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ABSTRACT 

Metabolomics is a systems-wide study of small molecule metabolites. It provides a read-

out of underlying cellular and biochemical events. Liquid Chromatography coupled with 

Mass Spectrometry (LC-MS) is one of the most common analytical platforms used to 

perform metabolomics studies. The analysis of LC-MS metabolomics data is a complex 

multi-step process. It involves data processing, normalization, followed by statistical 

analysis and functional interpretation. While several computational tools have been built 

to help perform these tasks, a major challenge remains linking alterations in metabolite 

levels to specific biological processes. In this dissertation, I develop and apply novel 

computational methods for the analysis and interpretation of metabolomics data, to help 

build testable hypotheses and derive novel biological insights. 

Over the past decade, mapping and visualizing experimentally measured metabolites in 

the context of known biochemical pathways has become ubiquitous. However, pathway 

mapping is restricted to named metabolites from well-annotated biochemical pathways. 

Realizing the limitations of knowledge-based approaches, in Chapter Two, we developed 

a bioinformatics tool, Filigree, that provides a data-driven approach by inferring 

associations among metabolites directly from experimental measurements to construct 

metabolic networks. These associations can be quantified by ‘partial correlations' that 

measure the conditional dependence between metabolites, thus eliminating spurious and 

non-informative interactions. In a high-dimensional setting (n << p), the partial 

correlation network is computed using the l1-regularized graphical lasso method. The 

Differential Network Enrichment Analysis (DNEA) algorithm that Filigree implements 

computes the network using a joint estimation method (JEM) which allows the use of all 

samples in both experimental groups by modifying the graphical lasso penalty term. The 

network is then clustered using consensus clustering to identify highly interconnected 

subnetworks; and finally, the enrichment of these subnetworks is determined using the 
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NetGSA algorithm. In addition, Filigree addresses common challenges that often arise in 

the analysis of “real world” metabolomics data like high dimensionality (n << p) and 

highly imbalanced experimental groups. To demonstrate Filigree’s applicability, I 

analyzed metabolomics datasets from type 1 and type 2 diabetes and lipidomics dataset 

from the Michigan Mother-Infant Pairs (MMIP) cohort and were able to identify previously 

known and some novel biochemical disruptions leading to an altered metabolic state.  

In Chapter Three, I analyzed a COVID-19 metabolomics data to identify metabolic 

markers of disease severity. My analysis revealed that the plasma metabolome of COVID-

19 patients and healthy controls is strongly influenced by clinical characteristics as well 

as anesthetic administration for intubation. There were distinct differences in the 

metabolic profiles of patients with mild and severe COVID-19. These differentiating 

metabolites included several acylcarnitines and acylglycerols and were better able to 

discriminate mild and severe COVID when compared to clinical risk factors.  

In Chapter Four, I assessed the association of data-driven metabolic modules with the 

BMI trajectory of ALS (Amyotrophic Lateral Sclerosis) patients over 5- and 10-years 

preceding diagnosis. I showed that while individual metabolites do not show a significant 

association with BMI trajectory, metabolic modules obtained from partial correlation 

networks do, suggesting a nuanced relationship between BMI trajectory and the 

metabolome. Additionally, a subset of these metabolites was individually predictive of 

ALS survival as well, indicating a metabolic link between loss of BMI and ALS survival. 
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CHAPTER I 

Introduction to Computational Metabolomics 

1.1 Introduction to metabolomics 

 Metabolites are small (50 to 1500 Da) molecules that comprise the substrates, 

products, and intermediates of cellular metabolism. Metabolites play a crucial role in a 

variety of physiological processes including signaling1,2, immune modulation3, regulation of 

gene expression4,5, and cofactor activity6. “Metabolomics” is the term given to the 

comprehensive and systematic study of the metabolome, with the aim to investigate the 

underlying physiological state of the system. The “metabolome” represents the repertoire 

of all metabolites in a biospecimen and thus provides a readout of the underlying cellular 

and biochemical events that reflect the genetic makeup, epigenetics, the microbiome, and 

environmental exposures, including diet. The metabolome can therefore be considered as 

a crucial link between the genotype and phenotype (Figure 1.1, obtained from Steur et al 

(2019)7 and Carneiro et al (2019)8). Dynamic changes in metabolic processes occur on a 

timescale of a few seconds. These properties make the metabolome an attractive tool for 

the investigation of the system phenotype.
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1.2 Metabolomics in biomarker discovery 

Over the last decade, the field of metabolomics has become an integral part of basic, 

clinical, and translational research. Metabolomics has played a particularly crucial role in 

biomarker discovery in a variety of diseases, including several cancers9–11, cardiovascular 

pathology12,13, renal diseases14,15, lung diseases16, and diabetes17–20. One of the biggest 

advantages of utilizing metabolomics in a clinical setting for biomarker discovery is the 

ability to garner significant amount of information from non-invasive and relatively easy to 

obtain biological samples such as blood/plasma, urine, feces, saliva, and in some cases, 

even hair 21.  

Assessing the levels of small molecule metabolites to ascertain the presence of disease is 

not a new concept. One of the earliest applications of metabolites as markers of disease 

was for diagnosing inborn errors of metabolism (IEM)22. Another classic example is the 

measurement of blood glucose levels to monitor diabetes. Similarly, serum creatinine is a 

marker for kidney function23 while serum bilirubin, alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) are markers of liver function24.  

Recent advances in sensitivity and accuracy of metabolomics assays had significant impact 

on biomarker discovery. These technologies have made it possible to identify multiple 

Figure 1.1: Overview of various omics technologies (left)7 and the role of metabolomics in the “omics 

pyramid” (right)8.   



3 
 

biomarkers for a disease, enabling better diagnosis. Metabolomics can be utilized to 

identify biomarkers of a disease after the disease has manifested itself i.e., metabolic 

differences are already apparent. In this case the identified biomarkers can be useful for 

diagnosis purposes. For example, sarcosine has been identified as a marker of prostate 

cancer progression25 and trimethylamine N-oxide has been reported as a marker of 

cardiovascular disease26. On the other hand, metabolomics can also be used to identify 

predictive biomarkers of a disease before the onset of clinical symptoms. A panel of the 

three amino acids - isoleucine, tyrosine and phenylalanine, has been shown to be an 

effective marker of future development of type 2 diabetes19, while the branched chain 

amino acids (BCAAs) isoleucine, leucine and valine have been shown to be markers of future 

development of pancreatic cancer27. In either scenario, the approach typically follows the 

“hypothesis-generating” model wherein the metabolic profiles of healthy and non-healthy 

individuals are compared, the most differentiating metabolites are identified leading to 

identification of dysregulated metabolic pathways.  

The vast majority of biomarker studies rely on non-targeted metabolomics (described in 

subsequent sections) wherein the goal is to analyze as many metabolites as possible to 

arrive at a single or a panel of the most discriminating metabolites. Alternatively, targeted 

metabolomics (elaborated in subsequent sections) aims at identifying and quantifying a 

preselected category of metabolites within a sample. Selection criteria can be either based 

on a common chemical class (for example, amino acids or lipids) or based on specific 

biochemical pathways or a proposed hypothesis. Targeted and untargeted analyses are 

complementary and their integrative implementation in biomarker discovery reveals the 

true power of the metabolome in understanding complex biochemical pathways. 

1.3 Metabolomics instrumentation and assays 

Metabolites have highly diverse physical and chemical properties and are therefore 

classified into various biochemical classes (lipids, amino acids, peptides, sugars, fatty 

acids, organic acids, steroids, etc.). Owing to this chemical and structural diversity, the 

instrumentation and technologies applied to measure these metabolites are also varied 

and depend on the goal of the analyses. 
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Metabolomics experiments largely employ either one (or both, depending on the 

experiment design) of the two following analytical platforms:  

1) Nuclear Magnetic Resonance (NMR) spectroscopy, and 2) Mass Spectrometry (MS), 

coupled with a sample separation technique such as Liquid Chromatography (LC-MS), Gas 

Chromatography (GC-MS), or Capillary Electrophoresis (CE-MS). 

NMR spectroscopy exploits the unique energy signature emitted by a metabolite when 

subjected to electromagnetic radiation of a specified frequency in the presence of an 

external magnetic field to determine the molecular composition of a sample based on their 

chemical shift patterns. NMR spectroscopy is very advantageous in that it is a non-

destructive technique and samples can be re-analyzed as needed. Additionally, NMR is a 

highly reproducible technique, requiring minimum effort for sample preparation and is 

routinely quantitative28. However, one of the biggest weaknesses of this technique is its low 

sensitivity; the low-throughput coverage of the metabolome also makes NMR less 

attractive in comparison to mass spectrometry-based metabolomics. 

Mass Spectrometry allows the detection of very low abundant metabolites (picomolar 

range), making it an attractive alternative to NMR. A typical mass spectrometer consists 

of a sample-introduction system, ionization source, mass analyzer and ion detector. 

Molecules are separated and quantified based on their mass/charge (m/z) ratio.  

For complex mixtures such as most biofluids, the mass spectrometry analysis is preceded 

by a chromatographic separation technique that reduces ion-suppression effects. The most 

common separation techniques used are liquid chromatography (LC) and gas 

chromatograph (GC), although capillary electrophoresis (CE) is also routinely employed. 

LC-MS is the most common technique applied in metabolomics. Liquid Chromatography 

consists of a non-polar stationary phase and a polar mobile phase. The analyte moves 

through the stationary phase (column) and gets adsorbed based on its physicochemical 

properties i.e., compounds with a higher affinity for the stationary phase will be retained in 

the column for longer and vice versa. Separation is achieved as compounds with differential 

affinity are eluted from the columns at different times. The eluting compounds can be 
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characterized by their retention times. The most commonly employed LC modes in 

metabolomics are reversed-phase (RPLC) and hydrophilic-interaction liquid 

chromatography (HILIC). While HILIC is used for more polar compounds, RPLC is useful for 

separating less polar compounds. In gas chromatography, separation takes place in a gas 

phase. Thermally stable compounds are vaporized by bringing them to their boiling points. 

The temperature is gradually increased to vaporize different compounds at different times. 

The elution of compounds thus depends on their molecular weights as higher molecular 

weight compounds will have a higher boiling point. For non-volatile compounds, a 

derivatization step is typically employed to make them amenable to GC separation. 

Metabolomics experiments typically involve either one of the following fundamentally 

complementary approaches depending on the goal of the study: targeted or untargeted 

analysis. Targeted metabolomics is a hypothesis-driven approach wherein the metabolites 

to be measured (typically < 200) are defined a priori based on chemical similarity or 

biochemical relationships. Because of this, metabolites can be quantified in absolute terms 

and with high precision. However, the drawback remains that only a small fraction of the 

metabolome is measured thus limiting novel findings. Recently, a targeted approach was 

employed to identify two panels of metabolic biomarkers of COVID-19. The first panel 

included the kynurenine/tryptophan ratio, lysoPC 26:0, and pyruvic acid discriminated 

controls from COVID-19 patients, while the second panel included C10:2, butyric acid, and 

pyruvic acid discriminated hospitalized and non-hospitalized COVID-19 patients 29.  

Untargeted metabolomics aims to measure the “universe” of metabolites in the specimen. 

This is a hypothesis-generating approach that provides a holistic view of all the small 

molecules in the sample and has the potential to reveal novel and unanticipated 

perturbations. Untargeted data has a wealth of information that can be mined and has 

been used for biomarker discovery 30–32. However, the data are very complex with the 

presence of a high proportion of unknown metabolites and ionization fragments and 

adducts (“metabolic features”). Compound identification typically requires tandem MS 

(MS/MS) analysis and can be cost and labor intensive. Further, simultaneous measurement 

of all metabolite classes is still challenging as several factors affect metabolite recovery, 
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depending on the functional group of the metabolite 33. Given the highly complex and 

redundant nature of untargeted metabolomics data, sophisticated computational tools are 

required for the analysis and interpretation. Some of the main considerations from a 

computational standpoint are big data processing, metabolite identification, statistical 

analyses, and biological/functional interpretation.  

1.4 Description of metabolomics experiment workflow 

A typical metabolomics experiment consists of the following steps: (i) experimental design 

and sample collection, (ii) sample preparation, (iii) data acquisition, (iv) data processing, 

(v) statistical analysis, and (vi) biological interpretation (Figure 1.2). These are detailed in 

the following sections. 

 

 

 

1.4.1 Experimental design 

Experimental design is a crucial first step for a researcher about to embark upon a 

metabolomics study. A key consideration for experimental design includes the goal of the 

study, which can typically be comparing the metabolomes of the phenotypes of interest 

with that of controls, getting mechanistic insights into metabolic dysregulation, or 

characterizing the metabolome of a new specimen. This will then dictate what the source 

Figure 1.2: Typical Metabolomics experiment workflow 
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of the samples should be i.e., human or animal samples or models. The next decision to be 

made is whether the samples will be obtained from tissues, cells, biofluids, or cell cultures. 

Storage and stability of samples becomes crucial here as some variability in metabolite 

levels can be introduced based on whether freshly collected samples are used or freeze-

thawed samples. Importantly, the number of samples and/or size of the experimental 

groups must be determined depending on the biological variability in the system. For 

example, samples harvested from controlled laboratory cell cultures will have far less 

variability when compared to human tissue samples obtained from a large epidemiological 

study. The latter will require higher number of samples for greater statistical power. Since 

the growth of cells in culture can be carefully controlled, a sample size of 3-5 per group can 

provide useful preliminary data, while epidemiological studies can require patient numbers 

in the thousands. Given the highly dynamic nature of the metabolome, the timing of sample 

collection is also a crucial consideration 34. Typically, fasting samples are collected to 

minimize biases. Care needs to be taken to account for diurnal variability as well. 

Controlling for the effects of diet or the time of day of sample collection can also help to 

minimize variability that may otherwise confound true biological variations. Controlling for 

technical variations such as the containers utilized for storing samples, the anti-coagulant 

(in the case of plasma samples) used, and storage conditions can also help mitigate 

confounding effects. The next consideration is the choice of sample preparation and 

analytical platform. Finally, appropriate statistical and computational tools have to be 

selected based on the study objectives and the biological questions raised.  

1.4.2 Sample preparation 

The choice of sample preparation strategy will greatly contribute to the success of a 

metabolomics experiment as it influences not only the observed metabolite profile but also 

the quality of the data, which can in turn affect the biological interpretation 35. An ideal 

sample preparation strategy will therefore involve maximizing the correlation between the 

observed and the true metabolome. Depending on the biospecimen being analyzed, sample 

preparation can involve several steps that include, but are not limited to, metabolite 

extraction, protein removal by precipitation, derivatization, evaporation, reconstitution, or 

dilution.  
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A well-designed experiment will also include quality control (QC) samples, the data from 

which are primarily utilized for normalization. QC samples can include pooled aliquots of 

all experimental samples and negative controls in the form of “blanks” that contain only 

the extraction solvent used. These QC samples are run intermittently along with 

experimental samples to avoid systemic biases in the measurements. Additionally, 

biological samples may be mixed with purified compounds (internal standards) to further 

reduce instrument driven technical artifacts. 

1.4.3 Data acquisition 

Two main platforms exist for measuring the levels of metabolites in the sample: mass 

spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. In order to 

effectively reduce the complexity of the biological sample and quantify sets of metabolites 

separately and sequentially, MS-based methods are usually preceded by a 

chromatographic separation step. The two commonly employed separation methods are 

High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC). HPLC-

MS is preferred while analyzing more polar metabolites like amino acids, nucleotides, 

polyamines, etc while GC-MS is favored for analyzing non-polar compounds like lipids, 

eicosanoids, esters, etc. The latter requires some form of derivatization to make the sample 

amenable to analysis36. The focus of this dissertation will be on data obtained from HPLC-

MS. The order of elution of analytes (represented by their “retention time”) from a HPLC 

column is largely dependent on their physiochemical properties. Upon elution, the 

separated analytes are directly injected into the mass spectrometer, where they are 

instantly ionized to generate charged particles. Some commonly employed ionization 

methods include chemical ionization (CI), electrospray ionization (ESI), and Matrix-assisted 

laser desorption ionization (MALDI). ESI is one of the most widely used ionization technique 

in untargeted metabolomics studies, largely due to its applicability to a wide range of 

metabolites. In the next step, the charges particles migrate to the mass analyzer under high 

vacuum. Two main types of mass analyzers are commonly used: Time-Of-Flight (TOF) and 

Orbitrap. In TOF-MS, the mass of the charged ions is measured based on the time they take 

to traverse through a flight tube in an electric field. Ions with lower mass and higher charge 

tend to travel faster through the flight tube. On the other hand, in an Orbitrap, the mass of 
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ions is calculated based on their oscillation frequencies when they are suspended in an 

electric field. Both QTOF and Orbitrap instruments are routinely used for untargeted 

metabolomics analysis. The mass spectral data information emerging from these 

instruments are then subjected to downstream processing.  

1.4.4 Data preprocessing 

LC-MS instruments generate large amounts of complex data on metabolic signals that 

require specialized tools and software for processing. Data preprocessing for MS typically 

includes noise reduction, baseline/retention time correction, normalization, peak alignment, 

peak detection and integration, peak quantification, and spectral deconvolution. Some of 

the commonly used open source software for data preprocessing include XCMS37, 

MZmine338, MetaboAnalyst 5.039, MS-DIAL 440, and MAVEN41. Various commercial software 

also exist for preprocessing data from specific vendors; Agilent’s MassHunter™, Thermo 

Fisher’s Compound Discoverer™, and Bruker’s MetaboScape®. Certain software addresses 

a specific step in the data preprocessing workflow, while others cover several or all the 

steps. For example, MZmize3 is designed to perform all of the preprocessing steps including 

noise filtering, peak detection, peak alignment, deisotoping, gap filling, normalization, and 

visualization, whereas XCMS, MAVEN and MetabolAnalyst do not perform deisotoping or 

allow the user to process the samples in batch mode. The choice of software largely 

depends on the specific application (eg.: targeted or untargeted data) and can have a 

significant impact on the results from downstream analysis. For example, the peak 

detection methods employed by XCMS and MZmine2 (centWave) have been shown to 

generate many false positive and false negative peaks, resulting in a higher initial feature 

count compared to other software42. Interpretation of the metabolomics data in a biological 

context must therefore be carefully considered based on the preprocessing software 

employed. 

1.4.5 Statistical analysis 

Statistical analyses of metabolomics data typically involve univariate and multivariate 

approaches.  

The goal of univariate analyses is to identify individual metabolites that are most 

differentially abundant between the phenotypes of interest. For two-group data (both 
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unpaired and paired), Student’s t-tests and fold-change analysis are typically performed, 

while for multi-group data, one-way analysis of variance (ANOVA) and post hoc analysis 

are performed. The p-values obtained from these tests need to be corrected for multiple 

testing, given that a large number of metabolites are usually measured in a metabolomics 

experiment and statistical tests are performed for each metabolite. Commonly employed 

multiple testing correction methodologies include the Bonferroni correction and the 

Benjamin–Hochberg correction, also known as the false discovery rate (FDR) 43. 

Additionally, one can also test the association of individual metabolites with phenotypes 

of interest in these statistical models. Here, the response variable is each metabolite’s 

expression, and the predictors are the phenotypes (eg: age, BMI, gender). Such models can 

help in identifying potential confounders in the data and enable the researcher to correct 

for them by using the residuals from these models for downstream analyses. 

Multivariate methodologies are particularly useful for exploratory data analysis as they 

assess the change in groups of metabolites simultaneously. Multivariate analysis can either 

be unsupervised or supervised. Unsupervised methods include principal component analysis 

(PCA) and cluster analysis (hierarchical, K-means clustering) and are helpful in deducing 

trends or patterns in the data and identify outliers. Supervised methods include partial least 

squares discriminant analysis (PLS-DA), Support Vector Machine  

 (SVM), Random Forest, k-nearest neighbor (KNN), and logistic regression (Figure 1.3, 

obtained from Bujak et al (2015)44). These are often useful in classification problems and 

aid in biomarker discovery45.  
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1.4.5.1 Unsupervised methods 

Principal Component Analysis (PCA) 

PCA is a dimensionality-reduction method that transforms a large set of variables into a 

smaller set while retaining as much information as possible46. This is done by identifying a 

set of combinations of the variables that explain most of the variance in the data. PCA 

performs an orthogonal linear transformation that transforms the data to a new coordinate 

system such that the greatest variance comes to lie of the first coordinate (first principal 

component), the second greatest variance on the second coordinate, and so on. For a given 

dataset with 𝑛 observations and 𝑝 variables, the mathematical representation of PCA is as 

follows: 

𝑇 = 𝑋𝑃 

where 𝑋𝑛 𝑥 𝑝 denotes the original dataset that has been standardized (mean 0 and unit 

variance), 𝑇𝑛 𝑥 𝑝 denotes the PC scores for all the subjects, and 𝑃𝑝 𝑥 𝑝 denotes the weights 

(i.e., loadings). For metabolomics data, observations refer to samples, and variables to 

metabolite abundance. In order to assess the contribution of a PC to the total sample 

variance, percentage of variance explained by the PC is calculated. This is done by dividing 

the eigenvalue of the corresponding PC by the sum of all the eigenvalues. The scree plot47 

Figure 1.3: Supervised and Unsupervised multivariate analysis methods used in metabolomics44. 
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shows the eigenvalues of the PCs and is useful in deciding how many PCs should be 

retained. The typical rule-of-thumb is to retain the PCs to the left of the “elbow” point in 

the curve of the scree plot after which the eigenvalues appear to level off. 

PCA is arguably the most widely used exploratory analysis method to summarize complex 

metabolomics data. It has been extensively utilized for data reduction and to identify trends 

and patterns in the data that may correlate with other biological factors. PCA is also very 

useful in assessing data quality by identifying outlier samples and technical variation in the 

data. One of the biggest advantages of PCA is that it is not prone to over-fitting, however 

certain non-linear trends in the data are likely to be missed. 

Hierarchical clustering 

Hierarchical Clustering (HC)48 partitions the dataset into a tree structure by building a 

hierarchy. Initially, all variables are treated as separate clusters and are merged using some 

similarity metric between pairs of variables. Euclidean distance is often used as a measure 

of dissimilarity for clustering. Other commonly used distance metrics include the Manhattan 

distance, Mahalanobis distance and maximum distance. The partitioning is represented as 

a dendogram and one can either decide how many clusters they desire and cut the tree 

accordingly or set a similarity cut-off and obtain the clusters. The main advantage of 

hierarchical clustering is that it does not require one to set the number of clusters a priori. 

This allows us to explore the structure of the data better and pick the appropriate number 

of clusters. However, HC is relatively sensitive to outliers in the data.  

Hierarchical clustering, coupled with heatmaps, is immensely useful in visualizing and 

discovering the real structure of the metabolomics data. As with other unsupervised 

methods, the HC dendrograms provide a useful way to unearth trends in the data that may 

warrant further exploration. 

𝐾-means clustering 

𝐾-means clustering49 is a centroid-based clustering method with the aim of partitioning 𝑛 

observations into 𝑘 non-overlapping clusters. Unlike hierarchical clustering, the number of 

clusters 𝑘 must be decided by the user. The method initiates 𝑘 clusters in the space 

spanning the variables by randomly assigning 𝑘 data points to each cluster (centroids). The 

algorithm then finds the best centroids by alternating between (1) assigning data points to 
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clusters based on the current centroids (2) choosing centroids based on the current 

assignment of data points to clusters. An extension of 𝐾-means is Fuzzy 𝐶-means 

clustering50, where variables can be assigned to more than one cluster i.e., overlapping 

clusters.  

𝐾-means clustering is also a great tool for visualizing metabolomics datasets. Given that 

the number of clusters is predetermined, it is very helpful in gauging how the samples in 

the dataset cluster relative to the experimental group assignment. This can help in 

identifying possible biases in the data or some novel trends that can be further investigated. 

 

1.4.5.2 Supervised methods 

Partial least squares discriminant analysis (PLS-DA) 

PLS-DA51 can be thought of as the supervised version of PCA that provides a visual 

interpretation of complex datasets in a low-dimensional setting. The method aims to 

optimize the separation between groups of variables by maximizing the covariance 

between the data and the group membership by finding a linear subspace of the 

explanatory variables52. This new subspace permits the prediction of the grouping variable 

based on a reduced number of factors (PLS components, or latent variables). PLS-DA is 

fairly robust to highly collinear and noisy data53. It also provides variable importance scores 

(VIP scores) that can be used to rank variables based on their contribution to the 

classification54. However, PLS-DA is prone to over-fitting and the visual representation of 

the data must be interpreted with caution. 

Support Vector Machine (SVM) 

SVM is a popular machine learning algorithm used for both classification and regression55. 

In classification, the data is mapped onto a high-dimensional space to separate the two 

groups of samples into distinctive regions. The algorithm then identifies a 𝑛-dimensional 

hyperplane that distinctly classifies the data points by maximizing the distance between 

data points of both groups. Data points close to the separating hyperplane are termed 

‘support vectors’ and they influence the position and orientation of the hyperplane. In order 

to avoid over-fitting of the model, oftentimes a small fraction of the training samples is 

allowed to be misclassified – this is referred to as soft margin SVM. The main advantage 
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of SVM is that the kernel function can be chosen for both linear and non-linear separation. 

A ‘kernel trick’56 is applied for non-linear classification that transforms the input space into 

a high-dimensional feature space where the groups are linearly separable.  

Random Forest (RF) 

Random Forest57 is another supervised classification algorithm. It consists of an ensemble 

of decision trees constructed by randomly sampling the input variables. It uses bootstrap 

sampling to create sets of randomly sampled variables and builds decision trees where 

each node’s decision is based on a random set of features58. The final decision is based on 

majority voting after combining the decisions of all the trees. Random Forest has several 

advantages including its ability to work well with large datasets, provide feature 

importance score (mean decrease in accuracy), and handling missing values. Moreover, this 

method is fairly robust to overfitting and outliers as well. 

𝐾-nearest neighbor (KNN) 

KNN59 is another commonly used non-parametric, supervised classifier that assigns groups 

labels to a data point based on the group labels of the closest data points. Group labels 

are thus assigned based on majority vote. Euclidean distance is a commonly used distance 

metric for classification, but other metrics such as Manhattan distance, Minkowski 

distance, and Hamming distance can also be used. The value of 𝐾 defines how many 

neighbors will be checked to determine the classification of a specific data point. Smaller 

values of 𝐾 may have high variance, but low bias, while larger values of 𝐾 may lead to high 

bias and lower variance. Cross-validation is typically applied to select an optimal value of 

𝐾. KNN is a relatively easy algorithm to implement and has only a few hyperparameters to 

tune (value of 𝐾 and distance metric). However, the method is prone to overfitting and does 

not work very well with high-dimensional data (𝑝 ≫ 𝑛).  

Logistic regression 

A logistic regression model predicts the probabilities of a sample belonging to either of two 

groups for a set of metabolite peak intensities. If 𝑃(𝐴|𝑋) and 𝑃(𝐵|𝑋) are the probabilities 

of given sample belonging to group A and B respectively for an input data matrix 𝑋, then, 

𝑙𝑛
𝑃(𝐴|𝑋)

𝑃(𝐵|𝑋)
=  𝛽𝑂 +  𝛽1𝑋1 + ⋯ 𝛽𝑝𝑋𝑝 
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The response variable 𝑌𝑖 of the 𝑖-th sample is binary (0 or 1), corresponding to the two 

groups. Logistic regression also does not work well in a high-dimensional setting and 

typically requires a variable selection step preceding model fitting. A solution to this is a 

penalized logistic regression model60, that has a built-in stepwise variable selection 

process. The tuning parameter is such a model it typically selected via cross-validation.  

 

1.4.6 Biological interpretation 

Statistical analysis of metabolomics data as described in the previous section result in a 

set of metabolites that are strongly associated with the disease or phenotype under study. 

The next step in the analysis pipeline is linking alterations in the levels of these metabolites 

to specific biological processes. This can be achieved by mapping and visualizing 

metabolites in the context of known biochemical pathways. Many bioinformatics tools exist 

that enable these analyses61–64, several of which utilize the Functional Enrichment Testing 

(FET) approach, originally developed for gene expression data65–67. This helps to reduce 

data involving hundreds of altered genes or metabolites to smaller and more interpretable 

sets of altered biological ‘concepts’, helping generate testable hypotheses. 

Functional Enrichment Testing can be broadly classified into two main types: (i) Over-

representation Analysis (ORA), and (ii) Functional Class Scoring (FCS). Both these 

approaches have been directly borrowed from gene pathway analysis and are widely 

applied for metabolomics data.  

1.4.6.1 Over-representation Analysis (ORA) 

The goal of ORA is to gain insight into the underlying biological mechanisms and functional 

implications of a given set of metabolites. ORA performs a statistical test to assess whether 

the metabolite set is “enriched” with a specific annotation (e.g.: biological pathway) 

against a background set68. Briefly, the steps involved are as follows: (1) obtain a list of 

metabolites based on a separate statistical analysis (e.g.: t-test), (2) for each pathway, 

count the number of input metabolites that are part of that pathway, (3) repeat step 2 for 

a background set of metabolites (e.g.: all molecules which can be detected in the 

experiment), (4) assess when a pathway is over- or under-represented in the input set of 
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metabolites69. The probability of observing at least 𝑘 metabolites of interest in a pathway 

by chance is given by: 

𝑃(𝑋 ≥ 𝑘) = 1 −  ∑
(𝑀

𝑖
)(𝑁−𝑀

𝑛−𝑖
)

(𝑁
𝑛

)

𝑘−1

𝑖=0
 

where 𝑁 is the size of background set, 𝑛 denotes the number of metabolites of interest, 𝑀 

is the number of metabolites in the background set mapping to the 𝑖-th pathway, and 𝑘 is 

the number of metabolites of interest which map to the 𝑖-th pathway70. 

Several statistical tests can be used to perform the analysis including chi-square, Fisher’s 

exact test, binomial probability and hypergeometric distribution71. Pathways sets can be 

obtained from databases such as the Kyoto Encyclopaedia of Genes and Genomes (KEGG)72, 

BioCyc73, Reactome74, The Small Molecule Pathway Database (SMPDB)75. 

Despite its widespread application, ORA has certain limitations. First, because ORA does 

not consider any information regarding the extent of regulation of the input metabolites 

(e.g.: statistical significance, fold-change), it treats all metabolites equally, which is not 

always accurate. Second, ORA only considers significant metabolites that meet a certain 

threshold (e.g.: p-value < 0.05) and oftentimes, metabolites that are marginally less 

significant are missed, resulting in information loss. Third, ORA assumes that each 

metabolite is independent of the other. This is not always accurate and interactions among 

metabolites within and across pathways can manifest as change in expression levels. 

Similarly, ORA also assumes that pathways are independent of each other, which is 

inaccurate. Metabolic pathways are highly interconnected, and most metabolites are part 

of multiple pathways. The fact that these assumptions are not met leads to ORA often 

missing crucial topological differences of biological relevance. 

1.4.6.2 Functional Class Scoring (FCS) 

FCS, also known as Set Enrichment Analysis (SEA), hypothesizes that not just large changes 

in individual metabolite levels, but weaker coordinated changes in functionally related 

metabolites i.e., pathways, can also play an important role in biological mechanisms. First, 

a feature-level statistic (e.g.: t-test, ANOVA, correlation with phenotype) is computed for 

each metabolite. Unlike in ORA, all metabolites are taken into consideration without 

filtering them by a ‘cut-off’ Second, the feature-level statistic for all metabolites in a 
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pathway is aggregated to compute a single pathway-level statistic. Examples of pathway-

level statistics include the Kolmogorov-Smirnov statistic76, the Wilcoxon rank sum77, the 

maxmean statistic78, or the sum, mean, or median of gene-level statistic79. Finally, the 

statistical significance of the pathway-level statistic is computed. FCS overcomes several 

limitations of ORA; however, it does still treat each pathway independently, which is rather 

inaccurate. Metabolites can be part of multiple pathways and there are clearly overlaps 

between pathways.  

The concept of FCS has been routinely applied to gene expression data in the form of Gene 

Set Enrichment Analysis (GSEA)76. In its application to metabolomics data, it takes into 

consideration a quantitative measure associated with each metabolite (e.g., concentration, 

peak intensities). Metabolites are sorted by this quantitative measure and the consistency 

of each annotation/pathway is assessed in the top and bottom of the ranked link, compared 

to a background distribution. 

Several computational tools exist that perform either ORA or FCS or both. These include, 

but are not limited to, Metabolite Set Enrichment Analysis (MSEA)80, Metabolites Biological 

Role (MBRole)81, Metabolite Pathway Enrichment Analysis (MPEA)82, and Integrated 

Molecular Pathway Level Analysis (IMPaLA)83. 

1.4.6.3 Pathway Mapping and Visualization 

One of the most intuitive approaches to interpreting metabolomics data is mapping the 

identified metabolites in the context of metabolic pathways or networks, usually obtained 

from reference metabolic pathway databases such as KEGG72 or MetaCyc84. Such 

visualizations allow us to quickly explore the data in a biological context provided input 

metabolites are known. A myriad of software tools is available for pathway visualization 

that include various options for data input as well as statistical tests used for the 

comparison. These include MetaboAnalyst39, 3Omics61, Paintomics63, PAPi85, MetScape64, 

MPEA82, IMPaLa83, PathVisio86, MetaMapp87, and MetExplore88. 
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1.5 Network analysis of metabolomics data 

Untargeted metabolomics offers an exciting avenue for detecting thousands of metabolic 

features simultaneously and identifying and characterizing novel metabolites. However, the 

large and complex nature of these datasets makes the biological interpretation challenging. 

Visualizing metabolites as connected entities is one approach to address these challenges. 

The connections between metabolites can be represented by informative relationships such 

as correlations, biochemical relatedness, or structural/chemical similarity. These 

connections can be formalized as networks where the nodes represent metabolic features, 

and the edges represent the context-dependent relationships between them.  

Network analysis in metabolomics can be broadly classified into two main categories: 

knowledge-based and data-driven (Figure 1.4, obtained from Amara et al (2022)89).  

 

 

 

Knowledge-based networks are generated based on prior knowledge of biological or 

biochemical relationships among the metabolites. Data-driven networks are generated 

directly from the experimental measurements based on relationships between metabolites 

in the data. 

1.5.1 Knowledge-based networks  

These networks provide a biological context to the interpretation and analysis of 

metabolomics data. A popular example of knowledge-based networks is Genome-Scale 

Figure 1.4: Two major types of networks generated and interpreted from metabolomics data. 
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Metabolic Networks (GSMNs). They utilize the existing knowledge of the metabolism of a 

particular organism captured in genome annotations and reaction databases. These 

networks are further refined by manual curation and exhaustive literature review. GSMNs 

encode information that map metabolites to reactions and the reactions to the 

corresponding genes and enzymes. For example, the human metabolic network Human 1 

contains 13,417 reactions mapping to 4,164 metabolites90. GSMNs are very helpful in 

deriving directed and undirected graph representations of the system. Compound graphs 

(metabolites that are part of the same biochemical transformation are connected by an 

edge) and reaction graphs (a pair of reactions are connect if the product of one is the 

substrate of the other) are commonly generated graphs from GSMNs91. Graph 

representations of GSMNs make them amenable to graph-based analysis methods. For 

example, path searches have been used to infer metabolic pathways connecting 

metabolites of interest and for clustering and visualization of metabolomics data92,93. 

Additionally, centrality analysis has been applied to GSMNs as well to identify hub/driver 

metabolites in the network94–96. One of the biggest limitations to GSMNs is that they are 

heavily biased towards available genome annotations and knowledge of enzymatic 

reactions, making them relatively incomplete. While there have been several approaches 

developed to fill in these gaps in GSMNs97,98, they are unlikely to capture all the metabolites 

identified in a metabolomics experiment.  

Another example of knowledge-based networks are Chemical Ontology networks. These 

networks describe the structure of relationships among chemical compounds and thus 

provide a structured and formalized representation of chemical concepts. Here, connections 

between compounds do not represent a metabolic or biochemical relationship. Rather, they 

represent the relationship between compounds and broader chemical classes (eg: “fatty 

acids”, “organic acids”). Chemical Ontology networks are therefore directed acyclic graphs 

due their hierarchical construction. Experimentally measured compounds typically 

constitute terminal nodes while the remaining nodes represent chemical classes, getting 

broader in scope as you go higher up the tree. These networks are also constructed via 

manual or semi-automated curation by domain experts. Such ontology networks are most 

useful in quantifying the relatedness between pairs of compounds based on their belonging 
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to a shared chemical class. The ChEBI ontology99 (60,329 compounds as of December 2022) 

and Gene Ontology (GO)100 are commonly used ontology networks.  

1.5.2 Data-driven networks 

Data-driven networks are derived directly from the experimental measurements in an 

untargeted metabolomics data. Broadly, there can be different types of data-driven 

networks depending on the type of data used i.e., MS1, MS2, or MSn and each of these deals 

with a different aspect of metabolic relationships. For example, in mass difference 

networks, the nodes represent metabolic features (m/z values), and edges represent mass 

differences that match a pre-defined biotransformation. These biotransformations can 

come from metabolic reaction databases such as KEGG72, MetExplore88, etc. and aim to 

identify potential biochemical reactions explaining the difference between m/z values. 

Similarly, adducts and feature networks capture mass differences between pairs of features 

that arise due to physicochemical transformations in the mass spectrometer i.e., non-

biological mass differences. Spectral similarity networks depict the relationship between 

the MS2 spectra of features based on certain spectral similarity measure such as cosine or 

modified cosine similarities101. Some of the most prominent tools for constructing spectra-

based molecular networks include the Global Natural Product Social Molecular Networking 

(GNPS; http://gnps.ucsd.edu) community102, the t-distributed stochastic neighbor 

embedding (t-SNE) algorithm-based software, MetGem103, and the Python package 

Spec2Vec104.  

