1:s∥

Adapting (Jansch-Porto et al., 2020, Lemma 3-(2)) to noisy MJS and infinite-horizon average

cost case, we have the following result.

Lemma B.8. Suppose the controller K̂1:s is a stabilizing controller. Let Πi := π∞(i)In

and Π := diag(Π1:s). Let Σ1:s be the solution to ˜vec(Σ) = L̂ ˜vec(Σ) + σ2
w ˜vec(Π), where

Σ := diag(Σ1:s). Then, Ĵ − J⋆ =
∑

i tr
(
Σi(K̂i −K⋆

i )
⊺(Ri +B⊺

iφi(P
⋆
1:s)Bi(K̂i −K⋆

i ))
)

In Lemma B.8, the equation described by Σ is essentially the coupled Lyapunov equation

for MJS, and it can be shown Σi = limt→∞ E[xtx
⊺
t1{ωt=i}] where xt is the state under

controller K̂1:s. Combining Lemma B.7 and B.8, we have
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Corollary B.9. Suppose ∥K̂1:s −K⋆
1:s∥ ≤ ϵ̄K, then

Ĵ − J⋆ ≤ 2σ2
ws

1.5
√
nmin{n, p}τ
1− ρ

(∥R1:s∥+ Γ3
⋆)∥K̂1:s −K⋆

1:s∥2.

Proof. We first bound ∥Σi∥ in Lemma B.8. Similar to (B.15), we have Σ = σ2
w · ˜vec−1 ◦ (I−

L̂)−1 ◦ ˜vec(Π). Using Fact (B.2) and the sub-multiplicative property of operator norms,

we have ∥Σi∥ ≤ ∥Σ∥ ≤
√
ns∥(I− L̂)−1∥∥Π∥. Note that ∥Π∥ ≤ 1 and ∥(I− L̂)−1∥ =

∥
∑∞

k=0(L̂)k∥ ≤
∑∞

k=0 ∥(L̂)k∥ ≤ 2τ
1−ρ

, where the last inequality follows from Lemma B.7

(b). Thus, ∥Σi∥ ≤ 2σ2
w

√
snτ

1−ρ
. Finally, applying Lemma B.8 gives Ĵ − J⋆ ≤ s∥Σi∥(∥R1:s∥ +

∥B1:s∥2∥P⋆∥)∥K̂1:s −K⋆
1:s∥2F ≤

2σ2
ws1.5

√
nmin{n,p}τ
1−ρ

(∥R1:s∥+ Γ3
⋆)∥K̂1:s −K⋆

1:s∥2.

B.3.3 Proof of Theorem 4.2

To prove Theorem 4.2, we only need to combine Theorem 4.1, Lemma B.6, and Corollary

B.9. By Theorem 4.1, we can choose f(ϵ, η) :=
√
nsτ

1−ρ
(Cϵϵ + Cηη) in Lemma B.6. The,

when Cϵϵ+ Cηη ≤ (1−ρ)min{Γ⋆,σ(R1:s)2ϵ̄K}
28

√
nsτΓ3

⋆(σ(R1:s)+Γ3
⋆)

, the premise conditions max{ϵ, η} ≤ f(ϵ, η) ≤ Γ⋆ in

Lemma B.6 and ∥K̂1:s −K⋆
1:s∥ ≤ ϵ̄K in Corollary B.9 hold. Theorem 4.1 and Lemma B.6

give ∥K⋆
1:s − K̂1:s∥ ≤ 28

√
nsτΓ3

⋆
(σ(R1:s)+Γ3

⋆)
(1−ρ)σ(R1:s)2

(Cϵϵ + Cηη) which shows (4.9). Combining this

with Corollary B.9 shows (4.10).

B.4 Proof of Lemma B.5

To ease the exposition, let P⋆
X := P⋆ +X and define P⋆

X1
,P⋆

X1
similarly. Let ∆A := Â−A,

∆B := B̂−B, and ∆S := Ŝ−S. We list a few preliminary results (when X∈Sν) to be used

later.

• ∥Φ(X)∥ ≤ ∥X∥, ∥Φ̂(X)∥ ≤ ∥X∥. (B.23)

• ∥Φ(X)− Φ̂(X)∥ ≤ η∥X∥. (B.24)

• max{∥P⋆
X∥, ∥Φ(P⋆

X)∥, ∥Φ̂(P⋆
X)∥} ≤ ∥P⋆∥+. (B.25)

• ∥S∥ ≤ ∥B∥2∥R−1∥, ∥∆S∥ ≤ 3∥B∥∥R−1∥ϵ, ∥Ŝ∥ ≤ 4∥B∥2∥R−1∥ (B.26)

• max
{
∥(I+ SΦ(P⋆

X))
−1∥, ∥(I+ SΦ̂(P⋆

X))
−1∥
}
≤ ∥B∥2+∥R−1∥+∥P⋆∥+ (B.27)

• max
{
∥(I+ ŜΦ(P⋆

X))
−1∥, ∥(I+ ŜΦ̂(P⋆

X))
−1∥
}
≤ 4∥B∥2+∥R−1∥+∥P⋆∥+. (B.28)

(B.25) is due to ν ≤ 1, and (B.26) uses ∥∆B∥ ≤ ϵ ≤ ∥B∥. (B.27) and (B.28) follows from

(B.2), (B.25), (B.26).
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Now, we are ready to begin the main proof. We first define

G1(X) := F(P⋆
X;A,B, T̂)−F(P⋆

X; Â, B̂, T̂)

G2(X) := F(P⋆
X;A,B,T)−F(P⋆

X;A,B, T̂).

Then, we have the following decomposition.

K(X) = T −1(G1(X) + G2(X)−H(X)), (B.29)

K(X1)−K(X2) = T −1(G1(X1)− G1(X2)

+ G2(X1)− G2(X2)−H(X1) +H(X2)) (B.30)

To bound the ∥K(X)∥ and ∥K(X1)−K(X2)∥, we will bound ∥T −1∥, ∥H(X)∥, ∥G1(X)∥,
∥G2(X)∥, ∥H(X1) − H(X2)∥, ∥G1(X1) −G1(X2)∥, ∥G2(X1) − G2(X2)∥ individually, for any

X,X1,X2 ∈ Sν and then combine them using triangle inequality and operator composition

sub-multiplicativity, i.e.

∥K(X)∥ ≤ ∥T −1∥(∥G1(X)∥+ ∥G2(X)∥+ ∥H(X)∥) (B.31)

∥K(X1)−K(X2)∥ ≤ ∥T −1∥(∥G1(X1)− G1(X2)∥

+ ∥G2(X1)− G2(X2)∥+ ∥H(X1)−H(X2)∥) (B.32)

B.4.1 Bound ∥K(X)∥

By the definition of T −1 in (B.15), we know T −1(Y) = ˜vec−1 ◦ (I−L⋆⊺)−1 ◦ ˜vec(Y). Then,

for ∥T −1∥, similar to the proof for Corollary B.9, we have ∥T −1∥ ≤
√
snτ

1−ρ
. By definition of

H(X) in (B.14), we have ∥H(X)∥ ≤ ∥L⋆∥2∥S∥∥X∥2 ≤ ∥L⋆∥2∥S∥ν2, where (B.1) and (B.23)

are used. For term G1(X), using (B.4), we can decompose it as

G1(X) =

−A
⊺
Φ̂(P⋆

X)(I+ SΦ̂(P⋆
X))

−1∆SΦ̂(P⋆
X)(I+ ŜΦ̂(P⋆

X))
−1A

+∆
⊺
AΦ̂(P⋆

X)(I+ ŜΦ̂(P⋆
X))

−1A+A
⊺
Φ̂(P⋆

X)(I+ ŜΦ̂(P⋆
X))

−1∆A

+∆
⊺
AΦ̂(P⋆

X)(I+ ŜΦ̂(P⋆
X))

−1∆A.

With properties (B.1), (B.25), (B.26), and the premise assumption ϵ ≤ ∥B∥, we can show

∥G1(X)∥ ≤ 3∥A∥2+∥B∥+ ·∥P⋆∥2+∥R−1∥+ϵ. Similarly, we can obtain that ∥G2(X)∥ ≤ ∥A∥2+ ·
∥B∥4+∥P⋆∥3+∥R−1∥2+η by invoking (B.1), (B.4), (B.24), (B.25), (B.26), and (B.27). Finally,

using the relation in (B.31), we can show the upper bound for ∥K(X)∥ in (B.18).

129



B.4.2 Bound ∥K(X1)−K(X2)∥

We first derive bounds for ∥H(X1)−H(X2)∥, ∥G1(X1)− G1(X2)∥, and ∥G2(X1)− G2(X2)∥.
With the help of (B.4), the following can be obtained.

H(X1)−H(X2) = L⋆⊺Φ(X1)(I+ SΦ(P⋆
X1

))−1

· SΦ(X2 −X1)(I+ SΦ(P⋆
X2

))−1SΦ(X1)L
⋆

− L⋆⊺Φ(X2 −X1)(I+ SΦ(P⋆
X2

))−1SΦ(X2)L
⋆

− L⋆⊺Φ(X1)(I+ SΦ(P⋆
X2

))−1SΦ(X2 −X1)L
⋆.

(B.33)

Using (B.1), (B.23), and ν ≤ ∥S∥−1, we have ∥H(X1)−H(X2)∥ ≤ 3∥L⋆∥2∥S∥ν∥X2 −X1∥.
Similarly, ∥G1(X1)−G1(X2)∥ ≤ 51∥A∥2+∥B∥5+∥P⋆∥3+∥R−1∥3+∥X2 −X1∥ϵ and ∥G2(X1)− G2(X2)∥ ≤
2∥A∥2+∥B∥6+∥P⋆∥3+∥R−1∥3+∥X2 −X1∥η can be established. Plugging these results into the

relation in (B.32) shows the bound for ∥K(X1)−K(X2)∥ in (B.19)
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Appendix C

Proofs for Results in Chapter 5

Consider MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) with dynamics noise wt ∼ N (0,Σw), some ar-

bitrary initial state x0 and stabilizing controller K1:s. The input is ut = Kωtxt + zt where

exploration noise zt ∼ N (0,Σz). Let Li := Ai + BiKi. Let L ∈ Rsn2×sn2
denote the aug-

mented closed-loop state matrix with (i, j)-th n2×n2 block given by [L]ij := T(j, i)Lj ⊗ Lj.

Let τL > 0 and ρL ∈ [0, 1) be two constants such that ∥Lk∥ ≤ τLρ
k
L. By definition, one

available choice for τL and ρL are τ(L) and ρ(L).

We define the following cumulative cost conditioned on the initial state x0, initial mode

ω0, and controller K1:s.

JT (x0, ω0, {K1:s,Σz}) :=
T∑
t=1

E[x⊺
tQωtxt + u

⊺
tRωtut | x0, ω0,K1:s]. (C.1)

The definition of this cumulative cost coincides with the cost
∑Tq

t=1 cT0+···+Tq−1+t in the defi-

nition of Regretq in (5.2) with x0, ω0,K1:s setting to x
(q)
0 , ω(q)(0),K

(q)
1:s since Regretq depends

on randomness in Fq−1 only through x
(q)
0 , ω(q)(0),K

(q)
1:s. In the remainder of this appendix, for

simplicity, we will drop the conditions x0, ω0,K1:s in the expectation and simply write E[ · |
x0, ω0,K1:s] as E[·]. So, for any measurable function f , E[f(x0, ω0,K1:s)] = f(x0, ω0,K1:s).

Note that even though the results in this appendix are derived for conditional expectation

E[ · | x0, ω0,K1:s], most of them also hold for the total expectation E[·].
For the infinite-horizon case, we define the following infinite-horizon average cost without

exploration noise zt and starting from x0 = 0.

J(0, ω0, {K1:s}) := lim sup
T→∞

1

T
JT (0, ω0, {K1:s, 0}). (C.2)

LetP⋆
1:s denote the solution to cDARE(A1:s,B1:s,T,Q1:s,R1:s) defined in (2.35). LetK⋆

1:s

denote the resulting infinite-horizon optimal controller computed using P⋆
1:s and following

(2.36). Note that the optimal infinite-horizon average cost J⋆ in Lemma 2.22 is achieved if
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the optimal controller K⋆
1:s is used, i.e.

J⋆ = J(0, ω0, {K⋆
1:s}). (C.3)

Note that if the underlying Markov chain T is ergodic, for any initial state x0 and mode

ω0, J
⋆ = J(x0, ω0, {K⋆

1:s}). Let L⋆
i = Ai +BiK

⋆
i for all i ∈ [s] denote the closed-loop state

matrix when the optimal controller K⋆
1:s is used. Define the augmented state matrix L⋆ such

that its (i, j)-th block is given by [L⋆]ij := T(j, i)L⋆
j ⊗L⋆

j . From Costa et al. (2006), we know

K⋆
1:s is stabilizes the MJS, thus ρ⋆ := ρ(L⋆) < 1.

Since Regretq defined in (5.2) can be written as

Regretq = JT (x
(q)
0 , ω(q)(0), {K(q)

1:s, σ
2
z,qIp})− TJ⋆, (C.4)

to evaluate Regret(T ), it suffices to evaluate JT (x0, ω0, {K1:s,Σz})− TJ⋆ for generic x0, ω0,

K1:s, and Σz. The outline of this Appendix C is as follows.

• In Appendix C.1, we list a few shorthand notations to ease later expositions.

• In Appendix C.2, we provide perturbation results J(0, ω0, {K1:s})− J⋆ following from

Chapter 4.1.

• In Appendix C.3, we evaluate JT (x0, ω0, {K1:s,Σz})−TJ(0, ω0, {K1:s}). Then, apply-
ing the results in Appendix C.2, for each epoch, we can bound the single epoch regret

JT (x0, ω0, {K1:s,Σz})− TJ⋆.

• In Appendix C.4, we stitch regrets for all epochs together, and combine them with

identification results in Appendix A to bound Regret(T ).

C.1 Preliminaries

In the following, we define a few notations to ease the exposition in the appendix. Note that,

for notations under parameterized form, i.e., notations which are functions of (δ, ρ, τ) etc.,

one can choose these parameters freely to get different deterministic quantities.

Table C.1 introduces notations and constants related to the choice of tuning parameters

cx, cz, and the shortest trajectory (initial epoch) length such that theoretical performance

guarantees can be achieved. Recall that K
(0)
1:s is the stabilizing controller for epoch 0 in

Algorithm 2. We let L
(0)
i := Ai +BiK

(0)
i , for all i ∈ [s], denote the closed-loop state matrix,

and L(0) ∈ Rsn2×sn2
denotes the augmented closed-loop state matrix with (i, j)-th n2×n2

block given by [L(0)]ij = T(j, i)L
(0)
j ⊗ L

(0)
j . τ(·) is as in Definition 2.1 and ρ(·) denotes the
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Table C.1: Notations — Tuning Parameters and Trajectory Length

σ̄z (depending on context) σz or σz,0 or
√
∥Σz∥

σ̄w (depending on context) σw or
√
∥Σw∥

Cz σ̄z/σ̄w

σ̄2 ∥B1:s∥2σ̄2
z + σ̄2

w

cx(ρ, τ) 3
√

18n
√
sτσ̄2

πminσ̄2
w(1−ρ)

cz max
{
(
√
3 +
√
6)
√
p,
√

3 log( 6
πmin

)
}

τ̄ max{τ(L(0)), τ(L⋆)}
ρ̄ max{ρ(L(0)), 1+ρ

2
}

CMC tMC ·max{3, 3− 3 log(πmax log(s))}
TMC,1(C, δ)

(
68Cπmaxπ

−2
min log(

s
δ
)
)2

TMC(C, δ)
(
612Cπmaxπ

−2
min log(

2s
δ
)
)2

T cl,1(ρ, τ)
(1−ρ)2

4n1.5
√
sτσ̄4

TN(C, δ, ρ, τ) max{TMC(C, δ
2
), T cl,1(ρ, τ)}

T id(C, δ, T, ρ, τ)
τ
√
sC log(T )

πmin(1−ρ)

(
(
√
2 log(nT ) +

√
2 log(2/δ))2+

C2
z∥B1:s∥2

)
log
(36s(n+p)C log(T )

δ

)
(n+ p)

T id,N(L, δ, T, ρ, τ) max
{
T id(

L
log(T )

, δ
2L
, T, ρ, τ), TN(

L
log(T )

, δ
2L
, ρ, τ)

}
T rgt,ϵ̄(δ, T )

O(
√
s(n+p)

πmin(1−ρ̄)
ϵ̄−4
A,B,T log(1

δ
) log4(T ))

O(
√
s(n+p)

πmin(1−ρ̄)
ϵ̄−2
A,B,T log(1

δ
) log2(T )) (when B1:s is known)

T x0
(δ) 1

γ log(1/ρ̄)
max{ 2

log(γ)
, log(π

2√nsτ̄
3δ

)}
T rgt(δ, T ) max

{
T x0

(δ), T rgt,ϵ̄(δ, T ), TMC,1(δ), T id,N(L, δ, T, ρ̄, τ̄)
}

spectral radius. For the infinite-horizon MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) problem, we let

P⋆
1:s denote the solution to cDARE given by (2.35) and K⋆

1:s denotes the optimal controller

which can be computed via (2.36) with P⋆
1:s. Similarly, we define L⋆

1:s and L⋆ to be the

corresponding closed-loop state matrix and augmented closed-loop state matrix respectively

and ρ⋆ := ρ(L⋆). πmax and πmin are the largest and smallest elements in the stationary

distribution of the ergodic Markov matrix T. For the definition of T rgt,ϵ̄(δ, T ), notation

ϵ̄A,B,T is defined in Table C.2. As a slight abuse of notation, T in T rgt,ϵ̄(δ, T ) (as well as

Table A.1) and C are merely arguments to be replaced with specific quantities depending on

the context.

