
Robust and Scalable Projection-based Reduced-order Models
for Simulations of Reacting Flows

by

Christopher R. Wentland

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2023

Doctoral Committee:

Professor Karthik Duraisamy, Co-Chair
Assistant Professor Cheng Huang, Co-Chair
Associate Professor Jesse Capecelatro
Professor Krzysztof Fidkowski



Christopher R. Wentland

chriswen@umich.edu

ORCID iD: 0000-0002-8500-569X

©Christopher R. Wentland 2023



Acknowledgements

It has taken a village to complete this thesis, from friends and family who encouraged

me at every point, to labmates and department colleagues who offered advice and ca-

maraderie, and mentors who shaped my research skills. All of these people deserve

recognition, so I won’t skimp on acknowledgements.

My advisor, Professor Karthik Duraisamy, has been an incredible mentor to me from

the moment I walked into FXB. He has been encouraging of my interests and goals,

celebratory of my successes, and focused on my growth as a researcher. His curiosity in

math and engineering is infectious, and I hope I can emulate a fraction of his passion in

my career. He took a chance on a student with almost no research background, and I

cannot thank him enough for that.

Prof. Cheng Huang, also an amazing advisor, has been my guide through the thorny

world of combustion and a patient recipient of countless questions regarding GEMS. I

can’t count all the times I popped up at his desk to ask him about theory or code. He has

given me so much support in the research we’ve worked on together, and his development

of the MP-LSVT method made this thesis possible. He has been in turns an honest critic,

a sympathetic ear, and a great friend.

The two other members of my committee, Prof. Krzysztof Fidkowski and Prof. Jesse

Capecelatro, have been immensely generous in reviewing this dissertation. Their feedback

throughout the editing and defense process exposed me to new perspectives from which

to understand my research and present it to others. Their comments on this thesis have

helped shape it into a work that better reflects the nuances of combustion, CFD, and

data science.

My labmates past and present have been a constant source of learning, collaboration,

ii



and friendship. I have been lucky to count Achu, Adam, Anand, Aniruddhe, Christian,

Daisuke, James, Jiayang (David), Niloy, Noah, Sahil, Shaowu, and Yaser as my cowork-

ers. The FXB 2000 crew, Bernardo, Elnaz, Jasmin, and Malhar, have been wonderful

company, with a lot of laughs even while fighting over the thermostat. My former FXB

2006 (a.k.a. “The Hellhole”) crew, namely Ayoub, Danny, Eric, and Vishal took me un-

der their collective wing and guided me through my turbulent first years at UM. Without

them I most certainly would not have made it through to candidacy, and they made

working in a windowless office not only bearable, but fun. Last but most certainly not

least, all of the work in this thesis has been assisted by Nick in one way or another. From

calming me down after I failed my first combustion exam, to writing PLATFORM, to

answering every HPC question I had, to keeping the lab social scene alive with board

game nights, he helped keep me sane and steady through five and a half long years. A

thesis can’t have a co-author, but he’s just about the closest thing.

The many UM Aerospace Engineering grad students that I’ve had the fortune of

befriending over the years have been great companions on our shared journey. The

largest contingent, from the MDO lab, including Alex, Ali, Anil, Ben, Eytan, Galen,

Hannah, Josh, Kleb, Marco, Sabet, and Saja made life a million times more fun over

lunches, ultimate frisbee, triathlon training, parties, and company in FXB. Among the

other labs, Anthony, Christina, Elliot, Kevin, Miles, Nima, Prince, Ral, and Sebastian

regularly brightened my day just seeing each other and chatting around FXB. The wise

sages of AERO past, including Fabian, Jacob, John, Kaelan, Krystal, Logan, Ryan, Sam,

and Shamsheer were all friends and role models alike, welcoming me to the department

and showing me the ropes. From my cohort of PhD students, I’m particularly thankful

to Andy, Gary, Pawel, Shivam, and Supraj for helping me through my first year of classes

and prelims. I’m the last one to get out, but I couldn’t have even made it here without

you guys. At the end, I was grateful to co-work with Neil, who kept me accountable as

we wrote our respective theses over long hours in the robotics building.

I am entirely indebted to the numerous staff members with UM ARC, the various

DOD HPC centers, FXB facilities, and the AERO department for keeping a roof over

iii



my head and the computers running. I’m particularly grateful to David at ERDC for his

endless patience and willingness to help at a moment’s notice, and to Ruthie for making

FXB more cheerful and keeping the grad program running smoothly.

Before coming to Michigan, I was lucky to have several mentors who took the time

to teach me about research before I really knew what it entailed. Dr. Mark Nutt and

Dr. Casey Trail took me on at Argonne National Lab, even though I knew nothing about

nuclear waste, and guided me step by step through my first real research projects. Prof.

Yildiz Bayazitoglu, beyond teaching me heat transfer, gave me an opportunity to learn

the craft as a teaching assistant and generously helped me apply to grad schools. Prof.

Tayfun Tezduyar was the first person to teach me CFD, and patiently sat through hours

of my naive questions on the topic, giving advice on applying to grad school and securing

my first CFD-related research position. Prof. Makoto Yamamoto (and his entire group,

as well), in turn, was kind enough to take me into his lab and give me an incredible

experience working and living in Japan.

My Benet friends, Dave, Jack, Sam, and Tarik, were my saving grace during the

pandemic. Reconnecting through our weekly video calls gave me something to look

forward to and kept my spirits up when the world was going to pot. Being stuck in a

tiny apartment wasn’t so bad while reminiscing about the dumb stuff we used to get up

to.

My friends from Rice supported me all through undergrad and continue to do so even

today, especially Annie, Farish, Isaac, Madhuri, Olivia, and Sanjiv. Late nights struggling

through PDE, vibrations, and mechanical design homework were easier with such great

people around me. I am so thankful for them continuing to cheer me on through my PhD

even though we’re spread out around the country. I also thank the crazy people I worked

with in Eclipse, particularly Andrew, Cole, Elijah, Morgen, Jeremy, Josh, and Sam for

inspiring a love of rockets and space in me. Also from Rice, the post-doc who told me

I couldn’t make it through a PhD program failed to discourage me, and instead made

me want to prove them otherwise. This petty spite helped push me through the darker

moments of grad school.

iv



Of course, my mom Sheila, my dad Rob, and my sister Kelly have been my rock

since day one. They pulled me up from my lowest moments, and are always cheering the

loudest when I succeed. Keeping me fed before deadlines, calling to check in and remind

me they love me no matter what, and driving to Ann Arbor just to spend time with me,

they’ve kept me going when I didn’t think I could go on any longer. Getting to see them

more regularly after moving back to the Midwest was a blessing, and I’m already sad to

have moved so far away.

Finally, I thank my fiancée, Lauren, for being the light of my life. She suffered through

the rollercoaster of my PhD for over four years, putting up with late nights and irritable

moods with nothing by love and support. I can say with absolutely certainty that I could

not have completed this PhD program without her endless compassion and care. Lauren,

living life with you has been a dream-come-true, and I cannot wait to see where the future

takes us.

v



Table of Contents

Acknowledgements ii

List of Tables x

List of Figures xi

Abstract xviii

Chapter 1: Introduction 1

1.1 Historical Context and Motivation . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Combustion Instabilities in Rocket Engines . . . . . . . . . . . . . 1

1.1.2 Simulation of Reacting Fluid Flows . . . . . . . . . . . . . . . . . 7

1.2 Data-driven Reduced-order Modeling . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Projection-based Reduced-order Models . . . . . . . . . . . . . . 14

1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Organization and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2: Modeling Combusting Flows 21

2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Gas Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Subgrid-scale Models . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Reaction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Finite Rate Reactions . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Flamelet/Progress Variable Model . . . . . . . . . . . . . . . . . . 33

2.3 Numerical Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3: Projection-based Reduced-order Modeling 37

3.1 Trial Space Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



3.1.1 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . . . 39

3.1.2 Non-linear Autoencoders . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Classical Projection-based ROMs . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Galerkin Projection . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Least-squares Petrov–Galerkin Projection . . . . . . . . . . . . . 48

3.3 Model-form Preserving Least-squares with Variable Transformation . . . 52

3.4 Offline Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Processing Large Datasets . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 POD Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.3 Projection Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4: Accelerated PROMs of Non-linear Systems 62

4.1 Missing Point Estimation for Galerkin PROMs . . . . . . . . . . . . . . . 64

4.2 Collocation for LSPG and MP-LSVT PROMs . . . . . . . . . . . . . . . 65

4.3 DEIM and GNAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Gappy POD for Galerkin PROMs . . . . . . . . . . . . . . . . . . 70

4.3.2 GNAT for LSPG and MP-LSVT PROMs . . . . . . . . . . . . . . 71

4.4 Regression Basis Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Galerkin RHS Approximation . . . . . . . . . . . . . . . . . . . . 74

4.4.2 State Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3 Residual Approximation . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.4 Dual Basis Formulation . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.1 Sampling Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.2 Sampling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 The Sample Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 5: Testbed for Data-driven Models of Premixed Flames 93

5.1 PERFORM: Open-source ROM Development . . . . . . . . . . . . . . . 93

5.2 Acoustically-forced Transient Flame . . . . . . . . . . . . . . . . . . . . . 95

5.3 Failure of Intrusive Linear PROMs . . . . . . . . . . . . . . . . . . . . . 100

vii



5.4 Autoencoder Non-linear Manifold PROMs . . . . . . . . . . . . . . . . . 101

5.5 Recurrent Neural Network ROMs . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 6: Scalable PROMs for Multi-scale, Multi-physics Flows 110

6.1 2D Transonic Flow Over an Open Cavity . . . . . . . . . . . . . . . . . . 111

6.1.1 Full-order Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.2 Unsampled PROMs . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.3 Hyper-reduced PROMs . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Continuously-variable Resonance Combustor . . . . . . . . . . . . . . . . 124

6.2.1 Full-order Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.2 Unsampled PROMs . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.3 Mesh Sampling and Load Balancing . . . . . . . . . . . . . . . . . 132

6.2.4 Hyper-reduced PROMs . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.5 Effects of Sampling Criteria . . . . . . . . . . . . . . . . . . . . . 140

6.2.6 Effects of Dual Basis Gappy POD . . . . . . . . . . . . . . . . . . 145

6.3 Purdue Nine-element Combustor . . . . . . . . . . . . . . . . . . . . . . 148

6.3.1 Full-order Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3.2 Unsampled PROMs . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.3 Hyper-reduced PROMs . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Chapter 7: Adaptive HPROMs for Rocket Combustors 165

7.1 Failure of Static Trial Bases . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2 AADEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.3 One-step Basis Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.4 Online Adaptation for the CVRC . . . . . . . . . . . . . . . . . . . . . . 171

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Chapter 8: Best Practices for PROMs of Reacting Flows 178

8.1 Centering and Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.2 Residual Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

viii



8.3 Limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.4 Variable Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.5 Sample Selection Computations . . . . . . . . . . . . . . . . . . . . . . . 190

Chapter 9: Conclusion 192

9.1 Summary and Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Bibliography 198

ix



List of Tables

2.1 Stoichiometry of example reaction, Eq. 2.36. . . . . . . . . . . . . . . . . 31

5.1 Constant thermodynamic and transport properties of fictitious species. . 96

5.2 Training, validation, and testing dataset splits, by forcing frequency (in

kHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Convolutional encoder dimensions. Decoder mirrors encoder with trans-

pose convolutional layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Relative offline/online computational costs for CAE PROMs. Non-increasing

CAE training costs are due to early stopping. . . . . . . . . . . . . . . . 104

6.1 CPG properties of air for cavity flow case. . . . . . . . . . . . . . . . . . 113

6.2 Partitioning for cavity HPROM sample meshes. . . . . . . . . . . . . . . 120

6.3 Partitioning for CVRC HPROM sample meshes. . . . . . . . . . . . . . . 132

6.4 Partitioning for nine-element combustor HPROM sample meshes. . . . . 157

x



List of Figures

1.1 Cross section of liquid bipropellant thrust chamber (NASA [5]). . . . . . 3

1.2 Failure of Space Shuttle main injector assembly (Goetz and Monk, NASA [6]). 3

1.3 CH* chemiluminescence photos of multi-element rocket combustor in sta-

ble combustion (left) and unstable combustion (right) (reproduced with

permission from [8]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Illustration of state representation and time evolution in reduced-order

space (left) and corresponding full-order state (right). . . . . . . . . . . . 13

3.1 Simplified autoencoder composed of encoder network h (·), latent state x̂,

and decoder network g (·), given input x. . . . . . . . . . . . . . . . . . . 44

3.2 Example of POD residual energy decay for 2D cavity case, for datasets

encompassing 2, 6, and 10 milliseconds of simulation time. . . . . . . . . 59

3.3 Instantaneous temperature fields and projections, Np = 3. . . . . . . . . . 61

3.4 Instantaneous mass fraction fields and projections, Np = 3. . . . . . . . . 61

3.5 Unsteady temperature projection error, Np = 3. . . . . . . . . . . . . . . 61

3.6 Unsteady mass fraction projection error, Np = 3. . . . . . . . . . . . . . . 61

4.1 Sampling schemes for 2nd-order flux scheme in 2D (left) and 3D (right).

Blue cells are directly sampled, red are flux cells, and yellow are gradi-

ent/vertex cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Example sample mesh for 2D transonic cavity flow, 1% sampling. Red

elements indicate cells included in the sample mesh. . . . . . . . . . . . . 91

4.3 Mesh (graph) partitioning for load balancing. Some graph edges at finite

volume cell faces can be excluded (left), while others are required (right). 92

xi



5.1 Simplified PERFORM class hierarchy for flow solver (left) and ROM solver

(right). Class instances in blue have been implemented, those in orange

are under development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Initial condition for propagating flame FOM simulations. . . . . . . . . . 97

5.3 Forced pressure field examples, f ∈ {100, 150, 200} kHz. . . . . . . . . . 99

5.4 Flame progression for data collection period t ∈ [75, 575] µs. . . . . . . . 99

5.5 Intrusive linear subspace MP-LSVT PROM temperature (left) and pres-

sure (right) snapshots, various Np. . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Linear projections of temperature (left) and pressure (right) fields, f = 150

kHz, various Np. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7 Approximation of temperature (left) and pressure (right) fields on solution

manifold, f = 150 kHz, t = 250µs, various Np. . . . . . . . . . . . . . . . 103

5.8 Intrusive non-linear manifold MP-LSVT PROM snapshots, various Np. . 103

5.9 Encoded latent state trajectories, f = 150 kHz, Np = 10. . . . . . . . . . 105

5.10 Online temperature (left) and pressure (right) field predictions for LSTMs

trained with POD trajectories, t = 500µs, f = 131.25 kHz, various Np. . 106

5.11 Online temperature (left) and pressure (right) field predictions for LSTMs

trained with CAE trajectories, t = 500µs, f = 131.25 kHz, various Np.

Note that Np = 3 was unstable. . . . . . . . . . . . . . . . . . . . . . . . 107

5.12 Aggregate predictions of QoIs across all forcing frequencies, all Np. The

best predictions for each model are marked by a bold line. . . . . . . . . 107

6.1 Cavity flow domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Cavity pressure field at t = 104 ms. . . . . . . . . . . . . . . . . . . . . . 114

6.3 Cavity pressure field at t = 104 ms, zoomed view. . . . . . . . . . . . . . 114

6.4 Cavity y-velocity field at t = 104 ms, zoomed view. . . . . . . . . . . . . 114

6.5 Pressure probe measurements from aft wall (t ∈ [100, 110] ms). . . . . . 115

6.6 Sound pressure level of aft wall pressure signal (t ∈ [100, 200] ms). The

first three Rossiter frequencies are marked in red. . . . . . . . . . . . . . 115

6.7 Cavity POD residual energy for conservative and primitive state datasets. 116

xii



6.8 Cavity time-average POD projection error. . . . . . . . . . . . . . . . . . 116

6.9 Cavity unsampled PROM time-average error, various ∆t. . . . . . . . . . 117

6.10 Cavity unsampled PROM probe measurements, ∆t = 5×∆tFOM. . . . . 118

6.11 MP-LSVT unsampled PROM computational cost, relative to FOM cost,

various ∆t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.12 Cavity sample mesh examples, Nr = 250, Ns = 2.5%×N . . . . . . . . . 120

6.13 Cavity HPROM time-average error contours with respect to gappy POD

regressor dimension and sampling rate, ∆t = 5×∆tFOM, various sampling

algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.14 Cavity HPROM error vs. CPU-time speedup, Np = 150, Nr = 250, various

∆t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.15 Cavity MP-LSVT HPROM probe measurements, Np = 150, Nr = 250,

∆t = 5×∆tFOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.16 Truncated CVRC geometry with x− z plane slice at t = 5.5 ms. . . . . . 126

6.17 From top to bottom: pressure, temperature, axial velocity, and fuel mix-

ture fraction slices at t = 5.5 ms. . . . . . . . . . . . . . . . . . . . . . . 127

6.18 POD residual energy decay for truncated CVRC conservative and primitive

state datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.19 Primitive variables time-average projection error. . . . . . . . . . . . . . 129

6.20 Conservative variables time-average projection error. . . . . . . . . . . . 129

6.21 CVRC unsampled PROM time-average error, various ∆t. . . . . . . . . . 130

6.22 CVRC unsampled PROM probe measurements, ∆t = 5×∆tFOM, various

Np . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.23 CVRC unsampled MP-LSVT and LSPG PROM comparisons. . . . . . . 131

6.24 Example CVRC sample meshes for Ns = 0.25%×N , Nr = 300 for various

sampling algorithms. From top to bottom: random, eigenvector-based,

GNAT V1, and GNAT V2. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.25 Directly-sampled cell isosurfaces, Ns = 0.25% × N , Nr = 300, various

sampling algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xiii



6.26 Sample mesh partition statistics, 10 partitions, various sampling rates. . 135

6.27 Sample selection cost, relative to cost of a single FOM iteration. . . . . . 136

6.28 CVRC HPROM time-average error contours with respect to gappy POD

regressor dimension and sampling rate, ∆t = 5×∆tFOM, various sampling

algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.29 CVRC HPROM time-average error contours with respect to gappy POD

regressor dimension and sampling rate, ∆t = 10×∆tFOM, various sampling

algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.30 CVRC HPROM time-average error vs. CPU-time speedup, various ∆t. . 139

6.31 CVRC MP-LSVT HPROM probe measurements, Np = 100, Nr = 300,

∆t = 5×∆tFOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.32 CVRC HPROM pressure slices, t = 5.5 ms, Ns = 0.25%, Nr = 300,

∆t = 5×∆tFOM. From top to bottom: FOM, random, eigenvector, GNAT

V1, and GNAT V2 sampling. . . . . . . . . . . . . . . . . . . . . . . . . 141

6.33 CVRC HPROM temperature slices, t = 5.5 ms, Ns = 0.25%, Nr = 300,

∆t = 5×∆tFOM. From top to bottom: FOM, random, eigenvector, GNAT

V1, and GNAT V2 sampling. . . . . . . . . . . . . . . . . . . . . . . . . 142

6.34 Example sample meshes for Ns = 0.25% × N , Nr = 300 for various sam-

pling algorithms, using the post-sampling approach. From top to bottom:

random, eigenvector-based, GNAT V1, and GNAT V2. . . . . . . . . . . 143

6.35 CVRC HPROM time-average error contours for sample meshes constructed

via the post-sampling approach, with respect to gappy POD regressor di-

mension and sampling rate, ∆t = 5×∆tFOM, various sampling algorithms. 144

6.36 CVRC HPROM time-average error vs. CPU-time speedup, ∆t = 5×∆tFOM.145

6.37 CVRC HPROM probe sampled via post-sampling, Np = 100, Ns = 0.25%×

N , Nr = 300, ∆t = 5×∆tFOM. . . . . . . . . . . . . . . . . . . . . . . . 145

6.38 Example sample meshes for Ns = 0.25% × N , Nr = 300 for various sam-

pling algorithms, using the post-sampling approach. From top to bottom:

random, eigenvector-based, GNAT V1, and GNAT V2. . . . . . . . . . . 146

xiv



6.39 CVRC HPROM time-average error vs. CPU-time speedup, ∆t = 5×∆tFOM.147

6.40 CVRC HPROM probe sampled via post-sampling, Np = 100, Ns = 0.25%×

N , Nr = 300, ∆t = 5×∆tFOM. . . . . . . . . . . . . . . . . . . . . . . . 147

6.41 Nine-element combustor geometry, x− y cutaway. . . . . . . . . . . . . . 150

6.42 Nine-element combustor geometry, isometric view, with YCO2 y − z slices

at t = 21.6 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.43 FOM pressure slices for x− y plane slice at t = 21.65 (top left), 21.7 (top

right), 21.75 (bottom left) and 21.8 (bottom right) ms. . . . . . . . . . . 151

6.44 FOM heat release slices for x − y plane slice at t = 21.65 (top left), 21.7

(top right), 21.75 (bottom left) and 21.8 (bottom right) ms. . . . . . . . 152

6.45 POD residual energy decay for nine-element combustor conservative and

primitive state datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.46 Primitive variables time-average projection error. . . . . . . . . . . . . . 153

6.47 Conservative variables time-average projection error. . . . . . . . . . . . 153

6.48 Nine-element combustor unsampled PROM time-average error, various ∆t. 155

6.49 Nine-element combustor unsampled PROM pressure probe measurements,

∆t = 5×∆tFOM, various Np. . . . . . . . . . . . . . . . . . . . . . . . . 155

6.50 Nine-element combustor unsampled MP-LSVT PROM slices, t = 21.8ms,

∆t = 5×∆tFOM. From left to right: FOM, Np = 25, Np = 75. . . . . . . 156

6.51 Example nine-element combustor sample meshes for Ns = 0.1%×N , Nr =

100, with random sampling (left) and eigenvector-based sampling (right). 158

6.52 Nine-element combustor HPPROM pressure probe measurements, Ns =

0.1%×N , various sampling algorithms and Nr. . . . . . . . . . . . . . . 159

6.53 Nine-element combustor HPPROM pressure probe measurements, random

sampling, Nr = 200, various Ns. . . . . . . . . . . . . . . . . . . . . . . . 159

6.54 Nine-element HPROM slices, t = 21.8ms, Nr = 200, ∆t = 5 × ∆tFOM.

From left to right: FOM, Ns = 0.1%×N , Ns = 0.5%×N . . . . . . . . . 160

6.55 Nine-element combustor HPPROM pressure probe measurements, random

sampling, Ns = 0.1%×N various Nr. . . . . . . . . . . . . . . . . . . . . 161

xv



6.56 Nine-element combustor HPROM time-average error vs. CPU-time speedup,

various Nr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.1 CVRC pressure probe, unsampled MP-LSVT, Np = 100, ∆t = 5×∆tFOM. 166

7.2 CVRC pressure probe, projected solution, various Np. . . . . . . . . . . . 166

7.3 CVRC average projection error over time, various Np. . . . . . . . . . . . 167

7.4 CVRC pressure field beyond training bounds, t = 5.6 ms, FOM at top and

projected solution for Np = 100 below. . . . . . . . . . . . . . . . . . . . 167

7.5 CVRC temperture field beyond training bounds, t = 5.6 ms, FOM at top

and projected solution for Np = 100 below. . . . . . . . . . . . . . . . . . 167

7.6 CVRC adaptive HPROM time-average error contours with respect to trial

basis dimension and sampling rate, various Nu. . . . . . . . . . . . . . . 172

7.7 CVRC adaptive HPROM pressure probes, Np = 5. . . . . . . . . . . . . . 173

7.8 CVRC pressure field t = 5.5 ms, Np = 5, Ns = 1% × N . From top to

bottom: FOM, Nu = 2, Nu = 4, Nu = 5. . . . . . . . . . . . . . . . . . . 174

7.9 CVRC temperature field t = 5.5 ms, Np = 5, Ns = 1%×N . From top to

bottom: FOM, Nu = 2, Nu = 4, Nu = 5. . . . . . . . . . . . . . . . . . . 175

7.10 CVRC sample mesh, Np = 5, Ns = 1%×N . From top to bottom, t = 5.125

ms, 5.25 ms, 5.375 ms, 5.5 ms. . . . . . . . . . . . . . . . . . . . . . . . . 176

7.11 Directly-sampled cell isosurfaces, Np = 5, Ns = 1% × N . Top left is

t = 5.125 ms, top right is 5.25 ms, bottom left is 5.375 ms, bottom right

is 5.5 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.12 CVRC adaptive HPROM time-average error vs. computational speedup,

Np = 5, various Nu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.1 CVRC unsampled MP-LSVT PROM time-average error, Np = 25, various

trial space centerings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.2 CVRC unsampled MP-LSVT PROM pressure probes, Np = 25, various

trial space centerings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xvi



8.3 CVRC unsampled MP-LSVT PROM time-average error, Np = 25, various

residual scalings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.4 CVRC unsampled MP-LSVT PROM pressure probes, Np = 25, various

residual scalings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xvii



Abstract

This thesis investigates the development and application of projection-based reduced-order

models (PROMs) to mitigate the exorbitant computational cost of high-fidelity numer-

ical simulations of complex systems. Traditionally, PROMs operate by learning a low-

dimensional representation of the system state from a small amount of high-fidelity sim-

ulation data, projecting the governing equations onto a low-dimensional subspace, and

evolving the resulting system on the low-dimensional manifold inexpensively. Although

PROMs have been applied in industrial problems, successes are largely restricted to linear

and elliptic/parabolic systems such as those describing solid mechanics, heat transfer, and

diffusion-dominated flows. For advection-dominated and highly non-linear flows, classical

PROMs are found to be deficient in reliably generating robust and accurate predictions of

flows featuring multi-scale and multi-physics phenomena. Further, PROMs of non-linear

systems require hyper-reduction methods to achieve significant computational cost sav-

ings, and such approaches have yet to be rigorously investigated in stiff and chaotic flow

problems.

The methods developed in this thesis are motivated by and applied to complex react-

ing flows, with a particular emphasis on rocket combustion. Despite decades of research

in the design of rocket combustors, their development often requires long and expensive

experimental test campaigns to ensure operational performance and safety. High-fidelity

numerical simulation of high-pressure turbulent combustion requires enormous compu-

tational power which is not affordable in industrial design settings. This work advances

the construction of accurate, robust, and scalable PROMs for this challenging class of

problems.

This work evolves from the recent model-form preserving least-squares with variable
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transformation (MP-LSVT) method, which derives the ROM using a least-squares proce-

dure, and simulates the dynamics with respect to an alternative state representation. This

approach exhibits greatly improved accuracy and stability over classical PROM methods

for reacting flow simulations. The method is derived here, and a number of critical nu-

ances – which are often not well-documented in the literature – are detailed at length,

including data preparation, extensions to non-linear manifolds, least-squares weighting,

hyper-reduction regression basis and sample mesh construction, and online model adap-

tation. These techniques are then applied to a number of challenging multi-scale and

reacting flow systems.

First, an open-source framework for implementing novel ROM approaches for 1D

reacting flows, named the Prototyping Environment for Reacting Flow Order Reduction

Methods (PERFORM), is outlined. Developed exclusively by the author, this package is

used to conduct a critical examination of several novel neural network ROM approaches

is conducted for a model premixed flame case. This approach exhibits utility in enabling

accurate representations of flows characterized by sharp gradients and propagating waves.

Further, non-intrusive neural network ROM approaches (i.e. those which do not require

access to the numerical solver) are shown to greatly outperform comparable classical

intrusive PROM methods. However, analysis of the cost of training these neural network

models reveals that they are hardly an efficient solution compared to equivalent linear

approximations.

Moving to more practical flows, scalable hyper-reduced PROMs are developed within a

massively parallel compressible reacting flow solver, and demonstrated for a 2D transonic

flow over an open cavity, a 3D single-element rocket combustor, and a 3D nine-element

rocket combustor. The effects of the sample mesh and hyper-reduction approximation

dimension on PROM performance, computational cost savings, and load balancing is

probed at length. Recent algorithms for selecting sample points are shown to generate

accurate models, while some methods used in the classical PROM literature are shown

to generate unstable solutions. Over three orders of magnitude computational costs

savings, while retaining simulation accuracy, are realized for the single-element rocket

xix



combustor case. Further, the nine-element rocket combustor experiment represents the

largest and most physically-complex system investigated to date, involving extreme stiff-

ness and nearly 250 million degrees of freedom. However, the ultimate goal of PROMs

is truly generalizable, predictive models. To this end, analyses are conducting for a re-

cent adaptive PROM approach, revealing that future-state and parametric predictions

are achievable for very long time horizons. Much work remains to be done to make such

adaptive PROMs robust and efficient for such large-scale and extremely complex systems.

Finally, best practices for the development and application of PROMs are docu-

mented. Insight is provided on centering and scaling high fidelity data snapshots. Ad-

ditionally, simple least-squares-based residual weighting approaches are shown to pro-

mote long-time PROM accuracy for problems exhibiting extreme scale disparities. These

guidelines will hopefully inform future PROM practitioners and help mitigate costly trial-

and-error efforts. In summary, this work shows that novel projection-based reduced-order

models offer an attractive means to leverage an ever-growing ecosystem of numerical and

experimental data to generate accurate and low-cost solutions.

xx



Chapter 1

Introduction

The founding motivation for this work stems from a need to better predict combustion

instabilities in rocket combustion, and from there expanded to explore more fundamen-

tal issues in applying data-driven order-reduction techniques to multi-scale and reacting

fluid flows. Although work in this thesis approximates the multi-phase nature of liquid-

propellant rocket combustion with pure gas-phase combustion, it is critical to understand

the context of modern rocket engine design and the future trajectory of modeling efforts

in this field. This discussion begins with a brief primer on rocket engines and the de-

structive combustion instabilities often encountered in their design. General issues of

extreme computational cost in simulating reacting flows are then addressed, along with

contemporary attempts to alleviate such costs with data-driven models.

1.1 Historical Context and Motivation

1.1.1 Combustion Instabilities in Rocket Engines

In the 21st century, the ability to launch objects into space is critical to the function

of national governments, corporations, and scientific research organizations alike. Space

is now increasingly accessible to all countries and inseparable from the everyday lives

of people around the world. The impact of space vehicles, probes, and satellites is ex-

perienced in both mundane tasks and life-critical operations. Communication satellites

provide data transmission for cell phones, and GPS satellites provide real-time location
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services. Cameras pointed at the Earth from satellites help track storms and wildfires,

and observe dangers to the environment as glaciers recede and rainforests are cut. Space

stations provide a testing ground for life to thrive beyond Earth, and enable discover-

ies in medicine, agriculture, and engineering to improve life on Earth. Space telescopes

peer into the depths of the universe to help better understand the cosmic soup of galax-

ies, suns, and planets. These extra-planetary objects accomplish incredible things, and

getting them into space requires similarly incredible feats of engineering.

Launching these massive objects (many satellites weigh over one ton) into space is

accomplished exclusively by chemical rocket propulsion. No other practical means of

propulsion is able to generate the force required to lift payloads hundreds of miles and

reach velocities greater than 15,000 miles per hour. Rocket engines accomplish this by

reacting chemicals which generate high-temperature and high-pressure gases in a combus-

tion chamber, forcing these gases through a nozzle which accelerates them to supersonic

speeds, and then ejecting the gases behind the engine. This ejection of high-speed gas

imparts enormous force, or thrust, on the rocket: the nine Merlin 1D engines of the

SpaceX Falcon rocket generate 1.71 million pounds-force (7.686 MN) of thrust [1]. Fig-

ure 1.1 illustrates these elements of the thrust chamber. While air-breathing jet engines,

like those which power commercial aircraft or military fighter planes, are capable of gen-

erating moderate thrust levels (the General Electric GEnx-1B76 can generate over 76

thousand pounds-force, or 339 kN [2]), they ultimately suffer from an unfortunate lack

of air in space.

Chemical rocket propulsion comes in two dominant forms: solid and liquid propellants.

Solid propellants are composed of combustible reactants cured into a solid fuel grain.

When fired, it sustains a highly-energetic reaction converting solid fuel into hot gases

until the grain is consumed. Most solid rocket motors can be stored at room temperature

for long periods of time, can be ignited instantly, and require few to no auxiliary systems

to operate. As such, they play a significant role in rocket-propelled munitions such as

rocket artillery and missiles. However, solid propellant reactions are extremely difficult

to control, as combustion cannot be stopped once it begins. Further, the reaction of solid
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Figure 1.1: Cross section of liquid bipropel-
lant thrust chamber (NASA [5]).

Figure 1.2: Failure of Space Shuttle main in-
jector assembly (Goetz and Monk, NASA [6]).

propellants tends to be far less efficient than reactions between many liquid or gaseous

propellants, achieving lower specific impulse values [3].

Due to the limitations of solid propellants, liquid propellants are, by far, the preferred

method to power space launch vehicles. They enable much more fine-tuned thrust control:

liquid engines have been designed to shut down and restart multiple times (e.g., the

Apollo Lunar Module reaction control system), and the thrust can be actively throttled

to adjust the rocket’s trajectory (e.g., SpaceX Falcon purported to throttle down to

57% of maximum thrust [1]). There are two primary variants of liquid propellants:

bipropellants and monopropellants. Bipropellants involve a liquid oxidizer (e.g. oxygen,

dinitrogen tetroxide) and liquid fuel (e.g., hydrogen, kerosene, monomethylhydrazine),

which are mixed and atomized into a gas before combustion. Monopropellants involve

a single propellant (e.g., hydrazine) which decomposes in a highly exothermic reaction

when it comes in contact with a catalyst. The selection of liquid propellants largely

depends on the engine’s mission (e.g., launch, station-keeping, orientation control) and

a balance of combustion efficiency (liquid hydrogen and oxygen is the most efficient),

cost (kerosene is cheaper than hydrogen to manufacture and store [4]), and safety risk

(monomethylhydrazine is highly toxic). In this thesis, only systems of non-hypergolic

bipropellants are examined.

Despite many benefits, the design, manufacturing, and operation of liquid-propellant

rocket engines are not without major complications. They require complex pump sys-
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tems to pressurize the propellants and intricate injection systems to mix and atomize

the liquid to promote efficient combustion. Further, some propellants must be stored

at temperatures below -400 ◦F (-240 ◦C) [7]. Even leveraging extensive engineering de-

sign practices honed over decades of rocket engine development programs, producing a

successful engine is a dangerous process requiring frequent testing and rigorous certifica-

tion. One design flaw which has troubled engine designers for decades is the possibility

of combustion instabilities.

Combustion instability broadly refers to organized vibrations in the liquid propel-

lants, combustion gases, or solid structure which can degrade engine performance, and

potentially damage or complete destroy the engine. There are three general categories

of such instabilities: propellant feed instabilities (“chugging”), intermediate instabilities

(“buzzing”), and resonant combustion (“screaming”). As these colloquial names may im-

ply, these are listed in order of increasing frequency of the vibration and relative danger

to the integrity of the engine. Chugging instabilities are low-frequency, low-amplitude

oscillations generated by irregular injection of propellants, leading to the accumulation

of unburnt reactants and subsequent explosive reaction. Buzzing instabilities often result

from the intermediate-frequency coupling of acoustic waves in the reacting gases and the

structural components of the engine assembly. Chugging and buzzing are not always a

threat to the engine’s integrity, but leads to decreased, irregular performance.

The final instability, screaming, refers to a highly destructive feedback mechanism

between acoustic waves in the combustion chamber and the unsteady heat release caused

by the reaction of the propellants. The reaction generates heat, which raises the pressure

of the reacting gases, which in turn encourages a more vigorous reaction, which generates

more heat, and so on. Depending on the geometry of the combustion chamber, the com-

position, temperature, and flow rate of the propellants, and the ability of the engine’s

structure to dissipate acoustic energy, this feedback loop may amplify the acoustic waves

to enormous amplitudes. The intensity of this process is illustrated by CH* chemilumi-

nescence images captured by Orth et al. [8], displaying the immense difference in heat

release in a rocket combustor experiencing stable versus unstable combustion. These large
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Figure 1.3: CH* chemiluminescence photos of multi-element rocket combustor in stable
combustion (left) and unstable combustion (right) (reproduced with permission from [8]).

pressure waves and the accompanying high heat-release rates may shake the engine apart,

or burn through the combustion chamber walls or propellant injection mechanisms. An

example is shown in Fig. 1.2, where vibrations in the Space Shuttle main engine cracked

oxidizer injectors and burned through the injector face, to catastrophic effect. Unlike

chugging and buzzing, which can often be accommodated for or easily fixed, screaming

is nearly impossible to predict and there exist no sure methods of preventing it. Many

possible mechanisms have been proposed as the cause of high-frequency combustion insta-

bilities, but the extreme complexity of the system (multi-phase, high-pressure, turbulent

combustion) has eluded any strong consensus on the topic.

Screaming has been catalogued in engine development dating back to the 1950’s in the

American Thor and Atlas missile programs, and continued to plague development pro-

grams throughout the prolific USA-USSR Space Race era and beyond. A classic example

of an extreme engineering challenge caused by combustion instabilities is the development

of the Rocketdyne F-1 engine, which to this date remains the most powerful American

liquid-propellant engine to launch. In the early stages of its development, almost every

single engine test ended abruptly with the onset of dangerous combustion instabilities.

What proceeded was the long, arduous Project First program, assembled to eliminate

sustained combustion instabilities, lasting from October 1962 until the flight certification
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of the propellant injector in November 1965 [9]. The program amounted to iterative

modifications to propellant spray patterns, propellant injector port arrangements, and

patterns of metal baffles between sections of the injector plate. Illustrations of such

baffles can be seen in Fig. 1.1. Many of these tests failed to eliminate combustion in-

stabilities, and Project First ultimately accounted for approximately 2,000 of the ∼3,000

full-scale engine tests conducted for the F-1 development program [10]. Although the

project was ultimately a success, it was an extremely labor- and time-intensive effort. To

this day, similar iterative, ad hoc approaches remain the preferred method of eliminat-

ing combustion instabilities. Although advances have been made in the construction of

acoustic dampers [11], they are not a guaranteed solution.

A number of analytical methods have been formulated in attempts to predict the

onset of sustained high-frequency combustion instabilities and avoid costly experimental

campaigns. However, due to the extremely non-linear physics of coupled combustion and

fluid flow dynamics, paired with the complex geometry and propellant injection configu-

rations in rocket engines, these methods often rely on linearizations or oversimplifications

of the rocket engine physics. They are often incapable of incorporating the effects of

possible damping mechanisms such as baffles and acoustic liners, or possible driving

mechanisms such as irregular distribution of propellants [12]. Further, those methods

which do yield accurate predictions of instabilities are usually valid for relatively small-

amplitude acoustic waves or unable to predict a limit cycle [13]. Although significant

effort has been taken to develop accurate models for gas turbine combustors in recent

decades (e.g., [14]), the contemporary analytical combustion instability theory for rocket

combustors is comparably lacking.

In the modern era, in which private companies vie for a lucrative heavy-launch market

and NASA takes a relative back seat, publicly-available data on engine development pro-

grams are scarce. However, there have been occasional hints that combustion instabilities

continue to haunt engine design programs well into the 2020’s [15]. With the understand-

ing that analytical methods of predicting instability fall short in their generalizability,

and extensive test campaigns may incur excessive costs, the use of numerical simulations

6



in the modeling of reacting fluid flows is now discussed, with an emphasis on applications

to rocket combustors.