And finally, correlation networks represent the orchestrated or co-dependent changes in 

the abundance of metabolites i.e., metabolites that are associated within metabolic 

pathways tend to be correlated. All pairwise correlations between metabolites are encoded 

in a symmetric adjacency matrix. The adjacency matrix can be weighted (denoting the 

actual correlation coefficient values) or unweighted/binary, where two metabolites are 

linked only if their correlation value is higher than a particular threshold. The most 

computed correlation is Pearson’s correlation coefficient. However, Pearson’s correlation 

captures both direct and indirect associations between metabolites and the resulting 

networks are very dense, making them hard to analyze and interpret. Gaussian graphical 

models (GGMs) circumvent indirect associations by using partial correlations instead that 

http://gnps.ucsd.edu/
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capture only conditional dependencies, thereby resulting in more biologically meaningful 

networks105. However, computing a full partial correlation network requires that the sample 

size be at least as large as the number of features, which is rarely the case in untargeted 

metabolomics data. This limitation can be overcome by performing regularized estimation 

of the partial correlation networks106. Graphical lasso (Glasso)107 and nodewise regression108 

are popularly used for performing regularized estimation. The Debiased Sparse Partial 

Correlation algorithm (DSPC)109 builds partial correlation networks under the assumption 

that the number of true connections among the metabolites is much smaller than the 

available sample size, i.e., the true network is sparse. This allows the construction of partial 

correlation networks among a large number of metabolic features using fewer samples. The 

resulting network is thus a weighted one where nodes represent metabolites and edges 

represent partial correlation coefficients or the associated P-values109.  

Another popularly used tool for constructing correlation networks is the WGCNA (Weighted 

Gene Co-expression Network Analysis) R package110,111. WGCNA builds correlation networks 

based on the assumption that the underlying network has a scale-free topology. This is 

achieved by weighing the correlation coefficients by an exponent such that the degree 

distribution of the network follows a power-law. The final network is represented by the 

Topological Overlap Matrix (TOM) that represents the similarity between a pair of nodes 

based on number of shared neighbors by incorporating both direct and indirect 

relationships. The network is then clustered via hierarchical clustering to obtain modules. 

These modules can then be utilized to identify “hub”/driver genes within each module 

(“module eigengene”), perform association analysis with other clinical traits of interest, or 

perform pathway enrichment analysis of the genes in a specific module. While WGCNA was 

originally developed for transcriptomics data, it is being increasingly applied to study 

correlation networks from metabolomics data112–116.  

Data-driven correlation networks are therefore extremely useful in identifying novel 

perturbations in the system without the reliance on a priori knowledge of the relationships 

between the metabolites or pathway information, thus circumventing a multitude of 

challenges posed by knowledge-driven data analysis methodologies in metabolomics. 
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1.6 Dissertation outline 

The metabolome provides a readout of the cellular and biochemical events that reflect the 

genetic and epigenetic makeup of an organism, as well as the microbiome and 

environmental exposures. One of the most common experimental designs in metabolomics 

aims to assess the differences in the metabolic repertoire under different conditions or 

disease states. Conventional data analysis approaches for these types of experiments 

involve some form of univariate analysis, followed by mapping of differentially abundant 

metabolites to the known biochemical pathways. However, univariate analysis methods 

ignore the interactions and associations between metabolites that may be characteristic of 

the phenotype(s) of interest, while mapping differentiating metabolites onto known 

pathways does not provide the ability to identify novel rewiring of pathways leading to 

metabolic dysregulation. Moreover, certain classes of compounds (eg: lipids) tend to be 

poorly represented in pathway databases, which limits the scope of application of this 

approach.  

The goal of this dissertation is to begin addressing some of these limitations of knowledge-

based enrichment analysis by employing data-driven network analysis approaches for 

metabolomics data. In Chapter Two, we introduce a Java-based bioinformatics tool, 

Filigree, that implements and extends the Differential Network Enrichment Analysis (DNEA) 

algorithm. Filigree recovers robust partial correlation networks from the input data even 

with limited sample size and highly imbalanced experimental group design. We tested 

Filigree with three metabolomics datasets pertaining to metabolic disorders/conditions and 

identified metabolic modules relevant to the condition(s) and associated with external 

traits. Such hypothesis-generating analyses can therefore aid in gaining deeper 

biochemical understanding from the data. In Chapter Three, I compared the plasma 

metabolome of COVID-19 patients with either mild or severe disease to that of healthy 

controls. My analysis revealed a strong association between the metabolic profiles and 

clinical traits. I identified metabolites that differentiated healthy controls and COVID-19 

patients. I also identified several metabolites that differentiated mild and severe COVID-

19. These metabolites performed much better than clinical characteristics (“risk factors”) 

in discriminating mild and severed COVID-19 groups. In Chapter Four, I assessed the 
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association of data-driven metabolic modules with change in BMI over 5- and 10-years 

preceding diagnosis in ALS (Amyotrophic Lateral Sclerosis) patients. I identified eight 

metabolic modules (152 metabolites in total) that showed a strong association with BMI 

trajectory. A subset of these metabolites was also individually associated with ALS survival, 

suggesting a possible metabolic link between change in BMI over time and survival in ALS 

patients.
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CHAPTER II 

Application of Differential Network Enrichment Analysis for 

Deciphering Metabolic Alterations 

 

 

2.1 Introduction 

The metabolome provides a readout of the underlying cellular and biochemical events that 

reflect individual genetic makeup117, epigenetics118, the microbiome119, and environmental 

exposures, including diet120,121. Metabolic profiling has been successfully applied to 

biomarker discovery and the assessment of disease risk and progression in cancer25,122, 

cardiovascular13,123 and renal diseases14,15, and type 1 (T1D)17,18 and type 2 diabetes 

(T2D)19,20. 

Metabolism is interconnected through several major metabolic hubs, e.g., glucose-6-

phosphate, pyruvate, acetyl-CoA, and malonyl-CoA. Beyond these central nodes, metabolic 

pathways have secondary rate-limiting steps that are often controlled by metabolites 

affecting multiple pathways (such as AMP, citrate, NAD, etc.), as well as by post-

translational modifications of proteins regulating the pathway. Evaluating changes in the 

connectivity of the metabolome could help to understand how these pathways are affected 

in physiological and disease states.

This chapter has been published as: Iyer, G. R., Wigginton, J., Duren, W., LaBarre, J. L., 

Brandenburg, M., Burant, C., Michailidis G. & Karnovsky, A. (2020). “Application of 

Differential Network Enrichment Analysis for Deciphering Metabolic Alterations.” 

Metabolites. This chapter also includes the description of the DNEA R package and 

details my contributions into this work. 



25 
 

Experimental design in metabolomics commonly involves assessment of metabolite levels 

in two or more disease conditions or experimental groups. Metabolomics data acquired 

from such experiments are amenable to univariate analysis, followed by pathway mapping 

and enrichment analysis. Enrichment analysis, originally developed for gene expression 

data, reduces data involving hundreds of altered genes or metabolites to smaller and more 

interpretable sets of altered biological ‘concepts’, helping generate testable hypotheses. 

The most common types of enrichment analysis are variants of over-representation 

analysis (ORA) or set enrichment analysis (SEA)76. In both cases, statistical tests are 

performed to assess the enrichment or depletion of a set of metabolites in a specific 

pathway against a background or reference set69. 

Several bioinformatics tools implementing the above data analysis workflow for 

metabolomics have been developed68,124. While overall this approach has proven to be 

extremely useful, each of the individual methods involved has limitations. First, univariate 

analysis considers only individual metabolites and does not account for the interactions 

between them. Indeed, biological constraints on metabolism result in many metabolites 

being highly correlated in biological samples (for instance, branched chain amino acids). 

Second, the application of metabolite pathway mapping and enrichment analysis is 

hampered by the low coverage of experimentally determined metabolites in biological 

pathway databases125. This is particularly true for lipids and secondary metabolites. The 

low coverage can in part be explained by the differences between chemistry-centric 

metabolomics experiments and genome-centric pathway databases. This problem is 

further compounded by the relatively small number of known metabolites measured in most 

experiments which limits both the statistical significance and overall reliability of analyses. 

We present a user-friendly tool, Filigree, that overcomes many of the limitations of existing 

methods. Filigree implements our recently published differential network enrichment 

analysis (DNEA) method126. DNEA provides an alternative to traditional pathway-centric 

approaches by leveraging the underlying structure of the data and inferring associations 

among metabolites directly from experimental measurements. These associations can be 

quantified by partial correlations that measure the conditional dependence between 
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metabolites, thus allowing elimination of spurious, non-informative associations. In lieu of 

predefined pathways, DNEA generates stable subnetworks comprised of biochemically and 

structurally related metabolites. It accounts for both changes in network structure and the 

differential abundance of metabolites when assessing significance of subnetworks, thus 

providing a systems level view of the data. To demonstrate the utility of Filigree, we applied 

it to previously published studies assessing the metabolome in the context of metabolic 

disorders (T1D and T2D) and the maternal and infant lipidome during pregnancy. Filigree 

is freely available at http://metscape.ncibi.org/Filigree.html. 

2.2 Methods 

2.2.1 Filigree application 

The input to the tool is a plain text file containing per-sample unadjusted intensity values 

and group information. The output consists of three. csv files: (1) an ‘edgelist’ containing 

metabolite pairs and partial correlation values between them; (2) a ‘nodelist’ containing 

information about the differential status of each metabolite, along with its statistical 

significance and subnetwork membership, and (3) a NetGSA results file containing 

information about subnetworks, including number of edges/nodes and statistical 

significance of each subnetwork. These files can be easily imported into network 

visualization software such as Cytoscape for further exploration127. Additionally, the user 

can browse the interactive HTML files automatically generated by Filigree. 

2.2.2 Extensions of DNEA Methodology 

The DNEA method works particularly well both theoretically128 and empirically126 when 

group sizes are fairly balanced, and the number of metabolites is a low multiple of the 

sample size. However, in many applications the two groups under consideration may be 

grossly imbalanced or the number of samples severely limited. To that end, we developed 

several extensions to the DNEA methodology (described below) that improve its versatility, 

including (i) feature aggregation and (ii) group subsampling to attain more balanced 

sample sizes across groups. 

 

http://metscape.ncibi.org/filigree.html


27 
 

2.2.2.1 Feature aggregation 

Since network density and stability are strongly dependent on the ratio of features 

(metabolites and/or lipids) to samples128, a preprocessing step to aggregate highly similar 

or redundant features may be appropriate. This step helps reduce the dimensionality of the 

data to promote the retrieval of more interpretable PCNs and is therefore highly 

recommended for datasets where the number of features is a high multiple of the number 

of samples. 

We implemented an optional data preprocessing step for aggregation of highly similar or 

redundant features in the dataset in order to recover more stable PCNs. Feature 

aggregation performs optimally when data are log-transformed, but not auto-scaled. 

Several types of aggregation are possible: (1) a purely data-driven approach that collapses 

features with highly similar (Pearson) correlation profiles into singular features, (2) a purely 

knowledge-driven method that collapses chemically similar metabolites/lipids, or (3) a 

hybrid feature aggregation that collapses only features identified as chemically similar that 

also share a highly similar Pearson correlation profile. For options (2) or (3), the user may 

provide their own knowledge-based feature grouping file or can utilize the grouping file 

based on chemical similarities found in KEGG72, HMDB129 or LipidBlast130. For options (1) or 

(3), the user has the choice to view the features-to-sample-size ratio at various feature-

aggregation tolerance values based on the correlation structure of the data. The user can 

then decide the extent of feature aggregation they wish to perform or can proceed with the 

recommended values. The output of this stage is a new data matrix where 

metabolites/lipids belonging to the same feature group are represented as singular features 

by computing their median intensity across all samples. The format of the new data matrix 

will be identical to that of the original input matrix. 

2.2.2.2 Group subsampling 

Highly imbalanced sample group sizes can result in PCNs where the smaller group is much 

sparser than the larger group, thus hindering interpretability of results. To address this 

issue, we modified the algorithm by using subsampling to create more balanced sample 
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groups, leading to more stable and interpretable PCNs. The modified procedure is 

comprised of the following steps: 

1) Determine size of smaller group (𝑛𝑚𝑖𝑛); 

2) At every iteration of the stability selection (default value set to 500 iterations), 

create new data matrices for the two groups as follows: 

a) For the larger group, randomly sample 𝛼 × 𝑛𝑚𝑖𝑛 samples without 

replacement. 

b) For the smaller group, randomly sample 𝛽 × 𝑛𝑚𝑖𝑛 samples without 

replacement. Additionally, in order to maintain some degree of randomness 

in the smaller group, (1 − 𝛽) ×  𝑛𝑚𝑖𝑛 samples are randomly chosen from this 

and added back. 

3) Fit the training model for the new subsamples of the data at every iteration; 

4) Obtain edge selection probabilities and retain edges with a selection probability of 

> 𝜏; 

5) Use the selection probabilities as weights when estimating the partial correlation 

networks. Based on extensive experimentation, we recommend 𝛼 = 1.3, 𝛽 = 0.9 and 

𝜏 = 0.9, but the practitioner can also experiment with other values. 

2.2.3 Datasets 

2.2.3.1 Mouse Model of T1D 

Previous studies131,132 have generated and examined GC-MS metabolomics data from non-

obese diabetic (NOD) mice, some of which progressed to overt T1D (chronic hyperglycemia) 

while others avoided progression (normoglycemia). Metabolomics data containing 163 

named metabolites from 71 mice (30 diabetic and 41 non-diabetic) were downloaded from 

the Metabolomics Workbench (Study ST000057). Age- and sex-adjusted data132 were log-

transformed and autoscaled to have zero mean and unit variance. 

2.2.3.2 Framingham Heart Study (FHS) Offspring Cohort 

The FHS Offspring Cohort is a longitudinal, community-based cohort that includes 3799 

participants, aged 40–65 years, at the fifth quadrennial examination cycle 1991–1995 
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(baseline for our purposes)133. We downloaded plasma metabolite profiles (LC-MS/MS) for 

956 subjects at baseline from the dbGaP database (https://www.ncbi.nlm.nih.gov/gap/). 

Approximately 10 years after the metabolomics analyses (2001–2005), subjects were re-

recruited to be assessed for development of T2D, determined based on the following 

criteria: (1) fasting glucose ≥ 7 mmol/L, (2) 2-h glucose ≥ 11 mmol/L, and (3) consumption 

of oral hypoglycemics or insulin134. 674 subjects remained healthy while 100 subjects 

developed T2D (182 subjects had missing data in at least one of the variables). Age- and 

sex-adjusted data were log-transformed and autoscaled to have zero mean and unit 

variance. 

2.2.3.3 Michigan Mother-Infant Pairs (MMIP) Cohort 

The Michigan Mother-Infant Pairs (MMIP) cohort135 evaluated the plasma lipidome in 106 

pregnant women during the first trimester (M1), at the time of delivery (M3), and within 

infant umbilical cord blood (CB). Comprehensive lipidomics profiling identified 670 lipid 

species from 17 different classes. Filigree was used to perform pairwise analyses between: 

(i) M1 vs. M3; (ii) M1 vs. CB, and (iii) M3 vs. CB, classifying differences in the connectivity 

of subnetworks between time points. We used the feature aggregation functionality of 

Filigree to collapse highly correlated and chemically similar lipids into singular features, 

making the feature space comparable to the sample size. 

2.2.4 Group Lasso Regression 

Filigree subnetworks generated from pairwise comparisons (M1 vs. CB, M3 vs. CB and M1 

vs. M3) were tested for their association with infant birth weight (BW) at individual time 

points (M1, M3 and CB) in a group lasso regression136 model using the R package gglasso137. 

Group lasso is an extension of the traditional lasso regression methodology138 that 

incorporates prior information about the grouping of variables. In contrast to lasso 

regression, variable selection is performed on an entire set of variables (or predictors) 

instead of individual variables. Let 𝑦 be a vector of length 𝑁 and 𝑋 be an 𝑁 × 𝑝 matrix of 

features. Let the 𝑝 features (or predictors) be divided into 𝐿 groups such that there are 𝑝𝑙 

https://www.ncbi.nlm.nih.gov/gap/
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predictors in group 𝑙. The matrix 𝑋𝑙 therefore represents predictors from the 𝑙𝑡ℎ group with 

a coefficient vector 𝛽𝑙. 𝛽 estimates are obtained by solving the optimization problem, 

min
𝛽∈𝑅𝑝

(‖𝑦 −  ∑ 𝑋𝑙𝛽𝑙

𝐿

𝑙=1

‖

2

2

+  𝜆 ∑ √𝑝𝑙‖𝛽𝑙‖2

𝐿

𝑙=1

) 

Here, ‖∙‖2 denotes the Euclidean norm and 𝜆 is the tuning parameter that controls the 

sparsity of the coefficients at the group level. It should be noted that this computation does 

not provide within-group sparsity, i.e., the coefficients of all the predictors in a group are 

either zero or non-zero. A range of 100 linearly increasing 𝜆 values is used (default), 

generated as a fraction of 𝜆𝑚𝑎𝑥, the smallest 𝜆 value for which all the coefficients are zero. 

The strength of association between a group of predictors and the response variable is 

determined by the 𝜆 value corresponding to the entry of that group into the regression 

equation, with higher 𝜆 value corresponding to a stronger association. The group lasso 

model was run for 500 iterations (stability selection) for robustness. The statistical 

significance of subnetworks obtained from NetGSA was not taken into account while 

performing group lasso regression. 

2.2.5 Data and Resource Availability 

Mouse T1D metabolomics data analyzed during the current study are available in the 

Metabolomics Workbench repository (Study ST000057). Metabolomics data from the 

Framingham Heart Study Offspring Cohort analyzed during the current study are available 

on dbGaP (https://www.ncbi.nlm.nih.gov/gap/) with the study accession number 

phs000007.v29.p10 and dataset phenotypic identifiers ‘pht002234.v5.p10:’ 

(Metabolomics-HILIC), ‘pht002894.v1.p10:’ (Central Metabolomics-HILIC), 

‘pht002343.v4.p10:’ (Metabolomics-Lipid Platform). Lipidomics data from the Michigan 

Mother-Infant Pairs Cohort (MMIP) analyzed during the current study are available in the 

Metabolomics Workbench repository (Project ID PR000386). Filigree is freely available at 

http://metscape.ncibi.org/Filigree.html. Scripts associated with the current analyses are 

available at https://github.com/griyer/Diabetes_manuscript_code.git. 

 

https://www.ncbi.nlm.nih.gov/gap/
http://metscape.ncibi.org/filigree.html
https://github.com/griyer/Diabetes_manuscript_code.git
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2.3 Results and Discussion 

The DNEA method126 implemented in Filigree includes three main steps: (1) joint estimation 

of the partial correlation network (PCN) across two groups of samples, (2) unsupervised 

clustering of the resulting PCN using consensus clustering to obtain densely connected 

subnetworks, and 3) testing the subnetworks for enrichment using the NetGSA 

algorithm139,140. As mentioned in126, the groups can correspond to treatment-control 

conditions, disease subtypes, etc. Further details of the DNEA algorithm are described in 

Supplementary Methods. Figure 2.1 depicts our analysis pipeline and describes the 

Filigree/DNEA workflow. 
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2.3.1 DNEA Analysis Reveals Dysregulation of Metabolite Networks in T1D vs. Non-Diabetic 

Mice 

We utilized Filigree to perform DNEA analysis of the metabolomics data from NOD mice 

that either progressed or did not progress to overt T1D131,132. Plasma metabolites from T1D 

and non-diabetic NOD mice produced a PCN with stronger connectivity in the non-diabetic 

mice (Figure 2.2A). The subsequent analysis steps identified twelve stable subnetworks 

Figure 2.1: Schematic representation the data analysis pipeline. 
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within the resulting PCN (Figure 2.3). Nine of the these were significantly differential 

between T1D and non-diabetic mice (FDR < 0.05) (Figure 2.2B, 2.2C). 

 

 

 

Figure 2.2: (A) Overview of T1D mouse model Filigree network showing associations between all the 

subnetworks. Each node represents a subnetwork with the overlaying pie charts showing the distribution 

of the intra-subnetwork edges. Inter-subnetwork edges are weighted by the total number of edges. Nodes 

with black outline are significantly differential by NetGSA (B) NetGSA output from Filigree showing 

subnetwork information and statistics. (C) Significantly differential subnetworks. Nodes are colored based 

on fold change (T1D over non-T1D). 
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Seven out of nine differential subnetworks contained edges present in non-diabetic mice 

that were disrupted in diabetic animals. Four out of these, S2, S3, S4, and S6, are highly 

interconnected. These subnetworks contain nucleobases, ribose and its reduction products, 

nucleic acids, amino acids, and also several sugars and sugar-related metabolites. (Table 

2.1). We note that several edges connecting metabolites in these subnetworks represent 

oxidation/reduction reactions. For instance, galactinol, a sugar alcohol, is the reduction 

product of galactose and ribitol is a reduction product of ribose. This suggests that the 

connectivity between metabolites in these subnetworks is disrupted due to changes in 

redox potential that accompany the progression to T1D. Thus, a general decrease in the 

redox state of cells may contribute to the changes in the connectivity of metabolites seen 

in the plasma in T1D. 

 

 

 

Figure 2.3: Filigree Partial Correlation Networks from T1D mouse model data highlighting all 

subnetworks. 
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Table 2.1: Pathway information for the subnetworks in the T1D mouse model metabolomics data 

Subnetwork Pathway   
Subnetwork 1   

cholesterol Steroid biosynthesis; Primary bile acid biosynthesis 

creatinine Arginine and proline metabolism 

cysteine Cysteine and methionine metabolism; Glutathione 

metabolism; Aminoacyl-tRNA biosynthesis 

xylitol Pentose and glucuronate interconversions   
Subnetwork 2 

 

2-hydroxyvaleric acid Fatty acid degradation 

cholic acid Primary bile acid biosynthesis 

sulfuric acid Sulfur metabolism 

thymine, uridine, sulfuric acid Nucleotide metabolism 

glycolic acid Glyoxylate and dicarboxylate metabolism 

hydroxylamine Nitrogen metabolism 

maltose Carbohydrate metabolism 

Stigmasterol Steroid biosynthesis   
Subnetwork 3 

 

2-hydroxyglutaric acid Butanoate metabolism 

arabitol, ribitol Pentose and glucuronate interconversions 

benzoic acid Benzoate degradation 

galactinol Galactose metabolism/Carbohydrate metabolism 

isothreonic acid Ascorbate and aldarate metabolism 

ribose Pentose phosphate pathway   
Subnetwork 4 

 

phenylethylamine Phenylalanine metabolism 

raffinose Galactose metabolism/Carbohydrate metabolism 

adipic acid Caprolactam degradation 

4-hydroxybenzoate Benzoate degradation 

delta-4-cholestenone Steroid degradation 

xanthosine, beta alanine Nucleotide metabolism 

levoglucosan Carbohydrate metabolism (?)   
Subnetwork 5 

 

citric acid, isocitric acid Citrate cycle (TCA cycle); Glyoxylate and 

dicarboxylate metabolism 

hypoxanthine, inosine, pseudouridine Nucleotide metabolism 

indole-3-lactate Tryptophan metabolism   
Subnetwork 6 

 

alpha ketoglutaric acid, fumaric acid, malic acid, 

succinic acid 

Citrate cycle (TCA cycle) 

cytidine-5-diphosphate, orotic acid, uric acid Nucleotide metabolism 

aspartic acid, citrulline, glutamic acid, putrescine Arginine biosynthesis/Arginine Proline metabolism 

fructose-6-phosphate, galactonic acid, lactic 

acid 

Carbohydrate metabolism 

2-aminoadipic acid Lysine metabolism 

nicotinamide, pantothenic acid Vitamin metabolism 

methionine sulfoxide Cysteine and methionine metabolism   
Subnetwork 7 

 

shikimic acid Phenylalanine, tyrosine and tryptophan biosynthesis 

trans-4-hydroxyproline Arginine and proline metabolism 
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aspargine, pyruvic acid Alanine, aspartate and glutamate metabolism   
Subnetwork 8 

 

4-hydroxyproline Arginine and proline metabolism 

lauric acid Fatty acid biosynthesis 

N-acetyl D-tryptophan Tryptophan metabolism 

pipecolic acid Lysine metabolism 

2-ketoisocaproic acid Valine, leucine and isoleucine metabolism   
Subnetwork 9 

 

glycerol-alpha-phosphate Glycerolipid metabolism 

allantoic acid Purine metabolism 

fucose rhamnose Fructose and mannose metabolism 

xylose Pentose and glucuronate interconversions 

myo-inositol Galactose metabolism; Ascorbate and aldarate 

metabolism; Inositol phosphate metabolism   
Subnetwork 10 

 

serine; homoserine Glycine, serine and threonine metabolism; Cysteine 

and methionine metabolism  

capric acid Fatty acid biosynthesis 

4-hydroxybutyric acid Butanoate metabolism 

glutaric acid Fatty acid degradation   
Subnetwork 11 

 

alanine; cystine; glutamine; lysine; methionine; 

ornithine; oxoproline; proline; threonine; 

tryptophan; tyrosine 

Amino acid(s) metabolism 

fructose Carbohydrate metabolism     
Subnetwork 12 

 

palmitic acid; stearic acid; arachidonic acid; 

myristic acid; methylhexadecanoic acid 

Fatty acid metabolism 

glycerol Glycerolipid metabolism 

trehalose; tagatose Carbohydrate metabolism 

 

The association between the cellular redox state and the metabolome is further supported 

by S1 and S9, which contain predominantly diabetic edges (Figure 2.2C). In both 

subnetworks, the enrichment is driven primarily by the differential edges, while most 

metabolites (nodes) are not significantly differentially expressed and therefore would not 

be prioritized by univariate analysis (Figure 2.2B). 

S1 consists of metabolites either directly or indirectly related to increased oxidative stress. 

Oxidative stress is a widely accepted complication accompanying the pathogenesis of 

diabetes by way of increased free radical (ROS) concentrations caused by hyperglycemia 

as well as decreased levels of major antioxidants such as glutathione141, leading to 

significant damage to pancreatic islet beta cells responsible for insulin secretion142. 

Glutathione (gamma-glutamyl-cysteinyl-glycine) is a highly abundant tripeptide in the 
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human body known to play a vital role in defense against oxidative stress as a free radical 

scavenger143. The bulk of the blood glutathione is found within erythrocytes (millimolar 

concentrations) while levels in the plasma tend to be in the micromolar range. Diminished 

levels of blood glutathione have been implicated both in T1D and in T2D144–147. While 

glutathione was not measured in this experiment, we speculate that reduced level of this 

metabolite can influence the levels of several S1 metabolites, including cysteine, 

cholesterol, creatinine, and xylitol. Cysteine, one of the three amino acid constituents of 

glutathione, is present in this subnetwork with lower levels in diabetic mice. It has been 

postulated that reduced levels of glutathione in type 1 diabetes is a consequence of 

increased utilization rather than decreased synthesis, thus resulting in reduced levels of 

cysteine146. A hub node of S1 is cholesterol. Counterintuitively, we see decreased levels of 

cholesterol in diabetic mice. This is likely due to the inhibitory effect of diminished 

glutathione on the enzyme HMG-CoA reductase, the rate-controlling enzyme in the 

cholesterol synthesis pathway (Malveonate pathway). Glutathione has been suggested to 

be one of the key activators of HMG-CoA reductase by maintaining the enzyme in its active, 

reduced sulfahydryl state148–151. Moreover, insulin has also been shown to be an activator of 

HMG-CoA reductase in a mechanism similar to glutathione152. Depleted glutathione also 

has an inhibitory effect on the enzyme creatine kinase (CK), responsible for the 

phosphorylation of creatine to phoshpocreatine, likely due to thiol oxidation of the 

sulfahydryl groups of the enzyme153,154. A reduction in CK activity leads to a decrease in 

phosphocreatine levels which further causes a decrease in creatinine levels, a product of 

phosphocreatine utilization. Consequently, we observe creatinine in subnetwork S1 at lower 

levels in diabetic mice. Additionally, xylitol, a five-carbon sugar alcohol and widely used 

sugar-substitute, has also been shown to serve as a glutathione-reducing compound in 

vitro and in vivo155,156. While we did not see a significant difference in the levels of xylitol 

between diabetic and non-diabetic mice, its potential association with glutathione is a 

possible reason for its presence in subnetwork S1. Finally, we see alpha-tocopherol 

(Vitamin E) in subnetwork S1. This is not unexpected as alpha tocopherol is a well-known 

potent antioxidant, similar to glutathione. It is therefore not surprising that we see lower 

levels of alpha-tocopherol in diabetic mice. 
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Several S1 metabolites are exogenous compounds often measured in plasma and urine. In 

general, these compounds are decreased in T1D mice and also have differential 

connectivity, suggesting that their metabolism is disrupted in T1D. Alternatively, exogenous 

compounds may not be easily absorbed in the intestine in T1D, potentially due to altered 

intestinal permeability. In T1D, there are marked changes in the intestinal morphology and 

expression of transporters157 and increased intestinal permeability158, altering the entry of 

exogenous substances with additional effects on cellular metabolism. These findings also 

support previously described disruptions in metabolism associated with T1D, including 

alterations in mitochondrial metabolism, increased oxidative stress, and changes in redox 

state159. Indeed, Fahrmann et al.131 previously reported increased levels of sugar-related 

metabolites, branched chain amino acids, gluconic acid and nitric oxide-derived saccharic 

acid markers of oxidative stress in T1D mice. Our network-based approach confirms and 

extends the understanding of alteration in metabolism that occurs in T1D, including 

changes in the metabolism of nucleotides (S2–S5). Because these alterations are found in 

plasma, the tissue-specific origins of disruption in metabolism cannot be precisely 

localized. 

2.3.2 Connectivity of Metabolite Networks Differs between Non-Diabetics and Individuals 

Who Later Developed T2D from the Framingham Heart Study (FHS) Offspring Cohort 

The FHS Offspring Cohort has been studied extensively and biomarkers for risk of 

cardiovascular disease and T2D have been identified19,160. We used DNEA to examine 

metabolomics data from 100 FHS subjects who developed T2D over the course of the 

subsequent twenty years (T2D-prone) and 674 subjects who remained non-diabetic (T2D-

free). This highly imbalanced group distribution makes it difficult to recover robust and 

stable PCNs128. Statistical theory161 suggests that subsampling approaches can reduce the 

bias towards the group with higher number of samples. We created a subsampling 

approach that allows a stable network topology to be obtained and reduces the number of 

edges in the non-diabetic group (described in Methods). The number of edges recovered 

with and without subsampling, within each group, is reported in Table 2.2. 
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Table 2.2: Number of edges discovered with and without subsampling the Framingham Heart Study 

Offspring Cohort T2D data 

 Number of Edges 

 Non-diabetic Diabetic Common 

Without subsampling 784 73 250 

With subsampling 281 36 223 

 

Our analysis identified substantial network differences between T2D-prone and T2D-free 

groups (Figure 2.4A). The algorithm identified twelve stable subnetworks (Figure 2.5) within 

the resulting PCN, with six subnetworks significantly differing between T2D-prone and T2D-

free groups (FDR < 0.05) (Figure 2.4B, 2.4C). Similar to our findings in T1D, there were fewer 

edges in T2D-prone compared to T2D-free networks. This tendency is especially apparent 

in subnetworks S1, S3, and S6 (Figure 2.4B). 
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Figure 2.4: (A) Overview of the Framingham Heart Study Offspring Cohort T2D network showing 

associations between all the subnetworks. Each node represents a subnetwork with the overlaying pie 

charts showing the distribution of the intra-subnetwork edges. Inter-subnetwork edges are weighted by 

the total number of edges. Nodes with black outline are significantly differential by NetGSA. (B) NetGSA 

output showing subnetwork information and statistics. (C) Significantly differential subnetworks. Nodes 

are colored based on fold change (T2D-prone over T2D-free). Nodes marked with red asterisk (*) have 

been reported as T2D predictors by Merino and colleagues (2018). 
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The most significant subnetwork (S1) includes intermediates of tryptophan, cysteine, lysine, 

tyrosine, and phenylalanine metabolism (Table 2.2; Figure 2.6). Dysregulation of 

tryptophan metabolism162,163 and elevated level of 2-amnionadipic acid have been 

associated with the development of T2D164. Previous studies in the FHS Offspring Cohort 

found that branched chain and aromatic amino acids were positively associated with the 

risk of developing T2D19. The subnetwork containing branched chain amino acids (S11) is 

not significantly differential between groups (Figure 2.7), consistent with the findings of 

Merino and colleagues134 who found that branched chain amino acids (BCAAs) were not 

predictive of T2D in this sample cohort, perhaps due to the relatively small differences in 

insulin resistance between the T2D-prone and T2D-free individuals in these data. 

Subnetwork S1 also includes several intermediates of purine metabolism (Figure 2.6). 

Increased levels of uric acid, the end-product of purine metabolism, is a common finding in 

obese T2D patients and has been implicated in the pathogenesis of metabolic syndrome 

Figure 2.5: Filigree Partial Correlation Networks from Framingham Heart Study Offspring Cohort T2D 

data highlighting all subnetworks. 
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disorders165,166. These latter studies suggest the role of hyperuricemia in increased 

mitochondrial oxidative stress. While uric acid was not measured in the FHS Offspring 

Cohort study, increases in GMP and hypoxanthine may reflect the upstream hyperuricemia 

in the T2D-prone subjects. Additionally, subnetwork S1 includes the TCA cycle metabolites 

malate, isocitrate and aconitate, which are all increased in T2D-prone subjects, suggesting 

alterations in mitochondrial metabolism. 

 

 

Table 2.3: Pathway information for the subnetworks in the FHS Offspring Cohort metabolomics data 

Subnetwork Pathway   
Subnetwork 1 

 

Isocitrate, Malate, Aconitate Citrate cycle (TCA cycle); Glyoxylate and 

dicarboxylate metabolism 

Lactate, Malate Pyruvate metabolism 

GMP, Hyproxanthine, Inosine Purine metabolism 

Glucuronate Ascorbate and aldarate metabolism; Pentose and 

glucuronate interconversions 

2-Hydroxyphenylacetate Phenylalanine metabolism 

Quinolinate Nicotinate and nicotinamide metabolism 

2-Aminoadipate Lysine degradation 

Cystathionine Glycine, serine and threonine metabolism; Cysteine 

and methionine metabolism 

Kynurenine Tryptophan metabolism   
Subnetwork 2 

 

DG 34:1, DG 34:2, DG 36:1, DG 36:2 Diglycerides 

TG 44:1, TG 46:1, TG 46:2, TG 48:0, TG 48:1, 

TG 48:2, TG 48:3, TG 48:4, TG 50:2, TG 50:3, 

TG:4, TG 50:5, TG 52:1, TG 52:2, TG 52:3, TG 

52:4, TG 52:5, TG 52:6, TG 54:2, TG 54:3, TG 

54:4, TG 54:5, TG 54:6, TG 54:7, TG 54:8, TG 

56:3 

Triglycerides 

  
Subnetwork 3 

 

UDP-galactose, UDP-glucose, Sucrose, 

Lactose, Glucose-1-phosphate, Glucose-6-

phosphate, Fructose-1-phosphate, Fructose-

6-phosphate 

Sugar metabolism 

cyclic adenosine monophosphate, adenosine 

monophosphate, adenosine diphophate, 

guanosine diphosphate, uridine diphosphate 

Nucleotide metabolism 

ribose phosphate, ribulose phosphate Pentose phosphate pathway 

Nicotinamide Nicotinate and nicotinamide metabolism 

alpha-glycerophosphate Glycerolipid metabolism 

Asparagine Alanine, aspartate and glutamate metabolism 

Serotonin Tryptophan metabolism   
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Subnetwork 4 
 

TG 46:0, TG 50:1, TG 54:1, TG 54:9, TG 56:2, 

TG 58:6, TG 58:7 

Triglycerides 

  
Subnetwork 5 

 

glycocholate, taurocholate Primary bile acids 

deoxycholate, taurodeoxycholate, 

glycodeoxycholate 

Secondary bile acids 

  
Subnetwork 6 

 

TG 56:9, TG 56:10, TG 58:10, TG 58:11, TG 

58:12, TG 60:12 

Triglycerides 

Glutamate, Arginine, Argininosuccinate, 

Aspartate, Glutamine, alpha-ketoglutarate, 

Aminoisobutyric acid, Pyruvate, Glycine, 

Serine, Carnosine, S-Adenosylhomocysteine, 

5-Hydroxyindoleacetic acid, 3-

Hydroxyanthranilic acid, anthranilic acid 

Amino acid metabolism 

Triiodothyronine, Thyroxine, Pyruvate Tyrosine metabolism 

Pyruvate, alpha-ketoglutarate TCA cycle 

Pantothenate, N-carbamoyl-beta-alanine, 

Pyridoxate 

Vitamin metabolism 

  
Subnetwork 7 

 

LPC 14:0, LPC 16:0, LPC 18:0, LPC 18:1, LPC 

18:2, LPC 20:3, LPC 20:4, LPC 30:5, LPC 22:6 

Lysophosphatidylcholines 

LPE 16:0, LPE 18:0, LPE 18:1, LPE 18:2, LPE 

20:4, LPE 22:6  

Lysophosphatidylethanolamines 

alpha-glycerophosphocholine, PC 32:1, PC 

32:2, PC 34:1, PC 34:2, PC 34:3, PC 34:4, PC 

36:1, PC 36:2, PC 36:3, PC 36:4, PC 38:4, PC 

38:5, PC 40:6 

Phosphatidylcholines 

  
Subnetwork 8 

 

Hippurate NA 

Gentisate Benzoate degradation 

Indole propionate Tryptophan metabolism 

Fumarate + maleate + valerate Tyrosine metabolism 

Salicylurate NA   
Subnetwork 9 

 

TG 56:4, TG 56:5, TG 56:6, TG 56:7, TG 56:8, 

TG 58:8, TG 58:9 

Triglycerides 

PC 38:6 Phosphatidylcholines   
Subnetwork 10 

 

CE 14:0, CE 16:0, CE 16:1, CE 18:0, CE 18:1, 

CE 18:2, CE 18:3, CE 20:3, CE 20:4, CE 20:5, 

CE 22:6 

Cholesteryl Esters 

  
Subnetwork 11 

 

 Histidine, Phenylalanine, Methionine, Valine, 

Alanine, Lysine, Isoleucine, Leucine, 

Threonine, Tryptophan, Tyrosine, Proline 

Amino acid metabolism; Aminoacyl-tRNA 

biosynthesis 

Choline, Betaine, Threonine, NMMA Glycine, serine and threonine metabolism 

Hydroxyproline, Proline, Ornithine, Citrulline Arginine and proline metabolism 

Taurine Taurine and hypotaurine metabolism 

Xanthine, Xanthosine Purine metabolism   
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Subnetwork 12 
 

SM 14:0, SM 16:0, SM 16:1, SM 18:0, SM 

18:1, SM 22:0, SM 22:1, SM 24:0, SM 24:1 

Sphingomyelins 

PC 32:0, PC 38:2, PC 38:3 Phosphatidylcholines 

 

 

 

 

 

 

 

Figure 2.6: Subnetwork S1 in the Framingham Heart Study Offspring Cohort T2D data highlighting 

intermediates of various amino acids’ metabolism and the TCA cycle 

Figure 2.7: Branched chain amino acids-containing subnetwork (S11) in the Framingham Heart Study 

Offspring Cohort T2D data 
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Subnetwork S3 contains a higher proportion of edges in the non-diabetic group and is 

populated by sugars and sugar phosphates in the glycolysis and pentose shunt pathways, 

nucleotides, and sugar nucleotides. T2D-prone subjects have higher plasma levels of these 

sugars and sugar-derivatives than non-diabetic subjects. Taken together, the metabolite 

alterations seen in subnetworks S1 and S3 are indicative of widespread changes in the 

orderly flux of metabolites through mitochondria in diabetes-prone individuals. While not 

a new concept (reviewed in 167), our results demonstrate the utility of the DNEA approach 

to provide insights into altered whole body metabolism using plasma metabolomics. 