Table C.2 lists the notations related to infinite-horizon MJS perturbation results closely

following the notations in Table 4.1. It provides several sensitivity parameters, e.g., how the

optimal controller K⋆
1:s varies with perturbations in the MJS parameters A1:s,B1:s, and T

and how the MJS-LQR cost J varies with the controller K1:s. It also provides certain upper
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Table C.2: Notations — MJS-LQR Perturbation

ξ min{∥B1:s∥−2
+ ∥R−1

1:s∥−1
+ ∥L⋆

1:s∥−2
+ , σ(P⋆

1:s)}
ξ′ ∥A1:s∥2+∥B1:s∥4+∥P⋆

1:s∥3+∥R−1
1:s∥2+

Γ⋆ max{∥A1:s∥+, ∥B1:s∥+, ∥P⋆
1:s∥+, ∥K⋆

1:s∥+}
CK

A,B,T 28
√
nsτ(L⋆)(1− ρ⋆)−1 (σ(R1:s)

−1 + Γ3
⋆σ(R1:s)

−2) Γ3
⋆ξ

′

CJ
K 2s1.5

√
nmin{n, p}(∥R1:s∥+ Γ3

⋆)
τ(L⋆)
1−ρ⋆

ϵ̄K min
{
∥K⋆

1:s∥,
1−ρ⋆

2
√
sτ(L⋆)(1+2∥L⋆

1:s∥)∥B1:s∥)

}
ϵ̄LQR
A,B,T

(1−ρ⋆)min{Γ⋆,σ(R1:s)2ϵ̄K}
28

√
nsτ(L⋆)Γ3

⋆(σ(R1:s)+Γ3
⋆)
ξ′−1

ϵ̄A,B,T min
{

ξ(1−ρ⋆)2

204nsτ(L⋆)2ξ′
, ∥B1:s∥, σ(Q1:s), ϵ̄LQR

A,B,T

}

bounds on the variations in A1:s,B1:s,T, and K1:s such that the perturbation theory holds.

In this table, R−1
1:s := {R−1

i }si=1 and recall ∥·∥+ := ∥·∥+ 1.

C.2 MJS-LQR Perturbation Results

We first restate Lemma B.7 on the perturbation of augmented closed-loop state matrix if we

use a controller K1:s that is close to the optimal K⋆
1:s.

Lemma C.1. For an arbitrary controller K1:s, let Li = Ai +BiKi for all i ∈ [s], and let L
be the augmented state matrix such that its (i, j)-th block is given by [L]ij := T(j, i)Lj ⊗Lj.

Assume ∥K1:s −K⋆
1:s∥ ≤ ϵ̄K, where ϵ̄K is defined in Table C.2. Then, we have

∥Lk∥ ≤ τ(L⋆)(
1 + ρ⋆

2
)k, ∀k ∈ N, (C.5)

ρ(L) ≤ 1 + ρ⋆

2
. (C.6)

Thus controller K1:s is stabilizing.

The following perturbation results show how much the infinite-horizon average cost de-

viates depending on the deviations from the optimal controller and how much the optimal

controller deviates depending on the model accuracy for the MJS-LQR problem. The results

follow from Corollary B.9 and Theorem 4.2.

Lemma C.2 (Perturbation Results of Infinite-horizon MJS-LQR). For the infinite-horizon

MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) problem, its optimal controller K⋆
1:s, and the optimal cost

J⋆, we have the following perturbation results. Note that notations ϵ̄K, ϵ̄A,B,T, and CK
A,B,T

are defined in Table C.2.

134



1. Suppose we have an arbitrary controller K1:s such that ∥K1:s −K⋆
1:s∥ ≤ ϵ̄K. Then, we

have

J(0, ω0, {K1:s})− J⋆ ≤ CJ
K∥Σw∥∥K1:s −K⋆

1:s∥2. (C.7)

2. Suppose there is an arbitrary MJS(Â1:s, B̂1:s, T̂) such that ϵA,B := max{∥Â1:s −A1:s∥,
∥B̂1:s −B1:s∥} ≤ ϵ̄A,B,T, and ϵT := ∥T̂−T∥∞ ≤ ϵ̄A,B,T. Then, there exists an optimal

controller K1:s to the infinite-horizon MJS-LQR(Â1:s, B̂1:s, T̂,Q1:s,R1:s) and it can be

computed using (2.36) and (2.35), and we have

∥K1:s −K⋆
1:s∥ ≤ CK

A,B,T(ϵA,B + ϵT). (C.8)

By definition of ϵ̄A,B,T, we see ∥K1:s −K⋆
1:s∥ ≤ ϵ̄K, thus Lemma C.1 is applicable.

C.3 Single Epoch Regret Analysis

Recall the definitions of B̃t and Π̃t in (2.13). Furthermore, we define

Π̃∞ = π∞ ⊗ In2 , R̃t =
s∑

i=1

πt(i)Ri. (C.9)

For a sequence of matrices V1:s, define the following reshaping mapping

H(


V1

...

Vs

) =

vec(V1)

...

vec(Vs)

 , (C.10)

and let H−1 denote the inverse mapping of H. Let

Mi := Qi +K
⊺
iRiKi, M := [M1, . . . ,Ms]. (C.11)
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We define

N0,t = tr(MH−1(Lt


vec(Σ1(0))

...

vec(Σs(0))

)),
Nz,1,t = tr(MH−1((B̃t +LB̃t−1 + · · ·+Lt−1B̃1)vec(Σz))),

Nw,t = tr(MH−1((Π̃t +LΠ̃t−1 + · · ·+Lt−1Π̃1)vec(Σw))),

Nz,2,t = tr(R̃tΣz),

(C.12)

and

S0,T =
T∑
t=1

N0,t, Sz,1,T =
T∑
t=1

Nz,1,t, Sw,T =
T∑
t=1

Nw,t, Sz,2,T =
T∑
t=1

Nz,2,t. (C.13)

First, we provide the exact expression for the cumulative cost. It will be used later to analyze

the regret.

Lemma C.3 (Cumulative Cost Expression). For the cost JT (x0, ω0, {K1:s,Σz}) defined in

(C.1), we have

JT (x0, ω0, {K1:s,Σz}) = S0,T + Sz,1,T + Sz,2,T + Sw,T . (C.14)

Proof. For the expected cost at time t, we have

E[x⊺
tQωtxt + u

⊺
tRωtut] =

s∑
i=1

tr
(
E[Qωtxtx

⊺
t1{ωt=i}] + E[Rωtutu

⊺
t1{ωt=i}]

)
=

s∑
i=1

tr
(
(Qi +K

⊺
iRiKi)Σi(t) + πt(i)RiΣz

)
=

s∑
i=1

tr (MiΣi(t)) +Nz,2,t,

(C.15)

where the second equality follows since ut = Kωtxt + zt. Now plugging in the dynamics of

Σi(t) in Lemma 2.14, we can conclude the proof.

Next, before proceeding, we provide several properties regarding the operator tr(MH(·))
that shows up in (C.12) and (C.13), which will be used later to evaluate JT (x0, ω0, {K1:s,Σz})−
TJ(0, ω0, {K1:s}).

Lemma C.4 (Properties of Cost Building Bricks). For any t, t
′ ∈ N, we have

(L1) tr(MH−1(Ltv)) ≤
√
ns∥M1:s∥∥Lt∥∥v∥, where v := [vec(V1)

⊺, . . . ,vec(Vs)
⊺]⊺ for

some V1:s such that Vi ⪰ 0 for all i ∈ [s];
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(L2) tr(MH−1(LtB̃t′vec(Σz))) ≤ n
√
s∥M1:s∥∥Lt∥∥B1:s∥2∥Σz∥;

(L3) tr(MH−1(LtΠ̃t′vec(Σw))) ≤ n
√
s∥M1:s∥∥Lt∥∥Σw∥;

(L4) |tr(MH−1(Lt(Π̃t′− Π̃∞)vec(Σw)))| ≤ τMCn
√
s∥M1:s∥∥Lt∥∥Σw∥ρt

′
MC, where τMC are

ρMC are given in Definition 2.3, and Π̃∞ is given in (C.9)

Proof. Let [·]i denote the i-th sub-block of an s × 1 block matrix. Let vec−1 denote the

inverse mapping of vec, i.e., vec−1([v⊺
1, · · · ,v

⊺
r ]

⊺) = [v1, · · · ,vr] for a set of vectors {vi}ri=1.

It can be easily seen that for any set of matrices A,B,C and X, we have AXB = C if and

only if (B⊺ ⊗A)vec(X) = vec(C). This together with the definitions of B̃t, Π̃t in (2.13),

Π̃∞, R̃t in (C.9), and H() in (C.10) yields the following preliminary results

[H−1(Ltv)]i ⪰ 0, (C.16a)

vec−1([B̃t′vec(Σz)]i) ⪰ 0, (C.16b)

vec−1([Π̃t′vec(Σw)]i) ⪰ 0, (C.16c)

vec−1([|Π̃t′ − Π̃∞|vec(Σw)]i) ⪰ 0, (C.16d)

|tr(MH−1(Lt(Π̃t′ − Π̃∞)vec(Σw)))| ≤ tr(MH−1(Lt|Π̃t′ − Π̃∞|vec(Σw))), (C.16e)

where | · | here denotes the element-wise absolute value of a matrix. Now, let us consider

(L1). We observe that

tr(MH−1(Ltv)) = tr(
s∑

i=1

Mi[H−1(Ltv)]i) ≤ ∥M1:s∥ · tr(
s∑

i=1

[H−1(Ltv)]i)

≤
√
n∥M1:s∥∥

s∑
i=1

[H−1(Ltv)]i∥F,
(C.17)

where the first inequality uses (C.16a) and the definition that ∥M1:s∥ = maxi∈[s] ∥Mi∥; and
the last inequality follows from Cauchy-Schwarz inequality and the fact that [H−1(Ltv)]i ∈
Rn×n. Now, for the last term on the R.H.S. of (C.17), we have

∥
s∑

i=1

[H−1(Ltv)]i∥F ≤
s∑

i=1

∥[H−1(Ltv)]i∥F ≤
√
s

√√√√ s∑
i=1

∥[H−1(Ltv)]i∥2F

=
√
s∥H−1(Ltv)∥F

=
√
s∥Ltv∥

≤
√
s∥Lt∥∥v∥,

(C.18)
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where the second equality holds since H−1 is a reshaping operator, and Ltv is a vector.

Substituting (C.18) into (C.17) gives (L1).

To show (L2), we combine (C.16b) with (L1) to get

tr(MH−1(LtB̃t′vec(Σz))) ≤
√
ns∥M1:s∥∥Lt∥∥B̃t′vec(Σz)∥.

Then, using the upper bound for ∥B̃t′vec(Σz)∥ derived in (2.24) completes the proof of (L2).

To establish (L3), we combine (C.16c) with (L1) to obtain

tr(MH−1(LtΠ̃t′vec(Σw))) ≤
√
ns∥M1:s∥∥Lt∥∥Π̃t′vec(Σw)∥. (C.19)

Then, using the upper bound for ∥Π̃t′vec(Σw)∥ derived in (2.25) gives (L2).

Finally, let us consider (L4). It follows from (C.16e) and (C.16d) in conjunction with

(L1) that

|tr(MH−1(Lt|Π̃t′ − Π̃∞|vec(Σw)))| ≤
√
ns∥M1:s∥∥Lt∥∥|Π̃t′ − Π̃∞|vec(Σw)∥. (C.20)

Now, using (C.9), we obtain

∥|Π̃t′ − Π̃∞|vec(Σw)∥ =

√√√√ s∑
i=1

∥|[Π̃t′ ]i − [Π̃∞]i|vec(Σw)∥2

=

√√√√ s∑
i=1

∥|πt′(i)− π∞(i)|vec(Σw)∥2

=∥πt′ − π∞∥∥vec(Σw)∥

=∥πt′ − π∞∥∥Σw∥F
≤τMC

√
n∥Σw∥ρt

′

MC ,

where the last line follows from Lemma 2.4. Substituting the above inequality in (C.20)

completes the proof of (L4).

The following lemma bounds the difference JT (x0, ω0, {K1:s,Σz})−TJ(0, ω0, {K1:s}) us-
ing an arbitrary stabilizing controller K1:s. Based on this result, we will provide in Proposi-

tion C.6 a uniform upper bound for this difference when using any controllers K1:s that are

close to K⋆
1:s.
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Lemma C.5. For an arbitrary stabilizing controller K1:s, we have

JT (x0, ω0, {K1:s,Σz})− TJ(0, ω0, {K1:s})

≤
√
ns∥M1:s∥ · ∥x0∥2 +

n
√
sτL

1− ρL
∥M1:s∥∥B1:s∥2∥Σz∥T

+ n∥R1:s∥∥Σz∥T + n
√
sτMCτL∥M1:s∥∥Σw∥

ρMC

ρMC − ρL
(

ρMC

1− ρMC

− ρL
1− ρL

),

(C.21)

where τMC and ρMC are given in Definition 2.3, τL and ρL are constants defined in the

beginning of Appendix C, and M = [M1, . . . ,Ms] with Mi = Qi +K⊺
iRiKi.

Proof. From Lemma C.3, we know

JT (x0, ω0, {K1:s,Σz}) = S0,T + Sz,1,T + Sz,2,T + Sw,T ,

J(0, ω0, {K1:s}) = lim sup
T→∞

1

T
(S0,T + Sw,T ) =: S0 + Sw.

where S0 := lim supT→∞
1
T
S0,T and Sw := lim supT→∞

1
T
Sw,T . Next, we will evaluate each

term on the RHSs separately.

For S0,T , letting s0 =


vec(Σ1(0))

...

vec(Σs(0))

, we have

S0,T =
T∑
t=1

tr(MH−1(Lts0)) ≤
√
ns∥M1:s∥∥Lt∥∥s0∥

≤
√
ns∥M1:s∥ · E[∥x0∥2]

=
√
ns∥M1:s∥ · ∥x0∥2,

where the second line follows from Item (L1) in Lemma C.4; the third line follows from (2.23)

in Lemma 2.15. And from the discussion at the beginning of Appendix C, we can get rid of

E[·]. Then it is easy to see S0 = 0, as long as ∥x0∥2 is bounded.

For Sz,1,T , we have

Sz,1,T =
T∑
t=1

t−1∑
t′=0

tr(MH−1(Lt′B̃t−t′vec(Σz)))

≤ n
√
s∥M1:s∥∥B1:s∥2∥Σz∥(

T∑
t=1

t−1∑
t′=0

∥Lt′∥)

≤ n
√
sτL

1− ρL
∥M1:s∥∥B1:s∥2∥Σz∥T,

(C.22)
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where the first inequality follows from Item (L2) in Lemma C.4, and the second inequality

follows from the fact ∥Lt′∥ ≤ τLρ
t′
L.

For Sz,2,T , we have

Sz,2,T =
T∑
t=1

tr(
s∑

i=1

πt(i)RiΣz) ≤ n∥R1:s∥∥Σz∥T. (C.23)

For Sw,T , we have

Sw,T =
T∑
t=1

t−1∑
t′=0

tr(MH−1(Lt′Π̃t−t′vec(Σw))). (C.24)

To evaluate it, we first define the following terms:

S
(∞)
w,T :=

T∑
t=1

t−1∑
t′=0

tr(MH−1(Lt′Π̃∞vec(Σw))), (C.25)

S(∞)
w := lim sup

T→∞

1

T
S
(∞)
w,T , (C.26)

where Π̃∞ is defined in (C.9). Note that S
(∞)
w,T and S

(∞)
w are the counterparts of Sw,T and

Sw except that the initial mode distribution π0 is the stationary distribution π∞. Then, we

have

|Sw,T − S
(∞)
w,T | =

∣∣∣∣∣
T∑
t=1

t−1∑
t′=0

tr(MH−1(Lt′(Π̃t−t′ − Π̃∞)vec(Σw)))

∣∣∣∣∣
≤ τMCn

√
s∥M1:s∥∥Σw∥(

T∑
t=1

t−1∑
t′=0

∥Lt′∥ρt−t′

MC)

≤ τMCn
√
s∥M1:s∥∥Σw∥(

∞∑
t=1

t−1∑
t′=0

τLρ
t′

Lρ
t−t′

MC)

≤ n
√
sτMCτL∥M1:s∥∥Σw∥

ρMC

ρMC − ρL
(

ρMC

1− ρMC

− ρL
1− ρL

)

(C.27)

where the first inequality follows from Item (L4) in Lemma C.4. Thus,

Sw = lim sup
T→∞

1

T
Sw,T = lim sup

T→∞

1

T
(Sw,T − S

(∞)
w,T ) + lim sup

T→∞

1

T
S
(∞)
w,T = S(∞)

w . (C.28)
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Since
∑T

t=1

∑t−1
t′=0 L

t′ = (I−L)−1T − (I−L)−2L(I−LT ) and
∑∞

t′=0 L
t′ = (I−L)−1 we have

Sw = S(∞)
w = tr(MH−1(lim sup

T→∞

1

T

T∑
t=1

t−1∑
t′=0

Lt′Π̃∞vec(Σw)))

= tr(MH−1((I−L)−1Π̃∞vec(Σw)))

=
∞∑

t′=0

tr(MH−1(Lt′Π̃∞vec(Σw))).

(C.29)

Thus,

TSw = TS(∞)
w =

T∑
t=1

∞∑
t′=0

tr(MH−1(Lt′Π̃∞vec(Σw)))

≥
T∑
t=1

t−1∑
t′=0

tr(MH−1(Lt′Π̃∞vec(Σw)))

= S
(∞)
w,T

(C.30)

where the inequality holds since each trace summand is non-negative. Therefore,

Sw,T ≤ S
(∞)
w,T + |Sw,T − S

(∞)
w,T |

(C.28)

≤ TSw + |Sw,T − S
(∞)
w,T |

(C.27)

≤ TSw + n
√
sτMCτL∥M1:s∥∥Σw∥

ρMC

ρMC − ρL
(

ρMC

1− ρMC

− ρL
1− ρL

).

(C.31)

Finally, combining all the results we have so far, we have

JT (x0, ω0, {K1:s,Σz})− TJ(0, ω0, {K1:s})

=S0,T + Sz,1,T + Sz,2,T + Sw,T − T (S0 + Sw)

≤
√
ns∥M1:s∥ · ∥x0∥2

+
n
√
sτL

1− ρL
∥M1:s∥∥B1:s∥2∥Σz∥T

+ n∥R1:s∥∥Σz∥T

+ n
√
sτMCτL∥M1:s∥∥Σw∥

ρMC

ρMC − ρL
(

ρMC

1− ρMC

− ρL
1− ρL

)

(C.32)

which concludes the proof.

We now provide a uniform upper bound on the regret JT (x0, ω0, {K1:s,Σz}) − TJ⋆ for

any stabilizing controller K1:s that is close enough to the optimal controller K⋆
1:s.
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Proposition C.6. For every K1:s such that ∥K1:s −K⋆
1:s∥ ≤ ϵ̄K, we have

JT (x0, ω0, {K1:s,Σz})− TJ⋆ ≤CJ
K∥K1:s −K⋆

1:s∥2∥Σw∥T

+
√
nsM∥x0∥2

+n
√
s
2τ(L⋆)∥B1:s∥2M

1− ρ⋆
∥Σz∥T

+n∥R1:s∥∥Σz∥T

+n
√
s
2τ(L⋆)τMCMρMC

2ρMC − 1− ρ⋆
(

ρMC

1− ρMC

− 1 + ρ⋆

1− ρ⋆
)∥Σw∥,

(C.33)

where M := ∥Q1:s∥+ 4∥R1:s∥∥K⋆
1:s∥2, and ϵ̄K and CJ

K are defined in Table C.2.

