
Shock Capturing for High-Order Computational Fluid
Dynamics

by

Yifan Bai

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering and Scientific Computing)

in The University of Michigan
2023

Doctoral Committee:

Professor Philip Roe, Chair
Professor Krzysztof Fidkowski
Professor Smadar Karni
Professor Feng Liu

Yifan Bai

yifanb@umich.edu

ORCID iD: 0000-0002-7877-2209

© Yifan Bai 2023

ACKNOWLEDGEMENTS

I need to first and foremost thank Prof. Roe for inviting me to Michigan and for his

guidance throughout my PhD to make it a fruitful adventure. The knowledge and wisdom

he shared are the most valuable things I have gained in the past few years. I want to thank

Prof. Fidkowski for working with me and for being the best instructor in his CFD classes.

His passion for research and teaching and his genuine care for his students have always been

a great encouragement to me. Many thanks to Prof. Karni for being on my committee and

for the suggestions she gave from her unique and valuable point of view. I am also thankful

to Prof. Liu for being my committee member and for gently nudging me toward the direction

of CFD at UC Irvine.

I have many thanks to say to the friends I have made during this journey. To Qiaoqian,

Deying, Guangfei, Jie, Jianan, and Hengjie, my trusted friends from UC Irvine, for helping

me through the nervousness of coming to the US for the first time until I could finally land

on my feet. To Yuki, Devina, Guodong, Qingzhao, Aaditya, Fabian, and Nick, the first

group of people I met in Michigan, for having made my life here so much more enjoyable.

To my labmate Fanchen for offering helpful insights on research. To Abdul, Avin, Shiyao,

and Tran for the fun potlucks and hangouts. To my current officemates, Miles and Alex, for

countless lively conversations. To Hoang, for always being there for me, always believing in

me, and sharing laughs, tears, and noodle soups with me.

I want to thank my mom for everything she has done for me. She grew up in a small

town in China and earned her Master’s degree in Public Health when I was in elementary

school. She has already achieved more than I ever will.

ii

The Aerospace department at the University of Michigan offered me GSI positions and

fellowships to help me through PhD. Part of the computational resources for the research in

the thesis is provided by Extreme Science and Engineering Discovery Environment (XSEDE).

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . ix

ABSTRACT . x

CHAPTER

I. Introduction . 1

1.1 Overview of High-Order CFD methods 1
1.2 Resolving Discontinuities . 3
1.3 Contributions of the Thesis . 7
1.4 Navier-Stokes Equations . 7

II. Limiting for the Active Flux Method 9

2.1 Introduction to the Active Flux Method 9
2.1.1 Solution Reconstruction . 10
2.1.2 Spherical Mean Operators 12
2.1.3 Advection Operator . 15
2.1.4 Nonlinear Corrections . 16
2.1.5 Enforcing Conservation . 18

2.2 Flux-Corrected-Transport Applied to the Acoustics Equations 19
2.2.1 Limited Active Flux . 19
2.2.2 Test Cases: Linear Acoustics 26
2.2.3 Test Cases: Converging-Diverging Shock 33

2.3 Efficient Implementation of Active Flux 41
2.3.1 Half-Step Evaluation . 41
2.3.2 Spherical Mean Evaluations 42
2.3.3 Efficiency Comparison with DG 45

iv

III. Artificial Viscosity Shock-capturing . 48

3.1 Discontinuous Galerkin and Hybrid Discontinuous Galerkin 48
3.1.1 Discontinuous Galerkin (DG) 48
3.1.2 Hybridized Discontinuous Galerkin (HDG) 50

3.2 Shock Capturing . 52
3.2.1 Artificial Viscosity . 52
3.2.2 Smoothness Indicators . 55

3.3 Mesh Adaptation . 57
3.3.1 Adjoint Solution . 57
3.3.2 Output Error Estimation 58
3.3.3 Mesh Optimization through Error Sampling and Synthesis

(MOESS) . 59
3.3.4 Error Sampling . 61

3.4 One-dimensional test cases . 61
3.4.1 Steady Linear Advection 61
3.4.2 Unsteady Linear Advection 62
3.4.3 Unsteady Inviscid Burgers 63

3.5 Two-dimensional test cases . 64
3.5.1 Transonic Airfoil . 65
3.5.2 Transonic Gaussian Bump 68
3.5.3 Inviscid Hypersonic Flow Past a Half-Cylinder 70
3.5.4 Viscous Hypersonic Flow Past a Half-Cylinder 79