Subnetworks S2 and S4 were statistically significant in our analysis, even though the 

majority of edges are non-differential. These subnetworks are primarily made up of long-

chain (C44-C58) polyunsaturated triglycerides (PUFA-TGs) with the additional inclusion of 

four diglyceride (DG) species (DG 34:1, DG 34:2, DG 36:1, DG 36:2), two saturated 

triglycerides (TG 46:0 and TG 48:0) and six monounsaturated triglycerides (TG 44:1, TG 

46:1, TG 48:1, TG 50:1, TG 52:1, and TG 54:1). Most TG lipids, except TG 46:0, TG 50:1, TG 

58:6, and TG 58:7, are present at higher levels in T2D-prone subjects. Overall, the 

enrichment of these two subnetworks is primarily driven by differential expression of the 

nodes. Increased plasma triglycerides have been reported as an independent predictor of 

T2D in several prospective cohort studies168,169. Additionally, triglycerides tend to be highly 

correlated with each other and typically form densely connected clusters in correlation 

networks126. The presence of a separate smaller triglyceride subnetwork (S4) may be due 

to the absence in the dataset of key triglyceride species that could link these subnetworks. 

Subnetwork S5 exclusively contains bile acids with non-differential edges, suggesting that 

the differences between T2D-prone and T2D-free subjects in this case are driven by 

differential expression of the metabolites. Bile acids are the primary route of cholesterol 

catabolism and are synthesized by the oxidation of the latter by the action of the rate-

limiting enzyme cholesterol 7 alpha-hydroxylase. Alterations in bile acid metabolism have 

been associated with T2D170–174. Additionally, obese T2D individuals have increased fasting 

and post-prandial total bile acid concentrations, due to increased enterohepatic 

circulation175. 
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Subnetwork S6 contains several amino acids and their derivatives, TCA cycle intermediates, 

vitamin B metabolites and thyroid hormones (Table 2.2). In general, network connectivity 

was higher in the T2D-free group compared to the T2D-prone group. The levels of the 

individual amino acids and primary metabolites in this subnetwork are generally lower in 

T2D-prone group. Reductions in glycine and glutamine-to-glutamate ratio have been found 

in T2D subjects and in T2D-prone individuals176. The basis for the changes in arginine and 

aspartate levels, which are reduced in concert with other amino acids (save glutamate) in 

this network are less clear. We did not observe differential connectivity among the 

polyunsaturated fatty acid-containing triglycerides (PUFA-TGs). However, their levels were 

increased in the T2D-prone group, consistent with the overall increase in the TGs in the 

T2D-prone population. 

Our analysis of the FHS Offspring Cohort metabolomics data supports many of the previous 

findings elucidating the role of changes in amino acid metabolism and increased oxidative 

stress in the prediction of T2D onset. Additionally, of the nineteen metabolites prioritized 

by Merino and colleagues (from the same dataset) that significantly improved T2D 

prediction in a model including traditional T2D risk factors134, ten were part of our 

significantly differential subnetworks S1–S6 (Table 2.3). With these previously observed 

metabolite relationships as a foundation, our subnetworks can provide further biochemical 

context and help build on the understanding of metabolic changes that eventually lead to 

disease. 

 

Table 2.4: Subnetwork assignments of the top 19 T2D predictors reported by Merino et al (2018). Predictors 

that are present in significant subnetworks (S1-S6) are highlighted in green. 

Predictors Subnetwork 

2-Aminodipate S1 

Isocitrate S1 

DAG C36:1 S2 

TAG C48:0 S2 

TAG C48:1 S2 

TAG C52:1 S2 

TAG C54:8 S2 

TAG C58:11 S6 

5-Hydroxyindoleacetic acid S6 

Glycine S6 
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PC C36:4 S7 

LPC C18:2 S7 

LPC C18:1 S7 

CE C20:3 S10 

L-Phenylalanine S11 

Taurine S11 

SM C24:0 S12 

3-Methyladipic acid NA 

D-Glucose NA 

 

2.3.3 Subnetworks of Lipids Relate to Infant Birth Weight in the Michigan Mother-Infant 

Pairs (MMIP) Cohort 

We used Filigree to analyze the MMIP dataset135, comparing the lipidomes of women at 

different stages of pregnancy and their offspring (Figure 2.8). Capitalizing on the method’s 

ability to identify functionally related metabolic modules, we sought to explore the 

association of subnetworks with infant birth weight (BW). Accordingly, we performed three 

pairwise comparisons (M1 vs. M3, M1 vs. CB, and M3 vs. CB). Since the dataset contained 

670 lipids and 106 samples, we used the feature aggregation functionality of the tool 

(described in Methods) to reduce the dimensionality of the data. Table 2.4 gives the 

reduced feature count for each of the comparisons and the percent of feature reduction. 

Overall, a 55–60% reduction was chosen, yielding feature counts comparable to the sample 

size. Most of the identified subnetworks were significantly enriched in each of the pairwise 

comparisons: 14/19 in M1, 19/20 in M3, and 9/12 in CB (Table 2.4). Consistent with our 

previous observations126, lipids from the same or highly related classes were often found 

within the same subnetworks, such as diglycerides (DG) and triglycerides (TG), 

phosphatidylcholines (PC) and phosphatidylethanolamines (PE), and 

lysophosphatidylcholines (LPC) and lysophasphatidylethanolamines (LPE). Most 

subnetworks included differential edges at each time point, indicating changes in the 

connectivity of the lipidome during pregnancy.  

 

 



48 
 

 

 

Table 2.5: Summary of the node-aggregation and identified subnetworks in each pairwise comparison of 

the MMIP lipidomics data 

Comparison 

Effective 

number of 

features 

% reduction in 

feature space 

Number of 

significant 

subnetworks (adj 

p-val < 0.05) 

Total number of 

subnetworks 

identified 

M1 – M3 298 55.45 14 19 

M1 - CB 298 55.45 19 20 

M3 - CB 286 57.25 9 12 

 

Next, we assessed whether any of the identified subnetworks were associated with infant 

BW, which is of particular interest due to its relationship with future weight gain and risk 

for metabolic disease177. We used group lasso regression136 (described in Methods) to model 

our Filigree subnetworks as predictors and Fenton BW178 (BW normalized for gestation 

period and sex) as the outcome variable. In the M1 vs. CB comparison, two subnetworks 

containing LPC-LPE-PlasmenylPC (S18) and PC-TG (S12) components displayed strong 

association with BW (Figure 2.9). The LPC-LPE-PlasmenylPC subnetwork, composed of 

lipids with saturated, monounsaturated, and polyunsaturated fatty acid tails, showed a 

stronger association with BW in CB. Previous work has emphasized the relationship 

Figure 2.8: Michigan Mother-Infant Pairs (MMIP) study design. 106 pregnant women were monitored 

through the course of their pregnancy. Maternal plasma samples were collected at the first trimester (M1) 

and at time of delivery (M3), along with Cord Blood (CB). Data from subsequent lipidomics experiments 

was analyzed in a pairwise manner using Filigree and resulting subnetworks were tested for their 

association with infant birth weight in a group lasso regression model. 
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between CB LPCs and BW135,179, but no previous studies have reported an association with 

PlasmenylPCs. Plasmalogen formation is primarily regulated by peroxisomes and it has 

been proposed that plasmologens are related to inflammation and oxidative stress180, 

potentially explaining their association with BW. The PC-TG subnetwork displayed a 

stronger association with BW in M1. This network is composed of lipids that contain 

saturated fatty acid tails with 12–16 carbons. Our results expand on the previous analysis135 

that found minimal associations between the M1 lipidome and BW, emphasizing the 

advantage of our network-based approach. We hypothesize that lipids with saturated fatty 

acids play a role in establishing BW in the first trimester of pregnancy (8–14 weeks), 

highlighting the plasticity of the developing fetus in early gestation, responding potentially 

through epigenetic modifications181. Interestingly, the edges within the subnetwork diminish 

in CB, suggesting different connectivity between these saturated lipids at each time point, 

potentially due to changes in insulin sensitivity during pregnancy182.  

 

 

 

Figure 2.9: Top two M1 vs. CB subnetworks strongly associated with infant birth weight. LPC-LPE-

PlasmenylPC subnetwork in infant Cord Blood and PC-TG subnetwork during the first trimester of the 

mother are strongly associated with infant birth weight. Large square nodes containing smaller nodes 

within them represent ‘aggregated’ nodes with their individual lipid species. 
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In the M3 vs. CB comparison, two subnetworks containing LPC-LPE (S6) and PC-

PlasmenylPC-PlasmenylPE-DG-TG (S10) components displayed strong associations with 

BW (Figure 2.10). These subnetworks were associated with BW specifically in the CB, rather 

than maternal plasma (M3). The LPC-LPE subnetwork only includes one PlasmenylPC 

(PlasmenylPC 26:0), suggesting that plasmalogens are less strongly correlated with 

lysophospholipids in this comparison. Almost a complete overlap of lysophospholipids was 

observed between M1-CB S18 and M3-CB S6. The PC-PlasmenylPC-PlasmenylPE-DG-TG 

subnetwork contains lipids with long-chain and very long-chain polyunsaturated fatty acid 

tails. Previous work135 has suggested the association between BW and CB polyunsaturated 

TGs and DGs. However, our approach additionally shows the interconnectivity between 

multiple lipid classes. Since polyunsaturated fatty acids are preferentially transferred from 

maternal to fetal circulation183, our results may suggest a mechanism that modifies fetal 

growth and BW for optimal development. Previous studies using polyunsaturated fatty acid 

supplementation during pregnancy have yielded mixed results184, warranting further 

analyses of the interconnectivity of these lipid classes and their relationship to BW. 

 

 

Figure 2.10: Top two M3 vs CB subnetworks strongly associated with infant birthweight. LPC-LPE and 

CE-PC-PlasmenylPC-PlasmenylPE-DG-TG subnetworks in infant Cord Blood are strongly associated with 

infant birthweight. Large square nodes containing smaller nodes within them represent ‘aggregated’ 

nodes with their individual lipid species. 
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Finally, in the M1 vs. M3 comparison, two subnetworks containing DG-TG (S7) and LPC-

LPE (S14) components displayed strong associations with infant BW, led by maternal blood 

(M3) (Figure 2.11). The LPC-LPE subnetwork contains the same lysophospholipids as M1-

CB S18 and M3-CB S6. These results suggest that maternal late gestation lysophospholipids 

are related to BW, potentially due to the active transport of lysophospholipids from 

maternal plasma to the CB by the major facilitator superfamily domain containing 2a 

(MFSD2a) protein185. Thus, enriched subnetworks obtained from the Filigree have 

meaningful biological significance and can be utilized to advance lipidomics data analysis 

by looking at their association with other phenotypes of interest. 

 

 

In conclusion, we presented a novel bioinformatics approach for gaining new insights into 

high dimensional metabolomics data as implemented in our tool, Filigree. Our method helps 

overcome common challenges of pathway-based enrichment testing approaches, providing 

robust results even with limited sample sizes and highly imbalanced experimental group 

designs. 

Figure 2.11: Top two M1 vs M3 subnetworks strongly associated with infant birthweight. DG-TG and 

LPC-LPE subnetworks during the third trimester of the mother are strongly associated with infant 

birthweight. Large square nodes containing smaller nodes within them represent ‘aggregated’ nodes with 

their individual lipid species. Triangular nodes represent a small group of triglycerides (2-3) with the same 

chain length and sequential unsaturation units. 
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Currently, to the best of our knowledge, there is no other tool with comparable analysis 

pipeline. While partial correlation networks can be built with existing methodologies109, 

Filigree provided a clear advantage in network estimation. In the T1D dataset, the number 

of metabolites far exceeded the number of samples, considerably restricting the number of 

statistically significant edges that could be recovered by other existing methods109. Our 

analysis also demonstrated that topology-based enrichment method implemented in 

Filigree is more powerful than traditional enrichment testing because it has the ability to 

provide information about changes in topology across the biological conditions. 

In re-analyzing several existing datasets with Filigree, we observed a strong differential 

connectivity in metabolite networks in T1D and T2D and were also able to demonstrate 

various associations with infant BW in the lipidomes of pregnant women. Filigree is 

particularly useful as a hypothesis-generating tool. The results presented here suggest 

potential follow-up studies that could shed light on additional metabolic factors 

contributing to T1D and T2D and on potential lipidomic influences on BW during pregnancy. 

 

2.4 DNEA: An R package for Data-Driven Network Enrichment Analysis of Metabolomics 

Data 

While Filigree provides a user-friendly option for a casual user, the increasing size of 

metabolomics datasets involving larger number of compounds due to increased instrument 

resolution and larger number of samples, calls for more powerful computational solutions. 

To address this need, we developed an R package that implements the DNEA algorithm. In 

addition to being more computationally efficient, the DNEA R package includes the same 

features as Filigree, thus making it a powerful tool for the analysis of untargeted 

metabolomics and lipidomics data. The overall workflow of the package and functions is 

outlined in Figure 2.12A. Briefly, the createDNEAobject() function creates an R object 

from the input data (plain text file containing per-sample unadjusted intensity values and 

group information). This function also runs some diagnostics on the data to inform the user 

if feature reduction should be performed before continuing the analysis. The BICtune() 
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function determines the optimal lambda parameter for glasso by computing the Bayesian 

information criterion (BIC) and liklihood for a range of lambda values, while the 

stabilitySelection() function performs stability selection using the optimal lambda 

value. getNetworks() then computes the final network based on the selection 

probabilities from the previous step, and runConsensusCluster() and runNetGSA() 

perform consensus clustering and differential analysis respectively.  

The feature reduction (reduceFeatures()) and stability selection coupled with additional 

subsampling functions are detailed below. 

2.4.1 reduceFeatures() 

 There are three options available to perform feature reduction: (i) correlation-based 

(Figure 2.12B), (ii) knowledge-based, and (iii) correlation- and knowledge-based (hybrid). 

They are indicated as arguments to the reduceFeatures() function. In every case, each 

collapsed feature is represented by the average intensity of its constituent metabolites. The 

function returns a new data matrix with the collapsed features and a two-column matrix 

with the feature group membership of all the input metabolites.  

Correlation-based feature reduction: In this method (Figure 2.12B), the user supplies a 

correlation coefficient threshold (𝑐𝑜𝑟𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑; default value is 0.9) above which 

metabolites should be merged into “collapsed features”. The metabolites must be 

correlated with each other above this threshold in both experimental groups. The input to 

the function is a matrix of metabolic expression values. Each row corresponds to an 

individual sample. The first column corresponds to sample ID while the second column 

corresponds to condition/group. First, a Pearson’s correlation matrix is computed for each 

condition separately. The correlation matrices are then clustered using hierarchical 

clustering (using dissimilarity measure) and the dendrograms are cut at a height of (1 −

𝑐𝑜𝑟𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). This generates two sets of clusters (or feature groups), one for each 

experimental condition. The intersection of these sets of feature groups is performed by 

generating a consensus matrix (block diagonal matrix) encoding the final collapsed 

features. Further, the consensus matrix is converted to a graph object using the igraph R 
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package186 and connected components are identified. These connected components 

represent the final set of collapsed features.  

Knowledge-based feature reduction: In this method, the user supplies a two-column 

feature grouping file as an input to the function. The function returns the ‘collapsed’ data 

matrix accordingly. No correlations are computed with this method. 

Correlation- and knowledge-based (hybrid) feature reduction: This method combines the 

correlation and knowledge-based feature reduction strategies. Here, the user provides a 

two-column feature grouping file as well as a correlation coefficient threshold 

(𝑐𝑜𝑟𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑; default value is 0.9). The function then computes collapsed features 

based on correlation coefficients (as described above) within each of the user-defined 

feature groups i.e., only metabolites that are correlated with each other greater than 

𝑐𝑜𝑟𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and belong to the same feature group as defined by the user will get 

collapsed.  

2.4.2 Stability selection with additional subsampling 

This method (Figure 2.12C) can be used when the sample groups in the data are highly 

unbalanced. As detailed in Filigree’s description, having highly unbalanced groups can lead 

to unstable partial correlation networks and heavy bias towards the group with greater 

number of samples. This can mask any potentially interesting biological differences 

between the groups. In order to circumvent this issue, we implemented a modified stability 

selection procedure for network estimation. While stability selection161 itself performs 

subsampling to recover robust edges in the network, the modified version performs an 

additional downsampling in the larger group to reduce bias. This modification is indicated 

by a flag (subSample = TRUE) in the stabilitySelection() function. It is comprised of 

the following steps: 

i. Determine size of smaller group (𝑛𝑚𝑖𝑛); 

ii. At every iteration of the stability selection (default value set to 500 iterations), 

create new data matrices for the two groups as follows: 
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a. For the larger group, randomly sample (𝛼 ×  𝑛𝑚𝑖𝑛) samples without 

replacement. 

b. For the smaller group, randomly sample (𝛽 ×  𝑛𝑚𝑖𝑛) samples without 

replacement. Additionally, in order to maintain some degree of 

randomness in the smaller group, (1 − 𝛽) × 𝑛𝑚𝑖𝑛 samples are randomly 

chosen from this and added back. 

iii. Fit the training model for the new subsamples of the data at every iteration; 

iv. Obtain edge selection probabilities and retain edges with a selection probability 

of > 𝜏; 

v. Use the selection probabilities as weights when estimating the partial correlation 

networks. 

Based on extensive experimentation, the following parameter values were chosen: 

i. 𝛼 = 1.3,  

ii. 𝛽 = 0.9, and 

iii. 𝜏 = 0.9. 
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Figure 2.12: (A) Overall workflow of the DNEA R package. (B) Workflow of correlation-based feature 

reduction. (C) Workflow of the stability selection coupled with additional subsampling (for highly 

imbalanced sample groups) function. 
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CHAPTER III 

Identification of Metabolic Markers of COVID-19 Severity 

 

A manuscript covering this work is in preparation, with myself as the first author. 

 

3.1 Introduction 

Since the SARS CoV-2 2019 (COVID-19) virus was first identified, it has produced a global 

pandemic responsible for hundreds of millions of cases and millions of deaths. While most 

infected patients recover without requiring hospitalization, some develop severe disease 

that can lead to respiratory failure, multiple organ failure, and death. The importance of 

metabolic diseases such as hypertension, diabetes, and obesity on the risk of developing 

severe disease was recognized early187–190. Several hypotheses for this association have 

been suggested, including a high baseline inflammatory milieu which leads to an increased 

‘cytokine storm’ associated with COVID-19 infections191, hypertension and potential 

interaction with angiotensin converting enzyme 2 receptors (ACE2R)192, mechanical 

compression of lungs due to intraabdominal fat, and underlying metabolic dysfunction in 

tissues exacerbated by the enhanced metabolic dysfunction induced by cytokines193. 

However, the connection between the triumvirate - hypertension, obesity, and diabetes 

with COVID-19 is still being investigated and is a rapidly evolving area of research. 

Metabolomics has shown promise as a tool to understand the development of organ failure 

in COVID-19 and other acute illnesses by uncovering prognostic biomarkers and identifying 

metabolic alterations that may contribute to worse outcomes194. Multiple studies of the 

metabolome of human serum or plasma have demonstrated abnormalities of metabolism
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in patients with more severe disease. Other studies have shown differences in blood 

metabolite concentrations between those with mild and severe disease195. In patients who 

do survive COVID-19, those with metabolic abnormalities are at increased risk for 

developing chronic problems196,197. 

The goal of this study was to use broad spectrum untargeted metabolic profiling of blood 

plasma to differentiate healthy controls and patients with mild and severe COVID-19 

disease. Patients who had type 2 diabetes (T2D) and higher BMI tended to have more 

severe disease. We performed differential analysis to identify a pool of potential metabolic 

markers of disease severity and tested their predictive power using parsimonious random 

forest models. We found that metabolite-based models performed better than similar 

models based on known COVID-19 risk factors such as age, BMI, race, gender, and diabetic 

status metabolite, indicating their potential value for predicting COVID severity. 

 

3.2 Methods 

3.2.1 Study Population & Sample Selection  

This study was approved by the Institutional Review Board (IRBMED) at the University of 

Michigan, Ann Arbor, MI, USA. During the initial surge (April 2020) of COVID-19 admissions 

at a single tertiary care medical center, excess clinical specimens were collected from 

hospitalized patients. We selected patients who had available plasma samples collected 

on two different days. In general, the first and last samples available during hospitalization 

were used (referred to as timepoint 1 and timepoint 2 respectively). COVID-19 patients 

were separated into mild (n=73) or severe (n=132) groups. The mild group was defined as 

those individuals who were discharged from the hospital and never required intubation for 

mechanical ventilation. The severe group was defined as either those who required 

intubation and mechanical ventilation as part of their care and/or those who died during 

the hospitalization. In addition, 136 healthy controls were selected from the MGI-MEND 

(Michigan Genomics Initiative - Metabolism, Endocrinology & Diabetes) and IWMC 
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(Investigational Weight Management Clinic) cohorts, who were appropriately matched with 

the COVID-19 patients for age, gender, and race. 

Samples were processed and sent to the University of Michigan Central Biorepository for 

storage. All patients greater than 18 years old at the time of sample collection and had 

plasma samples from multiple days available for analysis were eligible for inclusion. 

Patients with any limitations on medical therapy when the samples were collected were 

excluded. 

3.2.2 Sample preparation 

Untargeted metabolomics profiling was completed by the Michigan Regional 

Comprehensive Metabolomics Resource Core (MRC)2 (www.mrc2.umich.edu), which has 

extensive experience in production and analysis of metabolomics data. Samples were 

arranged in a semi-randomized fashion so that control/COVID cases and COVID severity 

(mild/severe) were evenly distributed across batches. Samples were aliquoted for the 

untargeted metabolomics assays at the start of the project and pools (batch and global) 

were created from the individual plasma samples and treated identically to the samples in 

all subsequent steps. For a single sample batch (approx. 80-96 samples), samples were 

removed from -80 °C storage and maintained on wet ice throughout the processing steps. 

To each 50 µL sample, 200 µL of extraction solvent (1:1:1 Methanol:Acetonitrile:Acetone) 

containing internal standards was added. Samples were vortexed then allowed to incubate 

overnight at -20°C. Post incubation, the vortex step was repeated, and samples were 

centrifuged for 10 minutes at 14,000 RPM in 4° C to precipitate protein. 200 µL of 

supernatant was transferred to an autosampler vial and brought to complete dryness using 

a nitrogen blower in ambient conditions. Samples and controls were reconstituted with 100 

µL of water: methanol (8:2 by volume). 

3.2.3 Optimized LC-MS methods  

For RPLC-MS, samples were analyzed on an Agilent 1290 Infinity II / 6545 qTOF MS system 

with the JetStream Ionization (ESI) source (Agilent Technologies, Inc., Santa Clara, CA USA) 

using the Waters Acquity HSS T3 1.8 µ 50 mM column (Waters Corporation, Milford, MA). 

http://www.mrc2.umich.edu/
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Each sample was analyzed twice, once in positive and once in negative ion mode. Mobile 

phase A was 100% water with 0.1% formic acid and mobile phase B was 100% methanol with 

0.1% formic acid. The gradient for both positive and negative ion modes was as follows: 2% 

B (0 min), 75% B (20 min), 98%B (22 min), 98%B (30 min), 2% B (30.1 min) was used. The 

column was then reconditioned for 7 min with 2%B before moving to the next injection The 

flow rate was 0.46 mL/min and the column temperature was 40°C. The injection volume for 

positive and negative mode was 5 µL and 8 µL, respectively. Source parameters were: 

drying gas temperature 350°C, drying gas flow rate 10 L/min, nebulizer pressure 30 psig, 

sheath gas temp 350°C and flow 11 l/min, and capillary voltage 3500V, with internal 

reference mass correction. 

3.2.4 Metabolite Analysis  

Semi-quantitative data for known compounds is obtained by manually integration using 

Profinder v8.00 (Agilent Technologies, Santa Clara, CA.) Metabolites were identified by 

matching the retention time (+/- 0.1 min), mass (+/- 10 ppm) and isotope profile (peak 

height and spacing) to authentic standards. 

3.2.5 Statistical and Bioinformatics Data Analysis 

All data analyses were performed in R (v 4.1.1) statistical programming language and 

environment (https://www.R-project.org/). 

Multiple linear regression (MLR) was performed on base 10 log-transformed measurements 

to describe differences in metabolite abundances due to selected covariates (age, gender, 

race, BMI, and T2D) i.e., number of regression models constructed was based on the number 

of metabolites tested. The direction of association was determined based on the sign of the 

regression coefficient. The residuals from the MLR models were taken as metabolite levels 

that are adjusted for the selected covariates and were used to test for differences between 

healthy controls and patients with COVID-19 (mild and severe) disease. 

Analysis of Variance (ANOVA) and pairwise Student’s t-tests were performed to identify 

differential metabolites between healthy controls and mild and severe COVID-19 patients. 

https://www.r-project.org/
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The significance levels (p values) were adjusted for multiple hypothesis testing according 

to Benjamini and Hochberg43 at a false discovery rate (FDR) of 5%.  

Metabolites selected from differential analysis were utilized to build random forest 

classification models to compare their capability in classifying COVID-19 severity with that 

of clinical factors like age, gender, race, BMI, and diabetic status. The samples were split 

into 70% training (n = 145) and 30% test (n = 60) sets. The training data was used to 

construct the model and final model performance was validated using the test data (OOB 

error). Final model classification performance was validated through prediction of class 

labels for the test set and are reported as the area under the receiver operator characteristic 

curve. 

Partial correlation networks were constructed for 294 metabolites from the healthy controls 

(n = 136), patients with mild COVID-19 (n = 73), and patients with severe COVID-19 (n = 

132) using the Debiased Sparse Partial Correlation (DSPC) algorithm implemented in 

CorrelationCalculator109. DSPC is especially useful to estimate partial correlations in a high-

dimensional setting (n << p), under the assumption that the true connectivity among the 

metabolites is much smaller than the sample size i.e., sparse. Significance of the partial 

correlation between a pair of metabolites i.e., edges in the partial correlation network was 

defined as an FDR-adjusted p-value < 0.1. 

 

3.3 Results 

3.3.1 Study Design and Patient Demographics  

Samples were collected from patients admitted to Michigan Medicine during the initial 

surge of COVID-19. We selected 205 patients who had available plasma samples from at 

least two different days during hospitalization. The first and last samples available during 

the hospitalization were used for this analysis. COVID-19 patients were separated into mild 

or severe. Mild group (n = 73) was defined as those individuals who were discharged from 

the hospital and never required intubation for mechanical ventilation. Severe group (n = 

132) was defined as either those who did require intubation and mechanical ventilation as 
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part of their care and/or those who died during the hospitalization. The study also included 

136 control individuals with similar characteristics to the COVID-19 cohort.  

Compared to those with mild disease, patients with severe COVID-19 were more likely to 

have a higher BMI (37.0 ± 21.7 vs. 30.1 ± 9.0, p=0.002) and T2D (47.7% vs. 31.5%, p=0.021) 

(Table 3.1). Patients with severe disease were younger (56 vs. 63 years, p=0.011), and had 

a greater proportion of male gender (64 vs. 40%, p=0.003). Race did not differ significantly 

between groups. 

While effort was made to select a control cohort with characteristics similar to the COVID-

19 cohort, several significant differences were found between controls and each of the 

COVID-19 severities, potentially due to differences between the mild and severe COVID-19 

groups (Table 3.1). Compared to controls, those with mild COVID-19 were older (62.6 vs. 

56.9 years, p=0.019), had a lower BMI (30.1 vs 32.9 kg/m2, p=0.028), and were more likely 

to be diabetic (68.5% vs. 45.6%, 0=0.002). Comparing the severe COVID-19 cohort with 

controls only showed a difference in BMI, with the severe COVID-19 cohort tending to have 

a higher BMI compared to controls (37.0 vs. 32.9 kg/m2, p=0.042). 

 

Table 3. 1: Control and COVID-19 Population Demographics 

  Control (N=136) Mild (N=73) Severe (N=132) p-value 

Age (years)  

 Mean (SD) 56.8 (14.5) 62.6 (17.9) 56.2 (15.9) 0.0127 

 Median [Min, Max] 60.0 [23.0, 88.0] 64.0 [23.0, 89.0] 58.0 [20.0, 89.0]  

BMI  

 Mean (SD) 32.9 (7.82) 30.1 (9.03) 37.0 (21.7) 0.0068 

 Median [Min, Max] 32.55 [18.8, 53.8] 27.7 [16.9, 58.0] 33.4 [18.6, 21.8]  

Gender  

 Female 66 (48.5%) 44 (60.3%) 49 (37.1%) 
0.0049 

 Male 70 (51.5%) 29 (39.7%) 83 (62.9%) 

Race  

 African American 50 (36.8%) 26 (35.6%) 56 (42.4%) 
0.5341 

 Non-African American 86 (63.2%) 47 (64.4%) 76 (57.6%) 

Diabetic status  

 Diabetes 74 (54.4%) 23 (31.5%) 63 (47.7%) 
0.0093 

 No diabetes 62 (45.6%) 50 (68.5%) 69 (52.3%) 

*p-values for continuous and categorical variables correspond to ANOVA and Chi-squared tests, 

respectively 
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3.3.2 Metabolomics Analysis 

Untargeted metabolomics profiling generated a dataset that contained 8599 and 4714 

features in the positive and negative ionizations modes respectively. After data reduction 

using Binner198, there were 5298 and 3273 features in the positive and negative modes 

respectively. 294 putatively annotated metabolites were included in the analysis.  

3.3.2.1 Effect of clinical covariates on metabolome  

Since the metabolome is known to be strongly influenced by various clinical factors, we 

looked at the association of these metabolites with age, gender, BMI, race, and diabetic 

status in multiple linear regression models. At p-value < 0.05, 87 metabolites were 

associated with age, 55 with gender, 23 with BMI, 78 with race and 61 with diabetic status 

(Supplementary Table 3.1; Figure 3.1). Majority of these metabolites were lipids that 

belonged to the following classes: fatty acyls, glycerophospholipids, sphingolipids, and 

sterol lipids. Other classes of compounds included organic acids and derivatives, organo-

heterocyclic compounds, benzenoids, and nucleic acids. 

Additionally, we examined the effect of a commonly used anesthetic substance, propofol 

on plasma metabolome. In COVID patients, propofol was administered prior to intubation. 

It must be noted that all patients who received propofol were from the severe group (n= 

63). We found that 201 metabolites were associated with propofol administration (p-value 

< 0.05) (Supplementary Table 3.1; Figure 3.1). The majority of these were lipids, including 

sterols, sphingolipids, glycerolipids, glycerophospholipids and fatty acyls. 

To eliminate the influence of age, gender, race, BMI, T2D, and propofol administration, we 

constructed a linear regression model with these covariates and disease status (Control, 

mild COVID, and severe COVID). We found that there were 196 significant metabolites (p < 

0.05) between control and mild COVID groups, 234 significant metabolites (p < 0.05) 

between control and severe COVID groups, and 167 significant metabolites (p < 0.05) 

between mild and severe COVID groups.  

To build partial correlation networks, we constructed a linear regression model with age, 

gender, race, BMI, T2D, and propofol administration (excluding disease status) and used 

https://www.dropbox.com/scl/fi/8ovqwgsd56s0p0r1x8ztf/supplementary-table-1.xlsx?dl=0&rlkey=jswku4fbed81celu6ipbc0bmr
https://www.dropbox.com/scl/fi/8ovqwgsd56s0p0r1x8ztf/supplementary-table-1.xlsx?dl=0&rlkey=jswku4fbed81celu6ipbc0bmr
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the residuals from the model in subsequent analyses. We performed differential analysis on 

the same adjusted data and visualized the differential metabolites in the resulting 

networks.  
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3.3.2.2 Differential analysis  

We performed a one-way ANOVA, followed by Tukey's HSD post-hoc test to compare the 

metabolomes of the controls, mild COVID, and severe COVID populations using the first 

collected blood sample (timepoint 1). We identified 244 significant (FDR < 0.05) 

metabolites, suggesting that the difference in the levels of these metabolites was due to 

disease status without any confounding variable (Table 3.2). These were primarily fatty 

acyls (75), organic acids and derivatives (43), glycerophospholipids (33), organo-

heterocyclic compounds (23), sterol lipids (15), and benzenoids (15) (Figure 3.2).  

 

 

 

 

 

 

Figure 3.1: Chord diagrams illustrating the association of age (A), gender (B), race (C), BMI (D), diabetes 

(E), and propofol administration (F) with the metabolome in the controls and COVID-19 patients. 

Metabolites associated with propofol administration (F) are grouped into chemical classes for ease of 

visualization.  