Proof. When ∥K1:s −K⋆
1:s∥ ≤ ϵ̄K, from Lemma C.1, we know ∥Lk∥ ≤ τ(L⋆)(1+ρ⋆

2
)k, thus we

could set τL and ρL to be τ(L⋆) and 1+ρ⋆

2
. By definition, we know ϵ̄K ≤ ∥K⋆

1:s∥, thus ∥M1:s∥ ≤
∥Q1:s∥ + ∥R1:s∥∥K1:s∥2 ≤ ∥Q1:s∥ + ∥R1:s∥(∥K⋆

1:s∥ + ϵ̄K)
2 ≤ ∥Q1:s∥ + 4∥R1:s∥∥K⋆

1:s∥2 = M .

Then applying Lemma C.5, we have

JT (x0, ω0, {K1:s,Σz})− TJ(0, ω0, {K1:s})

≤
√
nsM∥x0∥2

+ n
√
s
2τ(L⋆)∥B1:s∥2M

1− ρ⋆
∥Σz∥T

+ n∥R1:s∥∥Σz∥T

+ n
√
s
2τ(L⋆)τMCMρMC

2ρMC − 1− ρ⋆
(

ρMC

1− ρMC

− 1 + ρ⋆

1− ρ⋆
)∥Σw∥

(C.34)

Now note that when ∥K1:s −K⋆
1:s∥ ≤ ϵ̄K, we have J(0, ω0, {K1:s})−J⋆ ≤ CJ

K∥Σw∥∥K1:s −K⋆
1:s∥2

using Lemma C.2. Combining this with (C.34), we could conclude the proof.

C.4 Stitching Every Epoch

In this section, we stitch the upper bounds on Regretq for every epoch q and build a bound

on the overall regret Regret(T ).

We define the estimation error after epoch q as ϵ
(q)
A,B = max{∥A(q)

1:s −A1:s∥, ∥B(q)
1:s −B1:s∥},

ϵ
(q)
T = ∥T(q) −T∥∞. Furthermore, we also define ϵ

(q)
K := ∥K(q)

1:s −K⋆
1:s∥ where K⋆

1:s is the

optimal controller for the infinite-horizon MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s). We define the
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following events for every epoch q.

Aq =

{
Regretq ≤ O

(
sp
(
ϵ
(q−1)
A,B + ϵ

(q−1)
T

)2
σ2
wTq +

√
ns∥x(q)

0 ∥2 +
n
√
s

1− ρ⋆
σ2
z,qTq + cA

)}
Bq =

{
ϵ
(q)
A,B ≤ ϵ̄A,B,T, ϵ

(q)
T ≤ ϵ̄A,B,T, ϵ

(q+1)
K ≤ ϵ̄K

}
Cq =

{
ϵ
(q)
A,B ≤ O

(
log(

1

δid,q
)
σz,q + σw

σz,qπmin

√
s(n+ p) log(Tq)

(1− ρ̄)
√

Tq

)
,

ϵ
(q)
T ≤ O

(
log(

1

δid,q
)

1

πmin

√
log(Tq)

Tq

)}
Dq =

{
∥x(q+1)

0 ∥2 = ∥x(q)
Tq
∥2 ≤ x̄2

0

δx0,q

}
.

(C.35)

where cA, x̄0 are constants, ϵ̄A,B,T and ϵ̄K are defined in Table C.2, and δid,q and δx0,q within

[0, 1] denotes the failure probability for event Cq and Dq. Note that O(·) hides terms that

are invariant to epochs such as ρ⋆, ∥A1:s∥, ∥B1:s∥, etc.
Event Aq describes how epoch q regret depends on initial state ∥x(q)

0 ∥2, exploration noise

variance σ2
z,q, and the accuracy of the estimated MJS dynamics A

(q−1)
1:s ,B

(q−1)
1:s , T̂ after epoch

q − 1, which is used to computed epoch q controller K
(q)
1:s. Event Bq indicates whether the

estimated dynamics and resulting controllers are good enough. Cq describes the dynamics

estimation error after epoch q, and when epoch Tq is chosen appropriately, Bq can be implied.

Lastly, event Dq bounds the initial state of each epoch, as the initial state plays a vital role

in regret upper bound Aq. We see events Aq+1,Bq, Cq,Dq are Fq-measurable, i.e. these

events can be determined using random variables x0,wt, zt, ωt up to epoch q. Let Eq :=

Aq+1∩Bq∩Cq∩Dq. Note that even though Aq+1 is for the conditional expected regret of the

epoch q + 1 with randomness coming from x
(q+1)
0 = x

(q)
Tq
, ω(q+1)(0) = ω(q)(Tq), and controller

K
(q+1)
1:s computed from A

(q)
1:s,B

(q)
1:s,T

(q), thus Aq+1 is Fq-measurable.

Then, we have the following results regarding the conditional probabilities of these events.

First, Proposition C.7 says given the event Bq−1 (a good controller is applied during epoch

q) and event Dq (the initial state of epoch q, x
(q)
0 is bounded), then Dq could occur, i.e. x

(q)
Tq
,

the final state of epoch q, a.k.a. x
(q+1)
0 the initial state of epoch q + 1, is also bounded.

Proposition C.7. Suppose
√
nsτ̄ ρ̄Tq

δx0,q−1
< 1 and x̄2

0 ≥
n
√
s(∥B1:s∥2+1)σ2

w τ̄

(1−ρ̄)(1−
√
ns·τ̄ ρ̄Tq/δx0,q−1)

for i ≥ 1. Then,

P(Dq | ∩q−1
j=0Ej) = P(Dq | Bq−1Dq−1) > 1− δx0,q,

and P(D0) ≥ 1− δx0,0.
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Proof. For epoch q = 1, 2, . . . , given event Bq−1, we know ϵ
(q+1)
K ≤ ϵ̄K. Let L(q) denote the

augmented closed-loop state matrix. By Lemma C.1, we know ∥(L(q))k∥ ≤ τ(L⋆)(1+ρ⋆

2
)k.

Thus, if we pick τ̄ := max{τ(L(0)), τ(L⋆)}, ρ̄ := max{ρ(L(0)), 1+ρ⋆

2
}, this can be generalized

to q = 0 case, i.e. for every epoch q = 0, 1, 2, . . . , we have ∥(L(q))k∥ ≤ τ̄ ρ̄k.

For q = 1, 2, . . . , event Dq−1 implies ∥x(q)
0 ∥2 ≤

x̄2
0

δx0,q−1
. Then, according to Lemma 2.15,

we know

E[∥x(q)
Tq
∥2 | Bq−1,Dq−1] ≤

√
ns · τ̄ ρ̄Tq

x̄2
0

δx0,q−1

+ n
√
s(∥B1:s∥2

σ2
w√
Tq

+ σ2
w)

τ̄

1− ρ̄
.

≤
√
ns · τ̄ ρ̄Tq

δx0,q−1

x̄2
0 + (1−

√
nsτ̄ ρ̄Tq

δx0,q−1

)x̄2
0

≤ x̄2
0,

(C.36)

where the second line follows from the assumptions in the proposition statement. Using

Markov inequality, we have

P(∥x(q)
Tq
∥2 ≤ x̄2

0

δx0,q

| Bq−1,Dq−1) ≥ 1− δx0,q,

which implies P(Dq | Bq−1,Dq−1) ≥ 1 − δx0,q. For q = 0, similarly, we have E[∥x(0)
T0
∥2] ≤

n
√
s(∥B1:s∥2 σ2

w√
Tq

+ σ2
w)

τ̄
1−ρ̄
≤ x̄2

0, thus P(D0) ≥ 1− δx0,q.

Finally, note that given a good stabilizing controller (event Bq−1) and a bounded initial

state (event Dq−1) for epoch q, the final state of epoch q only depends on randomness in

epoch q, thus P(Dq | ∩q−1
j=0Ej) = P(Dq | Bq−1Dq−1).

Proposition C.8 describes that given the event Cq (the estimated MJS dynamics after

epoch q has estimation errors decays with Tq), when epoch q has length Tq large enough,

then the event Bq (the estimated dynamics and controllers computed with it will be good

enough) occurs.

Proposition C.8. Suppose every epoch q has length Tq ≥ T rgt,ϵ̄(δid,q, Tq). Then,

P(Bq | Cq,∩q−1
j=0Ej) = P(Bq | Cq) = 1

Proof. When Cq occurs, since σ2
z,q =

σ2
w√
Tq
, we have

ϵ
(q)
A,B ≤ O(log(

1

δid,q
)

√
s(n+ p)

πmin

log(Tq)

(1− ρ̄)T 0.25
q

), ϵ
(q)
T ≤ O(log(

1

δid,q
)

1

πmin

√
log(Tq)

Tq

).
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We know when Tq ≥ O(
√
s(n+p)

πmin(1−ρ̄)
ϵ̄−4
A,B,T log( 1

δid,q
) log4(Tq)) =: T rgt,ϵ̄(δid,q, Tq), we have ϵ

(q)
A,B ≤

ϵ̄A,B,T, ϵ
(q)
T ≤ ϵ̄A,B,T. Then according to Lemma C.2, we have ϵ

(q+1)
K ≤ ϵ̄K. Thus P(Bq | Cq) =

1. Finally, note that given the estimation error sample complexity in Cq for epoch q, events

happen before epoch q does not influence Bq, so P(Bq | Cq,∩q−1
j=0Ej) = P(Bq | Cq)=1.

Next, Proposition C.9 says given the Bq−1 (a good controller is used in epoch q), then the

event Cq could occur, i.e. dynamics learned using the trajectory of epoch q, will be accurate

enough.

Proposition C.9. For cx ≥ cx(ρ̄, τ̄), cz ≥ cz, Tq ≥ max
{
TMC,1(

δid,q
8
), T id,N(

δid,q
2
, ρ̄, τ̄)

}
, we

have for q = 1, 2, . . . ,

P(Cq | ∩q−1
j=0Ej) = P(Cq | Bq−1) ≥ 1− δid,q. (C.37)

And P(C0) ≥ 1− δid,0.

Proof. By Lemma A.6, we know for every epoch q = 0, 1, . . . , when Tq ≥ TMC,1(
δid,q
8
), we

have with probability at least 1− δid,q
2
, ϵ

(q)
T ≤ O

(
log( 1

δid,q
) 1
πmin

√
log(Tq)

Tq

)
.

For epoch q = 1, 2, . . . , given event Bq−1, we know ϵ
(q)
K ≤ ϵ̄K. Let L(q) denote the

augmented closed-loop state matrix. By Lemma C.1, we know ∥(L(q))k∥ ≤ τ(L⋆)(1+ρ⋆

2
)k.

Thus, if we pick τ̄ := max{τ(L(0)), τ(L⋆)}, ρ̄ := max{ρ(L(0)), 1+ρ⋆

2
}, this can be generalized

to q = 0 case, i.e. for every epoch q = 0, 1, 2, . . . , we have ∥(L(q))k∥ ≤ τ̄ ρ̄k.

Suppose cx ≥ cx(ρ̄, τ̄), cz ≥ cz, and Tq ≥ T id,N(
δid,q
2
, ρ̄, τ̄) hold for q = 0, 1, . . . . Then,

from Theorem A.22, we know for every q = 0, 1, . . . , with probability at least 1 − δid,q
2
,

ϵ
(q)
A,B ≤ O

(
log( 1

δid,q
)σz,q+σw

σz,qπmin

√
s(n+p) log(Tq)√

Tq

)
.

Applying union bound to ϵ
(q)
T and ϵ

(q)
A,B, we could show P(C0) ≥ 1 − δid,q and P(Cq |

Bq−1,Dq−1) ≥ 1 − δid,q. Finally, note that given a good stabilizing controller (event Bq−1)

and bounded initial state (event Dq−1) for epoch q, the estimation error sample complexity

(event Cq) does not depend on events happen before epoch q, so P(Cq | ∩q−1
j=0Ej)) = P(Cq |

Bq−1,Dq−1).

Finally, Proposition C.10 simply describes how the regret of epoch q depends on the

accuracy of the estimated dynamics after epoch q − 1.

Proposition C.10. For Aq– Cq given in (C.35), we have

P(Aq | Bq−1, Cq−1,Dq−1,∩q−2
j=0Ej) = P(Aq | Bq−1) = 1.
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Proof. From Proposition C.6, we know that for every epoch q = 1, 2, . . . , given ∥K(q)
1:s −K⋆

1:s∥ ≤
ϵ̄K in Bq−1, we have with probability 1

Regretq ≤CJ
K∥K

(q)
1:s −K⋆

1:s∥2σ2
wTq

+
√
nsM∥x(q)

0 ∥2

+n
√
s
2τ(L⋆)∥B1:s∥2M

1− ρ⋆
σ2
z,qTq

+n∥R1:s∥σ2
z,qTq

+n
√
s
2τ(L⋆)τMCMρMC

2ρMC − 1− ρ⋆
(

ρMC

1− ρMC

− 1 + ρ⋆

1− ρ⋆
)σ2

w.

(C.38)

Let cA denote the last term in (C.38), which is a constant over epochs. Note that from

ϵ
(q−1)
A,B ≤ ϵ̄A,B,T, ϵ

(q−1)
T ≤ ϵ̄A,B,T in event Bq−1, we know ∥K(q)

1:s −K⋆
1:s∥ ≤ CK

A,B,T(ϵ
(q−1)
A,B +ϵ

(q−1)
T )

by Lemma C.2. Plugging this into (C.38), we have

Regretq ≤ O

(
s · p

(
ϵ
(q−1)
A,B + ϵ

(q−1)
T

)2
σ2
wTq +

√
ns∥x(q)

0 ∥2 +
n
√
s

1− ρ⋆
σ2
z,qTq + cA

)
(C.39)

where term s · p comes from term smin{n, p} in the definition of CJ
K in Appendix C.2. This

shows P(Aq | Bq−1) = 1. Finally, note that given a good controller (event Bq−1) for epoch

q, the regret for epoch q can be upper bounded (event Aq) without dependence on other

events, thus P(Aq | Bq−1, Cq−1,Dq−1,∩q−2
j=0Ej) = P(Aq | Bq−1).

C.4.1 Proof for Theorem 5.1

Theorem C.11 (Complete version of Theorem 5.1). Assume that the initial state x0 = 0,

and Assumption A5.1 holds. Suppose cx ≥ cx(ρ̄, τ̄), cz ≥ cz, T0 ≥ O(T rgt(δ, T0)), and

x̄2
0 =

n
√
s(∥B1:s∥2+1)σ2

w τ̄

(1−ρ̄)(1−
√
ns·τ̄ ρ̄T0γπ2/3δ)

. Then, with probability at least 1− δ, Algorithm 2 achieves

Regret(T ) ≤ O
(
s2p(n2 + p2)σ2

w

π2
min(1− ρ̄)2

log2
( log2(T )

δ

)
log2(T )

√
T +

√
ns log3(T )

δ

)
. (C.40)

Proof. In this proof, we will first show the intersected event ∩qEq = ∩q{Aq+1 ∩Bq ∩Cq ∩Dq}
implies the desired regret bound, then we evaluate the occurrence probability of ∩qEq using
Proposition C.8 to C.10. In the following, we set δid,q = δx0,q =

3
π2 · δ

(q+1)2
. With the choices

Tq = γTq−1, σ
2
z,q =

σ2
w√
Tq
, and δid,q = δx0,q =

3
π2 · δ

(q+1)2
, event Eq = Aq+1 ∩Bq ∩Cq ∩Dq implies
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the following.

Regretq+1 ≤O(1) log2
(
(q + 1)2

δ

)
sp

(
σz,q + σw

σz,qπmin

·
√
s(n+ p) log(Tq)

(1− ρ̄)
√
Tq

+

√
log(Tq)

πmin

√
Tq

)2

σ2
wTq+1

+O
(
(q + 1)2

δ

)√
nsx̄2

0 +O(
n
√
s

1− ρ⋆
σ2
z,q+1Tq+1) +O(1)

≤O(1) log2
(
(q + 1)2

δ

)
s2p(n2 + p2)γ

π2
min(1− ρ̄)2

(σz,q + σw)
2

σ2
z,q

σ2
w log2(Tq)

+O
(
(q + 1)2

δ

)√
nsx̄2

0 +O(
n
√
s

1− ρ⋆
σ2
z,q+1Tq+1)

≤O(1) log2
(
(q + 1)2

δ

)
s2p(n2 + p2)γ

π2
min(1− ρ̄)2

(
σ4
w

σ2
z,q

log2(Tq) + σ2
z,q+1Tq

)
+O

(
(q + 1)2

δ

)√
nsx̄2

0

≤O(1) log2
(
(q + 1)2

δ

)
s2p(n2 + p2)γ

π2
min(1− ρ̄)2

σ2
w

√
Tq log

2(Tq) +O
(
(q + 1)2

δ

)√
nsx̄2

0

(C.41)

We have M := O(logγ( T
T0
)) epochs at time T . Using Tq = O(T0γ

q), event ∩M−1
q=0 Eq implies

Regret(T ) =O(
M∑
q=1

Regretq)

≤O(1) log2
( log2(T )

δ

)s2p(n2 + p2)σ2
w

π2
min(1− ρ̄)2

(
γ

M∑
q=1

√
Tq log

2(Tq)

)
+O

(√ns log3(T )
δ

)
(C.42)
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For the term γ
∑M

q=1

√
Tq log

2(Tq), we have

γ
M∑
q=1

√
Tq log

2(Tq) ≤O(1)γ
√

T0

(
log2(T0)

M∑
q=1

√
γq + log2(γ)

M∑
q=1

√
γqi2

)

≤O(1)γ
√

T0 log
2(γ)

M∑
q=1

√
γqi2

≤O(1)γ
√

T0 log
2(γ)M

√
γM

( √
γ

√
γ − 1

)3(
M − 1

√
γ

)
≤O(1)γ

√
T log2(γ)

log( T
T0
)

log(γ)

( √
γ

√
γ − 1

)3
(
log( T

T0
)

log(γ)
− 1
√
γ

)

≤O(1)
√
T log(

T

T0

)

( √
γ

√
γ − 1

)3(
γ log(

T

T0

)−√γ log(γ)
)

≤O(log2(T )
√
T ).

(C.43)

Plugging this back into (C.42), we have

Regret(T ) ≤O
(
s2p(n2 + p2)σ2

w

π2
min(1− ρ̄)2

log2
( log2(T )

δ

)
log2(T )

√
T +

√
ns log3(T )

δ

)
(C.44)

which shows the regret bound in (C.40).