1.1.2 Simulation of Reacting Fluid Flows

Computer simulations of physical processes have existed since the World War II era, dur-

ing which the development of early computers and researchers’ access to them expanded

greatly in pursuit of the atomic bomb. Broadly, the purpose of numerical simulations

is to approximately reconstruct a physical process which has no tractable analytical so-

lution and is either impossible or cost-prohibitive to experimentally measure. Rocket

engines are ideal candidates for simulation due to their physical complexity and high cost

of manufacturing and testing. This process is broken into its two major components: the

modeling of fluid flows and the modeling of chemical reactions.

Numerical fluid modeling, or computational fluid dynamics (CFD), is based in the

modeling of the Navier–Stokes equations (detailed in Sec. 2.1), a set of partial differential

equations which dictate the conservation of mass, momentum, and energy of a fluid flow.

Except in special circumstances where a system cannot be treated as a continuum (such

as nanofluidics and rarefied flows), the Navier–Stokes equations are a reliable description

of fluid flows. However, analytical solutions for these equations are limited to extremely

simple scenarios, such as Poiselle pipe flow or the Taylor–Greene vortex, where elements

of the Navier–Stokes equations are neglected or the system exhibits some symmetry. In all

other scenarios, certainly in any application of practical significance, analytical solutions

are impossible and numerical methods must be used to obtain approximate solutions.

In general, these methods amount to discretizing the spatial domain via methods such

as finite-difference, finite-volume, finite-element, or discontinuous Galerkin methods, and

marching the system forward in time with temporal discretization methods. These sim-

ulations have been successfully employed in the design and analysis of spacecraft [16],

automobiles [17], pumps [18], and wind turbines [19], among many other applications.

However, these models generally grow rapidly in cost with their spatial and temporal

resolution. Many important physical phenomena, such as turbulence, require extremely
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small spatio-temporal resolutions to capture accurately. This necessitates the use of

powerful supercomputers, which are inaccessible to all but select government and aca-

demic researchers, to compute direct numerical simulation (DNS) models which resolve

all characteristic spatio-temporal scales. Most CFD practitioners must instead rely on

low-fidelity approximations, such as Reynolds-averaged Navier–Stokes (RANS) models

or large eddy simulations (LES) [20, 21]. These models describe the effect of unresolved

physics on the resolved system in order to obtain a computationally-tractable solution.

While inexpensive relative to DNS, these models often fail to accurately recreate im-

portant fluid behavior such as flow separation [22] or correctly predict near-wall flow

statistics [23]. Such low-cost models are useful as a first-order approximation, but they

cannot match DNS in its accuracy and generalizability.

Chemical reaction modeling is also a well-studied field. Combustion, or any exother-

mic reaction of a fuel (often a hydrocarbon) with an oxidizer (often oxygen), is of partic-

ular interest due to its importance in generating electricity in gas turbines, mechanical

power in piston and jet engines, and thrust in rocket engines. Chemical reactions are, at

their core, interactions between individual molecules governed by the principles of quan-

tum mechanics. There is an enormous number of molecules in practical chemical reaction

systems (there are 1.882×1022 molecules in just one gram of oxygen), and it is impossible

to model their individual behaviors. As such, statistical or empirical models are used to

describe the bulk behavior of chemicals in a mixture. Many detailed chemical reaction

mechanisms have been developed which may include dozens of molecules and hundreds

of reactions (e.g., the 52 species, 325 reaction GRI-Mech 3.0 mechanism for methane

combustion [24]). These are, in general, not computationally tractable for simulations of

large reacting systems. Reduced mechanisms seek to condense these complex processes

with fewer chemical species and reactions, often using automated processes to generate

accurate approximations with fewer than 20 species and reactions (e.g., [25]), but some-

times fail to match experiments under certain conditions (e.g., very high temperature or

equivalence ratio [26], large hydrocarbons [27]).

The combination of these two fields, reacting turbulent flows, is less well-understood
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than its component fields for a variety of reasons. The characteristic spatio-temporal

scales of chemical reactions are smaller even than those of turbulence, placing well-

resolved simulations for all but fairly simple canonical problems well out of reach of

modern supercomputers. For reference, recent well-resolved simulations of a rectangular

premixed flame, running on 3,072 GPUs with advanced combusting flow software, still

requires over ∼4 seconds to compute a single time step [28]. Additionally, the highly non-

linear reaction source terms produce extremely stiff systems, making robust numerical

solutions challenging [29]. Finally, relevant reacting flows often involve complex physics

such liquid sprays [30], radiative heat transfer [31], and solid soot particulates [32]. Accu-

rately modeling combustion in the presence of turbulence has been a particular difficulty

for decades, but is extensively researched thanks to the importance of turbulence in ef-

ficient, reliable, and low-emission combustion [33]. Many approximate models, including

flamelet/progress variable [34], thickened flame [35], and transported PDF models [36],

have been successfully applied to many practical combusting flow systems. However,

many of these models struggle to accurately predict important features (such as lo-

cal ignition and extinction [37]) in all flow configurations (such as partially-premixed

flames [38]).

The above paragraphs illustrate two important points. First, the well-resolved sim-

ulations of combusting flows are extremely computationally expensive, largely driven

by small, disparate, coupled spatio-temporal scales of turbulence and reactions, as well

as by complex and stiff chemical kinetics. Second, although low-cost models such as

RANS/LES, reduced chemical mechanisms, or flamelet models are constantly improving,

they are often not generalizable to all circumstances and may not achieve significant cost

reduction to be industrially-viable. Although advances in high-performance computing

hardware and software continue to open new possibilities of bigger and faster computa-

tional physics, high-fidelity simulation of the complex multi-scale processes observed in

rocket combustors remain oppressively expensive. Certainly, in the context of engineering

design, in which many parameters of the combustor geometry, operating conditions, and

propellant composition must be iteratively changed, a simulation runtime measured in
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weeks or months on massive supercomputers cannot be justified. In such a situation, per-

forming an experiment is likely equally or less expensive, and generates much more useful

operational data. This has stimulated inquiries into a third path, which seeks to learn

learn low-cost surrogate models of complex systems from a small number of experiments

or high-fidelity simulations. Such approaches can be broadly categorized as data-driven

modeling.

1.2 Data-driven Reduced-order Modeling

In recent years, the term “data-driven” has become a veritable buzzword in many fields,

including medicine, finance, agriculture, logistics, and engineering. Although designs and

applications vary widely, data-driven methods generally follow the same core process:

1. Gather real-world information about an extremely complex system which humans

cannot parse efficiently.

2. Feed this data into an algorithm which learns to map the input data to meaningful

output targets which are easily parsed by humans.

3. Use the model to make useful predictions on new, unseen data.

Such models are crucial in situations where a process cannot be readily queried (pa-

tients cannot be forced to enroll in a clinical trial), or the process must be queried many

times (personalized ads must be tailored for millions of search engine users). The design

of rocket combustors exhibits both challenges in some of their most extreme forms. Ex-

perimental test articles are costly to manufacture and hazardous to test. Further, rocket

engines must be tested repeatedly to certify performance and safety standards. Develop-

ing reliable, approximate models that can replace (some of) these experiments has the

potential to accelerate rocket design programs and lower their cost significantly. This

idea reflects a broader effort in computational physics which seeks to address so-called

many-query problems, in which a model must be evaluated many times to ensure the tar-

geted outcome is confidently estimated. Such problems include optimization, uncertainty
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quantification, rare event prediction, and control, all crucial element in developing robust

solutions to modern engineering problems. However, the cost of existing lower-fidelity

physics models, such as single-phase models for turbulent spray combustion, is often still

prohibitively high and precludes their use in many-query operations. This motivates the

use of data-driven modeling to discover new, inexpensive models which can be queried at

a fraction of the cost of standard models.

Data-driven modeling is not new. Linear regression has been used extensively for

over two centuries, and many statistical models still used regularly in modern times

(e.g., k-means clustering, principal component analysis) were formulated over 50 years

ago [39]. What has changed in recent years is the exponential growth in computing

power, data storage, and data collection mechanisms available to data scientists, as well

as increased access to publicly available datasets made possible by the Internet. This

same phenomenon has occurred in engineering research, where huge experimental and

DNS/LES datasets can be easily exchanged, standardized data formats allow for quick

data ingestion, and open-source and hardware/software interoperability programs permit

rapid verification and validation of numerical experiments. This wealth of high-fidelity

data has enabled a rapid expansion of research in methods which learn low-cost models

of complex physical processes, often referred to as reduced-order models, (ROMs) where

“order” refers to the dimensionality of the problem.

The phrase reduced-order model (sometimes reduced models or model order reduction)

has taken on two distinct meanings in the fluid mechanics and combustion literature.

The first type of ROM refers to models which are derived by simplifying complex physics

with physically-meaningful (but lower-cost) approximations, or by fitting compact ana-

lytical equations to empirically-observed patterns. Examples of the former (which are

not necessarily data-driven) for general fluid flows include axisymmetric models of three-

dimensional systems, while the latter includes polynomial models of gas thermodynamic

and transport properties [40]. Such approaches are prevalent throughout the combustion

community. Methods of generating chemical reaction mechanism often rely on sensitivity

analyses to remove candidate species and reactions [41] or assume reaction process order-
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ing [42]. The analysis of combustion instabilities often represents the combustor as an

assembly of acoustic elements which transmit acoustics according to transfer functions;

modeling the flame transfer function is extremely difficult, but enables vast simplifica-

tions of the system [43]. Such acoustic models may be paired with the Euler equations

to provide a low-cost approximation of the non-linear combusting gas dynamics [44].

The immensely complex process of two-phase combustion in the presence of turbulence

involves a host of modeling approximations in representing liquid spray breakup, disper-

sion, mixing, evaporation, and reaction, often derived from empirical observations [45].

For such ROMs, the result of order reduction (relative to, perhaps, DNS or molecular

reaction models) is a secondary consequence of approximating physical processes. In this

sense, this type of model is henceforth referred to instead as a reduced-physics model.

While these play a critical role in developing computationally-tractable models, they are

not the focus of this work.

The second type of ROM, central to this work, refers to models which learn a mapping

from a low-dimensional representation of the system state to the full-dimensional state,

and provide a means of evolving this low-dimensional representation in time. Figure 1.4

illustrates a simple example of this process, showing the evolution of a reduced-order

state in two dimensions and the corresponding full-order state in three dimensions. At

their core, these methods attempt to recreate the behavior of the full-dimensional system,

not that of a physically-simplified surrogate. The low-dimensional state is often a math-

ematical construct without particular physical significance. In this case, order reduction

is a direct consequence of the mapping from low- to high-dimensional states. As such,

reduced-order model seems more appropriately applied to these models, and the acronym

ROM is used to refer to them exclusively in this thesis.

All ROMs begin by defining the mapping from a low-dimensional reduced space to

the high-dimensional physical space. This mapping may be categorized broadly as lin-

ear or non-linear. Linear methods reconstruct the high-dimensional state from a linear

combination of a small number of basis vectors. The scalar coefficients of this linear

combination represent the low-dimensional state. Prominent methods for computing the
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Figure 1.4: Illustration of state representation and time evolution in reduced-order space (left)
and corresponding full-order state (right).

basis vectors from data include proper orthogonal decomposition [46], balanced trunca-

tion [47], and the reduced-basis method (RBM) [48]. Non-linear methods, on the other

hand, formulate the mapping as an arbitrarily non-linear function of the low-dimensional

state. Examples include autoencoders [49], kernel principal component analysis [50], and

generative topographic mappings [51]. In practice, linear and non-linear mapping meth-

ods differ in their ease of calculation and expressiveness. Linear methods benefit from

closed-form solutions, and the mapping from the reduced to full-order space amounts to

simple linear algebra operations. However, the linear representation often results in high

approximation error when applied to very non-linear solution manifolds. For example,

similar to the Gibbs phenomenon of Fourier series, linear representations of sharp gradi-

ents exhibit “ringing” artifacts. Non-linear methods, on the other hand, may estimate

such non-linearities much more accurately, though they rarely guarantee any measure of

optimality and may require costly training procedures.

After the mapping has been computed, a method of evolving the low-dimensional state

in time must be selected. The Koopman operator [52], which can be approximated by

dynamic mode decomposition [53], is a linear operator which simply advances the state

forward in time. Operator inference [54], alternatively, learns a quadratic form of the

reduced-order state time evolution via a least-squares minimization problem. A host of

neural network approaches also propose to model the dynamics of the reduced state using,

for example, recurrent neural networks [55], temporal convolutional networks [56], and
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adversarial networks [57]. Finally, of particular interest to this work, is the projection-

based reduced-order model.

1.2.1 Projection-based Reduced-order Models

Unlike the methods described above, projection-based ROMs (PROMs) do not discard

the original governing equations which generated the high-fidelity data. Instead, they

project the system onto a low-dimensional space and evaluate the resulting reduced set of

equations as you might the original high-dimensional ODE. In theory, the solution to this

low-dimensional system is far less expensive than that of the full-order system. The two

dominant projection methods are Galerkin projection and least-squares Petrov–Galerkin

(LSPG) projection. These methods will be described in greater detail in Chapter 3, but a

brief overview is provided here to highlight existing shortcomings in the state-of-the-art.

Galerkin PROMs have a rich history in the study of coherent structures in turbulence,

dating back to work in turbulent boundary layers by Aubry et al. [58] and progressing

to more complex geometries through the 1990’s (e.g., [59, 60, 61, 62]). However, as

Galerkin PROMs were applied to more complex fluid flow systems, they were discovered

to suffer from a variety of stability and accuracy issues [63]. Despite careful modifications

targeted at PROMs for compressible flows [64, 65], these stability issues arguably stem

from the core fact that Galerkin projection is the ℓ2-optimal projection of the time-

continuous governing ODE, while in practice the PROM is solved in the time-discrete

O∆E setting [66].

In the early 2010’s, LSPG projection [67, 68] was proposed as a discrete-optimal

alternative to Galerkin projection. It has since been well-documented to generate far

more stable and accurate PROMs compared to Galerkin projection for canonical 2D and

3D fluid flow problems [69]. Although broader adoption of LSPG PROMs has been slow,

it has performed exceptionally well for several of perhaps the largest and most challenging

aerodynamics problems to date [70].

In the late 2010’s, early work began in applying Galerkin and LSPG PROMs to

reacting flow problems. Preliminary results indicated that these PROMs struggled with
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the stiff chemical kinetics and steep gradients which are characteristic of combusting

flows [71, 72]. While ad hoc solutions of temperature limiters [73] and chemical species

limiters [74] alleviated these difficulties somewhat, the general robustness of these PROMs

remained poor. It was not until very recently that the model-form preserving least-squares

with variable transformation (MP-LSVT) [75] was proposed as an alternative to LSPG,

exhibiting greatly improved performance for PROMs of reacting flows.

Several key limitations remain to be solved for PROMs of general non-linear prob-

lems, namely computational efficiency and predictivity. As will be discussed in Chapter 4,

PROMs of non-linear systems require a hyper-reduction method to limit the cost of eval-

uating non-linear terms in the governing ODE. Very little research has been conducted to

compare the performance of various hyper-reduction approaches beyond studies of small

one-dimensional systems [76]. Further, prior work on PROMs of large-scale systems typ-

ically do not explore performance beyond training data sets, i.e. predictive performance.

Recent work implies that online adaptation of the PROM basis and hyper-reduction

sampling scheme provide vastly improved predictive performance [77, 78], though these

methods have yet to be tested for high-dimensional, multi-scale systems.

1.3 Objectives and Contributions

As discussed above, there is a relative paucity of investigations of PROMs for extremely

large-scale, highly non-linear, multi-scale and multi-physics flow problems of some en-

gineering significance. This thesis helps to fill this gap, detailing many of the unique

challenges of PROMS for reacting flow problems, exposing the limitations of the state-

of-the-art projection-based ROMs, and proposing some solutions for these problems and

the methods by which they can be achieved in a compute- and memory-scalable fashion.

In summary, the contributions by the author detailed in this thesis are as follows:

1. Development of PERFORM, an open-source project with which the reduced-order

modeling community can prototype and test new methods for a series of benchmark

problems which are significantly more challenging and informative than standard
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ROM toy problems. Its use in pushing the capabilities of modern ROM methods

is evaluated for an acoustically-forced 1D premixed flame, investigating novel deep

autoencoder and recurrent neural network ROM methods. These results, enabled

by PERFORM, give insight into both the exceptional ability of neural networks in

representing advection-dominated reacting flows and the excessive cost of training

the same neural networks.

2. A baseline assessment of state-of-the-art linear projection-based models for sev-

eral complex multi-scale systems, showing that the prevailing state-of-the-art is

ineffective. Detailed analyses of the MP-LSVT method demonstrate its superior

performance for problems of greater complexity than any previously tested with

the same approach.

3. Application of projection-based reduced-order modeling for a 3D multi-injector

rocket combustor with nearly 250 million degrees of freedom, wherein combustion

is modeled via a 12-species and 38-reaction. This represents the first study (to the

author’s knowledge) of a problem of this size and physical complexity, involving a

self-excited transverse combustion instability, coupled injector dynamics, and ex-

ceedingly stiff reaction kinetics. Although this system is still a vast simplification of

real combustor physics, this effort is a major step forward towards demonstrating

the viability of PROM methods for industrial-scale systems.

4. Implementation of a pre- and post-processing toolchain for hyper-reduced PROMs

within the open-source linear algebra toolkit PLATFORM [79]. This enables dis-

tributed solutions for costly greedy algorithms which are required to generate sta-

ble and accurate hyper-reduced PROMs, and is designed for easy expansion with

novel sampling methods. Further, these additions allow for rapid generation of

full-dimensional field data from hyper-reduced PROM outputs for error measure-

ments and visualization. This end-to-end process assists in applying hyper-reduced

PROMs to extremely high-dimensional systems.

5. Development of a truly memory- and compute-scalable PROM hyper-reduction im-
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plementation in a massively-parallel combustion CFD laboratory code, enabling

PROMs which do not scale with the original high-fidelity model dimension. With

this design, true computational cost savings can be realized, and low-cost, low-

memory simulations of extremely large combusting flow systems may be computed

on laptops or personal workstations.

6. Demonstrated scalability of hyper-reduction for PROMs of practical engineering

systems, including 2D transonic cavity flow and two 3D rocket combustors. Over

three orders of magnitude computational savings are realized, decreasing the cost

from O(10,000) CPU-hours to O(10) CPU-hours. This appears to be the first rigor-

ous comparison of classical sparse sampling algorithms and more recent algorithms

for systems of this size and complexity, revealing stark differences in load-balancing,

accuracy, and computational cost savings. Insights into other critical parameters

which define the hyper-reduced PROM problem are also made, aiding future inves-

tigations into PROMs of multi-scale, multi-physics systems.

7. Optimization of inefficient basis and hyper-reduction sample mesh adaptation al-

gorithms in the aforementioned massively-parallel combustion CFD code. This

enables the execution of truly predictive PROMs for large-scale systems which were

previously unattainable due to excessive memory consumption and inter-process

communication overhead. This approach is demonstrated for a 3D single-element

rocket combustor, for which accurate models of unseen physics beyond the training

dataset are computed with dynamic trial spaces and sample meshes.

8. A collected discussion and analysis of several important steps in developing effec-

tive PROMs for large-scale complex problems, including data preparation (center-

ing and normalization), residual weighting for residual-minimization PROMs, lim-

iters/clipping functions for preventing non-physical solutions, and variable trans-

formations for PROMs of extremely stiff systems. These topics are often ignored,

neglected, or glossed over in the literature, leaving future researchers to waste

time learning these simple tricks of the trade. Especially for large-scale multi-
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scale systems characterized by propagating waves, sharp gradients, and disparate

dimensional scales, these methods are shown to be crucial elements of the PROM

toolchain, and findings here provide best practices for practitioners.

Take care to note, however, that this thesis does not incorporate many of the complex

physical phenomena present in realistic liquid-propellant rocket combustion. Due to

computational constraints, none of the “high-fidelity” models can be considered well-

resolved in space or time, as they do not incorporate liquid-phase transport or reactions,

and all reaction mechanisms are greatly reduced. These results are not presented as

accurate reflections of rocket combustion, and highlight a common criticism of data-driven

methods for complex systems: if the underlying numerical model does not reflect reality,

what is the use of data-driven approaches which generate unrealistic solutions? This

is a somewhat shortsighted view, ignoring the progressive nature of scientific research.

Data-driven models cannot instantaneously advance from toy problems to industrial-

scale systems, but rather require incremental application to more difficult problems and

adjustments as obstacles appear.

It is in this frame of mind that this thesis should be viewed instead as one of many

steps towards the application of PROMs to realistic rocket combustion simulations. This

body of work thus demonstrates that projection-based ROMs of non-linear systems can be

a practical and effective means of generating low-cost solutions to extremely challenging

problems in engineering. While there remains much work to be done to make these models

truly generalizable and viable for industrial applications, they pose an encouraging route

of investigation for alleviating the burdensome cost of extensive experimental campaigns

and massive high-fidelity simulations in engineering design and analysis.

1.4 Organization and Notation

The organization of this thesis is as follows. Chapter 2 details the governing equations,

thermodynamic and transport models, chemical reaction models, and spatio-temporal

discretization methods used to obtain results exhibited in later chapters. Chapter 3
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discusses relevant literature on projection-based reduced-order modeling techniques and

derives those methods which are investigated in later chapter, including in-depth discus-

sions on the MP-LSVT method. Chapter 4 outlines methods for constructing compute-

and memory-scalable hyper-reduced PROMs. Chapter 5 outlines PERFORM, the open-

source ROM development testbed, and novel results comparing linear and non-linear

ROMs for an acoustically-forced, freely-propagating model premixed flame. Chapter 6

exhibits numerical experiments of PROMs for three complex multi-scale problems: 2D

transonic flow over an open cavity, a 3D truncated single-element rocket combustor, and

a nine-element laboratory rocket combustor. This last experiment represents the largest

(and perhaps most complex) test case for PROMs to date, to the best of the author’s

knowledge. Chapter 7 onlines sample mesh and basis adaptation approaches for achieving

PROM generalizability, and provides future-state predictive results for the single-element

rocket combustor cases previously examined. For the last numerical experiments, Chap-

ter 8 examines how various data preparation approaches, residual weighting methods,

and localized temperature limiters affect the accuracy and stability of PROMs for react-

ing flows. Finally, Chapter 9 summarizes the results and meaningful conclusions of this

research, and proposes several important future research directions.

Some universal notation is used throughout this thesis. Scalars and scalar-valued

functions are denoted by lowercase, italicized Latin or Greek letters (e.g., a, ψ). Vectors

and vector-valued functions are denoted by lowercase, bolded Latin or Greek letters (e.g.,

a, ψ). Matrices and matrix-valued functions are denoted by uppercase, bolded Latin

or Greek letters (e.g., A, Ψ). Vector spaces and manifolds (and sets, occasionally) are

defined using uppercase, calligraphic Latin letters (e.g., A, U). The “=” sign denotes

simple equality, while “:=” denotes a definition. Functions are denoted by a Latin or

Greek letter, or common mathematical function abbreviation, followed by parentheses

enclosing the function’s arguments (e.g., a(·), a(·), A(·), exp(·)). Brackets are used to

group elements of mathematical equations (e.g., a + [b + c]2), define vectors or matrices

(e.g., a := [a1, a2, a3]), or specify molar concentration (always written as [Xl]). The

purpose of brackets in a given context should be fairly self-evident. Braces are used to
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define sets (e.g., A := {a1, a2, a3}). Single vertical bars indicate the absolute value

operation (e.g., |a|), and double vertical bars indicate the vector or (induced) matrix

norm (e.g., ∥a∥2). Superscripts are generally reserved for exponentiation (e.g., a2, bc),

indication of the time step associated with a variable (e.g., an := a(tn)), or transpose

(A⊤), inverse (A−1), and pseudoinverse (A+) operations, for which the context should

be self-explanatory. Subscripts are used for numerous indicators including summation or

set indices (e.g., ai ∀ i ∈ {1, 2, 3}), physical value descriptors (e.g., cp, h0), and variable

descriptors (e.g., qc vs. qp, Jr,c vs. Jr,p). Diacritics are context-dependent, though the

macron (e.g., a) is generally associated with constant values, the tilde (e.g., ã) is generally

associated with full-dimensional ROM quantities, and the circumflex (e.g., â) is generally

associated with low-dimensional ROM quantities.
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Chapter 2

Modeling Combusting Flows

In this chapter, the governing equations and models which describe reacting fluid flows are

described, along with the numerical methods by which these equations are discretized in

space and time for results presented in this thesis. With the exception of those generated

by PERFORM and presented in Chapter 5, all results are computed using the General

Equations and Mesh Solver (GEMS). This solver was originally developed by Li at the

University of Tennessee [80] and later by Li and Xia at Purdue University [81]. Over

nearly two decades, GEMS has been used extensively to model a wide variety of complex

combusting flow systems [82, 83, 84]. More recently, it has been expanded to include

projection-based reduced-order modeling utilities, which will be described in greater detail

in Chapter 3. Although PERFORM uses a similar formulation to GEMS, discrepancies

will be explicitly described in Chapter 5.

2.1 Governing Equations

Fluid flows that can be treated as a continuum are governed by the unsteady Navier–

Stokes equations. They describe the conservation of mass, momentum, energy, and trans-

ported scalars in an arbitrary control volume. Neglecting body forces, these equations

are given by the PDE

∂qc

∂t
+∇ · (f − fν) = s, (2.1)

where qc is the conservative state, f := [fx, fy, fz] and fν := [fν,x, fν,y, fν,z] are the

inviscid and viscous flux terms in each spatial direction, respectively, and s are source
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terms. These terms are given as

qc :=



ρ

ρu

ρv

ρw

ρh0 − p

ρYl

ρZ

ρC



, fi :=



ρui

ρuui + δxip

ρvui + δyip

ρwui + δzip

ρh0ui

ρYlui

ρZui

ρCui



, fν,i :=



0

τix

τiy

τiz

−qi +
∑

j ujτij

ρVl,iYl

ρDZ
∂Z
∂xi

ρDC
∂C
∂xi



, s :=



0

0

0

0

0

ω̇l

0

ω̇C



.

(2.2)

Horizontal dashed lines separate additional equations which are included for different

chemical transport and reaction models. The first five equations (the continuity equa-

tion, three momentum equations, and the energy equation) generally describe three-

dimensional fluid flows. The z-momentum equation, z-velocity, and gradients in the z-

direction are neglected in two-dimensional flows. The y-momentum equation, y-velocity,

and gradients in the y-direction are also neglected in one-dimensional flows. The relevant

terms are as follows: ρ is the density, ui ∈ {u, v, w} is the velocity in each spatial direc-

tion, p is the static pressure, and δij is the Kronecker delta. The stagnation enthalpy is

given by

h0 :=
1

2

{x,y,z}∑
i

u2i +

NY∑
l=1

hlYl, (2.3)

and the viscous shear stress is given by

τij := µ

[
∂ui
∂xj

+
∂uj
∂xi
− δij

2

3

3∑
k=1

∂uk
∂xk

]
. (2.4)

Neglecting radiation and Dufour effects, the heat flux is given by

qi := −λ
∂T

∂xi
− ρ

NY∑
l=1

Vl,iYlhl. (2.5)
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In Eqs. 2.2 and 2.5, the diffusion velocity product of the lth species in the ith spatial

direction, Vl,iYl, is approximated as

Vl,iYl ≈ DlM
∂Yl
∂xi

, (2.6)

where mass diffusion by pressure gradients, body forces, and temperature gradients have

been neglected.

Calculation of thermodynamic properties (the species enthalpy hl) and transport prop-

erties (the dynamic viscosity µ, thermal conductivity λ, and species mass diffusivity DlM)

depend on the gas and transport models used in the simulation. These are described in

greater detail in Section 2.1.1.

The sixth line of terms in Eq. 2.2 describes the scalar transport equation of the lth

chemical species, for l ∈ {1, . . . , NY − 1}, where NY is the number of chemical species

to be modeled. Here, Yl is the mass fraction of the lth species in the mixture, and DlM

is the mass diffusivity of the lth species into the mixture. The reaction source term,

ω̇l, also described as the production rate, for the lth species is given by the specified

reaction model; the laminar finite-rate reaction model used in this thesis is described in

Section 2.2.1. Note that only NY − 1 chemical transport equations are solved. The mass

fraction of the NY th species can, by definition of the mass fraction, be computed from

YNY
= 1−

NY −1∑
l=1

Yl. (2.7)

The seventh and eighth line of terms in Eq. 2.2 describe the scalar transport of

the fuel mixture fraction Z and progress variable C. These equations arise from the

flamelet/progress variable (FPV) model for reacting flows [34], which is described in

greater detail in Section 2.2.2. The classic FPV model replaces the energy and species

transport equations with these two equations, and uses a pre-computed lookup table

which maps the fuel mixture fraction and progress variable to the temperature and species

mass fractions. As will be described later, the FPV model implemented in GEMS does

not eliminate the energy equation, and hence conserves energy while incurring additional
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computational cost.

As Eq. 2.1 is not closed (there are more unknowns than equations), an equation of

state is provided which relates several quantities explicitly. For all results shown here,

the system is treated as a mixture of ideal gases, and the ideal gas law is given by.

p = ρRT, (2.8)

where T is the temperature, and R is the mixture specific gas constant.

Throughout this thesis, the set of “primitive variables” is frequently referred to, and

is given by

qp :=

[
p u v w T Yl Z C

]⊤
. (2.9)

These quantities have special use in that they can be easily interpreted in engineer-

ing practice, are used to tabulate empirical fit models, and are easily used to compute

secondary quantities such as total pressure and heat transfer rates. Additionally, these

variables have several numerical qualities that benefit the construction of robust and accu-

rate reduced-order models, which will be detailed later. The conservative variables, while

important in that they have the useful property of conservation, are less immediately

useful in an engineering context.

2.1.1 Gas Models

GEMS is equipped with several models to compute thermodynamic and transport prop-

erties of gases, each with varying levels of accuracy in different pressure and temperature

ranges. As this work primarily investigates systems of multi-species mixtures, the meth-

ods used for computing mixture quantities which are universal for all models are detailed

here. To begin, the mixture enthalpy and entropy are computed simply as

h =

NY∑
l=1

Ylhl, s =

NY∑
l=1

Ylsl. (2.10)
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The mixture dynamic viscosity is given by Wilke’s mixing law [85],

µ = 2
√
2

NY∑
l=1

Xlµl

ϕl

, (2.11)

where Xl is the mole fraction of the lth species. The denominator term is given by

ϕl =

NY∑
m=1

Xm

[
1 +

[
µl

µm

]1/2 [
Mm

Ml

]1/4]2 [
1 +

Ml

Mm

]−1/2

, (2.12)

where Ml is the molecular mass of the lth species. Finally, the mixture thermal conduc-

tivity is given by Mathur et al. [86] (attributed to Burgoyne and Weinberg [87]),

λ =
1

2

 NY∑
l=1

Xlλl +

[
NY∑
l=1

Xl

λl

]−1
 . (2.13)

Calorically-perfect Gas with Simplified Transport Properties

The one-dimensional transient flame case (Section 5.2) and the 2D transonic cavity flow

(Section 6.1) utilize the calorically-perfect gas (CPG) model with approximate, analytical

models for transport properties. The CPG model makes the assumption that the heat

capacity at constant pressure of the lth species, cp,l, is constant, i.e. cp,l(T ) = cp,l. The

species enthalpy is thus computed simply as

hl = h◦−l + cp,lT, (2.14)

where h◦−l is the standard enthalpy of formation for the lth species. Similarly, entropy of

the lth species is computed from the analytical relationship

sl = cp,lln

(
T

278.0 K

)
−Rlln

(
p

101, 325 Pa

)
, (2.15)

where Rl is the specific gas constant of the lth species. The dynamic viscosity of the lth

species, on the other hand, is computed from the empirical Sutherland’s law [88], given
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by

µl = µref,l

[
T

Tref,l

]3/2 [
Tref,l + Sl

T + Sl

]
. (2.16)

Here, µref,l is the experimentally-measured dynamic viscosity at temperature Tref,l, and Sl

is an independent empirical parameter for the lth species. With the dynamic viscosity in

hand, the thermal conductivity of the lth species may be computed from the definition

of the Prandtl number, rearranged as

λl =
µlcp,l
Prl

. (2.17)

The Prandtl number of the lth species is tabulated experimentally. Similarly, the mass

diffusivity of the lth species into the mixture can be computed from the definition of the

Schmidt number, rearranged as

DlM =
µl

ρScl
. (2.18)

Again, the Schmidt number of the lth species is tabulated experimentally.

Thermally-perfect Gas with Empirical Fit Transport Properties

At high temperatures, especially in the temperature ranges of 1,000 - 3,000 K normally

experienced in rocket combustors, the assumption that the specific heat capacity of a

fluid is constant with temperature is not accurate. The general formulation for the

species enthalpy is thus given by

hl = h◦−l +

∫ T

T ◦−
cp,l(T )dT. (2.19)

In this work, the empirical fits of McBride, Gordon, and Reno [40] are used to compute

thermodynamic quantities which incorporate this temperature dependence. The species

specific heat capacity at constant pressure, species enthalpy, and species entropy are given

by the model forms

cp,l
Rl

= a1,l + a2,lT + a3,lT
2 + a4,lT

3 + a5,lT
4, (2.20)
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hl
RlT

= a1,l + a2,l
T

2
+ a3,l

T 2

3
+ a4,l

T 3

4
+ a5,l

T 4

5
+
a6,l
T
, (2.21)

sl
Rl

= a1,llnT + a2,lT + a3,l
T 2

2
+ a4,l

T 3

3
+ a5,l

T 4

4
+ a7,l, (2.22)

where ai,l, i ∈ {1 . . . 7} are tabulated for the lth species.

Two different empirical models for transport properties are available in GEMS. The

first, which is used in the single-element combustor simulations presented in Section 6.2,

computes the species dynamic viscosities and thermal conductivities from the NASA

Lewis Research Center model [89], given by,

µl = exp

(
b1,llnT +

b2,l
T

+
b3,l
T 2

+ b4,l

)
× 10−7, (2.23)

λl = exp
(
c1,llnT +

c2,l
T

+
c3,l
T 2

+ c4,l

)
× 10−4. (2.24)

The scalar terms bi,l, ci,l, i ∈ {1 . . . 4} are tabulated for the lth species. The scaling

factors convert dynamic viscosity from micropoise to kg/m-s, and thermal conductivity

from µW/cm-K to W/m-K.

The mass diffusivity of the lth species into the mixture is given by Curtiss and

Hirschfelder [90] as

DlM =
1−Xl∑
m ̸=l

Xm

Dl,m

. (2.25)

The binary diffusion coefficient between the lth andmth species is modeled via Chapman–

Enskog theory (from [91])

Dl,m =
0.0266

p
[
σl+σm

2

]2
Ω

√
T 3

[
1

Ml

+
1

Mm

]
, (2.26)

where σl is the collision diameter of the lth species in Angstroms. Self diffusion is ignored

(Dl,m = 0 ∀ l = m). Note that the factor 0.0266 differs from that given in [91], as the

diffusion coefficient is computed here in m2/s (instead of cm2/s) and pressure is computed

in pascals (instead of atmospheres). The diffusion collision integral, Ω, is computed from
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the relations of Neufeld et al. [92]

Ω :=
d1

exp (d2T ∗)
+

d3
exp (d4T ∗)

+
d5

exp (d6T ∗)
+

d7
exp (d8T ∗)

, (2.27)

where the scalar terms di, i ∈ {1 . . . 8} are empirically determined, and universal for every

species pairing. The reduced temperature T ∗ is computed as

T ∗ := T

[
kB√
ϵlϵm

]
, (2.28)

where kB is the Boltzmann constant, and ϵl is the tabulated Lennard–Jones energy of

the lth species.

The second transport property calculation method is drawn from the TRANSPORT

library [93], and used in simulations of the nine-element rocket combustor in Section 6.3.

This model consists of third-order polynomials of the form,

µl = exp

(
4∑

i=1

bi,l [lnT ]
i−1

)
× 10−1, (2.29)

λl = exp

(
4∑

i=1

ci,l [lnT ]
i−1

)
× 10−5, (2.30)

Dl,m =

[
101, 325 Pa

p

]
exp

(
4∑

i=1

di,lm [lnT ]i−1

)
× 10−4. (2.31)

Again, the scalar terms bi,l, ci,l, and di,l, i ∈ {1 . . . 4} are empirically determined for the

lth species (and pairing of the lth and mth species for binary diffusion coefficients). The

scaling factors convert dynamic viscosity from poise to kg/m-s, thermal conductivity from

erg/s-cm-K to W/m-K, and mass diffusivity from cm2/s to m2/s. The diffusion of the

lth species into the mixture is again computed by Eq. 2.25.

2.1.2 Subgrid-scale Models

In general, simulations of practical combustion systems will always be under-resolved

due to the extremely small characteristic spatio-temporal scales of reacting flows. To
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reduce the high cost of resolving these scales, large eddy simulations filter the governing

equations into resolved (large-scale) and unresolved (small-scale) motions. The resulting

set of equations can be solved for the resolved scales, with the exception of the subgrid

stresses. As the subgrid stresses cannot be directly computed (they are a function of

unresolved motions), they must be modeled. A broader discussion of turbulence and

subgrid scale modeling can be found in [94].

For all GEMS simulations presented here, with the exception of the nine-element

combustor discussed in Section 6.3, no explicit filter or subgrid scale model is used. This is

not to imply that these are well-resolved DNS models, but can rather be viewed as implicit

LES (ILES) simulations. In ILES, it is assumed that the numerical dissipation generated

by the spatial discretization scheme accounts for the dissipative effects of the unresolved

small-scale turbulence. As a result, no subgrid scale model is required. This idea dates

back to early observations on monotone convection algorithms [95], and has since been

successfully applied to a variety of turbulent flows [96, 97, 98]. A comprehensive overview

of ILES can be found in [99]. In GEMS, ILES is applied by using a second-order accurate

finite volume scheme, guaranteeing monotonicity with a gradient limiter (detailed in

Section 2.3). No artificial dissipation is incorporated in the model. In unpublished

studies, GEMS has been shown to produce excellent predictions of experimental flow

statistics in a turbulent ship airwake.

In simulations of the nine-element combustor in Section 6.3, GEMS employs the eddy

viscosity σ-model of Nicoud et al. [23]. Eddy viscosity models account for the dissipative

effects of unresolved turbulence by adding an eddy viscosity term, computing the viscous

stress tensor as

τij := [µ+ µt]

[
∂ui
∂xj

+
∂uj
∂xi
− δij

2

3

3∑
k=1

∂uk
∂xk

]
. (2.32)

The σ-model computes the eddy viscosity µt as

µt := ρ[Cσ∆]2Dσ, (2.33)

where Cσ is an empirically-determined constant (in this work, Cσ = 1.4), and ∆ is the
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subgrid characteristic length scale (here, one-third the cell volume). The differential

operator Dσ is computed as

Dσ :=
σ3 [σ1 − σ2] [σ2 − σ3]

σ2
1

, (2.34)

where σ1, σ2, and σ3 are the singular values of the velocity gradient tensor. This eddy

viscosity has the benefits of being a locally-defined positive quantity, decays with the cube

of distance from a wall, and vanishes in two-dimensional flow. Further, unlike turbulence

models such as the Spalart–Allmaras or k–ω turbulence models, the σ-model involves no

additional transport equations.