Figure 3.2: Lollipop plot of classes of metabolites that are significantly differential between controls and 

COVID-19 patients. 
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Table 3.2: Significantly differential metabolites between controls and COVID-19 patients 

Metabolite F-statistic p-value FDR Tukey's HSD 

Pyroglutamic acid 125.43 1.58E-41 3.20E-39 Mild - Control; Severe - Control; Mild - Severe 

Sphingosine 124.88 2.17E-41 3.20E-39 Mild - Control; Severe - Control; Mild - Severe 

Tetracosenoic acid 116.96 2.22E-39 2.17E-37 Mild - Control; Severe - Control; Severe - Mild 

Maleic acid 110.66 9.70E-38 7.13E-36 Mild - Control; Severe - Control; Mild - Severe 

CAR(18:1) 97.675 3.04E-34 1.79E-32 Mild - Control; Severe - Control; Severe - Mild 

CAR(18:2) 96.56 6.18E-34 3.03E-32 Mild - Control; Severe - Control; Severe - Mild 

Sphinganine 96.081 8.39E-34 3.53E-32 Mild - Control; Severe - Control; Severe - Mild 

Piperine 95.706 1.07E-33 3.92E-32 Control - Mild; Control - Severe; Mild - Severe 

Docosatrienoic acid 80.197 2.94E-29 9.60E-28 Mild - Control; Severe - Control; Severe - Mild 

Protocatechuic acid 73.555 2.85E-27 8.38E-26 Control - Mild; Control - Severe; Severe - Mild 

MG(18:1) 72.275 6.98E-27 1.87E-25 Mild - Control; Severe - Control; Severe - Mild 

Eicosenoic acid 71.322 1.36E-26 3.34E-25 Mild - Control; Severe - Control; Severe - Mild 

Arachidic acid 66.83 3.33E-25 7.52E-24 Mild - Control; Severe - Control; Severe - Mild 

3-Methylxanthine 65.368 9.53E-25 2.00E-23 Control - Mild; Control - Severe; Mild - Severe 

CAR(16:1) 62.281 8.99E-24 1.76E-22 Mild - Control; Severe - Control; Severe - Mild 

3-Indolepropionic acid 60.527 3.26E-23 5.99E-22 Control - Mild; Control - Severe; Mild - Severe 

Docosenoic acid 58.809 1.16E-22 2.01E-21 Mild - Control; Severe - Control; Severe - Mild 

Retinoic acid 58.327 1.67E-22 2.72E-21 Mild - Control; Severe - Control; Mild - Severe 

Azelaic acid 57.048 4.33E-22 6.70E-21 Mild - Control; Severe - Control; Mild - Severe 

DG(34:1) 56.655 5.81E-22 8.54E-21 Mild - Control; Severe - Control; Severe - Mild 

Theophylline 55.838 1.07E-21 1.50E-20 Control - Mild; Control - Severe; Mild - Severe 

Phe-Trp 55.082 1.90E-21 2.54E-20 Control - Mild; Control - Severe; Severe - Mild 

CAR(16:0) 54.841 2.28E-21 2.91E-20 Mild - Control; Severe - Control; Severe - Mild 

Caffeine 54.539 2.86E-21 3.51E-20 Control - Mild; Control - Severe; Mild - Severe 

Ile-Val 54.13 3.90E-21 4.59E-20 Mild - Control; Severe - Control; Severe - Mild 

Palmitoleic acid 53.837 4.87E-21 5.51E-20 Mild - Control; Severe - Control; Mild - Severe 

Theobromine 52.962 9.49E-21 1.03E-19 Control - Mild; Control - Severe; Mild - Severe 

Ser-Leu 52.869 1.02E-20 1.07E-19 Mild - Control; Severe - Control; Mild - Severe 

Octadecatrienoic acid 51.796 2.31E-20 2.34E-19 Mild - Control; Severe - Control; Severe - Mild 

N(2)-Acetyllysine 50.822 4.89E-20 4.71E-19 Mild - Control; Severe - Control; Severe - Mild 

Nonadecenoic acid 50.803 4.96E-20 4.71E-19 Mild - Control; Severe - Control; Severe - Mild 

1,3-Dimethyluric acid 49.977 9.38E-20 8.62E-19 Control - Mild; Control - Severe; Mild - Severe 

Octadecadienoic acid 49.42 1.44E-19 1.29E-18 Mild - Control; Severe - Control; Severe - Mild 

Undecanedioic acid 48.152 3.87E-19 3.34E-18 Mild - Control; Severe - Control; Mild - Severe 

Eicosadienoic acid 47.025 9.32E-19 7.83E-18 Mild - Control; Severe - Control; Severe - Mild 

Paraxanthine 46.772 1.14E-18 9.29E-18 Control - Mild; Control - Severe; Mild - Severe 

Margaric acid 45.601 2.86E-18 2.27E-17 Mild - Control; Severe - Control; Severe - Mild 

DG(34:2) 45.093 4.26E-18 3.30E-17 Mild - Control; Severe - Control; Severe - Mild 

Myristic acid 45.012 4.55E-18 3.43E-17 Mild - Control; Severe - Control; Mild - Severe 

Pentadecylic acid 43.7 1.29E-17 9.46E-17 Mild - Control; Severe - Control; Mild - Severe 

DG(32:0) 42.829 2.58E-17 1.85E-16 Mild - Control; Severe - Control; Severe - Mild 

Behenic acid 41.939 5.25E-17 3.68E-16 Mild - Control; Severe - Control; Severe - Mild 

Ala-Leu 41.176 9.70E-17 6.63E-16 Mild - Control; Severe - Control; Mild - Severe 

2-Aminooctanoic acid 38.856 6.34E-16 4.24E-15 Control - Mild; Control - Severe; Mild - Severe 

N-Acetyl-D-tryptophan 37.802 1.50E-15 9.79E-15 Control - Mild; Control - Severe; Severe - Mild 

CAR(4:0(OH)) 37.293 2.28E-15 1.45E-14 Mild - Control; Severe - Control; Mild - Severe 

gamma-Glutamylmethionine 36.048 6.33E-15 3.93E-14 Control - Mild; Control - Severe; Severe - Mild 

DG(18:1_18:1) 36.034 6.41E-15 3.93E-14 Mild - Control; Severe - Control; Severe - Mild 
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Hydroxydecanoic acid 35.846 7.49E-15 4.48E-14 Control - Mild; Control - Severe; Severe - Mild 

Octadecatetraenoic acid 35.824 7.62E-15 4.48E-14 Mild - Control; Severe - Control; Severe - Mild 

Leu-Pro 35.749 8.11E-15 4.68E-14 Mild - Control; Severe - Control; Severe - Mild 

GMP 35.631 8.94E-15 5.06E-14 Mild - Control; Severe - Control; Severe - Mild 

N-Acetylglutamic acid 35.507 9.90E-15 5.49E-14 Mild - Control; Severe - Control; Severe - Mild 

PC(34:4) 35.438 1.05E-14 5.71E-14 Control - Mild; Control - Severe; Severe - Mild 

Ile-Pro 34.87 1.68E-14 8.97E-14 Mild - Control; Severe - Control; Severe - Mild 

1-Methylxanthine 34.692 1.95E-14 1.02E-13 Control - Mild; Control - Severe; Severe - Mild 

Glutamine 32.899 8.68E-14 4.48E-13 Control - Mild; Control - Severe; Mild - Severe 

3-Hydroxybutyric acid 32.047 1.78E-13 9.00E-13 Mild - Control; Severe - Control; Severe - Mild 

5-Hydroxy-tryptophan 31.659 2.46E-13 1.23E-12 Mild - Control; Severe - Control; Severe - Mild 

CAR(14:0) 31.491 2.84E-13 1.39E-12 Mild - Control; Severe - Control; Severe - Mild 

Tetradecadienoic acid 31.473 2.88E-13 1.39E-12 Mild - Control; Severe - Control; Severe - Mild 

CAR(18:0) 30.929 4.56E-13 2.16E-12 Mild - Control; Severe - Control; Severe - Mild 

Hyodeoxycholic acid 30.853 4.86E-13 2.27E-12 Control - Mild; Control - Severe; Mild - Severe 

N2,N2-Dimethylguanosine 30.702 5.53E-13 2.54E-12 Mild - Control; Severe - Control; Severe - Mild 

CAR(5:0(OH)) 30.59 6.08E-13 2.75E-12 Mild - Control; Severe - Control; Severe - Mild 

Docosatetraenoic acid 30.326 7.61E-13 3.39E-12 Mild - Control; Severe - Control; Severe - Mild 

Niacinamide 29.473 1.57E-12 6.89E-12 Mild - Control; Severe - Control; Mild - Severe 

Sphingosine 1-phosphate 29.332 1.77E-12 7.63E-12 Mild - Control; Severe - Control; Mild - Severe 

DG(36:3) 29.319 1.79E-12 7.63E-12 Mild - Control; Severe - Control; Severe - Mild 

CAR(9:0) 29.019 2.31E-12 9.71E-12 Control - Mild; Control - Severe; Severe - Mild 

Docosapentaenoic acid 28.758 2.89E-12 1.20E-11 Mild - Control; Severe - Control; Severe - Mild 

Acetaminophen 28.486 3.65E-12 1.49E-11 Mild - Control; Severe - Control; Mild - Severe 

Stearic acid 28.37 4.03E-12 1.62E-11 Mild - Control; Severe - Control; Severe - Mild 

Myristoleic acid 28.319 4.21E-12 1.67E-11 Mild - Control; Severe - Control; Mild - Severe 

Deoxyguanosine 28.054 5.29E-12 2.07E-11 Mild - Control; Severe - Control; Severe - Mild 

CAR(2:0) 27.904 6.01E-12 2.33E-11 Mild - Control; Severe - Control; Severe - Mild 

Phenyllactic acid 27.779 6.69E-12 2.56E-11 Mild - Control; Severe - Control; Severe - Mild 

Lauric acid 27.707 7.12E-12 2.69E-11 Mild - Control; Severe - Control; Mild - Severe 

 

Next, we explored the differences between the control group and patients with mild and 

severe COVID at timepoint 1 using pairwise Student’s t-tests and fold change analysis. We 

found that there were 73 significantly (FDR < 0.05) differential metabolites between mild 

and severe COVID groups, 192 differential metabolites between controls and mild COVID, 

and 222 differential metabolites between controls and severe COVID (Supplementary Table 

3.2, Figure 3.3 A-C). Notably, levels of several fatty acyls were higher in COVID patients, 

with severe COVID patients having higher levels of these than mild COVID patients. 

Similarly, levels of organic acids and derivatives are also higher in COVID patients. These 

results were consistent with the linear regression model that included disease status along 

with clinical covariates. 

https://www.dropbox.com/scl/fi/rzr5367p7qkba4ocs80r1/supplementary-table-2.xlsx?dl=0&rlkey=cuz3urw79239oy6ftpmfyxviv
https://www.dropbox.com/scl/fi/rzr5367p7qkba4ocs80r1/supplementary-table-2.xlsx?dl=0&rlkey=cuz3urw79239oy6ftpmfyxviv
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3.3.2.3 Network Analysis of Metabolomics Data  

To examine the relationships among differentiating metabolites and to visualize the 

metabolic changes we used a data-driven approach that uses partial correlations. The 

Debiased Sparse Partial Correlation (DSPC) algorithm implemented in the 

CorrelationCalculator109 program allows the estimation of partial correlations in a high-

dimensional setting (n << p) under the assumption that the true connectivity among the 

metabolites is much smaller than the sample size i.e., sparse. Under this assumption, DSPC 

reconstructs a graphical model and provides partial correlation coefficients and P-values 

for every pair of metabolic features in the dataset. Thus, DSPC allows discovering 

connectivity among large numbers of metabolites using fewer samples.  

We constructed a partial correlation network for 294 metabolites based on metabolomics 

measurements for the control as well as mild and severe COVID groups at timepoint 1. 

(Figure 3.4). The resulting partial correlation network contained 282 metabolites and 422 

edges with an FDR-adjusted p-value < 0.05. Two metabolites were excluded due to low 

correlation with other metabolites in the dataset.  

A. B. C. 

Figure 3.3:  Chord diagrams illustrating the differential status of the classes of metabolites based on t-

tests performed in mild vs. severe COVID (A), controls vs. mild COVID (B) and controls vs. severe COVID 

(C). The thickness of connections and sectors is proportional to the number of metabolites. Pink color 

indicates increased levels while green color indicates decreased levels of metabolites in COVID (mild or 

severe) patients. Gray color indicates metabolites that are not significantly differential. 
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Partial correlation networks have been shown to recapitulate known relationships between 

metabolites, i.e., biochemically and structurally related metabolites tend to cluster 

together. In order to visualize the resulting networks we imported them into Cytoscape127. 

Cytoscape allows to create custom visualizations displaying experimental changes in the 

network context. The levels of fatty acids and DAGs were increased in both mild and severe 

COVID. The LPEs and carnitines were increased in the severe group. The levels of several 

purines and bile acids were lower in COVID patients.  

 

 

 

3.3.2.4 Identification of metabolic markers of COVID severity 

To determine the ability of metabolomics to identify patients with severe disease, we 

constructed parsimonious random forest models to predict severe COVID-19. In order to 

avoid any potential confounding, we excluded patients who received propofol, leaving 144 

patients who were included into this analysis. We compared the predictive performance of 

traditional COVID-19 risk factors such as age, BMI, race, gender, and diabetic status to the 

73 differentially expressed metabolites in discriminating mild and severe COVID at 

timepoint 1. The samples were divided into training (70%) and test (30%) sets and random 

forest classifier was trained on the training data and its performance was measured on the 

Figure 3.4: Partial correlation network of the plasma metabolome. The nodes in the networks are colored 

based on the value of the t-statistic in the respective pairwise Student’s t-test. Nodes with a bold border 

represent significantly differential metabolites (FDR < 0.05). The thickness of the edges is based on the 

adjusted p-value of the partial correlation. Thicker edges represent greater statistical significance.  
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test data as the area under the receiver-operator curve (ROC-AUC). We found that the 

model built with the differential metabolites has a much better performance (AUC-ROC = 

0.885 ± 0.054) than the model built with clinical COVID risk factors (0.677 ± 0.084) (Figure 

3.5A). The top 20 most important variables primarily included short-chain carnitines (C3-

C5), long-chain diglycerides, phosphatidylcholines, and lysophosphatidylethanolamines. 

Interestingly, the dipeptide Phe-Phe also featured in the top 20 metabolites despite having 

a strong association with propofol administration (Table 3.3; Figure 3.5B). 

 

 

 

Table 3.3: Top 20 important metabolites in the Random Forest model ranked by the mean decrease in the 

Gini index. 

Metabolite MeanDecreaseGini MeanDecreaseAccuracy 

CAR 5:1 2.586 6.661 

CAR 5:1 OH 2.332 8.651 

MG 18:1 2.239 6.601 

DG 18:1/18:1 2.16 6.987 

DG 36:3 2.101 6.168 

CAR 3:0 2.014 6.69 

3-Methyxanthine 1.876 6.185 

CAR 4:0 3me 1.301 5.251 

CAR 4:0 1.231 4.623 

Phe-Phe 1.165 3.563 

PC 34:3 1.163 5.73 

Arachidic acid 1.084 4.192 

A B 

Figure 3.5: Predictive performance of differentially expressed metabolites and clinical COVID risk factors. 

(A) ROC of the random forest models. The orange curve represents the model constructed with COVID risk 

factors while the blue curve represents the model constructed with the differential metabolites. The area 

under the receiver-operator curve (AUC-ROC) is given as AUC ± SD. (B) Top 20 metabolites ranked by 

their contribution to classification accuracy, given by the mean decrease in the Gini index. 
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CAR 3:0 2me 0.982 2.658 

LPE 18:2 (A) 0.955 3.884 

5-Methylthioadenosine 0.89 3.918 

PC 36:3 0.853 0.783 

CAR 5:0 isomers 0.851 3.417 

LPE 18:2 (B) 0.805 2.877 

Retinoic acid 0.796 1.719 

Behenic acid 0.751 3.65 

 

3.3.2.5 Assessing metabolic difference associated with disease progression  

We compared the metabolomes of COVID patients between the two timepoints. While there 

were only 2 significantly differential (FDR < 0.05) metabolites between timepoint 1 and 2 

in patients with mild COVID, there were 44 differential metabolites across the two 

timepoints in patients with severe COVID (Table 3.4). The levels of 42 out of the 44 

metabolites decreased at timepoint 2.  

 

Table 3.4: Differential metabolites (FDR < 0.05) timepoints 1 and 2 

among patients with severe COVID-19. 

Metabolite t-statistic p-value FDR 

Phenyllactic acid 5.7147 2.96E-08 8.71E-06 

Phenylacetic acid 5.1043 6.36E-07 9.34E-05 

Phe-Phe 4.9689 1.21E-06 0.000119 

Kynurenine 4.662 4.98E-06 0.000366 

CAR(4:0(3Me)) 4.511 9.72E-06 0.000571 

Hydroxyphenyllactic acid 4.3905 1.64E-05 0.000602 

Aminobutyric acid 4.4128 1.49E-05 0.000602 

3-Hydroxybutyric acid 4.4489 1.27E-05 0.000602 

Guanine 4.2461 3.02E-05 0.000985 

CAR(5:0) isomers 4.1912 3.79E-05 0.001114 

Arachidic acid 4.0549 6.61E-05 0.001766 

Behenic acid 3.9754 9.08E-05 0.002224 

CAR(5:1) 3.9084 0.000118 0.002672 

LPE(18:2)_rp_a 3.7552 0.000213 0.004475 

Lenticin 3.6755 0.000287 0.004972 

CAR(5:0) 3.6756 0.000287 0.004972 

Pyridoxamine 3.6902 0.000272 0.004972 

Niacinamide -3.6278 0.000343 0.005604 

LPE(18:2)_rp_a_b 3.5115 0.000524 0.006417 

bis(2-Ethylhexyl)phthalic acid 3.5132 0.000521 0.006417 

Octadecadienoic acid 3.5207 0.000507 0.006417 

Lignoceric acid 3.5259 0.000498 0.006417 

Indoleacrylic acid 3.542 0.000469 0.006417 
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MG(18:1) 3.5699 0.000424 0.006417 

Tetradecadienoic acid 3.4366 0.000684 0.008045 

gamma-Glutamylmethionine 3.3916 0.000801 0.008726 

LPE(18:2)_rp_b 3.399 0.000781 0.008726 

Eicosenoic acid 3.2824 0.001168 0.011841 

DHA 3.2864 0.001152 0.011841 

Mesobilirubinogen 3.1945 0.001571 0.015395 

L-Urobilin 3.1311 0.001937 0.017259 

LPC(18:2)_rp_a 3.1316 0.001934 0.017259 

Docosenoic acid 3.1368 0.001901 0.017259 

Hydroxykynurenine 3.1174 0.002026 0.017522 

Tyrosine 3.0708 0.002358 0.019804 

Taurolithocholic acid 3.0223 0.002755 0.0225 

Ile-Val 3.0134 0.002835 0.022526 

Leucine/Isoleucine 2.9718 0.003233 0.025016 

Hyocholic acid 2.9348 0.003631 0.027375 

Isoleucine 2.9191 0.003813 0.028024 

Lysine 2.8344 0.004946 0.033815 

PC(35:2) 2.8367 0.004912 0.033815 

LPC(20:3)_rp_a 2.8488 0.004734 0.033815 

2-Deoxy-glucose 2.8042 0.005419 0.036207 

Thyroxine -2.7043 0.007289 0.038012 

Hippuric acid 2.7006 0.00737 0.038012 

DG(36:3) 2.7007 0.007367 0.038012 

Cytidine 2.7027 0.007324 0.038012 

Eicosadienoic acid 2.706 0.007253 0.038012 

Margaric acid 2.712 0.007128 0.038012 

LPC(18:2)_rp_a_b 2.7129 0.007109 0.038012 

5-Hydroxy-tryptophan 2.7333 0.006694 0.038012 

LPC(16:0)_rp_a 2.7404 0.006555 0.038012 

Docosapentaenoic acid 2.7419 0.006526 0.038012 

Nonadecenoic acid 2.7431 0.006502 0.038012 

Sphingosine 2.7455 0.006456 0.038012 

SM(d32:1) 2.7612 0.006164 0.038012 

Pyroglutamic acid 2.6496 0.008544 0.043309 

2-Hydroxy-3-methylbutyric acid 2.605 0.009707 0.048372 

DG(18:1_18:1) 2.5922 0.010067 0.049327 

 

3.4 Discussion 

This study investigated changes of plasma metabolome of patients with mild and severe 

COVID-19, compared to healthy controls. In our patient population the incidence of type 2 

diabetes was higher in the severe group compared to the group who had mild COVID-19. 

Patients with severe COVID-19 had higher BMI. It has been shown that certain chronic 

comorbidities, such as hypertension, cardiovascular disease, obesity, diabetes, and kidney 
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disease, are highly prevalent in people with COVID-19. While these comorbidities do not 

appear to increase the risk of developing COVID-19, they are associated with an increased 

risk of a more severe case of the condition as well as mortality199. To account for the 

influence of age, race, gender, BMI, T2D and propofol administration, we built a multiple 

linear regression model. We found that 160 metabolites were significantly associated with 

one or more covariate. We also found that the administration of propofol induces profound 

metabolic changes especially affecting lipid metabolism (201 out of 292 metabolites were 

associated with propofol with p-value < 0.05). Adjusting the data for these factors allowed 

us to focus on metabolic changes associated with disease severity. 

We found that several classes of lipids, including fatty acids and acylcarnitines were 

increased in COVID patients, especially in the severe group. This is consistent with previous 

findings by Thomas et al. who also found that these were elevated in patients with COVID-

19. Further, these elevations were often more pronounced in older patients and those with 

higher levels of IL-6200. Several other studies have made similar observations with regard 

to acylcarnitines and fatty acid levels with COVID-19201,202. These observations may reflect 

an inability of these patients to mount an adequate metabolic response203. Carnitine is vital 

for moving long-chain fatty acids into the mitochondria to undergo beta-oxidation and 

dysregulation of this process could cause an increase in the plasma concentrations of these 

compounds204. When acylcarnitines cannot be oxidized in the mitochondria they can be 

exported from the cell into the circulation205. In contrast to acylcarnitines we found that the 

level of L-carnitine was lower in both COVID groups.  

The majority of plasma bile acids were lower in COVID patients than in controls. This could 

be seen at odds with the common observation that bile acids and other products normally 

excreted by the liver tend to accumulate in critically ill patients206. However, adjusted levels 

of taurolithocholic acid were elevated in our study and this compound was the only primary 

bile acid that was associated with COVID-19 severity. The other bile acids that were 

decreased in both mild and severe patients were secondary bile acids, meaning they were 

all dehydroxylated by gut bacteria and subsequently resorbed into the blood via the 

enterohepatic circulation. A similar pattern was recently noted in patients with acute 
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respiratory response distress syndrome in which primary bile acids increased early in the 

course of the disease but secondary bile acids levels in the serum remain unchanged207. 

Also, plasma concentrations of secondary bile acids may have a direct role in the outcome 

of patients with COVID-19 since it has been postulated that secondary bile acids, such as 

chenodeoxycholic and ursodeoxycholic acid, may bind SARS-CoV-2 to angiotensin-

converting enzyme 2, preventing it from infecting cells208–210. 

Tetracosenoic acid, also known as nervonic acid, was one of the top 5 differential 

metabolites both in mild and severe COVID groups. Previous studies have shown 

tetracosenoic acid to have a protective effect for patients with metabolic disorders211. 

Thyroxine was also lower in both disease groups in our study. This is consistent with other 

studies, including a metanalysis, which found that low thyroxine levels were associated 

with hospital mortality212.  

Next, we tested the ability of metabolites to identify patients with more severe disease. We 

found that the metabolites were much better than patient characteristics at identifying 

individuals with more severe disease with the performance of the random forest model 

having an AUC of 0.885. This suggests that metabolic alterations play a significant role in 

the early response to COVID-19 and support the use of metabolomics to uncover the 

mechanisms of these diseases. This is in line with other studies that have shown that the 

metabolome of patients with COVID-19 to be strongly predictively of disease severity195. 

While not addressed in this study, others have also demonstrated that metabolomic profiles 

may be able to identify patients at risk for developing severe disease when measured prior 

to infection213.  

Several limitations of this study should be considered when interpreting the results. First, 

the onset of disease was unknown for this study population. Some patients may have had 

symptoms for days before being admitted to the hospital while others may have 

experienced a rapid progression of their symptoms that necessitated hospitalization. This 

is a common problem in the study of acute infections and related sequelae such as sepsis 

and septic shock. The inclusion of two timepoints for each COVID-19 subjects allows some 

identification and features that are important early or late in disease. However, no baseline 
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exists for subjects and the exact date of infection with SARS-CoV-2 or the timing of 

symptoms is not available for the study population. Second, as is true with any 

retrospective study, a lack of randomization means that results could be biased by any 

unmeasured confounds. Third, these subjects were recruited during the early stages of the 

COVID-19 outbreak. Therefore, vaccines and treatments that are currently in common use 

were being used. This limits applicability of findings to current patients. 

In conclusion, the plasma metabolome of patients with COVID-19 can be used to predict 

disease severity. Future studies are needed to determine if these relationships hold true 

with recently developed antiviral treatments and in other similar situations such as 

bacterial and fungal sepsis.
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CHAPTER IV 

Body Mass Index Associates with Amyotrophic Lateral Sclerosis 

Survival and Metabolomic Profiles 

 

 

4.1 Introduction 

Amyotrophic lateral sclerosis (ALS) is a very rare and unpredictable neurological disease 

that causes progressive loss of muscle function and leads to loss of life. Currently, there are 

medications that slow progression but there are no lifesaving therapies. ALSdiagnosis is 

preceded by a pre-symptomatic phase, characterized by initiation of the disease process 

but lacking pronounced clinical symptoms 214–216. ALS patients frequently suffer from a rapid 

decrease in body mass index (BMI) and the rate of loss early in the disease course is a 

strong prognostic factor217. Therefore, BMI loss may reflect an early and pre-symptomatic 

manifestation of disease. Indeed, individuals with ALS develop BMI loss many years before 

symptom onset218. Additionally, lower BMI earlier in life may both increase ALS risk 218–222 

and decrease ALS survival 218,223.  

BMI decreases in ALS patients are linked to lower energy intake from dysphagia and higher 

energy expenditure224,225, including hypermetabolism, altered glucose and lipid metabolism, 

and mitochondrial dysfunction226. Perturbations in metabolism in ALS are supported by

The materials presented in this chapter have been accepted for publication as: Stephen 

A Goutman, Jonathan Boss, Gayatri Iyer, Hani Habra, Masha G Savelieff, Alla Karnovsky, 

Bhramar Mukherjee, Eva L Feldman (2022). “Body mass index associates with 

amyotrophic lateral sclerosis survival and metabolomic profiles”. Muscle and Nerve. this 

Chapter also includes the unpublished data on the association of BMI-related metabolic 

modules with ALS survival. 
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correlations in basic lipid profiles with risk and outcomes. Increased low-density lipoprotein 

cholesterol (LDL-C) and apolipoprotein B levels years prior raise risk of ALS onset227 or at 

diagnosis correlate with longer ALS survival228. However, basic lipid profiles do not capture 

the full spectrum of metabolic changes that occur in the disease. Rather, the metabolome 

and lipidome, the cumulative profile of all metabolites and lipids, may more 

comprehensively reflect the metabolic state. Indeed, metabolomics profiles correlate with 

BMI229–231 and disease phenotypes, such as cardiometabolic risk229,230. Metabolomics 

signatures may one day be useful in combination with BMI as predictors of disease 

outcomes229. 

However, the correlation of BMI with metabolomics profile and disease outcomes has not 

been investigated in ALS. Thus, our goal in this current study was to leverage our 

case/control study to examine trends in BMI trajectory in ALS versus control participants 

correlated to survival and metabolomics profile. 

 

4.2 Methods 

4.2.1 Participants and Samples 

Recruitment and data collection procedures are published232–235. Briefly, all patients seen at 

the Pranger ALS Clinic at University of Michigan with an ALS diagnosis, age > 18 years, and 

ability to consent in English were asked to participate. Neurologically healthy controls, 

recruited through population outreach, completed the same procedures. All participants 

provided oral and written informed consent and the study was approved by the Institutional 

Review Board. Demographic characteristics and available prior heights and weights from 

the medical records of the participants were obtained, as were ALS disease characteristics 

such as Revised El Escorial criteria (rEEC)236. Participants were asked to self-report height 

in feet and inches and weight in pounds 10 years ago, 5 years ago, and at the present time. 

For ALS participants, present weight was typically equivalent to weight at diagnosis since 

enrollment occurred shortly after diagnosis. BMI was calculated from height and weight as 

follows: 𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)/[ℎ𝑒𝑖𝑔ℎ𝑡(𝑚)]2 237. ALS participants with an interval of more than 5 
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years from symptom onset to a diagnosis were not included in the analysis as the goal was 

to investigate pre-symptomatic differences in BMI. A subset of participants provided 

plasma for metabolomics analysis, as published238,239. 

4.2.2 Descriptive Analysis 

Descriptive statistics were calculated for demographic characteristics including age, sex, 

onset segment, and disease duration (time from symptom onset to diagnosis). Study 

population differences were compared between BMI groups by analysis of variance tests 

and chi-square tests. Lin’s concordance correlation coefficient quantified agreement 

between available self-reported and measured BMIs. 

4.2.3 BMI Progression Analysis and Group Assignment 

Generalized estimating equations (GEE) with unstructured correlation structure assessed 

differences in BMI changes for ALS and control participants, while accounting for within-

participant correlation between self-reported BMI measurements240. The GEE outcome was 

self-reported BMI, and the covariates were interaction terms between ALS/control status 

and the three time points adjusted for age and sex at study entry. Differences in average 

BMI rate of change between ALS and controls were assessed with the Wald test and 

performed with the R geepack package241. 

After subtracting self-reported BMI 10 years prior to consent from all timepoints, k-means 

clustering for longitudinal data (kml R package242) grouped ALS cases based on their self-

reported changes in BMI, for use in ALS survival models. This subtraction step ensured that 

the k-means procedure clustered exclusively on BMI changes over time, rather than 

differences in baseline BMI. After considering 2-6 clusters, the selected number of clusters 

maximized the Calinski and Harabasz criterion243 a measure of between cluster variation 

relative to within-cluster variation for longitudinal data244. The distance metric used for 

clustering was Euclidean distance with Gower adjustment244. 
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4.2.4 Survival Analysis 

Kaplan Meier plots of survival from diagnosis by cluster were produced. Cox proportional 

hazards models determined associations between cluster groups and ALS survival, defined 

as the time from diagnosis to death. Associations were adjusted for sex, age, baseline BMI 

(i.e., 10 years prior), onset segment, diagnosis rEEC, and time from symptom onset to 

diagnosis. Proportional hazards assumptions were checked using global and individual 

Schoenfeld tests with graphical assessment of the rescaled Schoenfeld residuals over time. 

Due to proportional hazards violations in some models, accelerated failure time (AFT) 

models were constructed. 

4.2.5 Sensitivity Analyses 

Two sensitivity analyses were performed: (i) As some participants did not provide BMI data 

during the study period, a sensitivity analysis for missing data was performed with inverse 

probability weighting and models were rerun using this weighted dataset; (ii) As BMI is an 

ALS prognostic factor, the participant’s reference/baseline BMI (10 years prior to study 

entry, i.e., 10-year BMI) and clustering trajectory by groupings was captured. BMI was 

divided by tertiles, and clustering provided three trajectories creating a total of 9 groups, 

designated as cluster*BMI groups. 

4.2.6 Missing Data 

To handle missing BMI trajectories, inverse probability weighted complete data analysis 

was performed for all models described in the methods, since BMI trajectories for almost 

all participants were either fully observed (381 cases, 266 controls) or completely missing 

(306 cases, 30 controls). Weights were constructed by modeling the probability of having 

an observed BMI trajectory with case and control stratified generalized additive models 

using the R mgcv package245. Stratification by case or control status was performed so that 

Revised El Escorial criteria (rEEC) at study entry, time between symptom onset and 

diagnosis, and onset segment could be included as covariates in the generalized additive 

model. Both generalized additive models adjusted for age and sex at study entry. The 

weights were calculated by inverting the estimated probability of having an observed BMI 
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trajectory obtained from the generalized additive models246. The proposed weighting 

scheme is an alternative strategy to multiple imputation for handling missing data, where 

individuals are weighted by how likely they are to have a missing BMI trajectory based on 

their age, sex, and ALS clinical characteristics246. 

4.2.7 Metabolomics Data Analysis 

Non-fasting plasma samples from ALS participants were analyzed by Metabolon 

(Morrisville, NC) and previously published as case-control analyses238,239. Samples were run 

in two separate batches and batch effect was corrected by Z-normalization. Within each 

batch, each metabolite's values were mean centered and scaled by the standard deviation 

to produce a normal distribution (i.e., autoscaled). Then, datasets were merged by shared 

compound IDs, and adjusted by age and sex.  

Student’s t-tests were performed to identify differential metabolites between the three BMI 

trajectory groups (decreasing, flat, and increasing). Pearson’s correlations were calculated 

between metabolites and current BMI. In both tests, the statistical significance was 

determined using a false discovery rate (FDR)-adjusted p-value < 0.05. Lasso regression 

was performed using the R package glmnet247 to select metabolites associated with BMI 

trajectory. Lasso138 (least absolute shrinkage and selection operator or Lasso) is a 𝑙1-

regularized linear regression model that is used for covariate selection when the number of 

covariates (in this case, metabolites) is much larger than the available sample size. The 𝑙1-

penalty shrinks the coefficients of uninformative covariates to zero, thereby excluding them. 

Ten-fold cross-validation was performed to select the tuning parameter that minimized 

cross-validation error. The final model was generated by re-fitting the lasso model with 

the selected tuning parameter value. 

Next, we constructed partial correlation networks from the metabolic profiles of ALS 

participants to infer direct metabolic interactions under disease condition. Partial 

correlation is the conditional dependence between a pair of variables, given all the other 

variables. This eliminates potentially spurious indirect associations between metabolites. 

Prior studies have demonstrated that metabolic modules derived from correlation networks 
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contain biochemically and functionally related metabolites105,126,248. We utilized the 

Debiased Sparse Partial Correlation (DSPC) algorithm implemented in the 

CorrelationCalculator109 program that allows the estimation of partial correlations in a 

high-dimensional setting (𝑛 ≪ 𝑝), as in the case in this study. The assumption made is that 

the true connectivity among the metabolites in a biological context is much smaller than 

the sample size i.e., the connectivity is sparse. Significance of the partial correlation 

between a pair of metabolites i.e., edges in the partial correlation network was defined as 

an FDR-adjusted p-value < 0.1. 

The partial correlation network was then clustered using a consensus clustering249 approach 

to obtain densely connected metabolic modules. Consensus clustering integrates multiple 

graph-clustering solutions, thereby generating more robust modules. Consensus clustering 

employs the following seven graph clustering algorithms implemented in the igraph R 

package (https://igraph.org/): cluster_edge_betweenness(), 

cluster_fast_greedy(), cluster_infomap(), cluster_label_prop(), 

cluster_leading_eigen(), cluster_louvain(), cluster_walktrap(). The final 

module assignment is decided based on the consensus of the graph partitions from each of 

these algorithms. 

Next, we tested the association between the metabolic modules and BMI clusters 

(increasing and decreasing BMI) in group-penalized lasso (group lasso) regression models 

using the gglasso R package. Group lasso250 is a special case of lasso regression where 

covariate-selection is performed on a group-level rather than on individual covariates, 

under a sparse setting. Here, the grouping structure information is provided by the 

metabolic module assignment of the metabolites. Mathematically, group lasso solves the 

following optimization problem: 

min
𝛽∈𝑅𝑝

(‖𝑦 −  ∑ 𝑋𝑙𝛽𝑙

𝐿

𝑙=1

‖

2

2

+  𝜆 ∑ √𝑝𝑙‖𝛽𝑙‖2

𝐿

𝑙=1

) 

Here, 𝑦 is the response vector (that can be a continuous or binary variable) consisting of 𝑁 

observations, 𝑋 is the design matrix with dimensions 𝑁 𝑥 𝑝, where 𝑝 is the number of 

https://igraph.org/
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covariates divided into 𝐿 groups, 𝑝𝑙 is the number of covariates in group 𝑙, with 𝛽𝑙 being the 

corresponding vector of beta coefficients. 𝜆 is the tuning parameter that controls the degree 

of sparsity of the beta coefficients. Ten-fold cross-validation was performed to select the 

tuning parameter 𝜆∗ that minimizes cross-validation error. The final model was selected by 

re-fitting the group lasso model with 𝜆∗. 

All analyses were performed using R statistical software version 4.0.2. 

 

4.3 Results 

4.3.1 Participants 

For those with observed BMI at all three timepoints, ALS participants represented a typical 

patient population, according to onset age, distribution of segment onset, among other 

variables. Controls (n=266) were slightly younger than cases (n=381) (61.3 vs. 64.9 years p 

< 0.001) (Table 4.1). Two ALS participants with an uncertain onset segment and one control 

with a BMI greater than 100 kg/m2 labeled as an outlier were removed from subsequent 

analysis. Demographics for ALS and control participants with missing data are detailed in 

Table 4.2. The analysis results for missing data for BMI trajectories in ALS versus control 

participants were similar to the analysis of participants with complete data. The differences 

in BMI at -5 years versus 0 years was 1.75 kg/m2 for ALS cases (95% CI: 1.32 kg/m2 to 2.19 

kg/m2; p = 3x10-15) and 0.00 kg/m2 for controls (95% CI: -0.39 kg/m2 to 0.38 kg/m2; p = 1) 

for the analysis of missing data. 

 

Table 4.1: Participant Demographics 

Covariate 
Overall 

(n=647) 

ALS cases 

(n=381) 

Controls 

(n=266) 
P-Value 

Age at survey consent 

(years) 
63.3 (56.5-69.9) 64.9 (57.6-71.4) 61.3 (55.2-68.2) <0.001 

Sex    0.143 

  Female 317 (49.0) 177 (46.5) 140 (52.6)  

  Male 330 (51.0) 204 (53.5) 126 (47.4)  

Last contact event    NA 

  Death  251 (64.9) NA  

  Censored  130 (34.1) NA  

Original and/or Revised 

El Escorial criteria 
   NA 
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  Possible/Suspected  53 (13.9) NA  

  Probable, LS  104 (27.3) NA  

  Probable  123 (32.3) NA  

  Definite  101 (26.5) NA  

Onset segment    NA 

  Bulbar  113 (29.7) NA  

  Cervical  126 (33.1) NA  

  Lumbar  142 (37.3) NA  

Time between symptom 

onset and diagnosis 

(years) 

 1.01 (0.64-1.66) NA NA 

For continuous variables, median (25th – 75th percentile); for categorical variables, N (%). P-values for 

continuous and categorical variables correspond to analysis of variance tests and chi-squared tests, 

respectively.  

ALS, amyotrophic lateral sclerosis; LS, laboratory supported; NA, not applicable. 

 

 

 

 

Table 4.2: Participant Demographics with Missing BMI Data 

Covariate 
Overall 

(n=336) 

ALS cases 

(n=306) 

Controls 

(n=30) 
P-Value 

Age at entry (years) 61.7 (53.7-69.7) 62.1 (54.3-70.8) 59.4 (51.1-62.6) 0.008 

Sex    0.140 

  Female 164 (48.8) 145 (47.4) 19 (63.3)  

  Male 172 (51.2) 161 (52.6) 11 (36.7)  

Last contact event    NA 

  Death  223 (72.9) NA  

  Censored  83 (27.1) NA  

Revised El Escorial criteria    NA 

  Possible/Suspected  31 (10.1) NA  

  Probable, LS  69 (22.5) NA  

  Probable  98 (32.0) NA  

  Definite  108 (35.3) NA  

Onset segment    NA 

  Bulbar  97 (31.7) NA  

  Cervical  98 (32.0) NA  

  Lumbar  111 (36.3) NA  

Time between symptom onset 

and diagnosis (years) 
 0.99 (0.64-1.54) NA NA 

BMI, body mass index; LS, laboratory supported; NA, not applicable. 

 

4.3.2 BMI Trends in Cases Versus Controls 

The Lin’s concordance correlation coefficient examined whether self-reported BMI was 

similar to measured BMI abstracted from medical records. Abstracted BMI was available 

at the -5 and 0 timepoints. The Lin’s concordance correlation coefficient for the self-

reported BMI at -5 years was 0.952 and at enrollment was 0.966, indicating participants 
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with previously measured BMIs accurately recalled their weights, therefore minimizing 

recall bias. Thus, self-reported weights were used due to availability of a larger sample 

size. Lin’s concordance correlation coefficient showed consistency between self-reported 

and measured BMI values. The mean BMI (±SD, number of observations (n)) for ALS cases 

at -10, -5, and 0 years was: 27.3 kg/ m2 (±5.19, n=373), 28.0 kg/m2 (±5.35, n=377), and 

26.3 kg/m2 (±4.84, n=381), respectively. For controls these were 26.5 kg/m2 (±4.96, n=265), 

27.6 kg/m2 (±5.51, n=266), and 27.6 kg/m2 (±5.36, n=266), respectively. ALS and control 

participants reported BMI increases in the 10- to 5-year period prior to study entry (Figure 

4.1A). Unlike controls, however, ALS cases had an overall BMI decrease in the 5-year prior 

to study entry time window. The age- and sex-adjusted GEE model showed average ALS 

BMI change from -5 to 0 years was 1.75 kg/ m2 (95% CI: 1.35 kg/m2 to 2.16 kg/m2; p < 1x10-

17) but was only 0.02 kg/ m2 for controls (95% CI: -0.35 kg/ m2 to 0.40 kg/ m2; p = 0.9). Thus, 

ALS participants report BMI loss occurring 5 years before diagnosis/study entry, while 

control participants had no significant BMI change during the same timeframe. The kml 

algorithm applied to the ALS participant BMI trajectories generates 20 random starting 

conditions to ensure that the clustering results are robust to various initial algorithmic 

configurations. Of the 20 random starting conditions and across the different numbers of 

candidate clusters, the maximal value of the Calinski and Harabasz criterion corresponded 

to one of the three cluster partitions. Therefore, the analysis proceeded with three clusters. 