Now we are only left to show the occurrence probability of regret bound (C.40) is larger

than 1 − δ. To do this, we will combine Proposition C.7, C.8, C.9, and C.10 over all

q = 0, 1, . . . ,M − 1. Note that for each individual q, these propositions hold only when

certain prerequisite conditions on hyper-parameters cx, cz, T0, and x̄0 are satisfied. We first

show that under the choices Tq = γTq−1, σ
2
z,q = σ2

w√
Tq
, and δid,q = δx0,q = 3

π2 · δ
(q+1)2

these

hyper-parameter conditions can be satisfied for all q = 0, 1, . . . ,M − 1.

• Proposition C.7 requires that for q = 1, 2, . . . , conditions
√
nsτ̄ ρ̄T0γ

q
q2π2

3δ
< 1 and x̄2

0 ≥
n
√
s(∥B1:s∥2+1)σ2

w τ̄

(1−ρ̄)(1−
√
ns·τ̄ ρ̄T0γq q2π2/3δ)

need to be satisfied. T0 ≥ 1
γ log(1/ρ̄)

max{ 2
log(γ)

, log(π
2√nsτ̄
3δ

)} =:

T x0
(δ), and picking x̄2

0 ≥
n
√
s(∥B1:s∥2+1)σ2

w τ̄

(1−ρ̄)(1−
√
ns·τ̄ ρ̄T0γπ2/3δ)

would suffice for this.

• Proposition C.8 requires that for q = 0, 1, . . . , condition T0γ
q ≥ T rgt,ϵ̄(

3δ
π2(q+1)2

, T0γ
q)

holds, which can be satisfied when one chooses T0 ≥ O(T rgt,ϵ̄(δ, T0)).

• Proposition C.9 requires the following to hold: cx ≥ cx(ρ̄, τ̄), cz ≥ cz, and T0γ
q ≥

max
{
TMC,1(

3δ
8π2q2

), T id,N(
3δ

2π2(q+1)2
, ρ̄, τ̄)

}
. The last one can be satisfied when T0 ≥

O(max{TMC,1(δ), T id,N(δ, ρ̄, τ̄)}).

• Proposition C.10 requires no conditions on hyper-parameters.
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Therefore, when cx ≥ cx(ρ̄, τ̄), cz ≥ cz,

T0 ≥ O(max{T x0
(δ), T rgt,ϵ̄(δ, T0), TMC,1(δ), T id,N(δ, ρ̄, τ̄)}) =: O(T rgt(δ, T0)),

we can apply Propositions C.7, C.8, C.9, and C.10 to every epoch q = 0, 1, . . . ,M − 1. First

note that Propositions C.7 and C.9 give the following

P(Dq | ∩q−1
j=0Ej) = P(Dq | Bq−1Dq−1) > 1− 3δ

π2(q + 1)2
, P(D0) ≥ 1− 3δ

π2

P(Cq | ∩q−1
j=0Ej) = P(Cq | Bq−1) ≥ 1− 3δ

π2(q + 1)2
, P(C0) ≥ 1− 3δ

π2
.

Then combining the probability bounds in Propositions C.7, C.8, C.9, and C.10, we have

P (Regret bounds in (C.40) holds)

≥P(∩M−1
q=0 Eq)

=P(AM ,BM−1, CM−1,DM−1 | ∩M−2
q=0 Eq) · P(∩M−2

q=0 Eq)

=P(CM−1,DM−1 | ∩M−2
q=0 Eq) · P(∩M−2

q=0 Eq)

≥ (1− δid,M−1 − δx0,M−1) · P(∩M−2
q=0 Eq)

≥
M−1∏
q=0

(1− δid,q − δx0,q)

≥1−
M−1∑
q=0

(δid,q + δx0,q)

≥1− δ.

(C.45)

where the last line holds since
∑M−1

q=0
1

(q+1)2
≤ π2

6
.

C.5 Regret Under Uniform Stability

C.5.1 Proof for Theorem 5.2

As we discussed in Section 5.4.1, under mean-square stability, the regret upper bound in

Theorem 5.1 (or the complete version Theorem C.11) involves 1
δ
dependency on failure prob-

ability δ. By checking the proof for Theorem C.11, we can see the only source for 1
δ
is event

Dq in (C.35) and the corresponding Proposition C.7, which provides 1− δ probability bound

for event Dq – the initial state x
(q+1)
0 of epoch q + 1, a.k.a. the final state x

(q)
Tq

of epoch q,

is bounded by ∥x(q+1)
0 ∥2 = ∥x(q)

Tq
∥2 ≤ O(1

δ
). In Proposition C.7, we get this bound using
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Markov inequality ∥x(q)
Tq
∥2 ≤ E[∥x(q)

Tq
∥2]/δ and Lemma 2.15 which provides an upper bound

on the numerator E[∥x(q)
Tq
∥2] under mean-square stability. From event Aq in (C.35) we see

the regret of epoch q directly depends on its epoch initial state ∥x(q)
0 ∥2, thus in the final

cumulative regret, the cumulative impact of initial states from all epochs,
∑

q ∥x
(q)
0 ∥2 with

order 1
δ
, will show up, as given in (C.42). Therefore, whether 1

δ
terms can be relaxed directly

hinges on whether one could refine Proposition C.7 to get a tighter dependency on δ.

This refinement, however, is not possible under the mean-square stability assumption

only, and we can easily construct a toy example to show that the 1
δ
dependency resulting

from the Markov inequality cannot be improved. Consider a two-mode, one-dimensional,

autonomous MJS: {
xt+1 = 2xt

xt+1 = 0.5xt

with Markov matrix T =

[
0.1 0.9

0.1 0.9

]

with x0 ∼ N (0, 1), and P(ω0 = 1) = 0.1. It is easy to check this MJS is mean-square

stable by the spectral radius criterion discussed below Definition 2.8. Also note that with

probability 0.1t, ω0:t−1 = 1 and xt = 2tx0. Therefore, for any a > 0,

P(xt ≥ a) =
∑
ω0:t−1

P(xt ≥ a | ω0:t−1)P(ω0:t−1) (C.46)

≥ P(xt ≥ a | ω0:t−1 = 1)P(ω0:t−1 = 1) = 0.1t · P(x0 ≥ 2−ta) . (C.47)

where the inequality in (C.47) is extremely loose since we condition only on the most im-

probable event. For standard Gaussian x0, P(x0 ≥ a) ≥ C
a
exp(−a2

2
) for some absolute

constant C. Thus P(xt ≥ a) ≥ C 0.2t

a
exp(−2−2ta2

2
). From this, we see that for any a > 0,

any t ≥ log(a)/ log(2), we have P(xt ≥ a) ≥ C 0.2t√
ea
. We can observe that though when t

grows slower than log(a), the tail of xt has exponential decay, the Markov inequality decay,

i.e. 1
a
, will eventually show up when t gets larger. Interpretation from failure probability

δ perspective is the following: letting δ = C 0.2t√
ea
, we have P(xt ≤ C 0.2t√

eδ
) ≤ 1 − δ, which

means any δ dependency lighter than 1
δ
must have probability less than 1− δ. This further

implies that in the regret analysis of adaptive control, in order to obtain better probability

dependency, the time horizon has to be limited, which greatly impairs its value in practice.

Intuitively, the mean-square stability assumption only provides us with stable behavior

of ∥xt∥2 in the expectation (w.r.t. mode switching) sense, and having only this first-order

moment information is of little use compared with the deterministic Lyapunov stability

typically used for LTI systems, which allows one to bound ∥xt∥2 with only log(1
δ
) dependence
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((Dean et al., 2018, Lemma C.5)). Then, one may wonder naturally: Does there exist a

deterministic version of stability for switched systems? Can this stability (if exists) help

build similar dependence for switched systems? The answers to both questions are yes and

will be discussed in this appendix. In short, if there exists uniform stability for the MJS, we

can adapt Proposition C.7 such that ∥x(q)
0 ∥2 can instead be bounded much more tightly by

∥x(q)
0 ∥2 ≤ O(log(1δ )), thus the

1
δ
dependency can improve to log(1

δ
) in the regret bound (5.3)

(or (C.40)). The final improved regret bound is presented in Theorem 5.2. In order to show

it, we will need to adapt Proposition C.7 together with several related results (Lemma 2.15,

Lemma C.1, Lemma C.2) to the uniform stability case, and we append suffix “a” in the

result label to denote the adapted versions.

To begin with, recall that K⋆
1:s is the optimal controller for the infinite-horizon problem

MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) and define the closed-loop state matrix L⋆
i = Ai +BiK

⋆
i

for all i. Let θ⋆ denote the joint spectral radius of L⋆
1:s, i.e. θ

⋆ := liml→∞maxω1:l∈[s]l ∥L⋆
ω1
· · ·L⋆

ωl
∥ 1

l .

We say L⋆
1:s is uniformly stable if and only if θ⋆ < 1. Similar to τ in Definition 2.1, define

κ⋆ := supl∈Nmaxω1:l∈[s]l ∥L⋆
ω1
· · ·L⋆

ωl
∥/(θ⋆)l. Note that the pair {θ⋆, κ⋆} for uniform stabil-

ity is just the counterpart of {ρ⋆, τ(L⋆)} for mean-square stability defined in Appendix C.

Similar as before, Table C.3 lists all the shorthand notations to be used in this appendix for

quick reference.

Table C.3: Notations — Uniform Stability

σ̄2 ∥B1:s∥2∥Σz∥+ ∥Σw∥
or ∥B1:s∥2σ2

z,0 + σ2
w

θ̄ (1 + θ⋆)/2

κ̄ κ⋆

ϵ̄usK
1−ρ⋆

2κ⋆∥B1:s∥
¯̄ϵK min{ϵ̄usK , ϵ̄K}
¯̄ϵA,B,T min{ϵ̄A,B,T,

¯̄ϵK
2CK

A,B,T
}

x̄us 2κ̄2σ̄2(6max{
√
ne3n,

√
pe3p}+ 5

(1−θ̄)2
)2

T us
x0
(δ) max{ 54κ̄4σ̄2

(1−θ̄)x̄us log(1/θ̄) log(γ)
, 1
γ log(1/θ̄)

log(6κ̄2 + 54n
√
sκ̄4σ̄2 log(π2/3δ)

(1−θ̄)(1−ρ̄)x̄usδ
)}

T us
rgt,ϵ̄(δ, T )

O(
√
s(n+p)

πmin(1−ρ̄)
¯̄ϵ−4
A,B,T log(1

δ
) log4(T ))

O(
√
s(n+p)

πmin(1−ρ̄)2
¯̄ϵ−2
A,B,T log(1

δ
) log2(T )) (when B1:s is known)

T us
rgt(δ, T ) max{T us

x0
(δ), T us

rgt,ϵ̄(δ, T ), TMC,1(δ), T id,N(L, δ, T, ρ̄, τ̄)}

The following Lemma 2.15a bounds the state xt under the designed input. Compared

with its counterpart Lemma 2.15 which is only able to bound E[∥xt∥2], Lemma 2.15a provides

high-probability bound for ∥xt∥2.
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Lemma 2.15a. Consider an MJS(A1:s,B1:s,T) with noise wt ∼ N (0,Σw). Consider con-

troller K1:s, and let L1:s denote the closed-loop state matrices with Li = Ai+BiKi. Assume

there exist constants κ and θ ∈ [0, 1) such that, for any sequence ω1:l ∈ [s]l with any length

l, ∥Lω1 · · ·Lωl
∥ ≤ κθl. Let the input be ut = Kωtxt + zt with zt ∼ N (0,Σz). Then, for any

t ≥ e6max{n,p}, with probability at least 1− δ, we have

∥xt∥2 ≤ 3κ2θ2t∥x0∥2 +
18κ2σ̄2

(1− θ)2
log(

1

δ
) + c (C.48)

where σ̄2 := ∥Σw∥+ ∥B1:s∥2∥Σz∥ and c := 2κ2σ̄2(6max{
√
ne3n,

√
pe3p}+ 5

(1−θ)2
)2.

Proof. From the MJS dynamics (2.6) and plugging in the input ut = Kωtxt + zt, we have

the following.

xt =

( t−1∏
h=0

Lωh

)
x0+

t−2∑
i=0

( t−1∏
h=i+1

Lωh

)
Bωi

zi +Bωt−1zt−1

t−2∑
i=0

( t−1∏
h=i+1

Lωh

)
wi +wt−1.

(C.49)

Then, by triangle inequality and the assumption that ∥Lω1 · · ·Lωl
∥ ≤ κθl, we have

∥xt∥ ≤ κθt∥x0∥+ κ∥B1:s∥
t−1∑
i=0

θt−i−1∥zi∥+ κ
t−1∑
i=0

θt−i−1∥wi∥

= κθt∥x0∥+ κ∥B1:s∥
t−1∑
i=0

θi∥zt−i−1∥+ κ
t−1∑
i=0

θi∥wt−i−1∥.
(C.50)

For each wt−i−1, using Lemma A.1 (replacing e−t with δi), we have with probability 1− δi,

∥wt−i−1∥ ≤
√
3∥Σw∥ log0.5(

1

min{δi, δ̄n}
), (C.51)

where δ̄n := e−(3+2
√
2)n, and n is the dimension of vector wt−i−1. In the following, for all

i = 0, 1, . . . , t − 1, we set δi =
3
π2

δ
(i+1)2

. First note that when i ≥ ī :=
√

3δ
π2δ̄n
− 1, we have

min{δi, δ̄n} = δi, i.e. δi ≤ δ̄n, and min{δi, δ̄n} = δ̄n otherwise. Then, applying union bound
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for all i, we know with probability at least 1− δ
2
,

t−1∑
i=0

θi∥wt−i−1∥ ≤
√

3∥Σw∥
t−1∑
i=0

θi log0.5(
1

min{δi, δ̄n}
)

≤
√

3∥Σw∥

(
t−1∑
i=0

θi log0.5(
1

δi
) + (̄i+ 1) log0.5(

1

δ̄n
)

)
.

(C.52)

For the term
∑t−1

i=0 θ
i log0.5( 1

δi
) above, we have

∑t−1
i=0 θ

i log0.5( 1
δi
) =

∑
i θ

i log0.5(π
2(i+1)2

3δ
) ≤∑

i θ
i(log0.5(1

δ
)+
√
2 log0.5(π(i+1)√

3
)) ≤ 1

1−θ
log0.5(1

δ
)+
√
2
∑

i θ
i π(i+1)√

3
≤ 1

1−θ
log0.5(1

δ
)+

√
2π√
3

1
(1−θ)2

.

And for the term (̄i + 1) log0.5( 1
δ̄n
) in (C.52), by the definitions of ī and δ̄n, we have (̄i +

1) log0.5( 1
δ̄n
) ≤
√
2ne3n. Plugging these two results back into (C.52), we have, with probability

at least 1− δ
2
,

t−1∑
i=0

θi∥wt−i−1∥ ≤
√

3∥Σw∥
1− θ

log0.5(
1

δ
) +

5
√
∥Σw∥

(1− θ)2
+ 3
√
ne3n

√
∥Σw∥. (C.53)

Similarly, with probability at least 1− δ
2
,

t−1∑
i=0

θi∥zt−i−1∥ ≤
√
3∥Σz∥
1− θ

log0.5(
1

δ
) +

5
√
∥Σz∥

(1− θ)2
+ 3
√
pe3p

√
∥Σz∥. (C.54)

Plugging (C.53) and (C.54) back into (C.50) and applying union bound, we have, with

probability 1− δ,

∥xt∥ ≤ κθt∥x0∥+
√
3κ(
√
∥Σw∥+ ∥B1:s∥

√
∥Σz∥)

(1− θ)2
log0.5(

1

δ
)

+ κ(
√
∥Σw∥+ ∥B1:s∥

√
∥Σz∥)

(
3max{

√
ne3n,

√
pe3p}+ 5

(1− θ)2

)
. (C.55)

Taking squares of both sides and using Cauchy-Schwartz inequality, we have

∥xt∥2 ≤ 3κ2θ2t∥x0∥2 +
18κ2σ̄2

1− θ
log(

1

δ
) + c (C.56)

where σ̄2 := ∥Σw∥+ ∥B1:s∥2∥Σz∥ and c := 6κ2σ̄2(3max{
√
ne3n,

√
pe3p}+ 5

(1−θ)2
)2.

The following Lemma C.1a describes that given a set of matrices that have joint spectral

radius smaller than 1, i.e. uniformly stable, moderate perturbation can preserve the uniform

stability. On the other hand, its counterpart, Lemma C.1, considers perturbation results for

mean-square stability.
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Lemma C.1a (Joint Spectral Radius Perturbation). Assume θ⋆ < 1. For an arbitrary

controller K1:s and resulting closed-loop state matrices L1:s with Li = Ai +BiKi, let θ(L1:s)

denote the joint spectral radius of L1:s. Assume ∥K1:s −K⋆
1:s∥ ≤ ϵ̄usK := 1−θ⋆

2κ⋆∥B1:s∥ , then for

any sequence ω1:l ∈ [s]l with any length l,

∥
l∏

j=1

Lωj
∥ ≤ κ̄θ̄l (C.57)

θ(L1:s) ≤ θ̄. (C.58)

where κ̄ = κ⋆ and θ̄ = 1+θ⋆

2
.

Proof. Let Ei := Li−L⋆
i , then we see ∥Ei∥ ≤ ∥B1:s∥ϵ̄usK and

∏l
j=1 Lωj

=
∏l

j=1(L
⋆
ωj
+Eωj

). In

the expansion of
∏l

j=1(L
⋆
ωj
+Eωj

), for each h = 0, 1, . . . , l, there are
(
l
h

)
terms, each of which

is a product where E has degree h and L⋆ has degree l − h. We let Fh,l with h = 0, 1, . . . , l

and l ∈ [
(
l
h

)
] to index such terms. Note that ∥Fh,l∥ ≤ (κ⋆)h+1(θ⋆)l−h(∥B1:s∥ϵ̄usK )h. Then, we

have

∥
l∏

j=1

Lωj
∥ ≤

l∑
h=0

∑
l∈[( l

h)]

∥Fh,l∥

≤
l∑

h=0

(
l

h

)
(κ⋆)h+1(θ⋆)l−h(∥B1:s∥ϵ̄usK )h

≤κ⋆(κ⋆∥B1:s∥ϵ̄usK + θ⋆)l.

(C.59)

Then (C.57) follows from the fact that ϵ̄usK ≤ 1−θ⋆

2κ⋆∥B1:s∥ and θ̄ := 1+θ⋆

2
. To proceed, noticing

that θ(L1:s) = liml→∞maxω1:l∈[s]l ∥
∏l

j=1 Lωj
∥ 1

l and using the result in (C.57), we can show

(C.58).