2.2 Reaction Models

Two reaction models are used to simulate chemical reactions in this thesis: the laminar

finite rate model and the flamelet/progress variable model. In both models, the rth

chemical reaction of a mechanism is described with the general form

NY∑
l=1

ν ′l,rχl −⇀↽−
NY∑
l=1

ν ′′l,rχl, (2.35)

where ν ′l,r and ν ′′l,r are the stoichiometric coefficients of the lth species as reactants and

products of the rth reaction, respectively. The lth chemical species is denoted by the

symbol χl. A simple example of this format is the reaction of carbon monoxide and

hydroperoxyl, or

CO + HO2 −⇀↽− OH− + CO2. (2.36)

The stoichiometry of this reaction is written in Table 2.1.

2.2.1 Finite Rate Reactions

The laminar finite rate chemistry model is used to compute results for the one-dimensional

model premixed flame in Chapter 5 and the nine-element combustor in Section 6.3. In
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l χl ν ′l ν ′′l

1 CO 1 0
2 HO2 1 0
3 OH− 0 1
4 CO2 0 1

Table 2.1: Stoichiometry of example reaction, Eq. 2.36.

this model, the production rate of the lth species (in kg/m3-s) is given by the relationship

ω̇l =Ml

Nr∑
r=1

[
ν ′′l,r − ν ′l,r

]
wr, (2.37)

where Nr is the total number of reactions in the mechanism. The rate-of-progress of the

rth reaction is computed as

wr = kF,r

NY∏
l=1

[Xl]
ν′l,r − kR,r

NY∏
l=1

[Xl]
ν′′l,r , (2.38)

where kF,r and kR,r are the forward and reverse reaction rates, respectively. Here, [Xl]

is the molar concentration of the lth species. The forward reaction rate (or the rate at

which reactants are converted to products) is computed as an Arrhenius rate, given by

the general form

kF,r = ArT
brexp

(
−Ea,r

RuT

)
, (2.39)

where Ar is the pre-exponential factor, br is the temperature exponent, and Ea,r is the

activation energy of the rth reaction. These constant factors are tabulated for each

reaction in the mechanism, generally fit to match experimental results. Next, chemical

reactions are assumed to progress at a much smaller time scale than that of transport

phenomena, and thus any chemical reactions are assumed to be in local equilibrium. The

reverse reaction rate can then be computed as

kR,r =
kF,r
kC,r

, (2.40)
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where kC,r is the equilibrium constant for the rth reaction. The equilibrium constant is

computed by

kC,r = exp

(
−

NY∑
l=1

[
ν ′′l,r − ν ′l,r

]
gl

)[
101, 325 Pa

TRu

]∑NY
l=1 [ν′′l,r−ν′l,r]

, (2.41)

where gl is the Gibbs free energy of the lth species in the mixture, given by

gl =
hl
RlT

− sl
Rl

. (2.42)

After the species production rates (Eq. 2.37) are computed, they are substituted into

the corresponding scalar transport equations for each chemical species, as outlined in the

sixth equation in Eq. 2.2.

For an irreversible reaction, it is assumed that the reaction only proceeds in the

forward direction, i.e. kR,r = 0. Irreversible reactions are denoted by a single rightward

arrow, such as

CH3 +O→ H+H2 + CO. (2.43)

While no reaction is truly irreversible, in some cases the reverse reaction is so unlikely

(relative to the forward reaction) that it may be safely ignored. This greatly simplifies

the calculation of the reaction rate-of-progress (Eq. 2.38). The one-dimensional model

premixed flame in Chapter 5 utilizes a single irreversible reaction, and some reactions

of the mechanism used for the nine-element combustor in Section 6.3 are treated as

irreversible.

Note that the reaction mechanism used in simulations of the nine-element combustor

studied in Section 6.3 includes reactions involving third-body effects in the low-pressure

limit. These corrections are either of the Lindemann–Hinshelwood form [100] or Troe

form [101].
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2.2.2 Flamelet/Progress Variable Model

In order to capture complex phenomena in turbulent combustion (such as local extinc-

tion and ignition), particularly for complex hydrocarbon fuels, chemical mechanisms for

finite rate reaction models often account for dozens of species and hundreds of reactions.

Further, as mentioned previously, the characteristic spatio-temporal scales of turbulent

flames are extremely small. The cost of accurately modeling these processes during CFD

calculations can be extremely computationally expensive.

Laminar flamelet modeling, originally introduced by Peters [102], attempts to simplify

chemical transport and reaction modeling for turbulent non-premixed flames by treating

the flame as an ensemble of localized flamelets. This operates by introducing the fuel

mixture fraction,

Z :=
νYf − Yox + Y 0

ox

νY 0
f + Y 0

ox

, (2.44)

where Yf and Yox are the local fuel and oxidizer mass fractions, respectively, Y 0
f is the

mass fraction of fuel in the fuel stream, and Y 0
ox is the mass fraction of oxidizer in the

oxidizer stream. The stoichiometric mass ratio is defined as

ν :=
ν ′oxMox

ν ′fMf

. (2.45)

The mixture fraction acts as an independent coordinate that varies from 0 (in the pure

oxidizer stream) to 1 (in the pure fuel stream) normal to the flame surface defined by

Z = Zst, the stoichiometric mixture fraction (i.e. where νYf = Yox). The transport

equation for the fuel mass fraction is given as the seventh equation in Eq. 2.2. The

species mass fraction fields are related to the fuel mixture fraction field by the steady

flamelet equations

−ρχd
2Yl

dZ2
= ω̇l, (2.46)

where the scalar dissipation rate, in s−1, is given by

χ = 2DZ [∇Z · ∇Z] . (2.47)
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In the original flamelet model formulation, a library of solutions to Eq. 2.46 is precom-

puted from one-dimensional counterflow diffusion flame simulations (e.g., via FlameMas-

ter [103]). This provides a unique mapping from the local fuel mixture fraction and

dissipation rate to individual mass fractions, i.e. Yl = Yl(Z, χ). As a result, the mixture

fraction transport equation need only be accounted for, replacing the species transport

equations.

The original flamelet model, however, does not explicitly model any chemical reaction

effects. In order to account for this, an additional tracking variable, the progress variable

C, was introduced by Charles Pierce [34]. This takes the form

C :=

Nprog∑
m=1

Ylm , (2.48)

where Nprog is the total number of species mass fractions which make up the progress

variable. In general, the constituent mass fractions are chosen to be those of reaction

products or late-stage intermediates, as they are an indicator of reaction progress and

provide a unique mapping to all chemical states (in combination with the mixture frac-

tion). For example, the simulations of the truncated single-element combustor presented

in Section 6.2 use carbon dioxide, carbon monoxide, and hydrogen. The precomputed

flamelet library thus provides unique mappings,

Yl = Yl(Z, C), ω̇C = ω̇C(Z, C). (2.49)

The transport equation for the progress variable is given as the eighth equation in Eq. 2.2.

In summary, the FPV model introduces two scalar transport equations, and precomputes

a library of steady flamelet solutions which provide a unique mapping from these two

scalars to the species mass fraction fields and progress variable rate of production. Es-

pecially when large, complex reaction mechanisms are used, this greatly reduces the

computational cost of simulating non-premixed combusting flow systems.

Note that, traditionally, the FPV model also provides unique mappings for the tem-

perature, density, and transport/thermodynamic quantities as part of the flamelet tabu-
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lation (e.g., T = T (Z, C), µ = µ(Z, C)). GEMS does not include these mappings, and

instead solves the energy conservation equation directly. While this approach ensures

conservation of energy, it also incurs significant computational costs due to the addi-

tional conservation equation and the direct calculation of transport and thermodynamic

properties. Note that when a filter is applied for LES, an additional transport equation

must be solved for the mean mixture fraction variance (Z̃ ′′2). The mean mixture fraction

variance is also used in the flamelet library mapping (i.e. Yl = Yl(Z̃, Z̃ ′′2, C̃)). Re-

call that all results in this thesis do not compute any explicit filtering, hence the mean

mixture fraction variance is not accounted for here.

2.3 Numerical Discretization

The means by which the Navier–Stokes equations (Eq. 2.1) are discretized in space and

time is described, as well as the methods by which the resulting linear system is solved.

Discussion is restricted to methods implemented in GEMS; although similar methods are

used in PERFORM, some differences are noted in Chapter 5.

The spatial domain is discretized by an unstructured, cell-centered, second-order ac-

curate finite-volume scheme. Inviscid fluxes are computed by Roe’s method [104]. Gra-

dients are computed using the formulation of Mitchell [105], whereby nodal quantities

are computed as the average of surrounding cell-centered values weighted by the method

of Rausch et al. [106]. Monotonicity is preserved by the gradient limiter of Barth and

Jespersen [107], modified to compute the gradient limiting factor based on the initial,

unconstrained face-reconstructed states. A ghost cell scheme is used to enforce boundary

conditions.

All full-order model results are discretized in time using backward differentiation

formulae with dual time-stepping [108]. Grouping the discretized fluxes and source term

into the general non-linear function f (·), this begins from the form

Jc,p
∂qp

∂τ
+
∂qc

∂t
= f (qc, t) , (2.50)
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where Jc,p := ∂qc/∂qp, and τ is a fictitious dual time. Discretizing the physical time

derivative with the second-order backwards differentiation formula, and the pseudo-time

derivative by first-order finite-difference, this arrives at

Jc,p

qk
p − qk−1

p

∆τ
+

3qk
c − 4qn−1

c + qn−2
c

2∆t
= f

(
qk
c , t
)
. (2.51)

The superscript n indicates the nth physical time step of the simulation, and k indicates

the kth subiteration of the iterative solver at the current time step. The physical time

step is given by ∆t, and the pseudo-time step is given by ∆τ . The initial guess for the

iterative state is given as qk=1
c = qn−1

c . Treating the conservative state as a function of the

primitive state (i.e. qc = qc(qp)), linearizing the equations about qk−1
p , and rearranging

terms arrives at the linear system

[[
∆t

∆τ
+

3

2

]
Jc,p −∆t

∂f
(
qk−1
c

)
∂qp

] [
qk
p − qk−1

p

]
= −1

2

[
3qk−1

c − 4qn−1
c + qn−2

c

]
+∆tf

(
qk−1
c

)
.

(2.52)

Equation 2.52 is then solved using the line Gauss–Sidel approach detailed by MacCor-

mack [109], with one forward and one backward sweep in each coordinate direction for

each subiteration. Upon convergence of dual time-stepping, the iterative solution is as-

signed to the solution at the next physical time step, i.e. qn
p ← qk

p. Note that with

sufficient convergence, the pseudo-time derivative vanishes, recovering the physical resid-

ual.

As can be seen from the ∆t/∆τ term in Eq. 2.52, this dual-time formulation has the

effect of weighting the block diagonal of the left-hand side matrix. Smaller values of ∆τ

increase this effect, and larger ∆τ diminishes it. Further, using qp = qc in the limit

∆τ → ∞ recovers the standard Newton’s method. Using a pseudo-time step size close

to or smaller than ∆t thus has the effect of increasing the block diagonal dominance of

the system. This has the effect of improving the conditioning of the system, thereby

increasing the robustness of the unsteady solution and improving the convergence of the

line Gauss–Sidel solver.
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Chapter 3

Projection-based Reduced-order Modeling

An overview of classical projection-based reduced-order model (PROM) methods is now

described, along with derivations for the recent MP-LSVT method. For the following

chapters, discussion is generalized to PROMs of any time-dependent, non-linear, hyper-

bolic conservation equations, given by the semi-discrete residual

dqc

dt
− f (qc, t) = 0, q0

c = qc

(
t0
)
. (3.1)

Here, qc : R≥0 → RN is the conserved state, t ∈ R≥0 is the physical time, and f :

RN × R≥0 → RN is a function which is non-linear in the conservative state qc. In the

context of the Navier–Stokes equations, this non-linear function constitutes the spatially-

discretized fluxes, sources, body forces, and boundary conditions, and the number of

degrees of freedom N may be O (1× 106 − 1× 109) for simulations of practical engineer-

ing systems. The fully-discrete non-linear residual r : RN ×R≥0 → RN (after Eq. 3.1 has

been temporally discretized) is further defined as

r (qn
c , t

n) :=
.
qn
c − f (qn

c , t
n) = 0, (3.2)

where n ∈ N0 is the discrete time step index at time tn, and
.
qn
c is the temporal discretiza-

tion operator (e.g. forward Euler, BDF).

Reduced-order models have a long history of successful applications in linear and el-

liptic systems. The reader is directed to the review paper by Benner et al. [110] for a

discussion of PROMs for linear parametric dynamical systems, and the text by Hesthaven
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et al. [111] for a complete background on the reduced-basis method for parametrized dif-

ferential equations. These methods are notable for their extremely well-defined error

measures, which enable rigorous applications in uncertainty quantification and control

systems. However, such measures do not extend to general non-linear, hyperbolic sys-

tems; error bounds for such systems are usually ill-defined and impossible to compute

a priori. As all systems investigated in this thesis are non-linear hyperbolic systems,

neither PROMs for linear systems nor error bounds for PROMs are discussed here.

3.1 Trial Space Selection

Before constructing a projection-based ROM, a low-dimensional representation of the

system state must first be constructed. The simplest method of doing so is constructing

the state as a linear combination of a small number of basis vectors, represented by

qc (t) ≈ q̃c (t) := qc +
Nc∑
i=1

hc,iuc,iq̂c,i(t),

:= qc +HcUcq̂c(t),

(3.3)

where qc ∈ RN is a constant translation vector, Uc := [uc,1, . . . , uc,Nc ] ∈ RN×Nc is the

trial basis, and q̂c := [q̂c,1(t), . . . , q̂c,Nc(t)] : R≥0 → RNc is the latent state (alternatively,

modal coefficients or generalized coordinates) vector. The constant diagonal matrixHc :=

diag (hc,1, . . . , hc,N) ∈ RN×N scales the conservative state variables.

The trial basis spans the affine trial space,

Ũc := qc + Range (Uc) . (3.4)

It is in this subspace that the approximate solution exists, i.e. q̃c : R≥0 → Ũc. In reduced-

order modeling, choosing Nc ≪ N generates a compact representation of the state and

achieve significant order reduction. The question now becomes how to select an appro-

priate trial space that generates a reasonable approximation of the true state with the

lowest dimension Nc possible. For parametrized elliptic and parabolic governing systems,
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the reduced basis method computes the approximate solution as a linear combination of

solution realizations sampled over the parameter space. For convection-dominated hy-

perbolic systems, however, the proper orthogonal decomposition is a more appropriate

choice.

3.1.1 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) has a long history in a variety of fields under

different names, such as the linear Karhunen–Loève approximation in statistics, principal

component analysis in data analysis and machine learning, or the Eckart–Young–Mirsky

theorem in mathematics. These methods ultimately amount to computing the ℓ2-optimal

projector of a dataset onto an Nc-dimensional subspace. This is formalized by the least-

squares problem

Uc = argmin
A∈RN×Nc

∥∥Q′
c −AA⊤Q′

c

∥∥
F
, (3.5)

where the data snapshot matrix is defined as

Q′
c =

[
q′
c

(
t0
)
, q′

c

(
t1
)
, . . . , q′

c (T)
]
∈ RN×NT , (3.6)

and the scaled, unsteady component of the solution is given as

q′
c (t) = H−1

c [qc (t)− qc] . (3.7)

The collection of data snapshots defines the data-driven nature of this process: a small

number of high-fidelity simulations are computed, during which NT snapshots qc (t
i) of

the conservative fields are saved to disk. These snapshots are centered about qc, scaled by

H−1
c , aggregated into the snapshot matrix (Eq. 3.6), and the optimal linear projection of

this dataset onto an Nc-dimensional subspace is computed. Measurements of the quality

of this projection is discussed in Section 3.4.3.

The solution of the least-squares problem in Eq. 3.5 has a convenient analytical solu-

tion via the singular value decomposition (SVD). Operating under the assumption that
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the number of snapshots NT is less than the number of degrees of freedom N (true for

almost all practical applications), the thin SVD of the data snapshot matrix is given by

the form

Q′
c = UΣV⊤, (3.8)

where U ∈ RN×NT and V ∈ RNT×NT are the left and right singular vectors of Q′
c,

respectively. The diagonal matrix of singular values Σ = diag(σ1, σ2, . . . , σNT
) ∈

RNT×NT are ordered such that σ1 ≥ σ2 ≥ . . . ≥ σNT
≥ 0. The left and right singular

vectors are orthonormal, i.e., UTU = I and VTV = I. The solution to Eq. 3.5, and hence

the trial basis Uc, is computed by extracting the first Nc columns of U, corresponding to

the Nc largest singular values. These singular vectors account for the greatest variance

in the dataset for any selection of Nc singular vectors.

Algorithms for computing the SVD for extremely large datasets are intensely re-

searched due to the general importance of the SVD in a variety of linear algebra problems.

Popular linear algebra packages normally use a process of Householder reflections and QR

decompositions, which can be difficult to implement natively in distributed-memory sys-

tems. Alternatively, there exist two simpler methods: the method of snapshots, and

randomized SVD. All POD bases used to compute PROMs in this thesis utilize the for-

mer method, which are detailed here briefly. The method of snapshots, pioneered by

Sirovich [112], begins by recognizing that the right singular vectors of Q′
c are the same as

the right eigenvectors of Q′⊤
c Q′

c ∈ RNT×NT , whose eigenvalues are also the square of the

singular values of Q′
c. This can be written as

Q′⊤
c Q′

cV = Σ2V. (3.9)

As generally NT ∼ O (100–1, 000), and Q′⊤
c Q′

c is symmetric positive definite, this eigen-

value problem can be trivially solved using standard serial routines, such as those supplied

by MATLAB, NumPy/SciPy (Python), LAPACK (Fortran), or Eigen (C++). Leverag-

ing the fact that the right singular vectors are orthonormal, the SVD (Eq. 3.8) can be
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rearranged to compute the left singular vectors as

U = Q′
cVΣ−1. (3.10)

This approach is notably less memory-intensive than standard SVD routines, and is

fairly trivial to implement in a parallel, distributed-memory environment (requiring only

a parallel inner product, a serial eigensolve, and local matrix-vector products).

However, even the method of snapshots can be prohibitively memory- and compute-

intensive. Randomized linear algebra attempts to alleviate much of the computational

burden by approximating the SVD by decomposing the action of the data matrix on a

small random matrix [113]. The number of random samples (columns of the random

matrix) increases the accuracy and cost of this approximate solution. Although the

randomized SVD is not used for any results in this paper, it would be negligent to

not mention its utility for PROMs of large-scale problems. For example, the work by

McQuarrie et al. [114] uses the randomized SVD for decompositions of 2D single-element

rocket injector simulation data.

3.1.2 Non-linear Autoencoders

Up until this point, discussion has been limited to linear representations of the solution,

of the form given by Eq. 3.3. The accuracy of this linear approximation to the subset

of solution snapshots is often discussed in terms of the Kolmogorov n-width [115]. Note

that the letter n used here has no relation to the time step index used throughout this

thesis, and this notation is only used for consistency with the literature. The Kolmogorov

n-width is formally defined as

dn(A) = inf
Vn

sup
x∈A

inf
y∈Vn

∥x− y∥ . (3.11)

This measures a distance between an optimal n-dimensional subspace Vn and a subset A

of a normed linear space. Those solution subsetsA for which increasing n leads to rapidly-

improving approximations are said to have a quickly-decaying n-width. Conversely, those
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solution subsets which require large n to achieve sufficiently accurate approximations are

said to have a slowly-decaying n-width. Although computing exact bounds for n-widths

is restricted to very specific solution sets, it has been empirically observed that fluid flow

fields characterized by convection phenomena and sharp gradients (e.g., shocks or flames)

exhibit poor convergence of approximation error via linear representations.

To overcome this inherent challenge, a class of techniques referred to as non-linear

manifold methods seeks more general and expressive representations of the solution sub-

set. As discussed briefly in Section 1.2, kernel principal component analysis [50] and

generative topographic mappings [51] are just two traditional methods. In the past two

decades, however, with increased access to open-source machine learning libraries, HPC

resources, and large datasets, neural networks have become extremely relevant to the

dimension-reduction research community.

Note that the following discussion of non-linear autoencoders derives directly from the

work by Lee and Carlberg on non-linear manifold projection-based reduced-order mod-

els [116]. This seminal paper built a strong theoretical foundation for the application of

neural network autoencoders in projection-based ROMs, and its terminology and nota-

tion are extremely intuitive. As such, although the results in Chapter 5 expands on this

work and provides an honest evaluation of the cost/benefit tradeoff in neural network

PROMs for reacting flows, the credit for developing the method lies solely with Lee and

Carlberg. With that said, a very brief primer on neural networks and their relation to

dimension-reduction follows.

Feedforward Neural Networks

From a mathematical point of view, a feedforward neural network can be considered as

the successive composition of arbitrary non-linear functions which ingest a vector of input

data x ∈ RNI and maps it to a target vector y ∈ RNO . This process thus takes the form

y = φ (x, Θ) , (3.12)

φ (x, Θ) := φNL
(
·, ΘNL

)
◦φNL−1

(
·, ΘNL−1

)
◦ . . . ◦φ2

(
·, Θ2

)
◦φ1

(
x, Θ1

)
. (3.13)
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Each successive function φi : RNi → RNi+1 is referred to as the ith layer of the neural

network, and Θ := {Θ1, . . . , ΘNL} are the parameters which define the layers. The

input of the first layer φ1 is of dimension RNI , and the output of the last layer φNL is of

dimension RNO . All inner input/output dimensions are arbitrary.

As a demonstrative example, one of the simplest forms of φ is the fully-connected

layer, which is given by

φFC(x,Θ) := σ (Wx+ b) . (3.14)

The layer parameters are given as the layer weights W ∈ RNi+1×Ni and biases b ∈ RNi+1 .

The function σ : RNi+1 → RNi+1 is a user-specified activation function, which is typically

chosen to be a non-linear function to supply the non-linear representative power of neural

networks. Popular activation functions include sigmoid, tanh, ReLU, and swish functions.

Given a training dataset of matching pairs of input vectors and corresponding “cor-

rect” output vectors (e.g., a picture of a cat and the label “cat”), the parameters Θi

dictate the accuracy of the neural network’s attempt to map the input data to the output

data. These parameters are computed through an iterative training procedure by which

training input is processed by the neural network, a loss function c : RNO × RNO → R

measures how well the network’s output matches the correct output vector, and the

parameters are updated according to the loss function. This update to the network

parameters is typically computed by gradient descent via backpropagation, whereby the

contribution of a parameter to the loss c (y, φ (x, Θ)) determines how it is modified. The

mechanics of gradient-based optimization are not described here; the reader is directed

to the review by Ruder for further details [117].

Suffice to say, however, this iterative procedure of measuring the “correctness” of

the network and incrementally adjusting the parameters can be an incredibly slow and

computationally expensive process. Modern GPU and TPU computing architectures

have enabled massive acceleration of this training process, but state-of-the-art neural

networks have commensurately ballooned in the number of trainable parameters, reaching

hundreds of billions [118] to trillions of parameters [119] in recent years. Further, gradient

descent methods are not guaranteed to find a global optimum, and avoiding inaccurate
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Figure 3.1: Simplified autoencoder composed of encoder network h (·), latent state x̂, and
decoder network g (·), given input x.

local optima is an ongoing area of research. Ultimately, this training cost and lack of

analytical optimality is the necessary cost of seeking a general, non-linear representation

of extremely complex datasets. Autoencoders, a specific neural network architecture

which enables non-linear reduced-order models, are now detailed.

Autoencoder Trial Manifolds

Autoencoders describe a specific class of neural networks which are composed of an input

network (the encoder) which maps the input data to a low-dimensional vector (the latent

state), followed by an output network (the decoder) which attempts to map the latent

state back to the input data. That is, the input data and the target output are the

same, and the autoencoder learns to compress the data and retrieve them from the low-

dimensional representation. In this sense, an autoencoder is trained to learn the identity

operation, mapping input data to themselves through a low-dimensional bottleneck. A

visual representation of a simple autoencoder is shown in Fig. 3.1. The bottleneck de-

fines the dimension-reduction aspect of autoencoders: the full state may be represented

by a low-dimensional state and extracted by the decoder network. However, unlike linear

dimension-reduction as provided by POD in Section 3.1.1, neural networks enable arbi-

trarily non-linear representations of functions with the potential to efficiently approximate

solution subsets with slowly-decaying Kolmogorov n-widths, such as those observed in
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convection-dominated fluid flows. For dimension-reduction of fluid flow fields, the train-

ing data are the snapshots of the conservative or primitive states. An autoencoder for

this data can thus be formalized by the representation

q̃c = g (·, Θg) ◦ h
(
qc, Θ

h
)
, (3.15)

where h : RN → RNc is the encoder network, and g : RNc → RN is the decoder network.

Note that the encoder function h is implied to be preceded by a centering and scaling

operation, similar to that given in Eq. 3.7, and the decoder g is implied to be proceeded

by the reverse operation, i.e.

h (qc) := φh,c

(
H−1

c [qc − qc] , Θ
h
)
, (3.16)

g (q̂c) := qc +Hcφg,c (q̂c, Θ
g) . (3.17)

Here, φh,c : RN → RNc and φg,c : RNc → RN are solely the neural network components

of the encoder and decoder, respectively. This ensures that the network is trained on

standardized data, as was the case for computing the POD basis in Section 3.1.1.

After the autoencoder network is trained as previously detailed, the decoder alone

may be extracted, and the physical state may then be approximated as

qc (t) ≈ q̃c(t) := g (q̂c (t)) . (3.18)

Note the similarity of Eqs. 3.17 and 3.18 to the linear representation in Eq. 3.3. Indeed,

the above equations are a more general form of such a low-dimensional representation, and

devolves to the linear case when the neural network is replaced by a linear operator, i.e.

φg,c (x) := Ucx. Of course, neural networks benefit from supplying arbitrary non-linear

representations, and the approximate solution is thus defined on a non-linear manifold

Ũc := {g (x̂) | x̂ ∈ RNc}. In theory, this non-linear manifold has the potential to much

more accurately model the true solution subset than a linear subspace for a fixed latent

dimension Nc. In Chapter 5, it is shown that this is indeed the case given a sufficiently
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expressive neural network architecture, particularly for solution subsets characterized by

propagating waves and sharp gradients.

The general representation of the approximate state given by Eq. 3.18 is retained in

deriving PROMs in Sections 3.2–3.3. Where appropriate, simplifications are provided for

the case of a linear trial space.

3.2 Classical Projection-based ROMs

Inserting the approximation qc ≈ q̃c = g (q̂c) into the governing ODE (Eq. 3.1) results

in the system

dg (q̂c)

dt
− f (q̃c, t) = 0, q̃0

c = q̃c

(
t0
)
. (3.19)

Employing the chain rule, noting that the trial space translation vector and scaling matrix

are constant, and scaling the ODE via the diagonal matrix H−1
r ∈ RN×N to standardize

the semi-discrete residual, this system can be modified into

H−1
r

[
HcJφ,c

dq̂c

dt
− f (q̃c, t)

]
= 0, (3.20)

where the Jacobian Jφ,c := ∂φg,c (q̂c) /∂q̂c : RNc → RN×Nc . For a linear representation,

the Jacobian is simply Jφ,c = Uc. The purpose of the residual scaling will be made

apparent later.

This has clearly resulted in no practical dimension reduction, as Eqs 3.19 and 3.20 are

still N -dimensional systems. To accomplish dimension reduction, a projection operation,

the namesake of projection-based reduced-order models, is required. This entails choosing

a test basis Wc ∈ RN×Nc by which the approximate ODE is projected as

W⊤
c H

−1
r

[
HcJφ,c

dq̂c

dt
− f (q̃c, t)

]
= 0. (3.21)

Assuming W⊤
c H

−1
r HcJφ,c ∈ RNc×Nc is invertible, rearranging terms arrives at

dq̂c

dt
=
[
W⊤

c H
−1
r HcJφ,c

]−1
W⊤

c H
−1
r f (q̃c, t) . (3.22)
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Finally, Eq. 3.22 is a Nc-dimensional ODE which can be marched forward in time with

respect to the latent state q̂c. A natural choice is Nc ≪ N , and thus this time integration

process is theoretically cheaper than that of the FOM. This may not always be the case

above a certain value of Nc, as the inversion (and reduction across processes for parallel

applications) of the dense matrix W⊤
c H

−1
r HcJφ,c may be more computationally expensive

than the solution of the FOM’s sparse linear system arising from Eq. 2.52. Further, the

evaluation of the non-linear terms f (·, t) still depends on the full-order state q̃c. These

and other computational barriers will be addressed in more detail in Chapter 4.

The question now becomes how the projecting test basis is chosen. In the following

sections, classical projection methods are detailed, namely Galerkin projection and least-

squares Petrov–Galerkin projection. In Section 3.3 the recent model-form preserving

least-squares with variable transformation method is derived, and its potential advantages

over classical projection methods are discussed.

3.2.1 Galerkin Projection

Galerkin projection can be defined as the projection of the full-order ROM ODE onto

the space tangent to the unscaled trial manifold, i.e.

Wc (q̂c) := Jφ,c (q̂c) . (3.23)

Substituting this into Eq. 3.22 arrives at

dq̂c

dt
=
[
J⊤
φ,cH

−1
r HcJφ,c

]−1
J⊤
φ,cH

−1
r f (q̃c, t) . (3.24)

As detailed extensively by Lee and Carlberg [116], when employing a non-linear manifold

trial space, the solution of Eq. 3.24 with an implicit time integrator via Newton’s method

requires the calculation of the third-order tensor ∂Jφ,c/∂q̂c. This is generally computa-

tional intractable, and neglecting this term amounts to a quasi-Newton method with an

approximate residual Jacobian.
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For a linear representation, the test basis is simply Wc = Uc, leading to

dq̂c

dt
=
[
U⊤

c H
−1
r HcUc

]−1
U⊤

c H
−1
r f (q̃c, t) . (3.25)

In the specific case of Hc = Hr = I, recalling that Uc is orthonormal, this simplifies the

ODE greatly to the more familiar Galerkin PROM form

dq̂c

dt
= U⊤

c f (q̃c, t) . (3.26)

As discussed in Section 1.2, Galerkin PROMs have a long history of applications to

simulations of fluid flows (e.g., [58, 61, 62]). However, they have been observed to exhibit

unacceptable stability and accuracy issues for more complex systems. Although the

Galerkin PROM can be shown to be continuous-optimal in the sense that it minimizes

the ℓ2-norm of the semi-discrete ROM residual [69], in reality the fully-discrete ROM

residual is of more practical concern. Further, there is no expectation that the projection

of the non-linear function f (·, t) onto the space tangent to the trial space is accurate, as

the conservative state space and the space {f (y, t) | y ∈ RN} are entirely different. This

fact motivates the least-squares Petrov–Galerkin projection method.

3.2.2 Least-squares Petrov–Galerkin Projection

The least-squares Petrov–Galerkin (LSPG) projection method, formulated and refined by

Carlberg and coworkers [67, 68, 69], is motivated by minimizing the fully-discrete ROM

residual, in contrast to the semi-discrete residual minimized by Galerkin projection. The

fully-discrete ROM residual r : RNc → RN is given as

r (q̂n
c ) :=

.
q̃n
c − f (g (q̂n

c ) , t) = 0, (3.27)

where
.
q̃c is the temporal discretization operator (e.g. forward Euler, BDF) of the approx-

imate state q̃c = g (q̂c) at the nth time step. Computing the least-squares minimization
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of the scaled fully-discrete residual takes the form,

q̂n
c = argmin

y∈RNc

∥∥H−1
r r (y)

∥∥
2
, (3.28)

where the purpose of scaling the residual by H−1
r is made apparent. This has the effect

of ensuring that, with careful calculation of Hr, the various elements of the residual

contribute similarly to the solution of the non-linear least squares problem. This is

particularly important for systems which exhibit extreme scale disparities (as is often

the case in high-pressure reacting systems) and solvers which cannot readily be non-

dimensionalized (such as compressible combustion solvers). The residual weighting is

sometimes couched in terms of a weighted norm, written alternatively as

q̂n
c = argmin

y∈RNc

∥r (y)∥H−1
r
, (3.29)

where the weighted norm indicates ∥r∥H−1
r

:=
√
r⊤H−2

r r. A detailed exploration of the

idea of alternative norms is provided by Parish and Rizzi [120]. This concept is also

tangentially related to the work by Lindsay et al. [121] on PROM preconditioning, which

showed that even a simple Jacobi preconditioner results in drastic improvements in PROM

stability and accuracy relative to PROMs of the equivalent unscaled, dimensional system.

The solution of Eq. 3.28 is usually accomplished iteratively by linearizing the residual

at the nth time step about the solution at the kth subiteration, given by the process

δq̂k
c = argmin

y∈RNc

∥∥∥H−1
r

(
Ĵk
r,cy − r

(
q̂k
c

))∥∥∥
2
, (3.30)

q̂k+1
c = q̂k

c + α
[
δq̂k

c

]
, (3.31)

where the ROM residual Jacobian is defined as Ĵk
r,c := ∂r

(
q̂k
c

)
/∂q̂c : RNc → RN×Nc .

The constant factor α ∈ R+ is the step size, which is unity for all PROMs in this thesis;

alternative methods may adapt α := αn,k to control iterative convergence. Further,

the least-squares problem may be computed in terms of the full-order Jacobian Jk
r,c :=
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∂r
(
q̂k
c

)
/∂qc : RNc → RN×N via the chain rule,

δq̂k
c = argmin

y∈RNc

∥∥H−1
r

[
Jk
r,cHcJ

k
φ,cy − r

(
q̂k
c

)]∥∥
2
, (3.32)

where the decoder Jacobian Jk
φ,c := ∂φg,c

(
q̂k
c

)
/∂q̂c is now specified in the time-discrete

setting. In the case of a linear trial space, Jk
φ,c = Uc, and this simplifies to

δq̂k
c = argmin

y∈RNc

∥∥H−1
r

[
Jk
r,cHcUcy − r

(
q̂k
c

)]∥∥
2
. (3.33)

This particular form is useful inasmuch as the full-order residual Jacobian Jk
r,c is normally

already available if a given FOM solver contains implicit time integration capabilities.

The form given in Eq. 3.30 may be simpler if automatic differentiation tools are available

in the solver. In either case, upon sufficient convergence of the solution, the iterative

solution is set to the solution at the next physical time step, i.e. q̂n
c ← q̂k

c , and the

process is repeated for proceeding time steps.

The simplest means of computing the solution to Eq. 3.30 is the formation of the

normal equations, given by,

[
H−1

r Ĵk
r,c

]⊤
H−1

r Ĵk
r,cδq̂

k
c = −

[
H−1

r Ĵk
r,c

]⊤
H−1

r r
(
q̂k
c

)
. (3.34)

This formulation reveals the meaning of “Petrov–Galerkin” in LSPG: a Petrov–Galerkin

projection is any projection in which the test space is not the same as the space tangent

to the trial manifold (as is the case for Galerkin projection). In Eq. 3.34, expanding terms

using the chain rule arrives at

[
H−1

r Jk
r,cHcJ

k
φ,c

]⊤
H−1

r Jk
r,cHcJ

k
φ,cδq̂

k
c = −

[
H−1

r Jk
r,cHcJ

k
φ,c

]⊤
H−1

r r
(
q̂k
c

)
. (3.35)

This form can be interpreted as a Petrov–Galerkin projection of the Gauss–Newton so-

lution of Eq. 3.21 with a test basis

Wk
c := H−1

r Jk
r,cHcJ

k
φ,c. (3.36)
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Even with a linear state representation (Jk
φ,c = Uc), the test basis is time-variant, unlike

Galerkin projection with a linear state representation. This poses a significant computa-

tional cost increase over Galerkin projection. For a non-linear state representation, the

cost difference is less extreme, as the decoder Jacobian is dependent on the latent state,

i.e. Jk
φ,c := Jφ,c

(
q̂k
c

)
, and the test basis is time-variant for Galerkin and LSPG projection

alike.

Forming the complete normal equations is a computationally expensive process. A

simple alternative involves the QR decomposition of the residual Jacobian,

Ĵk
r,c = QR, (3.37)

where Q := [QNc , QN−Nc ] ∈ RN×N has orthogonal columns, composed of QNc ∈ RN×Nc

and QN−Nc ∈ RN×N−Nc . The matrix R = [RNc , 0]⊤ ∈ RN×Nc is composed of upper

triangular RNc ∈ RNc×Nc and a zero matrix 0 ∈ RN−Nc×Nc . Note that the matrix R here

is not the same as that used for residual scaling, but this notation is used temporarily

for the sake of consistency with the literature (and general familiarity with the method).

The latent state update is solved from

RNcδq̂
k
c = [QNc ]

⊤ r
(
q̂k
c

)
. (3.38)

The upper triangular solve is significantly less expensive than the dense solve in Eq. 3.34,

and does not require the dense matrix-matrix multiplication
[
H−1

r Jk
r,c

]⊤
H−1

r Jk
r,c.

Least-squares Petrov–Galerkin projection has been shown to generate vastly more ac-

curate and stable PROMs compared to Galerkin PROMs. The first publications to out-

line LSPG computed a robust PROM simulation of a three-dimensional Ahmed body [67,

68], and later reported excellent results for transonic flow over a two-dimensional open

cavity [69]. Continued work with LSPG has produced stable and accurate PROMs of

three-dimensional separated flow over an airfoil at high angle-of-attack [122] and flow

around a three-dimensional model of an F-16 aircraft [70]. The success of LSPG has

been attributed to the fact that it minimizes the fully-discrete ROM residual [66] which
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is, in practice, the set of equations being solved by the PROM. This has the effect of

avoiding the inaccurate projection of the non-linear terms f (·, t) onto the space tangent

to the trial space (as seen in Eq. 3.24), and instead projects the fully-discrete residual

via the space tangent to the fully-discrete residual (as seen in Eq. 3.34).

However, early applications of both Galerkin and LSPG PROMs to advection-dominated

combustion problems indicated that both methods were insufficient in generating robust

and accurate PROMs for such systems [72, 73]. Both methods frequently resulted in large

deviations in the expected heat release, and often produced non-physical states such as

negative temperature or pressure values. The latter phenomenon is largely due to ringing

artifacts arising from the linear representation of sharp temperature and species gradients.

Limiter methods were proposed to prevent such non-physical phenomena [73, 74], but are

generally considered ad hoc solutions. More generally, these issues are often attributed to

the loss of conservation in projecting the conservative equations onto a subspace which is

purely a data-driven construction. Efforts have been made to enforce conservation over

subsets of the computational domain [123, 124], which have seen success for simple 1D

flow problems. For reacting flow problems, the failure of classical PROM methods is also

linked to persistently stiff PROMs which have difficulty converging due to the high degree

of non-linearity induced by chemical source terms, which are extremely sensitive to small

changes in chemical composition and temperature.

3.3 Model-form Preserving Least-squares with Vari-

able Transformation

The recent model-form preserving least-squares with variable transformation (MP-LSVT),

developed by Huang et al. [75], seeks to resolve the difficulties of constructing robust and

accurate PROMs for multi-scale, multi-physics problems for which Galerkin and LSPG

PROMs fail. This method is founded on a very simple modification of LSPG: solve the

ROM residual least-squares problem with respect to the latent representation of an al-

ternative (but physically-complete) target state qp : R≥0 → RN . That is, construct a
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low-dimensional representation of the target state, which for a linear representation is

written as

qp (t) ≈ q̃p (t) := qp +

Np∑
i=1

hp,iup,iq̂p,i(t),

:= qp +HpUpq̂p(t).