The three BMI trajectory clusters can be qualitatively described as: participants with an 

overall decrease in BMI (decrease group), participants with an overall slight decrease in 

BMI (mild decrease group), and participants with an overall increase in BMI (increase 

group) (Figure 4.1B, Table 4.3).  
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Table 4.3: Participant Demographics by Cluster 

 BMI Trajectory 

 
Decrease 

(n=77) 

Mild decrease 

(n=222) 

Increase 

(n=74) 

Age at entry (years) 67.9 (62.4-71.6) 65.0 (57.7-72.0) 58.3 (53.1-66.6) 

BMI at entry 25.3 (21.6-27.8) 25.1 (21.9-27.7) 30.7 (27.4-34.0) 

BMI 5 years before entry 30.3 (26.6-34.5) 26.2 (23.5-29.1) 28.1 (25.9-32.0) 

BMI 10 Years before entry 31.3 (28.3-36.5) 25.7 (23.4-28.2) 25.2 (23.0-29.3) 

Follow-up time (years) 1.25 (0.75-1.84) 1.87 (1.06-2.97) 1.62 (1.29-2.67) 

Last contact event    

  Death 55 (71.4) 141 (63.5) 49 (66.2) 

  Censored 22 (28.6) 81 (36.5) 25 (33.8) 

Sex    

  Female 35 (45.5) 93 (41.9) 44 (59.5) 

  Male 42 (54.5) 129 (58.1) 30 (40.5) 

El Escorial Criteria    

  Possible/Suspected 14 (18.2) 31 (14.0) 8 (10.8) 

  Probable 26 (33.8) 74 (33.3) 22 (29.7) 

  Probable, LS 16 (20.8) 61 (27.5) 25 (33.8) 

  Definite 21 (27.3) 56 (25.2) 19 (25.7) 

Onset segment    

Figure 4.1 (A) BMIs for ALS and Control Participants. Spaghetti plots of BMI calculated from self-

reported height and weight, for ALS and control participants at 10 years prior, 5 years prior, and at study 

entry. Blue line indicates the mean BMI. (B) ALS BMI Clusters at -10, -5, and 0 Years. Longitudinal BMI 

trajectory cluster for ALS participants shows three groups labeled as “increase” (19.8% of participants, 

blue line, C), “mild decrease” (59.5% of participants, red line, A), and “decrease” (20.6% of participants, 

green line, B). Individual BMI trajectories are shown by spaghetti plot (black lines). Y-axis shows 

difference of BMI at 10 years prior, 5 years prior, and 0 years prior compared to BMI at 10 years prior 

(reference). 
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  Bulbar 25 (32.5) 67 (30.2) 18 (24.3) 

  Cervical 26 (33.8) 80 (36.0) 17 (23.0) 

  Lumbar 26 (33.8) 75 (33.8) 39 (52.7) 

Time between symptom onset and 

diagnosis (years) 
1.03 (0.60-1.75) 1.00 (0.63-1.62) 1.03 (0.73-1.53) 

Number of participants with 

metabolomics profiles 
37 133 37 

BMI, body mass index; LS, laboratory supported. 

 

4.3.3 Survival Analysis 

Unadjusted Kaplan-Meier survival analysis showed decreased absolute median survival 

times for the decrease BMI cluster (Figure 4.2A). Some Cox models violated proportional 

hazards by Schoenfeld residuals, so AFT models were constructed. After adjusting for age, 

sex, baseline BMI (i.e., 10 years prior), onset segment, rEEC, and time from symptom onset 

to diagnosis, participants in the decrease BMI cluster had a 27.1% shorter survival (95% CI: 

-42.6% to -7.3%; p = 0.010) versus the mild decrease group (Figure 4.2B, Table 4.4). Results 

were similar in missing BMI data sensitivity analyses with the accelerated failure time (AFT) 

models for participants with missing data (Figure 4.3, Table 4.5) showed a 25.4% reduction 

in survival for participants in the decrease BMI group (95% CI: -37.6% to -10.8%, p = 0.001).  
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Table 4.4: Accelerated Failure Time Model 

 Percent Change in Survival LCL UCL P-Value 

Age at entry (years) -1.0 -1.9 -0.2 0.016 

Symptom onset to diagnosis (log years) 17.3 3.3 33.2 0.014 

Baseline BMI -1.0 -2.7 0.8 0.278 

Decrease BMI trajectory -27.1 -42.6 -7.3 0.010 

Increase BMI trajectory -7.1 -25.2 15.5 0.509 

Male 0.1 -16.1 19.4 0.994 

Cervical onset 41.0 13.0 76.0 0.002 

Lumbar onset 21.3 -1.4 49.3 0.068 

rEEC Possible/Suspected 88.3 41.9 149.7 0.000 

rEEC Probable 23.4 -0.7 53.3 0.058 

rEEC Probable, laboratory supported 61.6 28.5 103.1 0.000 

BMI, body mass index; LCL, lower confidence limit; rEEC, revised El Escorial criteria;  

UCL, upper confidence limit. 

 

Figure 4.2: (A) Unadjusted Kaplan-Meier Survival Plots for BMI Cluster Groups. Kaplan-Meier survival 

plots for the body mass index (BMI) cluster groups. Median survival for the decrease group (red line) is 

1.70 years. Median survival for the mild decrease group (green line) is 2.33 years. Median survival for the 

increase group (blue line) is 2.16 years. Difference in survival among all groups is significant (p = 0.00012). 

Difference in survival between decrease and increase groups is also significant (p = 0.0052). (B) 

Accelerated Failure Time Model Plots. Covariate adjusted survival curves corresponding to the 

unweighted accelerated failure time model with BMI cluster groups. The estimated median survival time 

is 1.7 years for the decrease BMI group, 2.33 years for the mild decrease BMI group, and 2.16 years for 

the increase BMI group. 
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Table 4.5: Accelerated Failure Time Model Sensitivity Analysis for Missing Data 

 Percent Change in Survival LCL UCL P-Value 

Age at entry (years) -1.0 -1.5 -0.4 0.001 

Symptom onset to diagnosis (log years) 17.0 6.6 28.4 0.001 

Baseline BMI -0.9 -2.2 0.4 0.157 

Decrease BMI trajectory -25.4 -37.6 -10.8 0.001 

Increase BMI trajectory -7.3 -20.8 8.6 0.347 

Male -2.9 -14.7 10.5 0.653 

Cervical onset 45.5 23.7 71.0 0.000 

Lumbar onset 19.0 2.3 38.5 0.024 

rEEC Possible/Suspected 92.1 55.1 137.9 0.000 

rEEC Probable 23.2 5.6 43.8 0.008 

rEEC Probable, laboratory supported 62.3 37.5 91.5 0.000 

BMI, body mass index; LCL, lower confidence limit; rEEC, revised El Escorial criteria;  

UCL, upper confidence limit. 

 

4.3.4 Metabolic modules associated with BMI trajectories. 

Metabolomic differences by BMI cluster (decrease, mild decrease, increase) were 

investigated for the 207 participants with available previously published untargeted 

metabolomics238,239. The final curated dataset included 640 metabolites from plasma 

collected near the time of diagnosis. Differential analysis revealed no significant 

Figure 4.3: Accelerated Failure Time Model Plots for Incomplete Data Analysis. Covariate adjusted 

survival curves corresponding to the inverse probability weighted accelerated failure time model with the 

body mass index (BMI) cluster groups. The estimated median survival time for the decrease BMI group is 

1.74 years, 2.16 years for the mild decrease BMI group, and 2.33 years for the increase BMI group. 
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metabolites between decrease vs. mild decrease and increase vs. mild decrease groups. 

Only two metabolites (1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) and behenoyl 

dihydrosphingomyelin (d18:0/22:0)) were significantly differential between the decrease 

and increase BMI groups. However, lasso regression did select nine metabolites that 

associated with the increase (odds ratio > 1) or decrease (odds ratio < 1) BMI trajectory 

groups (Table 4.6). 

 

Table 4.6: Metabolites Associated with BMI Trajectory Groups from Lasso Regression Model 

Metabolite Odds Ratio BMI Cluster 

Behenoyl dihydrosphingomyelin (d18:0/22:0) 1.432 Increase 

1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) 0.719 Decrease 

Glycocholate 1.182 Increase 

N6-carboxymethyllysine 1.166 Increase 

N-acetylglycine 0.891 Decrease 

S-methylcysteine sulfoxide 0.949 Decrease 

Myristoyl-linoleoyl-glycerol (14:0/18:2) 1.049 Increase 

Undecanedioate (C11-DC) 1.035 Increase 

Allantoin 1.026 Increase 

 

The partial correlation network was constructed using recently published data from 349 

ALS participants239, of whom 207 were also in this analysis. The utilization of additional 

samples generated a more informative network since partial correlation methods are 

sensitive to sample size. The resulting partial correlation network contained 600 

metabolites connected by 887 edges (FDR-adjusted p < 0.1), of which 31 had a negative 

partial correlation coefficient. Consensus clustering identified 26 metabolic modules 

spanning 555 highly connected metabolites. The remaining 45 metabolites did not cluster 

due to weak correlations leading to poor connectivity. Metabolic module size ranged from 

5 to 66 metabolites. 

Group lasso selected eight modules containing 152 metabolites, which associated with the 

decrease and increase BMI clusters (Figure 4.4, Table 4.7, Table 4.8), with odds ratios (OR) 

ranging from 0.92 to 1.1 (Table 4.9). The largest module 1 (47 metabolites) included 

ceramides and sphingomyelins, of which 36 had OR > 1, indicating associations with the 

increase BMI cluster. The second largest module 2 (30 metabolites) included primary and 
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secondary bile acid metabolites, taurine and its derivatives, AMP, ADP, and sterols. Primary 

bile acids associated with the increase BMI cluster (OR > 1), while most secondary bile 

acids and taurine metabolites associated with the decrease BMI cluster (OR < 1). Module 3 

(22 metabolites) primarily contained amino acid and nucleotide metabolites, half of which 

associated with the decrease BMI cluster. Module 4 (15 metabolites) was composed of 

plasmalogens, lyso-plasmalogens, and phosphatidylcholines, 11 of which associated with 

the decrease BMI cluster. Module 5 (13 metabolites) had mostly acyl carnitines, acyl amino 

acids, and some other amino acid metabolites, which mostly associated with the decrease 

BMI cluster. The remaining smaller module 6 (13 metabolites; sugar and nucleotide 

metabolites, xenobiotics, amino-sugar), module 7 and module 8 (6 metabolites each; 

xenobiotics, cofactors, vitamins, modified amino acids) contained various metabolites.  
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Table 4.7: Metabolic Modules Associated with BMI Trajectory Groups from Group Lasso Regression Model 

Metabolic 

module 

Number of nodes 

(metabolites) 

Number of 

edges 

Average 

degree1 
Metabolic pathways 

1 47 88 3.76 Ceramides, Sphingomyelins 

2 30 41 1.367 
Bile Acid metabolism, Amino Acid and 

Purine metabolism  

3 22 23 2.09 Amino Acid, Nucleotide metabolism 

4 15 21 2.8 
Plasmalogens, Lyso-plasmalogens, 

Phosphatidylcholines 

5 13 18 2.77 
Fatty Acid metabolism (Acyl 

carnitines, Acyl Amino Acids) 

6 13 12 1.85 
Carbohydrate, Amino Acid, Nucleotide 

metabolism 

Figure 4.4: Metabolic Modules Associated with BMI Trajectory. Eight metabolic modules containing 152 

total metabolites associated with BMI trajectory in group lasso regression models. Node color indicates 

odds ratio (OR) from group lasso; OR>1 indicates association with the increase BMI cluster (red node), 

OR<1 indicates association with the decrease BMI cluster (blue node). Nodes with a bold border 

significantly correlate with current BMI (FDR < 0.05). Node shape indicates the sub-pathway a metabolite 

belongs to. Solid edge between metabolites indicates positive partial correlation coefficient, dashed edge 

indicates negative partial correlation coefficient.  
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7 6 6 2 
Vitamin A metabolism, Amino Acid 

metabolism 

8 6 6 2 
Benzoate metabolism, Amino acid 

metabolism 
1Average degree represents the average number of connections each node (metabolite) makes within the 

module and indicates the network/module density. 

 

 

Table 4.8: Number of Metabolites in Increase and Decrease BMI Cluster by Module and Pathway 

Module Super-pathway Sub-pathway Decrease BMI Increase BMI 

Module 1 Lipid Ceramide Pes 1 0 

Module 1 Lipid Ceramides 1 4 

Module 1 Lipid Dihydroceramides 0 1 

Module 1 Lipid Dihydrosphingomyelins 0 5 

Module 1 Lipid Hexosylceramides (HCER) 2 3 

Module 1 Lipid Lactosylceramides (LCER) 1 0 

Module 1 Lipid Sphingomyelins 6 22 

Module 1 Lipid Sterol 0 1 

Module 2 Amino Acid 
Methionine, Cysteine, SAM and 

Taurine Metabolism 
3 1 

Module 2 Energy Oxidative Phosphorylation 1 0 

Module 2 Lipid Phospholipid Metabolism 2 0 

Module 2 Lipid Primary Bile Acid Metabolism 1 6 

Module 2 Lipid Secondary Bile Acid Metabolism 3 6 

Module 2 Lipid Sterol 0 2 

Module 2 Nucleotide 
Purine Metabolism, Adenine 

containing 
0 2 

Module 2 Xenobiotics Food Component/Plant 0 3 

Module 3 Amino Acid Alanine and Aspartate Metabolism 0 1 

Module 3 Amino Acid Histidine Metabolism 1 1 

Module 3 Amino Acid Lysine Metabolism 1 1 

Module 3 Amino Acid 
Methionine, Cysteine, SAM and 

Taurine Metabolism 
0 1 

Module 3 Amino Acid Polyamine Metabolism 2 1 

Module 3 Amino Acid Tryptophan Metabolism 1 0 

Module 3 Amino Acid 
Urea cycle; Arginine and Proline 

Metabolism 
1 0 

Module 3 Carbohydrate Aminosugar Metabolism 1 0 

Module 3 Nucleotide 
Purine Metabolism, Adenine 

containing 
0 3 

Module 3 Nucleotide 
Pyrimidine Metabolism, Cytidine 

containing 
0 1 

Module 3 Nucleotide 
Pyrimidine Metabolism, Thymine 

containing 
1 0 

Module 3 Nucleotide 
Pyrimidine Metabolism, Uracil 

containing 
2 2 

Module 3 Xenobiotics Chemical 1 0 

Module 4 Lipid Lyso-plasmalogen 1 2 

Module 4 Lipid Phosphatidylcholine (PC) 2 0 
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Module 4 Lipid Plasmalogen 8 2 

Module 5 Amino Acid Alanine and Aspartate Metabolism 0 1 

Module 5 Amino Acid 
Glycine, Serine and Threonine 

Metabolism 
1 0 

Module 5 Lipid 
Fatty Acid Metabolism (Acyl 

Carnitine, Hydroxy) 
2 1 

Module 5 Lipid 
Fatty Acid Metabolism (Acyl 

Carnitine, Medium Chain) 
1 0 

Module 5 Lipid 
Fatty Acid Metabolism (Acyl 

Carnitine, Short Chain) 
1 0 

Module 5 Lipid 
Fatty Acid Metabolism (Acyl 

Glutamine) 
1 0 

Module 5 Lipid 
Fatty Acid Metabolism (Acyl 

Glycine) 
1 0 

Module 5 Lipid 
Fatty Acid Metabolism (also BCAA 

Metabolism) 
1 0 

Module 5 Lipid Ketone Bodies 1 0 

Module 5 

Partially 

Characterized 

Molecules 

Partially Characterized Molecules 2 0 

Module 6 Amino Acid 
Guanidino and Acetamido 

Metabolism 
0 1 

Module 6 Amino Acid Lysine Metabolism 1 0 

Module 6 Carbohydrate 
Fructose, Mannose and Galactose 

Metabolism 
2 0 

Module 6 Carbohydrate 
Glycolysis, Gluconeogenesis, and 

Pyruvate Metabolism 
1 1 

Module 6 Carbohydrate Pentose Metabolism 0 2 

Module 6 Nucleotide 
Purine Metabolism, 

(Hypo)Xanthine/Inosine containing 
0 2 

Module 6 Xenobiotics Food Component/Plant 1 2 

Module 7 Amino Acid 
Urea cycle; Arginine and Proline 

Metabolism 
1 0 

Module 7 
Cofactors and 

Vitamins 
Vitamin A Metabolism 4 0 

Module 7 Xenobiotics Food Component/Plant 1 0 

Module 8 Amino Acid Tryptophan Metabolism 0 1 

Module 8 Xenobiotics Benzoate Metabolism 1 3 

Module 8 Xenobiotics Food Component/Plant 1 0 

 

 

Table 4.9: Odds Ratios (OR) from Group Lasso Regression for the Metabolic Modules Associated with 

 BMI Trajectory 

Metabolite Module 
Group lasso 

OR 

BMI cluster 

group 

glycosyl ceramide (d18:2/24:1; d18:1/24:2) 1 0.9942 decrease 

lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) 1 0.9963 decrease 

palmitoyl-sphingosine-phosphoethanolamine 

(d18:1/16:0) 
1 0.9966 decrease 
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sphingomyelin (d18:1/24:1; d18:2/24:0) 1 0.997 decrease 

palmitoyl sphingomyelin (d18:1/16:0) 1 0.9976 decrease 

sphingomyelin (d18:2/24:1; d18:1/24:2) 1 0.9982 decrease 

hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)) 1 0.9987 decrease 

sphingomyelin (d18:1/17:0; d17:1/18:0; d19:1/16:0) 1 0.9988 decrease 

N-palmitoyl-sphingadienine (d18:2/16:0) 1 0.9988 decrease 

glycosyl-N-stearoyl-sphingosine (d18:1/18:0) 1 0.999 decrease 

sphingomyelin (d18:2/24:2) 1 0.9995 decrease 

glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) 1 1.0001 increase 

cholesterol 1 1.0002 increase 

N-palmitoyl-sphingosine (d18:1/16:0) 1 1.0003 increase 

sphingomyelin (d17:1/14:0; d16:1/15:0) 1 1.0003 increase 

ceramide (d18:1/14:0; d16:1/16:0) 1 1.0006 increase 

glycosyl ceramide (d18:1/20:0; d16:1/22:0) 1 1.0007 increase 

palmitoyl dihydrosphingomyelin (d18:0/16:0) 1 1.0008 increase 

sphingomyelin (d17:1/16:0; d18:1/15:0; d16:1/17:0) 1 1.0008 increase 

N-stearoyl-sphingosine (d18:1/18:0) 1 1.0012 increase 

stearoyl sphingomyelin (d18:1/18:0) 1 1.0012 increase 

myristoyl dihydrosphingomyelin (d18:0/14:0) 1 1.0013 increase 

N-palmitoyl-sphinganine (d18:0/16:0) 1 1.0016 increase 

sphingomyelin (d18:2/23:0; d18:1/23:1; d17:1/24:1) 1 1.0023 increase 

lignoceroyl sphingomyelin (d18:1/24:0) 1 1.0024 increase 

sphingomyelin (d18:2/23:1) 1 1.0025 increase 

N-stearoyl-sphingadienine (d18:2/18:0) 1 1.0025 increase 

sphingomyelin (d18:1/20:2; d18:2/20:1; d16:1/22:2) 1 1.0027 increase 

sphingomyelin (d18:1/14:0; d16:1/16:0) 1 1.0027 increase 

sphingomyelin (d18:1/22:2; d18:2/22:1; d16:1/24:2) 1 1.0031 increase 

glycosyl-N-behenoyl-sphingadienine (d18:2/22:0) 1 1.0031 increase 

sphingomyelin (d18:1/18:1; d18:2/18:0) 1 1.0037 increase 

behenoyl sphingomyelin (d18:1/22:0) 1 1.004 increase 

sphingomyelin (d18:1/20:0; d16:1/22:0) 1 1.0041 increase 

sphingomyelin (d18:1/20:1; d18:2/20:0) 1 1.0042 increase 

sphingomyelin (d18:1/19:0; d19:1/18:0) 1 1.0047 increase 

sphingomyelin (d18:2/16:0; d18:1/16:1) 1 1.0052 increase 

sphingomyelin (d18:1/21:0; d17:1/22:0; d16:1/23:0) 1 1.0052 increase 

sphingomyelin (d18:1/22:1; d18:2/22:0; d16:1/24:1) 1 1.0053 increase 

tricosanoyl sphingomyelin (d18:1/23:0) 1 1.0057 increase 

sphingomyelin (d18:2/18:1) 1 1.0061 increase 

sphingomyelin (d18:2/14:0; d18:1/14:1) 1 1.007 increase 

sphingomyelin (d17:2/16:0; d18:2/15:0) 1 1.008 increase 

sphingomyelin (d18:0/18:0; d19:0/17:0) 1 1.0086 increase 
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sphingomyelin (d18:2/21:0; d16:2/23:0) 1 1.01 increase 

sphingomyelin (d18:0/20:0; d16:0/22:0) 1 1.0116 increase 

behenoyl dihydrosphingomyelin (d18:0/22:0) 1 1.0144 increase 

phosphate 2 0.9409 decrease 

succinoyltaurine 2 0.9419 decrease 

glycocholenate sulfate 2 0.9511 decrease 

taurocholenate sulfate 2 0.9681 decrease 

deoxycholic acid glucuronide 2 0.9693 decrease 

hypotaurine 2 0.9767 decrease 

glycodeoxycholate 3-sulfate 2 0.9779 decrease 

glycochenodeoxycholate glucuronide (1) 2 0.979 decrease 

phosphoethanolamine (PE) 2 0.9804 decrease 

taurine 2 0.984 decrease 

phosphocholine 2 0.9891 decrease 

taurolithocholate 3-sulfate 2 0.9925 decrease 

isoursodeoxycholate 2 0.9942 decrease 

AMP 2 1.0023 increase 

glycolithocholate sulfate 2 1.0033 increase 

glycoursodeoxycholate 2 1.0096 increase 

N-acetyltaurine 2 1.0126 increase 

lithocholate sulfate (1) 2 1.0154 increase 

glycochenodeoxycholate 3-sulfate 2 1.0216 increase 

glucuronide of piperine metabolite C17H21NO3 (4) 2 1.0295 increase 

glycochenodeoxycholate 2 1.0323 increase 

3beta-hydroxy-5-cholestenoate 2 1.0323 increase 

ADP 2 1.0343 increase 

piperine 2 1.0369 increase 

cholate 2 1.0438 increase 

taurochenodeoxycholate 2 1.0451 increase 

sulfate of piperine metabolite C16H19NO3 (2) 2 1.0452 increase 

7-HOCA 2 1.0663 increase 

taurocholate 2 1.0699 increase 

glycocholate 2 1.0954 increase 

3-aminoisobutyrate 3 0.9848 decrease 

6-oxopiperidine-2-carboxylate 3 0.9863 decrease 

hydantoin-5-propionate 3 0.9868 decrease 

N-acetylneuraminate 3 0.9926 decrease 

5-methyluridine (ribothymidine) 3 0.995 decrease 

O-sulfo-L-tyrosine 3 0.9954 decrease 

(N(1) + N(8))-acetylspermidine 3 0.9961 decrease 

3-(3-amino-3-carboxypropyl)uridine 3 0.9971 decrease 
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dimethylarginine (ADMA + SDMA) 3 0.9976 decrease 

4-acetamidobutanoate 3 0.9979 decrease 

C-glycosyltryptophan 3 0.998 decrease 

5;6-dihydrouridine 3 1.0011 increase 

hydroxyasparagine 3 1.0023 increase 

pseudouridine 3 1.0032 increase 

N-acetylputrescine 3 1.0032 increase 

formiminoglutamate 3 1.0076 increase 

2;3-dihydroxy-5-methylthio-4-pentenoate (DMTPA) 3 1.0094 increase 

hydroxy-N6;N6;N6-trimethyllysine 3 1.0099 increase 

N4-acetylcytidine 3 1.0106 increase 

N2;N2-dimethylguanosine 3 1.0106 increase 

N6-carbamoylthreonyladenosine 3 1.0149 increase 

7-methylguanine 3 1.0167 increase 

1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) 4 0.9216 decrease 

1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) 4 0.923 decrease 

1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) 4 0.9565 decrease 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) 4 0.957 decrease 

1;2-dipalmitoyl-GPC (16:0/16:0) 4 0.9689 decrease 

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 4 0.9719 decrease 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4) 4 0.9779 decrease 

1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) 4 0.9872 decrease 

1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2) 4 0.991 decrease 

1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) 4 0.9928 decrease 

1-(1-enyl-stearoyl)-GPE (P-18:0) 4 0.9979 decrease 

1-(1-enyl-palmitoyl)-GPE (P-16:0) 4 1.001 increase 

1-(1-enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2) 4 1.0014 increase 

1-(1-enyl-oleoyl)-GPE (P-18:1) 4 1.003 increase 

1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) 4 1.0059 increase 

N-acetylglycine 5 0.9827 decrease 

hexanoylglutamine 5 0.9888 decrease 

3-hydroxybutyrate (BHBA) 5 0.9903 decrease 

propionylglycine (C3) 5 0.9912 decrease 

glutamine conjugate of C6H10O2 (1) 5 0.9932 decrease 

glutamine conjugate of C6H10O2 (2) 5 0.9956 decrease 

acetylcarnitine (C2) 5 0.996 decrease 

3-hydroxybutyroylglycine 5 0.9963 decrease 

3-hydroxyhexanoylcarnitine (1) 5 0.997 decrease 

(R)-3-hydroxybutyrylcarnitine 5 0.9972 decrease 

hexanoylcarnitine (C6) 5 0.9981 decrease 

(S)-3-hydroxybutyrylcarnitine 5 1.0014 increase 
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alanine 5 1.0089 increase 

mannose 6 0.9811 decrease 

fructose 6 0.9856 decrease 

fructosyllysine 6 0.9913 decrease 

glucose 6 0.994 decrease 

2-keto-3-deoxy-gluconate 6 0.999 decrease 

mannonate 6 1.0054 increase 

gluconate 6 1.009 increase 

ribonate 6 1.0142 increase 

1;5-anhydroglucitol (1;5-AG) 6 1.0242 increase 

4-guanidinobutanoate 6 1.0257 increase 

ribitol 6 1.0283 increase 

urate 6 1.035 increase 

allantoin 6 1.056 increase 

carotene diol (1) 7 0.9936 decrease 

carotene diol (3) 7 0.994 decrease 

carotene diol (2) 7 0.9946 decrease 

beta-cryptoxanthin 7 0.9962 decrease 

stachydrine 7 0.9985 decrease 

N-methylproline 7 0.9993 decrease 

cinnamoylglycine 8 0.9216 decrease 

hippurate 8 0.9289 decrease 

4-hydroxyhippurate 8 1.0049 increase 

indolepropionate 8 1.0121 increase 

methyl-4-hydroxybenzoate sulfate 8 1.0283 increase 

3-hydroxyhippurate 8 1.0695 Increase 
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Next, we looked at the correlation between the 152 metabolites selected by the group lasso 

model with BMI at the time of ALS diagnosis (Table 4.10). 65 metabolites were significantly 

correlated with BMI (p < 0.05). However, the magnitude of the correlation coefficients was 

relatively low (|𝑐𝑜𝑟𝑟|~ 0.3) (Figure 4.4). We also tested the association of these 152 

metabolites with ALS survival in a Cox Proportional Hazards model. 31 metabolites were 

found to be significantly associated with ALS survival (p < 0.05) (Figure 4.5, Table 4.11). Of 

the 70 metabolites associated with the decrease BMI cluster from the group lasso model, 7 

metabolites (N-palmitoyl-sphingadienine (d18:2/16:0), Hippurate, 3-(3-amino-3-

carboxypropyl) uridine, succinoyltaurine, phosphocholine, N-methylproline and 

isoursodeoxycholate) were also significantly associated with poorer ALS survival (HR > 1). 

Conversely, of the 82 metabolites associated with the increase BMI cluster, 4 metabolites 

(1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1), 1-(1-enyl-oleoyl)-GPE (P-18:1), 

glycoursodeoxycholate and N4-acetylcytidine) were significantly associated with better 

ALS survival (HR < 1). 

Taken together, these results suggest that the metabolic profiles of ALS patients at the time 

of ALS diagnosis are reflective of the change in BMI over a period of 10 years and have 

potential to predict survival among ALS patients. 

 

Table 4.10: Correlation of BMI at the time of ALS diagnosis with 152 metabolites associated with BMI 

trajectory 

Metabolite 
Correlation 

Coefficient 
p-value 

1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)* -0.31879 1.10E-09 

urate 0.311685 2.67E-09 

N4-acetylcytidine 0.259687 8.72E-07 

sphingomyelin (d18:0/18:0, d19:0/17:0)* 0.252995 1.69E-06 

glycosyl ceramide (d18:2/24:1, d18:1/24:2)* -0.24827 2.66E-06 

glucuronide of piperine metabolite C17H21NO3 (4)* 0.238718 6.51E-06 

taurocholenate sulfate* -0.23794 7.00E-06 

behenoyl dihydrosphingomyelin (d18:0/22:0)* 0.228318 1.65E-05 

piperine 0.221056 3.09E-05 

glycosyl ceramide (d18:1/20:0, d16:1/22:0)* -0.21462 5.29E-05 

ribitol 0.207173 9.67E-05 

sphingomyelin (d18:1/24:1, d18:2/24:0)* -0.20665 0.000101 

phosphocholine -0.20496 0.000115 

taurolithocholate 3-sulfate -0.20378 0.000126 

mannose 0.202698 0.000137 
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N-acetylglycine -0.19643 0.000222 

N2,N2-dimethylguanosine 0.191606 0.000318 

palmitoyl-sphingosine-phosphoethanolamine (d18:1/16:0) -0.18857 0.000397 

succinoyltaurine -0.1876 0.000426 

palmitoyl sphingomyelin (d18:1/16:0) -0.18635 0.000466 

mannonate* 0.181915 0.000638 

7-HOCA 0.178599 0.000804 

taurine -0.17851 0.000809 

2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA)* 0.177993 0.000838 

sphingomyelin (d18:0/20:0, d16:0/22:0)* 0.17501 0.001027 

hydroxyasparagine 0.174774 0.001043 

hydroxy-N6,N6,N6-trimethyllysine* 0.172488 0.001216 

N6-carbamoylthreonyladenosine 0.172126 0.001246 

3beta-hydroxy-5-cholestenoate -0.16742 0.001698 

phosphate -0.16462 0.002033 

sulfate of piperine metabolite C16H19NO3 (2)* 0.16462 0.002033 

glycodeoxycholate 3-sulfate -0.16423 0.002084 

7-methylguanine 0.159502 0.002806 

sphingomyelin (d17:2/16:0, d18:2/15:0)* 0.155557 0.003575 

glycosyl-N-behenoyl-sphingadienine (d18:2/22:0)* -0.15539 0.003612 

stachydrine 0.153009 0.004169 

N-stearoyl-sphingadienine (d18:2/18:0)* 0.152802 0.004221 

N-stearoyl-sphingosine (d18:1/18:0)* 0.151331 0.004607 

5-methyluridine (ribothymidine) -0.14561 0.006431 

glycocholate 0.145365 0.006521 

pseudouridine 0.144025 0.007039 

sphingomyelin (d18:2/24:1, d18:1/24:2)* -0.14254 0.007654 

1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0)* -0.14179 0.007985 

deoxycholic acid glucuronide 0.140525 0.008567 

glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) -0.13759 0.010069 

hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)) -0.13596 0.011 

sphingomyelin (d18:1/18:1, d18:2/18:0) 0.135138 0.0115 

sphingomyelin (d18:1/20:2, d18:2/20:1, d16:1/22:2)* 0.133715 0.012409 

1,2-dipalmitoyl-GPC (16:0/16:0) -0.13061 0.014615 

propionylglycine (C3) -0.12844 0.016363 

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) -0.12404 0.020452 

sphingomyelin (d18:2/14:0, d18:1/14:1)* 0.1213 0.023432 

sphingomyelin (d18:2/18:1)* 0.119013 0.026197 

cholate 0.11733 0.028407 

3-hydroxyhippurate 0.116567 0.02946 

(R)-3-hydroxybutyrylcarnitine 0.115493 0.031001 

1-(1-enyl-oleoyl)-GPE (P-18:1)* -0.11414 0.033041 

N-palmitoyl-sphingadienine (d18:2/16:0)* 0.112602 0.03549 

6-oxopiperidine-2-carboxylate -0.11248 0.035692 

lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) -0.11076 0.038623 

1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2)* -0.10988 0.040219 

ceramide (d18:1/14:0, d16:1/16:0)* 0.107616 0.044531 

sphingomyelin (d18:2/21:0, d16:2/23:0)* 0.106 0.047847 

glycosyl-N-stearoyl-sphingosine (d18:1/18:0) -0.10513 0.049721 

glutamine conjugate of C6H10O2 (1)* 0.105007 0.049987 

N-methylproline 0.103106 0.054304 

phosphoethanolamine (PE) -0.10282 0.054978 

sphingomyelin (d18:2/16:0, d18:1/16:1)* 0.102358 0.056085 
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alanine 0.098618 0.065737 

5,6-dihydrouridine 0.098054 0.067303 

stearoyl sphingomyelin (d18:1/18:0) 0.095389 0.075128 

hypotaurine -0.09362 0.080711 

1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4)* 0.092376 0.084849 

indolepropionate -0.09008 0.092905 

hexanoylcarnitine (C6) 0.088642 0.098273 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4)* 0.087952 0.100929 

glycolithocholate sulfate* -0.0878 0.101535 

glycochenodeoxycholate 0.087428 0.102984 

ribonate 0.086694 0.105919 

N-palmitoyl-sphinganine (d18:0/16:0) 0.085147 0.112319 

cinnamoylglycine -0.08492 0.113299 

1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1)* -0.07948 0.13839 

ADP -0.07921 0.13973 

(S)-3-hydroxybutyrylcarnitine 0.078271 0.144504 

glucose 0.074395 0.165521 

allantoin 0.074267 0.166249 

sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/24:2)* 0.073722 0.169389 

1-(1-enyl-stearoyl)-GPE (P-18:0)* -0.07251 0.176535 

(N(1) + N(8))-acetylspermidine -0.06956 0.194842 

lignoceroyl sphingomyelin (d18:1/24:0) -0.0688 0.199785 

beta-cryptoxanthin -0.06873 0.200215 

fructosyllysine 0.0677 0.207074 

N-acetylputrescine -0.06692 0.21236 

palmitoyl dihydrosphingomyelin (d18:0/16:0)* -0.0652 0.224351 

3-hydroxybutyrate (BHBA) -0.06457 0.228886 

sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)* -0.06354 0.236406 

3-(3-amino-3-carboxypropyl)uridine* 0.063182 0.239084 

sphingomyelin (d18:1/19:0, d19:1/18:0)* 0.06303 0.240219 

isoursodeoxycholate 0.060565 0.259137 

4-hydroxyhippurate 0.060516 0.259529 

4-guanidinobutanoate 0.060396 0.260473 

3-aminoisobutyrate -0.05844 0.276231 

C-glycosyltryptophan 0.057148 0.287034 

hexanoylglutamine -0.05524 0.303438 

1-(1-enyl-palmitoyl)-GPE (P-16:0)* -0.05423 0.312432 

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4)* 0.052717 0.326107 

taurocholate 0.050666 0.34531 

sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0)* -0.04884 0.363001 

carotene diol (2) -0.04691 0.38229 

taurochenodeoxycholate 0.046029 0.391297 

sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) -0.04545 0.397259 

3-hydroxyhexanoylcarnitine (1) 0.045117 0.400765 

lithocholate sulfate (1) 0.044483 0.407417 

carotene diol (3) 0.043217 0.420907 

formiminoglutamate 0.042029 0.433801 

sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)* 0.041785 0.436486 

3-hydroxybutyroylglycine -0.04115 0.443483 

2-keto-3-deoxy-gluconate 0.040143 0.454731 

sphingomyelin (d17:1/14:0, d16:1/15:0)* -0.03944 0.462681 

fructose -0.03923 0.465102 

gluconate 0.039072 0.466864 
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1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) -0.03863 0.471923 

glutamine conjugate of C6H10O2 (2)* 0.037194 0.48857 

sphingomyelin (d18:2/23:1)* 0.03674 0.493894 

behenoyl sphingomyelin (d18:1/22:0)* 0.035662 0.506665 

tricosanoyl sphingomyelin (d18:1/23:0)* 0.033714 0.530174 

hippurate 0.032705 0.542562 

1,5-anhydroglucitol (1,5-AG) 0.032492 0.545184 

dimethylarginine (ADMA + SDMA) -0.03224 0.548285 

myristoyl dihydrosphingomyelin (d18:0/14:0)* -0.03029 0.572723 

sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)* 0.029253 0.585996 

glycochenodeoxycholate glucuronide (1) -0.02575 0.631631 

1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2)* 0.024542 0.647742 

glycocholenate sulfate* -0.0232 0.665844 

acetylcarnitine (C2) 0.021302 0.691682 

sphingomyelin (d18:1/14:0, d16:1/16:0)* 0.020148 0.707602 

sphingomyelin (d18:1/20:1, d18:2/20:0)* -0.02013 0.707881 

N-acetyltaurine -0.0201 0.708302 

sphingomyelin (d18:2/24:2)* 0.019032 0.723115 

AMP -0.01823 0.734282 

glycochenodeoxycholate 3-sulfate -0.01797 0.737928 

hydantoin-5-propionate -0.01753 0.7442 

N-palmitoyl-sphingosine (d18:1/16:0) -0.01738 0.746328 

sphingomyelin (d18:1/20:0, d16:1/22:0)* -0.01392 0.795471 

N-acetylneuraminate -0.01389 0.795933 

carotene diol (1) -0.01313 0.806895 

4-acetamidobutanoate -0.01187 0.825156 

1-(1-enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2)* -0.01055 0.844316 

glycoursodeoxycholate 0.009603 0.85812 

methyl-4-hydroxybenzoate sulfate 0.008669 0.871804 

cholesterol 0.003682 0.94536 

O-sulfo-L-tyrosine 0.002645 0.96073 
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Figure 4.5: Lollipop plot of the metabolites significantly (p < 0.05) correlated with BMI at the time of ALS 

diagnosis.  
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4.4 Discussion 

This study adds to the growing body of evidence that pre-symptomatic BMI loss is linked 

to ALS risk and survival. We show that ALS participants are characterized by significant 

BMI loss five years, but not 10 years, prior to study entry versus control participants. A 

decrease in BMI trajectory was associated with shorter survival in ALS, which also 

correlated with a distinct metabolomic profile. Our study also suggests that BMI loss may 

occur during the pre-symptomatic phase of ALS leading up to diagnosis. Several other 

studies have similarly shown BMI decrease preceding ALS diagnosis, out to 10 years prior 

Figure 4.6: Hazard Ratios for metabolites significantly associated with ALS survival in Cox proportional 

hazards models. Metabolites associated with BMI trajectory were tested for their association with ALS 

survival. Module assignment for each metabolite is indicated in parentheses after the metabolite name. 

* Significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001. 
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to onset218 and even within the decades preceding ALS219,222. Although we found BMI 

trajectories differed over the 10-year window, we found that absolute BMI did not vary 

between ALS and control participants 10 years before study entry when participants would 

have had a mean age of 54.9 (ALS) and 51.3 (controls) years. In contrast, other studies 

report that lower mid-to-late life BMI increases ALS risk221,222,251, although one study 

reported ALS survival depends on BMI change, not on BMI before or at diagnosis217. Another 

recent study suggests that BMI in ALS patients diverges from controls 10 years prior to 

disease onset252. 