In the Lemma C.1a, if the controller K1:s is obtained by solving the infinite-horizon

MJS-LQR(Â1:s, B̂1:s, T̂,Q1:s,R1:s) for some estimated MJS(Â1:s, B̂1:s, T̂), the following re-

sult provides the required estimation accuracy such that the resulting K1:s is uniformly

stabilizing.

Lemma C.2a. Under the setup of Lemma C.2, if max{ϵ̄A,B, ϵ̄T} ≤ ¯̄ϵA,B,T, then we have

∥K1:s −K⋆
1:s∥ ≤ ϵ̄K, and Lemma C.1a is applicable.

Recall we defined events Aq,Bq, Cq,Dq in (C.60) to analyze the events happen in each

epoch of the regret. To adapt to the uniform stability assumption, we redefine event Bq and
Dq while keep Aq and Cq as before. For easier reference, We list all of them below.
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Aq =

{
Regretq ≤ O

(
sp
(
ϵ
(q−1)
A,B + ϵ

(q−1)
T

)2
σ2
wTq +

√
ns∥x(q)

0 ∥2 +
n
√
s

1− ρ⋆
σ2
z,qTq + cA

)}
Bq =

{
ϵ
(q)
A,B ≤ ¯̄ϵA,B,T, ϵ

(q)
T ≤ ¯̄ϵA,B,T, ϵ

(q+1)
K ≤ ¯̄ϵK

}
,∀q = 0, 1, . . .

Cq =
{
ϵ
(q)
A,B ≤ O

(
log(

1

δid,q
)
σz,q + σw

σz,qπmin

√
s(n+ p) log(Tq)

(1− ρ̄)
√

Tq

)
,

ϵ
(q)
T ≤ O

(
log(

1

δid,q
)

1

πmin

√
log(Tq)

Tq

)}
Dq =

{
∥x(q+1)

0 ∥2 = ∥x(q)
Tq
∥2 ≤ 18κ̄2σ̄2

(1− θ̄)2
log(

1

δx0,q

) + 2x̄us

}
,∀q = 1, 2, . . . ,

D0 =

{
∥x(1)

0 ∥2 = ∥x
(0)
T0
∥2 ≤ n

√
sτ̄ σ̄2/(1− ρ̄)

δx0,0

}
,

(C.60)

where we define x̄us := 2κ̄2σ̄2(6max{
√
ne3n,

√
pe3p}+ 5

(1−θ̄)2
)2, ¯̄ϵK := min{ϵ̄usK , ϵ̄K} , ¯̄ϵA,B,T :=

min{ϵ̄A,B,T,
¯̄ϵK

2CK
A,B,T

} and σ̄2 := ∥B1:s∥2σ2
z,0 + σ2

w. Event Dq describes the initial state mag-

nitude of epoch q + 1. Since Algorithm 2 requires initial mean-square stabilizing controller

K
(0)
1:s for epoch 0, and as in the proof for the following Proposition C.7a, epoch 1, 2, . . . have

uniformly stabilizing controller, thus we define D0 and D1,D2, . . . separately.

Proposition C.7a. Assuming that Tq ≥ 1
2 log(1/θ̄)

log
(
6κ̄2 + 54κ̄4σ̄2

(1−θ̄)x̄us log(
1

δx0,q−1
)
)
and T1 ≥

1
2 log(1/θ̄)

log
(

3n
√
sκ̄2τ̄ σ̄2

(1−ρ̄)x̄usδx0,0

)
, we have

P(Dq | Bq−1,Dq−1) ≥ 1− δx0,q (C.61)

and P(D0) ≥ 1− δx0,0.

Proof. For the initial epoch 0, i.e. q = 0, since we assume in Algorithm 2 that the initial

controller K
(0)
1:s stabilizes the MJS in the mean-squared sense, similar to the proof for Propo-

sition C.7, we have E[∥x(0)
T0
∥2] ≤ n

√
s(∥B1:s∥2σ2

z,0 + σ2
w)

τ̄
1−ρ̄

. Then by Markov inequality,

with probability 1 − δx0,0, ∥x
(0)
T0
∥2 ≤ n

√
sτ̄ σ̄2/(1−ρ̄)
δx0,0

where σ̄2 := ∥B1:s∥2σ2
z,0 + σ2

w. This shows

P(D0) ≥ 1− δx0,0.

For epoch q = 1, 2, . . . , given event Bq−1, we know ϵ
(q)
K ≤ ¯̄ϵK ≤ ϵ̄usK . Let L

(q)
1:s denote

the closed-loop state matrices for epoch q, then by Lemma C.1a, ϵ
(q)
K ≤ ϵ̄usK implies that for

any l and any sequence ω1:l ∈ [s]l, ∥
∏l

j=1 L
(q)
ωj ∥ ≤ κ̄θ̄l. Then using the bound on ∥xt∥ in

155



Lemma 2.15a, we have, with probability 1− δx0,q,

∥x(q)
Tq
∥2 ≤ 18κ̄2σ̄2

(1− θ̄)2
log(

1

δx0,q

) + 3κ̄2θ̄2Tq∥x(q)
0 ∥2 + x̄us (C.62)

where x̄us := 2κ̄2σ̄2(6max{
√
ne3n,

√
pe3p}+ 5

(1−θ̄)2
)2.

• When q = 1, given D0, i.e. ∥x(1)
0 ∥2 ≤

n
√
sτ̄ σ̄2/(1−ρ̄)
δx0,0

, the above (C.62) gives ∥x(1)
T1
∥2 ≤

18κ̄2σ̄2

(1−θ̄)2
log( 1

δx0,1
) + 3κ̄2θ̄2T1 n

√
sτ̄ σ̄2/(1−ρ̄)
δx0,0

+ x̄us. One can check that when we choose T1 ≥
1

2 log(1/θ̄)
log
(

3n
√
sκ̄2τ̄ σ̄2

(1−ρ̄)x̄usδx0,0

)
, we have that 3κ̄2θ̄2T1 n

√
sτ̄ σ̄2/(1−ρ̄)
δx0,0

≤ x̄us, which gives

∥x(1)
T1
∥2 ≤ 18κ̄2σ̄2

(1− θ̄)2
log(

1

δx0,1

) + 2x̄us. (C.63)

• When q = 2, 3, . . . , given event Dq−1, i.e. ∥x(q)
0 ∥2 ≤ 18κ̄2σ̄2

(1−θ̄)2
log( 1

δx0,q−1
) + 2x̄us, the

above (C.62) gives ∥x(q)
Tq
∥2 ≤ 18κ̄2σ̄2

(1−θ̄)2
log( 1

δx0,q
)+3κ̄2θ̄2Tq

(
18κ̄2σ̄2

(1−θ̄)2
log( 1

δx0,q−1
) + 2x̄us

)
+x̄us.

Similarly, when Tq ≥ 1
2 log(1/θ̄)

log
(
6κ̄2 + 54κ̄4σ̄2

(1−θ̄)x̄us log(
1

δx0,q−1
)
)
, we further have

∥x(q)
Tq
∥2 ≤ 18κ̄2σ̄2

(1− θ̄)2
log(

1

δx0,q

) + 2x̄us. (C.64)

Combining (C.63) and (C.64), we can claim the following: for epoch q = 1, 2, . . . , when

T1 ≥ 1
2 log(1/θ̄)

log
(

3n
√
sκ̄2τ̄ σ̄2

(1−ρ̄)x̄usδx0,0

)
and Tq ≥ 1

2 log(1/θ̄)
log
(
6κ̄2 + 54κ̄4σ̄2

(1−θ̄)x̄us log(
1

δx0,q−1
)
)
, we have

P(Dq | Bq−1,Dq−1) ≥ 1− δx0,q.

The following Proposition C.8a says that if a good controller is used in epoch q, then the

final state x
(q)
Tq

of epoch q (the initial state of epoch q + 1) can be bounded.

Proposition C.8a. Suppose every epoch q has length Tq ≥ T us
rgt,ϵ̄(δid,q, Tq). Then,

P(Bq | Cq,∩q−1
j=0Ej) = P(Bq | Cq) = 1 (C.65)

Now, we are ready to present the main proof of Theorem 5.2.

Theorem C.12 (Complete version of Theorem 5.2). Assume that the initial state x0 = 0,

Assumption A5.1 holds, and L⋆
1:s is uniformly stable. Suppose cx ≥ cx(ρ̄, τ̄), cz ≥ cz, T0 ≥

O(T us
rgt(δ, T0)). Then, with probability at least 1− δ, Algorithm 2 achieves

Regret(T ) ≤ O
(
s2p(n2 + p2)σ2

w

π2
min(1− ρ̄)2

log
( log2(T )

δ

)
log2(T )

√
T

)
. (C.66)
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Proof. The proof is almost the same as the proof for the regret upper bound in Theorem C.11

for the mean-square stability case in Appendix C.4.1, thus we only present the key steps and

omit certain details of intermediate steps.

In the following, we set δid,q = δx0,q =
3
π2 · δ

(q+1)2
. Similar to the counterpart (C.41), event

Eq = Aq+1 ∩ Bq ∩ Cq ∩ Dq implies the following: for q = 1, 2, . . . ,

Regretq+1

≤O(1) log
((q + 1)2

δ

)
sp
(σz,q + σw

σz,qπmin

·
√
s(n+ p) log(Tq)√

Tq

+

√
log(Tq)

πmin(1− ρ̄)
√
Tq

)2
σ2
wTq+1

+O(1) log
(q + 1

δ

)18√nsκ̄2σ̄2

(1− θ̄)2
+O( n

√
s

1− ρ⋆
σ2
z,q+1Tq+1) +O(1)

≤O(1) log
((q + 1)2

δ

)s2p(n2 + p2)γ

π2
min(1− ρ̄)2

σ2
w

√
Tq log

2(Tq) +O(1) log
((q + 1)2

δ

)18√nsκ̄2σ̄2

(1− θ̄)2
;

(C.67)

and for q = 0,

Regret1 ≤ O(1) log
(1
δ

)s2p(n2 + p2)γ

π2
min(1− ρ̄)2

σ2
w

√
T0 log

2(T0) +O(1)
(1
δ

)n1.5sτ̄ σ̄2

1− ρ̄
. (C.68)

Note that the difference between (C.67) (q = 1, 2, . . . ) and (C.68) (q = 0) is due to the

difference between the event Dq for q = 1, 2, . . . and event D0. Compared with the mean-

square stability counterpart (C.41), we see the (q+1)2

δ
dependence in (C.41) is now replaced

with log
(
q+1
δ

)
. For all M := O(logγ( T

T0
)) epochs, similar to the counterpart (C.42), event

∩M−1
q=0 Eq implies

Regret(T )

=O(
M∑
q=1

Regretq)

≤O
(
s2p(n2 + p2)σ2

w

π2
min(1− ρ̄)2

log
( log2(T )

δ

)√
T log2(T ) +

18
√
nsκ̄2σ̄2

(1− θ̄)2
log
( log2(T )

δ

)
log(T )

) (C.69)

which shows the main result (C.66). Note that in the above summation, we have omit 1
δ

term in Regret1 since it does not scale with time and can be dominated by the rest.

Now we are only left to show the occurrence probability of regret bound (C.66) is larger

than 1 − δ. To do this, we will combine Proposition C.7a, C.8a, C.9, and C.10 over all

q = 0, 1, . . . ,M − 1. Note that for each individual q, these propositions hold only when

certain prerequisite conditions on hyper-parameters cx, cz, and T0 are satisfied. We first

show that under the choices Tq = γTq−1, σ
2
z,q = σ2

w√
Tq
, and δid,q = δx0,q = 3

π2 · δ
(q+1)2

these
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hyper-parameter conditions can be satisfied for all q = 0, 1, . . . ,M − 1.

• Proposition C.7a requires these to hold: T0γ
q ≥ 1

2 log(1/θ̄)
log
(
6κ̄2 + 54κ̄4σ̄2

(1−θ̄)x̄us log(
i2π2

3δ
)
)

and T0γ ≥ 1
2 log(1/θ̄)

log
(

π2n
√
sκ̄2τ̄ σ̄2

(1−ρ̄)x̄usδ

)
. One can check T0 ≥ max{ 54κ̄4σ̄2

(1−θ̄)x̄us log(1/θ̄) log(γ)
,

1
γ log(1/θ̄)

log(6κ̄2 + 54n
√
sκ̄4σ̄2 log(π2/3δ)

(1−θ̄)(1−ρ̄)x̄usδ
)} =: T us

x0
(δ) would suffice.

• Proposition C.8a requires that for q = 0, 1, . . . , condition T0γ
q ≥ T us

rgt,ϵ̄(
3δ

π2(q+1)2
, T0γ

q)

holds, which can be satisfied when one chooses T0 ≥ O(T us
rgt,ϵ̄(δ, T0)).

• Proposition C.9 requires the following to hold: cx ≥ cx(ρ̄, τ̄), cz ≥ cz, and T0γ
q ≥

max
{
TMC,1(

3δ
8π2q2

), T id,N(
3δ

2π2(q+1)2
, ρ̄, τ̄)

}
. The last one can be satisfied when we have

T0 ≥ O(max{TMC,1(δ), T id,N(δ, ρ̄, τ̄)}).

• Proposition C.10 requires no conditions on hyper-parameters.

Therefore, when cx ≥ cx(ρ̄, τ̄), cz ≥ cz, T0 ≥ O(max{T us
x0
(δ), T us

rgt,ϵ̄(δ, T0), TMC,1(δ), T id,N(δ,

ρ̄, τ̄)}) =: O(T us
rgt(δ, T0)), we can apply Proposition C.7a, C.8a, C.9, and C.10 to every

epoch q = 0, 1, . . . ,M − 1. Similar to (C.45), this gives P (Regret bounds in (C.66) holds) ≥
P(∩M−1

q=0 Eq) ≥ 1− δ.

C.5.2 Proof for Theorem 5.3

Since Theorem 5.2 shows that Regret(T ) :=
∑

q J(q)−TJ⋆ ≤ O(
√
T log(1

δ
)), to upper bound

Regret◦(T ) :=
∑

q J
◦
(q) − TJ⋆ in Theorem 5.3, it suffices to upper bound each summand

J◦
(q) − J(q). By definition, we further have

J◦
(q) − J(q) = J◦

(q) − E[J◦
(q) | Fq−1] = J◦

(q) − E[J◦
(q) | x

(q)
0 , ω(q)(0),K

(q)
1:s] .

Hence, we only need to study the deviation of the random cost J◦
(q) from its conditional mean

E[J◦
(q) | x

(q)
0 , ω(q)(0),K

(q)
1:s]. Before presenting this result in Lemma C.17, we first provide

several supporting results from high-dimensional statistics. In this section, c denotes an

absolute constant.

Lemma C.13 (Theorem 1.1 in Rudelson and Vershynin (2013)). Consider a random vector

x ∈ Rn such that x ∼ N (0,Σx) and an arbitrary matrix S ∈ Rnxn. Then, with probability

at least 1− δ,

|x⊺
Sx− E[x⊺

Sx]| ≤ c∥Σx∥∥S∥F log(
3

δ
). (C.70)
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Lemma C.14 (Proposition 5.10 in Vershynin (2012)). Consider a random vector x ∈ Rn

such that x ∼ N (0,Σx) and an arbitrary vector a ∈ Rn. Then, with probability at least 1−δ,

|a⊺
x| ≤ c

√
∥Σx∥∥a∥

√
log(

3

δ
). (C.71)

Lemma C.15. Consider two independent random vectors x ∈ Rnx ,y ∈ Rny such that

x ∼ N (0,Σx) and y ∼ N (0,Σy), and an arbitrary matrix S ∈ Rnxxny , then with probability

at least 1− δ,

|x⊺
Sy| ≤ c

√
min{nx, ny}

√
∥Σx∥∥Σy∥∥S∥ log(

6

δ
). (C.72)

Proof. By Lemma C.14, with probability at least 1− δ/2, x⊺Sy ≤ c
√
∥SΣyS

⊺∥∥x∥
√

log(6
δ
).

By Lemma C.13, with probability at least 1 − δ/2, ∥x∥2 ≤ tr(Σx) + c∥Σx∥
√
nx log(

6
δ
),

which further gives ∥x∥ ≤ c
√

nx∥Σx∥ log(6δ ). Combining these two results shows |x⊺Sy| ≤
c
√
nx

√
∥Σx∥∥Σy∥ ∥S∥ log(6δ ). Similarly, we can show |x⊺Sy| ≤ c

√
ny

√
∥Σx∥∥Σy∥∥S∥ log(6δ ),

which completes the proof.

Lemma C.16. Consider a vector v := [v⊺
1,v

⊺
2,v

⊺
3]

⊺ where v1 ∈ Rn1 is deterministic with

∥v1∥ ≤ v̄1, and v2 ∈ Rn2, v3 ∈ Rn3 are random vectors such that v2 ∼ N (0,Σ2), v3 ∼

N (0,Σ3). Consider an arbitrary symmetric matrix S =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 where S11 ∈

Rn1xn1 ,S22 ∈ Rn2xn2 ,S33 ∈ Rn3xn3. Then, with probability at least 1− δ,

|v⊺
Sv−E[v⊺

Sv]| ≤ c
(
∥Σ2∥∥S22∥F+∥Σ3∥∥S33∥F+

√
min{n2, n3}

√
∥Σ2∥∥Σ3∥∥S23∥

)
log(

18

δ
)

+ c
(√
∥Σ2∥∥S12∥+

√
∥Σ3∥∥S13∥

)
v̄1

√
log(

18

δ
). (C.73)

Proof. By triangle inequality,

|v⊺
Sv − E[v⊺

Sv]| ≤ d22 + d33 + 2d23 + 2d12 + 2d23, (C.74)

where dij = |v⊺
iSijvj − E[v⊺

iSijvj]|. Then

• By Lemma C.13, with probability at least 1− δ/6, d22 ≤ c∥Σ2∥∥S22∥F log(18δ ).

• By Lemma C.13, with probability at least 1− δ/6, d33 ≤ c∥Σ3∥∥S33∥F log(18δ ).

• By Lemma C.15, with probability at least 1−δ/3, d23 ≤ c
√

min{n2, n3}∥Σ2∥∥Σ3∥∥S23∥ log(18δ ).

• By Lemma C.14, with probability at least 1− δ/6, d12 ≤ c
√
∥Σ2∥∥S12∥v̄1

√
log(18

δ
).
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• By Lemma C.14, with probability at least 1− δ/6, d13 ≤ c
√
∥Σ3∥∥S13∥v̄1

√
log(18

δ
).

Combining these with the union bound concludes the proof.

With Lemma C.16, we can analyze the concentration of the MJS-LQR cumulative cost

around its mean under uniform stability.