(3.39)

Similar to the conservative variable formulation, qp ∈ RN is a constant translation

vector, Up :=
[
up,1, . . . , up,Np

]
∈ RN×Np is the target state trial basis, and q̂p :=[

q̂p,1(t), . . . , q̂p,Np(t)
]
: R≥0 → RNp is the target latent state vector. The constant

matrix Hp := diag (hp,1, . . . , hp,N) ∈ RN×N scales the target state variables. For an

autoencoder non-linear manifold representation, the encoder/decoder form is given by

h (qp) := φh,p

(
H−1

p

[
qp − qp

]
,Θh

)
, (3.40)

g (q̂p) := qp +Hpφg,p (q̂p,Θ
g) . (3.41)

In either case, the trial basis or autoencoder is computed from snapshots of the target

state collected from a small number of high-fidelity simulations. These are aggregated as

Q′
p =

[
q′
p

(
t0
)
, q′

p

(
t1
)
, . . . , q′

p (T)
]
∈ RN×NT , (3.42)

where the scaled, unsteady component of the solution is defined as

q′
p (t) = H−1

p

[
qp (t)− qp

]
. (3.43)

The trial space and non-linear trial manifold are defined, respectively, by

Ũp := qp + Range (Up) , (linear) (3.44)

Ũp := {g (x̂) | x̂ ∈ RNp}. (non-linear) (3.45)

With this low-dimensional representation in hand, the conservative state can then be
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treated as a function of the target state,

qc := qc (g (q̂p)) , (3.46)

and the fully-discrete ROM residual can be reframed as

r
(
q̂n
p

)
:=

.
q̃c(q̂

n
p )− f

(
g
(
q̂n
p

)
, t
)
= 0. (3.47)

Again,
.
q̃c(q̂

n
p ) is the temporal discretization operator for the full-order conservative state,

treated now as a function of the target latent state. Similarly, the non-linear functions

associated with the spatial discretization f (·, t) is treated as a function of the target

state. The least-squares minimization of the ROM residual thus takes the form

q̂n
p = argmin

y∈RNp

∥∥H−1
r r (y)

∥∥
2
. (3.48)

The scaling of the ROM residual by H−1
r remains the same, as the model equations have

not changed. The primary difference is that the solution is computed as a minimization

with respect to the target latent state, rather than the conservative latent state. Solution

via Gauss–Newton is thus given by

δq̂k
p = argmin

y∈RNp

∥∥∥H−1
r

[
Ĵk
r,py − r

(
q̂k
p

)]∥∥∥
2
, (3.49)

q̂k+1
p = q̂k

p + α
[
δq̂k

p

]
, (3.50)

where the ROM residual Jacobian is now computed with respect to the target latent

state, defined as Ĵn
r,p := ∂r

(
q̂k
p

)
/∂q̂p : RNp → RN×Np . This Jacobian can similarly be

decomposed as

Ĵk
r,p :=

∂r
(
q̂k
p

)
∂q̃p

∂q̃k
p

∂q̂p

, (3.51)

= Jk
r,pHpJ

k
φ,p, (3.52)
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where Jk
r,p := ∂r

(
q̂k
p

)
/∂q̃p : RNp → RN×N and Jk

φ,p := ∂φg,p (q̂p) /∂q̂p : RNp → RN×Np .

The solution of Eq. 3.49 via the normal equations again leads to a Petrov–Galerkin

projection of the form,

[
Wk

p

]⊤
Wk

pδq̂
k
p = −

[
Wk

p

]⊤
H−1

r r
(
q̂k
p

)
, (3.53)

where the test basis is computed as

Wk
p := H−1

r Jk
r,pHpJ

k
φ,p. (3.54)

Note that throughout this section, the subscript p has been used to indicate quantities

associated with the target state. As noted in Eq. 2.9, this notation is often used to refer

to the primitive state, which is given by the variables

qp :=

[
p u v w T Yl Z C

]⊤
. (3.55)

Indeed, all work utilizing the MP-LSVT method [75, 125, 126] to date has used the

primitive variables as the target state. This choice has empirically generated extremely

accurate PROMs for complex reacting flow systems, including two- and three-dimensional

single-element rocket combustors, and a two-dimensional multi-element rocket combustor.

In direct comparisons to Galerkin and LSPG PROMs, MP-LSVT vastly improves the

stability and convergence of these systems. Analysis of the conditioning of the linearized

least-squares solve indicates that MP-LSVT using the primitive state produces systems

with much lower condition numbers than those generated by Galerkin and LSPG. The

exact reason for this improved conditioning is poorly understood beyond observed trends

in numerical experiments.

The primitive variables are of particular interest in that they are immediately useful

to engineers in analyzing the performance of the system, and many secondary quantities

can be easily computed from them. However, the generality of the MP-LSVT invites

investigations of other sets of target variables. It remains to be seen whether other
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variable sets may generate further improvements in linear solve conditioning, or enable

more accurate predictions of important physical quantities such as heat release.

3.4 Offline Calculations

In this section and later chapters, a distinctions is drawn between two steps of the PROM

evaluation: the offline and online stages. The offline stage refers to any computations

which are either necessary to prepare the PROM evaluation (e.g., calculating the trial

basis, hyper-reduction basis and sampling) or evaluate the FOM dataset (e.g., calculating

projection error, as described below). The online stage refers to any computations that

occur during the evaluation of the unsteady PROM solution. In theory, offline steps

should require far less computational expense than FOM or PROM evaluations, and

hence are generally not considered part of the overall computational budget. This is

usually the case, though as will be noted in Chapter 5, this is often not the case for

the training of autoencoders for non-linear manifold PROMs. Withholding discussion of

neural network training cost for the moment, several important offline computations are

now described.

3.4.1 Processing Large Datasets

Throughout this thesis, datasets measuring hundreds of gigabytes in size must be pro-

cessed. The algorithms for computing POD bases or determining sparse sampling points,

which involve large matrix-matrix products, QR factorizations, SVDs, or eigendecomposi-

tions, require significant additional workspace memory. Such computations are certainly

impossible to fit in the memory of desktop workstations (usually 32-64 GB), and are often

too large even for HPC node memory (usually 128-256 GB). Further, the efficient evalua-

tion of large-scale linear algebra operations, such as those for computing the SVD or QR

decomposition, requires parallel computations to complete them in a reasonable amount

of wall clock time. Loading large datasets from a cluster file system to node memory

and distributing portions of the data to each process present additional bottlenecks. As
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such, a distributed-memory, parallel processing framework is required to implement these

algorithms. However, modern computational frameworks such as ScaLAPACK [127] and

SLATE [128] often require intimate knowledge of library-specific memory layouts and

computational pathways, making them unwieldy in rapid prototyping settings.

The Parallel Linear Algebra Tool FOr Reduced Modeling (PLATFORM) [79], de-

veloped by Nicholas Arnold-Medabalimi at the University of Michigan, provides a user-

friendly framework for handling distributed and scalable I/O and linear algebra. The

toolbox provides general utilities to efficiently load large datasets into node memory, dis-

tributed among processes in optimal block-cyclic ordering. The datasets can then be

processed using simple interfaces to functions from the PBLAS/ScaLAPACK libraries,

such as the rank-revealing QR factorization (PDGEQPF), least-squares solve (PDGELS),

or SVD (PDGESVD). Abstraction of the distributed matrices allow for the rapid proto-

typing and deployment of new algorithms.

PLATFORM has already been successfully employed for computing decompositions

and PROM preprocessing operations for large datasets [125, 129, 130, 131, 132]. All offline

algorithms presented here are implemented using PLATFORM. Performance metrics for

the datasets examined in this paper are not included, but benchmarks for other large

datasets and detailed explanations of the inner workings of PLATFORM are given by

Arnold-Medabalimi et al. [79].

3.4.2 POD Energy

For a linear representation computed by POD, choosing the dimension of the trial bases

Uc or Up is not an exact science. Although a given POD basis is ℓ2-optimal for a given

dimension Nc or Np, it is impossible to know a priori how the accuracy of the represen-

tation will affect the unsteady solution of a PROM for a general non-linear system. In

fact, enrichment of the trial space by increasing the basis dimension is never guaranteed

to improve PROM accuracy. Numerical experiments have shown that increasing the trial

space dimension may even lead to numerical instabilities [75].

Despite this problem, one must use some heuristics for initial experimentation with
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projection-based ROMs, as computing a uniform grid search over the trial space dimen-

sion can be cost-prohibitive, especially for large-scale systems. By far the most popular

heuristic is the POD energy, or conversely the POD residual energy (unity minus the POD

energy). The latter measure is often reported as a percentage, given by the calculation

POD Residual Energy,% = 100×

(
1−

∑Nc

i=1 σ
2
i∑NT

i=1 σ
2
i

)
, (3.56)

where σi ∈ R≥0 are the singular values of the training dataset, computed by the SVD

and ordered such that σ1 ≥ σ2 ≥ . . . ≥ σNc ≥ 0.

This measure dates back to the origins of POD, when POD was used to decompose and

analyze turbulent velocity fields [46]. In that context, the POD energy is an analogue of

the kinetic energy contributed by a given trial mode, with lower mode numbers (associated

with low-frequency, high-amplitude waveforms) contributing a relatively large portion of

the energy, while the high mode numbers (associated with high-frequency, low-amplitude

waveforms) contributing relatively little. The extension of POD energy to general flow

fields does not always have quite a clear relationship, but helps form a good first guess

for how well the trial basis will represent the unsteady flow field.

Projection-based ROM practitioners will generally begin experimentation with trial

bases achieving a POD residual energy of approximately 1.0%, 0.1%, and 0.01%. Fig-

ure 3.2 displays a sample POD residual energy decay for the two-dimensional transonic

cavity flow presented in Chapter 6 for datasets spanning different simulation periods. For

the 6 ms case, then, the practitioner might initially experiment with trial bases composed

of the leading 19, 64, and 121 modes, corresponding to 1.0%, 0.1%, and 0.01% residual

energy.

Such explorations of POD residual energy for datasets of varying sizes have the ad-

ditional benefit of indicating whether a dataset describes a statistically-stationary flow.

That is, when adding additional snapshots to the dataset does not result in a significant

change in its spectral content, the dataset can be considered to capture the characteristic

physics of the system. As can be seen in Fig. 3.2, while it appears that the lower-
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Figure 3.2: Example of POD residual energy decay for 2D cavity case, for datasets encom-
passing 2, 6, and 10 milliseconds of simulation time.

frequency range (< 25 modes) has somewhat converged, there is no indication that the

higher-frequency spectral content has converged.

3.4.3 Projection Error

For results presented in Chapters 5-7, the projection error will be frequently used as a

diagnostic tool for understanding the quality of a computed trial manifold Ũ in modeling

the FOM solution data. This error measure, with a linear trial space for the nth time

instance of the vth state variable (density, x-momentum, etc.), is given by the formulation

ϵnv =

∥∥qn
v −

[
q+HUU⊤H−1 [qn

v − q]
]∥∥

2

∥qn
v∥2

. (3.57)

Scaling the error for each variable by the norm of the unprojected state ensures reasonable

comparisons of error between state variables of drastically different magnitudes (e.g.,

O (1e6) for pressure and O (1) for species mass fractions). For a non-linear trial manifold

Ũ , an equivalent projection operation akin toUU⊤ does not exist. Instead, the projection

error is defined as

ϵnv =

∥∥∥∥∥qn
v −

[
argmin

y∈Ũ
∥qn − y∥2

]
v

∥∥∥∥∥
2

∥qn
v∥2

. (3.58)
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As Ũ is a non-linear manifold defined by the range of the decoder g (·), the solution of

the argmin is a non-linear least squares problem. In practice, the least_squares()

function provided by the SciPy Python optimize package (with default tolerances) is

used to compute this solution. An initial guess for the input to the decoder is given by

the encoding of the state, h (qn). This process effectively finds the point on the non-linear

trial manifold which is closest to the data qn.

Often the time average over the simulation period [t0,T] will be provided, and is

computed as

ϵv =
1

NT

NT∑
n=1

ϵnv . (3.59)

Further, the total average projection error across all state variables provides a very broad

measure of the trial space quality, and is given by

ϵ =
1

Nv

Nv∑
v=1

ϵv. (3.60)

Examples of these error measures are provided for a one-dimensional transient flame

simulation, similar to those detailed in Chapter 5, though without acoustic forcing at the

outlet. Figures 3.3 and 3.4 display instantaneous snapshots of temperature and reactant

mass fraction fields, respectively, and the corresponding projections onto a linear trial

space and non-linear manifold (by deep convolutional autoencoder) of dimension Np = 3.

Figures 3.5 and 3.6 display the ℓ2 error measure over time, as described by Eqs. 3.57

and 3.58.

Projection error is useful in providing an upper bound on the accuracy of the PROM.

The unsteady PROM cannot produce a solution more accurate that the projected solution

(except by pure coincidence), as the trial space is never an exact representation of the

true solution. Further, computing the projection of unseen data (in parametric or future

state prediction) provides a measure of the generalizability of the trial manifold. This can

help determine whether a PROM will be appropriate for such predictions and perhaps

preclude expensive online evaluations which are bound to fail purely due to the unfitness

of the trial manifold.
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Figure 3.3: Instantaneous temperature
fields and projections, Np = 3.

Figure 3.4: Instantaneous mass fraction
fields and projections, Np = 3.

Figure 3.5: Unsteady temperature pro-
jection error, Np = 3.

Figure 3.6: Unsteady mass fraction pro-
jection error, Np = 3.
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Chapter 4

Accelerated PROMs of Non-linear Systems

So far, the fact that the Galerkin (Eq. 3.24), LSPG (Eq. 3.30), and MP-LSVT (Eq. 3.49)

PROMs will not generate computational cost savings for large-scale non-linear systems

has been pointedly ignored. This deficiency is largely due to the fact that evaluating

the non-linear terms f (·, t) arising from fluxes, source terms, body forces, and boundary

conditions still scales with the full-order dimension N . Linear time-invariant systems do

not suffer from this issue; given a system of the form dqc/dt−Aqc = 0, A ∈ RN×N , the

resulting Galerkin PROM (assuming Hc = Hr = I) takes the form

dq̂c

dt
= U⊤

c AUcq̂c. (4.1)

The matrixU⊤
c AUcq̂c ∈ RNc×Nc can be precomputed in the offline stage before evaluating

the PROM in the online stage. Such a precomputation is impossible for general non-linear

systems. The low-dimensional state must first be lifted to the full-dimensional state (via

g (q̂c)) to evaluate the non-linear terms f (·, t). In the case of Galerkin projection, this

term must then be projected onto the space tangent to the trial space before integrating

the low-dimensional ODE in time. In the case of LSPG and MP-LSVT PROMs solved

via the normal equations, the time-variant test basis must be computed from the residual

Jacobian. Despite the fact that the resulting low-dimensional system may be less expen-

sive to temporally integrate, these additional operations often outweigh any cost savings.

Particularly for complex multi-physics systems, the evaluation of f (·, t) accounts for the

vast majority of the solver cost, and failing to reduce this cost often fails to reduce the
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PROM cost below that of the FOM.

To achieve the intended goal of significantly reducing the cost of evaluating the model,

the PROM’s dependence on the full-order dimension N must be eliminated. Techniques

which seek this goal are generally referred to as hyper-reduction methods. Most preva-

lent and mature are so-called sparse sampling approaches, which evaluate the governing

equations or non-linear terms at a small number of carefully selected degrees of free-

dom. Solutions which implement this methodology are referred to here as hyper-reduced

PROMs (HPROMs). Alternatively, non-hyper-reduced PROMs are referred to as unsam-

pled PROMs.

This thesis focuses on sparse-sampling methods for linear subspace PROMs of the

approximate-then-project type, namely the discrete empirical interpolation method [133]

and gappy proper orthogonal decomposition [134]. Work on project-then-approximate

approaches, such as cubature methods [135, 136] and the energy-conserving sampling

and weighting method [137], show promise in enhancing the accuracy of hyper-reduced

PROMs. To date, however, these methods have been analyzed almost exclusively for

finite-element structural dynamics models. Their application to projection-based PROMs

of hyperbolic fluid flow systems is still in its early stages [122], and is not analyzed here.

Neural network approaches to hyper-reduction [138] and hyper-reduction for non-linear

manifold PROMs [139] have been proposed, but are also not analyzed here.

Before proceeding, a sampling operator is defined as S := [es1 , es2 , . . . , esNs
]⊤ ∈

RNs×N , which is composed of Ns unique canonical unit vectors es ∈ RN . For example,

given N = 5, Ns = 3, S = [e1, e3, e4], and a vector y = [y1, . . . , y5]
⊤, the sampling

operation Sy is computed as

Sy =


1 0 0 0 0

0 0 1 0 0

0 0 0 1 0





y1

y2

y3

y4

y5


=


y1

y3

y4

 . (4.2)
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The sample set is defined as S := {s1, s2, . . . , sNs}, |S| = Ns containing the indices of

those degrees of freedom which are sampled. For the above example, this set would thus

be S = {1, 3, 4}.

Such sampling operations are central to each sparse-sampling method described here,

and how the sampling indices are selected may have a drastic effect on the accuracy and

robustness of the hyper-reduced PROM. Several algorithms for selecting sampling indices

are described later in Section 4.5. Discussions of missing point estimation for Galerkin

PROMs and collocation for LSPG and MP-LSVT PROMs follow, along with by gappy

POD for each PROM method.

4.1 Missing Point Estimation for Galerkin PROMs

Hyper-reduction via missing point estimation (MPE) was introduced by Astrid and

coworkers, first for PROMs of a linear time-varying 2D heat conduction problem [140]

and later for a non-linear model of a glass melt feeder [141]. It aims to reduce the com-

putational expense of non-linear PROMs by sampling the governing semi-discrete ODE,

followed by Galerkin projection of the ODE via the sampled trial basis. The first step

can be written by applying the sampling operator to the full-order ROM ODE (Eq. 3.20)

SH−1
r

[
HcJφ,c

dq̂c

dt
− f (q̃c, t)

]
= 0 (4.3)

Projection by SJφ,c and rearranging terms leads to the equation

dq̂c

dt
=
[
[SJφ,c]

⊤ SH−1
r HcJφ,c

]−1

[SJφ,c]
⊤ SH−1

r f (q̃c, t) (4.4)

In this work, hyper-reduction is only performed for PROMs utilizing linear trial spaces,

so substituting Jφ,c = Uc leads to the form

dq̂c

dt
=
[
[SUc]

⊤ SH−1
r HcUc

]−1

[SUc]
⊤ SH−1

r f (q̃c, t) (4.5)
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In the case Hc = Hr = I, this simplifies further to

dq̂c

dt
=
[
[SUc]

⊤ SUc

]−1

[SUc]
⊤ Sf (q̃c, t) (4.6)

Note that the matrix inverse term is not equal to the identity matrix, as it did in the

unsampled Galerkin PROM in Eq. 3.26, as the matrix SUc has no guarantee of orthonor-

mality. However, the matrix
[
[SUc]

⊤ SUc

]−1

[SUc]
⊤ ∈ RNc×Ns (or the scaled equivalent

for Eq. 4.5) may be precomputed in the offline stage.

The operation Sf (q̃c, t) is the key to cost reduction via the MPE method, whereby

only Ns elements of the non-linear function f (·, t) must be evaluated. Similar operations

underpin all sparse sampling hyper-reduction methods for PROMs of non-linear systems.

In the case Ns ≪ N , the cost of evaluating the non-linear terms may be drastically

reduced. Further, only those mesh elements which are required to compute Sf (q̃c, t)

must be allocated, potentially greatly reducing the memory consumption of the hyper-

reduced PROM relative to the FOM or unsampled PROM. This sample mesh concept

will be discussed at greater length in Section 4.6.

A similar method was proposed by Bos et al. [142] in the context of systems governed

by an explicit state space update qn
c = f (qn−1

c , t). Their method was proposed at the

same time as Astrid [140] and deserves similar credit as it was formulated for general

non-linear systems. However, their derivation lacks generality to arbitrary PDEs, and

is only equivalent to that of MPE in the specific case of the solution of Eq 4.5 via an

explicit time integrator.

4.2 Collocation for LSPG and MP-LSVT PROMs

Hyper-reduction of the residual-based PROMs (LSPG and MP-LSVT) by collocation

derives from the work by LeGresley [143], which applies a similar method to that proposed

by MPE for the cost reduction of general non-linear least-squares problems. Given the
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fully-discrete residual r, the least-squares collocation problem is stated as

q̂n
c = argmin

y∈RNc

∥∥SH−1
r r (y)

∥∥
2
. (4.7)

By this process, the least-squares minimization problem must only be computed based

on the Ns sampled elements of the residual. The original work by LeGresley used this

procedure exclusively for the solution of steady systems with the goal of accelerating

multi-disciplinary optimization problems. The work by Carlberg et al. [68] extended this

process to LSPG PROMs, although it was presented as an inferior approach compared

to the Gauss–Newton with approximated tensors (GNAT) approach proposed in their

paper. The GNAT method is detailed in Section 4.3. Collocation hyper-reduction for

LSPG and MP-LSVT PROMs is addressed here.

The solution of Eq. 4.7 by Gauss–Newton is given as

δq̂k
c = argmin

y∈RNc

∥∥∥SH−1
r

[
Ĵk
r,cy − r

(
q̂k
c

)]∥∥∥
2
, (4.8)

q̂k+1
c = q̂k

c + α
[
δq̂k

c

]
. (4.9)

The normal equations for Eq. 4.8 is thus given by

[
Wk

c

]⊤
Wk

c δq̂
k
c = −

[
Wk

c

]⊤
SH−1

r r
(
q̂k
c

)
, (4.10)

where the test basis is defined as

Wk
c := SH−1

r Jk
r,cHcJ

k
φ,c. (4.11)

In the case of a linear trial space, the test basis simplifies to

Wk
c := SH−1

r Jk
r,cHcUc. (4.12)

In this formulation, note that only Ns elements of the non-linear residual term must by
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calculated for SH−1
r r (·). Further, only Ns rows of the the residual Jacobian must be

calculated for SH−1
r Jk

r,c. As with MPE, this subsampling operation has the capability

to drastically reduce the cost of evaluating the LSPG PROM, as the calculation of the

non-linear residual and its Jacobian usually dominates the computational cost for solvers

of even moderate complexity.

The process for computing the collocated MP-LSVT PROM is, as implied by the

unsampled PROM derivation in Section 3.3, extremely similar to that of collocated LSPG.

The non-linear least-squares problem is simply reframed to minimize the residual with

respect to the target space modal coefficients, i.e.

q̂n
p = argmin

y∈RNp

∥∥SH−1
r r (y)

∥∥
2
. (4.13)

Sparing the reader repetitive derivation details, for a linear trial space the normal equa-

tions of the Gauss–Newton solution of Eq. 4.13 is given by

[
Wk

p

]⊤
Wk

pδq̂
k
p = −

[
Wk

p

]⊤
SH−1

r r
(
q̂k
p

)
, (4.14)

where the test basis is defined as

Wk
p := SH−1

r Jk
r,pHpUp. (4.15)

Again, note that only Ns rows of the non-linear residual SH
−1
r r (·) and residual Jacobian

SH−1
r Jr,p must be computed to solve the collocated MP-LSVT PROM.

4.3 DEIM and GNAT

Both hyper-reduction methods presented so far, MPE and collocation, have enabled cost

reduction of PROMs simply by sampling the original governing PROM equations and

computing the solution normally. However, as shown by Carlberg et al. [68], these meth-

ods often generate inaccurate or unstable solutions for convection-dominated fluid flow

systems. Alternatively, several methods have been proposed which compute data-driven,
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approximate reconstructions of non-linear terms based on a small number of samples of

the functions. As such, these approaches attempt to incorporate the action of the full-

field function, instead of discarding unsampled elements entirely as in MPE or collocation.

Because of this, they are sometimes referred to as function reconstruction methods.

Two well-established function reconstruction methods are the discrete empirical inter-

polation method (DEIM) and gappy proper orthogonal decomposition (gappy POD). The

two are closely related, but were originally developed for different applications. DEIM,

introduced by Chaturantabut and Sorensen [133], is a discrete formulation of the em-

pirical interpolation method (EIM) [144]. It introduces an approximation of non-linear

functions of the form,

r (y) ≈ r̃ (y) := Ψ [SΨ]−1 Sr (y) , (4.16)

where the residual function r is used for the sake of notational simplicity, but note that

this method extends to approximation of any non-linear function. Indeed, the original

work by Chaturantabut and Sorensen [133] computed approximations of the non-linear

function f (·, t) for Galerkin PROMs, as will be discussed in Section 4.3.1. The matrix

Ψ := [ψ1, ψ2, . . . , ψNr
] ∈ RN×Nr is an orthonormal basis, usually generated by

POD from FOM snapshots of the non-linear function r. It is assumed that the matrix

SΨ ∈ RNs×Nr has full rank. Again, in computing r̃, the non-linear function r must only

be sampled at Ns degrees of freedom, instead of its full dimension N .

Note that the number of DEIM basis modes is equal to the number of sampled degrees

of freedom, i.e., Ns = Nr. By this formulation, the non-linear function is interpolated

exactly at Ns < N degrees of freedom and interpolated approximately at all other degrees

of freedom. The error in this approximation is bounded [133] by the inequality

∥r (y)− r̃ (y)∥2 ≤
∥∥[SΨ]−1

∥∥
2

∥∥[I−ΨΨ⊤] r (y)∥∥
2
, (4.17)

where the first norm term on the right-hand side is a measure of the sampling error,

and the second norm term is the projection error. As will be discussed shortly, various

methods of selecting the sampling degrees of freedom often attempt to minimize these
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sources of error.

Again, DEIM is restricted to the case where Ns = Nr. For practical engineering

systems, Nr ≪ N generally, and such extreme sparse sampling may result in high inter-

polation error at the unsampled degrees of freedom. Furthermore, Peherstorfer et al. [76]

show that increasing Nr can lead to an unstable increase in the interpolation error if

Ns = Nr. The gappy proper orthogonal decomposition (gappy POD) offers a solution to

these issues. Gappy POD was originally developed long before the advent of DEIM to

approximate full field data from a few sparse samples [134], and has seen extensive use in

sparse sensor placement [145, 146] and extensions of missing point estimation [147]. As

such, gappy POD has also been used to approximate non-linear functions in dynamical

systems. The method takes a very similar approach to DEIM, but relaxes the restriction

on the number of sampled degrees of freedom, allowing Ns ≥ Nr. The approximation

becomes a least-squares regression of the form

r (y) ≈ r̃ (y) := Ψ [SΨ]+ Sr (y) , (4.18)

where the operation [·]+ indicates the Moore–Penrose inverse (or pseudo-inverse). Again,

this assumes SΨ, which is now a rectangular matrix, has full column rank. Similarly to

Eq. 4.17, the gappy POD regression error is bounded [76] by

∥r (y)− r̃ (y)∥2 ≤
∥∥[SΨ]+

∥∥
2

∥∥[I−ΨΨ⊤] r (y)∥∥
2
. (4.19)

For the remainder of this thesis, discussion of hyper-reduction is restricted to gappy POD,

as it is more general than DEIM. The reader is simply reminded that in the specific case

of Nr = Nc, gappy POD is equivalent to DEIM.

The approximation of non-linear functions by Eq. 4.18 can be applied to PROM for-

mulations to vastly reduce the computational cost of evaluating non-linear terms arising

from the discretization of the governing equations. Hyper-reduction of Galerkin PROMs

by gappy POD is described first, followed by hyper-reduction of LSPG and MP-LSVT

PROMs.
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4.3.1 Gappy POD for Galerkin PROMs

For Galerkin PROMs, the traditional method of gappy POD approximates the non-linear

terms f (·, t) as

H−1
r f̃ (qc, t) := Ψ [SΨ]+ SH−1

r f (qc, t) . (4.20)

Substituting this approximation into the linear subspace Galerkin PROM (Eq. 3.25)

results in the hyper-reduced PROM

dq̂c

dt
=
[
U⊤

c H
−1
r HcUc

]−1
U⊤

c Ψ [SΨ]+ SH−1
r f (q̃c, t) . (4.21)

The low-dimensional matrix
[
U⊤

c H
−1
r HcUc

]−1
U⊤

c Ψ [SΨ]+ ∈ RNc×Ns can be pre-computed

in the offline stage and loaded from disk prior to evaluating the unsteady PROM. Further

simplifying, if Hc = Hr = I, the formulation is reduced to

dq̂c

dt
= U⊤

c Ψ [SΨ]+ Sf (q̃c, t) , (4.22)

where again, the low-dimensional matrix U⊤
c Ψ [SΨ]+ ∈ RNc×Ns can be precomputed.

Gappy POD Galerkin PROMs of this form have been successfully applied to a host of

non-linear fluid flow problems [148, 149, 150, 151, 152].

An alternative method of computing the gappy POD Galerkin PROM is posed by

Peherstorfer [153], who reframes the fully discrete O∆E in the form

qn−1
c − fr (q

n
c , t) = 0, (4.23)

where all terms of the time integrator, except for qn−1
c , have been grouped with the non-

linear terms f (·, t) into the lumped fr (·, t). Note that this is more general than the

explicit update discussed by Bos et al. [142], as it extends to implicit time integrators as

well. This form is, at first glance, confusing, as the solution at the next time step, qn
c , is

usually sought as a function of past time steps, not the other way around as in Eq. 4.23.

However, this simply reflects the nature of implicit time integrators, in which the non-
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linear terms f (·, t) are evaluated at future time steps. For example, the backward Euler

(BDF1) time integrator would compute fr (·, t) as

fr (q
n
c , t) := qn

c −∆tf (qn
c , t) . (BDF1) (4.24)

The approximate non-linear term is then approximated as

H−1
r fr (qc) ≈ f̃r (qc) := Ψ [SΨ]+ SH−1

r fr (qc) . (4.25)

Substitution into Eq. 4.23 and projection by the tangent trial space leads to an alternative

hyper-reduced Galerkin PROM of the form

q̂n−1
c −

[
J⊤
φ,cH

−1
r HcJφ,c

]−1
HcJ

⊤
φ,cf̃r (q̃

n
c ) = 0. (4.26)

As mentioned previously, the above formulation is fairly non-standard and can be quite

confusing for PROM practitioners. However, as will be discussed in Sections 4.4, this

formulation lends itself to a simplification in which the regression basis Ψ can be equated

to the solution trial basis Uc or Up.

4.3.2 GNAT for LSPG and MP-LSVT PROMs

Applying gappy POD to LSPG and MP-LSVT PROMs takes an approach akin to that

of collocation. Instead of constructing a least-squares regression for the sampled non-

linear function f (·, t), however, the complete fully-discrete residual r is approximated

and substituted into the residual minimization problem given by Eq. 3.28 or 3.48. The

procedure is examined for LSPG, which was first formulated by Carlberg and cowork-

ers [67, 68], who referred to the procedure as Gauss–Newton with approximated tensors

(GNAT). Substituting the residual approximation into Eq. 3.28 results in the non-linear

least-squares problem

q̂n
c = argmin

y∈RNc

∥∥Ψ [SΨ]+ SH−1
r r (y)

∥∥
2
. (4.27)
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Solving Eq. 4.27 by Gauss–Newton results in the iterative process

δq̂k
c = argmin

y∈RNc

∥∥∥Ψ [SΨ]+ SH−1
r

[
Ĵk
r,cy − r

(
q̂k
c

)]∥∥∥
2
, (4.28)

q̂k+1
c = q̂k

c + α
[
δq̂k

c

]
. (4.29)

Solution of Eq. 4.28 via the normal equations is again given by a Petrov–Galerkin PROM

of the form [
Wk

c

]⊤
Wk

c δq̂
k
c = −

[
Wk

c

]⊤
Ψ [SΨ]+ SH−1

r r
(
q̂k
c

)
, (4.30)

where the test basis is defined as

Wk
c := Ψ [SΨ]+ SH−1

r Jk
r,cHcJ

k
φ,c. (4.31)

The original work on GNAT [68] suggests an alternative formulation, whereby separate

regression bases are computed for the residual and residual Jacobian, denoted by Ψr ∈

RN×Nr and ΨJ ∈ RN×NJ respectively. Equation 4.28 can thus be written as

δq̂k
c = argmin

y∈RNc

∥∥∥ΨJ [SΨJ]
+ SH−1

r Ĵk
r,cy −Ψr [SΨr]

+ SH−1
r r
(
q̂k
c

)∥∥∥
2
. (4.32)

In practice, choosing Ψr ̸= ΨJ has not been observed to generate HPROMs which are

drastically better than those generated by choosing Ψr = ΨJ. The added computational

complexity makes it difficult to justify implementing Eq. 4.32. As such, for all results

presented in this thesis, Ψr = ΨJ.

Hyper-reduction of MP-LSVT PROMs via gappy POD follows a similar method,

beginning from the fully-discrete residual minimization with respect to the target state

latent variables,

q̂n
p = argmin

y∈RNp

∥∥Ψ [SΨ]+ SH−1
r r (y)

∥∥
2
. (4.33)

Solution via Gauss–Newton and the normal equations results in a similar hyper-reduced
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Petrov–Galerkin formulation of

[
Wk

p

]⊤
Wk

pδq̂
k
p = −

[
Wk

p

]⊤
Ψ [SΨ]+ SH−1

r r
(
q̂k
p

)
, (4.34)

with the test basis

Wk
p := Ψ [SΨ]+ SH−1

r Jk
r,pHpJ

k
φ,p. (4.35)

Only [SΨ]+ ∈ RNr×Ns is pre-computed offline. Although the matrix Ψ[SΨ]+ ∈ RN×Ns

can be pre-computed offline, a matrix of N × Ns elements can be prohibitively large

for high-dimensional systems and may not be possible to store in memory. Further,

substitution of Eq. 4.35 into Eq. 4.34 and recognizing the product Ψ⊤Ψ = I eliminates

the need to precompute Ψ[SΨ]+.

As with collocation, note that computing the sampled residual Sr (·) only requires

that the residual be evaluated at Ns degrees of freedom. Further, in Eqs. 4.31 and 4.35

only the corresponding Ns rows of the residual Jacobians Jc and Jp need to be computed.

Thus, the hyper-reduced PROM is truly independent of the FOM dimension N . When

Ns ≪ N and evaluation of the non-linear terms accounts for a majority of the computa-

tional burden, this sparse sampling has the potential to drastically reduce the cost of the

hyper-reduced PROM relative to the FOM. Prior work by the author has recorded four

orders of magnitude cost reduction for a three-dimensional model rocket combustor [125].

Up to five orders of magnitude cost reduction has been recorded [70], consuming a few

core-hours to compute a hyper-reduced LSPG PROM where the equivalent FOM simu-

lation consumed over two thousand core-weeks. Such cost savings bring projection-based

PROMs into the realm of possibility for many-query applications.

4.4 Regression Basis Calculation

The question of how the regression basis Ψ is computed is now addressed. Although the

process generally mirrors that of computing the solution trial bases Uc or Up, there are

several approaches for computing Ψ which are suggested by the literature and deserve
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explanation.

4.4.1 Galerkin RHS Approximation

In the case of gappy POD Galerkin PROMs, the two approximations of non-linear terms

in the ROM ODE/O∆E have been outlined, but are restated here. The traditional

method of gappy POD for Galerkin PROMs [133] computes a regression for the non-

linear function f (·, t) of the form

H−1
f f (qc, t) ≈ f̃ (qc, t) := Ψ [SΨ]+ SH−1

f f (qc, t) (4.36)

In this case, as with computing the solution trial bases, snapshots of the unsteady non-

linear term field f (qc, t) are collected from FOM simulations. Unlike the process for the

solution trial bases, a reference state about which snapshots are centered is not defined.

However, disparate scales of the non-linear terms must be accounted for, and some scaling

operations should be computed via H−1
f . The snapshot matrix is thus aggregated as

F =
[
H−1

f f
(
qc

(
t0
)
, t0
)
, H−1

f f
(
qc

(
t1
)
, t1
)
, . . . , H−1

f f
(
qc (T) , t

T
)]

(4.37)

The regression basis is then computed from the POD of the snapshot matrix F, extracting

the leading Nr singular vectors as Ψ.

4.4.2 State Approximation

The method of Peherstorfer [153], as previously discussed in Section 4.3, reframes the

fully-discrete residual as

qn−1
c − fr (q

n
c , t

n) = 0 (4.38)

Although this formulation may seem non-intuitive, it is only a grouping of terms aris-

ing from the implicit time integration of the governing ODE. Interestingly, treating the

lumped non-linear term fr (·, t) as the non-linear function to be approximated makes the
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connection

qn−1
c ≈ f̃r (qc, t) := Ψ [SΨ]+ Sfr (qc, t) (4.39)

At first glance, this formulation might suggests that the solution trial basis can be used

as the regression basis; that is, Ψ = Uc. However, this is not entirely accurate, as the

state representation is given as q̃c := qc +HcUcq̂c. Attempting to directly approximate

this vector by gappy POD results in

qc ≈ qc +HcUc [SHcUc]
+ S [qc − qc] (4.40)

which is not appropriate for use in Eq. 4.39, especially in the context of time-variant Uc

or S (adaptive methods). The governing system in Eq. 4.23 requires some manipulation

to achieve a more appropriate gappy POD approximation.

Discussion is restricted to linear multi-step methods, which take the general form

qn
c +

s∑
i=1

aiq
n−i
c +∆t

s∑
i=0

bif
(
qn−i
c , tn−i

)
= 0 (4.41)

where bi, ai ∈ R are tabulated coefficients for a given method of order s. Note that for a

linear multi-step method to be consistent, the coefficients ai must satisfy

s∑
i=1

ai = −1 (4.42)

Substituting the linear trial space representation qc := qc +HcUcq̂c into Eq. 4.41, and

recognizing that qc + qc

∑s
i=1 ai = 0 by Eq. 4.42, the fully-discrete residual can be

rewritten to match the form in Eq. 4.38 as

HcUcq̂
n−1
c +HcUc

[
1

a1
q̂n
c +

s∑
i=2

ai
a1

q̂n−i
c

]
+∆t

s∑
i=0

bi
a1

f
(
q̃n−i
c , tn−i

)
= 0 (4.43)

where the lumped non-linear term is defined as

−fr (q̂n
c , t

n) := HcUc

[
1

a1
q̂n
c +

s∑
i=2

ai
a1

q̂n−i
c

]
+∆t

s∑
i=0

bi
a1

f
(
q̃n−i
c , tn−i

)
(4.44)
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Given the resulting equivalence

Ucq̂
n−1
c = H−1

c fr (q̂
n
c , t

n) , (4.45)

it now appears appropriate to approximate the lumped non-linear term as f̃r (·) :=

Ψ [SΨ]+ SH−1
c fr (·) by choosing Ψ = Uc. Although this derivation may seem tedious

to make this distinction solely in the context of linear multi-step time integrators, recall

that the attempt to naively set Ψ = Uc for any time integration scheme resulted in the

unusable gappy POD approximation given in Eq. 4.40.

This approach is valid for Galerkin, LSPG, and MP-LSVT PROMs alike, as each is

derived from the original, conservative governing equations and computes the same full-

order fully-discrete ROM residual prior to projection. However, note that the conservative

state gappy POD regression applied to MP-LSVT PROMs necessitates the calculation of

two distinct bases: Up for the target state trial space, and Uc strictly for the gappy POD

regression. For Galerkin and LSPG, the trial basis Uc is simply reused for the gappy

POD regression (or slightly reduced or expanded, for Nc ̸= Nr).

4.4.3 Residual Approximation

For hyper-reduction of LSPG PROMs by GNAT, recall that the Gauss–Newton least-

squares minimization problem takes the general form

δq̂k
c = argmin

y∈RNc

∥∥∥ΨJ [SΨJ]
+ SH−1

r Ĵk
r,cy −Ψr [SΨr]

+ SH−1
r r
(
q̂k
c

)∥∥∥
2
, (4.46)

where the gappy POD regression via the bases Ψr ∈ RN×Nr and ΨJ ∈ RN×NJ seek

approximate reconstructions of the residual vector r
(
q̂k
c

)
and the residual Jacobian Ĵk

r,c =

Jk
r,cHcUc, respectively.