Next, we found that that ALS participants with a 10-year decrease BMI trend had shorter 

survival. Our results are consistent with several studies demonstrating that a drop in BMI 

prior to ALS diagnosis correlates with poorer survival217,218,222,253.In particular, analysis of the 

Piemonte and Valle d’Aosta Register for ALS found that BMI loss at diagnosis was more 

prognostic of survival than BMI either before or at diagnosis217. However, since there is 

literature that BMI is an ALS risk factor221,222,251, we conducted sensitivity analyses to assess 

the interaction of baseline BMI with BMI trajectory. We found that normal baseline BMI 

lengthened survival in the decrease BMI trajectory group, whereas obese baseline BMI 

shortened survival in the increase BMI trajectory group. Baseline BMI only marginally 

influenced survival in the mild decrease BMI trajectory group. Interestingly, the European 

Prospective Investigation into Cancer and Nutrition study also showed that obese females 

had shorter survival that did not reach significance223, whereas the Piemonte and Valle 

d’Aosta Register found no impact of BMI on survival217. 

The reasons for survival differences by BMI or BMI change in ALS are not known. However, 

the prevailing theories are related to impaired energy homeostasis224, with lowered energy 

intake fighting against higher energy expenditure. Dysphagia is a frequent cause of reduced 

energy intake, however in ALS BMI loss also occurs independent of dysphagia217,253 

indicating the presence of significantly elevated energy expenditure. Indeed, 

hypermetabolism is more frequent in ALS versus control participants and correlates 

inversely with survival225. Resting energy expenditure may additionally interact with BMI 

and fat mass to influence survival in ALS254,255. 
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In the current study, we employed data driven network analysis to identify highly 

interconnected metabolic modules and assessed their correlation with BMI trajectory 

groups. The largest of these, module 1, contained ceramides (13 species) and 

sphingomyelins (33 species). The latter were primarily associated with the increase BMI 

group. We and others previously found that sphingomyelins also differ in analyses of ALS 

versus control participant plasma238,239,256–259. Further, one recent study reported that higher 

sphingomyelin levels may correlate with faster disease progression259. Sphingomyelins are 

a large class of lipids that have structural roles in cell membranes and lipid rafts, and, 

through hydrolysis to ceramides, with signaling activity, e.g., pro-apoptotic, excitotoxic, 

neurotoxic260,261. Impaired sphingomyelin metabolism may be an integral factor in ALS as 

supported by investigations of genetic models262. Of the 47 metabolites in module 1, only 

13 significantly correlated with BMI at diagnosis, suggesting associations of the remaining 

34 metabolites with BMI trajectory may be related to the ALS disease process. 

The second largest module 2 mostly contained primary and secondary bile acids, which 

generally associated with the increase BMI trajectory, in addition to metabolites of 

methionine, cysteine, S-adenosyl methionine, and taurine metabolism and oxidative 

phosphorylation. Nearly half of the metabolites in this module also significantly correlated 

with diagnosis BMI (13 species). Bile acids play important roles in nutrient absorption, 

regulation of cholesterol metabolism, and systemic energy expenditure263, so the correlation 

with BMI trajectory herein is unsurprising. Interestingly, although not present in the module, 

two bile acids ursodeoxycholic and its taurine derivative tauroursodeoxycholic acid 

(taurursodiol) have shown some efficacy in ALS clinical trials264–267. 

Module 3 contained modified amino acids and nucleotide derivatives spanning 22 species 

evenly split between the decrease and increase BMI groups, of which 9 significantly 

correlated with diagnosis BMI. Module 4 contained several bioactive lipids, plasmalogens 

(10 species), lyso-plasmalogens (3 species), and phosphatidylcholines (2 species), which 

mostly associated with the decrease BMI group, i.e., poorer survival. Only two species were 

significantly linked to diagnosis BMI. We239 and others256,259,268,269 have previously shown 
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phosphatidylcholines differentiate ALS from control participants, in particular, 

phosphatidylcholine 36:4259,268. 

Modules 5 and 6 comprised candidates related to energy metabolism. Module 5 contained 

four short-chain acyl-carnitines, intermediates of, which all save one correlated with the 

decrease BMI group. We previously reported acyl-carnitines, along with free fatty acids, 

contributed to the discrimination between ALS versus control participants238,239, which we 

attributed to either dysfunctional or at capacity β-oxidation270. Modules 6, 7 and 8 

contained few metabolites equally divided in their correlation with either the decrease or 

increase BMI trajectory group, suggesting ALS status may be a stronger determinant of 

these metabolites than BMI trajectory. 

Overall, across some modules, e.g., module 5, there were more metabolites from various 

biochemical pathways relating to energy utilization (e.g. fatty acid β-oxidation) that are 

more discerning of ALS versus control participants than of BMI trajectories. These findings 

suggest that ALS status is an important determinant of energy metabolism. One possibility 

is that metabolites correlate with fat mass loss in ALS patients271, an idea supported by 

studies where ALS polygenic risk associates with body fat percentage in addition to 

BMI272,273. Interestingly, neither creatine nor creatinine were among the metabolites 

correlating with BMI change or diagnosis BMI, indicating weight changes may be more 

pronounced for fat mass than muscle mass. However, lacking body composition measures, 

we could not evaluate this possibility in this study. 

This study had limitations. Participants self-reported weight, potentially incurring recall 

bias; however, Lin’s concordance correlation coefficient was high for participants with 

available weight, indicating good recall. Our study did not query weight at frequent 

intervals, so we cannot determine if BMI loss in ALS participants was linear in the 5 years 

prior to study entry or more pronounced closer to diagnosis. It is also possible we failed to 

detect an onset in BMI changes between the 10-to-5-year window before diagnosis due to 

the lack of granular BMI information. Next, we only asked participants to report current 

height, and use this for BMI calculations at all timepoints. However, such changes in height 

over the life course are not anticipated to cause bias in statistical models274. We also did 
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not collect a dietary or physical activity survey for this analysis. Additionally, our 

metabolomics analysis was untargeted, and thus did not measure all metabolites in every 

relevant biochemical pathway. While BMI analysis was longitudinal, metabolomics analysis 

was cross-sectional. Plasma samples for untargeted metabolomics were non-fasted for 

ethical reasons, as noted in our prior publications238,239. 

In summary, we found that ALS participants have distinct BMI trajectories versus controls, 

with the most significant BMI drop occurring within 5 years before diagnosis. ALS 

participants with normal baseline BMI and decrease BMI trajectory, or baseline obese BMI 

and increase BMI trajectory have shorter survival. BMI trajectories correlate with metabolic 

changes, especially with sphingomyelins and bile acids. 
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CHAPTER V 

Conclusions and Future Perspectives 

 

5.1 General conclusions 

Experimental design in metabolomics commonly involves assessing metabolite levels in 

two or more disease or experimental conditions. Metabolomics data acquired from such 

experiments are amenable to univariate analysis, followed by pathway mapping and 

enrichment analysis. While overall this approach has proven to be extremely useful, there 

are certain limitations. First, univariate analysis assesses differences in individual 

metabolite levels but does not account for the interactions between them. Second, 

application of pathway mapping and enrichment analysis is hampered by the low coverage 

of metabolites in biological pathway databases. This is particularly true for lipids and 

secondary metabolites. The problem is compounded by the relatively small number of 

known metabolites measured in most experiments which limits both statistical significance 

and overall reliability of the analyses. In this dissertation, I presented computational 

approaches to overcome these limitations and gain deeper insights into high dimensional 

metabolomics and lipidomics data. 

In Chapter 2 of this dissertation, I presented Filigree, a new computational approach and 

tool that provides an alternative to traditional pathway-centric approaches. Filigree 

constructs partial correlation networks among metabolites directly from experimental 

measurements. In lieu of knowledge-based metabolic pathways, Filigree generates 

topology-based sets (subnetworks) comprised of biochemically and structurally related 

metabolites. Filigree then assesses changes in both the level of these metabolite sets and, 

importantly, the degree of interaction among the metabolites and how these interactions 

are disrupted by disease, thus providing a systems level view of the data. We made Filigree
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more robust by developing mathematical approaches to allow for severely limited sample 

sizes or grossly imbalanced experimental groups in the data. We analyzed previously 

published studies assessing the metabolome in the context of metabolic disorders (type 1 

and type 2 diabetes) and the interplay between maternal and infant lipidome during 

pregnancy. We observed strong differential connectivity in metabolite networks in T1D and 

T2D. We were also able to demonstrate the influence of maternal lipidome on infant 

birthweight. With these analyses, we showed that topology-based enrichment methods are 

more powerful than traditional enrichment testing. Filigree therefore provides a clear 

advantage and is a powerful hypothesis-generating tool. In the final section of this chapter, 

I detail my contributions to the development of the DNEA R package. Specifically, I 

conceptualized and wrote the functions for feature aggregation and stability selection 

coupled with additional subsampling. Feature aggregation is crucial in a high dimensional 

setting i.e., when the available sample size is much smaller than the number of measured 

metabolic features. By collapsing highly correlated or chemically related metabolites, this 

approach effectively reduces the feature space and enables recovering a robust network. 

Further, when the number of samples in one experimental group is much larger than those 

in the other, the edges in the resulting network are heavily biased towards the larger group. 

Stability selection coupled with additional subsampling probes the larger group and allows 

us to recover a more balanced set of edges in the network. 

In Chapter 3 of this dissertation, I described the changes in the plasma metabolome 

associated with COVID-19 disease severity. We established the association of the plasma 

metabolome with patient characteristics such as age, gender, race, BMI, and diabetes. As 

expected, a substantial portion of the metabolome was influenced by these clinical 

variables. In addition, we also found a strong influence of anesthetic administration 

(propofol) on the plasma metabolome of COVID-19 patients. Differential analysis revealed 

substantial changes between healthy controls and COVID-19 patients with mild and severe 

disease. In particular, levels of fatty acids and acylcarnitines were elevated in COVID-19 

patients, with patients in the severe group having higher levels than those in the mild group. 

Levels of several bile acids as well as the hormone Thyroxine were lowered in COVID-19 
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patients. Further, the metabolites performed much better in discriminating disease severity 

compared to clinical characteristics that are traditionally used to ascertain disease 

predisposition. Several acylcarnitines, diacylglycerols, and phosphocholines contributed the 

most to model performance, recapitulating as well as augmenting some of the known 

metabolic markers of COVID-19 severity. In conclusion, we demonstrated that the plasma 

metabolome can be used to predict COVID-19 severity. 

In Chapter 4 of this dissertation, I described the association of data-driven metabolic 

modules with BMI trajectory and survival in patients with Amyotrophic Lateral Sclerosis 

(ALS). ALS patients showed a significant BMI loss 5 to 10 years prior to diagnosis. This 

decrease in BMI over time correlated with poorer survival. We constructed data-driven 

partial correlation networks from the metabolic profiles of these patients and clustered 

them to obtain interconnected metabolic modules. We found that 8 of these modules 

associated with BMI trajectory, primarily those modules containing sphingomyelins and bile 

acids. Notably, assessing the associations of individual metabolites with BMI trajectory did 

not yield any significant result. However, when we look at modules of chemically and 

functionally related metabolites, we discover a lot more associations, demonstrating that 

subtle and nuanced associations can be identified when we look at groups of correlated 

metabolites as opposed to individual metabolites. Additionally, we found that a subset of 

the metabolites associated with BMI trajectory was also associated with ALS survival.  

In conclusion, the body of work in this dissertation highlights the importance of data-driven 

analysis in the field of metabolomics. Further, this work also underscores the advantages 

of building data-driven metabolic networks in lieu of knowledge-based pathways to obtain 

biologically relevant information from metabolomics data. This work overcomes challenges 

associated with knowledge-based analysis and offers suitable alternatives through the 

computational tools developed and employed in analyzing a variety of metabolomics data 

types. 
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5.2 Future perspectives 

5.2.1 Data-driven network analysis 

One of the most important considerations in application of data-driven analysis methods 

for metabolomics (or any other omics data) is the number of samples vs. the number of 

variables. A larger sample size provides higher degrees of freedom that increases the power 

of the analysis. One way to boost the power of data-driven network analysis methods is to 

incorporate prior knowledge of metabolite relationships (Composite networks). These 

relationships can come from pathway databases such as KEGG, BioCyc, MetaCyc, and 

Reactome or from chemical ontologies such as ClassyFire275. Incorporation of prior 

knowledge into data-driven metabolic networks can potentially increase their robustness 

and provide additional biological context.  

Another potential improvement that could boost that interpretability of data-driven 

metabolic modules generated by our method is computing a summary measure for each 

module. Borrowing the concept of “module eigengene” from WGCNA method111, we can 

compute a “module eigenmetabolite” and utilize this measure for downstream association 

analysis. These module-specific eigenmetabolites can also be used to compare metabolic 

modules across datasets i.e., for the meta-analysis of partial correlation networks. 

A natural extension to data-driven network analysis of metabolomics data is performing 

data-driven multi-omics integration. Exploring relationships between key metabolic 

changes and alterations in gene expression, for example, can provide additional levels of 

information and help build biological insights from experimental data. A key challenge 

remains that the number of features that can be included in data-driven integration tend 

to be limited by the number of available samples. Therefore, data reduction (or feature 

selection) becomes a crucial step that requires rigorous exploration.  

Data-driven networks can be applied to sufficiently large longitudinal metabolomics data 

to assess topological changes over time, especially within modules containing metabolites 

of interest associated with a specific phenotype. Temporal changes in the relationship 
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among metabolites can potentially inform us of the underlying metabolic rewiring taking 

place over time and how that could affect their associations with external traits. 

5.2.2 Metabolic markers of COVID-19 severity 

Our analysis revealed that several lipids (fatty acids, acylcarnitines) had the potential to 

discriminate COVID-19 patients based on disease severity. It would therefore be interesting 

to explore the plasma lipidome of these patients to elaborate on some of our findings and 

identify more nuanced changes in lipid profiles/pathways leading to more severe disease.  

Our analysis also focused on a set of 294 putatively annotated metabolites from the 

untargeted metabolomics data. It would be worthwhile to investigate the unannotated 

portion of the dataset as well, using the same analysis pipeline, to gain deeper insights.  

COVID-19 has been studied extensively and it is clear that its etiology is highly complex. 

Changes in the metabolome associated with severity of disease is likely a reflection of 

orchestrated changes in epigenome, transcriptome and proteome. An integrative approach 

is therefore required to get a wholistic understanding of the perturbations and better 

rationalize some of our findings.  

Finally, while our classification models revealed some interesting lipids are markers of 

disease severity, they will need to be validated experimentally in in vitro and in vivo COVID-

19 models, for any translational applications. 

5.2.3 Association of BMI trajectory with ALS survival and metabolic modules 

The goal of a typical clinical metabolomics study is to identify predictive marker(s) of the 

disease under study. While it would be very important and useful to be able to utilize patient 

metabolic profiles to predict future ALS before onset, the current study design does not 

permit us to explore this avenue. The metabolomics data was collected from ALS patients 

at the time of diagnosis, and this remains one of the biggest challenges of this study. 

Obtaining samples from patients 5 or 10 years prior to ALS diagnosis is also remarkably 

challenging and will require a prospective cohort study design.  
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ALS manifests as a complex and heterogeneous disease arising from a combination of 

genetic susceptibility, environmental exposures, as well as metabolic events like 

hypermetabolism and mitochondrial dysfunction. Therefore, alterations in the metabolome 

of ALS patients can likely be a cause or effect. It follows then that the association between 

the metabolic modules and BMI trajectory in ALS patients that we observe is likely more 

convoluted than a direct association. Teasing out these relationships will require collection 

of several other data types like gene expression, protein expression, and environmental 

exposures, and integrating them to be able to formulate a disease risk score. 

Finally, we can explore ALS patients’ stratification based on their metabolic profiles i.e., 

metabotypes and correlate them with the BMI trajectory stratification to gain a better 

understanding of the complex interplay between the change in BMI and metabolome over 

time in ALS patients.  

5.2.4 Final thoughts 

Partial correlation networks offer plenty of advantages for untargeted metabolomics data. 

With the development of increasingly sensitive analytical platforms, the proportion of high 

confidence annotations in these datasets is also increasing. Incorporation of knowledge-

based metabolic pathways, requiring well-annotated metabolites, into data-driven partial 

correlation networks will significantly increase the power and interpretability of these 

networks. Likewise, the integration of metabolomics data with gene and protein expression 

data, specifically in a data-driven manner, can further augment the biological findings. 

Finally, the availability of longitudinal metabolomics data would aid in understanding the 

change in cellular mechanisms across time and how this change differs in the disease under 

study.



115 
 

BIBLIOGRAPHY 

 
(1) Liu, J. Y.; Wellen, K. E. Advances into Understanding Metabolites as Signaling Molecules in Cancer 

Progression. Curr. Opin. Cell Biol. 2020, 63, 144–153. https://doi.org/10.1016/j.ceb.2020.01.013. 

(2) Martínez-Reyes, I.; Chandel, N. S. Mitochondrial TCA Cycle Metabolites Control Physiology and 

Disease. Nat. Commun. 2020, 11 (1), 102. https://doi.org/10.1038/s41467-019-13668-3. 

(3) Zhang, Z.; Tang, H.; Chen, P.; Xie, H.; Tao, Y. Demystifying the Manipulation of Host Immunity, 

Metabolism, and Extraintestinal Tumors by the Gut Microbiome. Signal Transduct. Target. Ther. 2019, 4 (1), 

41. https://doi.org/10.1038/s41392-019-0074-5. 

(4) Li, X.; Egervari, G.; Wang, Y.; Berger, S. L.; Lu, Z. Regulation of Chromatin and Gene Expression by 

Metabolic Enzymes and Metabolites. Nat. Rev. Mol. Cell Biol. 2018, 19 (9), 563–578. 

https://doi.org/10.1038/s41580-018-0029-7. 

(5) Liu, J.; Harada, B. T.; He, C. Regulation of Gene Expression by N-Methyladenosine in Cancer. Trends 

Cell Biol. 2019, 29 (6), 487–499. https://doi.org/10.1016/j.tcb.2019.02.008. 

(6) Haws, S. A.; Leech, C. M.; Denu, J. M. Metabolism and the Epigenome: A Dynamic Relationship. 

Trends Biochem. Sci. 2020, 45 (9), 731–747. https://doi.org/10.1016/j.tibs.2020.04.002. 

(7) Steuer, A. E.; Brockbals, L.; Kraemer, T. Metabolomic Strategies in Biomarker Research-New 

Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic 

Toxicology? Front. Chem. 2019, 7, 319. https://doi.org/10.3389/fchem.2019.00319. 

(8) Carneiro, G.; Radcenco, A. L.; Evaristo, J.; Monnerat, G. Novel Strategies for Clinical Investigation 

and Biomarker Discovery: A Guide to Applied Metabolomics. Horm. Mol. Biol. Clin. Investig. 2019, 38 (3), 

/j/hmbci.2019.38.issue-3/hmbci-2018-0045/hmbci-2018-0045.xml. https://doi.org/10.1515/hmbci-2018-

0045. 

(9) Ishikawa, S.; Sugimoto, M.; Kitabatake, K.; Tu, M.; Sugano, A.; Yamamori, I.; Iba, A.; Yusa, K.; 

Kaneko, M.; Ota, S.; Hiwatari, K.; Enomoto, A.; Masaru, T.; Iino, M. Effect of Timing of Collection of Salivary 

Metabolomic Biomarkers on Oral Cancer Detection. Amino Acids 2017, 49 (4), 761–770. 

https://doi.org/10.1007/s00726-017-2378-5. 

(10) Lou, S.; Balluff, B.; Cleven, A. H. G.; Bovée, J. V. M. G.; McDonnell, L. A. Prognostic Metabolite 

Biomarkers for Soft Tissue Sarcomas Discovered by Mass Spectrometry Imaging. J. Am. Soc. Mass 

Spectrom. 2017, 28 (2), 376–383. https://doi.org/10.1007/s13361-016-1544-4. 

(11) Rodrigues, D.; Monteiro, M.; Jerónimo, C.; Henrique, R.; Belo, L.; Bastos, M. de L.; Guedes de Pinho, 

P.; Carvalho, M. Renal Cell Carcinoma: A Critical Analysis of Metabolomic Biomarkers Emerging from 

Current Model Systems. Transl. Res. 2017, 180, 1–11. https://doi.org/10.1016/j.trsl.2016.07.018. 

(12) Ko, D.; Riles, E. M.; Marcos, E. G.; Magnani, J. W.; Lubitz, S. A.; Lin, H.; Long, M. T.; Schnabel, R. B.; 

McManus, D. D.; Ellinor, P. T.; Ramachandran, V. S.; Wang, T. J.; Gerszten, R. E.; Benjamin, E. J.; Yin, X.; 

Rienstra, M. Metabolomic Profiling in Relation to New-Onset Atrial Fibrillation (from the Framingham Heart 

Study). Am. J. Cardiol. 2016, 118 (10), 1493–1496. https://doi.org/10.1016/j.amjcard.2016.08.010.



116 
 

(13) Würtz, P.; Havulinna, A. S.; Soininen, P.; Tynkkynen, T.; Prieto-Merino, D.; Tillin, T.; Ghorbani, A.; 

Artati, A.; Wang, Q.; Tiainen, M. Metabolite Profiling and Cardiovascular Event Risk: A Prospective Study of 

3 Population-Based Cohorts. Circulation 2015, 131, 774–785. 

(14) Afshinnia, F.; Rajendiran, T. M.; Karnovsky, A.; Soni, T.; Wang, X.; Xie, D.; Yang, W.; Shafi, T.; Weir, 

M. R.; He, J. Lipidomic Signature of Progression of Chronic Kidney Disease in the Chronic Renal Insufficiency 

Cohort. Kidney Int Rep 2016, 1, 256–268. 

(15) Elmariah, S.; Farrell, L. A.; Daher, M.; Shi, X.; Keyes, M. J.; Cain, C. H.; Pomerantsev, E.; Vlahakes, G. 

J.; Inglessis, I.; Passeri, J. J. Metabolite Profiles Predict Acute Kidney Injury and Mortality in Patients 

Undergoing Transcatheter Aortic Valve Replacement. J Am Heart Assoc 2016, 5, 002712. 

(16) Paige, M.; Burdick, M. D.; Kim, S.; Xu, J.; Lee, J. K.; Michael Shim, Y. Pilot Analysis of the Plasma 

Metabolite Profiles Associated with Emphysematous Chronic Obstructive Pulmonary Disease Phenotype. 

Biochem. Biophys. Res. Commun. 2011, 413 (4), 588–593. https://doi.org/10.1016/j.bbrc.2011.09.006. 

(17) Sysi-Aho, M.; Ermolov, A.; Gopalacharyulu, P. V.; Tripathi, A.; Seppänen-Laakso, T.; Maukonen, J.; 

Mattila, I.; Ruohonen, S. T.; Vähätalo, L.; Yetukuri, L. Metabolic Regulation in Progression to Autoimmune 

Diabetes. PLoS Comput Biol 2011, 7, 1002257. 

(18) Galderisi, A.; Pirillo, P.; Moret, V.; Stocchero, M.; Gucciardi, A.; Perilongo, G.; Moretti, C.; Monciotti, 

C.; Giordano, G.; Baraldi, E. Metabolomics Reveals New Metabolic Perturbations in Children with Type 1 

Diabetes. Pediatr Diabetes 2018, 19, 59–67. 

(19) Wang, T. J.; Larson, M. G.; Vasan, R. S.; Cheng, S.; Rhee, E. P.; McCabe, E.; Lewis, G. D.; Fox, C. S.; 

Jacques, P. F.; Fernandez, C.; O’Donnell, C. J.; Carr, S. A.; Mootha, V. K.; Florez, J. C.; Souza, A.; Melander, 

O.; Clish, C. B.; Gerszten, R. E. Metabolite Profiles and the Risk of Developing Diabetes. Nat. Med. 2011, 17 

(4), 448–453. https://doi.org/10.1038/nm.2307. 

(20) Cheng, S.; Rhee, E. P.; Larson, M. G.; Lewis, G. D.; McCabe, E. L.; Shen, D.; Palma, M. J.; Roberts, L. 

D.; Dejam, A.; Souza, A. L. Metabolite Profiling Identifies Pathways Associated with Metabolic Risk in 

Humans. Circulation 2012, 125, 2222–2231. 

(21) Mass Spectrometry-Based Hair Metabolomics for Biomarker Discovery. Mass Spectrom. Lett. 2022, 

13 (1), 2–10. https://doi.org/10.5478/MSL.2022.13.1.2. 

(22) Arn, P. H. Newborn Screening: Current Status. Health Aff. Proj. Hope 2007, 26 (2), 559–566. 

https://doi.org/10.1377/hlthaff.26.2.559. 

(23) Kashani, K.; Rosner, M. H.; Ostermann, M. Creatinine: From Physiology to Clinical Application. Eur. 

J. Intern. Med. 2020, 72, 9–14. https://doi.org/10.1016/j.ejim.2019.10.025. 

(24) Targher, G.; Byrne, C. D. Circulating Markers of Liver Function and Cardiovascular Disease Risk. 

Arterioscler. Thromb. Vasc. Biol. 2015, 35 (11), 2290–2296. https://doi.org/10.1161/ATVBAHA.115.305235. 

(25) Sreekumar, A.; Poisson, L. M.; Rajendiran, T. M.; Khan, A. P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; 

Lonigro, R. J.; Li, Y.; Nyati, M. K.; Ahsan, A.; Kalyana-Sundaram, S.; Han, B.; Cao, X.; Byun, J.; Omenn, G. S.; 

Ghosh, D.; Pennathur, S.; Alexander, D. C.; Berger, A.; Shuster, J. R.; Wei, J. T.; Varambally, S.; Beecher, C.; 

Chinnaiyan, A. M. Metabolomic Profiles Delineate Potential Role for Sarcosine in Prostate Cancer 

Progression. Nature 2009, 457 (7231), 910–914. https://doi.org/10.1038/nature07762. 

(26) Koeth, R. A.; Wang, Z.; Levison, B. S.; Buffa, J. A.; Org, E.; Sheehy, B. T.; Britt, E. B.; Fu, X.; Wu, Y.; Li, 

L.; Smith, J. D.; DiDonato, J. A.; Chen, J.; Li, H.; Wu, G. D.; Lewis, J. D.; Warrier, M.; Brown, J. M.; Krauss, R. 

M.; Tang, W. H. W.; Bushman, F. D.; Lusis, A. J.; Hazen, S. L. Intestinal Microbiota Metabolism of L-

Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nat. Med. 2013, 19 (5), 576–585. 

https://doi.org/10.1038/nm.3145. 



117 
 

(27) Mayers, J. R.; Wu, C.; Clish, C. B.; Kraft, P.; Torrence, M. E.; Fiske, B. P.; Yuan, C.; Bao, Y.; Townsend, 

M. K.; Tworoger, S. S.; Davidson, S. M.; Papagiannakopoulos, T.; Yang, A.; Dayton, T. L.; Ogino, S.; Stampfer, 

M. J.; Giovannucci, E. L.; Qian, Z. R.; Rubinson, D. A.; Ma, J.; Sesso, H. D.; Gaziano, J. M.; Cochrane, B. B.; Liu, 

S.; Wactawski-Wende, J.; Manson, J. E.; Pollak, M. N.; Kimmelman, A. C.; Souza, A.; Pierce, K.; Wang, T. J.; 

Gerszten, R. E.; Fuchs, C. S.; Vander Heiden, M. G.; Wolpin, B. M. Elevation of Circulating Branched-Chain 

Amino Acids Is an Early Event in Human Pancreatic Adenocarcinoma Development. Nat. Med. 2014, 20 (10), 

1193–1198. https://doi.org/10.1038/nm.3686. 

(28) Emwas, A.-H. M.; Salek, R. M.; Griffin, J. L.; Merzaban, J. NMR-Based Metabolomics in Human 

Disease Diagnosis: Applications, Limitations, and Recommendations. Metabolomics 2013, 9 (5), 1048–1072. 

https://doi.org/10.1007/s11306-013-0524-y. 

(29) López-Hernández, Y.; Monárrez-Espino, J.; Oostdam, A.-S. H.; Delgado, J. E. C.; Zhang, L.; Zheng, J.; 

Valdez, J. J. O.; Mandal, R.; González, F. de L. O.; Moreno, J. C. B.; Trejo-Medinilla, F. M.; López, J. A.; 

Moreno, J. A. E.; Wishart, D. S. Targeted Metabolomics Identifies High Performing Diagnostic and Prognostic 

Biomarkers for COVID-19. Sci. Rep. 2021, 11 (1), 14732. https://doi.org/10.1038/s41598-021-94171-y. 

(30) Aderemi, A. V.; Ayeleso, A. O.; Oyedapo, O. O.; Mukwevho, E. Metabolomics: A Scoping Review of 

Its Role as a Tool for Disease Biomarker Discovery in Selected Non-Communicable Diseases. Metabolites 

2021, 11 (7), 418. https://doi.org/10.3390/metabo11070418. 

(31) Castelli, F. A.; Rosati, G.; Moguet, C.; Fuentes, C.; Marrugo-Ramírez, J.; Lefebvre, T.; Volland, H.; 

Merkoçi, A.; Simon, S.; Fenaille, F.; Junot, C. Metabolomics for Personalized Medicine: The Input of 

Analytical Chemistry from Biomarker Discovery to Point-of-Care Tests. Anal. Bioanal. Chem. 2022, 414 (2), 

759–789. https://doi.org/10.1007/s00216-021-03586-z. 

(32) Long, N. P.; Yoon, S. J.; Anh, N. H.; Nghi, T. D.; Lim, D. K.; Hong, Y. J.; Hong, S.-S.; Kwon, S. W. A 

Systematic Review on Metabolomics-Based Diagnostic Biomarker Discovery and Validation in Pancreatic 

Cancer. Metabolomics 2018, 14 (8), 109. https://doi.org/10.1007/s11306-018-1404-2. 

(33) Johnson, C. H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond Biomarkers and towards 

Mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17 (7), 451–459. https://doi.org/10.1038/nrm.2016.25. 

(34) Barnes, S.; Benton, H. P.; Casazza, K.; Cooper, S. J.; Cui, X.; Du, X.; Engler, J.; Kabarowski, J. H.; Li, 

S.; Pathmasiri, W.; Prasain, J. K.; Renfrow, M. B.; Tiwari, H. K. Training in Metabolomics Research. I. 

Designing the Experiment, Collecting and Extracting Samples and Generating Metabolomics Data. J. Mass 

Spectrom. JMS 2016, 51 (7), 461–475. https://doi.org/10.1002/jms.3782. 

(35) Vuckovic, D. Sample Preparation in Global Metabolomics of Biological Fluids and Tissues. In 

Proteomic and Metabolomic Approaches to Biomarker Discovery; Elsevier, 2020; pp 53–83. 

https://doi.org/10.1016/B978-0-12-818607-7.00004-9. 

(36) Fiehn, O. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and 

Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114 (1). 

https://doi.org/10.1002/0471142727.mb3004s114. 

(37) Smith, C. A.; Want, E. J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass 

Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. 

Anal. Chem. 2006, 78 (3), 779–787. https://doi.org/10.1021/ac051437y. 

(38) Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular Framework for Processing, 

Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinformatics 2010, 11 

(1), 395. https://doi.org/10.1186/1471-2105-11-395. 

(39) Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D. A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, 

P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. 

Nucleic Acids Res. 2021, 49 (W1), W388–W396. https://doi.org/10.1093/nar/gkab382. 



118 
 

(40) Tsugawa, H.; Ikeda, K.; Takahashi, M.; Satoh, A.; Mori, Y.; Uchino, H.; Okahashi, N.; Yamada, Y.; 

Tada, I.; Bonini, P.; Higashi, Y.; Okazaki, Y.; Zhou, Z.; Zhu, Z.-J.; Koelmel, J.; Cajka, T.; Fiehn, O.; Saito, K.; 

Arita, M.; Arita, M. A Lipidome Atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38 (10), 1159–1163. 

https://doi.org/10.1038/s41587-020-0531-2. 

(41) Clasquin, M. F.; Melamud, E.; Rabinowitz, J. D. LC-MS Data Processing with MAVEN: A 

Metabolomic Analysis and Visualization Engine. In Current Protocols in Bioinformatics; Baxevanis, A. D., 

Petsko, G. A., Stein, L. D., Stormo, G. D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; p bi1411s37. 

https://doi.org/10.1002/0471250953.bi1411s37. 

(42) Myers, O. D.; Sumner, S. J.; Li, S.; Barnes, S.; Du, X. Detailed Investigation and Comparison of the 

XCMS and MZmine 2 Chromatogram Construction and Chromatographic Peak Detection Methods for 

Preprocessing Mass Spectrometry Metabolomics Data. Anal. Chem. 2017, 89 (17), 8689–8695. 

https://doi.org/10.1021/acs.analchem.7b01069. 

(43) Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach 

to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57 (1), 289–300. https://doi.org/10.1111/j.2517-

6161.1995.tb02031.x. 

(44) Bujak, R.; Struck-Lewicka, W.; Markuszewski, M. J.; Kaliszan, R. Metabolomics for Laboratory 

Diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120. https://doi.org/10.1016/j.jpba.2014.12.017. 

(45) Xi, B.; Gu, H.; Baniasadi, H.; Raftery, D. Statistical Analysis and Modeling of Mass Spectrometry-

Based Metabolomics Data. In Mass Spectrometry in Metabolomics; Raftery, D., Ed.; Methods in Molecular 

Biology; Springer New York: New York, NY, 2014; Vol. 1198, pp 333–353. https://doi.org/10.1007/978-1-

4939-1258-2_22. 

(46) Principal Component Analysis for Special Types of Data. In Principal Component Analysis; Springer 

Series in Statistics; Springer-Verlag: New York, 2002; pp 338–372. https://doi.org/10.1007/0-387-22440-

8_13. 

(47) Johnson, R. A.; Wichern, D. W. Applied Multivariate Statistical Analysis, 6th ed.; Pearson Prentice 

Hall: Upper Saddle River, N.J, 2007. 

(48) Johnson, S. C. Hierarchical Clustering Schemes. Psychometrika 1967, 32 (3), 241–254. 

https://doi.org/10.1007/BF02289588. 

(49) Hartigan, J. A.; Wong, M. A. Algorithm AS 136: A K-Means Clustering Algorithm. Appl. Stat. 1979, 28 

(1), 100. https://doi.org/10.2307/2346830. 

(50) Bezdek, J. C.; Ehrlich, R.; Full, W. FCM: The Fuzzy c-Means Clustering Algorithm. Comput. Geosci. 

1984, 10 (2–3), 191–203. https://doi.org/10.1016/0098-3004(84)90020-7. 

(51) Barker, M.; Rayens, W. Partial Least Squares for Discrimination. J. Chemom. 2003, 17 (3), 166–173. 

https://doi.org/10.1002/cem.785. 

(52) Gromski, P. S.; Muhamadali, H.; Ellis, D. I.; Xu, Y.; Correa, E.; Turner, M. L.; Goodacre, R. A Tutorial 

Review: Metabolomics and Partial Least Squares-Discriminant Analysis – a Marriage of Convenience or a 

Shotgun Wedding. Anal. Chim. Acta 2015, 879, 10–23. https://doi.org/10.1016/j.aca.2015.02.012. 

(53) Want, E.; Masson, P. Processing and Analysis of GC/LC-MS-Based Metabolomics Data. In Metabolic 

Profiling; Metz, T. O., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, 2011; Vol. 708, pp 

277–298. https://doi.org/10.1007/978-1-61737-985-7_17. 

(54) Mehmood, T.; Martens, H.; Sæbø, S.; Warringer, J.; Snipen, L. A Partial Least Squares Based 

Algorithm for Parsimonious Variable Selection. Algorithms Mol. Biol. 2011, 6 (1), 27. 

https://doi.org/10.1186/1748-7188-6-27. 



119 
 

(55) Vapnik, V. N. The Nature of Statistical Learning Theory; Springer New York: New York, NY, 2000. 

https://doi.org/10.1007/978-1-4757-3264-1. 

(56) Xu, Y.; Zomer, S.; Brereton, R. G. Support Vector Machines: A Recent Method for Classification in 

Chemometrics. Crit. Rev. Anal. Chem. 2006, 36 (3–4), 177–188. 

https://doi.org/10.1080/10408340600969486. 

(57) Breiman, L. [No Title Found]. Mach. Learn. 2001, 45 (1), 5–32. 

https://doi.org/10.1023/A:1010933404324. 

(58) Liland, K. H. Multivariate Methods in Metabolomics – from Pre-Processing to Dimension Reduction 

and Statistical Analysis. TrAC Trends Anal. Chem. 2011, 30 (6), 827–841. 

https://doi.org/10.1016/j.trac.2011.02.007. 

(59) Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13 (1), 21–

27. https://doi.org/10.1109/TIT.1967.1053964. 

(60) Park, M. Y.; Hastie, T. Penalized Logistic Regression for Detecting Gene Interactions. Biostatistics 

2008, 9 (1), 30–50. https://doi.org/10.1093/biostatistics/kxm010. 

(61) Kuo, T.-C.; Tian, T.-F.; Tseng, Y. J. 3Omics: A Web-Based Systems Biology Tool for Analysis, 

Integration and Visualization of Human Transcriptomic, Proteomic and Metabolomic Data. BMC Syst. Biol. 

2013, 7, 64. https://doi.org/10.1186/1752-0509-7-64. 

(62) Paley, S. M.; Karp, P. D. The Pathway Tools Cellular Overview Diagram and Omics Viewer. Nucleic 

Acids Res. 2006, 34 (13), 3771–3778. https://doi.org/10.1093/nar/gkl334. 

(63) García-Alcalde, F.; García-López, F.; Dopazo, J.; Conesa, A. Paintomics: A Web Based Tool for the 

Joint Visualization of Transcriptomics and Metabolomics Data. Bioinforma. Oxf. Engl. 2011, 27 (1), 137–139. 

https://doi.org/10.1093/bioinformatics/btq594. 