Lemma C.17. Consider MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s) with process noise N (0, σ2
wI),

given initial mode ω0 and initial state x0 such that ∥x0∥ ≤ x̄0. For a controller K1:s, the

input is given by ut = Kωtxt + zt where zt ∼ N (0, σ2
zI). Let Li = Ai + BiKi for all i.

Assume there exists κ ≥ 1 and θ ∈ [0, 1) such that for any sequence ω1:l ∈ [s]l with any l ∈ N
such that ∥

∏l
j=1 Lωj

∥ ≤ κθl. Let JT =
∑T

t=0 x
⊺
tQωtxt + u⊺

tRωtut denote the cumulative cost

over time horizon T . Then, with probability at least 1− δ,

|JT − E[JT | ω0,x0,K1:s]| ≤

c(np)1.5κ2

(1− θ)2

[
(γ1σ

2
w + γ2σ

2
z + γ3σwσz)

√
T log(

18

δ
) + (γ1σw + γ3σz)x̄0

√
log(

18

δ
)

]
, (C.75)

where γ1 := ∥M1:s∥ for Mi := Qi + K⊺
iRiKi, γ2 := ∥M1:s∥∥B1:s∥ + ∥R1:s∥∥K1:s∥, and

γ3 := ∥M1:s∥∥B1:s∥2 + 2∥B1:s∥∥R1:s∥∥K1:s∥+ ∥R1:s∥.

Proof. First we define a few notations that can convert JT into the form of vector-matrix

multiplications. Define the block-diagonal matrix K with T + 1 diagonal blocks such that

the t-th block is given by Kωt−1 for all t. Similarly, define Q for Qω0:ωT
, R for Rω0:ωT

, and

M for Mω0:ωT
. For all t, define

G
(0)
0,0 := In, G

(0)
0,t :=

t−1∏
h=0

Lωh
;

G
(w)
t,t := 0, G

(w)
t−1,t := In, G

(w)
r,t :=

t−1∏
h=r+1

Lωh
,∀r ≤ t− 2;

G
(z)
t,t := 0, G

(z)
t−1,t := Bωt−1 , G

(z)
r,t := (

t−1∏
h=r+1

Lωh
)Bωr ,∀r ≤ t− 2

(C.76)

Then, it is easy to derive that

xt = G
(0)
0,tx0 +

t∑
r=0

G
(w)
r,t wr +

t∑
r=0

G
(z)
r,t zr (C.77)

and ∥G0,t∥ ≤ κθt, ∥G(w)
r,t ∥ ≤ κθt−r−1, and ∥G(z)

r,t ∥ ≤ κθt−r−1∥B1:s∥. Define the following
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vectors by concatenation.

x := [x
⊺
0,x

⊺
1, . . . ,x

⊺
T ]

⊺
, u := [u

⊺
0,u

⊺
1, . . . ,u

⊺
T ]

⊺
, ϕ := [x

⊺
,u

⊺
]
⊺
,

w := [w
⊺
0,w

⊺
1, . . . ,w

⊺
T ]

⊺
, z := [z

⊺
0, z

⊺
1, . . . , z

⊺
T ]

⊺
, v := [x

⊺
0,w

⊺
, z

⊺
]
⊺
,

(C.78)

Define the following block matrices.

G(0) :=


G

(0)
0,0

G
(0)
0,1
...

G
(0)
0,T

 , G(w) :=


G

(w)
0,0

G
(w)
0,1 G

(w)
1,1

...
. . .

G
(w)
0,T G

(w)
1,T . . . G

(w)
T,T

 , G(z) :=


G

(z)
0,0

G
(z)
0,1 G

(z)
1,1

...
. . .

G
(z)
0,T G

(z)
1,T . . . G

(z)
T,T

 ,

G := [G(0),G(w),G(z)], Ĩ := [0(T+1)px(T+2)n, I(T+1)p].

(C.79)

One can see x = Gv, u = Kx+z = (KG+ Ĩ)v, ϕ =

[
G

KG+ Ĩ

]
v, and JT = ϕ

⊺

[
Q

R

]
ϕ.

Let S := G⊺QG+ (KG+ Ĩ)⊺R(KG+ Ĩ), then these relations give

JT = v
⊺
Sv. (C.80)

Block-partition matrix S by S =

S
(0,0) S(0,w) S(0,z)

S(w,0) S(w,w) S(w,z)

S(z,0) S(z,w) S(z,z)

 such that S(0,0) ∈ Rnxn, S(w,w) ∈

R(T+1)nx(T+1)n, S(z,z) ∈ R(T+1)px(T+1)p. Then, we have

S(0,0) = G(0)
⊺
MG(0)

S(w,w) = G(w)
⊺
MG(w), S(z,z) = G(z)

⊺
MG(z) +RKG(z) +G(z)

⊺
K

⊺
R+R,

S(w,z) = G(w)
⊺
MG(z) +G(w)

⊺
K

⊺
R,

S(0,w) = G(0)
⊺
MG(w), S(0,z) = G(0)

⊺
MG(z) +G(0)

⊺
K

⊺
R.

(C.81)

Matrices G(0),G(w),G(z) can be bounded as follows.

∥G(0)∥ ≤ ∥G(0)∥F ≤

√√√√ T∑
i=0

κ2θ2i ≤ κ

1− θ
.

∥G(w)∥ ≤
√
∥G(w)∥1∥G(w)∥∞ ≤

√√
nκ

1− θ
·
√
nκ

1− θ
=

√
nκ

1− θ
.

∥G(z)∥ ≤
√
∥G(z)∥1∥G(z)∥∞ ≤

√√
nκ∥B1:s∥
1− θ

·
√
pκ∥B1:s∥
1− θ

=
(np)0.25κ∥B1:s∥

1− θ
.

(C.82)
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These results further give

∥S(w,w)∥ ≤ nκ2γ1
(1− θ)2

, ∥S(z,z)∥ ≤ (np)0.5κ2γ2
(1− θ)2

, ∥S(w,z)∥ ≤ n0.75p0.25κ2γ3
(1− θ)2

,

∥S(0,w)∥ ≤ n0.5κ2γ1
(1− θ)2

, ∥S(0,z)∥ ≤ (np)0.25κ2γ3
(1− θ)2

.

(C.83)

Finally, we can conclude the proof by invoking Lemma C.16.

Now, we are ready to present the main proof of Theorem 5.3.

Proof. Following from Lemma C.2a, Proposition C.7a, and the proof of Theorem C.12, we

know with probability at least 1− δ/2, for all epochs q,

∥K(q)
1:s∥ ≤ 2∥K⋆

1:s∥,

∥
l∏

j=1

L(q)
ωj
∥ ≤ κθl, ∀ω1:l ∈ [s]l,∀l ∈ N,

∥x(q)
0 ∥ ≤ O

(√
κ̄σ̄2

(1− θ̄)2
log(

q2

δ
)

)
, (q ≥ 2).

(C.84)

Under these conditions, and applying Lemma C.17, we know for epoch q with probability at

least 1− 3
π2 · δ

q2
,

∣∣J◦
(q) − J(q)

∣∣ = ∣∣J◦
(q) − E[J◦

(q) | Fq−1]
∣∣

≤O
(
(np)1.5κ̄2

(1− θ̄)2

[
(σ2

w + σ2
z,q)
√

Tq log(
q2

δ
) + (σw + σz,q)∥x(q)

0 ∥
√

log(
q2

δ
)

])
≤O

(
(np)1.5κ̄2

(1− θ̄)2

[
σ2
w

√
γq log(

q2

δ
) + σ2

w

√
κ̄

1− θ̄
log(

q2

δ
)

]) (C.85)

where the second line follows from σ2
z,q = σ2

w√
Tq
, Tq = O(γq), and the bound of ∥x(q)

0 ∥ in

(C.84). Taking the summation over all M = O(log(T )) epochs (for simplicity, epoch 0 and

1 are ignored) and applying the union bound, we obtain with probability 1− δ,

∣∣∑
q

J◦
(q) − J(q)

∣∣ ≤ ((np)1.5κ̄2σ2
w

(1− θ̄)2

[√
T log(

log2(T )

δ
) +

√
κ̄

1− θ̄
log(

log2(T )

δ
)

])
. (C.86)

Combining this with the upper bound on Regret(T ) :=
∑

q J
◦
(q) − TJ⋆ provided in Theo-

rem 5.2 completes the proof.
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Appendix D

Proofs for Results in Chapter 6

D.1 Aggregatable Clustering — Proof for Theorem 6.4

We first provide several supporting lemmas. The first one is regarding the perturbation of

the left singular vector space.

Lemma D.1 (Singular Vectors Perturbation Bound). Consider two arbitrary matrices Φ̄,Φ ∈
Rsxr. Let Ū,U ∈ Rsxr respectively denote the top-r left singular vectors of Φ̄ and Φ with

Ū⊺Ū = U⊺U = Ir. Then

min
O∈O(r)

∥ŪO−U∥F ≤
2
√
2∥Φ̄−Φ∥F

σr(Φ̄)− σr+1(Φ̄)
, (D.1)

where O(r) denotes the set of all rxr orthonormal matrices.

This result can be seen simply by combining Lemma 10 and Lemma 11 in Du et al.

(2019b), where Lemma 10 requires a trivial generalization from spectral norm to the Frobe-

nius norm. The next result says if a matrix has certain rows being identical, its singular

vectors share the same identity pattern.

Lemma D.2 (Lemma 12 in Du et al. (2019b)). Consider a matrix Φ̄ ∈ Rsxr and a partition

Ω1:r on [s] such that for any i, i′ ∈ Ωk, Φ̄(i, :) = Φ̄(i′, :). Assume rank(Φ̄) = r. Let Ū ∈ Rsxr

denote the top-r left singular vectors of Φ̄ with Ū⊺Ū = Ir. Then for any i ∈ Ωk and j ∈ Ωl,

∥Ū(i, :)− Ū(j, :)∥ = ( 1
|Ωk|

+ 1
|Ωl|

)0.5 if k ̸= l and 0 if k = l.

The next lemma provides a preliminary result on the performance of k-means when it is

applied to a data matrix with feature dimension same as the number of clusters.

Lemma D.3 (Lemma 5.3 in Lei and Rinaldo (2015)). Consider two arbitrary matrices

Ū,U ∈ Rsxr with ∆U := ∥Ū−U∥F. Suppose there exists a partition Ω1:r on [s] such

that for any i, i′ ∈ Ωk, Ū(i, :) = Ū(i′, :). Define the inter-cluster distance for cluster k as
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δk := minl∈[r]\k mini∈Ωk,j∈Ωl
∥Ū(i, :)− Ū(j, :)∥. Let {Ω̂1:r, ĉ1:r} be a (1 + ϵ) solution to the

k-means problem on the rows of U. Then, when ∆U ≤
mink
√

|Ωk|δk√
8(2+ϵ)

, we have

min
h∈H

∑
k∈[r]

|{i : i ∈ Ωk, i /∈ Ω̂h(k)}| · δ2k ≤ 8(2 + ϵ)∆2
U, (D.2)

where H is the set of all bijections from [r] to [r].

By combining Lemma D.1, D.2, and D.3, we obtain guarantee on the performance of

k-means when it is applied to the left singular vectors of the data matrix, which is the key

lemma we will use to show Theorem 6.4 and Theorem 6.6.

Lemma D.4 (Approximate k-means error bound). Consider two arbitrary matrices Φ̄,Φ ∈
Rsxr with ∆Φ := ∥Φ̄−Φ∥F. Suppose there exists a partition Ω1:r on [s] such that for any

i, i′ ∈ Ωk, Φ̄(i, :) = Φ̄(i′, :). Assume rank(Φ̄) = r. Let U ∈ Rsxr denote the top-r left singular

vectors of Φ with U⊺U = Ir. Let {Ω̂1:r, ĉ1:r} be a (1 + ϵ) solution to the k-means problem

on clustering the rows of U. Then, when ∆Φ ≤
σr(Φ̄)
√

|Ω(r)|+|Ω(1)|

8
√

(2+ϵ)|Ω(1)|
, we have MR(Ω̂1:r) ≤

64(2+ϵ)

σr(Φ̄)2
∆2

Φ.

Proof. Let Ū ∈ Rsxr denote the top-r left singular vectors of Φ̄ with Ū⊺Ū = Ir. Then,

Lemma D.1 implies that exists O⋆ ∈ O(r) such that ∥ŪO⋆ −U∥F ≤ 2
√
2∆Φ

σr(Φ̄)
. Note that

∥[ŪO⋆](i, :)− [ŪO⋆](j, :)∥ = ∥(Ū(i, :)− Ū(j, :))O⋆∥ = ∥Ū(i, :)− Ū(j, :)∥. By Lemma D.2,

we know for any i ∈ Ωk, j ∈ Ωl, ∥[ŪO⋆](i, :)−[ŪO⋆](j, :)∥ =
√

1
|Ωk|

+ 1
|Ωl|

if k ̸=l and 0 if

k = l. Then, for any k ∈ [r], let δk := minl∈[r]\k mini∈Ωk,j∈Ωl
∥[ŪO⋆](i, :)− [ŪO⋆](j, :)∥, we

see δk ≥
√

1
|Ωk|

+ 1
|Ω(1)|

.

Note that when ∆Φ ≤
σr(Φ̄)
√

|Ω(r)|+|Ω(1)|

8
√

(2+ϵ)|Ω(1)|
, one can check ∥ŪO⋆ −U∥F ≤

mink
√

|Ωk|δk√
8(2+ϵ)

.

Then, by Lemma D.3, we obtain that MR(Ω̂1:r) = minh∈H
∑r

k=1 |{i : i ∈ Ωk, i /∈ Ω̂h(k)}| 1
|Ωk|
≤

minh∈H
∑r

k=1 |{i : i ∈ Ωk, i /∈ Ω̂h(k)}|δ2k ≤ 64(2 + ϵ)σr(Φ̄)-2∆2
Φ.

Main Proof for Theorem 6.4. Consider Φ in Algorithm 3 Line 3 and its averaged version Φ̄

defined in Section 6.4.1. By definition, we have ∥Φ̄−Φ∥2F =
∑

k∈[r]
∑

i∈Ωk
∥Φ̄(i, :)−Φ(i, :)∥2F =

α2
T·
∑

k∈[r]
∑

i∈Ωk
∥T(i, :)−|Ωk|−1·

∑
i′∈Ωk

T(i′, :)∥2 +α2
A·
∑

k∈[r]
∑

i∈Ωk
∥Ai−|Ωk|−1·

∑
i′∈Ωk

Ai′∥2F
+α2

B·
∑

k∈[r]
∑

i∈Ωk
∥Bi−|Ωk|−1

∑
i′∈Ωk

Bi′∥2F. By the definitions of ϵA, ϵB, ϵT in Problem P6.2,

triangle inequality ,and Cauchy-Schwarz inequality, we have ∥Φ̄−Φ∥F ≤ ϵAgg where ϵAgg :=√
α2
Aϵ

2
A + α2

Bϵ
2
B + α2

Tϵ
2
T. By construction, in matrix Φ̄, rows that belong to the same

cluster are identical, thus we can apply Lemma D.4 to {Φ̄,Φ} and obtain that when

ϵAgg ≤
σr(Φ̄)
√

|Ω(r)|+|Ω(1)|

8
√

(2+ϵ)|Ω(1)|
, we have MR(Ω̂1:r) ≤ 64(2 + ϵ)σr(Φ̄)-2ϵ2Agg.
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D.2 Lumpable Clustering — Proof for Theorem 6.6

We first provide a supporting result regarding the perturbation of stationary distribution of

Markov chains.

Lemma D.5 (Section 3.6 in Cho and Meyer (2001)). For two Markov matrices T,T0 ∈ Rsxs

and their stationary distributions π,π0 ∈ Rs, we have ∥π− π0∥1 ≤ γ1∥T−T0∥∞, where

γ1 :=
∑s

i=2
1

1−λi(T)
.

When the difference ∥T−T0∥ is small, we further have the following corollary.

Corollary D.6. In Lemma D.5, let πmin := mini π(i), πmax := maxi π(i). Suppose that

∥T−T0∥∞ ≤ πmin

γ1
, then we have

max
i
|π(i)− π0(i)| ≤

πmin

2
, (D.3)

min
i

π0(i) ≥
πmin

2
, max

i
π0(i) ≤ πmax +

πmin

2
(D.4)

max
i
|π(i)−

1
2 − π0(i)

− 1
2 | ≤ (

√
2− 1)γ1π

− 3
2

min∥T−T0∥∞ (D.5)

max
i
|π(i)

1
2 − π0(i)

1
2 | ≤ (1−

√
2

2
)γ1π

-1
2

min∥T−T0∥∞. (D.6)

Proof. Since 1⊺
π = 1⊺

π0 = 1, we have maxi |π(i)− π0(i)| ≤ 1
2
∥π− π0∥1 ≤ γ1

2
∥T−T0∥∞ ≤

πmin

2
. Then using triangle inequality, we can show (D.3) and (D.4). Note that the LHS of

(D.5) is equivalent to maxi
|π0(i)−π(i)|√

π(i)π0(i)(
√

π(i)+
√

π0(i))
, then plugging in (D.4) gives (D.5). And

(D.6) follows similarly.

When the lumpability perturbation ϵT ̸= 0, matrix Sr in Algorithm 3 Line 7 no longer

has the row identity pattern as discussed in Lemma 6.5. The next result measures this effect.

Lemma D.7. Consider an ergodic Markov matrix T ∈ Rsxs with stationary distribution π

and a partition Ω1:r such that it is approximately lumpable as in (6.3) with perturbation ϵT.

Consider the neighborhood of T given by L(T,Ω1:r, ϵT) defined in (6.9). Assume there exists

an ergodic and reversible T0 ∈ L(T,Ω1:r, ϵT) that has informative spectrum. Construct Sr ∈
Rsxr with T and π as in Algorithm 3 Line 7. Construct S̄r ∈ Rsxr such that for any i ∈ [s]

(suppose i ∈ Ωk), S̄r(i, :) = 1
|Ωk|
∑

i′∈Ωk
Sr(i

′, :). Let πmin := maxi π(i), πmax := mini π(i),

γ1 :=
∑s

i=2
1

1−λi(T)
, γ2 := min{σr(H) − σr+1(H), 1}, and γ3 :=

16γ1
√
rπmax∥T∥F
γ2π2

min
where H is

defined in Algorithm 3. Then, when perturbation ϵT ≤ πmin

γ1
, we have ∥Sr − S̄r∥F ≤ γ3ϵT.