The most obvious (albeit naive) approach for constructing Ψr and ΨJ is to compute

POD bases from snapshots of r (q̂c) and Jk
r,cHcUc. However, this approach begs two

important questions. First, the residual and its Jacobian are defined for each Newton

iteration; should snapshots from all iterations be saved, or one, or a few? Second, saving
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Nc snapshots for a given Newton iteration evaluation of Jk
r,cHcUc quickly causes storage

consumption and offline POD basis calculation costs to grow drastically. Is this added

cost worthwhile?

In the original work on LSPG and GNAT by Carlberg et al. [67], several approaches

are suggested. Their “Method 3” indicates the most expensive extreme: compute ΨJ

from snapshots of r
(
q̂k
c

)
and Jk

r,cHcUc for every Newton iteration, resulting in Nc + 1

snapshots for every Newton iteration. This approach is quickly discarded as computa-

tionally infeasible, and no work since appears to use this method. As a step down, their

“Method 2” computes ΨJ from snapshots of the action of the residual Jacobian on the

Gauss–Newton search direction, i.e. Jk
r,cHcUcδq̂

k
c . This reduces the number of snapshots

saved per Newton iteration to two, and is shown to perform well in the original work by

Carlberg et al. [67] and later work by Bai and Wang [154]. The final and least compu-

tationally expensive method simply sets ΨJ = Ψr, where Ψr is computed from Newton

iteration snapshots of the residual vector r (·). This method is employed in later work by

Carlberg et al. [68, 69], and is implied to be used by Lauzon et al. [155].

Note that the collection of snapshots for every Newton subiteration can quickly be-

come computationally burdensome, often increasing storage requirements by more than

ten times. Other works suggest that only a single snapshot should be saved, as in the

work by Grimberg et al. [70]. They choose to collect the residual of the first Newton iter-

ation for a given time step, arguing that the residuals for a well-converged Gauss–Newton

solve quickly approach machine precision and result in poorly-conditioned POD approx-

imations. The first Newton iteration represents the largest magnitude residuals observed

for a given time step, and encourages more accurate gappy POD approximations. Similar

notions are explored by Tezaur et al. [156] in the context of PROMs of steady-state aero-

dynamics problems, whereby they find that the approximation is most accurate when

computed from residual Jacobians of converged solutions or pre-convergence residuals,

while those computed from residuals of the converged solution perform relatively poorly.

In this work, GNAT PROMs using POD bases computed from the residual or residual

Jacobian are not examined. It is the author’s opinion (informed by many failed numerical
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experiments) that this approach requires far too much trial-and-error and manual tuning

in selecting appropriate residual snapshots and computing (often poorly-conditioned)

gappy POD approximations. Further, the dependence of the residual field convergence

on the FOM sparse linear solver is not experienced in the low-dimensional dense PROM

solve, and it is not clear if the resulting approximation is appropriate for the entire

Gauss–Newton solve.

4.4.4 Dual Basis Formulation

In this section, a method is proposed which circumvents several of the issues noted above

for the state approximation and fully-discrete residual approximation approaches. As

mentioned in passing by several authors [157, 70], it is possible to define gappy POD

approximations for individual elements of the fully-discrete residual. In the most fine-

grained extreme, this would entail constructing gappy POD bases for the flux, boundary

condition, source, body force, and time integrator terms separately. However, this results

in exceptional computational complexity and high memory consumption. This work will

investigate an approach which constructs two gappy POD approximations: one for the

time integrator term, and one for the general non-linear right-hand side term.

Recall that the fully-discrete residual is traditionally written as

r (qn
c ) :=

.
q̃n
c − f (qn

c , t) = 0, (4.47)

where the
.
q̃c is the discrete time integrator term and f (·, t) encompasses all other terms

associated with the spatial discretization of the governing equations. These terms can be

approximated by gappy POD as

.
qc ≈ ˜̇qc := HcΨc [SΨc]

+ SH−1
c
.
qc, (4.48)

f (qc, t) ≈ f̃ (qc) := HfΨf [SΨf ]
+ SH−1

f f (qc) . (4.49)

where Ψc ∈ RN×Nc and Hc ∈ RN×N are the time integrator POD basis and diagonal

scaling matrix, respectively. The matrices Ψf ∈ RN×Nf and Hf ∈ RN×N are the POD
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basis and diagonal scaling matrix for the RHS function, respectively.

For the sake of brevity, the application of these approximations are only detailed

for the MP-LSVT method. Inserting them into the residual-minimization problem and

solving by Gauss–Newton arrives at the form

δq̂k
p = argmin

y∈RNp

∥∥∥∥H−1
r

[
[HcΨcA−HfΨfB]y +HcΨca−HfΨfb

]∥∥∥∥2
2

, (4.50)

where terms have been grouped as

A := [SΨc]
+ SH−1

c Jk
c,pHpUp ∈ RNc×Np (4.51)

B := [SΨf ]
+ SH−1

f Jk
f,pHpUp ∈ RNf×Np (4.52)

a := [SΨc]
+ SH−1

c
.
qc

(
q̃k
p

)
∈ RNc (4.53)

b := [SΨf ]
+ SH−1

f f
(
q̃k
p

)
∈ RNf (4.54)

The Jacobian matrices are defined as Jk
c,p :=

.
qc

(
q̃k
p

)
/qk

p ∈ RN×N and Jf,p := f
(
q̃k
p

)
/qk

p ∈

RN×N . Note that the quantities [SΨc]
+ ∈ RNc×Ns and [SΨf ]

+ ∈ RNf×Ns can be computed

in the offline stage. Further, note that the application of the sampling operator S to the

time integrator and RHS terms, as well as their Jacobians, indicates that only Ns rows

of these terms must be evaluated.

Solving Eq. 4.50 by its normal form results in the rather convoluted formulation

[
A⊤CA−A⊤DB−B⊤D⊤A+B⊤EB

]
δq̂k

p = −
[
A⊤Ca−A⊤Db−B⊤D⊤a+B⊤Eb

]
(4.55)

where terms have again been grouped as

C := Ψ⊤
c HcH

−2
r HcΨc ∈ RNc×Nc (4.56)

D := Ψ⊤
c HcH

−2
r HfΨf ∈ RNc×Nf (4.57)

E := Ψ⊤
f HfH

−2
r HfΨf ∈ RNf×Nf (4.58)

Matrices C, D, and E can all be computed in the offline stage.
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Compared to the standard gappy POD HPROM formulation, this has the negative ef-

fect of requiring one additional global matrix reduction and one additional global vector

reduction, along with several additional dense matrix-matrix and matrix-vector multi-

plications. The cost-benefits tradeoff of this approach is investigated experimentally in

Section 6.2.6.

For linear multi-step schemes, recall that the time integrator term takes the general

form
.
q̃n
c = qn

c +
s∑

i=1

aiq
n−i
c (4.59)

and consistent schemes satisfy
s∑

i=1

ai = −1 (4.60)

From the previous discussions, it is apparent that the choice Ψc = Uc is a valid choice.

The process for computing Ψf is more straighforward, following from the POD of scaled

snapshots of the RHS function as detailed in Section 4.4.

Although the process has only been described for the MP-LSVT method, this ap-

proach is also valid for LSPG projection. For LSPG, this necessitates the construction of

two bases, Ψf and Uc = Ψc (resized as needed). Again, the MP-LSVT method requires

the primitive trial basis Up as well, necessitating the storage of three POD bases in total.

4.5 Sample Selection

As described above, the computation of the non-linear function regression basis Ψ is

somewhat nuanced, but is ultimately derived from the POD of a solution, non-linear

terms, or fully-discrete residual (Jacobian) snapshot matrix. Methods for selecting the

sampling indices defining the sample set S, and hence the construction of the sampling

operator S, are much more varied. The selection of Ns > Nr samples which globally

minimize the regression error (Eq. 4.19) is a computationally-intractable problem. As

such, almost all methods for selecting sampling points are greedy methods, which itera-

tively select points based on some measure of local optimality at a given iteration. The

“best” choice of greedy sampling method is an area of active research. Unfortunately,
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very few comparisons between sampling methods have been published, with the exception

of the work by Peherstorfer et al. [76]. Although extremely insightful, their exploration of

hyper-reduced PROMs was limited to one-dimensional steady reaction-diffusion system.

Results presented in Chapter 6 seek to expand on their work by studying more complex,

unsteady 2D and 3D multi-scale and multi-physics problems.

4.5.1 Sampling Criteria

Before discussing specific sampling algorithms, sampling criteria for greedy algorithms

must be discussed. In general, at each iteration, the algorithm chooses the next index

to include in the sample set S by evaluating some metric (usually an error measure)

and selecting the index which maximizes/minimizes that metric. This process is slightly

nuanced for the sampling of non-linear functions describing flow physics characterized by

disparate spatio-temporal scales. Up until this point, sampling has only been spoken of in

terms of individual degrees of freedom (DOFs). That is, sampling indices s ∈ {1, . . . , N}

are considered to have no specific connection to any variables or mesh elements. In

reality, these indices are important for determining local connectivity of mesh elements

and for computing numerical quantities such as fluxes and gradients. A state vector (or

a function of the state vector) might be visualized as a two-dimensional array, with the

leading dimension corresponding to the number of mesh elements Ne and the trailing

dimension corresponding to the number of variables Nv associated with a single mesh

element. This can be written as

q→


q1,1 . . . q1,Nv

...
. . .

...

qNe,1 . . . qNe,Nv

 (4.61)

In this work, the corresponding one-dimensional vector is constructed by flattening Eq. 4.61

along the leading dimension, result in the form

q := [q1,1, . . . , qNe,1, q1,2, . . . , q1,Nv−1, q1,Nv , . . . , qNe,Nv ]
⊤ (4.62)
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For a given mesh element index j ∈ {1, . . . , Ne}, all DOF indices in q for the associated

state variables can be retrieved as the set s ∈ {j + (k − 1)Ne | 1 ≤ k ≤ Nv}.

As will be discussed in more detail in Section 4.6, sampling individual degrees of free-

dom of a non-linear function usually requires that additional, auxiliary degrees of freedom

also be sampled in order to correctly compute the approximated non-linear function. The

union of the sampling operator and these auxiliary degrees of freedom can thus be defined

as S̃ ∈ RÑs×N , and the sampled non-linear function is computed as Sf (q, t) = f
(
S̃q, t

)
.

This understanding that additional degrees of freedom must be included in the calcula-

tion can influence how greedy sampling metrics are calculated. Three distinct approaches

are described below.

1. Agnostic: The agnostic approach is the simplest sampling criterion, whereby the

greedy metric is computed for every unsampled DOF, and only one DOF index is

added to the sample set at every greedy iteration. That one DOF is then excluded

from all future greedy metric evaluations. Only after Ns DOFs have been selected

for S are the auxiliary DOFs appended to the full sample set S̃. This is the

natural procedure for single-variable systems [133], but is often used for multi-

variate systems as well [148].

2. Post-sampling : The post-sampling method, as with the agnostic approach, com-

putes the greedy sampling metric at every unsampled DOF and selects one index

to append to the sample set S. However, post-sampling also appends all DOFs as-

sociated with the mesh element corresponding to the sampled DOF. For example, if

there are five variables associated with each mesh element, then five DOFs in total

will be appended to the sample set at every greedy iteration. All DOFs associated

with that mesh element are then excluded from future greedy metric evaluations,

and the process continues until Ns indices are included in the sample set. This

approach has been used successfully for several multi-variate systems [158, 125].

3. Comprehensive: The comprehensive method, as with the previous two methods,

evaluates the greedy metric at all unsampled degrees of freedom, but then sums
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the greedy metric for all DOFs associated with a given mesh element. That is, a

single greedy metric is evaluated for each mesh element. The mesh element which

maximizes/minimizes the greedy metric is sampled, corresponding to appending all

degrees of freedom associated with the mesh element to the sample set S. Again,

this is repeated until all Ns degrees of freedom are selected. This approach has

been utilized in the original work on GNAT by Carlberg and coworkers [68, 69].

The post-sampling and comprehensive methods are motivated by the fact that for

coupled fluid flow systems, all degrees of freedom associated with a cell must be included

in the auxiliary sample set S̃ if even one degree of freedom is sampled by a greedy

algorithm. In this sense, they are a sunk cost in evaluating Sf (·, t), and assessing their

contribution to the greedy sampling metric provides a more complete description. All

results presented in this thesis utilize the comprehensive approach, except those results

in Section 6.2.5 comparing it against the post-sampling approach.

As an aside, prior work [68] has noted that it is important to sample at least one mesh

element at each inlet and outlet boundary to facilitate the communication of information

from outside of the domain to all sampled cells. Although this consideration is logical, it

is not applied in this work. As will be seen later, this omission does not appear to affect

the accuracy and robustness of the HROMs presented. Whether this is more generally

true or a pleasant coincidence is unknown.

4.5.2 Sampling Algorithms

Specific algorithms for selecting samples for hyper-reduction are now discussed. This

thesis studies random sampling, eigenvector-based sampling, and two variants of the

GNAT sampling algorithm, which are each detailed in turn.

For all sampling algorithms, the first Nr sampled degrees of freedom are selected

by the QDEIM procedure proposed by Drmač and Gugercin [159]. In the context of

DEIM PROMs (Nr = Ns), this has been shown to exhibit tighter error bounds on the

resulting interpolant over the traditional DEIM greedy sampling procedure. As such,

each algorithm described here must only select Ns −Nr samples. This is largely done to
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maintain consistency between algorithms, some of which require an initial set of sampling

points and others which do not.

1. Random Sampling : By far the simplest method, random sampling randomly selects

Ns − Nr degrees of freedom using a random shuffle C++ routine. Peherstorfer et

al. [76] provide probabilistic analyses to show that randomized oversampling limits

the growth in regression error as the regression dimension Nr is increased, even in

the presence of additional system noise. Although this method has been observed

to generate reasonable reconstructions of unsteady flow fields from a few samples,

it often leads to poor results for HROMs of reacting flows [125]. However, the

simplicity of this method can be appealing, as it requires no complex computations

or distributed-memory software for large datasets. The computational burden of

the offline cost is thus strictly limited to the precomputation of [SΨ]+, which is

universal to all sampling methods presented here.

2. Eigenvector-based Sampling : Eigenvector-based sampling seeks to minimize the

sampling error term in Eq. 4.19 via a greedy approach. This method is a simplifica-

tion by Peherstorfer et al. [76] of a greedy sampling procedure by Zimmermann and

Willcox [147] (Algorithm 4). Some of the motivating theory behind the modified

algorithm is reproduced here with permission.

To select the remaining Ns − Nr points, the method leverages the fact that by

nature of the ℓ2 norm, the sampling error may be rewritten as

∥∥[SΨ]+
∥∥
2
= σmax

(
[SΨ]+

)
=

1

σmin (SΨ)
, (4.63)

where σmax and σmin indicate the maximum and minimum singular values of their

arguments, respectively. Thus, at the mth sampling iteration, the row of Ψ is

selected which maximizes the smallest singular value (equivalently, the smallest

eigenvalue) of SmΨ ∈ Rm×Nr via a symmetric rank-one update. Here, Sm ∈ RN×m

is the selection matrix constructed from the m unit vectors selected up to iteration

m by the greedy procedure. It is shown in [76] that the bounds on this update of
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the smallest eigenvalue, λNr , from update step m to m+ 1, is given by

λm+1
Nr
≥ λmNr

+
1

2

[
g +

∥∥ψ′
+

∥∥2
2
−
√[

g +
∥∥ψ′

+

∥∥2
2

]2
− 4g

[[
zmNr

]⊤
ψ′

+

]2]
, (4.64)

where g = λmNr−1−λmNr
, and zmNr

∈ RNr is the eigenvector associated with eigenvalue

λmNr
(simply the Nrth canonical unit vector here). Here, ψ′

+ = V⊤
mψ

⊤
+ ∈ RNr is

defined for simplification, where Vm are the right singular vectors of S⊤
mΨ, and

ψ+ ∈ R1×Nr is the row of Ψ to be included at greedy iteration m. Previous pre-

print versions of [76] offer a simplification of the bound in Eq. 4.64, given by

λm+1
Nr
≥ λmNr

+
g
[
[zmNr

]⊤ψ′
+

]2
g +

∥∥ψ′
+

∥∥2
2

. (4.65)

Maximizing this bound on λm+1
Nr

is thus equivalent to choosing the basis row ψ+

which maximizes (zmNr
)⊤ψ′

+ at each greedy iteration. Work in this thesis follows

the bounds in Eq. 4.65, as it leads to a simpler algorithm which is more efficient

when working with high-dimensional data in a distributed-memory setting.

The algorithm for eigenvector-based sampling is provided in Alg. 1.

3. GNAT Sampling, Variant 1 : The sampling strategy devised by Carlberg et al. [68]

is an extension of the greedy sampling method originally proposed for DEIM [133].

This method seeks to minimize the error in computing the regression of the basis

vectors ψi themselves. Following a greedy approach, at each sampling iteration m

the regression error is calculated by

ϵm = ψi −Ψj [SmΨj]
+ Smψi, (4.66)

where Ψj ∈ RN×j contains the leading j basis vectors of Ψ. The index j begins

at 1 and is incremented by one at every sampling loop, until j = Nr. At every

iteration, the ceil (Ns/Nr) degrees of freedom for which the absolute error |ϵm| is

greatest are sampled, and the corresponding canonical unit vectors are appended to
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Algorithm 1 Eigenvector-based sampling

Input: Number of desired samples Ns, seed sampling set S and operator S, regression
basis Ψ ∈ RN×Nr

Ns,e = ceil (Ns/Nv)
Ns,m = ceil (|S| /Nv)
for i = Ns,m to Ns,e do

U, Σ, V = SVD (SΨ)
ϵ = abs (ΨvNr)
for all s ∈ S do

ϵs = 0 // Disregard indices already selected
end for
ϵe = 0 ∈ RNe

for j = 1 to Ne do
for k = 1 to Nv do

s = j + (k − 1)Ne

ϵe,j += ϵs // Sum metric for all DOFs of each mesh element
end for

end for
j = argmax (ϵe)
for k = 1 to Nv do
S = S ∪ {j + (k − 1)Ne} // Sample all DOFs of sampled mesh element

end for
S = [es]

⊤ ∀ s ∈ S
end for
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Sm. This approach has been successfully applied to several practical aerodynamics

problems [68, 69].

The algorithm for this variant of GNAT sampling is provided in Alg. 2.

Algorithm 2 GNAT sampling, variant 1

Input: Number of desired samples Ns, seed sampling set S and operator S, regression
basis Ψ ∈ RN×Nr

Ns,e = ceil ((Ns − |S|)/(NvNr)) // Number of mesh elements to sample each iteration
for i = 1 to Nr do

if i == 1 then
ϵ = ψ1

else
c = argmin

y∈Ri

∥∥S [ψ1, . . . , ψi]y − Sψi+1

∥∥
ϵ = ψi+1 − [ψ1, . . . , ψi] c

end if
ϵ = abs (ϵ)
for all s ∈ S do

ϵs = 0 // Disregard indices already selected
end for
ϵe = 0 ∈ RNe

for j = 1 to Ne do
for k = 1 to Nv do

s = j + (k − 1)Ne

ϵe,j += ϵs // Sum metric for all DOFs of each mesh element
end for

end for
for j = 1 to Ns,e do

s = argmax (ϵe)
for k = 1 to Nv do
S = S ∪ {j+(k− 1)Ne} // Sample all DOFs of sampled mesh element

end for
ϵe,s = 0
S = [es]

⊤ ∀ s ∈ S
end for

end for

4. GNAT Sampling, Variant 2 : Preprint versions of the work by Peherstorfer et al. [76]

suggests a variant of the original GNAT sampling procedure. Instead of selecting

ceil (Ns/Nr) sample indices at each greedy iteration, the index i repeatedly loops

through the integer interval {1, . . . , Nr}, and only one sample index, for which

the greedy metric in Eq. 4.66 is greatest, is selected at each greedy iteration. This

can be thought of as a fine-grained alternative to the original GNAT algorithm,
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and theoretically approaches a more optimal selection at the cost of many more

evaluations of the greedy metric. This work appears to be the first direct comparison

of these two alternative sampling methods.

The algorithm for this variant of GNAT sampling is provided in Alg. 3.

Algorithm 3 GNAT sampling, variant 2

Input: Number of desired samples Ns, seed sampling set S and operator S, regression
basis Ψ ∈ RN×Nr

Ns,e = ceil (Ns/Nv)
Ns,m = ceil (|S| /Nv)
for i = 1 to Ns,e −Ns,m do

if i == 1 then
ϵ = ψ1

else
b = i % Nr

d = min (i, Nr)
c = argmin

y∈Ri

∥S [ψ1, . . . , ψd]y − Sψb∥

ϵ = ψb − [ψ1, . . . , ψd] c
end if
ϵ = abs (ϵ)
for all s ∈ S do

ϵs = 0 // Disregard indices already selected
end for
ϵe = 0 ∈ RNe

for j = 1 to Ne do
for k = 1 to Nv do

s = j + (k − 1)Ne

ϵe,j += ϵs // Sum metric for all DOFs of each mesh element
end for

end for
s = argmax (ϵe)
for k = 1 to Nv do
S = S ∪ {j + (k − 1)Ne} // Sample all DOFs of sampled mesh element

end for
S = [es]

⊤ ∀ s ∈ S
end for

4.6 The Sample Mesh

As mentioned in Section 4.5, sampling individual degrees of freedom of a non-linear

function is not equivalent to sampling the state variable arguments associated with those
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degrees of freedom, e.g., Sr (qc) ̸= r (Sqc). Specifically, the evaluation of the non-linear

function at a specific degree of freedom often requires access to all state variables at

that point in space. For example, solving the continuity equation of the Navier–Stokes

equations at a single discrete point in space requires access to both the density and the

velocity field. Further, the state at entirely different points in space may also need to be

sampled, e.g., to compute fluxes or gradients.

This is visualized in Fig. 4.1 in the context of a cell-centered finite volume discretiza-

tion with quadrilateral/hexahedral control volumes, with a second-order accurate flux

scheme. In this image, the blue cell indicates a control volume where at least one degree

of freedom of the non-linear function is to be computed. This type of cell is referred to

as a directly sampled cell. Red cells, or flux cells, are those which share a cell face with

directly sampled cells and are required for computing fluxes through the shared faces.

Yellow cells are those which are required for computing gradients for second-order state

reconstructions at cell faces, or for reconstruction of the state at directly sampled cell

vertices. These are referred to as gradient/vertex cells. The flux and gradient/vertex cells

are referred to as auxiliary cells, as they are required for calculating the directly sam-

pled degrees of freedom but are not directly sampled themselves. For two-dimensional

simulations, each directly sampled cell is accompanied by four flux cells and eight gra-

dient/vertex cells. For three-dimensional simulations, this increases to six flux cells and

26 gradient/vertex cells per directly sampled cell. These numbers are obviously lower for

directly sampled cells near physical domain boundaries.

At each of these cells, the fluid state (q̃c and/or q̃p), trial basis (Uc or Up) and

centering state (qc or qp), must be held in memory. At directly sampled and flux cells, any

thermodynamic/transport properties and state gradients must also be held in memory

and calculated at every sub-iteration of the solver. This gives a sense of how rapidly

the computational cost and memory consumption can increase with increased sampling.

Furthermore, one should not expect a linear correlation between the sampling rate and

the resulting computational cost of the hyper-reduced PROM.

Note, however, that for Ns ≪ N , the solution to the HPROMs (Eqs. 4.21, 4.30,
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Figure 4.1: Sampling schemes for 2nd-order flux scheme in 2D (left) and 3D (right).
Blue cells are directly sampled, red are flux cells, and yellow are gradient/vertex cells.

and 4.34) do not require access to the full N -dimensional state. The low-dimensional

latent state q̂c, q̂p can be advanced in time using only sampled degrees of freedom and

those auxiliary degrees of freedom required to evaluate Sr (·). The full-dimensional state

q̃c, q̃p ∈ RN can be reconstructed in the offline stage after the hyper-reduced PROM

has been computed. This motivates the idea of the sample mesh concept discussed by

Carlberg et al. [68]: only those mesh elements and associated state variables that are

strictly required to compute Sr (·) must be allocated in memory. Those mesh elements,

state variables, and additional variables which are not required are simply not allocated.

An example of a sample mesh for the transonic cavity flow presented in Section 6.1 is

displayed in Fig. 4.2. The sample mesh concept has deep ramifications for the compute-

and memory-scalability of PROMs.

The most obvious benefit of the sample mesh is, of course, a drastic decrease in

memory allocation. If the sample mesh accounts for 1% of the total mesh, the memory

consumption of the hyper-reduced PROM should be roughly 1% of that consumed by the

unsampled PROM. For sufficiently small sample meshes, HPROMs may fit into desktop

workstation or even laptop computer memory (usually 8-32 GB), eliminating the need

for high-capacity HPC node memory (usually 64-256 GB). This would thus enable the
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Figure 4.2: Example sample mesh for 2D transonic cavity flow, 1% sampling. Red elements
indicate cells included in the sample mesh.

use of HPROMs by industrial engineers who do not have access to HPC resources.

The sample mesh often has the additional benefit of improving load balancing. In

distributed-memory computing, load balancing refers to the equal distribution of the

computational load between parallel processing units. This equal distribution is critical

to minimizing the amount of time in which processing units are idle, waiting to send or re-

ceive data from other units before they can proceed with the calculation. Minimizing the

volume and/or frequency of data communications between units is of equal importance,

as the latency in transfers between units is orders of magnitude greater than the latency

between a computational unit and its on-chip cache or on-node memory. Mesh partition-

ing software such as METIS [160] attempts to assign an equal number of mesh elements

to each processing unit while minimizing the number of communications between units.

In general, a sample mesh naturally incurs fewer inter-process communications simply

by nature of containing fewer mesh elements. However, careful consideration of the inter-

action between sampled cells can assist the mesh partitioning software in finding improved

load distributions. In the case of METIS, which treats the unstructured finite volume

mesh as an unstructured graph, the cells are treated as graph nodes, and cells which

share faces are connected by a graph edge. An edge represents the two-way exchange of

information between two graph nodes (referred to as a point-to-point communication),

but in many instances no information exchange is required between cells in the sample

mesh. The most obvious exclusion is to remove all graph nodes (cells) which are not
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Figure 4.3: Mesh (graph) partitioning for load balancing. Some graph edges at finite volume
cell faces can be excluded (left), while others are required (right).

sampled. Additionally, any graph edges between two gradient/vertex cells which do not

originate from the same directly sampled cell can be eliminated. Figure 4.3 displays a

scenario in which edges between cells which share a face may be eliminated, and another

scenario in which they may not. Eliminating edges in three spatial dimensions follows a

similar process. Eliminating as many graph edges as possible helps METIS to compute

an optimal load balancing, as it no longer needs to consider possible edge cuts where

edges have been eliminated.

As will be shown in Chapter 6, this approach to sample mesh partitioning can even

lead to meshes which require zero MPI communications (besides collective operations).

This occurs when sampling produces a number of small, disjoint graphs, i.e., individual

graphs distributed in space which are not connected by any edges. On the other hand,

fewer large, contiguous graphs arising from clustered sampling tend to result in fewer

total nodes and smaller partition sizes, though they generally require more edge cuts to

effectively load balance. The sparse sampling strategy can have a significant effect on

this balance, as will be discussed in Chapter 6.
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Chapter 5

Testbed for Data-driven Models of Premixed Flames

To begin, a simple model of one-dimensional premixed combustion is investigated in order

to explore the uses and drawbacks of novel neural network ROM approaches, specifically

order reduction by deep convolutional autoencoders and system evolution by either non-

linear manifold PROMs or recurrent neural networks. The open-source software devel-

oped for this work is discussed, along with the mechanics of the neural network ROMs

and the respective successes and failures of both linear subspace and non-linear manifold

ROMs.

5.1 PERFORM: Open-source ROM Development

Before describing the one-dimensional premixed flame model which is examined in this

chapter, details are provided for the Prototyping Environment for Reaction Flow Order

Reduction Methods (PERFORM) [161], an open-source Python package developed solely

by the author for the purpose of studying ROMs for simple reacting flows. This work

was motivated by a general dearth of research on ROMs for reacting flows, which may be

attributed to the complexity of reacting flow modeling combined with a lack of approach-

able open-source libraries for combustion CFD. Originally developed for internal use by

collaborators, PERFORM is equipped with a self-contained one-dimensional, compress-

ible reacting flow solver which may be queried by a separate ROM framework which is

designed for code flexibility and expansion. The package thus serves as a general-purpose

testbed for novel ROM methods in both its capacity to generate challenging datasets for
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Figure 5.1: Simplified PERFORM class hierarchy for flow solver (left) and ROM solver (right).
Class instances in blue have been implemented, those in orange are under development.

non-intrusive approaches, as well as its expressive construction which allows for rapid

implementation of novel intrusive approaches. The 1D benchmark problems enabled by

PERFORM should not be viewed as the terminal stage of ROM development; low-level,

massively parallel codes are the ultimate goal of any PROM method. PERFORM aims

to minimize ROM development and initial testing time, rather than computational time.

In this sense, PERFORM lowers the barrier to entry for ROM researchers who may have

little experience with combustion modeling or low-level programming languages, allowing

them to perform research with a challenging, practical class of problems.

The rough structure of PERFORM is visualized in Fig. 5.1. As mentioned previ-

ously, the 1D finite-volume flow solver and ROM framework are purposely segregated

such that ROM method developers do not need to interact with the flow solver beyond

querying functions which calculate, e.g., f (·), r (·). The flow solver, packaged under

the class SolutionDomain, contains generic interfaces for the standard trappings of any

finite volume flow solver, including gas models (GasModel), chemical reaction models

(ReactionModel), fluxes (Flux), temporal integrators (TimeIntegrator), gradient lim-

iters (Limiter), and in situ data visualizations (Visualization). These interfaces are

easily expanded beyond PERFORM’s current offerings thanks to judicious use of Python’s

class inheritance and polymorphism.

The overarching reduced-order model solver class, RomDomain, is designed to provide

maximum flexibility to ROM developers. A given ROM solve may be decomposed into

several self-contained RomModels, which govern how the low dimensional representation
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for a subset of flow variables is evolved in time. For example, one model might target

pressure and velocity, while another might target temperature and species mass fractions

(linked to the “scalar” ROM concept explored by Zhou [158]). Generic interfaces for spec-

ifying target variables (RomVariableMapping), defining mappings from the latent space

to the trial manifold (RomSpaceMapping), and specifying non-standard time evolution

methods (RomTimeStepper) are similarly simple to expand to meet development needs.

Generic interfaces to machine learning libraries such as TensorFlow are also provided.

PERFORM is available as a public repository1, and comes with several benchmark

cases which are ready to run out-of-the-box. These cases include a Sod shock tube, a

transient multi-species contact surface (with and without artificial acoustic forcing), a

stationary premixed flame (with artificial acoustic forcing), and a transient premixed

flame (with and without artificial acoustic forcing). This last case will be analyzed

in the following sections. The benchmarks address several of the critical issues facing

the broader ROM community, particularly the difficulty of propagating transient flow

features beyond the training dataset and making accurate predictions in a complex pa-

rameter space. The code has already seen successful use in developing accurate and

robust linearized ROMs [162] and investigating true ROM predictivity via basis and

hyper-reduction sampling adaptation [78].

5.2 Acoustically-forced Transient Flame

The one-dimensional model of an acoustically-forced, freely-propagating premixed flame

is now described. Similar constructions have been presented in prior work by the author

and collaborators [75, 163]. The spatial domain is one-dimensional, spanning the length

x ∈ [0.0, 1] cm, subdivided into 1,024 cells of equal length. As with GEMS, a second-

order Roe flux computes the inviscid fluxes, while gradients are computed by a central

finite-difference stencil and limited by the face-oriented limiter of Barth and Jespersen.

The chemical system is composed of two fictitious species, a “reactant” species and

a “product” species, having the calorically-perfect gas properties given in Table 5.1. In

1https://github.com/cwentland0/perform
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Species MW (g/mol) cp,l (kJ/kg-K) h◦−l (kJ/kg) µl (kg/m-s) Prl Scl

Reactant 21.32 1.538 -7,4320 7.35e-4 0.713 0.62
Product 21.32 1.538 -10,800 7.35e-4 0.713 0.62

Table 5.1: Constant thermodynamic and transport properties of fictitious species.

this case, the fluid has a constant viscosity, unlike results in Section 6.1 which computes

viscosity via Sutherland’s law. Note that the only difference between the two species is

their enthalpy of formation. The reactant is converted to product by a single irreversible

finite-rate reaction, governed by the Arrhenius parameters A = 2.12 × 1010 1/s, b = 0,

and Ea = 2.025× 108 kJ/mol.

To begin, the solution is initialized with 100% reactant at 300 K in the region x ∈

[0.0, 0.2] cm, and the remainder of the domain is initialized with product at 2,400 K. The

full domain is initialized with a pressure of 1 MPa and zero velocity. An approximate

characteristic boundary condition is enforced at the outlet, and a fixed velocity is enforced

at the inlet. Using BDF2 integration with a time step of 25 ns, the simulation is started

with a velocity of 1 m/s at the inlet, which is manually adjusted until the flame is

determined to be suitably “stationary,” balancing the bulk advection downstream with

the reaction/diffusion upstream. At this point, 10 m/s is added to the velocity throughout

the domain, and the primitive state appears as shown in Fig. 5.2. This is the initial

condition from which all further FOM simulations are computed. Further, for all further

simulations (ROM or FOM), the inlet boundary condition is changed to an approximate

characteristic boundary condition.

To build a dataset of parametrically-varied simulations, an artificial pressure forcing

is introduced to the outlet boundary condition. This forcing is computed as a sinusoidal

perturbation about the outlet mean-flow pressure, of the form

pb = p [1 + A sin (2πft)] (5.1)

where p is the outlet mean-flow pressure (approximately 965 kPa in this case), A is the

percentage amplitude, and f is the forcing frequency. For all cases, the amplitude is
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Figure 5.2: Initial condition for propagating flame FOM simulations.
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Training Validation Testing

100 118.75 87.5
112.5 156.25 93.75
125 193.75 106.25
137.5 131.25
150 143.75
162.5 168.75
175 181.25
187.5 206.25
200 212.5

Table 5.2: Training, validation, and testing dataset splits, by forcing frequency (in kHz).

1%. A total of 21 FOM simulations are computed with different forcing frequencies f ,

ranging from 87.5 to 212.5 kHz at intervals of 6.26 kHz. Each simulation is allowed to run

for 23,000 iterations, or 575 µs. Snapshots of the primitive state are collected at every

10 iterations, starting after 3,000 iterations (t = 75µs). for a total of 2,001 snapshots

per FOM simulation (including the initial condition). The data are then split into nine

training, three validation, and nine test sets. The first group will be explicitly used

to train the data-driven models, the second will be used for neural network training to

inform model generalizability during the learning process, and the third will be used to

evaluate the predictive capabilities of the resulting models.

Examples of several relevant flow fields are given in Figs. 5.3 and 5.4. Pressure snap-

shots for several different forcing frequencies are shown in Fig. 5.3, where it is clear that

the acoustic behavior is significantly affected by the disparate sound speeds between the

hot products and cold reactants, increasing the frequency and amplitude of the signal as

it propagates upstream. Figure 5.4 shows two relevant indicators of the flame’s propaga-

tion downstream, marked by a steep rise in temperature where cold reactant is converted

to hot product, and the peak of maximum heat release indicates the precise location of

this reaction.

This case presents several interesting challenges for data-driven modeling and PROMs

in particular. The system is characterized by three different spatio-temporal scales,

namely those associated with the bulk advection, acoustics, and reaction. Traditional ap-

proaches to model reduction often struggle to accurately model phenomena such as sharp
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Figure 5.3: Forced pressure field examples, f ∈ {100, 150, 200} kHz.

Figure 5.4: Flame progression for data collection period t ∈ [75, 575] µs.
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Figure 5.5: Intrusive linear subspace MP-LSVT PROM temperature (left) and pressure (right)
snapshots, various Np.

gradients, propagating waves, and highly non-linear multi-physics couplings. As will be

shown shortly, classical methods (and even some novel machine learning approaches)

generally fail to make accurate predictions.

5.3 Failure of Intrusive Linear PROMs

To begin, linear subspace MP-LSVT PROMs are tested. The primitive trial basis is

computed from the concatenated training datasets (accounting for 18,009 snapshots),

centered about the time-average mean of the dataset and normalized by min-max scaling.

Details on this centering and scaling operation can be found in Section 8.1. For a given

forcing frequency, the PROM is restarted from the corresponding primitive state snapshot

at t = 75µs and allowed to run for 20,000 iterations with a time step of ∆t = 25 ns.

Unfortunately, all linear subspace PROMs performed abysmally for all forcing fre-

quencies. This can be plainly seen in Fig. 5.5, where low trial space dimensions (here,

Np = 3, 10) results in smeared gradients and decoherence of the pressure signal. At

higher trial space dimensions (Np = 50), the solution is entirely unstable, devolving into

a meaningless flow field.

The primary reasons for these failures can be observed from the linear projection

of the solution onto the trial space. Figure 5.6 shows the projected temperature and

pressure fields. For the temperature field, which experiences a strong gradient at the
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Figure 5.6: Linear projections of temperature (left) and pressure (right) fields, f = 150 kHz,
various Np.

flame, a linear representation will invariably result in significant under- and overshoots

in the vicinity of the jump. Increasing the trial space dimension decreases the magnitude

of these overshoots but gives rise to high-frequency “ringing” behavior near the flame.

This is similar to the Gibbs phenomenon observed in approximating discontinuities with a

Fourier series. The accuracy of the projected pressure field is similarly poor, though given

the relatively smooth nature of this field, increasing the trial basis resolution converges

to an accurate approximation without significant discrepancies.

The poor performance of linear subspace PROMs in modeling advection-dominated

flows with strong gradients comes as no surprise, given the previous discussion of slowly-

decaying Kolmogorov n-widths in in Section 3.1.2. Non-linear alternatives are explored

next, in an attempt to alleviate these issues.

5.4 Autoencoder Non-linear Manifold PROMs

As proposed by Lee and Carlberg [116], non-linear manifold PROMs have the potential to

more accurately represent flows characterized by a slowly-decaying Kolmogorov n-width.

The theoretical ability of neural networks to approximate arbitrary non-linear functions

and the expressiveness of over-parameterized deep neural networks make them appealing

candidates for the representation of a non-linear manifold on which to compute PROMs.

As outlined in Section 3.1.2, the autoencoder architecture allows for unsupervised learning
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Layer Type Output Size

1 Convolution 512 × 16
2 Convolution 256 × 32
3 Convolution 128 × 64
4 Dense Np

Table 5.3: Convolutional encoder dimensions. Decoder mirrors encoder with transpose con-
volutional layers.

of such a mapping directly from flow field data.

Autoencoders are trained using the same datasets described in Table 5.2, though the

validation training datasets are used to evaluate the model’s performance during training

(without participating in actual gradient descent process). The encoder is composed

of three convolutional layers, each with a kernel size of 8, a stride size of 2, and same

zero padding. These are followed by a fully-connected (“dense”) layer which maps the

encoder output to the latent dimension Np. The output size (i.e., the number of filters) for

the convolutional layers is summarized in Table. 5.3. The decoder mirrors the encoder

via transpose convolutional layers. All layers are equipped with the Swish activation

function, except for the final decoder output layer, which uses a linear activation. Network

weights are initialized with the Glorot (a.k.a. Xavier) uniform distribution, and biases

are initialized to zero.