(64) Karnovsky, A.; Weymouth, T.; Hull, T.; Tarcea, V. G.; Scardoni, G.; Laudanna, C.; Sartor, M. A.; 

Stringer, K. A.; Jagadish, H. V.; Burant, C.; Athey, B.; Omenn, G. S. Metscape 2 Bioinformatics Tool for the 

Analysis and Visualization of Metabolomics and Gene Expression Data. Bioinforma. Oxf. Engl. 2012, 28 (3), 

373–380. https://doi.org/10.1093/bioinformatics/btr661. 

(65) Cavalcante, R. G.; Patil, S.; Weymouth, T. E.; Bendinskas, K. G.; Karnovsky, A.; Sartor, M. A. 

ConceptMetab: Exploring Relationships among Metabolite Sets to Identify Links among Biomedical 

Concepts. Bioinforma. Oxf. Engl. 2016, 32 (10), 1536–1543. https://doi.org/10.1093/bioinformatics/btw016. 

(66) López-Ibáñez, J.; Pazos, F.; Chagoyen, M. MBROLE 2.0-Functional Enrichment of Chemical 

Compounds. Nucleic Acids Res. 2016, 44 (W1), W201-204. https://doi.org/10.1093/nar/gkw253. 

(67) Xia, J.; Wishart, D. S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. 

Curr. Protoc. Bioinforma. 2016, 55, 14.10.1-14.10.91. https://doi.org/10.1002/cpbi.11. 

(68) Chagoyen, M.; Pazos, F. Tools for the Functional Interpretation of Metabolomic Experiments. Brief. 

Bioinform. 2013, 14 (6), 737–744. https://doi.org/10.1093/bib/bbs055. 

(69) Khatri, P.; Sirota, M.; Butte, A. J. Ten Years of Pathway Analysis: Current Approaches and 

Outstanding Challenges. PLoS Comput. Biol. 2012, 8 (2), e1002375. 

https://doi.org/10.1371/journal.pcbi.1002375. 

(70) Wieder, C.; Frainay, C.; Poupin, N.; Rodríguez-Mier, P.; Vinson, F.; Cooke, J.; Lai, R. P.; Bundy, J. G.; 

Jourdan, F.; Ebbels, T. Pathway Analysis in Metabolomics: Recommendations for the Use of over-

Representation Analysis. PLOS Comput. Biol. 2021, 17 (9), e1009105. 

https://doi.org/10.1371/journal.pcbi.1009105. 



120 
 

(71) Huang, D. W.; Sherman, B. T.; Lempicki, R. A. Bioinformatics Enrichment Tools: Paths toward the 

Comprehensive Functional Analysis of Large Gene Lists. Nucleic Acids Res. 2009, 37 (1), 1–13. 

https://doi.org/10.1093/nar/gkn923. 

(72) Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28 (1), 

27–30. https://doi.org/10.1093/nar/28.1.27. 

(73) Karp, P. D.; Billington, R.; Caspi, R.; Fulcher, C. A.; Latendresse, M.; Kothari, A.; Keseler, I. M.; 

Krummenacker, M.; Midford, P. E.; Ong, Q.; Ong, W. K.; Paley, S. M.; Subhraveti, P. The BioCyc Collection of 

Microbial Genomes and Metabolic Pathways. Brief. Bioinform. 2019, 20 (4), 1085–1093. 

https://doi.org/10.1093/bib/bbx085. 

(74) Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; 

Gillespie, M.; Haw, R.; Loney, F.; May, B.; Milacic, M.; Rothfels, K.; Sevilla, C.; Shamovsky, V.; Shorser, S.; 

Varusai, T.; Weiser, J.; Wu, G.; Stein, L.; Hermjakob, H.; D’Eustachio, P. The Reactome Pathway 

Knowledgebase. Nucleic Acids Res. 2019, gkz1031. https://doi.org/10.1093/nar/gkz1031. 

(75) Frolkis, A.; Knox, C.; Lim, E.; Jewison, T.; Law, V.; Hau, D. D.; Liu, P.; Gautam, B.; Ly, S.; Guo, A. C.; 

Xia, J.; Liang, Y.; Shrivastava, S.; Wishart, D. S. SMPDB: The Small Molecule Pathway Database. Nucleic 

Acids Res. 2010, 38 (suppl_1), D480–D487. https://doi.org/10.1093/nar/gkp1002. 

(76) Subramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.; Ebert, B. L.; Gillette, M. A.; Paulovich, 

A.; Pomeroy, S. L.; Golub, T. R.; Lander, E. S.; Mesirov, J. P. Gene Set Enrichment Analysis: A Knowledge-

Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. 2005, 102 (43), 

15545–15550. https://doi.org/10.1073/pnas.0506580102. 

(77) Barry, W. T.; Nobel, A. B.; Wright, F. A. Significance Analysis of Functional Categories in Gene 

Expression Studies: A Structured Permutation Approach. Bioinformatics 2005, 21 (9), 1943–1949. 

https://doi.org/10.1093/bioinformatics/bti260. 

(78) Efron, B.; Tibshirani, R. On Testing the Significance of Sets of Genes. Ann. Appl. Stat. 2007, 1 (1). 

https://doi.org/10.1214/07-AOAS101. 

(79) Jiang, Z.; Gentleman, R. Extensions to Gene Set Enrichment. Bioinformatics 2007, 23 (3), 306–313. 

https://doi.org/10.1093/bioinformatics/btl599. 

(80) Xia, J.; Wishart, D. S. MSEA: A Web-Based Tool to Identify Biologically Meaningful Patterns in 

Quantitative Metabolomic Data. Nucleic Acids Res. 2010, 38 (Web Server), W71–W77. 

https://doi.org/10.1093/nar/gkq329. 

(81) Chagoyen, M.; Pazos, F. MBRole: Enrichment Analysis of Metabolomic Data. Bioinformatics 2011, 27 

(5), 730–731. https://doi.org/10.1093/bioinformatics/btr001. 

(82) Kankainen, M.; Gopalacharyulu, P.; Holm, L.; Orešič, M. MPEA—Metabolite Pathway Enrichment 

Analysis. Bioinformatics 2011, 27 (13), 1878–1879. https://doi.org/10.1093/bioinformatics/btr278. 

(83) Kamburov, A.; Cavill, R.; Ebbels, T. M. D.; Herwig, R.; Keun, H. C. Integrated Pathway-Level Analysis 

of Transcriptomics and Metabolomics Data with IMPaLA. Bioinformatics 2011, 27 (20), 2917–2918. 

https://doi.org/10.1093/bioinformatics/btr499. 

(84) Caspi, R.; Billington, R.; Keseler, I. M.; Kothari, A.; Krummenacker, M.; Midford, P. E.; Ong, W. K.; 

Paley, S.; Subhraveti, P.; Karp, P. D. The MetaCyc Database of Metabolic Pathways and Enzymes - a 2019 

Update. Nucleic Acids Res. 2020, 48 (D1), D445–D453. https://doi.org/10.1093/nar/gkz862. 

(85) Aggio, R. B. M. Pathway Activity Profiling (PAPi): A Tool for Metabolic Pathway Analysis. In Yeast 

Metabolic Engineering; Mapelli, V., Ed.; Methods in Molecular Biology; Springer New York: New York, NY, 

2014; Vol. 1152, pp 233–250. https://doi.org/10.1007/978-1-4939-0563-8_14. 



121 
 

(86) Kutmon, M.; van Iersel, M. P.; Bohler, A.; Kelder, T.; Nunes, N.; Pico, A. R.; Evelo, C. T. PathVisio 3: 

An Extendable Pathway Analysis Toolbox. PLOS Comput. Biol. 2015, 11 (2), e1004085. 

https://doi.org/10.1371/journal.pcbi.1004085. 

(87) Barupal, D. K.; Haldiya, P. K.; Wohlgemuth, G.; Kind, T.; Kothari, S. L.; Pinkerton, K. E.; Fiehn, O. 

MetaMapp: Mapping and Visualizing Metabolomic Data by Integrating Information from Biochemical 

Pathways and Chemical and Mass Spectral Similarity. BMC Bioinformatics 2012, 13 (1), 99. 

https://doi.org/10.1186/1471-2105-13-99. 

(88) Cottret, L.; Wildridge, D.; Vinson, F.; Barrett, M. P.; Charles, H.; Sagot, M.-F.; Jourdan, F. 

MetExplore: A Web Server to Link Metabolomic Experiments and Genome-Scale Metabolic Networks. 

Nucleic Acids Res. 2010, 38 (Web Server), W132–W137. https://doi.org/10.1093/nar/gkq312. 

(89) Amara, A.; Frainay, C.; Jourdan, F.; Naake, T.; Neumann, S.; Novoa-del-Toro, E. M.; Salek, R. M.; 

Salzer, L.; Scharfenberg, S.; Witting, M. Networks and Graphs Discovery in Metabolomics Data Analysis and 

Interpretation. Front. Mol. Biosci. 2022, 9, 841373. https://doi.org/10.3389/fmolb.2022.841373. 

(90) Robinson, J. L.; Kocabaş, P.; Wang, H.; Cholley, P.-E.; Cook, D.; Nilsson, A.; Anton, M.; Ferreira, R.; 

Domenzain, I.; Billa, V.; Limeta, A.; Hedin, A.; Gustafsson, J.; Kerkhoven, E. J.; Svensson, L. T.; Palsson, B. O.; 

Mardinoglu, A.; Hansson, L.; Uhlén, M.; Nielsen, J. An Atlas of Human Metabolism. Sci. Signal. 2020, 13 

(624), eaaz1482. https://doi.org/10.1126/scisignal.aaz1482. 

(91) Lacroix, V.; Cottret, L.; Thebault, P.; Sagot, M.-F. An Introduction to Metabolic Networks and Their 

Structural Analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2008, 5 (4), 594–617. 

https://doi.org/10.1109/TCBB.2008.79. 

(92) Liggi, S.; Griffin, J. L. Metabolomics Applied to Diabetes−lessons from Human Population Studies. 

Int. J. Biochem. Cell Biol. 2017, 93, 136–147. https://doi.org/10.1016/j.biocel.2017.10.011. 

(93) del Mar Amador, M.; Colsch, B.; Lamari, F.; Jardel, C.; Ichou, F.; Rastetter, A.; Sedel, F.; Jourdan, F.; 

Frainay, C.; Wevers, R. A.; Roze, E.; Depienne, C.; Junot, C.; Mochel, F. Targeted versus Untargeted Omics — 

the CAFSA Story. J. Inherit. Metab. Dis. 2018, 41 (3), 447–456. https://doi.org/10.1007/s10545-017-0134-3. 

(94) Faust, K.; Dupont, P.; Callut, J.; van Helden, J. Pathway Discovery in Metabolic Networks by 

Subgraph Extraction. Bioinformatics 2010, 26 (9), 1211–1218. 

https://doi.org/10.1093/bioinformatics/btq105. 

(95) Bánky, D.; Iván, G.; Grolmusz, V. Equal Opportunity for Low-Degree Network Nodes: A PageRank-

Based Method for Protein Target Identification in Metabolic Graphs. PLoS ONE 2013, 8 (1), e54204. 

https://doi.org/10.1371/journal.pone.0054204. 

(96) Frainay, C.; Aros, S.; Chazalviel, M.; Garcia, T.; Vinson, F.; Weiss, N.; Colsch, B.; Sedel, F.; Thabut, 

D.; Junot, C.; Jourdan, F. MetaboRank: Network-Based Recommendation System to Interpret and Enrich 

Metabolomics Results. Bioinformatics 2019, 35 (2), 274–283. https://doi.org/10.1093/bioinformatics/bty577. 

(97) Thiele, I.; Vlassis, N.; Fleming, R. M. T. FastGapFill: Efficient Gap Filling in Metabolic Networks. 

Bioinformatics 2014, 30 (17), 2529–2531. https://doi.org/10.1093/bioinformatics/btu321. 

(98) Pan, S.; Reed, J. L. Advances in Gap-Filling Genome-Scale Metabolic Models and Model-Driven 

Experiments Lead to Novel Metabolic Discoveries. Curr. Opin. Biotechnol. 2018, 51, 103–108. 

https://doi.org/10.1016/j.copbio.2017.12.012. 

(99) Degtyarenko, K.; de Matos, P.; Ennis, M.; Hastings, J.; Zbinden, M.; McNaught, A.; Alcantara, R.; 

Darsow, M.; Guedj, M.; Ashburner, M. ChEBI: A Database and Ontology for Chemical Entities of Biological 

Interest. Nucleic Acids Res. 2007, 36 (Database), D344–D350. https://doi.org/10.1093/nar/gkm791. 

(100) Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; Davis, A. P.; Dolinski, K.; 

Dwight, S. S.; Eppig, J. T.; Harris, M. A.; Hill, D. P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J. C.; 



122 
 

Richardson, J. E.; Ringwald, M.; Rubin, G. M.; Sherlock, G. Gene Ontology: Tool for the Unification of Biology. 

Nat. Genet. 2000, 25 (1), 25–29. https://doi.org/10.1038/75556. 

(101) Watrous, J.; Roach, P.; Alexandrov, T.; Heath, B. S.; Yang, J. Y.; Kersten, R. D.; van der Voort, M.; 

Pogliano, K.; Gross, H.; Raaijmakers, J. M.; Moore, B. S.; Laskin, J.; Bandeira, N.; Dorrestein, P. C. Mass 

Spectral Molecular Networking of Living Microbial Colonies. Proc. Natl. Acad. Sci. 2012, 109 (26). 

https://doi.org/10.1073/pnas.1203689109. 

(102) Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; 

Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, W.-T.; 

Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. 

A.; Duncan, K. R.; Hsu, C.-C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; 

Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; 

Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C.-C.; Yang, Y.-L.; Humpf, H.-U.; Maansson, M.; Keyzers, R. A.; 

Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya P, C. A.; Torres-

Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O’Neill, E. C.; Briand, 

E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; 

Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; 

Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; 

Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, 

A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P.-M.; Phapale, P.; Nothias, 

L.-F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.-L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D.-T.; 

VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. 

R.; Palsson, B. Ø.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; 

Dorrestein, P. C.; Bandeira, N. Sharing and Community Curation of Mass Spectrometry Data with Global 

Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34 (8), 828–837. 

https://doi.org/10.1038/nbt.3597. 

(103) Olivon, F.; Elie, N.; Grelier, G.; Roussi, F.; Litaudon, M.; Touboul, D. MetGem Software for the 

Generation of Molecular Networks Based on the T-SNE Algorithm. Anal. Chem. 2018, 90 (23), 13900–13908. 

https://doi.org/10.1021/acs.analchem.8b03099. 

(104) Huber, F.; Ridder, L.; Verhoeven, S.; Spaaks, J. H.; Diblen, F.; Rogers, S.; van der Hooft, J. J. J. 

Spec2Vec: Improved Mass Spectral Similarity Scoring through Learning of Structural Relationships. PLOS 

Comput. Biol. 2021, 17 (2), e1008724. https://doi.org/10.1371/journal.pcbi.1008724. 

(105) Krumsiek, J.; Suhre, K.; Illig, T.; Adamski, J.; Theis, F. J. Gaussian Graphical Modeling Reconstructs 

Pathway Reactions from High-Throughput Metabolomics Data. BMC Syst. Biol. 2011, 5 (1), 21. 

https://doi.org/10.1186/1752-0509-5-21. 

(106) Bühlmann, P.; van de Geer, S. Statistics for High-Dimensional Data; Springer Series in Statistics; 

Springer Berlin Heidelberg: Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-20192-9. 

(107) Friedman, J.; Hastie, T.; Tibshirani, R. Sparse Inverse Covariance Estimation with the Graphical 

Lasso. Biostatistics 2008, 9, 432–441. 

(108) Meinshausen, N.; Bühlmann, P. High-Dimensional Graphs and Variable Selection with the Lasso. 

Ann. Stat. 2006, 34 (3). https://doi.org/10.1214/009053606000000281. 

(109) Basu, S.; Duren, W.; Evans, C. R.; Burant, C. F.; Michailidis, G.; Karnovsky, A. Sparse Network 

Modeling and Metscape-Based Visualization Methods for the Analysis of Large-Scale Metabolomics Data. 

Bioinformatics 2017, btx012. https://doi.org/10.1093/bioinformatics/btx012. 

(110) Zhang, B.; Horvath, S. A General Framework for Weighted Gene Co-Expression Network Analysis. 

Stat. Appl. Genet. Mol. Biol. 2005, 4 (1). https://doi.org/10.2202/1544-6115.1128. 



123 
 

(111) Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC 

Bioinformatics 2008, 9 (1), 559. https://doi.org/10.1186/1471-2105-9-559. 

(112) Osterhoff, M.; Frahnow, T.; Seltmann, A.; Mosig, A.; Neunübel, K.; Sales, S.; Sampaio, J.; 

Hornemann, S.; Kruse, M.; Pfeiffer, A. Identification of Gene-Networks Associated with Specific Lipid 

Metabolites by Weighted Gene Co-Expression Network Analysis (WGCNA). Exp. Clin. Endocrinol. Diabetes 

2014, 122 (03), s-0034-1372115. https://doi.org/10.1055/s-0034-1372115. 

(113) Vernocchi, P.; Gili, T.; Conte, F.; Del Chierico, F.; Conta, G.; Miccheli, A.; Botticelli, A.; Paci, P.; 

Caldarelli, G.; Nuti, M.; Marchetti, P.; Putignani, L. Network Analysis of Gut Microbiome and Metabolome to 

Discover Microbiota-Linked Biomarkers in Patients Affected by Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 

2020, 21 (22), 8730. https://doi.org/10.3390/ijms21228730. 

(114) Petersen, C.; Dai, D. L. Y.; Boutin, R. C. T.; Sbihi, H.; Sears, M. R.; Moraes, T. J.; Becker, A. B.; Azad, 

M. B.; Mandhane, P. J.; Subbarao, P.; Turvey, S. E.; Finlay, B. B. A Rich Meconium Metabolome in Human 

Infants Is Associated with Early-Life Gut Microbiota Composition and Reduced Allergic Sensitization. Cell 

Rep. Med. 2021, 2 (5), 100260. https://doi.org/10.1016/j.xcrm.2021.100260. 

(115) Wu, J.; Ye, Y.; Quan, J.; Ding, R.; Wang, X.; Zhuang, Z.; Zhou, S.; Geng, Q.; Xu, C.; Hong, L.; Xu, Z.; 

Zheng, E.; Cai, G.; Wu, Z.; Yang, J. Using Nontargeted LC-MS Metabolomics to Identify the Association of 

Biomarkers in Pig Feces with Feed Efficiency. Porc. Health Manag. 2021, 7 (1), 39. 

https://doi.org/10.1186/s40813-021-00219-w. 

(116) DiLeo, M. V.; Strahan, G. D.; den Bakker, M.; Hoekenga, O. A. Weighted Correlation Network 

Analysis (WGCNA) Applied to the Tomato Fruit Metabolome. PLoS ONE 2011, 6 (10), e26683. 

https://doi.org/10.1371/journal.pone.0026683. 

(117) German, J. B.; Zivkovic, A. M.; Dallas, D. C.; Smilowitz, J. T. Nutrigenomics and Personalized Diets: 

What Will They Mean for Food? Annu. Rev Food Sci Technol 2001, 2, 97–123. 

(118) McKay, A. J.; Mathers, C. J. Diet Induced Epigenetic Changes and Their Implications for Health. Acta 

Physiol 2011, 202, 103–118. 

(119) Conterno, L.; Fava, F.; Viola, R.; Tuohy, K. M. Obesity and the Gut Microbiota: Does up-Regulating 

Colonic Fermentation Protect against Obesity and Metabolic Disease? Genes Nutr, 2011, 6, 241–260. 

(120) Wild, C. P. Complementing the Genome with an “Exposome”: The Outstanding Challenge of 

Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiol Biomark Prev 2005, 14, 

1847–1850. 

(121) Llorach, R.; Garcia-Aloy, M.; Tulipani, S.; Vazquez-Fresno, R.; Andres-Lacueva, C. Nutrimetabolomic 

Strategies to Develop New Biomarkers of Intake and Health Effects. J Agric Food Chem 2012, 60, 8797–

8808. 

(122) Cairns, R. A.; Harris, I. S.; Mak, T. W. Regulation of Cancer Cell Metabolism. Nat Rev Cancer 2011, 

11, 85–95. 

(123) Ko, D.; Riles, E. M.; Marcos, E. G.; Magnani, J. W.; Lubitz, S. A.; Lin, H.; Long, M. T.; Schnabel, R. B.; 

McManus, D. D.; Ellinor, P. T. Metabolomic Profiling in Relation to New-Onset Atrial Fibrillation (from the 

Framingham Heart Study. Am J Cardiol 2016, 118, 1493–1496. 

(124) Gardinassi, L. G.; Xia, J.; Safo, S. E.; Li, S. Bioinformatics Tools for the Interpretation of 

Metabolomics Data. Curr Pharmacol Rep 2017, 3, 374–383. 

(125) Hollywood, K.; Brison, D. R.; Goodacre, R. Metabolomics: Current Technologies and Future Trends. 

Proteomics 2016, 6, 4716–4723. 



124 
 

(126) Ma, J.; Karnovsky, A.; Afshinnia, F.; Wigginton, J.; Rader, D. J.; Natarajan, L.; Sharma, K.; Porter, A. 

C.; Rahman, M.; He, J.; Hamm, L.; Shafi, T.; Gipson, D.; Gadegbeku, C.; Feldman, H.; Michailidis, G.; 

Pennathur, S. Differential Network Enrichment Analysis Reveals Novel Lipid Pathways in Chronic Kidney 

Disease. Bioinformatics 2019, 35 (18), 3441–3452. https://doi.org/10.1093/bioinformatics/btz114. 

(127) Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski, B.; 

Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. 

Genome Res 2003, 13, 2498–2504. 

(128) Guo, J.; Levina, E.; Michailidis, G.; Zhu, J. Joint Estimation of Multiple Graphical Models. Biometrika 

2011, 98, 1–15. 

(129) Wishart, D. S.; Feunang, Y. D.; Marcu, A.; Guo, A. C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; 

Johnson, D.; Li, C.; Karu, N. HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids Res 2018, 

46, 608–617. 

(130) Kind, T.; Liu, K. H.; Lee, D. Y.; DeFelice, B.; Meissen, J. K.; Fiehn, O. LipidBlast in Silico Tandem Mass 

Spectrometry Database for Lipid Identification. Nat Methods 2013, 10, 755–758. 

(131) Fahrmann, J.; Grapov, D.; Yang, J.; Hammock, B.; Fiehn, O.; Bell, G. I.; Hara, M. Systemic Alterations 

in the Metabolome of Diabetic NOD Mice Delineate Increased Oxidative Stress Accompanied by Reduced 

Inflammation and Hypertriglyceremia. Am J Physiol Endocrinol Metab 2015, 308, 978–989. 

(132) Grapov, D.; Fahrmann, J.; Hwang, J.; Poudel, A.; Jo, J.; Periwal, V.; Fiehn, O.; Hara, M. Diabetes 

Associated Metabolomic Perturbations in NOD Mice. Metabolomics 2015, 11, 425–437. 

(133) Kannel, W. B.; McGee, D. L. Diabetes and Cardiovascular Disease: The Framingham Study. JAMA 

1979, 241, 2035–2038. 

(134) Merino, J.; Leong, A.; Liu, C. T.; Porneala, B.; Walford, G. A.; Grotthuss, M.; Wang, T. J.; Flannick, J.; 

Dupuis, J.; Levy, D. Metabolomics Insights into Early Type 2 Diabetes Pathogenesis and Detection in 

Individuals with Normal Fasting Glucose. Diabetologia 2018, 61, 1315–1324. 

(135) LaBarre, J. L.; Puttabyatappa, M.; Song, P. X.; Goodrich, J. M.; Zhou, L.; Rajendiran, T. M.; Soni, T.; 

Domino, S. E.; Treadwell, M. C.; Dolinoy, D. C. Maternal Lipid Levels across Pregnancy Impact the Umbilical 

Cord Blood Lipidome and Infant Birth Weight. Sci Rep 2020, 10, 1–15. 

(136) Yuan, M.; Lin, Y. Model Selection and Estimation in Regression with Grouped Variables. J R Stat Soc 

Ser B Stat Methodol 2006, 68, 49–67. 

(137) Yang, Y.; Zou, H. G. G. L. A. S. S. O. Group Lasso Penalized Learning Using a Unified BMD Algorithm. 

R Package Version 2013, 1. 

(138) Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 

1996, 58 (1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x. 

(139) Shojaie, A.; Michailidis, G. Analysis of Gene Sets Based on the Underlying Regulatory Network. J 

Comput Biol 2009, 16, 407–426. 

(140) Shojaie, A.; Michailidis, G. Network Enrichment Analysis in Complex Experiments. Stat Appl Genet 

Mol Biol 2010, 9. 

(141) Maritim, A. C.; Sanders, A.; Watkins Iii, J. B. Diabetes, Oxidative Stress, and Antioxidants: A Review. 

J Biochem Mol Toxicol 2003, 17, 24–38. 

(142) Rabinovitch, A. L. E. X.; Suarez-Pinzon, W. L.; Strynadka, K.; Lakey, J. R.; Rajotte, R. V. Human 

Pancreatic Islet Beta-Cell Destruction by Cytokines Involves Oxygen Free Radicals and Aldehyde Production. 

J Clin Endocrinol Metab 1996, 81, 3197–3202. 



125 
 

(143) Hayes, J. D.; McLELLAN, L. I. Glutathione and Glutathione-Dependent Enzymes Represent a Co-

Ordinately Regulated Defence against Oxidative Stress. Free Radic Res 1999, 31, 273–300. 

(144) Murakami, K.; Takahito, K.; Ohtsuka, Y.; Fujiwara, Y.; Shimada, M.; Kawakami, Y. Impairment of 

Glutathione Metabolism in Erythrocytes from Patients with Diabetes Mellitus. Metabolism 1989, 38, 753–

758. 

(145) Samiec, P. S.; Drews-Botsch, C.; Flagg, E. W.; Kurtz, J. C.; Sternberg, P., Jr.; Reed, R. L.; Jones, D. P. 

Glutathione in Human Plasma: Decline in Association with Aging, Age-Related Macular Degeneration, and 

Diabetes. Free Radic Biol Med 1998, 24, 699–704. 

(146) Darmaun, D.; Smith, S. D.; Sweeten, S.; Sager, B. K.; Welch, S.; Mauras, N. Evidence for Accelerated 

Rates of Glutathione Utilization and Glutathione Depletion in Adolescents with Poorly Controlled Type 1 

Diabetes. Diabetes 2005, 54, 190–196. 

(147) Dincer, Y.; Akcay, T.; Alademir, Z.; Ilkova, H. Effect of Oxidative Stress on Glutathione Pathway in 

Red Blood Cells from Patients with Insulin-Dependent Diabetes Mellitus. Metab Clin Exp 2002, 51, 1360–

1362. 

(148) Dotan, I.; Shechter, I. Thiol-Disulfide-Dependent Interconversion of Active and Latent Forms of Rat 

Hepatic 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase. Biochim Biophys Acta BBA Lipids Lipid Metab 

1982, 713, 427–434. 

(149) Roitelman, J.; Shechter, I. Regulation of Rat Liver 3-Hydroxy-3-Methylglutaryl Coenzyme A 

Reductase. Evidence for Thiol-Dependent Allosteric Modulation of Enzyme Activity. J Biol Chem 1984, 259, 

870–877. 

(150) Cappel, R. E.; Gilbert, H. F. Thiol/Disulfide Exchange between 3-Hydroxy-3-Methylglutaryl-CoA 

Reductase and Glutathione. A Thermodynamically Facile Dithiol Oxidation. J Biol Chem 1988, 263, 12204–

12212. 

(151) Gustafsson, J.; Carlsson, B.; Larsson, A. Cholesterol Synthesis in Patients with Glutathione 

Deficiency. Eur J Clin Investig 1990, 20, 470–474. 

(152) Sample, C. E.; Ness, G. C. Regulation of the Activity of 3-Hydroxy-3-Methylglutaryl Coenzyme A 

Reductase by Insulin. Biochem Biophys Res Commun 1986, 137, 201–207. 

(153) Konorev, E. A.; Hogg, N.; Kalyanaraman, B. Rapid and Irreversible Inhibition of Creatine Kinase by 

Peroxynitrite. FEBS Lett 1998, 427, 171–174. 

(154) Jiang, Z.; Kohzuki, M.; Harada, T.; Sato, T. Glutathione Suppresses Increase of Serum Creatine 

Kinase in Experimental Hypoglycemia. Diabetes Res Clin Pr. 2007, 77, 357–362. 

(155) Horecker, B. L.; Land, K.; Takagi, Y. I. S. on M. Physiology and Clinical Use of Pentoses and 

Pentitols, 1969. 

(156) Chukwuma, C. I.; Islam, M. S. Xylitol Improves Anti-Oxidative Defense System in Serum, Liver, 

Heart, Kidney and Pancreas of Normal and Type 2 Diabetes Model of Rats. Acta Pol Pharm 2017, 74, 817–

826. 

(157) Burant, C. F.; Flink, S.; DePaoli, A. M.; Chen, J.; Lee, W. S.; Hediger, M. A.; Buse, J. B.; Chang, E. B. 

Small Intestine Hexose Transport in Experimental Diabetes. Increased Transporter MRNA and Protein 

Expression in Enterocytes. J Clin Investig 1994, 93, 578–585. 

(158) Vaarala, O. Leaking Gut in Type 1 Diabetes. Curr Opin Gastroenterol 2008, 24, 701–706. 

(159) Wołoszyn-Durkiewicz, A.; Myśliwiec, M. The Prognostic Value of Inflammatory and Vascular 

Endothelial Dysfunction Biomarkers in Microvascular and Macrovascular Complications in Type 1 Diabetes. 

Pediatr Endocrinol Diabetes Metab 2019, 25, 28–35. 



126 
 

(160) Wang, T. J.; Wollert, K. C.; Larson, M. G.; Coglianese, E.; McCabe, E. L.; Cheng, S.; Ho, J. E.; Fradley, 

M. G.; Ghorbani, A.; Xanthakis, V. Prognostic Utility of Novel Biomarkers of Cardiovascular Stress: The 

Framingham Heart Study. Circulation 2012, 126, 1596–1604. 

(161) Meinshausen, N.; Bühlmann, P. Stability Selection. J R Stat Soc Ser B Stat Methodol 2010, 72, 417–

473. 

(162) Yu, E.; Papandreou, C.; Ruiz-Canela, M.; Guasch-Ferre, M.; Clish, C. B.; Dennis, C.; Liang, L.; Corella, 

D.; Fitó, M.; Razquin, C. Association of Tryptophan Metabolites with Incident Type 2 Diabetes in the 

PREDIMED Trial: A Case–Cohort Study. Clin Chem 2018, 64, 1211–1220. 

(163) Rebnord, E. W.; Strand, E.; Midttun, Ø.; Svingen, G. F.; Christensen, M. H.; Ueland, P. M.; Mellgren, 

G.; Njølstad, P. R.; Tell, G. S.; Nygård, O. K. The Kynurenine: Tryptophan Ratio as a Predictor of Incident 

Type 2 Diabetes Mellitus in Individuals with Coronary Artery Disease. Diabetologia 2017, 60, 1712–1721. 

(164) Wang, T. J.; Ngo, D.; Psychogios, N.; Dejam, A.; Larson, M. G.; Vasan, R. S.; Ghorbani, A.; O’Sullivan, 

J.; Cheng, S.; Rhee, E. P. 2-Aminoadipic Acid Is a Biomarker for Diabetes Risk. J Clin Investig 2013, 123, 

4309–4317. 

(165) Kushiyama, A.; Nakatsu, Y.; Matsunaga, Y.; Yamamotoya, T.; Mori, K.; Ueda, K.; Inoue, Y.; Sakoda, 

H.; Fujishiro, M.; Ono, H. Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of 

Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis. Mediat 

Inflamm 2016, 1–15. 

(166) Cicero, A. F. G.; Fogacci, F.; Giovannini, M.; Grandi, E.; Rosticci, M.; D’Addato, S.; Borghi, C. Serum 

Uric Acid Predicts Incident Metabolic Syndrome in the Elderly in an Analysis of the Brisighella Heart Study. 

Sci Rep 2018, 8, 1–6. 

(167) Patti, M. E.; Corvera, S. The Role of Mitochondria in the Pathogenesis of Type 2 Diabetes. Endocr 

Rev 2010, 31, 364–395. 

(168) Miselli, M. A.; Dalla Nora, E.; Passaro, A.; Tomasi, F.; Zuliani, G. Plasma Triglycerides Predict Ten-

Years All-Cause Mortality in Outpatients with Type 2 Diabetes Mellitus: A Longitudinal Observational Study. 

Cardiovasc Diabetol 2014, 13, 135. 

(169) Zhao, J.; Zhang, Y.; Wei, F.; Song, J.; Cao, Z.; Chen, C.; Zhang, K.; Feng, S.; Wang, Y.; Li, W. D. 

Triglyceride Is an Independent Predictor of Type 2 Diabetes among Middle-Aged and Older Adults: A 

Prospective Study with 8-Year Follow-Ups in Two Cohorts. J Transl Med 2019, 17, 403. 

(170) Bennion, L. J.; Grundy, S. M. Effects of diabetes mellitus on cholesterol metabolism in man. N. Engl J 

Med 1977, 296, 1365–1371. 

(171) Staels, B.; Kuipers, F. Bile Acid Sequestrants and the Treatment of Type 2 Diabetes Mellitus. Drugs 

2007, 67, 1383–1392. 

(172) Lefebvre, P.; Cariou, B.; Lien, F.; Kuipers, F.; Staels, B. Role of Bile Acids and Bile Acid Receptors in 

Metabolic Regulation. Physiol Rev 2009, 89, 147–191. 

(173) Suhre, K.; Meisinger, C.; Döring, A.; Altmaier, E.; Belcredi, P.; Gieger, C.; Chang, D.; Milburn, M. V.; 

Gall, W. E.; Weinberger, K. M. Metabolic Footprint of Diabetes: A Multiplatform Metabolomics Study in an 

Epidemiological Setting. PLoS ONE 2010, 5, 13953. 

(174) Prawitt, J.; Caron, S.; Staels, B. Bile Acid Metabolism and the Pathogenesis of Type 2 Diabetes. Curr 

Diabetes Rep 2011, 11, 160. 

(175) Guiastrennec, B.; Sonne, D. P.; Bergstrand, M.; Vilsbøll, T.; Knop, F. K.; Karlsson, M. O. Model-Based 

Prediction of Plasma Concentration and Enterohepatic Circulation of Total Bile Acids in Humans. CPT 

Pharmacomet Syst Pharmacol 2018, 7, 603–612. 



127 
 

(176) Newgard, C. B.; An, J.; Bain, J. R.; Muehlbauer, M. J.; Stevens, R. D.; Lien, L. F.; Haqq, A. M.; Shah, S. 

H.; Arlotto, M.; Slentz, C. A. A Branched-Chain Amino Acid-Related Metabolic Signature That Differentiates 

Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab 2009, 9, 311–326. 

(177) Pettitt, D. J.; Jovanovic, L. Birth Weight as a Predictor of Type 2 Diabetes Mellitus: The U-Shaped 

Curve. Curr Diabetes Rep 2001, 1, 78–81. 

(178) Fenton, T. R.; Kim, J. H. A Systematic Review and Meta-Analysis to Revise the Fenton Growth Chart 

for Preterm Infants. BMC Pediatr 2013, 13, 59. 

(179) Lu, Y. P.; Reichetzeder, C.; Prehn, C.; Yin, L. H.; Yun, C.; Zeng, S.; Chu, C.; Adamski, J.; Hocher, B. 

Cord Blood Lysophosphatidylcholine 16: 1 Is Positively Associated with Birth Weight. Cell Physiol Biochem 

2018, 45, 614–624. 

(180) Maeba, R.; Nishimukai, M.; Sakasegawa, S. I.; Sugimori, D.; Hara, H. Plasma/Serum Plasmalogens: 

Methods of Analysis and Clinical Significance. In Advances in Clinical Chemistry; Amsterdam, The 

Netherlands: Elsevier, 2015; Vol. 70, pp 31–94. 

(181) Brenseke, B.; Prater, M. R.; Bahamonde, J.; Gutierrez, J. C. Current Thoughts on Maternal Nutrition 

and Fetal Programming of the Metabolic Syndrome. J Pregnancy 2013, 1–13. 

(182) Sonagra, A. D.; Biradar, S. M.; Dattatreya, K.; Jayaprakash Murthy, D. S. Normal Pregnancy-a State 

of Insulin Resistance. J Clin Diagn Res JCDR 2014, 8, 01–03. 

(183) Haggarty, P.; Page, K.; Abramovich, D. R.; Ashton, J.; Brown, D. Long-Chain Polyunsaturated Fatty 

Acid Transport across the Perfused Human Placenta. Placenta 1997, 18, 635–642. 

(184) Martínez-Victoria, E.; Yago, M. D. Omega 3 Polyunsaturated Fatty Acids and Body Weight. Br J Nutr 

2012, 107, 107–116. 

(185) Prieto-Sánchez, M. T.; Ruiz-Palacios, M.; Blanco-Carnero, J. E.; Pagan, A.; Hellmuth, C.; Uhl, O.; 

Peissner, W.; Ruiz-Alcaraz, A. J.; Parrilla, J. J.; Koletzko, B. Placental MFSD2a Transporter Is Related to 

Decreased DHA in Cord Blood of Women with Treated Gestational Diabetes. Clin Nutr 2017, 36, 513–521. 

(186) Csárdi, Gábor; Nepusz, Tamás; Horvát, Szabolcs; Traag, Vincent; Zanini, Fabio; Noom, Daniel. 

Igraph, 2022. https://doi.org/10.5281/ZENODO.3630268. 

(187) Clerkin, K. J.; Fried, J. A.; Raikhelkar, J.; Sayer, G.; Griffin, J. M.; Masoumi, A.; Jain, S. S.; Burkhoff, D.; 

Kumaraiah, D.; Rabbani, L.; Schwartz, A.; Uriel, N. COVID-19 and Cardiovascular Disease. Circulation 2020, 

141 (20), 1648–1655. https://doi.org/10.1161/CIRCULATIONAHA.120.046941. 

(188) Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D. S. C.; Du, B.; Li, L.; 

Zeng, G.; Yuen, K.-Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; 

Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; 

Zhong, N. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382 (18), 

1708–1720. https://doi.org/10.1056/NEJMoa2002032. 

(189) Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; 

Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 

Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. Lancet Respir. Med. 

2020, 8 (5), 475–481. https://doi.org/10.1016/S2213-2600(20)30079-5. 