Proof. We will start with analyzing T0 and use it as a bridge to prove the claim. Let π0 ∈ Rs

denote the stationary distribution of T0. Since T0 is ergodic, we know π0 is strictly positive.
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By definition of reversibility, we know diag(π0)T0 = T⊺
0diag(π0), and this further gives

diag(π0)
1
2T0diag(π0)

-1
2 = diag(π0)

-1
2T⊺

0diag(π0)
1
2 . Let H0 := diag(π0)

1
2T0diag(π0)

-1
2 ,

then we see H0 is symmetric. Let W0,r ∈ Rsxr denote the top r left singular vectors of H0,

by spectral theorem, we know the columns of W0,r also serve as the top r eigenvectors of H0.

Let S0,r := diag(π0)
-1

2W0,r, by definition of H0, it is easy to see that the columns of S0,r

are also the top r eigenvectors of T0. Then, by Lemma 6.5 and the definition of informative

spectrum, for any i, i′ ∈ Ωk, we have S0,r(i, :) = S0,r(i
′, :).

Recall in Algorithm 3, the matrix Wr denotes the top r left singular vectors of H :=

diag(π)
1
2Tdiag(π)-

1
2 and let Sr = diag(π)-

1
2Wr. Let O⋆ := minO∈O(r) ∥W0,rO−Wr∥F,

where O(r) is the set of all r × r orthonormal matrices. Then, for any i, i′ ∈ Ωk, we have

[S0,rO
⋆](i, :) = [S0,rO

⋆](i′, :). Using this, for any i ∈ [s] (suppose i ∈ Ωk), we have

Sr(i, :)− S̄r(i, :)

=
|Ωk| − 1

|Ωk|
Sr(i, :)−

1

|Ωk|
∑

i′:i′∈Ωk,i′ ̸=i

Sr(i
′, :)

≤|Ωk| − 1

|Ωk|
(Sr(i, :)− [S0,rO

⋆](i, :))

+
1

|Ωk|
∑

i′:i′∈Ωk,i′ ̸=i

(
[S0,rO

⋆](i′, :)− Sr(i
′, :)
)
.

(D.7)

WLOG, assume {1, . . . , |Ω1|} = Ω1, {|Ω1| + 1, . . . , |Ω1| + |Ω2|} = Ω2, · · · and define block

diagonal matrices D,P ∈ Rsxs both with r diagonal blocks such that their k-th diagonal

blocks [D]k, [P]k ∈ R|Ωk|x|Ωk| are given by

[D]k =
|Ωk| − 1

|Ωk|
I|Ωk|, [P]k =

1

|Ωk|
(1|Ωk|1

⊺
|Ωk| − I|Ωk|). (D.8)

Then, stacking (D.7) for all i, one can verify that Sr − S̄r = D(Sr − S0,rO
⋆) + P(S0,rO

⋆ −
Sr). Note that for an arbitrary matrix E ∈ Rsxs, we have ∥PE∥2F = tr(P⊺PEE⊺) ≤
tr(D⊺ ·DEE⊺) = ∥DE∥2F where the inequality holds since for each diagonal block we have

[P]⊺k[P]k ⪯ [D]⊺k[D]k. Therefore, ∥Sr − S̄r∥F ≤ 2∥D(Sr − S0,rO
⋆)∥F ≤ 2maxk

|Ωk|−1
|Ωk|
∥Sr−

S0,rO
⋆|F ≤ 2∥Sr − S0,rO

⋆∥F. To complete the proof, it suffices to study ∥Sr − S0,rO
⋆∥F.

∥Sr − S0,rO
⋆∥F

=∥diag(π)-
1
2 (Wr −W0,rO

⋆)

+ (diag(π)-
1
2 − diag(π0)

-1
2 )W0,rO

⋆∥F
≤π-0.5min ∥Wr −W0,rO

⋆∥F +
√
rmax

i
|π(i)-

1
2 − π0(i)

-1
2 |.

(D.9)
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According to Lemma D.1, we know ∥Wr −W0,rO
⋆∥F ≤ 2

√
2

σr(H)−σr+1(H)
∥H−H0∥F. This

together with the upper bound for maxi |π(i)-
1
2 − π0(i)

-1
2 | in (D.5) gives

∥Sr − S0,rO
⋆∥F ≤

2
√
2

(σr(H)− σr+1(H))π0.5
min

∥H−H0∥F +
(
√
2− 1)γ1

√
r

π1.5
min

ϵT. (D.10)

By the definitions of H and H0, we have ∥H−H0∥F ≤ ∥(diag(π)
1
2 − diag(π0)

1
2 ) · T ·

diag(π)-
1
2∥F+∥diag(π0)

1
2 ·T·(diag(π)-1

2−diag(π0)
− 1

2
)∥F+∥diag(π0)

1
2 ·(T−T0) ·diag(π0)

-1
2∥F.

Applying Corollary D.6 gives ∥H−H0∥F ≤ 2.56γ1π
0.5
maxπ

−1.5
min ∥T∥FϵT. Plugging this into

(D.10), we have ∥Sr − S0,rO
⋆∥F ≤ 8γ1

√
r
√
πmax∥T∥F

γ2π2
min

ϵT, where γ2 := min{σr(H)− σr+1(H), 1}.
This concludes the proof as we showed that ∥Sr − S̄r∥F ≤ 2∥Sr − S0,rO

⋆∥F.

Main Proof for Theorem 6.6. Consider Φ in Algorithm 3 Line 8 and its averaged version

Φ̄ defined in Section 6.4.1. Then, by definition, we have ∥Φ̄−Φ∥2F = α2
T · ∥Sr − S̄r∥2F

+α2
A ·
∑

k∈[r]
∑

i∈Ωk
∥Ai−|Ωk|−1 ·

∑
i′∈Ωk

Ai′∥2F +α2
B ·
∑

k∈[r]
∑

i∈Ωk
∥Bi−|Ωk|−1

∑
i′∈Ωk

Bi′∥2F.
where S̄r is defined in Lemma D.7. By Lemma D.7 and the definitions of ϵA and ϵB in

Problem P6.1, we have ∥Φ̄−Φ∥F ≤ ϵLmp where ϵLmp :=
√

α2
Aϵ

2
A + α2

Bϵ
2
B + α2

Tγ
2
3ϵ

2
T. By

construction, in Φ̄, rows that belong to the same cluster have the same rows, thus we

can apply Lemma D.4 to {Φ̄,Φ} and obtain that when ϵLmp ≤
σr(Φ̄)
√

|Ω(r)|+|Ω(1)|

8
√

(2+ϵ)|Ω(1)|
, we have

MR(Ω̂1:r) ≤ 64(2 + ϵ)σr(Φ̄)-2ϵ2Lmp.

D.2.1 Non-emptiness of L(T,Ω1:r, ϵT)

Note that both Lemma D.7 and Theorem 6.6 require the set L(T,Ω1:r, ϵT), a neighborhood

of T. Now, we show it is non-empty under the approximate lumpability condition (6.3).

Let T0 := T+∆ for ∆ ∈ D where

D :=
{
∆ ∈ Rsxs : ∀k, l ∈ [r],∀i ∈ Ωk,

−T(i, j) ≤∆(i, j) ≤ 1−T(i, j) ∀j ∈ [s], (D.11)∑
j∈Ωl

∆(i, j) = −
∑
j∈Ωl

T(i, j) + |Ωk|−1
∑
i′∈Ωk
j∈Ωl

T(i′, j), (D.12)

∥∆∥F ≤ ϵT, ∥∆∥∞ ≤ ϵT.
}

Then, we see to show there exists T0 ∈ L(T,Ω1:r, ϵT), i.e. L(T,Ω1:r, ϵT) is non-empty, it is

equivalent to show there exists ∆ ∈ D.
Note that (D.11) gives that for all i ∈ Ωk, l ∈ [r], −

∑
j∈Ωl

T(i, j) ≤
∑

j∈Ωl
∆(i, j) ≤ |Ωl|−∑

j∈Ωl
T(i, j). This together with (D.11) and (D.12) imply that there exists ∆ satisfying
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both (D.11) and (D.12) such that among its elements {∆(i, j)}j∈Ωl
, the nonzero ones have

the same signs as the RHS of (D.12). Then, for all i ∈ Ωk, l ∈ [r], we have
∑

j∈Ωl
|∆(i, j)| =

|
∑

j∈Ωl
∆(i, j)| = |RHS of (D.12)| ≤ |Ωk|−1

∑
i′∈Ωk

|
∑

j∈Ωl
T(i, j) −

∑
j∈Ωl

T(i′, j)|. This

further gives ∥∆∥F ≤
∑

k,l∈[r]
∑

i∈Ωk,j∈Ωl
|∆(i, j)| ≤ |Ωk|−1

∑
k,l∈[r]

∑
i,i′∈Ωk

|
∑

j∈Ωl
T(i, j) −∑

j∈Ωl
T(i′, j)| ≤ |Ωk|−1ϵT, where the last inequality follows from (6.3). These steps also

show ∥∆∥∞ ≤ ϵT. We have shown ∆ ∈ D, i.e. D is non-empty, and so is L(T,Ω1:r, ϵT).

D.3 Approximation with Mean-Square Stability

— Proof for Theorem 6.7

We first provide several supporting results regarding the perturbation of matrix product.

Lemma D.8. Consider two sets of matrices A1, . . . ,As and Â1, . . . , Âs with ∥Ai − Âi∥ ≤
ϵA for all i ∈ [s]. Assume that there exists a pair {ξ, κ} such that for all t ∈ N, we have

maxσ1:t∈[s]t ∥Aσ1 · · ·Aσt∥
1
t ≤ κ · ξt. Then, for all t and any sequence σ1:t ∈ [s]t, we have (i)

∥
∏t

h=1 Âσh
∥ ≤ κ(κϵA + ξ)t; (ii) ∥

∏t
h=1 Âσh

−
∏t

h=1Aσh
∥ ≤ κ2t(κϵA + ξ)t−1ϵA.

Proof. Let Ei := Âi−Ai, then we see ∥Ei∥ ≤ ϵA and
∏t

h=1 Âσh
=
∏t

h=1(Aσh
+Eσh

). In the

expansion of
∏t

h=1(Aσh
+ Eσh

), for each i = 0, 1, . . . , t, there are
(
t
i

)
terms, each of which is

a product where Eσh
has degree i and Aσh

has degree t− i. We let Fi,j with i = 0, 1, . . . , t

and j ∈ [
(
t
i

)
] to index these expansion terms. Note that ∥Fi,j∥ ≤ κi+1ξt−iϵiA. Then, we have

∥
∏t

h=1 Âσh
∥ ≤

∑t
i=0

∑
j∈[(ti)]

∥Fi,j∥ ≤
∑t

i=0

(
t
i

)
κi+1ξt−iϵiA ≤ κ(κϵA + ξ)t.

Similarly, ∥
∏t

h=1 Âσh
−
∏t

h=1Aσh
∥ = ∥

∑t
i=1

∑
j∈[(ti)]

Fi,j∥ ≤
∑t

i=0

∑
j∈[(ti)]

∥Fi,j∥−∥F0,1∥ ≤
κ(κϵA+ ξ)t−κξt ≤ κ2t(κϵA+ ξ)t−1ϵA, where the last line follows from the fact that for func-

tion f(x) := xt and x, a ≥ 0, f(x) ≥ f(x+ a)− a · f ′(x+ a).

Based on Lemma D.8, we have the following corollaries, which will be used in different

settings in later derivations.

Corollary D.9. Consider two matrices A and Ā with ∥A− Ā∥ ≤ ϵA. Suppose there exists

a pair {ρ, τ} such that for all k ∈ N, ∥Ak∥ ≤ τρk. Then, we have ∥Āt∥ ≤ τ (τϵA + ρ)t and

∥Āt −At∥ ≤ τ 2t (τϵA + ρ)t−1 ϵA.

Corollary D.10. Consider two sets of scalars a1, . . . , as and â1, . . . , âs with |ai − âi| < ϵa

and |ai| < ā for all i ∈ [s]. Then, for all t and any sequence σ1:t ∈ [s]t, we have |
∏t

h=1 âσh
| ≤

(ϵa + ā)t and |
∏t

h=1 âσh
−
∏t

h=1 aσh
| ≤ t(ϵa + ā)t−1ϵa.

The next result considers the evolution of state xt in the mean-square sense for au-

tonomous MJSs, which can be obtained from Lemma 2.14.
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Lemma D.11. Consider MJS(A1:s, 0,T) and define matrix A ∈ Rsn2xsn2
with its (i, j)-

th n2×n2 block given by [A]ij := T(j, i)·Aj⊗Aj. Let Σt,i := E[xtx
⊺
t1{ωt=i}] and st :=

[vec(Σ⊺
t,1, . . . ,vec(Σt,s)

⊺]⊺, then st = Ats0.

Recall in Section 6.5, for Σ, i.e., MJS(A1:s,B1:s,T), we define the augmented state matrix

A ∈ Rsn2xsn2
with its (i, j)-th n2 × n2 block given by [A]ij := T(j, i) · Aj ⊗ Aj; and for

any ρ ≥ ρ(A) and all k ∈ N, we have ∥Ak∥ ≤ τρk. The next lemma is regarding the

augmentation of two MJS with the same A matrix.

Lemma D.12. Construct matrix Ǎ ∈ R4sn2x4sn2
with its (i, j)-th 4n2 × 4n2 block given by

[Ǎ]ij := T(j, i) ·

[
Aj

Aj

]
⊗

[
Aj

Aj

]
. Then, for all k ∈ N, ∥Ǎk∥ ≤ τρk.

To see this result, first notice that there exists a permutation matrixP such thatPǍP⊺ =

I4⊗A, where I4 denotes the 4× 4 identity matrix. This gives ∥Ǎk∥ = ∥Ak∥ and shows the

claim.

To prove the result in Theorem 6.7, we first consider the simplified autonomous case but

with potentially different initial states x0 and x̂0.

Proposition D.13. Consider the setup in Theorem 6.7 except that ut = 0 for all t, and

x0 and x̂0 can be different such that ∥x0 − x̂0∥ ≤ ϵ0 for some ϵ0 ≥ 0. For perturba-

tion, assume ϵA ≤ min{Ā, 1−ρ

6τĀ∥T∥
}. Then, E[∥xt − x̂t∥] ≤ 4

√
n
√
sτρ

t−1
2

0

(
∥x0∥

√
tĀ∥T∥ϵA +√

(∥x0∥+ ϵ0)ϵ0
)
.

Proof. First, we construct two autonomous switched systems:

Π̌ :=

{
x̌t+1 = Ǎω̌tx̌t

ω̌t = ωt,
, Π̄ :=

{
x̄t+1 = Āω̄tx̄t

ω̄t = ωt,
(D.13)

where for i ∈ [s] (suppose i ∈ Ωk), Ǎi :=

[
Ai

Ai

]
, Āi :=

[
Ai

Âk

]
. Since ωt of Σ follows

Markov chain T, systems Π̌ and Π̄ can be viewed as MJS(Ǎ1:s, 0, Ť) and MJS(Ā1:s, 0, T̄)

respectively with Ť = T̄ = T. We then define observations for Π̌ and Π̄: y̌t = Čx̌t and

ȳt = C̄x̄t where Č = C̄ = [In,−In]. We set their initial states as x̌0 = [x⊺
0,x

⊺
0]

⊺, x̄0 = [x⊺
0, x̂

⊺
0]

⊺

where x0 and x̂0 are the initial states of Σ and Σ̂ respectively.

By construction, we have, for all t, x̌t = [x⊺
t ,x

⊺
t ]

⊺ and x̄t = [x⊺
t , x̂

⊺
t ]

⊺, thus y̌t = 0

and ȳt = xt − x̂t. Define Σ̌t := E[x̌tx̌
⊺
t ] and Σ̄t := E[x̄tx̄

⊺
t ], then we have E[∥xt − x̂t∥2] =

E[ȳtȳ
⊺
t ] = E[ȳtȳ

⊺
t ]−E[y̌ty̌

⊺
t ] = tr(C̄⊺C̄Σ̄t)−tr(Č⊺ČΣ̌t) = tr(C̄⊺C̄(Σ̄t−Σ̌t)). Since C̄

⊺C̄ ⪰ 0,

we further have

E[∥xt − x̂t∥2] ≤ tr(C̄
⊺
C̄)∥Σ̄t − Σ̌t∥ = 2n∥Σ̄t − Σ̌t∥. (D.14)
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Let Σ̌t,i := E[x̌tx̌
⊺
t1{ω̌t=i}], Σ̄t,i := E[x̄tx̄

⊺
t1{ω̄t=i}], št := [vec(Σ̌t,1)

⊺, . . . ,vec(Σ̌t,s)
⊺]⊺ and

s̄t := [vec(Σ̄t,1)
⊺, . . . ,vec(Σ̄t,s)

⊺]⊺. Note that vec(Σ̌t) = [I4n2 , . . . , I4n2 ]št and vec(Σ̄t) =

[I4n2 , . . . , I4n2 ]s̄t, thus we have ∥Σ̌t − Σ̄t∥ ≤ ∥Σ̌t − Σ̄t∥F = ∥vec(Σ̌t − Σ̄t)∥ ≤
√
s∥št − s̄t∥.

Plugging this into (D.14), we have

E[∥xt − x̂t∥2] ≤ 2n
√
s∥št − s̄t∥. (D.15)

By Lemma D.11, we have št = Ǎtš0 and s̄t = Āts̄0, where Ǎ ∈ R4sn2x4sn2
is constructed

such that its (i, j)-th 4n2× 4n2 block given by [Ǎ]ij = Ť(j, i)Ǎj ⊗ Ǎj, and Ā is constructed

similarly. By triangle inequality, we further have

E[∥xt − x̂t∥2] ≤ 2n
√
s(∥Ǎt − Āt∥∥š0∥+ ∥Āt∥∥š0 − s̄0∥) (D.16)

To bound E[∥xt − x̂t∥2], we seek to bound the terms on the RHS individually. Since

š0 = [vec(x̌0x̌
⊺
0)

⊺ · P(ωt = 1), . . . ,vec(x̌0x̌
⊺
0)

⊺ · P(ωt = s)]⊺, we have ∥š0∥ = ∥x̌0x̌
⊺
0∥F ·

(
∑

i∈[s] P(ωt = i)2)
1
2 ≤ ∥x̌0x̌

⊺
0∥F = 2∥x0∥2. Similarly, we have ∥š0 − s̄0∥ ≤ ∥x̄0x̄

⊺
0 − x̌0x̌

⊺
0∥F ≤

∥x̄0(x̄0 − x̌0)
⊺∥F + ∥(x̄0 − x̌0)x̌

⊺
0∥F ≤

√
2(
√
3∥x0∥+ ϵ0)ϵ0.