Each network is trained for a maximum of 5,000 epochs, with a batch size of 25 and

the mean-squared error loss function. The Adam optimizer with a learning rate of 1×10−4

is utilized, and early stopping halts training if the validation loss does not improve over

500 epochs. All network construction, training, and evaluation is computed using the

TensorFlow library.

The resulting autoencoders display exceptional accuracy in approximating the flame

flow fields. Figure 5.7 shows the closest solution on the trial manifold (in the Euclidean

norm) for temperature and pressure field snapshots. Even for Np = 3, the representation

is nearly perfect. Very close inspection reveals some low-amplitude noise, but larger latent

space dimensions appear to entirely eliminate this. At first glance, this would appear to

bode well for the resulting non-linear manifold PROMs.
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Figure 5.7: Approximation of temperature (left) and pressure (right) fields on solution mani-
fold, f = 150 kHz, t = 250µs, various Np.

Figure 5.8: Intrusive non-linear manifold MP-LSVT PROM snapshots, various Np.
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Model Runtime (hours) Cost (FOM runs)

Online FOM (×1) 0.42 1
Training, Np = 3 5.8 13.81
Training, Np = 10 4.9 11.67
Training, Np = 50 5.5 13.1
Online CAE PROM, Np = 3 7.2 17.14

Table 5.4: Relative offline/online computational costs for CAE PROMs. Non-increasing CAE
training costs are due to early stopping.

The same simulation configuration used for the linear subspace MP-LSVT PROMs is

repeated here. Unfortunately, the autoencoder non-linear manifold PROMs also perform

very poorly. In contrast to the over-smooth solutions generated by the linear trial spaces,

the non-linear manifold PROMs suffer from excessive low-amplitude noise in the predicted

solution. This is made apparent in Fig. 5.8, revealing that the solution quickly devolves

into highly erroneous fields where the approximate solution shown in Fig. 5.7 was so

accurate. Ultimately, these non-linear PROMs suffer from an accumulation of error over

a large number of time steps. These small errors appear to be amplified by the non-

linear nature of the decoder: small deviations in the latent variables may lead to drastic

changes in the predicted solution. Whereas linear trial space are relatively limited in

their expressiveness, neural networks have the ability to generate both very accurate and

very wrong solutions.

Not only is the accuracy of these non-linear manifolds PROMs disappointing, the cost

to train and evaluate these models is exorbitant. Table 5.4 summarizes the cost of training

and computing the neural network models, revealing that each step accounts for over ten

times that of a single FOM simulation. The vast majority of the computational cost for

the non-linear manifold PROM lies in calculating the Jacobian of the decoder, which relies

on slow automatic differentiation procedures. Opposed to the simple analytical Jacobians

possible for linear representations, it is difficult to justify the cost of this method given

its experimental performance.
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Figure 5.9: Encoded latent state trajectories, f = 150 kHz, Np = 10.

5.5 Recurrent Neural Network ROMs

A number of efforts have been undertaken in applying non-intrusive approaches to

reduced-order modeling. Such approaches do not require access to or even understanding

of the underlying numerical solver, but only the outputs of the solver. Unlike PROMs

which directly manipulate the governing equations, non-intrusive approaches are con-

structed wholly from data and evaluated independently from the numerical solver. Promi-

nent examples include operator inference [54, 164], Koopman learning [131], and a host

of neural network approaches [55, 56, 165].

This work follows the method first formulated by Gonzalez and Balajewicz [55], which

proposes the use of a long short-term memory (LSTM) network to model the evolution

of the latent variables in time. The LSTM is a specific architecture of recurrent neural

networks (RNNs), a form of neural network which performs auto-regressive predictions.

That is, the network takes as input a series of past observations to make a prediction for

the next step in the series, after which point that prediction is fed back into the network

as input for the proceeding prediction, and so on. This design makes LSTMs ideal for

time-series predictions, as in the case of reduced-order models for dynamical systems.

Details on the mathematics of LSTMs (and RNNs more broadly) can be found in the

review by Yu et al. [166].
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Figure 5.10: Online temperature (left) and pressure (right) field predictions for LSTMs trained
with POD trajectories, t = 500µs, f = 131.25 kHz, various Np.

For this work, two variants of LSTMs are trained: one trained using the modal coeffi-

cient trajectories associated with the linear trial space from Section 5.3, and one trained

using the encoded latent variable trajectories associated with the autoencoder from Sec-

tion 5.4. This effectively compares the approaches of Maulik et al. [165] and Gonzalez

and Balajewicz [55], respectively.

The LSTM training process is as follows. First, the training data are projected (for

the POD representation) or encoded (for the CAE representation). Figure 5.9 displays a

representative trajectory of the latent variables for the autoencoder with Np = 10. Then,

standalone LSTM networks are trained using contiguous time windows of the training

latent variable data. For this work, the LSTMs are constructed from two LSTM layers,

followed by a single fully-connected layer that maps to the latent dimension Np. The

output size of both LSTM layers is 200, while the lookback window for the network

inputs is 50 time steps. The LSTM layers are equipped with tanh activation functions,

and the dense layer with a linear activation. The training parameters are the same as for

the autoencoders.

Evaluating these non-intrusive ROMs reveals stark contrasts in performance between

the POD and CAE representations. Figure 5.10 displays predictions of the temperature

and pressure fields near the end of the simulation window, for an unseen forcing frequency

f = 131.25 kHz. As with the linear subspace PROMs, the ability of the POD modes

to approximate the flow field remains extremely poor. At higher latent dimensions, the
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Figure 5.11: Online temperature (left) and pressure (right) field predictions for LSTMs trained
with CAE trajectories, t = 500µs, f = 131.25 kHz, various Np. Note that Np = 3 was unstable.

(a) Upstream f . (b) Flame location.

Figure 5.12: Aggregate predictions of QoIs across all forcing frequencies, all Np. The best
predictions for each model are marked by a bold line.

prediction appears to stagnate entirely. Although the pressure field retains an oscillatory

nature, the predicted amplitude and frequency of the signal are wholly incorrect.

The LSTMs equipped with an autoencoder representation, on the other hand, perform

exceptionally well. Figure 5.11 shows the same time instance as in Fig. 5.10, but the long-

term flow behavior is predicted very well. The temperature profile remains sharp and

has progressed at similar speed as in the FOM, and the amplitude and frequency of the

pressure signal appear to be preserved (albeit with some phase shift). However, it must

be noted that the case for Np = 3 was unstable, unlike that of the POD representation.

Comparing these simulations quantitatively can be slightly challenging, as a minor

phase shift in the predicted pressure field can result in enormous ℓ2-norm error mea-
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surements. Instead, two quantities of interest are measured: the predicted dominant

frequency of the pressure signal at x = 0.25 cm (computed from the FFT of a point

monitor, compared by amplitude), and the time-average accuracy of the flame location,

as measured by the point of maximum heat release. Figure 5.12 summarizes the findings

across all forcing frequencies and latent dimensions Np ∈ {3, 5, 10, 20, 50, 100, 200}. The

best predictions are connected by a bold line, while all others appear as translucent lines.

Clearly, the LSTMs with a CAE representation are capable of predicting these QoIs with

much higher fidelity than those with a POD representation. In fact, as hinted by the

field plots in Fig. 5.10, the frequency predictions of the the POD LSTM may be slightly

misleading, as spurious frequencies of varying amplitudes may have been introduced.

5.6 Conclusions

This chapter highlights the open-source package PERFORM, developed by the author to

assist the community in implementing and applying novel ROM methods for a challenging

class of advection-dominated reacting flows. The flexible ROM API minimally coupled

with a one-dimensional reacting compressible flow solver enables rapid prototyping and

performance assessment for systems beyond the standard toy problems.

The utility of PERFORM is demonstrated by analyzing ROM accuracy in making

parametric predictions for an acoustically-forced model premixed flame, specifically in-

vestigating traditional linear subspace PROMs, deep autoencoder non-linear manifold

PROMs, and non-intrusive LSTM ROMs. Both the linear and non-linear intrusive

PROMs exhibit terrible performance, despite the autoencoder’s excellent representation

of the solution manifold at extremely low latent dimensions. On the other hand, the non-

intrusive LSTM ROM displayed remarkable predictive capabilities in modeling both the

average flame speed and upstream acoustic content. However, this is only true when the

LSTM is trained on latent variable trajectories generated by the neural network autoen-

coder. Those LSTMs trained on POD modal coefficients failed to accurately represent the

transient flame solution, indicative of the general inability to generate a low-dimensional
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and linear representation of sharp gradients and propagating waves.

Although similar results have been demonstrated for simpler canonical problems

(Burgers’ equation, shallow water equations), the ability to quickly implement novel

ROM methods like those discussed above may be an invaluable tool for assessing their

practical viability. In this sense, PERFORM stands as both a lower barrier to entry for

ROM practitioners and a challenge to tackle more difficult modeling problems.
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Chapter 6

Scalable PROMs for Multi-scale, Multi-physics Flows

For the one-dimensional simulations explored thus far, computational cost is not of par-

ticular concern. Such numerical experiments can be evaluated using laptop or desktop

computers without much attention to memory and compute scalability. Exercises in

hyper-reduction for PROMs of such small dimension are largely academic, as even the

cost of the full-order model measures in core-seconds or core-minutes. For more practical

two- and three-dimensional systems, however, the computational cost of evaluating the

FOM and unsampled PROMs is significantly larger, requiring high-performance com-

puting resources and parallelism across hundreds or thousands of cores. The benefit of

hyper-reduction in enabling scalable computations for PROMs is more readily apparent

for such high-dimensional non-linear systems.

In this chapter, HPROMs are analyzed for three multi-scale systems: transonic flow

over an open cavity, a single-element model rocket combustor, and a multi-element labora-

tory rocket combustor. The cavity flow system acts as a proof-of-concept for non-reacting

flows, while the rocket combustors more deeply explore the challenges in developing robust

and scalable HPROMs for reacting flows. Critically, the performance of several gappy

POD sampling algorithms are compared, evaluating both the offline cost of the sample

selection algorithms and their effects on memory consumption, online computational cost,

and accuracy.

Throughout this chapter, results are presented on computational cost savings induced

by HPROMs as a speedup ratio in terms of core-hour consumption (core time). Core

time is computed by multiplying the amount of wall time spent running the simulation
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by the number of CPU cores used to compute the simulation. Core time metrics provide a

more complete measurement of computational cost, though wall time measurements may

be useful in assessing performance for time-sensitive applications. The speedup ratio is

computed as the ratio of the FOM core time to the PROM core time measurement. For

example, if a FOM calculation using ten cores took five hours, and a PROM calculation

using two cores took one hour, the core time speedup ratio would be 25. Note that

run-time measurements are computed as the average time across all processes spent

performing significant floating-point operations (calculation time) and communicating

data between processes via MPI (MPI time). I/O timing (e.g., writing field or probe

data to disk) is excluded, as it can be a volatile and unreliable measure, depending on

hardware limitations and file system usage. There is some inaccuracy in comparing run-

times and computational cost from calculation and MPI timings alone, as the overall

computing time is not equal to the average across all parallel processes. Nor is it the sum

of the maximum calculation time and maximumMPI time, as the process which computes

the most floating-point operations may not be the same process which communicates the

most data (or waits idly for other processes). However, this approach is as fair a measure

as can be reasonably be expected.

All simulations presented in this section are computed on the Cray XC40/50 Onyx

cluster maintained by the U.S. Army Engineering Research and Development Center. A

single compute node features two Intel E5-2699v4 Broadwell chips (2.8 GHz), each with

22 computational cores for a total of 44 cores per node. Nodes have 121 GB of accessible

memory, and are connected by Cray Aries interconnects.

6.1 2D Transonic Flow Over an Open Cavity

To begin this section, two-dimensional transonic flow over an open cavity is examined.

Flow over open cavities has been studied extensively due to its practical applications

in aviation (e.g., bomb or landing gear bays) and the interesting acoustic phenomena

it exhibits, particularly the resonant coupling of the cavity leading edge shear layer and
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acoustic feedback from the cavity trailing edge. Pioneering experimental work in the mid-

1900’s such as that by Roshko [167], Krishnamurty [168], and Rossiter [169], numerical

modeling work such as that by Colonius et al. [170], Rowley et al. [171], and Larchevêque

et al. [172], and more recent experimental efforts such as those by Wagneret al. [173]

and Casper et al. [174] have investigated the effects of cavity dimensions, freestream flow

regime, and turbulence on the behavior of this aeroacoustic coupling. This work follows

the research conducted by Tezaur et al. [175, 157] in investigating PROM performance

in modeling two-dimensional flow over a rectangular cavity at a Mach number of 0.6.

6.1.1 Full-order Model

The computational domain is modeled as a rectangular cavity set in a flat wall, with the

leftmost, rightmost, and topmost boundaries of the domain open to the atmosphere. The

geometry is shown in Fig. 6.1. The cavity is L = 91.71 mm long, and D = 45.855 mm

deep (L/D = 2.0). The wall extends 290.8 mm (a little over three cavity lengths) both

upstream and downstream of the leading and trailing edges of the cavity, respectively,

for a total domain length of 673.31 mm. The upper boundary (open to air) is set 290.8

mm from the main wall. No-slip wall boundary conditions are enforced at all walls. A

characteristic inlet boundary condition is enforced at the left-most domain boundary,

and characteristic outlet boundary conditions are enforced at the topmost and rightmost

domain boundaries. These characteristic boundaries allow acoustic waves to exit the

domain with minimal reflection. The mesh is composed of 125,000 quadrilateral cells,

resulting in a total number of degrees of freedom of N = 500,000. A red dot in Fig. 6.1

marks the location of a point monitor which will be measured throughout this section.

It is placed halfway up the aft wall of the cavity, at (x, y) = (91.71, −22.93) mm. Note

that this full-order model should not be considered a truly accurate representation of

flow over an open cavity, and this thesis makes no such claims. Beyond the measurement

of the acoustic content and comparison against an empirical model in Fig. 6.6, results

presented in this chapter simply aim to model the dynamics present in this approximate

simulation.
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Figure 6.1: Cavity flow domain.

MW (g/mol) cp (kJ/kg-K) µ (kg/m-s) Pr Sc

28.9604 1004.84 8.46e-7 0.72 0.62

Table 6.1: CPG properties of air for cavity flow case.

The working fluid is air, modeled as a calorically-perfect gas with the properties given

in Table 6.1. Transport and thermodynamic properties are computed using the simplified

analytical forms described in Section 2.1.1. The free-stream velocity is 208.7816 m/s in

the +x-direction, the pressure is 25 Pa, and the temperature is 300 K. The resulting

Mach number of this flow regime is approximately 0.6, and the Reynolds number based

on the cavity length is approximately 6,500.

The FOM is initialized with free stream conditions outside the cavity, and the inside

of the cavity is initialized with free stream pressure and temperature, and zero velocity.

The physical time step for the FOM simulation is ∆tFOM = 1 µs. Initial transients are

allowed to dissipate and statistically-steady flow is established over 100 ms. After this

point, the simulation is continued for 10 ms, during which the state is saved to disk at

every physical time step, resulting in 10,001 snapshots (including q (t = 100 ms)). All

PROM simulations are restarted from t = 100 ms. Several instantaneous flow field

examples are shown in Figs. 6.2–6.4. Particular attention is drawn to the oscillatory

pressure field displayed in Fig. 6.2: this emission of pressure waves from the trailing edge

of the cavity is the result of the shear layer (originating from leading edge) impinging on
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Figure 6.2: Cavity pressure field at t = 104 ms.

Figure 6.3: Cavity pressure field at t = 104
ms, zoomed view.

Figure 6.4: Cavity y-velocity field at t = 104
ms, zoomed view.

the trailing edge. The shear layer rollup (implied by the y-velocity field in Fig. 6.4) due

to the Helmholtz instability and the pressure perturbation that travels upstream results

in several resonant tones. Pressure measurements at the aft wall over the 10 ms data

collection period is shown in Fig. 6.5.

For this flow regime and cavity geometry, the formula of Rossiter [169] (with α = 0.25,

κ = 0.57) predicts the first three acoustic modes to be f = {725.2, 1, 692.1, 2, 659.1}

Hz. As a rough confirmation of model suitability, 100 ms (t ∈ [100, 200] ms) of pressure

data are collected from the aft wall point monitor. The signal is filtered using a low-pass

fifth-order Butterworth filter with a critical frequency of 20 kHz, and the power spectral

density is computed by Welch’s method with a window of 25 ms and 75% window overlap.
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Figure 6.5: Pressure probe measurements
from aft wall (t ∈ [100, 110] ms).

Figure 6.6: Sound pressure level of aft wall
pressure signal (t ∈ [100, 200] ms). The first
three Rossiter frequencies are marked in red.

The resulting sound pressure level is plotted in Fig. 6.6, where the first three predicted

Rossiter frequencies are marked in red. Although slightly overpredicting the first mode

and underpredicting the third mode, this is a reasonable match in comparing an empirical

fit model and a two-dimensional numerical simulation.

The POD trial bases are computed from the 10,001 snapshots of the conservative and

primitive variables. The POD residual energy decay is displayed in Fig. 6.7. Achieving

1%, 0.1%, and 0.01% of the conservative state POD residual energy requires 20, 73, and

155 modes respectively. For the primitive state, this increases to 26, 92, and 180 modes

respectively. Although this is a fairly simple problem without any reaction phenomena,

this slow POD residual energy decay exhibits how traveling waves and large fluctuations

in the unsteady flow field can require a large number of trial bases to approximate accu-

rately. Indeed, the primitive and conservative variable projection error plots in Fig. 6.8

indicate that over 125 modes are required to decrease the projection error of velocity and

momentum magnitudes below 0.1% relative error.

6.1.2 Unsampled PROMs

The performance of unsampled Galerkin, LSPG, and MP-LSVT PROMs is examined

first. As mentioned previously, the application of projection-based ROMs alone does not

result in computational cost reduction, but still serves as a good performance baseline. If

the unsampled PROM performs poorly, the hyper-reduced PROM can hardly be expected
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Figure 6.7: Cavity POD residual energy for conservative and primitive state datasets.

(a) Primitive variables (b) Conservative variables

Figure 6.8: Cavity time-average POD projection error.
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(a) ∆t = ∆tFOM (b) ∆t = 2.5×∆tFOM

(c) ∆t = 5×∆tFOM (d) ∆t = 10×∆tFOM

Figure 6.9: Cavity unsampled PROM time-average error, various ∆t.

to perform well.

A trial basis dimension study and time step size study is conducted. The trial basis

dimension Nc/Np is swept from 25 modes to 200 modes at 25-mode intervals. Four time

step sizes are examined: ∆t ∈ {1, 2.5, 5, 10} µs, or 1, 2.5, 5, and 10 times that of the

FOM simulation. As has been documented by previous work [69, 75, 125], increasing

the PROM time step often achieves computational speedup with negligible increase in

error relative to PROMs for which ∆t = ∆tFOM, up to a point. Average error results

for each evaluated time step are displayed in Fig. 6.9. Several indicative pressure probe

measurements are displayed in Fig. 6.10.

Unremarkably, the LSPG and MP-LSVT PROMs outperform the Galerkin PROMs

at all mode counts and time steps. Further, the LSPG and MP-LSVT PROMs generally

exhibit non-increasing accuracy with trial basis enrichment, while error often increases
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(a) MP-LSVT method, various Np. (b) Nc, Np = 150, various methods.

Figure 6.10: Cavity unsampled PROM probe measurements, ∆t = 5×∆tFOM.

with trial basis enrichment for the Galerkin PROMs. For all time steps and trial basis

dimensions evaluated, the LSPG and MP-LSVT PROMs perform similarly. This is not

unexpected, as this is a non-reacting simulation which does not involve stiff source terms,

extremely disparate spatio-temporal scales, or poor conditioning from which traditional

LSPG PROMs might suffer. As mentioned previously, increasing the PROM time step

may result in “free” computational cost savings. Indeed, increasing the PROM time step

to ∆t = 2.5×∆tFOM generates virtually no error increase for the LSPG and MP-LSVT

PROMs, and even improves the performance of the Galerkin PROMs. However, at higher

time step sizes, the accuracy of all PROMs for roughlyNc, Np > 50 deteriorate drastically.

In fact, for ∆t = 10×∆tFOM, accuracy improvement via trial basis enrichment saturates

at Nc, Np = 50, never dropping below 0.5%.

The pressure probe monitors in Fig. 6.10 display largely unsurprising results. As seen

in Fig 6.10a, a very low trial basis dimension (Np = 25), the solution quickly deviates

and fails to reconstruct the FOM data faithfully. Large over- and under-shoot in the

unsteady pressure signal are observed, and by the end of the simulation period the signal

has devolved into small, unorganized fluctuations. Increasing the resolution to Np = 50

improves the signal reconstruction, although small under- and over-shoot is observed by

t = 103 ms. This small discrepancy is only marginally improved by increasing the trial

basis dimension to Np = 75, in agreement with the converging average error shown in

Fig. 6.9c.
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Figure 6.11: MP-LSVT unsampled PROM computational cost, relative to FOM cost, various
∆t.

The computational cost of the unsampled MP-LSVT PROMs is now examined. Re-

sults are nearly identical for equivalent Galerkin and LSPG PROMS. As discussed pre-

viously, projection-based ROMs alone should not produce any significant computational

cost savings, and in fact should increase cost due to lifting the state to the full-dimension

and projecting the non-liner function onto the test space. Figure 6.11 quantifies just how

much this change affects the run-time of the unsampled PROM. Note that using the same

time step size as that of the FOM, the unsampled PROM is always more expensive than

the FOM (below 1 on the y-axis) no matter the trial basis dimension. This highlights the

necessity of hyper-reduction: projection-based order reduction of the governing system

alone, even for extremely low trial/test basis dimensions, does not improve PROM com-

putational cost. For ∆t = 2.5×∆tFOM, the unsampled PROM only achieves speedup for

Np < 100. This trend continues to improve the speedup for ∆t = 5×∆tFOM, 10×∆tFOM,

though prior results showed that PROM accuracy quickly deteriorates at high time steps.

For Np = 100 and ∆t = 10×∆tFOM, the unsampled PROM is only capable of achieving

three times speedup, which is hardly impressive given that these results only reconstruct

the training period. To realize significant cost savings, hyper-reduction must be applied.
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(a) Random (b) Eigenvector

(c) GNAT V1 (d) GNAT V2

Figure 6.12: Cavity sample mesh examples, Nr = 250, Ns = 2.5%×N .

6.1.3 Hyper-reduced PROMs

For the sake of brevity, only MP-LSVT HPROMs are examined. As will be seen in

Section 6.2, Galerkin and LSPG PROMs appear unsuitable for practical reacting flows,

and will not be discussed thereafter. All results presented in this section utilize a trial

basis dimension of Np = 150. All gappy POD regressor bases are constructed from POD

modes of the conservative field dataset, i.e., Ψ = Uc ∈ RN×Nr , as detailed in Section 4.4.2

The accuracy and computational performance of the HPROMs is examined for sam-

Sampling Rate (%) 0.5 0.75 1 1.75 2.5 3.75 5.0 7.5 10

Cores 2 2 2 2 3 5 6 9 13
Cells/core (approx.) 312 469 625 1,093 1,042 938 1,042 1,042 962

Table 6.2: Partitioning for cavity HPROM sample meshes.
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pling rates of Ns ∈ {0.5, 0.75, 1.0, 1.75, 2.5, 3.75, 5.0, 7.5, 10}% × N , and gappy

POD regressor dimensions of Nr ∈ {150, 200, 250, 300}. Views of indicative sam-

ple meshes constructed using the four sampling algorithms detailed in Section 4.5.2 are

shown in Fig. 6.12. As in Section 4.6, blue cells indicate directly-sampled cells, red cells

indicate flux cells, and yellow cells indicate gradient/vertex cells. The three greedy sam-

pling algorithms generate sample meshes which are quite similar in some ways: the vast

majority of sampled cells are located in the shear layer originating from the cavity lead-

ing edge and meandering downstream, as well as in the strong recirculation region in

the downstream half of the cavity. The most glaring difference appears to be that the

eigenvector-based algorithm also selects a number of points in the free-stream flow. Note

that this region, although dominated by the free-stream conditions, experiences strong

pressure oscillations emitted from the cavity trailing edge. Interestingly, the GNAT V1

algorithm selects sample cells in extremely tight clusters, while GNAT V2 generates a

relatively more diffuse sample mesh, and the eigenvector-based algorithm’s sample mesh

is even more diffuse. Further, the eigenvector-based sampling selects a significant num-

ber of points on the leading edge of the cavity and in the upstream half of the cavity.

It will be shown shortly how apparently minor discrepancies can have a drastic effect on

HPROM performance. For all online HPROM results, each sample mesh is partitioned

for parallel computations according to the sampling rate, as given in Table 6.2, regardless

of the sampling algorithm utilized. The number of cores is altered for each sampling rate

to ensure approximately equal load balancing, amounting to roughly 1,000 cells per core.

Note that this is impossible for Ns ≤ 1%×N , and two cores are used for such cases.

The accuracy of the online HPROMs on sample meshes generated by each sampling

algorithm stand in stark contrast. Time-average ℓ2 error contour plots for ∆t = 5×∆tFOM

are given in Fig. 6.13,comparing accuracy at each combination of sampling rate Ns and

gappy POD regressor basis dimension Nr. White squares indicate simulations which

exploded. Across all sampling algorithms, note the unsurprising result that increasing

Ns and Nr tends to improve HPROM performance. However, it is quite plain that

eigenvector-based sampling consistently generates more stable and accurate HPROMs
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(a) Random (b) Eigenvector

(c) GNAT, V1 (d) GNAT, V2

Figure 6.13: Cavity HPROM time-average error contours with respect to gappy POD regressor
dimension and sampling rate, ∆t = 5×∆tFOM, various sampling algorithms.
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(a) ∆t = 2.5×∆tFOM (b) ∆t = 5×∆tFOM

Figure 6.14: Cavity HPROM error vs. CPU-time speedup, Np = 150, Nr = 250, various ∆t.

than any other sampling algorithm, only failing at extremely low sampling rates. Inter-

estingly, random sampling tends to outperform both GNAT sampling algorithms, though

it only produces stable simulations for Ns > 2.5%×N . In fact, GNAT V1 produces con-

sistently stable simulations only for Ns = 10%×N , and even those are highly inaccurate.

The GNAT V2 algorithm is capable of producing stable simulations at lower sampling

rates, but also incurs relatively high error in the solution.

Of course, computational cost savings is the prime objective of hyper-reduction, and

an accurate HPROM does not guarantee a fast HPROM. As one might expect, increasing

Ns and Nr increases HPROM computational cost, as will be explored more thoroughly

in Section 6.2. Figure 6.14 displays the time-average error with respect to the speedup

ratio at each sampling rates for all sampling algorithms. The eigenvector-based sampling

enables stable, accurate HPROMs which are able to achieve over 200 times computational

cost savings, while the equivalent unsampled PROMs are either equally or more expensive

than the FOM. Similarly, random sampling is capable of producing accurate (< 1% error),

though only at higher sampling rates and achieving relatively lower speedup ratios. The

GNAT sampling algorithms generally fail to produce meaningful cost savings without

incurring instability or high error.

To better visualize these accuracy discrepancies, Fig. 6.15 displays pressure probe

monitors for each sampling algorithm for two different sampling rates. The corresponding

average error for Fig. 6.15a are marked with an “X” in Figs. 6.13 and 6.14, and those
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(a) Ns = 2.5%×N (b) Ns = 1%×N

Figure 6.15: Cavity MP-LSVT HPROM probe measurements, Np = 150, Nr = 250, ∆t =
5×∆tFOM.

for Fig. 6.15b are similarly marked by a diamond. In general, all sampling algorithms

are able to produce stable and accurate PROMs for the simulation period t ∈ [100, 102]

ms. However, those HPROMs generated by the GNAT sampling algorithms quickly

deviate from the FOM, exhibiting wild swings in the unsteady pressure signal. Although

random sampling generates an unstable HPROM for Ns = 1%×N , it produces a fairly

accurate simulation for Ns = 2.5% × N , only exhibiting minor under- and over-shoot

towards the end of the simulation period. Eigenvector-based sampling produces accurate

reconstruction of the unsteady pressure signal, particularly for Ns = 2.5% × N , though

it does exhibit some discrepancies at later times for Ns = 1%×N .

Although the above results indicate that it is possible to achieve excellent computa-

tional cost savings with HPROMs, they also hint at the challenge of guaranteeing that

they are accurate and robust. The drastic effects that the sample mesh and gappy POD

regression have on HPROM performance invites more thorough exploration for larger,

more challenging systems.

6.2 Continuously-variable Resonance Combustor

The first practical reacting flow case of this thesis is now detailed, namely a model

of the continuously-variable resonance combustor (CVRC) with a truncated combustion
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chamber. The CVRC experiment originated in work by Yu et al. [176, 177, 178] at Purdue

University, whereby a single-element, gaseous propellant, coaxial dump injection rocket

combustor was designed to allow for continuous actuation of the oxidizer injection post.

This actuation revealed that certain oxidizer post lengths gave rise to high-frequency

combustion instabilities. The CVRC has become a useful numerical benchmark case for

simulating rocket combustion [179, 180] and investigating the mechanics which contribute

to combustion instabilities in rocket engines [181, 182, 183].

In this work, the full injector and combustor geometry of the CVRC is not modeled,

unlike in [181]. Instead, as will be detailed in the following section, the oxidizer injection

choke manifold is neglected and the combustion chamber is truncated well downstream

of the dump plane. This has the effect of decreasing computational costs, while still

including much of the complex combusting flow phenomena such the mixing shear layer,

recirculation of hot products, and large-scale transport and mixing in the combustion

chamber. Acoustic forcing is not applied at the outlet to mimic the combustion instability,

as this would necessitate complex boundary treatments in any PROMs, which are beyond

the scope of this work. The reader is directed to work by Huang et al. [126] for a thorough

investigation of artificial boundary forcing treatments for PROMs.

6.2.1 Full-order Model

The truncated CVRC case presented here generally follows that investigated by Harvazin-

ski and Shimizu [183], with a truncated combustion chamber. The geometry is displayed

in Fig. 6.16. The oxidizer post extends approximately 14 cm upstream of the dump plane

(x = 0 m), with a diameter of 2.05 cm. The annular fuel injection port has an outer

diameter of 23.09 cm and an inner diameter of 22.27 cm, extends 30.55 cm upstream of

the dump plane, and enters the oxidizer stream 10.18 cm upstream of the dump plane.

The combustion chamber has a diameter of 4.5 cm, and extends approximately 14 cm

downstream of the dump plane. The oxidizer inlet injects 42.35% gaseous oxygen and

57.65% water vapor by mass at 1,030 K, with a specified mass flow rate of 0.32 kg/s.

Gaseous methane is injected through the fuel duct at 300 K, with a mass flow rate of
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Figure 6.16: Truncated CVRC geometry with x− z plane slice at t = 5.5 ms.

0.027 kg/s. The computational mesh is composed of 2,637,771 hexahedral cells, resulting

in a total number of degrees of freedom N = 18,464,397. No-slip, adiabatic conditions

are enforced at the domain walls, and a subsonic characteristic boundary condition is

applied at the outlet.

Combustion is modeled using the FPV approach [34] detailed in Section 2.2.2. As

detailed previously, a library of steady diffusion flame solutions is pre-computed off-line,

generating a lookup table mapping from the mixture fraction Z and the progress variable

C to individual species mass fractions, i.e., Yi = Yi(Z,C). For this case, the steady flame

solutions are solved using the FlameMaster software [103] with the GRI-Mech 1.2 methane

combustion mechanism [24]. The GRI-Mech 1.2 mechanism contains 32 chemical species

and 177 reactions. All gases are treated as thermally perfect gases, and thermodynamic

quantities (specific heats, enthalpy, and entropy) as well as transport properties (mass

diffusivity, viscosity, and thermal conductivity) are computed from polynomial functions

of temperature developed by McBride et al. [40] and described in Section 2.1.1.

The FOM simulation is computed with a physical time step of ∆tFOM = 0.1 µs. The
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Figure 6.17: From top to bottom: pressure, temperature, axial velocity, and fuel mixture
fraction slices at t = 5.5 ms.
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Figure 6.18: POD residual energy decay for truncated CVRC conservative and primitive state
datasets.

fluid domain is initialized with a pressure of 1 MPa, and the combustion chamber is

filled with hot products at 2,000 K to initiate combustion. Initial transients exit the

domain before data collection begins at 5 ms of simulation time. Data snapshots are

collected over a 0.5 ms window, sampled every five time steps, corresponding to roughly

one flow-through period in the combustion chamber. This results in 1,001 snapshots

(including the initial condition at t = 5 ms) of the conservative and primitive states.

Representative snapshot slices of various flow fields are displayed in Fig. 6.17. Pressure

point monitor measurements are collected from the dump plane corner at approximately

x = (0, 0, 2.25) cm, and unsteady heat release point monitor measurements are collected

from the reacting mixing layer at approximately x = (5, 0, 1.5) cm.

Figure 6.18 displays the POD residual energy for the model rocket combustor data.

Achieving 1%, 0.1%, and 0.01% residual energy for the conservative dataset requires 51,

123, and 245 basis modes, respectively. For the primitive dataset, these levels require 44,

134, and 267 modes respectively. This decay is significantly slower than that observed for

2D open cavity flow (Fig. 6.7), and is indicative of the difficulty with which linear trial
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Figure 6.19: Primitive variables time-
average projection error.

Figure 6.20: Conservative variables time-
average projection error.

spaces capture the highly non-linear flow physics which characterize rocket combustion.

This is further emphasized in the projection error plots shown in Figs. 6.19 and 6.20,

where it is apparent that the fuel mixture fraction and progress variable fields induce

much higher error levels at a given trial basis dimension than the primary flow fields.

As with the 2D cavity case, this full-order model should not be considered a well-

resolved or accurate representation of the complex combustion phenomena which occur

in real liquid-propellant rocket combustor. Although this model is derived from numerical

experiments [181] which exhibited reasonable predictions of certain quantities of interest,

the results presented here should be contextualized strictly as approximating the system

dynamics modeled by the underlying numerical solver, which this thesis does not claim

to perfectly represent reality.

6.2.2 Unsampled PROMs

The performance of the unsampled PROMs are again examined before proceeding to

HPROMs. Discussion is restricted to MP-LSVT PROMs, and the exclusion of Galerkin

and LSPG PROMs is explained at the end of this section. A trial basis dimension and

time step study is again conducted. The trial basis dimension Np is again evaluated

at 25-mode intervals from 25 modes to 200 modes. Four time step sizes are examined:

∆t ∈ {0.1, 0.25, 0.5, 1} µs, or 1, 2.5, 5, and 10 times that of the FOM simulation.

The time-average error results are displayed in Fig. 6.21. Note that, in general,
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Figure 6.21: CVRC unsampled PROM time-average error, various ∆t.

the error levels induced for this case are significantly higher than those observed in the

cavity flow case. Whereas the unsampled cavity MP-LSVT PROMs easily achieved less

than 1% relative ℓ2 error for all time steps for Np ≥ 50, this is only achieved here for

∆t = ∆tFOM, Np = 200. This is yet another indicator of the difficulty in accurately

modeling reacting flows. However, observe the similar trend that moderate increases in

the PROM time step result in negligible increase in PROM error, while larger time steps

greatly diminish the PROM’s accuracy and quickly saturates accuracy improvements

with trial basis enrichment. For ∆t = 10×∆tFOM, unlike the cavity whose time-average

error saturated at approximately 0.8%, error saturates at roughly 4% for this case.

The effect of trial basis enrichment is visualized in Fig. 6.22. Interestingly, the pres-

sure signal at the dump plane corner, shown in Fig. 6.22a, is relatively easy to capture,

although significant smearing of small scale fluctuations can be observed for Np = 25,

and less so for Np = 50. For a trial basis dimension of Np = 100, even very small scale

fluctuations are captured well. Comparisons for the reacting mixing layer heat release,

however, are more telling. Figure 6.22b indicates that Np = 25 results in dramatic over-

and under-prediction of heat release across the entire simulation period. Increasing the

trial basis resolution to Np = 50 improves this error, but does not eliminate it. Again,
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(a) Dump plane pressure. (b) Shear layer heat release.

Figure 6.22: CVRC unsampled PROM probe measurements, ∆t = 5×∆tFOM, various Np

(a) Probe measurements. (b) Condition number, Nc, Np = 100

Figure 6.23: CVRC unsampled MP-LSVT and LSPG PROM comparisons.

Np = 100 results in excellent time-accurate reconstruction of the unsteady heat release

in the reacting mixing layer.

The absence of any analysis for LSPG PROMs above and throughout the remained

of this section is now explained. As documented by Huang et al. for a 2D single-

element rocket combustor [75], Galerkin and LSPG PROMs exhibit increased stiffness

in the resulting linear temporal evolution system, compared to that generated by the

equivalent MP-LSVT PROM. The result is drastically degraded stability and accuracy,

such that all investigated Galerkin PROMs were unstable and LSPG PROMs exhibited

more than double the error measured for MP-LSVT PROMs with the same trial basis

dimension. For the truncated CVRC case investigated here, all LSPG PROMs computed

unstable solutions, even with significant basis enrichment. Figure 6.23a indicates the
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Sampling Rate (%) 0.025 0.0375 0.05 0.075 0.1 0.175

Cores 2 2 2 2 3 5
Cells/core (approx.) 330 495 660 989 880 923

Sampling Rate (%) 0.25 0.375 0.5 0.75 1

Cores 7 10 13 20 26
Cells/core (approx.) 942 989 1,015 989 1,015

Table 6.3: Partitioning for CVRC HPROM sample meshes.

effect of this instability, with a rapid explosion in pressure measurements at roughly

t = 5.025 ms for Nc ∈ {100, 200}. The MP-LSVT PROM with Np = 100 is both stable

and noticeably more accurate than the equivalent LSPG PROM. Investigating further,

Fig. 6.23b displays the evolution of the condition number of the first LSPG and MP-LSVT

Newton iteration, i.e. κ
([

Wk
]⊤

Wk
)
. This roughly measures the stiffness of the PROM

linear solve, and reveals that while both methods experience similar ill conditioning at

first, the conditioning of the MP-LSVT PROM gradually lessens while that of the LSPG

PROM gradually increases and eventually explodes.

6.2.3 Mesh Sampling and Load Balancing

The pre-processing stage of developing hyper-reduced PROMs for the truncated CVRC

is now discussed. Although a brief overview of hyper-reduction computational processes

was given in Section 6.1, more attention is given here to some of the nuances related to

load balancing and MPI communications for parallel computations.

As with the cavity flow case, the four sampling algorithms described in Section 4.5.2

are studied, and analyses are conducted for a range of sampling rates and gappy POD

regressor basis dimensions. The sampling rates investigated and the parallel partitioning

for each sample mesh (regardless of the sampling algorithm used) are summarized in

Table 6.3, and are again adjusted to ensure that the load balance is approximately equal

to 1,000 cells per core.