(190) Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; 

Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical Course and Risk Factors for Mortality of 

Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. The Lancet 2020, 395 

(10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3. 



128 
 

(191) Mehta, P.; McAuley, D. F.; Brown, M.; Sanchez, E.; Tattersall, R. S.; Manson, J. J. COVID-19: 

Consider Cytokine Storm Syndromes and Immunosuppression. The Lancet 2020, 395 (10229), 1033–1034. 

https://doi.org/10.1016/S0140-6736(20)30628-0. 

(192) Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; 

Herrler, G.; Wu, N.-H.; Nitsche, A.; Müller, M. A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 Cell Entry Depends 

on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181 (2), 271-

280.e8. https://doi.org/10.1016/j.cell.2020.02.052. 

(193) De Jong, A.; Chanques, G.; Jaber, S. Mechanical Ventilation in Obese ICU Patients: From Intubation 

to Extubation. Crit. Care 2017, 21 (1), 63. https://doi.org/10.1186/s13054-017-1641-1. 

(194) Maile, M. D.; Standiford, T. J.; Engoren, M. C.; Stringer, K. A.; Jewell, E. S.; Rajendiran, T. M.; Soni, 

T.; Burant, C. F. Associations of the Plasma Lipidome with Mortality in the Acute Respiratory Distress 

Syndrome: A Longitudinal Cohort Study. Respir. Res. 2018, 19 (1), 60. https://doi.org/10.1186/s12931-018-

0758-3. 

(195) Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; Ge, W.; Liu, W.; 

Liang, S.; Chen, H.; Zhang, Y.; Li, J.; Xu, J.; He, Z.; Chen, B.; Wang, J.; Yan, H.; Zheng, Y.; Wang, D.; Zhu, J.; 

Kong, Z.; Kang, Z.; Liang, X.; Ding, X.; Ruan, G.; Xiang, N.; Cai, X.; Gao, H.; Li, L.; Li, S.; Xiao, Q.; Lu, T.; Zhu, 

Y.; Liu, H.; Chen, H.; Guo, T. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 

2020, 182 (1), 59-72.e15. https://doi.org/10.1016/j.cell.2020.05.032. 

(196) Wu, Q.; Zhou, L.; Sun, X.; Yan, Z.; Hu, C.; Wu, J.; Xu, L.; Li, X.; Liu, H.; Yin, P.; Li, K.; Zhao, J.; Li, Y.; 

Wang, X.; Li, Y.; Zhang, Q.; Xu, G.; Chen, H. Altered Lipid Metabolism in Recovered SARS Patients Twelve 

Years after Infection. Sci. Rep. 2017, 7 (1), 9110. https://doi.org/10.1038/s41598-017-09536-z. 

(197) Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The Species 

Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-NCoV and Naming It SARS-CoV-

2. Nat. Microbiol. 2020, 5 (4), 536–544. https://doi.org/10.1038/s41564-020-0695-z. 

(198) Kachman, M.; Habra, H.; Duren, W.; Wigginton, J.; Sajjakulnukit, P.; Michailidis, G.; Burant, C.; 

Karnovsky, A. Deep Annotation of Untargeted LC-MS Metabolomics Data with Binner. Bioinformatics 2020, 

36 (6), 1801–1806. https://doi.org/10.1093/bioinformatics/btz798. 

(199) Singh, A. K.; Gillies, C. L.; Singh, R.; Singh, A.; Chudasama, Y.; Coles, B.; Seidu, S.; Zaccardi, F.; 

Davies, M. J.; Khunti, K. Prevalence of Co‐morbidities and Their Association with Mortality in Patients with 

COVID ‐19: A Systematic Review and Meta‐analysis. Diabetes Obes. Metab. 2020, 22 (10), 1915–1924. 

https://doi.org/10.1111/dom.14124. 

(200) Thomas, T.; Stefanoni, D.; Reisz, J. A.; Nemkov, T.; Bertolone, L.; Francis, R. O.; Hudson, K. E.; 

Zimring, J. C.; Hansen, K. C.; Hod, E. A.; Spitalnik, S. L.; D’Alessandro, A. COVID-19 Infection Alters 

Kynurenine and Fatty Acid Metabolism, Correlating with IL-6 Levels and Renal Status. JCI Insight 2020, 5 

(14), e140327. https://doi.org/10.1172/jci.insight.140327. 

(201) Barberis, E.; Timo, S.; Amede, E.; Vanella, V. V.; Puricelli, C.; Cappellano, G.; Raineri, D.; Cittone, M. 

G.; Rizzi, E.; Pedrinelli, A. R.; Vassia, V.; Casciaro, F. G.; Priora, S.; Nerici, I.; Galbiati, A.; Hayden, E.; Falasca, 

M.; Vaschetto, R.; Sainaghi, P. P.; Dianzani, U.; Rolla, R.; Chiocchetti, A.; Baldanzi, G.; Marengo, E.; 

Manfredi, M. Large-Scale Plasma Analysis Revealed New Mechanisms and Molecules Associated with the 

Host Response to SARS-CoV-2. Int. J. Mol. Sci. 2020, 21 (22), 8623. https://doi.org/10.3390/ijms21228623. 

(202) Valdés, A.; Moreno, L. O.; Rello, S. R.; Orduña, A.; Bernardo, D.; Cifuentes, A. Metabolomics Study of 

COVID-19 Patients in Four Different Clinical Stages. Sci. Rep. 2022, 12 (1), 1650. 

https://doi.org/10.1038/s41598-022-05667-0. 

(203) Kerner, J.; Hoppel, C. Fatty Acid Import into Mitochondria. Biochim. Biophys. Acta BBA - Mol. Cell 

Biol. Lipids 2000, 1486 (1), 1–17. https://doi.org/10.1016/S1388-1981(00)00044-5. 



129 
 

(204) Reuter, S. E.; Evans, A. M. Carnitine and Acylcarnitines: Pharmacokinetic, Pharmacological and 

Clinical Aspects. Clin. Pharmacokinet. 2012, 51 (9), 553–572. https://doi.org/10.1007/BF03261931. 

(205) Rinaldo, P.; Cowan, T. M.; Matern, D. Acylcarnitine Profile Analysis. Genet. Med. 2008, 10 (2), 151–

156. https://doi.org/10.1097/GIM.0b013e3181614289. 

(206) Jenniskens, M.; Langouche, L.; Vanwijngaerden, Y.-M.; Mesotten, D.; Van den Berghe, G. Cholestatic 

Liver (Dys)Function during Sepsis and Other Critical Illnesses. Intensive Care Med. 2016, 42 (1), 16–27. 

https://doi.org/10.1007/s00134-015-4054-0. 

(207) Harnisch, L.-O.; Mihaylov, D.; Bein, T.; Apfelbacher, C.; Kiehntopf, M.; Bauer, M.; Moerer, O.; 

Quintel, M. Determination of Individual Bile Acids in Acute Respiratory Distress Syndrome Reveals a Specific 

Pattern of Primary and Secondary Bile Acids and a Shift to the Acidic Pathway as an Adaptive Response to 

the Critical Condition. Clin. Chem. Lab. Med. CCLM 2022, 60 (6), 891–900. https://doi.org/10.1515/cclm-

2021-1176. 

(208) Carino, A.; Moraca, F.; Fiorillo, B.; Marchianò, S.; Sepe, V.; Biagioli, M.; Finamore, C.; Bozza, S.; 

Francisci, D.; Distrutti, E.; Catalanotti, B.; Zampella, A.; Fiorucci, S. Hijacking SARS-CoV-2/ACE2 Receptor 

Interaction by Natural and Semi-Synthetic Steroidal Agents Acting on Functional Pockets on the Receptor 

Binding Domain. Front. Chem. 2020, 8, 572885. https://doi.org/10.3389/fchem.2020.572885. 

(209) Kumar, Y.; Yadav, R.; Bhatia, A. Can Natural Detergent Properties of Bile Acids Be Used Beneficially 

in Tackling Coronavirus Disease-19? Future Virol. 2020, 15 (12), 779–782. https://doi.org/10.2217/fvl-2020-

0210. 

(210) Poochi, S. P.; Easwaran, M.; Balasubramanian, B.; Anbuselvam, M.; Meyyazhagan, A.; Park, S.; 

Bhotla, H. K.; Anbuselvam, J.; Arumugam, V. A.; Keshavarao, S.; Kanniyappan, G. V.; Pappusamy, M.; Kaul, 

T. Employing Bioactive Compounds Derived from Ipomoea Obscura (L.) to Evaluate Potential Inhibitor for 

SARS‐CoV‐2 Main Protease and ACE2 Protein. Food Front. 2020, 1 (2), 168–179. 

https://doi.org/10.1002/fft2.29. 

(211) Oda, E.; Hatada, K.; Kimura, J.; Aizawa, Y.; Thanikachalam, P. V.; Watanabe, K. Relationships 

Between Serum Unsaturated Fatty Acids and Coronary Risk Factors Negative Relations Between Nervonic 

Acid and Obesity-Related Risk Factors: Negative Relations Between Nervonic Acid and Obesity-Related 

Risk Factors. Int. Heart. J. 2005, 46 (6), 975–985. https://doi.org/10.1536/ihj.46.975. 

(212) Chen, Y.; Li, X.; Dai, Y.; Zhang, J. The Association Between COVID-19 and Thyroxine Levels: A Meta-

Analysis. Front. Endocrinol. 2022, 12, 779692. https://doi.org/10.3389/fendo.2021.779692. 

(213) Julkunen, H.; Cichońska, A.; Slagboom, P. E.; Würtz, P.; Nightingale Health UK Biobank Initiative. 

Metabolic Biomarker Profiling for Identification of Susceptibility to Severe Pneumonia and COVID-19 in the 

General Population. eLife 2021, 10, e63033. https://doi.org/10.7554/eLife.63033. 

(214) Goutman, S. A.; Hardiman, O.; Al-Chalabi, A.; Chió, A.; Savelieff, M. G.; Kiernan, M. C.; Feldman, E. 

L. Recent Advances in the Diagnosis and Prognosis of Amyotrophic Lateral Sclerosis. Lancet Neurol. 2022, 21 

(5), 480–493. https://doi.org/10.1016/S1474-4422(21)00465-8. 

(215) Goutman, S. A.; Hardiman, O.; Al-Chalabi, A.; Chió, A.; Savelieff, M. G.; Kiernan, M. C.; Feldman, E. 

L. Emerging Insights into the Complex Genetics and Pathophysiology of Amyotrophic Lateral Sclerosis. 

Lancet Neurol. 2022, 21 (5), 465–479. https://doi.org/10.1016/S1474-4422(21)00414-2. 

(216) Benatar, M.; Turner, M. R.; Wuu, J. Defining Pre-Symptomatic Amyotrophic Lateral Sclerosis. 

Amyotroph. Lateral Scler. Front. Degener. 2019, 20 (5–6), 303–309. 

https://doi.org/10.1080/21678421.2019.1587634. 

(217) Moglia, C.; Calvo, A.; Grassano, M.; Canosa, A.; Manera, U.; D’Ovidio, F.; Bombaci, A.; Bersano, E.; 

Mazzini, L.; Mora, G.; Chiò, A. Early Weight Loss in Amyotrophic Lateral Sclerosis: Outcome Relevance and 



130 
 

Clinical Correlates in a Population-Based Cohort. J. Neurol. Neurosurg. Psychiatry 2019, 90 (6), 666–673. 

https://doi.org/10.1136/jnnp-2018-319611. 

(218) Peter, R. S.; Rosenbohm, A.; Dupuis, L.; Brehme, T.; Kassubek, J.; Rothenbacher, D.; Nagel, G.; 

Ludolph, A. C. Life Course Body Mass Index and Risk and Prognosis of Amyotrophic Lateral Sclerosis: 

Results from the ALS Registry Swabia. Eur. J. Epidemiol. 2017, 32 (10), 901–908. 

https://doi.org/10.1007/s10654-017-0318-z. 

(219) Nakken, O.; Meyer, H. E.; Stigum, H.; Holmøy, T. High BMI Is Associated with Low ALS Risk: A 

Population-Based Study. Neurology 2019, 93 (5), e424–e432. 

https://doi.org/10.1212/WNL.0000000000007861. 

(220) O’Reilly, É. J.; Wang, H.; Weisskopf, M. G.; Fitzgerald, K. C.; Falcone, G.; McCullough, M. L.; Thun, 

M.; Park, Y.; Kolonel, L. N.; Ascherio, A. Premorbid Body Mass Index and Risk of Amyotrophic Lateral 

Sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2013, 14 (3), 205–211. 

https://doi.org/10.3109/21678421.2012.735240. 

(221) O’Reilly, É. J.; Wang, M.; Adami, H.-O.; Alonso, A.; Bernstein, L.; van den Brandt, P.; Buring, J.; 

Daugherty, S.; Deapen, D.; Freedman, D. M.; English, D. R.; Giles, G. G.; Håkansson, N.; Kurth, T.; Schairer, 

C.; Weiderpass, E.; Wolk, A.; Smith-Warner, S. A. Prediagnostic Body Size and Risk of Amyotrophic Lateral 

Sclerosis Death in 10 Studies. Amyotroph. Lateral Scler. Front. Degener. 2018, 19 (5–6), 396–406. 

https://doi.org/10.1080/21678421.2018.1452944. 

(222) Mariosa, D.; Beard, J. D.; Umbach, D. M.; Bellocco, R.; Keller, J.; Peters, T. L.; Allen, K. D.; Ye, W.; 

Sandler, D. P.; Schmidt, S.; Fang, F.; Kamel, F. Body Mass Index and Amyotrophic Lateral Sclerosis: A Study 

of US Military Veterans. Am. J. Epidemiol. 2017, 185 (5), 362–371. https://doi.org/10.1093/aje/kww140. 

(223) Gallo, V.; Wark, P. A.; Jenab, M.; Pearce, N.; Brayne, C.; Vermeulen, R.; Andersen, P. M.; Hallmans, 

G.; Kyrozis, A.; Vanacore, N.; Vahdaninia, M.; Grote, V.; Kaaks, R.; Mattiello, A.; Bueno-de-Mesquita, H. B.; 

Peeters, P. H.; Travis, R. C.; Petersson, J.; Hansson, O.; Arriola, L.; Jimenez-Martin, J.-M.; Tjonneland, A.; 

Halkjaer, J.; Agnoli, C.; Sacerdote, C.; Bonet, C.; Trichopoulou, A.; Gavrila, D.; Overvad, K.; Weiderpass, E.; 

Palli, D.; Quiros, J. R.; Tumino, R.; Khaw, K.-T.; Wareham, N.; Barricante-Gurrea, A.; Fedirko, V.; Ferrari, P.; 

Clavel-Chapelon, F.; Boutron-Ruault, M.-C.; Boeing, H.; Vigl, M.; Middleton, L.; Riboli, E.; Vineis, P. 

Prediagnostic Body Fat and Risk of Death from Amyotrophic Lateral Sclerosis: The EPIC Cohort. Neurology 

2013, 80 (9), 829–838. https://doi.org/10.1212/WNL.0b013e3182840689. 

(224) Ioannides, Z. A.; Ngo, S. T.; Henderson, R. D.; McCombe, P. A.; Steyn, F. J. Altered Metabolic 

Homeostasis in Amyotrophic Lateral Sclerosis: Mechanisms of Energy Imbalance and Contribution to 

Disease Progression. Neurodegener. Dis. 2016, 16 (5–6), 382–397. https://doi.org/10.1159/000446502. 

(225) Steyn, F. J.; Ioannides, Z. A.; van Eijk, R. P. A.; Heggie, S.; Thorpe, K. A.; Ceslis, A.; Heshmat, S.; 

Henders, A. K.; Wray, N. R.; van den Berg, L. H.; Henderson, R. D.; McCombe, P. A.; Ngo, S. T. 

Hypermetabolism in ALS Is Associated with Greater Functional Decline and Shorter Survival. J. Neurol. 

Neurosurg. Psychiatry 2018, 89 (10), 1016–1023. https://doi.org/10.1136/jnnp-2017-317887. 

(226) Dupuis, L.; Pradat, P.-F.; Ludolph, A. C.; Loeffler, J.-P. Energy Metabolism in Amyotrophic Lateral 

Sclerosis. Lancet Neurol. 2011, 10 (1), 75–82. https://doi.org/10.1016/S1474-4422(10)70224-6. 

(227) Mariosa, D.; Hammar, N.; Malmström, H.; Ingre, C.; Jungner, I.; Ye, W.; Fang, F.; Walldius, G. Blood 

Biomarkers of Carbohydrate, Lipid, and Apolipoprotein Metabolisms and Risk of Amyotrophic Lateral 

Sclerosis: A More than 20-Year Follow-up of the Swedish AMORIS Cohort: Blood Biomarkers of Energy 

Metabolism and ALS Risk. Ann. Neurol. 2017, 81 (5), 718–728. https://doi.org/10.1002/ana.24936. 

(228) Ingre, C.; Chen, L.; Zhan, Y.; Termorshuizen, J.; Yin, L.; Fang, F. Lipids, Apolipoproteins, and 

Prognosis of Amyotrophic Lateral Sclerosis. Neurology 2020, 94 (17), e1835–e1844. 

https://doi.org/10.1212/WNL.0000000000009322. 



131 
 

(229) Cirulli, E. T.; Guo, L.; Leon Swisher, C.; Shah, N.; Huang, L.; Napier, L. A.; Kirkness, E. F.; Spector, T. 

D.; Caskey, C. T.; Thorens, B.; Venter, J. C.; Telenti, A. Profound Perturbation of the Metabolome in Obesity Is 

Associated with Health Risk. Cell Metab. 2019, 29 (2), 488-500.e2. 

https://doi.org/10.1016/j.cmet.2018.09.022. 

(230) Ho, J. E.; Larson, M. G.; Ghorbani, A.; Cheng, S.; Chen, M.-H.; Keyes, M.; Rhee, E. P.; Clish, C. B.; 

Vasan, R. S.; Gerszten, R. E.; Wang, T. J. Metabolomic Profiles of Body Mass Index in the Framingham Heart 

Study Reveal Distinct Cardiometabolic Phenotypes. PLOS ONE 2016, 11 (2), e0148361. 

https://doi.org/10.1371/journal.pone.0148361. 

(231) Kraus, W. E.; Pieper, C. F.; Huffman, K. M.; Thompson, D. K.; Kraus, V. B.; Morey, M. C.; Cohen, H. J.; 

Ravussin, E.; Redman, L. M.; Bain, J. R.; Stevens, R. D.; Newgard, C. B. Association of Plasma Small-

Molecule Intermediate Metabolites With Age and Body Mass Index Across Six Diverse Study Populations. J. 

Gerontol. A. Biol. Sci. Med. Sci. 2016, 71 (11), 1507–1513. https://doi.org/10.1093/gerona/glw031. 

(232) Goutman, S. A.; Boss, J.; Patterson, A.; Mukherjee, B.; Batterman, S.; Feldman, E. L. High Plasma 

Concentrations of Organic Pollutants Negatively Impact Survival in Amyotrophic Lateral Sclerosis. J. Neurol. 

Neurosurg. Psychiatry 2019, 90 (8), 907–912. https://doi.org/10.1136/jnnp-2018-319785. 

(233) Su, F.-C.; Goutman, S. A.; Chernyak, S.; Mukherjee, B.; Callaghan, B. C.; Batterman, S.; Feldman, E. 

L. Association of Environmental Toxins With Amyotrophic Lateral Sclerosis. JAMA Neurol. 2016, 73 (7), 803. 

https://doi.org/10.1001/jamaneurol.2016.0594. 

(234) Yu, Y.; Su, F.-C.; Callaghan, B. C.; Goutman, S. A.; Batterman, S. A.; Feldman, E. L. Environmental 

Risk Factors and Amyotrophic Lateral Sclerosis (ALS): A Case-Control Study of ALS in Michigan. PLoS ONE 

2014, 9 (6), e101186. https://doi.org/10.1371/journal.pone.0101186. 

(235) Goutman, S. A.; Boss, J.; Godwin, C.; Mukherjee, B.; Feldman, E. L.; Batterman, S. A. Associations of 

Self-Reported Occupational Exposures and Settings to ALS: A Case–Control Study. Int. Arch. Occup. Environ. 

Health 2022, 95 (7), 1567–1586. https://doi.org/10.1007/s00420-022-01874-4. 

(236) Brooks, B. R.; Miller, R. G.; Swash, M.; Munsat, T. L. El Escorial Revisited: Revised Criteria for the 

Diagnosis of Amyotrophic Lateral Sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2000, 1 

(5), 293–299. https://doi.org/10.1080/146608200300079536. 

(237) Keys, A.; Fidanza, F.; Karvonen, M. J.; Kimura, N.; Taylor, H. L. Indices of Relative Weight and 

Obesity. J. Chronic Dis. 1972, 25 (6–7), 329–343. https://doi.org/10.1016/0021-9681(72)90027-6. 

(238) Goutman, S. A.; Boss, J.; Guo, K.; Alakwaa, F. M.; Patterson, A.; Kim, S.; Savelieff, M. G.; Hur, J.; 

Feldman, E. L. Untargeted Metabolomics Yields Insight into ALS Disease Mechanisms. J. Neurol. Neurosurg. 

Psychiatry 2020, 91 (12), 1329–1338. https://doi.org/10.1136/jnnp-2020-323611. 

(239) Goutman, S. A.; Guo, K.; Savelieff, M. G.; Patterson, A.; Sakowski, S. A.; Habra, H.; Karnovsky, A.; 

Hur, J.; Feldman, E. L. Metabolomics Identifies Shared Lipid Pathways in Independent Amyotrophic Lateral 

Sclerosis Cohorts. Brain 2022, awac025. https://doi.org/10.1093/brain/awac025. 

(240) Liang, K.-Y.; Zeger, S. L. Longitudinal Data Analysis Using Generalized Linear Models. Biometrika 

1986, 73 (1), 13–22. https://doi.org/10.1093/biomet/73.1.13. 

(241) Halekoh, U.; Højsgaard, S.; Yan, J. The R Package Geepack for Generalized Estimating Equations. J. 

Stat. Softw. 2006, 15 (2). https://doi.org/10.18637/jss.v015.i02. 

(242) Genolini, C.; Alacoque, X.; Sentenac, M.; Arnaud, C. Kml and Kml3d : R Packages to Cluster 

Longitudinal Data. J. Stat. Softw. 2015, 65 (4). https://doi.org/10.18637/jss.v065.i04. 

(243) Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat. - Theory Methods 

1974, 3 (1), 1–27. https://doi.org/10.1080/03610927408827101. 



132 
 

(244) Gower, J. C. Some Distance Properties of Latent Root and Vector Methods Used in Multivariate 

Analysis. Biometrika 1966, 53 (3–4), 325–338. https://doi.org/10.1093/biomet/53.3-4.325. 

(245) Wood, S. N. Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of 

Semiparametric Generalized Linear Models: Estimation of Semiparametric Generalized Linear Models. J. R. 

Stat. Soc. Ser. B Stat. Methodol. 2011, 73 (1), 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x. 

(246) Little, R. J. A.; Rubin, D. B. Statistical Analysis with Missing Data, Second edition.; Wiley: Hoboken, 

2010. 

(247) Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via 

Coordinate Descent. J. Stat. Softw. 2010, 33 (1), 1–22. 

(248) Iyer, G. R.; Wigginton, J.; Duren, W.; LaBarre, J. L.; Brandenburg, M.; Burant, C.; Michailidis, G.; 

Karnovsky, A. Application of Differential Network Enrichment Analysis for Deciphering Metabolic Alterations. 

Metabolites 2020, 10 (12), E479. https://doi.org/10.3390/metabo10120479. 

(249) Lancichinetti, A.; Fortunato, S. Consensus Clustering in Complex Networks. Sci. Rep. 2012, 2 (1), 

336. https://doi.org/10.1038/srep00336. 

(250) Friedman, J.; Hastie, T.; Tibshirani, R. A Note on the Group Lasso and a Sparse Group Lasso. 2010. 

https://doi.org/10.48550/ARXIV.1001.0736. 

(251) Huisman, M. H. B.; Seelen, M.; van Doormaal, P. T. C.; de Jong, S. W.; de Vries, J. H. M.; van der 

Kooi, A. J.; de Visser, M.; Schelhaas, H. J.; van den Berg, L. H.; Veldink, J. H. Effect of Presymptomatic Body 

Mass Index and Consumption of Fat and Alcohol on Amyotrophic Lateral Sclerosis. JAMA Neurol. 2015, 72 

(10), 1155. https://doi.org/10.1001/jamaneurol.2015.1584. 

(252) Westeneng, H.-J.; van Veenhuijzen, K.; van der Spek, R. A.; Peters, S.; Visser, A. E.; van Rheenen, W.; 

Veldink, J. H.; van den Berg, L. H. Associations between Lifestyle and Amyotrophic Lateral Sclerosis 

Stratified by C9orf72 Genotype: A Longitudinal, Population-Based, Case-Control Study. Lancet Neurol. 2021, 

20 (5), 373–384. https://doi.org/10.1016/S1474-4422(21)00042-9. 

(253) Janse van Mantgem, M. R.; van Eijk, R. P. A.; van der Burgh, H. K.; Tan, H. H. G.; Westeneng, H.-J.; 

van Es, M. A.; Veldink, J. H.; van den Berg, L. H. Prognostic Value of Weight Loss in Patients with 

Amyotrophic Lateral Sclerosis: A Population-Based Study. J. Neurol. Neurosurg. Psychiatry 2020, 91 (8), 

867–875. https://doi.org/10.1136/jnnp-2020-322909. 

(254) Nakamura, R.; Kurihara, M.; Ogawa, N.; Kitamura, A.; Yamakawa, I.; Bamba, S.; Sanada, M.; 

Sasaki, M.; Urushitani, M. Prognostic Prediction by Hypermetabolism Varies Depending on the Nutritional 

Status in Early Amyotrophic Lateral Sclerosis. Sci. Rep. 2021, 11 (1), 17943. https://doi.org/10.1038/s41598-

021-97196-5. 

(255) Jésus, P.; Fayemendy, P.; Nicol, M.; Lautrette, G.; Sourisseau, H.; Preux, P.-M.; Desport, J.-C.; Marin, 

B.; Couratier, P. Hypermetabolism Is a Deleterious Prognostic Factor in Patients with Amyotrophic Lateral 

Sclerosis. Eur. J. Neurol. 2018, 25 (1), 97–104. https://doi.org/10.1111/ene.13468. 

(256) Bjornevik, K.; Zhang, Z.; O’Reilly, É. J.; Berry, J. D.; Clish, C. B.; Deik, A.; Jeanfavre, S.; Kato, I.; Kelly, 

R. S.; Kolonel, L. N.; Liang, L.; Marchand, L. L.; McCullough, M. L.; Paganoni, S.; Pierce, K. A.; Schwarzschild, 

M. A.; Shadyab, A. H.; Wactawski-Wende, J.; Wang, D. D.; Wang, Y.; Manson, J. E.; Ascherio, A. 

Prediagnostic Plasma Metabolomics and the Risk of Amyotrophic Lateral Sclerosis. Neurology 2019, 

10.1212/WNL.0000000000007401. https://doi.org/10.1212/WNL.0000000000007401. 

(257) Lawton, K. A.; Brown, M. V.; Alexander, D.; Li, Z.; Wulff, J. E.; Lawson, R.; Jaffa, M.; Milburn, M. V.; 

Ryals, J. A.; Bowser, R.; Cudkowicz, M. E.; Berry, J. D.; On behalf of the Northeast ALS Consortium. Plasma 

Metabolomic Biomarker Panel to Distinguish Patients with Amyotrophic Lateral Sclerosis from Disease 

Mimics. Amyotroph. Lateral Scler. Front. Degener. 2014, 15 (5–6), 362–370. 

https://doi.org/10.3109/21678421.2014.908311. 



133 
 

(258) Lawton, K. A.; Cudkowicz, M. E.; Brown, M. V.; Alexander, D.; Caffrey, R.; Wulff, J. E.; Bowser, R.; 

Lawson, R.; Jaffa, M.; Milburn, M. V.; Ryals, J. A.; Berry, J. D. Biochemical Alterations Associated with ALS. 

Amyotroph. Lateral Scler. 2012, 13 (1), 110–118. https://doi.org/10.3109/17482968.2011.619197. 

(259) Sol, J.; Jové, M.; Povedano, M.; Sproviero, W.; Domínguez, R.; Piñol-Ripoll, G.; Romero-Guevara, R.; 

Hye, A.; Al-Chalabi, A.; Torres, P.; Andres-Benito, P.; Area-Gómez, E.; Pamplona, R.; Ferrer, I.; Ayala, V.; 

Portero-Otín, M. Lipidomic Traits of Plasma and Cerebrospinal Fluid in Amyotrophic Lateral Sclerosis 

Correlate with Disease Progression. Brain Commun. 2021, 3 (3), fcab143. 

https://doi.org/10.1093/braincomms/fcab143. 

(260) Cutler, R. G.; Pedersen, W. A.; Camandola, S.; Rothstein, J. D.; Mattson, M. P. Evidence That 

Accumulation of Ceramides and Cholesterol Esters Mediates Oxidative Stress-Induced Death of Motor 

Neurons in Amyotrophic Lateral Sclerosis. Ann. Neurol. 2002, 52 (4), 448–457. 

https://doi.org/10.1002/ana.10312. 

(261) Wang, G.; Bieberich, E. Sphingolipids in Neurodegeneration (with Focus on Ceramide and S1P). Adv. 

Biol. Regul. 2018, 70, 51–64. https://doi.org/10.1016/j.jbior.2018.09.013. 

(262) Mohassel, P.; Donkervoort, S.; Lone, M. A.; Nalls, M.; Gable, K.; Gupta, S. D.; Foley, A. R.; Hu, Y.; 

Saute, J. A. M.; Moreira, A. L.; Kok, F.; Introna, A.; Logroscino, G.; Grunseich, C.; Nickolls, A. R.; Pourshafie, 

N.; Neuhaus, S. B.; Saade, D.; Gangfuß, A.; Kölbel, H.; Piccus, Z.; Le Pichon, C. E.; Fiorillo, C.; Ly, C. V.; Töpf, 

A.; Brady, L.; Specht, S.; Zidell, A.; Pedro, H.; Mittelmann, E.; Thomas, F. P.; Chao, K. R.; Konersman, C. G.; 

Cho, M. T.; Brandt, T.; Straub, V.; Connolly, A. M.; Schara, U.; Roos, A.; Tarnopolsky, M.; Höke, A.; Brown, R. 

H.; Lee, C.-H.; Hornemann, T.; Dunn, T. M.; Bönnemann, C. G. Childhood Amyotrophic Lateral Sclerosis 

Caused by Excess Sphingolipid Synthesis. Nat. Med. 2021, 27 (7), 1197–1204. 

https://doi.org/10.1038/s41591-021-01346-1. 

(263) Di Ciaula, A.; Garruti, G.; Lunardi Baccetto, R.; Molina-Molina, E.; Bonfrate, L.; Wang, D. Q.-H.; 

Portincasa, P. Bile Acid Physiology. Ann. Hepatol. 2017, 16, S4–S14. 

https://doi.org/10.5604/01.3001.0010.5493. 

(264) Paganoni, S.; Macklin, E. A.; Hendrix, S.; Berry, J. D.; Elliott, M. A.; Maiser, S.; Karam, C.; Caress, J. 

B.; Owegi, M. A.; Quick, A.; Wymer, J.; Goutman, S. A.; Heitzman, D.; Heiman-Patterson, T.; Jackson, C. E.; 

Quinn, C.; Rothstein, J. D.; Kasarskis, E. J.; Katz, J.; Jenkins, L.; Ladha, S.; Miller, T. M.; Scelsa, S. N.; Vu, T. 

H.; Fournier, C. N.; Glass, J. D.; Johnson, K. M.; Swenson, A.; Goyal, N. A.; Pattee, G. L.; Andres, P. L.; Babu, 

S.; Chase, M.; Dagostino, D.; Dickson, S. P.; Ellison, N.; Hall, M.; Hendrix, K.; Kittle, G.; McGovern, M.; 

Ostrow, J.; Pothier, L.; Randall, R.; Shefner, J. M.; Sherman, A. V.; Tustison, E.; Vigneswaran, P.; Walker, J.; 

Yu, H.; Chan, J.; Wittes, J.; Cohen, J.; Klee, J.; Leslie, K.; Tanzi, R. E.; Gilbert, W.; Yeramian, P. D.; Schoenfeld, 

D.; Cudkowicz, M. E. Trial of Sodium Phenylbutyrate–Taurursodiol for Amyotrophic Lateral Sclerosis. N. Engl. 

J. Med. 2020, 383 (10), 919–930. https://doi.org/10.1056/NEJMoa1916945. 

(265) Paganoni, S.; Hendrix, S.; Dickson, S. P.; Knowlton, N.; Macklin, E. A.; Berry, J. D.; Elliott, M. A.; 

Maiser, S.; Karam, C.; Caress, J. B.; Owegi, M. A.; Quick, A.; Wymer, J.; Goutman, S. A.; Heitzman, D.; 

Heiman‐Patterson, T. D.; Jackson, C. E.; Quinn, C.; Rothstein, J. D.; Kasarskis, E. J.; Katz, J.; Jenkins, L.; 

Ladha, S.; Miller, T. M.; Scelsa, S. N.; Vu, T. H.; Fournier, C. N.; Glass, J. D.; Johnson, K. M.; Swenson, A.; 

Goyal, N. A.; Pattee, G. L.; Andres, P. L.; Babu, S.; Chase, M.; Dagostino, D.; Hall, M.; Kittle, G.; Eydinov, M.; 

McGovern, M.; Ostrow, J.; Pothier, L.; Randall, R.; Shefner, J. M.; Sherman, A. V.; St Pierre, M. E.; Tustison, E.; 

Vigneswaran, P.; Walker, J.; Yu, H.; Chan, J.; Wittes, J.; Yu, Z.; Cohen, J.; Klee, J.; Leslie, K.; Tanzi, R. E.; 

Gilbert, W.; Yeramian, P. D.; Schoenfeld, D.; Cudkowicz, M. E. Long‐term Survival of Participants in the 

CENTAUR Trial of Sodium Phenylbutyrate‐taurursodiol in AMYOTROPHIC LATERAL SCLEROSIS. Muscle Nerve 2021, 

63 (1), 31–39. https://doi.org/10.1002/mus.27091. 

(266) Parry, G. J.; Rodrigues, C. M. P.; Aranha, M. M.; Hilbert, S. J.; Davey, C.; Kelkar, P.; Low, W. C.; Steer, 

C. J. Safety, Tolerability, and Cerebrospinal Fluid Penetration of Ursodeoxycholic Acid in Patients With 

Amyotrophic Lateral Sclerosis. Clin. Neuropharmacol. 2010, 33 (1), 17–21. 

https://doi.org/10.1097/WNF.0b013e3181c47569. 



134 
 

(267) Min, J.-H.; Hong, Y.-H.; Sung, J.-J.; Kim, S.-M.; Lee, J. B.; Lee, K.-W. Oral Solubilized 

Ursodeoxycholic Acid Therapy in Amyotrophic Lateral Sclerosis: A Randomized Cross-Over Trial. J. Korean 

Med. Sci. 2012, 27 (2), 200. https://doi.org/10.3346/jkms.2012.27.2.200. 

(268) Blasco, H.; Veyrat-Durebex, C.; Bocca, C.; Patin, F.; Vourc’h, P.; Kouassi Nzoughet, J.; Lenaers, G.; 

Andres, C. R.; Simard, G.; Corcia, P.; Reynier, P. Lipidomics Reveals Cerebrospinal-Fluid Signatures of ALS. 

Sci. Rep. 2017, 7 (1), 17652. https://doi.org/10.1038/s41598-017-17389-9. 

(269) Chang, K.-H.; Lin, C.-N.; Chen, C.-M.; Lyu, R.-K.; Chu, C.-C.; Liao, M.-F.; Huang, C.-C.; Chang, H.-

S.; Ro, L.-S.; Kuo, H.-C. Altered Metabolic Profiles of the Plasma of Patients with Amyotrophic Lateral 

Sclerosis. Biomedicines 2021, 9 (12), 1944. https://doi.org/10.3390/biomedicines9121944. 

(270) van Eunen, K.; Simons, S. M. J.; Gerding, A.; Bleeker, A.; den Besten, G.; Touw, C. M. L.; Houten, S. 

M.; Groen, B. K.; Krab, K.; Reijngoud, D.-J.; Bakker, B. M. Biochemical Competition Makes Fatty-Acid β-

Oxidation Vulnerable to Substrate Overload. PLoS Comput. Biol. 2013, 9 (8), e1003186. 

https://doi.org/10.1371/journal.pcbi.1003186. 

(271) Lee, I.; Kazamel, M.; McPherson, T.; McAdam, J.; Bamman, M.; Amara, A.; Smith, D. L.; King, P. H. 

Fat Mass Loss Correlates with Faster Disease Progression in Amyotrophic Lateral Sclerosis Patients: 

Exploring the Utility of Dual-Energy x-Ray Absorptiometry in a Prospective Study. PLOS ONE 2021, 16 (5), 

e0251087. https://doi.org/10.1371/journal.pone.0251087. 

(272) Li, C.; Ou, R.; Wei, Q.; Shang, H. Shared Genetic Links between Amyotrophic Lateral Sclerosis and 

Obesity-Related Traits: A Genome-Wide Association Study. Neurobiol. Aging 2021, 102, 211.e1-211.e9. 

https://doi.org/10.1016/j.neurobiolaging.2021.01.023. 

(273) Zhang, L.; Tang, L.; Huang, T.; Fan, D. Life Course Adiposity and Amyotrophic Lateral Sclerosis: A 

Mendelian Randomization Study. Ann. Neurol. 2020, 87 (3), 434–441. https://doi.org/10.1002/ana.25671. 

(274) Fernihough, A.; McGovern, M. E. Physical Stature Decline and the Health Status of the Elderly 

Population in England. Econ. Hum. Biol. 2015, 16, 30–44. https://doi.org/10.1016/j.ehb.2013.12.010. 

(275) Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, 

C.; Subramanian, S.; Bolton, E.; Greiner, R.; Wishart, D. S. ClassyFire: Automated Chemical Classification 

with a Comprehensive, Computable Taxonomy. J. Cheminformatics 2016, 8 (1), 61. 

https://doi.org/10.1186/s13321-016-0174-y. 

 

 

 

 

 

 

 


	dissertation-front-material-part1_v2
	dissertation-front-material-part2
	dissertation-all-chapters-revised