To bound ∥Āt∥ and ∥Ǎt − Āt∥, we first evaluate ∥Ǎ − Ā∥. Define ∆i := Ǎi⊗Ǎi−Āi⊗
Āi for all i, and block diagonal matrix∆ ∈ Rsn2xsn2

such that the i-th n2×n2 block is given by

∆i. Then one can verify that Ǎ−Ā = (T⊗In2)∆, which gives ∥Ǎ − Ā∥ ≤ ∥T∥maxi ∥∆i∥.
For ∥∆i∥, we have ∥∆i∥ ≤ ∥Ǎi∥∥Ǎi − Āi∥ + ∥Ǎi − Āi∥∥Āi∥. It is easy to see ∥Ǎi∥ ≤ Ā,

∥Ǎi − Āi∥ ≤ ϵA, and ∥Āi∥ ≤ Ā + ϵA ≤ 2Ā. These give ∥Ǎ − Ā∥ ≤ 3Ā∥T∥ϵA. From

Lemma D.12, we know for all k ∈ N, ∥Ǎk∥ ≤ τρk. Then, according to Corollary D.9, we

have ∥Āt∥ ≤ τ(3τĀ∥T∥ϵA + ρ)t ≤ τρt0 and ∥Ǎt − Āt∥ ≤ 3t(3τĀ∥T∥ϵA + ρ)t−1τ 2Ā∥T∥ϵA ≤
3tρt−1

0 τ 2Ā∥T∥ϵA, where the premise ϵA ≤ 1−ρ
6τĀ∥T∥ and notation ρ0 :=

1+ρ
2

are used.

Finally, plugging in the bounds we just derived for each term on the RHS of (D.16) back,

we have E[∥xt − x̂t∥] ≤
√
E[∥xt − x̂t∥2] ≤ 4

√
n
√
sτρ

t−1
2

0

(
∥x0∥

√
tĀ∥T∥ϵA+

√
(∥x0∥+ ϵ0)ϵ0

)
,

which concludes the proof.

Main Proof for Theorem 6.7. We first decompose xt in terms of the contribution from x0,

u0:t−1: define x
(0′)
t :=

(∏t−1
h=0Aωh

)
x0, for l = 0, . . . , t− 2, define x

(l)
t :=

(∏t−1
h=l+1Aω̂h

)
Bωl

ul,

and x
(t−1)
t := Bωt−1 ut−1. Then it is easy to see xt = x

(0′)
t +

∑t−1
l=0 x

(l)
t . Similarly, we define

x̂
(0′)
t and x̂

(l)
t for x̂t such that x̂t = x̂

(0′)
t +

∑t−1
l=0 x̂

(l)
t . According to Proposition D.13, we have

E[∥x(0′)
t − x̂

(0′)
t ∥] ≤ 4

√
n
√
sτρ

t−1
2

0

√
tĀ∥T∥ϵA∥x0∥. (D.17)

Note that x
(l)
t and x̂

(l)
t can be viewed as the states at time t− l with respective initial states
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Bωl
ul and B̂ωl

ul and zero inputs. Therefore, applying Proposition D.13 again, we have

E[∥x(l)
t − x̂

(l)
t ∥] ≤ 4

√
n
√
sτρ

t−l−1
2

0

√
B̄ū
(√

(t− l − 1)Ā∥T∥ϵA +
√
2ϵB
)
, (D.18)

where the premise ϵB ≤ B̄ is applied. Finally, using (D.17) and (D.18), we obtain that

E[∥xt − x̂t∥] ≤ E[∥x(0′)
t − x̂

(0′)
t ∥] +

∑t−1
l=0 E[∥x

(l)
t − x̂

(l)
t ∥] ≤ 4

√
n
√
sτρ

t−1
2

0

√
tĀ∥T∥ϵA∥x0∥ +

4
√

n
√
sB̄τ ū· (

√
ρ0

(1−√
ρ0)2

√
Ā∥T∥ϵA +

√
2

1−√
ρ0

√
ϵB), which concludes the proof.

D.4 Approximation with Unif. Stability — Proof for

Theorem 6.8

Proof for Theorem 6.8 (T1). xt and x̂t can be decomposed as:

xt =
( t−1∏
h=0

Aωh

)
x0 +

t−2∑
t′=0

( t−1∏
h=t′+1

Aωh

)
Bωt′

ut′ +Bωt−1ut−1,

x̂t =
( t−1∏
h=0

Âω̂h

)
x̂0 +

t−2∑
t′=0

( t−1∏
h=t′+1

Âω̂h

)
B̂ω̂t′

ût′ + B̂ω̂t−1ût−1.

Since in Algorithm 3 we let Âk = |Ω̂k|−1
∑

i∈Ω̂k
Ai, and the premise gives Ω̂1:r = Ω1:r, we

have ∥Âk −Ai∥ ≤ ϵA for all i ∈ Ωk. Based on the mode synchrony Setup S2, i.e., ωt ∈ Ωω̂t ,

we further have ∥Âω̂t −Aωt∥ ≤ ϵA. Similarly, we obtain ∥B̂ω̂t −Bωt∥ ≤ ϵB. Then, by

Lemma D.8 : (i) ∥
∏t−1

h=t′+1 Âω̂h
∥ ≤ κ(κϵA+ ξ)t−t′−1 and (ii) ∥

∏t−1
h=t′+1Aωh

−
∏t−1

h=t′+1 Âω̂h
∥ ≤

κ2(t− t′ − 1)(κϵA + ξ)t−t′−2ϵA.

With (i) and (ii), and the fact that
∏t−1

h=t′+1 Aωh
Bωt′
−
∏t−1

h=t′+1 Âω̂h
B̂ω̂t′

=
(∏t−1

h=t′+1Aωh
−∏t−1

h=t′+1 Âω̂h

)
B̂ω̂t′

−
(∏t−1

h=t′+1Aωh

)
(B̂ω̂t′

−Bωt′
), we have

∥
∏t−1

h=t′+1 Aωh
Bωt′

−
∏t−1

h=t′+1 Âω̂h
B̂ω̂t′
∥ ≤ κξt−t′−1ϵB

+ κ2(t− t′ − 1)(κϵA + ξ)t−t′−2(B̄ + ϵB)ϵA. (D.19)

According to Setup S1, Σ and Σ̂ have the same initial states and inputs. Then, applying

triangle inequality to the difference ∥xt − x̂t∥, we have

∥xt − x̂t∥ ≤ κ2t(κϵA + ξ)t−1∥x0∥ϵA + κ21 + t(κϵA + ξ)t

1− κϵA − ξ
(B̄ + ϵB)ūϵA +

κ

1− ξ
ūϵB, (D.20)

where the following facts are implicitly used: (i) κ ≥ 1 by definition; (ii) κϵA + ξ < 1

171



according to the premise. Finally, note that we assume perturbation ϵA ≤ 1−ξ
2κ

and ϵB ≤ B̄,

we have ∥xt − x̂t∥ ≤ tξt−1
0 κ2∥x0∥ϵA +

2(1+tξt0)κ
2B̄ū

1−ξ0
ϵA + κū

1−ξ
ϵB, which concludes the proof.

D.4.1 Proof for Theorem 6.8 (T2)

To ease the proof exposition, we first define a few notations and concepts. For the original

system Σ, fixing the initial state x0 and input sequence u0:t−1, there can be at most st possible

xt, each of which correspond to one possible mode switching sequence ω0:t−1 ∈ [s]t. We use

g ∈ [st] to index these states and mode sequences, i.e., mode sequence ω
(g)
0:t−1 generates state

x
(g)
t . Then, the reachable set Xt defined in Section 6.5 satisfies Xt =

⋃
g∈[st]{x

(g)
t }. Define

probability measure qt(g) := P(ω0:t−1 = ω
(g)
0:t−1), then we see pt(x) defined in Section 6.5

satisfies pt(x) =
∑

g:x
(g)
t =x

qt(g). For the reduced Σ̂ and for all ĝ ∈ [rt], we similarly define

notations ω̂
(ĝ)
0:t−1 for the mode sequence, x̂

(ĝ)
t for the state, and q̂t(ĝ) := P(ω̂0:t−1 = ω̂

(ĝ)
0:t−1)

for the measure. Then, the following holds: X̂t =
⋃

ĝ∈[rt]{x̂
(ĝ)
t } and p̂t(x̂) =

∑
ĝ:x̂

(ĝ)
t =x̂

q̂(ĝ).

Next, we introduce the following relation regarding mode sequences between Σ and Σ̂.

Definition D.14 (Mode Sequence Synchrony). For any g ∈ [st], ĝ ∈ [rt], we say ω
(g)
0:t−1 is

synchronous to ω̂
(ĝ)
0:t−1 (denoted by g ▷ ĝ) if ωh ∈ Ωh for all h = 0, 1, . . . , t− 1.

Note that the synchrony definition here coincides with the mode synchrony in Setup S2.

With this synchrony relation, we first present a preliminary result.

Lemma D.15. For any ĝ ∈ [r]t, we have
∣∣q̂t(ĝ)−∑g:g▷ĝ qt(g)

∣∣ ≤ (t− 1)(T̄ + ϵT)
t−2ϵT.

Proof. Recall ζt indexes the active cluster of Σ at time t, i.e., ζt = k if and only if ωt ∈ Ωk.

First observe that
∑

g:g▷ĝ′ qt(g) =
∑

g:g▷ĝ P(ω0:t−1 = ω
(g)
0:t−1) = P(ωt−1 ∈ Ω

ω̂
(ĝ)
t−1

, . . . ,ω0 ∈

Ω
ω̂
(ĝ)
0
) = P(ζ0:t−1 = ω̂

(ĝ)
0:t−1). Also note that q̂t(ĝ) = P(ω̂0:t−1 = ω̂

(ĝ)
0:t−1). So, to show the claim,

it suffices to show for any σ0:t ∈ [r]t,

|P(ω̂0:t = σ0:t)− P(ζ0:t = σ0:t)| ≤ t(T̄ + ϵT)
t−1ϵT. (D.21)

For the LHS of (D.21), we have

P(ω̂0:t = σ0:t) = P(ω̂0 = σ0) ·
∏t

h=1T̂(σh−1, σh) (D.22)

P(ζ0:t = σ0:t) = P(ω0 ∈ Ωσ0) ·
∏t

h=1T̃h (D.23)

where T̃h := P(ωh ∈ Ωσh
| ωh−1 ∈ Ωσh−1

, . . . , ω0 ∈ Ωσ0). Note that ζ0:t may not be a Markov

process when ϵT ̸= 0, so we cannot drop the past conditional events in (D.23).
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Let αi := P(ωh−1 = i | ωh−2 ∈ Ωσh−2
, . . . , ω0 ∈ Ωσ0), then T̃h =

∑
i∈Ωσh−1

[
P(ωh ∈ Ωσh

|
ωh−1 = i) · P(ωh−1 = i | ωh−2 ∈ Ωσh−2

, . . . , ω0 ∈ Ωσ0)
]
=
∑

i∈Ωσh−1

[(∑
j∈Ωσh

T(i, j)
)
αi

]
.

Let βi := |Ωσh−1
|−1. For T̂(σh−1, σh), by definition in Algorithm 3 and the assump-

tion Ω̂1:r = Ω1:r, we obtain that T̂(σh−1, σh) = |Ωσh−1
|−1 ·

∑
i∈Ωσh−1

(
∑

j∈Ωσh
T(i, j)) =∑

i∈Ωσh−1

[(∑
j∈Ωσh

T(i, j)
)
βi

]
.

Then, it follows that the difference |T̃h−T̂(σh−1, σh)|=
∣∣∑

i,i′∈Ωσh−1

[(∑
j∈Ωσh

T(i, j)
)
αiβi′

]
−∑

i,i′∈Ωσh−1

[(∑
j∈Ωσh

T(i′, j)
)
αiβi′

]∣∣ ≤∑i,i′∈Ωσh−1

[∣∣∑
j∈Ωσh

T(i, j)−
∑

j∈Ωσh
T(i′, j)

∣∣αiβi′
]
≤

ϵT, where the first inequality follows from triangle inequality on the absolute values; the sec-

ond inequality holds since the definition of perturbation ϵT in either Problem P6.1 or P6.2

gives |
∑

j∈Ωσh
T(i, j)−

∑
j∈Ωσh

T(i′, j)| ≤ ϵT for any i, i′ ∈ Ωσh−1
.

We have established upper bounds for the differences between each multiplier in (D.22)

and (D.23), by Corollary D.10, we obtain |P(ω̂0:t = σ0:t) − P(ζ0:t = σ0:t)| ≤ t(T̄ + ϵT)
t−1ϵT

which shows (D.21) and concludes the proof.

Main Proof for Theorem 6.8 (T2). To lower bound the Wasserstein distance Wℓ(pt, p̂t) de-

fined in the mass transportation problem (6.11), we consider the objective value given

by a constrained mass transportation scheme. Recall with measures qt and q̂t, we have

pt(x) =
∑

g:x
(g)
t =x

qt(g) and p̂t(x̂) =
∑

ĝ:x̂
(ĝ)
t =x̂

q̂t(ĝ). With these relations, we consider the

following transportation scheme in terms of qt and q̂t: for all the mass qt(g) with mode se-

quence ω
(g)
t synchronous to mode sequence ω̂

(ĝ)
t , it is prioritized to be moved to location ĝ;

if there is surplus, i.e.,
∑

g:g▷ĝ qt(g) > q̂t(ĝ), we move the surplus portion
∑

g:g▷ĝ qt(g)− q̂t(ĝ)

elsewhere.

Under this moving scheme, let W̄ℓ(qt, q̂t) denote the optimal objective value of the mass

transportation problem (6.11). Let Ĝ1 = {ĝ : ĝ ∈ [rt],
∑

g:g▷ĝ qt(g) ≤ q̂t(ĝ)}, Ĝ2 = [rt]\Ĝ1.
Then, W̄ℓ(qt, q̂t) can be viewed as the optimal objective of the following problem:

min
f≥0

(∑
g∈[st],ĝ∈[rt] f(g, ĝ)∥x

(g)
t − x̂

(ĝ)
t ∥ℓ

)1/ℓ
(D.24)

s.t.
∑

g∈[st] f(g, ĝ) = q̂t(ĝ),∀ ĝ∑
ĝ∈[rt] f(g, ĝ) = qt(g),∀ g.

f(g, ĝ) = qt(g), ∀ g ▷ ĝ,∀ ĝ ∈ Ĝ1 (D.25)∑
g▷ĝ f(g, ĝ) = q̂t(ĝ), ∀ ĝ ∈ Ĝ2 (D.26)

where constraints (D.25) and (D.26) characterize the moving scheme outlined above. With-

out them, the problem reduces to (6.11), thus Wℓ(pt, p̂t) ≤ W̄ℓ(qt, q̂t). To prove the main
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claim, it suffices to show

W̄ℓ(qt, q̂t) ≤ tξt−1
0 κ2∥x0∥ϵA + 2r2tκ∥x0∥rt(κϵA + ξ)t(T̄ + ϵT)

t−2
ℓ ϵ

1
ℓ
T. (D.27)

For all ĝ ∈ [rt], define its synchrony set S(ĝ) := {g : g ∈ [st], g ▷ ĝ} and the asynchrony

set Sc(ĝ) := [st]\S(ĝ). For the synchrony flow, define total flow Fs :=
∑

ĝ∈[rt],g∈S(ĝ) f(g, ĝ)

and maximum travel distance Ds := maxĝ∈[rt],g∈S(ĝ) ∥x(g)
t −x̂

(ĝ)
t ∥. For the asynchrony flow,

similarly define Fa :=
∑

ĝ∈[rt],g∈Sc(ĝ) f(g, ĝ) and Da := maxĝ∈[rt],g∈Sc(ĝ) ∥x(g)
t −x̂

(ĝ)
t ∥. Then,

we have W̄ℓ(qt, q̂t) ≤ (FsD
ℓ
s + FaD

ℓ
a)

1
ℓ ≤ F

1
ℓ
s Ds + F

1
ℓ
a Da. We next bound Fs, Ds, Fa, Da

separately.

For the synchrony maximum travel distance Ds, since g ▷ ĝ, by Theorem 6.8 (T1), we

know Ds ≤ tξt−1
0 κ2∥x0∥ϵA. For the synchrony total flow Fs, we simply bound it with Fs ≤ 1.

Now we consider the asynchrony maximum travel distance Da. First note that for

any g and ĝ, we have ∥x(g)
t − x̂

(ĝ)
t ∥ = ∥

∏t−1
h=0Aω

(g)
h
x0 −

∏t−1
h=0 Âω̂

(ĝ)
h
x̂0∥ ≤ ∥

∏t−1
h=0Aω

(g)
h
x0∥+

∥
∏t−1

h=0 Âω̂
(ĝ)
h
x̂0∥ ≤ 2κ(κϵA + ξ)t∥x0∥, where the second inequality follows from Lemma D.8.

Then, it follows that Da ≤ 2κ(κϵA + ξ)t∥x0∥.
For the asynchrony total flow Fa, define Fa,ĝ :=

∑
g∈Sc(ĝ) f(g, ĝ), then Fa =

∑
ĝ∈[rt] Fa,ĝ.

By constraints (D.25) and (D.26), Fa,ĝ =
∑

g∈Sc(ĝ) f(g, ĝ) = q̂t(ĝ) −
∑

g:g∈S(ĝ) f(g, ĝ) =

q̂t(ĝ)−
∑

g:g▷ĝ f(g, ĝ). Thus, if ĝ ∈ Ĝ2, Fa,ĝ = 0; and if ĝ ∈ Ĝ1, Fa,ĝ = q̂t(ĝ)−
∑

g:g▷ĝ qt(g) > 0.

For the latter case, according to Lemma D.15, we have Fa,ĝ = |q̂t(ĝ) −
∑

g:g▷ĝ qt(g)| ≤
(t− 1)(T̄ + ϵT)

t−2ϵT, which further implies that Fa =
∑

ĝ∈[rt] Fa,ĝ ≤ r2t(r(T̄ + ϵT))
t−2ϵT.

Finally, (D.27) can be shown by plugging the upper bounds for Fs, Ds, Fa, Da into the

relation that W̄ℓ(qt, q̂t) ≤ F
1
ℓ
s Ds + F

1
ℓ
a Da, which concludes the proof.

174



Bibliography

A. Abate. Approximation metrics based on probabilistic bisimulations for general state-space
Markov processes: a survey. Electronic Notes in Theoretical Computer Science, 297:3–25,
2013.

A. Abate, J.P. Katoen, J. Lygeros, and M. Prandini. Approximate model checking of stochas-
tic hybrid systems. European Journal of Control, 16(6):624–641, 2010.

A. Abate, A. D’Innocenzo, and M.D. Di Benedetto. Approximate abstractions of stochastic
hybrid systems. IEEE Transactions on Automatic Control, 56(11):2688–2694, 2011.
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