Visually inspecting several indicative samples meshes, with slices in Fig. 6.24 and

iso-surfaces in Fig. 6.25, it is clear that the spatial distribution of the sample mesh points
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Figure 6.24: Example CVRC sample meshes for Ns = 0.25% × N , Nr = 300 for various
sampling algorithms. From top to bottom: random, eigenvector-based, GNAT V1, and GNAT
V2.
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varies drastically between sampling strategies. Random sampling, as expected, selects

points in a random pattern, including a significant number of points in the oxidizer

duct. This might be considered computationally wasteful, as the physics in the oxidizer

duct are quite simple, maintaining a roughly fixed temperature, velocity, and chemical

composition, with only minor variations in pressure. Eigenvector-based sampling and

both variants of GNAT sampling, on the other hand, display a vastly different result. In

each case, sample mesh elements are clustered around the reacting shear layer downstream

of the dump plane. This is particularly clear for eigenvector-based sampling, in which the

sampling points form a conical shape aligned with the mixing layer of the annular fuel

injection stream. This result is not entirely surprising, as the physics in the shear layer

are by far the most complex in the system, featuring sharp gradients and strong non-

linearities. Interestingly, both GNAT sampling methods generate extremely tight clusters

in the vicinity of the fuel dump region, although the second variant selects some element in

the downstream combustion chamber region. These findings are largely similar to those

for the cavity flow case: among the greedy sampling algorithms, eigenvector sampling

generates a larger, more diffuse sample mesh, while GNAT sampling clusters sampling

points closely.

How these differences in sampling affect the load balancing of the mesh partitions is

quantified in Fig. 6.26. Figure 6.26a displays the average number of cells per partition

in the sample mesh as a percentage of the full mesh, when the sample mesh is split

into ten partitions. Unsurprisingly, random sampling generates the largest meshes for

all sampling rates, as the disperse sampling requires a larger number of auxiliary cells.

Conversely, both GNAT sampling algorithms produce much smaller, compact sample

meshes due to the tight clustering of sample points and commensurately fewer auxiliary

cells they require. At low sampling rates, eigenvector-based sampling produces similar

sample mesh sizes to random sampling, but approaches sizes similar to GNAT sampling

at higher sampling rates.

For much of the same reasons, the opposite is true for the volume of inter-core com-

munications that are required for a given sample mesh. Figure 6.26b shows that in many
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(a) Random (b) Eigenvector

(c) GNAT V1 (d) GNAT V2

Figure 6.25: Directly-sampled cell isosurfaces, Ns = 0.25%×N , Nr = 300, various sampling
algorithms.

(a) Average cells per partition, % of total mesh. (b) Total point-to-point MPI communications.

Figure 6.26: Sample mesh partition statistics, 10 partitions, various sampling rates.
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(a) W/r/t sampling rate, Nr = 300. (b) W/r/t Nr, Ns = 0.25%×N .

Figure 6.27: Sample selection cost, relative to cost of a single FOM iteration.

cases, random sampling produces sample meshes which require no point-to-point MPI

communications whatsoever. This is a function of the aforementioned disperse sampling

which results in a large number of disjoint graphs which can be effectively separated by

the partitioning software. This is not the case at extremely low sampling rates, which are

dominated by mesh elements selected by the QDEIM procedure. Both GNAT sampling

algorithms produce nearly identical volumes of communication at all sampling rates. This

follows logically from the fact that tight sampling clusters require edge cuts to ensure ef-

fective load balancing. Eigenvector-based sampling induces a lower volume than GNAT

sampling at lower sampling rates, but more at higher sampling rates.

Finally, Fig. 6.27 examines the offline cost of evaluating the various sampling algo-

rithms. The cost is non-dimensionalized by the core-hours required to compute one FOM

iteration. Of course, the cost of random sampling is nearly zero, scales negligibly with

respect to the sampling rate 6.27a, and is not influenced by the number of modes retained

in the regression basis Ψ (Fig. 6.27b). The greedy algorithms, on the other hand, incur

noticeable computational cost. On the whole, the original GNAT sampling algorithm

is significantly less expensive, obviously because it requires only Nr evaluations of the

greedy metric, while Peherstorfer’s variant and eigenvector-based sampling require ap-

proximately Ns/Nv evaluations. Eigenvector-based sampling is only slightly more costly

than Peherstorfer’s GNAT variant. All greedy methods appear to scale sublinearly with

respect to Nr, while eigenvector-based sampling and Peherstorfer’s GNAT variant seem
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(a) Random (b) Eigenvector

(c) GNAT, V1 (d) GNAT, V2

Figure 6.28: CVRC HPROM time-average error contours with respect to gappy POD regressor
dimension and sampling rate, ∆t = 5×∆tFOM, various sampling algorithms.

to scale exponentially with respect to the sampling rate. Although these latter two meth-

ods cost over ten FOM iterations to compute for sampling rates above 0.1%, recall that

this accounts to 0.2% of the total FOM cost (5,000 iterations).

6.2.4 Hyper-reduced PROMs

The same analysis conducted for the MP-LSVT PROMs of the 2D cavity case are repeated

for the truncated CVRC. All HPROMs utilize a trial basis dimension of Np = 100, as this

was shown above to accurately reconstruct the pointwise unsteady heat release. Again,

all gappy POD regressor bases are generated from the POD of the conservative field

dataset. The sampling rates, number of partitions, and approximate number of cells per

partition are given in Table 6.3.

Time-average ℓ2 error contour plots for ∆t ∈ {5, 10}×∆tFOM, for various Nr and Ns,
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(a) Random (b) Eigenvector

(c) GNAT, V1 (d) GNAT, V2

Figure 6.29: CVRC HPROM time-average error contours with respect to gappy POD regressor
dimension and sampling rate, ∆t = 10×∆tFOM, various sampling algorithms.

are shown in Figs. 6.28 and 6.29. In this case, all HPROMs remain stable, though those

simulations which accrued over 20% error (indicated by bright yellow) can be considered

complete failures. For random and eigenvector-based sampling, the natural tendency

for accuracy to improve with increased Ns and Nr is observed again. Interestingly, both

variants of GNAT sampling seem to perform better at higher sampling rates for lower Nr,

though these algorithms tend to perform very poorly across most configurations. Again,

eigenvector-based sampling performs remarkably well, generating stable HPROMs with

less than 5% time-average error for Nr ≥ 250. Random sampling also appears capably of

generating similar levels of accuracy, albeit at much higher sampling rates.

Figure 6.30 displays the cost-accuracy tradeoff incurred by varying the sampling rate,

for fixed Nr = 300. As observed previously, decreasing the sampling rate tends to degrade

simulation accuracy, but enables commensurate computational cost savings. Eigenvector-
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(a) ∆t = 5×∆tFOM (b) ∆t = 10×∆tFOM

Figure 6.30: CVRC HPROM time-average error vs. CPU-time speedup, various ∆t.

based sampling is able to generate HPROMs which achieve three to four orders of magni-

tude speedup over the FOM with minimal loss of accuracy with respect to the unsampled

PROM. At extremely low sampling rates, though, the time-average error grows to over 8-

10%. Random sampling is capable of achieving similar speedup results, though this tends

to incur unacceptable degredation of accuracy, particularly at very low sampling rates.

In general, both GNAT sampling variants are unable to produce accurate HPROMs for

any sampling rate investigated, measuring over 10% error in almost all cases.

Figure 6.31 illustrates how the sampling algorithms and sampling rates affect the long-

term reconstruction of the unsteady pressure signal at the dump plane corner (marked in

Fig. 6.16). The average error for Fig. 6.31a and 6.31b are marked in Fig. 6.30a by an “X”

and diamond, respectively. Almost all of the displayed simulations remain reasonably

accurate up to t = 5.1 ms. As indicated by the above discussion, however, both GNAT

variants appear incapable of generating accurate reconstructions beyond this point, either

exploding or significantly deviating from the FOM pressure signal. For Ns = 0.25 × N ,

random sampling is able to maintain an accurate reconstruction for t < 5.35 ms, but

deteriorates near the end of the simulation. This is not the case for Ns = 0.075×N , where

random sampling explodes shortly after t = 5.25 ms. On the other hand, eigenvector-

based sampling is able to faithfully reconstruct the pressure signal in both instances,

though for Ns = 0.075 × N the signal begins to deteriorate noticeably near the end of

the simulation period.
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(a) Ns = 0.075%×N (b) Ns = 0.25%×N

Figure 6.31: CVRC MP-LSVT HPROM probe measurements, Np = 100, Nr = 300, ∆t =
5×∆tFOM.

These observations are emphasized further by field plots drawn from the end of the

simulation period, t = 5.5 ms, for Ns = 0.25%. Figure 6.32 shows pressure slices, where

it is abundantly clear that the HPROMs produced by random sampling and the GNAT

variants have devolved into high-amplitude oscillations. Although the GNAT variants

appear to avoid the extremely high-frequency oscillations observed in the random sam-

pling cases, the point is ultimately irrelevant due to overall deviation from the solution.

Eigenvector-based sampling computes a remarkably similar pressure field, though some

of the very high-frequency content is absent in the combustion chamber (though this may

be due entirely to an under-resolved trial space).

Similar results are observed in the temperature field, shown in Fig. 6.33. The result

produced by eigenvector-based sampling captures the mixing and advection of the re-

actant shear layer, though there is again noticeable smearing and spurious oscillations

near the flame front. Much like with the pressure field, random sampling produces an

HPROM which devolves into high-frequency oscillations in the mixing layer, while both

GNAT variants produce large oscillations throughout the combustion chamber.

6.2.5 Effects of Sampling Criteria

Three approaches for evaluating the greedy sampling algorithm metric and selecting those

degrees of freedom to be appended to the sample set were described in Section 4.5.1: ag-
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Figure 6.32: CVRC HPROM pressure slices, t = 5.5 ms, Ns = 0.25%, Nr = 300, ∆t =
5 × ∆tFOM. From top to bottom: FOM, random, eigenvector, GNAT V1, and GNAT V2
sampling.
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Figure 6.33: CVRC HPROM temperature slices, t = 5.5 ms, Ns = 0.25%, Nr = 300, ∆t =
5 × ∆tFOM. From top to bottom: FOM, random, eigenvector, GNAT V1, and GNAT V2
sampling.
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Figure 6.34: Example sample meshes for Ns = 0.25% × N , Nr = 300 for various sampling
algorithms, using the post-sampling approach. From top to bottom: random, eigenvector-based,
GNAT V1, and GNAT V2.

nostic, post-sampling, and comprehensive sampling. The comprehensive method has been

claimed to provide a more complete description of the sampling metric for coupled fluid

flow systems, and is used for all hyper-reduction results presented in this thesis. In this

section, the validity of this claim is investigated. The performance of HPROMs gener-

ated by the post-sampling and comprehensive techniques are thus compared. Random

sampling via post-sampling is omitted, as it is not a greedy sampling algorithm. The

same sample mesh sizes as those listed in Table 6.3 are again used for all post-sampling

meshes.

Figure 6.34 provide indicative sample mesh slices for post-sampling meshes, reflecting

the same mesh size and regression basis dimension Nr as those displayed in Fig. 6.24.

The two approaches generate similar meshes, and close inspection is required to notice

differences. One might notice slightly tighter clustering of sampled points for eigenvector-

based sampling, while the GNAT sample meshes are slightly more diffuse.

The resulting simulation accuracy with respect to the sample rate Ns and the regres-

sion basis dimension Nr also remains largely the same, as seen in Fig. 6.35. Eigenvector-

based sampling performs quite well at low sampling rates, random sampling performs

well at high sampling rates, and both GNAT algorithms tend to perform poorly at any
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(a) Random (b) Eigenvector

(c) GNAT, V1 (d) GNAT, V2

Figure 6.35: CVRC HPROM time-average error contours for sample meshes constructed via
the post-sampling approach, with respect to gappy POD regressor dimension and sampling rate,
∆t = 5×∆tFOM, various sampling algorithms.
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Figure 6.36: CVRC HPROM time-average
error vs. CPU-time speedup, ∆t = 5×∆tFOM.

Figure 6.37: CVRC HPROM probe sampled
via post-sampling, Np = 100, Ns = 0.25%×N ,
Nr = 300, ∆t = 5×∆tFOM.

sampling rate. The general trend of improved accuracy with increased Nr is observed

again, most noticeably with eigenvector-based sampling.

Examining the cost-accuracy tradeoff in Fig. 6.36 emphasizes that the post-sampling

approach has little, if any, influence on the accuracy and computational cost savings of the

HPROMs. Except at very high sampling rates, where post-sampling appears to improve

the accuracy of the GNAT algorithms, the lines representing post-sampling results lie

nearly on top of those representing comprehensive sampling. Pressure probe results in

Fig. 6.37 display nearly identical performance to those shown in Fig. 6.31b.

The results shown above indicate that the choice of sampling criterion plays a minimal

role in enabling fast and accurate HPROMs, relative to the extreme sensitivity to the

sampling algorithm. This logically follows from the idea that certain variables make out-

sized contributions to the greedy sampling metric, e.g. the temperature vs. pressure field,

and so both approaches result in similar sample meshes despite non-dimensionalization of

the data prior to generation of the regression basis Ψ. In either case, those mesh elements

which incur the greatest error are still selected.

6.2.6 Effects of Dual Basis Gappy POD

All results shown thus far have used a single gappy POD regression basis, Ψ ∈ RN×Nr .

Following the justification outlined in Section 4.4.2, the regression basis has been chosen
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Figure 6.38: Example sample meshes for Ns = 0.25% × N , Nr = 300 for various sampling
algorithms, using the post-sampling approach. From top to bottom: random, eigenvector-based,
GNAT V1, and GNAT V2.

such that Ψ = Ũc; that is, the regression basis is computed from snapshots of the conser-

vative fields. This approach has worked well, but alternative approaches have suggested

representing components of the fully-discrete residual with separate gappy POD approx-

imations (as in brief notes in [157] and [70]). In Section 4.4.4, a dual-basis formulation

was proposed by which the fully-discrete residual is separated into the time integrator

.
qc and all spatial discretization terms f (qc, t), with corresponding gappy POD regres-

sion bases Ψc ∈ RN×Nc and Ψf ∈ RN×Nf respectively. For the sake of completeness,

HPROMs constructed via this approach are investigated below. Only one set of basis

sizes is investigated: Nr = Nc = 300 and Nf = 800. Unlike in the above Section 6.2.5

The sample meshes generated by the dual-basis sampling procedure are virtually

identical to those generated by the single-basis approach, as seen in Fig. 6.38. Close

inspection reveals minor differences, but follow the same trends as those seen in Fig. 6.24.

Despite the marked similarities of the sample meshes, the performance of the online

HPROMs are strikingly different, as shown in Fig. 6.39. For a given sample rate Ns, the

dual-basis formulation halves the computational cost savings and nearly doubles the error

(or even becomes unstable). Although the relative discrepancies between the sampling

algorithms persist (eigenvector-based sampling performing the best, followed by random
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Figure 6.39: CVRC HPROM time-average error vs. CPU-time speedup, ∆t = 5×∆tFOM.

Figure 6.40: CVRC HPROM probe sampled via post-sampling, Np = 100, Ns = 0.25%×N ,
Nr = 300, ∆t = 5×∆tFOM.

sampling, and GNAT tending to fail outright).

Pressure monitor results in Fig. 6.40 only emphasize the comparatively poor perfor-

mance of the dual-basis formulation. The accuracy of the random and eigenvector-based

HPROMs deteriorates much more rapidly (around t = 5.2 ms), and even the GNAT

HPROMs are wholly unstable (opposed to greatly inaccurate). These results indicate

that the dual-basis formulation does not benefit the performance of the HPROMs despite

a supposed improvement in the accuracy of the constituent gappy POD regressions. This

is, in some sense, a comfort, inasmuch as the simplest solution (a single gappy POD basis)

appears to be the best. Of course, increased granularity of the fully-discrete residual (e.g.

generating separate approximations for the inviscid and viscous fluxes) might improve on

147



this, but this introduces an exceptional level of complexity in the Gauss–Newton normal

equations and was not deemed a worthwhile investigation.

6.3 Purdue Nine-element Combustor

In this section, PROM performance in modeling a multi-element rocket combustor ex-

periencing high-frequency combustion instability is examined. This model is based on

experiments conducted with the nine-element Transverse Instability Combustor Purdue

University by Orth et al. [8]. In the following section, only a simplified description of the

experiment as it pertains to the numerical model is described; the reader is encouraged

to find greater detail on the experiment’s design in [8]. As with the CVRC, this test

article was designed in tandem with CFD researchers in an effort to establish a rocket

combustor benchmark for the development of advanced reacting flow LES solvers. In

this case, the number of parallel propellant injectors is increased to nine, introducing

additional complexity due to interactions between injectors in the presence of strong

transverse combustion instabilities. Indeed, work by Harvazinski et al. [184] was able to

reasonably replicate the experimental self-excited combustion instability via LES with a

reduced finite-rate chemistry mechanism. However, as will be demonstrated shortly, the

computational cost of such simulations is exceptionally high and precludes any usefulness

in the engineering design process. As such, this case provides an excellent target for

reduced-order modeling.

6.3.1 Full-order Model

The computational model presented here derives from the work by Harvazinski et al. [184],

using the same computational mesh, but marginally different boundary conditions and a

different reaction mechanism. The spatial domain does not include the oxidizer preburner,

oxidizer manifold, or fuel manifold elements of the experimental test article. A cutaway

of the spatial domain is shown in Fig. 6.41, and an isometric view of the combustor is

shown in Fig. 6.42. The combustor is composed of a linear array of nine coaxial propellant
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injection elements, each spaced centerline-to-centerline by 26.67 mm apart. The oxidizer

posts extend 96.01 mm upstream of the dump plane, and has a diameter of 11.25 mm

upstream of the fuel injection port. Each oxidizer post supplies 96.5% gaseous oxygen and

3.5% water vapor (by weight) at 636 K. The entire oxidizer injection assembly supplies

oxidizer at a rate of 0.7575 kg/s. Fuel is supplied by radial injection approximately 42 mm

upstream of the dump plane, after which flow is turned 90◦ to exit the annular fuel port

and mix with the oxidizer approximately 11.34 mm upstream of the dump plane. The

inner diameter of each fuel annulus measures 13 mm, and the outer diameter (also the

diameter of the propellant injection port into the combustion chamber) measures 15.75

mm. Each fuel injector supplies 100% gaseous methane at 287.6 K at a rate of 0.02369

kg/s. The main combustion chamber (upstream of the nozzle) measures 118.5 mm long

(x-direction), 240 mm wide (y-direction), and 30.5 mm deep (z-direction). The nozzle is

81.5 mm long, and terminates in an exit port 142.1 mm wide and 10.8 mm deep.

Mass flow rate boundary conditions are applied to the oxidizer and fuel inlets, though a

single rate is enforced for the entire oxidizer inlet area, while individual rates are enforced

for each fuel inlet. Adiabatic, no-slip wall conditions are enforced at all walls. A fixed

pressure outlet is enforced at the nozzle exit, specifying an exit pressure of 101,325 Pa to

model venting to atmosphere.

Reactions are modeled by a 12-species (plus inert nitrogen), 38-reaction finite-rate

mechanism referred to as FFCMy-12, which is developed by Xu and Wang [42, 185] as

a reduced mechanism of the larger FFCM-1 mechanism [186] tailored for combustion of

methane and oxygen in rocket combustors. As mentioned in Section 2.2.1, this mechanism

includes third-body low-pressure corrections of the Hinshelwood [100] and Troe [101]

forms. This mechanism has been utilized previously in the simulation of traditional

liquid rocket engines [130, 187] as well as rotating detonation engines [188, 189]. The

fluid is treated as a thermally-perfect gas, and thermodynamic and transport properties

are computed by the empirical fit models described in Section 2.1.1. Subgrid dissipation

is modeled via the Nicoud σ-model described in Section 2.1.2.

The computational mesh is composed of 14,387,292 hexahedral cells, resulting in a
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Figure 6.43: FOM pressure slices for x− y plane slice at t = 21.65 (top left), 21.7 (top right),
21.75 (bottom left) and 21.8 (bottom right) ms.

total full-order dimension of N = 244, 583, 964. To the best of the author’s knowledge,

this represents the largest case examined for PROMs of unsteady fluid flows, and also

accounts for a significant increase in modeling complexity relative to comparable studies

of aerodynamics problems.

The FOM is initialized as follows. The entire domain is initialized with zero velocity

and 1.138 MPa pressure. The oxidizer posts and propellant injection ports (excluding

the fuel annuli) are initialized with 96.5% oxygen and 3.5% water vapor at 636 K. The

fuel annuli are initialized with 100% methane at 287.6 K. The combustion chamber is

initialized with hot products (44% water vapor and 56% carbon dioxide) at 2,000 K. The
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Figure 6.44: FOM heat release slices for x − y plane slice at t = 21.65 (top left), 21.7 (top
right), 21.75 (bottom left) and 21.8 (bottom right) ms.
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Figure 6.45: POD residual energy decay for nine-element combustor conservative and primi-
tive state datasets.

physical time step size is ∆tFOM = 0.1µs, and the FOM is first run for 216,000 steps

(21.6 ms) to allow the transverse instability to initiate. The instability is visualized in

Fig. 6.43, where a high-pressure wave traverses the width of the combustion chamber

(reflecting from the walls) over the course of approximately 0.195 ms. The pressure wave

is accompanied by heightened local heat release, which can be seen in Fig. 6.44.

Starting at t = 21.6 ms, snapshots of the primitive and conservative states are

Figure 6.46: Primitive variables time-
average projection error.

Figure 6.47: Conservative variables time-
average projection error.
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collected at every time step until t = 21.8, resulting in 2,001 snapshots (including

q(t = 21.5ms)). This window captures one complete traversal of the high-pressure wave

along the width of the combustor. The POD residual energy decay is shown in Fig. 6.45.

Achieving 1%, 0.1%, and 0.01% of the conservative state POD residual energy requires

53, 104, and 173 modes respectively. For the primitive state, this requires 35, 76, and

141 modes respectively. As with the truncated CVRC, this case exhibits an extremely

slow POD residual energy decay characteristic of such a highly-nonlinear convection-

dominated flow. The projection error of the primitive and conservative state datasets

are shown in Figs. 6.46 and 6.47 respectively. Interestingly, again the transverse and

depth-wise velocity represent the largest sources of projection error. However, three of

the most relevant transported scalars, carbon monoxide, carbon dioxide, and water vapor

appear to induce less error than the fuel mixture fraction and progress variable did in the

CVRC case.

6.3.2 Unsampled PROMs

Unsampled PROM accuracy is now investigated. Again, only MP-LSVT PROMs are

examined, as Galerkin and LSPG PROMs were categorically unstable. This result is

hardly surprising due to the extreme stiffness arising from the more detailed reaction

mechanism. Results are evaluated for three time step values, ∆t ∈ {2.5, 5, 10}×∆tFOM,

and primitive variable trial basis dimensions Np ∈ {25, 50, 75, 100}.

For results presented in this and the following section, average error is not computed

across all primitive field variables, as this quantity appears exceptionally high even for

large Np. This is entirely due to deviations in chemical intermediates, such as monatomic

species (H, O) and radicals (CH3, OH, HO2), which are extremely sensitive to small

changes in reactant and other intermediate species fields. Although one may argue that

the accuracy of reconstructing the reactant and final product fields is of primary concern,

incorrect estimates of reaction intermediates undoubtedly degrades overall performance

(particularly in predictions of unsteady heat release rates). Ignoring intermediate species,

averages are computed over the primary flow field variables (pressure, velocity, and tem-

154



Figure 6.48: Nine-element combustor unsam-
pled PROM time-average error, various ∆t.

Figure 6.49: Nine-element combustor un-
sampled PROM pressure probe measurements,
∆t = 5×∆tFOM, various Np.

perature) and primary chemical species (CH4, O2, H2O, CO, CO2). Figure 6.48 displays

time-average error results for the three time steps and four trial basis dimensions exam-

ined. Similar to observations for the CVRC, increasing the time step beyond 5×∆tFOM

results in significant solution degradation which does not improve much by enriching the

trial space. In all cases, the error appears to level off after Np = 75; this dimension will

be used for all hyper-reduction results later in this chapter.

Examining several unsteady flow fields in Fig. 6.50 provides visual insight into the

unsteady evolution of the tightly-coupled acoustic, thermodynamic, and chemical inter-

actions modeled by the PROM. Snapshots are taken from the end of the simulation

period. Following similar trends observed for the CVRC, Fig. 6.50a shows that enriching

the trial basis tends to improve the reconstruction of sharp gradients, exemplified here by

the high-pressure combustion instability. Such a trend is less immediately apparent for

the temperature fields in Fig. 6.50b and the carbon monoxide fields in Fig. 6.50c. Even

at low Np, the PROM is capable of reconstructing these unsteady states quite well. This

can be reasonably attributed to the fact that transport of these fields is characterized a

much slower time scale than that of the transverse pressure wave. As bulk advection has

less of an effect on the temperature and transported scalar fields during the time window

examined, one expects that the linear trial basis is better suited for modeling those fields.

The point-wise accuracy of reconstructing the high-pressure combustion instability
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(a) Static pressure

(b) Temperature

(c) CO mass fraction

Figure 6.50: Nine-element combustor unsampled MP-LSVT PROM slices, t = 21.8ms, ∆t =
5×∆tFOM. From left to right: FOM, Np = 25, Np = 75.
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Sampling Rate (%) 0.025 0.05 0.1 0.25 0.5 1.0

Cores 44 88 132 308 572 1100
Cells/core (approx.) 82 82 109 117 126 131

Table 6.4: Partitioning for nine-element combustor HPROM sample meshes.

is examined in the probe monitor results shown in Fig. 6.49. As mentioned above, low

trial basis dimensions (Np = 25) tend to smear the pressure wave and generally fail to

reconstruct the instantaneous probe measurements. Increasing the trial basis dimension

to Np = 50 improves on this measure, but enriching the trial basis further brings dimin-

ishing returns. Even increasing the basis dimension to Np = 100 fails to capture much

of the higher-frequency content or reproduce the maximum amplitude of the pressure

signal. This implies a fundamental limitation of the linear trial basis, which struggles

to recreate the complex interaction between the high-pressure transverse wave and the

longitudinal reacting shear layers. However, given the extreme physical complexity and

numerical stiffness of this problem, even these results are a testament to the robustness

of the MP-LSVT method.

6.3.3 Hyper-reduced PROMs

Again, analyses for hyper-reduced MP-LSVT PROMs are repeated for the nine-element

combustor. All results presented here use a physical time step of ∆t = 5 × ∆tFOM, as

well as a trial basis dimension of Np = 75. The gappy POD regressors are constructed

from the conservative field data. The investigation for this case is slightly more limited

in scope than those presented for the cavity flow and truncated CVRC cases due to

the significantly higher computational cost. As such, results exploring the effects of the

sampling rate and gappy POD regressor dimension are coarser. Further, as will be shown

shortly, only random sampling is capable of generating stable HPROM simulations; the

partitioning data provided in Table 6.4 reflects this fact, as random sampling requires

an exceptionally large number of auxiliary cells. The seemingly low cells/core counts is

simply an indicator of the need for more cores to complete calculations on these large

meshes in a timely fashion. Example isosurfaces of the sample mesh for random and
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Figure 6.51: Example nine-element combustor sample meshes for Ns = 0.1%×N , Nr = 100,
with random sampling (left) and eigenvector-based sampling (right).

eigenvector-based sampling are presented in Fig. 6.51 illustrate this fact well, showing

that the greedy method generates an extremely compact sample mesh centered on the

reacting shear layer of each injector, while the randomly-sampled mesh is distributed

throughout the domain.

The poor performance of the eigenvector-based sampling algorithm is made imme-

diately apparent in the pressure probe measurements displayed in Fig. 6.52. Even for

Ns = 0.1%×N (for which the algorithm performed quite well for the cavity and CVRC

cases), the solution employing sample meshes computed via the eigenvector-based sam-

pling almost immediately diverges and quickly becomes unstable. The same behavior

is observed for sampling rates up to Ns = 0.25% × N , after which point the offline

computational cost of computing the sample mesh becomes exorbitantly large (>20,000

core-hours). Comparatively, the random sampling algorithm requires negligible offline

computational cost and is capable of producing a reasonable reconstruction of the un-

steady pressure signal. Drawing attention again to the sample mesh visualization in

Fig. 6.51, note that the eigenvector-based algorithm selects cells in tight clusters either

at the fuel injection ports or in the mixing shear layer of each injector. Few cells are
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Figure 6.52: Nine-element combustor HP-
PROM pressure probe measurements, Ns =
0.1%×N , various sampling algorithms and Nr.

Figure 6.53: Nine-element combustor HP-
PROM pressure probe measurements, random
sampling, Nr = 200, various Ns.

placed in the combustion chamber, where the high-pressure combustion instability oc-

curs and is sustained by the high heat release of the ongoing reaction. In this context, it

is not surprising that this greedy algorithm is incapable of modeling the traversal of the

pressure wave across the width of the combustion chamber. Although not shown here,

both variants of the GNAT sampling algorithm perform equally poorly (unsurprisingly,

as those algorithms tend to cluster samples even more closely).

On the one hand, this result is somewhat discouraging after the excellent performance

of the eigenvector-based sampling algorithm for the cavity and CVRC cases. However, it

also sheds light on the need for improved hyper-reduction methods for problems which

exhibit spatially-distributed convective phenomena (the transverse pressure wave), which

may be tightly coupled to spatially-localized physics (propellant injection). As will be

displayed in the following chapter, online trial basis and sample mesh adaptation pro-

poses solutions to such problems, allowing the sample mesh to evolve with time and

more accurately capture bulk advection effects. Such methods are not applied to this

case, unfortunately, as the implementation of the underlying adaptation algorithms is

not yet communication-scalable, and cannot solve adaptive ROM systems of such high

dimensionality.

Despite the inadequate performance of the greedy sampling algorithms, the random

sampling method is still capable of generating good results, even for a system of this
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(a) Static pressure

(b) Temperature

(c) CO mass fraction

Figure 6.54: Nine-element HPROM slices, t = 21.8ms, Nr = 200, ∆t = 5×∆tFOM. From left
to right: FOM, Ns = 0.1%×N , Ns = 0.5%×N .
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Figure 6.55: Nine-element combustor HP-
PROM pressure probe measurements, random
sampling, Ns = 0.1%×N various Nr.

Figure 6.56: Nine-element combustor
HPROM time-average error vs. CPU-time
speedup, various Nr.

complexity and size. Figure 6.54 displays several sample slices to this effect, showing

HPROM results at the end of the simulation time window for Ns ∈ {0.1, 0.5}% × N .

Although the pressure field (Fig. 6.54a) exhibits significant spurious oscillations near

the injector face, the temperature (Fig. 6.54b) and CO mass fraction (Fig. 6.50c) fields

reconstruct those of the FOM with remarkable accuracy. The effect of the sampling rate

is displayed via pressure monitor measurements in Fig. 6.53: below Ns = 0.1% × Ns,

the long-term accuracy of the solution begins to degrade noticeably, while increasing

the sampling rate results in marginal improvement. Although the HPROMs appear

incapable of capturing the full amplitude of the pressure wave, this may be attributed to

the coarseness of the trial basis, as it is observed that the full amplitude is not captured

by the unsampled ROM even with Np = 100.

The effect of the gappy POD regressor basis is noted by probe measurements in

Fig. 6.55. To the human eye, there is little significant difference in the reconstruction

of the pressure signal, implying a less significant effect of Nr for this system than was

observed for the cavity and CVRC cases. Aggregate error measurements, displayed with

respect to computational cost speedup in Fig. 6.56, reveal similarly small discrepancies

with regard to Nr. Unfortunately, as observed with the cavity and CVRC case, the

random sampling algorithm is unable to generate the enormous cost savings and robust

solutions that the eigenvector-based sampling was capable of for those cases. As the
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greedy algorithms appeared generally unstable, the random algorithm is able to produce,

at best, roughly two orders of magnitude computational cost savings while remaining

stable and accurate. Although not as impressive as the three to four orders of magnitude

speedup observed for the CVRC case, this still represents a major accomplishment in

the application of these methods to a problem of such high dimensionality and extreme

physical complexity. Further, it serves as a testament to the ability of the MP-LSVT

framework to generate accurate and robust solutions in combination with good compu-

tational cost savings when paired with a careful hyper-reduction approach.

6.4 Conclusions

In this chapter, scalable hyper-reduced PROMs were tested for several multi-scale and

multi-physics systems of increasing dimension and complexity. Beginning with a non-

reacting transonic open cavity flow case, residual-based PROM methods including LSPG

and MP-LSVT were shown to be superior to the standard Galerkin projection method.

The MP-LSVT method further exhibited excellent accuracy in modeling extremely stiff

rocket combustor systems, including single-element and linear nine-element combustors,

for which the LSPG method was incapable of producing stable solutions. The sensitivity

of HPROM load balancing, accuracy, and computational cost savings to a variety of

model parameters were rigorously investigating, resulting in the following insights:

1. Randomized sampling, although simple and inexpensive to implement, generally

resulted in greater memory consumption and more floating-point calculations than

GNAT or eigenvector-based sampling. This is due to a wider spatial distribution

of sampling points, which demands a commensurately greater number of auxiliary

cells for computing fluxes, gradients, and vertex state reconstructions.

2. On the other hand, randomized sampling produced computational meshes which

require comparatively few (often zero) MPI communications. This is in contrast to

GNAT sampling and eigenvector-based sampling, which often required a significant

number of MPI communications. Eigenvector-based sampling generally required
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fewer MPI communications than GNAT sampling.

3. Gappy POD HPROMs were able to produce robust, accurate reconstructions of

the trial basis training window, although the accuracy deteriorated at extremely

low sampling rates. The hyper-reduced PROMs, along with careful load balancing,

were able to easily achieve over three orders of magnitude speedup in core time over

the FOM in some instances.

4. The original GNAT sampling procedure proposed tends to generate small sample

meshes, but produces very inaccurate HPROMs compared to those generated by

the fine-grained variant. While the original algorithm is significantly less expensive

to evauate in the offline stage, the deterioration in accuracy and stability is extreme.

5. Interestingly, random sampling tends to outperform both GNAT greedy sampling

algorithms, and consumes a fraction of the offline computational cost. At very low

sampling rates however, random sampling also tends to produce unstable HPROMs.

6. On the whole, the eigenvector-based sampling strategy appeared to perform the best

across most metrics of interest. Among the investigated strategies, it required the

lowest memory consumption and fewest floating-point calculations, outperformed

GNAT sampling in the number of required MPI communications, and generally

produced the lowest average solution error for a given sampling rate across a range

of time step sizes. The last point was especially true at extremely low sampling

rates. Here, HPROMs using eigenvector-based sampling produced comparable error

to that of the unsampled PROM, whereas HPROMs using random and GNAT

sampling were highly erroneous or even unstable.

7. The above point is not true for the nine-element combustor, for which greedy sam-

pling algorithms (including eigenvector-based sampling) failed to generate stable

HPROMs. Random sampling was capable of generating modest speedups while

retaining simulation accuracy. Future work must address similar systems which are

characterized by advection occurring at vastly different time scales.
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8. Increased time step sizes were able to push speedup further, though there is (un-

surprisingly) a significant error increase for unsampled PROMs at much larger time

steps. Interestingly, the accuracy of hyper-reduced PROMs remained fairly consis-

tent at larger time steps.

The work presented in this chapter represents the first successful experiments of hyper-

reduced projection-based ROMs of this size and physical complexity to date, to the best of

the author’s knowledge. These findings establish useful heuristics for future practitioners

to aid the development of accurate and scalable HPROMs for systems exhibiting simi-

larly challenging phenomena including strong gradients, propagating waves, exceptional

stiffness, and extreme scale disparity.
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Chapter 7

Adaptive HPROMs for Rocket Combustors

For the results shown in Chapter 6, all simulations have simply reconstructed the training

data. That is, the geometry, initial conditions, boundary conditions, and simulation

duration of each PROM are identical to those of the FOM from which the training data

are extracted. Although these simulations were successful in this effort, the ultimate

goal of any data-driven method is generalizability. To be truly useful for engineering

applications, such methods must be able to make fast and accurate predictions for unseen

configurations which are not accounted for in the training data.

7.1 Failure of Static Trial Bases

The PROMs investigated in Chapter 6 are, unfortunately, not generalizable. To demon-

strate this for the truncated CVRC case examined in Section 6.2, the unsampled MP-

LSVT PROM is allowed to run for a longer duration than the original FOM training data,

to t = 5.6 ms. The resulting dump plane corner pressure probe is shown in Fig. 7.1. Even

though the PROM is capable of simulating the training period with exceptionally high ac-

curacy, the solution rapidly deviates shortly after the end of the training period at t = 5.5

ms. The dominant cause of this failure is the inability of the linear trial space to model

realizations of the flow field which were not included in the training data. In a sense,

this is an attempt at extrapolation in time (rather than a sort of interpolation within the

training set). Although disappointing, this result is not at all surprising, as data-driven

methods often struggle to model unseen data, particularly for highly non-linear systems.
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Figure 7.1: CVRC pressure probe, un-
sampled MP-LSVT, Np = 100, ∆t = 5 ×
∆tFOM.

Figure 7.2: CVRC pressure probe, pro-
jected solution, various Np.

The inability of the trial basis to represent unseen data is made readily apparent

by observing the average projection error over time in Fig. 7.3. After t = 5.5 ms, the

projection error drastically increases, and increasing the dimension of the trial basis is

unable to improve this whatsoever. This can be visually observed in pressure probe

measurements of the projected solution in Fig. 7.2, where large discrepancies can be

observed beyond t = 5.5 ms.

Comparisons of the FOM and projected pressure and temperature fields at t = 5.6

ms can be seen in Figs. 7.4 and 7.5. In both instances, the solution appears smeared and

more axisymmetric, lacking most of the transient features of the flow field such as the

highly distorted flame front in the combustion chamber. As the online PROM cannot

be expected to model the unsteady solution more accurately than the projected solution,

the previous failure of the PROM is to be expected.

Given the poor performance of the unsampled PROM, it can be safely assumed that

any HPROM will perform as poorly or worse. Ultimately, the failure lies purely with

the fact that an accurate solution does not exist in the trial space. Alternatively, several

methods have been proposed which adapt a linear trial basis and hyper-reduction sam-

pling configuration during the unsteady solution of the linear subspace PROM. Examples

of approaches which propose time-variant trial bases include dictionary-based methods

(sometimes referred to as local bases) [190, 191, 192], space-time trial bases [193, 194],

or basis transport maps [195]. Although these methods have displayed exceptional ac-
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Figure 7.3: CVRC average projection error over time, various Np.

Figure 7.4: CVRC pressure field beyond training bounds, t = 5.6 ms, FOM at top and
projected solution for Np = 100 below.

Figure 7.5: CVRC temperture field beyond training bounds, t = 5.6 ms, FOM at top and
projected solution for Np = 100 below.
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curacy improvements over static basis methods for convection-dominated problems, they

still suffer from the fact that the constituent bases (e.g., those that form the dictionary)

are constructed from the training data and may not accurately represent the unsteady

solution when it significantly diverges from states observed in the full-order datasets. A

notable exception is the work by Etter and Carlberg [196], which updates the trial basis

during online computations by vector space sieving.

The following sections explore adaptive PROMs by borrowing elements from the

AADEIM framework by Peherstorfer [197, 153], which leverages limited, periodic queries

of the full-order model to incorporate the online state evolution in adapting the sampling

configuration. This is investigated in combination with the recent one-step adaptation

framework by Huang and Duraisamy [126] as a method for adapting the trial basis.

7.2 AADEIM

The AADEIM framework, originally posed by Peherstorfer and Willcox [197] and later

refined by Peherstorfer [153] is outlined here. This section borrows heavily from their

notation for the sake of consistency. Only the sample mesh adaptation of AADEIM

is utilized, though the trial basis adaptation method is detailed here for the sake of

completeness.

The AADEIM procedure is predicated on the presentation of the fully discrete FOM

O∆E as given in Eq. 4.23, repeated here as

qn−1
c − fr (q

n
c , t

n) = 0. (7.1)

Again, this is an extremely counterintuitive way to write the evolution equations, but has

the benefit of framing the residual in such a way as to motivate equating the trial basis

Uc and the regression basis Ψ, as outlined in Section 4.4.2. From this frame of reference,

AADEIM proposes adaptation of the trial basis Uc as additive low-rank updates of the

form

Un+1
c = Un

c +α
n [βn]⊤ . (7.2)
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The matrices α ∈ RN×z and β ∈ RNc×z compute the low-rank update, where z indicates

the rank of the update. The original AADEIM procedure draws a distinction between

sampling points (and the corresponding sampling operator S ∈ RNs×N) and interpolation

points (and its own operator Ŝ ∈ RNr×N), where the latter is linked to the original DEIM

formulation. It is not necessary that the interpolation points be members of the sample

set.

Given these sampling and interpolation operations, the trial basis update is formulated

as the solution to the least-squares minimization of the error,

αn [βn]⊤ = argmin
α∈RN×z , β∈RNc×z

∥∥∥∥Sn

[[
Un

c +αβ
⊤] [ŜnUn

c

]−1

Ŝn − I

]
Fn

r

∥∥∥∥2
F

, (7.3)

where the snapshot matrix Fn
r ∈ RN×w is defined as

Fn
r :=

[
fr
(
q̃n−w
c

)
, . . . , fr

(
q̃n−1
c

)]
(7.4)

:=
[
q̃n−w+1
c , . . . , q̃n

c

]
(7.5)

The window size w ∈ N0 represents the number of prior PROM solutions for which

the regression error in Eq. 7.3 is considered. That is, during the online solution of the

PROM, the state q̃n
c is stored in Fn

r , and the solution of least-squares minimization of

the regression error of this solution updates the the trial basis Uc during the PROM

runtime. Note that in the work by Peherstorfer [153], those degrees of freedom which are

not sampled by Ŝ are simply reconstructed by Sq̃c = SUn
c

[
ŜUn

c

]−1

Ŝ [qc +HcUcq̂
n
c ].

The adaptation of the sample mesh is significantly simpler than that of the trial basis.

The regression error is computed at every degree of freedom according to the formulation

Rn =
(
I−Ψn [SnΨn]+ SnFn

r

)
. (7.6)

Those Ns degrees of freedom which incur the highest regression error are selected to

construct the new sampling mesh defined by Sn+1. Note that this step constitutes a

loss of independence from the full-order dimension N , as the error must be computed
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at every degree of freedom. The full-order model operator must be evaluated at an

infrequent interval Nu to calculate this. The effect of this query of the full-order system

will be shown to be a major handicap of the method in later results.

7.3 One-step Basis Adaptation

The trial space adaptation proposed by Huang et al. [126] provides a simpler alternative

to that provided by AADEIM. This method begins by suggesting a basis increment

U′
c ∈ RN×Nc which seeks to construct an improved trial space with which to represent

the state vector computed from the FOM solution qc, given a fixed latent state q̂c. This

can be formalized at the nth time step as

qn
c = qc +Hc

[
Un

c + [U′
c]
n]

q̂n
c , (7.7)

where the FOM solution qn
c is computed in tandem with the low-dimensional PROM

solution q̂n
c . Rearranging terms arrives at

[U′
c]
n
q̂n
c = H−1

c [qn
c − qc]−Un

c q̂
n
c . (7.8)

Obviously, this system of equations is underdetermined, attempting to solve for N ×Nc

variables given N equations. As such, there is no unique solution for [U′
c]
n. One solution

suggested in [126] is given as

[U′
c]
n =

[H−1
c [qn

c − qc]−Un
c q̂

n
c ] [q̂

n
c ]

⊤

∥q̂n
c ∥

2
2

(7.9)

Note that this approach is not strictly feasible given that the solution of the FOM equa-

tions qn
c must be computed in order to evaluate the trial basis update, thus defeating the

purpose of the PROM. However, the usefulness of this approach becomes apparent when

hyper-reduction is applied.

Two basis update steps are delineated: that occurring after iterations which only

compute a HPROM solution, and that occurring after an iteration during which the
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sample mesh is updated as in the previous section. In the former case, the basis is only

adapted at sampled points by the form

Sn[U′
c]
n+1 = Sn[U′

c]
n +

Sn [H−1
c [qn

c − qc]−Un
c q̂

n
c ] [q̂

n
c ]

⊤

∥q̂n
c ∥

2
2

(7.10)

7.4 Online Adaptation for the CVRC

Following the above process, future-state prediction is attempted for the truncated CVRC

case introduced in Section 6.2.

The same simulation duration, t ∈ [5.0, 5.5] ms, is investigated, but the training

window is altered to t ∈ [5.0, 5.005] ms, with snapshots collected every time step at

∆t = 1× 10−7 for a total of 50 snapshots. The total prediction period is thus 100 times

larger than the training period. The physical time step of all adaptive HPROMs is the

same as that of the FOM. Initial sample meshes are all computed using the random

sampling algorithm. Adaptation begins at the tenth time step, after which the trial

basis is updated at every iteration. For a given adaptation step, the first half of the

subiterations are dedicated to the HPROM solve, while the latter half are used for the

FOM solution. Adaptive HPROMs are computed for all permutations of trial basis

dimension Np ∈ {2, 5, 10}, sampling rate Ns ∈ {0.5, 0.75, 1.0, 1.75, 2.5}% × N , and

update interval Nu ∈ {2, 3, 4, 5}.

Error contours with respect to the trial basis dimension and sampling rate, for a

given update frequency, are given in Fig. 7.6. Those cases marked in bright yellow are

effectively failed simulations, incurring well in excess of 10% error. Overall, the observed

error for error stable solutions is significantly higher than that observed for the static

HPROMs in Section 6.2, ranging roughly within 6-10%. Further, note that the tested

sampling rates are much higher than those studied for the static HPROMs, and tend

to require 1% sampling to achieve stability. However, recall that the equivalent static

HPROM, trained from only the first 50 µs of the FOM simulation, would invariable be

unstable. Ultimately, the simulations behave similarly with respect to the sampling rate,
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(a) Nu = 2 (b) Nu = 3

(c) Nu = 4 (d) Nu = 5

Figure 7.6: CVRC adaptive HPROM time-average error contours with respect to trial basis
dimension and sampling rate, various Nu.
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(a) Nu = 3, various Ns. (b) Ns = 1.0%, various Nu.

Figure 7.7: CVRC adaptive HPROM pressure probes, Np = 5.

generally improving with increased sampling. Also to be expected, accuracy tends to

degrade with increased update frequency, with Nu = 5 generating approximately ≥ 10%

error in all cases. Surprisingly, stability tends to decrease with respect to the trial basis

dimension. This may be a function of the non-uniqueness of the one-step adaptation

process, whereby a larger trial space induces a sub-optimal update. As a sanity check,

the degenerative solution for Np = 1 and Un
p = q̃n

p does not produce a stable solution.

Pressure probe monitors for several adaptive HPROM configurations are shown in

Fig. 7.7. The end of the training period is marked by a vertical dashed line, at the far left

of the images. Figure 7.7a visualizes the effect of the sampling rate on predictive perfor-

mance, with the obvious conclusion that increasing the sampling rate tends to improve

the pressure signal accuracy. While the case for which Ns = 0.5%×N quickly becomes

unstable, higher sampling rates generate near-perfect predictions up to t = 5.3 ms. After

this point, however, significant over- and undershoots of the signal are observed, though

the frequency of the dominant pressure oscillation is maintained. Figure 7.7b compares

various update intervals, where previous observations are confirmed. Near-perfect predic-

tion is achieved for Nu = 2, while Nu = 5 causes large discrepancies beginning at t = 5.2

ms and even appears to slightly decrease the frequency of the dominant acoustic mode.

Field comparisons at t = 5.5 for various update intervals are shown in Figs. 7.8

and 7.9. Although relative accuracy is not immediately obvious, in the pressure fields

shown in Fig. 7.8 it is apparent that the highly-inaccurate case for Nu = 4 gives rise
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Figure 7.8: CVRC pressure field t = 5.5 ms, Np = 5, Ns = 1% × N . From top to bottom:
FOM, Nu = 2, Nu = 4, Nu = 5.

to spurious high-frequency oscillations along the center axis of the combustion chamber,

just downstream of the dump plane. The evolution of the temperature field in Fig. 7.9 is

similarly opaque, though all appear to generate the characteristic shear layer and vigorous

mixing near the exit.

The process of sample mesh adaptation is briefly touched upon. Recall that the error

metric used to select a new sample set is computed from the regression error of the full

field q̃p. This metric is computed in one shot, and does not involve any greedy iteration

process like those outlined in Section 4.5.2. As such, the sample mesh slices shown in

Fig. 7.10 are largely unsurpising, generating extremely tight clusters of samples similar

to those generated by GNAT sampling as seen in Section 6.2. Again, samples tend to

be selected in the reacting shear layer, which is characterized by highly unsteady mixing

and sharp gradients at the flame front. Isosurfaces of the directly-sampled mesh elements

in Fig. 7.11 emphasize this, generating a nearly conical sample mesh similar to those

observed for eigenvector-based sampling in Section 6.2.
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Figure 7.9: CVRC temperature field t = 5.5 ms, Np = 5, Ns = 1%×N . From top to bottom:
FOM, Nu = 2, Nu = 4, Nu = 5.

Although the predictive performance of these adaptive HPROMs shown above are

quite remarkable, they are not without major drawbacks. Primary among those for the

adaptive approach used here is the need to compute the full-order solution at the interval

specified by Nu. For the cases explored here, for which half of the subiterations for an

adaptation step are dedicated to the FOM solve, the absolute maximum computational

speedup that can be achieved is thus equal to 2×Nu. This is confirmed in Fig. 7.12, which

displays the tradeoff in error with respect to computational speedup for all HPROMs

computed. Each line represents one value of Nu, and each point represents a different

sampling rate. Although these results indicate that the solver is able to nearly achieve

the upper bound of computational speedup, the cost savings are paltry compared to

those observed for the static HPROMs in Chapter 6. Further, the sampling rate appears

to have little effect on the overall accuracy or computational speedup beyond a certain

point, as any speedup is inevitably dwarfed by the cost of the sampling update step.
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Figure 7.10: CVRC sample mesh, Np = 5, Ns = 1%×N . From top to bottom, t = 5.125 ms,
5.25 ms, 5.375 ms, 5.5 ms.

7.5 Conclusions

The above results represent an exploratory effort in the application of online trial ba-

sis and sample mesh adaptation in pursuit of truly predictive HPROMs. Although the

methodology and initial implementation was not conducted by the author, personal con-

tributions centered on optimization of the implementation to enable the feasible appli-

cation of these methods of problems of unprecedented scale. Although the methodology

is fundamentally limited in its ability to enable significant computational cost savings,

these results display that the method is capable of generating (quantitatively) accurate

simulations of high-dimensional, highly non-linear combusting flows beyond the limits of

the training dataset with measurable speedup.
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Figure 7.11: Directly-sampled cell isosurfaces, Np = 5, Ns = 1% × N . Top left is t = 5.125
ms, top right is 5.25 ms, bottom left is 5.375 ms, bottom right is 5.5 ms.

Figure 7.12: CVRC adaptive HPROM time-average error vs. computational speedup, Np = 5,
various Nu.

177



Chapter 8

Best Practices for PROMs of Reacting Flows

In the author’s personal experience, there is often a certain opacity in the projection-based

ROM literature on the subject of data preparation and robustness controls. In many

cases this is simply due to the fact that many PROM studies deal with systems which are

governed by a single state variable (Burgers’ equation, Kuramoto–Sivashinsky equation),

are governed by state variables that are naturally of similar magnitudes (shallow water

equations, Euler equations for Sod shock tube), or are commonly non-dimensionalized

in open-source or commercial solvers (incompressible Navier–Stokes). In such situations,

the dimensionality of the state variables is either irrelevant or has little effect on the

accuracy of state representations and the solution of the PROM equations. Sometimes,

however, small but crucial details of data preparation or the PROM solution are left out

as they are considered self-evident to the authors (as has been discovered anecdotally by

this author and colleagues). To date, the work by Parish and Rizzi [120] provides the

most explicit description and comprehensive study of ensuring a dimensionally-consistent

POD formulation and PROM solution by careful choice of inner products. Although the

focus of their work is the compressible Euler equations, they provides broadly-meaningful

insights for dimensional dynamical systems.

All but one numerical experiment in this thesis deals with high-pressure, compress-

ible reacting flows, which are characterized by both vastly disparate magnitudes in the

system state and an inability to readily non-dimensionalize the governing equations. As

such, careful data preparation and unsteady solution robustness controls are extremely

important in enabling the stable and accurate solution of projection-based reduced-order
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models. Further, this thesis aims to be as transparent about every element of the PROM

construction process to help enable successful PROMs for future researchers working

with similarly-complex systems. Some of the key elements in this process are detailed

the numerical experiments which follow.

All results shown in this chapter are unsampled MP-LSVT PROMs of the truncated

CVRC case investigated in Section 6.2. A time step of ∆t = 5 × ∆tFOM is used in all

cases.

8.1 Centering and Scaling

As previously defined, the general (linear or non-linear) low-dimensional state represen-

tation for the conserved and target states are defined, respectively, as

q̃c := qc +Hcφg,c (q̂c) , (8.1)

q̃p := qp +Hpφg,p (q̂p) , (8.2)

where, again, the functions φg,c (q̂c) = Ucq̂c and φg,p (q̂p) = Upq̂p for a linear trial

space. This decomposition by centering (qc, qp) and the scaling (Hc, Hp) operation

is often referred to as feature scaling in the machine learning community, whereby the

training datasets are constructed (as noted in Eqs 3.6 and 3.42) by

Q′
c =

[
H−1

c

[
qc

(
t0
)
− qc

]
, . . . , H−1

c [qc (T)− qc]
]
, (8.3)

Q′
p =

[
H−1

p

[
qp

(
t0
)
− qc

]
, . . . , H−1

p

[
qp (T)− qp

]]
. (8.4)

The choice of qc/Hc and qp/Hp has a measurable influence on the accuracy of the above

approximations, particularly for variables of extremely disparate magnitudes. Before

demonstrating this fact, several popular methods of centering and scaling are outlined

and compared.
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Centering

With the exception of centering for min-max scaling, all centering methods described here

are considered to be spatially-variant, i.e. qc := qc(x), qp := qp(x). Each is described in

turn.

1. Initial condition: Centering about the initial condition, i.e. qc = qc(t
0) or qp =

qp(t
0), results in approximation of the unsteady state as perturbations about the

initial condition. In the case of a linear trial space, this guarantees exact satisfaction

of the initial conditions, as the projection of the zero vector (the initial condition

subtracted by itself) is identically zero. In the case of autoencoder non-linear mani-

fold methods, however, this is merely satisfied approximately, and near-satisfaction

is encouraged by including the zero vector in the training set and initializing the

non-linear manifold PROM from the encoding of the zero vector, as in [116].

2. Mean: The mean field centering computes the centering vector as the arithmetic

mean of the data snapshots,

qc =
1

NT

NT∑
n=1

qn
c (8.5)

qp =
1

NT

NT∑
n=1

qn
p (8.6)

This concept is fairly common in the turbulence modeling community, which often

seeks to accurately describe unsteady perturbations about the time-averaged field

for statistically-stationary flows. In the same sense, centering data snapshots about

the mean field ensures that the low-dimensional representation accurately captures

these small-scale fluctuations which would otherwise be dwarfed by the mean field.

Scaling

For all methods described below, the scaling matrices Hc, Hp are composed of constant

scalars which are specific to a given state variable (e.g., density, velocity) but are not
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specific to spatial location. This can be written as as

Hc := diag
(
h⊤
c,1, . . . , h

⊤
c,Nv

)
, hc,v (xi) = hc,v ∀ i ∈ {1, . . . , Ne} (8.7)

Hp := diag
(
h⊤
p,1, . . . , h

⊤
p,Nv

)
, hp,v (xi) = hp,v ∀ i ∈ {1, . . . , Ne} (8.8)

where hc,v, hp,v ∈ R is the constant conservative/target scaling value for the v state

variable.

1. ℓ2-norm: Scaling by the ℓ2-norm method is motivated by that proposed by Lumley

and Poje [198], and is computed as

hc,v =
1

NTNe

NT∑
n=1

∥∥qn
c,v − qc,v

∥∥2 (8.9)

hp,v =
1

NTNe

NT∑
n=1

∥∥qn
p,v − qp,v

∥∥2 (8.10)

This has the effect of ensuring that all state variable vectors have a length (in the

Euclidean norm) close to unity. This is closely related to the POD, which computes

the distance between the data and their projection in the ℓ2 norm.

2. Min-max : Min-max feature scaling, composed of associated centering and scaling

operations, has the effect of ensuring that all values in the modified dataset fall in

the range [0.0, 1.0]. For the vth state variable (e.g. density, velocity), the centering

vector is computed as

qc,v = min (Qc,v) , qc,v (xi) = qc,v ∀ i ∈ {1, . . . , Ne} (8.11)

qp,v = min (Qp,v) , qp,v (xi) = qp,v ∀ i ∈ {1, . . . , Ne} (8.12)

where the data snapshot matrix for the vth state variable is given by

Qc,v :=
[
qc,v

(
t0
)
, . . . , qc,v (T)

]
(8.13)

Qp,v :=
[
qp,v

(
t0
)
, . . . , qp,v (T)

]
(8.14)
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(a) No centering. (b) Initial condition. (c) Time average.

Figure 8.1: CVRC unsampled MP-LSVT PROM time-average error, Np = 25, various trial
space centerings.

The scaling values are then computed as

hc,v = max (Qc,v)−min (Qc,v) (8.15)

hp,v = max (Qp,v)−min (Qp,v) (8.16)

where the data matrices are given as in Eqs. 8.13 and 8.14. Note that this min-max

scaling can be applied on top of an alternative centering method, e.g. centering by

the initial condition and then min-max scaling. Such an operation for the conser-

vative state would take the form

q′
c,v =

qc,v − qc −min (Qc,v)

max (Qc,v)−min (Qc,v)
(8.17)

As such, min-max scaling will be referred to exclusively as a scaling operation which

can be combined with a given centering method, or applied without alternative

centering.

Although min-max scaling is fairly common within the machine learning commu-

nity, and is a simple method of ensuring that the data are roughly the same order

of magnitude, this scaling has the effect of emphasizing outliers which define the

maximum and minimum bounds of the state variables.

Time-average error results for the MP-LSVT PROMs of the truncated CVRC, for

Np = {25, 50, 75, 100}, are shown in Fig. 8.1, along with indicative pressure probe mea-

surements in Fig. 8.2. Both instances in which centering is applied (either initial condition
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(a) No centering. (b) Initial condition.

(c) Time average.

Figure 8.2: CVRC unsampled MP-LSVT PROM pressure probes, Np = 25, various trial space
centerings.
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or time-average field) perform similarly, and scaling the state appears to improve the so-

lution over cases without scaling. If no centering, however, the PROM accuracy is rather

poor even in cases where scaling is also applied.

8.2 Residual Weighting

As discussed in the derivations of PROMs in Sections 3.2 and 3.3, practical engineering

systems are often described by state variables of vastly different magnitudes. In the case

of fluid flows in rocket combustors, density (and transported scalars) are usually O (1-10)

kg/m3, velocity (and momentum) are usually O (100) m/s (kg/m2-s), temperatures are

often O (1, 000) K, and pressures are in excess of O (1× 106) Pa. As a result, it is often

important to non-dimensionalize or precondition these systems to ensure proper linear

solver convergence, as the dimensional system may be poorly conditioned.

A similar notion is relevant to LSPG and MP-LSVT PROMs, whose un-normalized

formulation is given respectively by

q̂n
c = argmin

y∈RNc

∥r (y)∥2 , (8.18)

q̂n
p = argmin

y∈RNp

∥r (y)∥2 , (8.19)

where the formulation of the fully-discrete residual r (·) with respect to the primitive and

conservative latent variables is used interchangeably, but represents the same quantity.

The solution of this non-linear least-squares problem by quasi-Newton methods may

suffer from poor convergence, as high-magnitude elements of the residual may contribute

disproportionately to the ℓ2-norm.

In light of this, as given in the formulations in Eqs. 3.28 and 3.48, a diagonal residual

weighting matrix Hr ∈ RN×N is introduced which modifies the PROM formulation to
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weighted non-linear least-squares problems of the form

q̂n
c = argmin

y∈RNc

∥∥H−1
r r (y)

∥∥
2
, (8.20)

q̂n
p = argmin

y∈RNp

∥∥H−1
r r (y)

∥∥
2
. (8.21)

The operation H−1
r thus seeks to normalize the residual terms such that they contribute

approximately equally to the non-linear least-squares problem and improve iterative con-

vergence. For all results in this thesis, Hr takes a similar form to that of the scaling

matrices introduced in Section 8.1. That is, it is constructed from scalars which are con-

stant for a single governing equation (e.g. mass conservation, total energy conservation),

and do not vary for degrees of freedom associated with different mesh elements. This is

written as

Hr := diag
(
h⊤
r,1, . . . , h

⊤
r,Nv

)
, hr,v (xi) = hr,v ∀ i ∈ {1, . . . , Ne} (8.22)

In this thesis, calculation of the residual weighting factors is predicated on the formu-

lation of the PROM residual as

r (q̂n) :=
.
qn
c − f (g (q̂n) , t) = 0. (8.23)

That is, the fully-discrete system is seperable into the time-integrator of the conservative

state and a non-linear “right-hand side” (RHS) function f (·, t). Further, for the specific

case of linear multi-step time integration schemes, for which the discretization of the time

derivative takes the general form

.
qn
c := qn

c +
s∑

i=1

aiq
n−i
c (8.24)

As mentioned in Section 4.4, a consistent linear multi-step scheme satisfies
∑s

i=1 ai =

−1. Substituting the linear approximation of the conservative state, the discrete time
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(a) ℓ2-norm. (b) Min-max.

Figure 8.3: CVRC unsampled MP-LSVT PROM time-average error, Np = 25, various residual
scalings.

derivative can be written as

.
qn
c = HcUc

(
q̂n
c +

s∑
i=1

aiq̂
n−i
c

)
(8.25)

No similar formulation can be ascribed to the RHS function.

The above discussion motivates two primary approaches for computing the constant

scaling factors hr,v.

1. Conservative state: This approach computes a residual scaling identical to that

of the conservative state scaling matrix, Hc. As outlined in Section 8.1, this is

associated with a particular centering and scaling method. Centering about the

conservative initial condition and time-average field are investigated here, along

with ℓ2-norm and min-max scaling.

2. Right-hand side: This approach computes the residual scaling from unsteady snap-

shots of the non-linear function f (·, t). As mentioned above, it does not make sense

to center these snapshots, as the linear multi-step schemes used in this thesis can-

not be decomposed such that a centering vector cancels out. As such, the following

results compute RHS scaling by ℓ2-norm and min-max scaling, without centering.

The latter option neglects subtracting the field variable minimums.

186



(a) ℓ2-norm. (b) Min-max.

Figure 8.4: CVRC unsampled MP-LSVT PROM pressure probes, Np = 25, various residual
scalings.

MP-LSVT PROMs are again computed for the truncated CVRC. The primitive state

is centered about the initial condition and scaled by the ℓ2-norm in all cases. Time-average

error and probe measurements are again displayed in Fig. 8.3 and 8.4, respectively. Here,

the effect of residual weighting is slightly more nuanced than that of solution centering

and scaling. On the whole, all cases are reasonably accurate. However, certain choices

of residual scaling have the effect of causing/preventing an apparent decrease in the

frequency of the dominant pressure mode, making it appear as if the solution is lagging

behind that of the FOM. In particular, it appears that computing the residual scaling

via the un-centered conservative variables alleviates this problem to the greatest extent,

and generally results in the lowest time-average error.

8.3 Limiters

As discussed at length in work by Huang et al. [73] and Blonigan et al. [199], PROMs

for systems described by flow fields characterized by sharp gradients (such as shocks or

flames) often generate non-physical solutions, such as negative densities, temperatures, or

pressures. These inevitably cause the solver to fail in attempts to, say, compute the square

root of a negative value. The cause of these issues in linear subspace PROMs is often due

to “ringing,” a common issue in linear representations of non-linear functions. Closely

187



related to Gibbs phenomena for Fourier series representations, ringing appears as large

over- and undershoots in approximating sharp gradients, along with local oscillations in

the vicinity. Severe ringing can result in non-physical solutions due to the aforementioned

over- and undershoots. This is generally caused by under-resolution of the trial space,

and usually improves with increasing Nc/Np.

A variety of tactics for combatting high-frequency oscillatory behavior in PROMs

has been proposed, including adaptations of classical artifical viscosity [200, 201] and

filtering [202, 203] approaches to PROMs. Perhaps the simplest approach to eliminating

non-physical solutions are limiting, or clipping, functions, which bound the solution from

above, below, or both. This can be formalized by the limiting function

q = max (min (q, qmax) , qmin) (8.26)

The work by Blonigan et al. [199] on a hypersonic re-entry vehicle uses this approach

to bound the density and temperature from below, ensuring that they never fall below

zero and ensures a physical solution. The work by Huang et al. [73] on a model rocket

combustor goes further, bounding temperature from below using a value slighly smaller

than the injection temperature of the cold fuel, and bounding from above using a value

slightly larger than the adiabatic flame temperature of the reactants injected. This latter

approach limits the solution more aggressive, but is ultimately informed by the physical

constraints of the modeled system. Additionally, this approach is shown to not only

improve stability, but also improve the long-term accuracy of the online PROM. Later

work by Huang and coworkers [74, 75] also explores similar heuristic limiters for species

mass fraction fields; these are not discussed further in this thesis.

As an aside, the work by Blonigan et al. [199] classifies this limiting approach as a

type of non-linear trial manifold, inasmuch the clipping function is non-linear and all

realizable solutions are computed via this non-linear function. While this distinction is

accurate, this thesis does not use such a label, as clipping functions are already commonly

used in simulations of reacting flows to ensure that all species mass fractions sum to

unity. Referring to this approach as a non-linear manifold PROM might unduly confuse
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the reader with respect to the neural network non-linear trial manifolds discussed in

Sec. 3.1.2.

8.4 Variable Transformations

Throughout the results presented in the above chapters, it is clear that the MP-LSVT

method is capable of generating stable and accurate PROMs for reacting flow systems.

Although the MP-LSVT is a theoretically simple modification of the well-established

LSPG projection, the effect of this change on PROM performance is profound. Although

the two methods performed equivalently for the non-reacting 2D transonic cavity flow in

Section 6.1, MP-LSVT was shown in Section 6.2 to preserve PROM stability for the 3D

CVRC while LSPG quickly became unstable. This has similarly been observed in the

original development of the MP-LSVT method by Huang et al. [75].

The core concept of the variable transformation has other, more subtle advantages.

For one, choosing an alternative set of target variables allows a PROM practitioner to

more confidently estimate a priori the accuracy of approximating flow fields which are

of more practical interest than the conservative variables. Calculations of POD bases or

autoencoders can be appropriately weighted and trained to approximate certain fields

with higher fidelity. For example, if the unsteady temperature field is of particular im-

portance to an application, the training loss in approximating the temperature field can

be scaled to ensure higher accuracy. This is not nearly as simple when training using the

conservative variables, which may be involved in calculating various practical quantities

of interest to varying degrees.

The use of an alternate set of target variables also enables vastly simpler implemen-

tations of limiters such as those discussed in Section 8.3. When the conservative state is

modeled, the field to be limited must first be calculated from the conservative variables,

and then the conservative fields recalculated to reflect the change in the limited field.

For example, to limit species mass fractions, the mass fractions would first be computed

from the density-weighted mass fractions, clip the mass fraction fields, then recalculate
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the density-weighted mass fraction fields. This process incurs additional computational

cost and modeling complexity which can be circumvented by directly modeling the field

to be limited as part of the MP-LSVT target state.

For the above reasons, and due to its observed accuracy and robustness, the model pre-

serving variable transformation can be considered a best practice in highly stiff problems

such as reacting flows. Whether similar improvements can be realized for other dynamical

systems remains to be seen. Further, a significant amount of work remains to determine

whether there are additional target flow variable sets (e.g. entropy variables) which can

result in even better PROMs than those investigated using the primitive variables.

8.5 Sample Selection Computations

As discussed in Section 4.5.2 and empirically tested in Section 6.2 as well as prior work by

Wentland et al. [125], constructing a sampled mesh for HPROMs which results in a stable

and accurate solution at low sampling rates can be extremely challenging. Traditional

methods, such as GNAT sampling originally proposed by Carlberg et al. [68], as well

as simple random sampling, appear to perform suboptimally for HPROMs of complex

reacting flow systems. Eigenvector-based sampling, originally developed by Zimmermann

and Willox [147] and simplified by Peherstorferet al [76], has proven remarkably effective

in enabling accurate HPROMs with very large computational cost savings. Based on

findings here and in prior works [76, 125], eigenvector-based sampling seems a natural

choice for ensuring HPROM effectiveness.

However, as demonstrated by offline cost measurements in Fig. 6.27, eigenvector-based

sampling can account for non-negligible portion of the full computational budget even

when utilizing scalable, high-performance linear algebra tools such as PLATFORM [132].

Distributed-memory software is generally a necessity when operating on datasets in ex-

cess of O (10) GB, but such methods require special considerations. In particular, greedy

methods implemented in distributed-memory applications are hampered by repeated sort-

ing of non-contiguous memory and blocking, global reductions which are required to de-
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termine the minimum/maximum instance of the greedy sampling metric. Attempting to

mitigate this communication overhead by limiting the total number of process invariably

reduces the parallelism of evaluating the greedy metric. Hence, a delicate balancing act

is required to enable efficient offline calculations.

One possible approach for mitigating the overall cost of the offline sampling calcula-

tions is suggested by the difference between the two GNAT sampling variants investigated

in this thesis. In the original algorithm, ceil(Ns/Nr) are selected at every greedy iter-

ation, while the alternative algorithm selected Nv at every greedy iteration. The latter

is far more granular and approaches a more optimal solution, but incurs a much higher

computational cost due to requiring potentially many more evaluations of the greedy

metric. However, these approaches imply a spectrum, by which the number of samples to

be selected is specified by the user at runtime. Smaller values should results in improved

modeling accuracy, while higher values reduce offline costs. A compromise between these

two effects may drastically reduce the computational burden of greedy sampling algo-

rithms while ensuring stable and accurate HPROMs. Further, it may prove to be a

useful approach in improving online sample mesh adaptation, where single-shot sampling

may require exceptionally large sample meshes to ensure accuracy, as demonstrated in

Chapter 7.
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Chapter 9

Conclusion

This thesis investigated projection-based reduced-order models for multi-scale transport-

dominated systems, with a particular emphasis on reacting flows and rocket combustor

applications. Attention was given to the application of these ROMs for problems of

much larger dimensions and complexity than has been attempted in the literature. The

main insights drawn from these experiments are highlighted below, including particularly

successful methods and practices, as well as challenges which frustrated attempts at

producing stable, accurate, and efficient simulations. A few additional questions which

might serve as interesting topics for future research are also presented.

9.1 Summary and Insights

Chapters 2–4 provided a detailed background on modern projection-based ROMs in the

context of numerical models of compressible reacting flows. Classical projection methods,

namely Galerkin and LSPG projection, were contrasted against the recent MP-LSVT

method, which was later shown in this thesis to be superior to classical methods in

modeling reacting flows. Important nuances in the development of scalable hyper-reduced

PROMs of non-linear PDEs were detailed, including their theoretical formulation, several

sample mesh selection algorithms, gappy POD regressor calculation, and load balancing.

Outlines of online basis and sample mesh adaptation approaches were also provided.

Chapter 5 investigated a 1D freely-propagating, acoustically-forced model premixed

flame. These calculations were enabled by PERFORM, an open-source Python frame-
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work for developing novel ROMs for reacting flows. While the 1D model flame is an

extremely simple model of advection-dominated reacting flow, intrusive linear PROMs

failed outright in both reconstructing training data and predicting unseen data. The

ability of a linear trial space in approximating sharp gradients and traveling waves was

shown to be very poor. Alternatively, modern neural network approaches were shown

to be capable of approximating the solution very accurately. Deep autoencoder neural

networks enabled efficient dimension reduction with extremely small latent space dimen-

sions, inducing projection error which was orders of magnitude lower than that observed

for comparable linear trial spaces. However, the integration of these autoencoders in

non-linear manifold PROMs proved less encouraging, generating solution trajectories for

unseen outlet pressure forcing frequencies which often failed to accurately predict the

upstream acoustic content or flame speed. Further, these non-linear manifold PROMs

were exorbitantly computationally-expensive, due largely to the evaluation of neural net-

work Jacobians by automatic differentiation. To mitigate this online cost, non-intrusive

ROMs were presented using recurrent neural networks, specifically LSTMs, to model the

time evolution of the latent variables. This circumvented the need to repeatedly evaluate

the governing equations or compute Jacobians and projections, drastically cutting down

online costs. Further, the non-intrusive ROMs generated excellent online predictions

for training and unseen data alike. The apparent robustness and predictive accuracy of

these non-intrusive ROMs are appealing, though the computational cost of training these

neural network ROMs was shown to be exceptionally high.

Chapter 6 rigorously investigated the construction of accurate and scalable HPROMs

for highly non-linear fluid flow systems, applying the techniques outlined in Chapter 4 to

a 2D transonic flow over an open cavity, a 3D single-element model rocket combustor, and

a multi-element laboratory rocket combustor. To the best of the author’s knowledge, this

last experiment represents the largest and one of the most physically-complex PROMs

in the literature to date. The effects of the sampling algorithm, sample mesh size, and

gappy POD regressor dimension were examined. In particular, these results revealed

that traditional sampling algorithms, such as random sampling or GNAT sampling (an
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extension of DEIM greedy sampling), were generally unable to generate significant com-

putational speedups without inducing unacceptable loss of stability and accuracy. The

eigenvector-based sampling proposed by Peherstorfer [76], on the other hand, was capable

to constructing a sample mesh which enabled over three orders of magnitude cost sav-

ings while retaining excellent model accuracy. However, the greedy sampling algorithms

were shown to incur significant offline computational cost, albeit only for relatively large

sample meshes.

Chapter 7 investigated limits of PROMs in making future state predictions for the

two 3D rocket combustor cases. In order to construct truly generalizable models, basis

and sample mesh adaptation methods were applied to these problems. Successful future-

state predictions were achieved, retaining stability and accuracy for time windows two

orders of magnitude larger than the training datasets. The results presented were seen

to offer an order of magnitude in cost savings, compared to many orders of magnitude

savings achieved with static basis ROMs. This reveals a strong need for advanced online

greedy sampling and load balancing techniques to minimize sample mesh sizes and MPI

communication overhead.

Chapter 8 stepped back to take a big-picture examination of some of the under-

lying data preparation and online robustness control methods which enabled the suc-

cessful results presented in previous chapters. All results presented were computed for

the truncated single-element rocket combustor presented in Chapter 6. Several data

centering and scaling methods were compared in generating accurate trial bases and

subsequent online PROMs, showing that centering training datasets enhances accuracy

significantly. Residual weighting, loosely associated with the more familiar concepts of

non-dimensionalization and preconditioning, was also shown to be crucial in generating

robust PROMs. In particular, computing residual scaling from uncentered snapshots of

the conservative variables proved effective in enhancing long-term PROM accuracy. Fi-

nally, the importance of physics-informed temperature limiters, variable transformations,

and efficient sample mesh computations was discussed, with recommendations for specific

applications to reacting flow simulations.
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The sum of these results imply that projection-based reduced-order models are very

nearly capable of producing efficient and generalizable data-driven models for large-scale

multi-physics systems. The MP-LSVT method, improved sampling algorithms, and on-

line adaptation approaches have been shown here to be effective solutions to many of

the challenges previously faced by the PROM community. However, this work has also

exposed several key issues which remain to be solved, particularly in efficient online adap-

tation methods. Further, novel neural network ROM approaches do not appear to be a

cost-effective solution to this model generalization problem, as they are shown to be oner-

ously expensive to train even for simple one-dimensional reacting flow problems. On the

whole, however, these results are greatly encouraging and suggest many interesting paths

for future research, as detailed below.

9.2 Future Work

Developing data-driven models for reacting flows is a massive undertaking, and this thesis

has only investigated a small portion of possible research paths. Based on my experience, I

suggest a few key areas that might build off this work, restricting discussion to projection-

based reduced-order models. Roughly in order of descending difficulty (in my opinion),

these are:

1. PROMs with advanced chemistry and multi-phase models: The chemistry models

utilized in this thesis are fairly rudimentary compared to those used by contem-

porary researchers in turbulent combustion. Further, the assumption of gaseous

propellants ignores important spray physics in liquid-propellant rocket engines. De-

termining the sensitivity of PROMs in predicting complex combustion physics, such

as radiation, soot generation, wall heat transfer, and spray atomization is a logical

step in advancing PROMs to practical engineering systems including gas turbines,

automotive engines, and jet engines.

2. PROMs for cylindrical multi-element rocket engines: A cylindrical single-element

combustor and a linear multi-element combustor were investigated in this thesis.
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In both, dominant system acoustics act largely in one direction. Cylindrical multi-

element combustors, which are standard for industrial rocket engines, often experi-

ence complex rotational acoustic modes. The ability of PROMs to accurately model

interactions between propellant injectors arranged in such configurations would help

establish their utility for practical applications, rather than for the laboratory-scale

experiments presented here.

3. Online adaptive sampling algorithms: An extremely naive sampling metric for on-

line sample mesh adaptation was used for the adaptive HPROMs presented in

Chapter 7, simply measuring the discrepancy the predicted FOM and PROM state

at a given iteration. Although this approach was capable of making accurate future-

state predictions, it required very large sample meshes to achieve a stable solution,

and hence produced minimal computational cost savings. As seen is Chapter 6,

alternative greedy algorithms are capable of producing accurate reconstructions on

small sample meshes, but are far too computationally-expensive to compute during

online calculations. Developing efficient sampling adaptation metrics will be crucial

for enabling extremely fast adaptive HPROMs.

4. Comparison of linear adaptive PROMs and non-linear manifold ROMs: The key

difficulty in modeling the one-dimensional model premixed flame in Chapter 5 with

a linear representation was the poor approximation of sharp gradients under strong

advection. Although non-linear manifold ROMs drastically improved this represen-

tation, they are extremely expensive to train. As linear adaptive PROMs incur neg-

ligible training cost, but have been shown to accurately predict advection-dominated

flows [78], a direct comparison against non-linear manifold ROMs might reveal that

an adaptive linear representation is both accurate and cost-effective.

5. Cost accounting for large-scale ML ROMs: A very superficial cost accounting for a

few non-linear manifold ROMs, including offline training and online evaluation time,

was presented for a simple one-dimensional model premixed flame in Chapter 5.

Even for such a low-dimensional system, the offline cost is orders of magnitude
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greater than that for linear PROMs. This would only be exacerbated for larger,

more practical engineering systems, where the high training cost of deep neural

networks in increased exponentially due to the curse of dimensionality. An honest

evaluation of this computational burden might inform future developments in data-

driven ROMs.
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