IV. Conclusion . 84

APPENDIX . 86
A.1 Unsteady Adjoint . 87
A.2 Adaptation results . 88

BIBLIOGRAPHY . 92

v

LIST OF FIGURES

Figure

2.1 A cluster of elements. The solution is defined on the right by a quadratic
interpolant and on the left by a piecewise linear interpolant on each subtri-
angle. The discs mark domains of dependence for edge and vertex nodes. . 12

2.2 Illustration of Simpson’s rule for calculating the time integral of the flux. . 19

2.3 Illustration of the CFL constraint. 21

2.4 Neighboring nodes (marked by) sampled on the acoustics boundary for a
node at an element vertex or at an edge midpoint. 22

2.5 Discontinuity initialization inside a triangle. Filled nodes are assigned values
u1 and unfilled nodes are assigned u2. 26

2.6 Error convergence of the double sinusoidal wave for t = 1. 28

2.7 Comparison of 1D and 2D unlimited solutions at t = 0.2 for case B with
similar mesh sizes. 29

2.8 Comparison of solutions at t = 0.2 for two initialization strategies for test
case B. 30

2.9 Error of the center region reduces in time for test case B. 30

2.10 Comparison of unlimited and limited solutions at t = 0.2 for test case B.
h = 0.0218. 31

2.11 Comparison of unlimited and limited solutions at t = 0.2 for test case C.
h = 0.0218. 31

2.12 Comparison of unlimited and limited solutions at t = 0.2 for test case D.
h = 0.0218. 32

vi

2.13 Comparison of unlimited and limited solutions at t = 0.3 for test case D.
h = 0.0218. 33

2.14 p-system solution for an initial Gaussian wave. The solution is smooth at
t = 0.1 and a shock has formed at t = 0.3. 34

2.15 Error convergence plot for the Gaussian wave case. 35

2.16 Converging shock for h = 0.054. Note the changes in the vertical scale. . . 36

2.17 Diverging shock for h = 0.054. Note the changes in the vertical scale. . . . 37

2.18 Density contours for the converging-diverging shock. 37

2.19 Comparison of the Active Flux and DG solutions for the strong converging
shock at t = 3.0. DG has a CFL number close to 0.001. 38

2.20 Comparison of the Active Flux and DG solutions for the weak converging
shock at t = 2.0. 39

2.21 Density profiles of the Euler converging-diverging shock. Note the changes
in the vertical scale. 40

2.22 Radial velocity profiles of the Euler shock reflection. 41

2.23 Partial spherical integrals inside an element. 44

2.24 Error convergence of the moving vortex case. 46

2.25 Comparison of the solution efficiency between Active Flux and DG. 46

3.1 DG solutions for steady advection: a = 1.0, c0 = 1.8, cp = 0.3, with and
without artificial viscosity (AV). 62

3.2 DG and HDG solutions for unsteady advection: t = 1.0, ∆t = 0.001, c0 =
1.0, cp = 0.4. 63

3.3 DG and HDG solutions to the Burgers equation: N = 8, p = 9, t = 0.2.,
∆t = 2× 10−4, c0 = 2.0, cp = 0.4. 65

3.4 Error convergence for DG and HDG solutions to Burgers equation. 66

3.5 Drag coefficient convergence for the transonic airfoil case. 67

vii

3.6 Transonic airfoil DG solution with the resolution indicator and Laplace
smoothing, dof = 1× 104. 67

3.7 Line probe of entropy behind the shock. 68

3.8 Pressure coefficient distributions on the upper surface of the airfoil in tran-
sonic flow. 69

3.9 Total enthalpy error convergence on uniformly refined meshes for the bump
case, using different diffusivity tensor transformations, as defined in Eqn. 3.16. 71

3.10 Drag and total enthalpy convergence during adaptation for the bump case. 71

3.11 Meshes adapted using the entropy variables for the bump case. 71

3.12 Shock-fitted meshes generated for comparison with mesh adaptation for the
hypersonic cylinder case. 75

3.13 Adaptive DG results for M = 5 inviscid flow past a cylinder. dof = 2400 . 76

3.14 Convergence plots for the cylinder case. 77

3.15 Adapted meshes with MOESS for M = 2 flow past a cylinder using the drag
adjoint. 78

3.16 Adapted meshes with hanging node adaptation for M = 2 flow past a cylinder. 78

3.17 Comparison of x-momentum adjoint and error indicators for M = 2 flow
past a cylinder. 80

3.18 A fine mesh and the solution for viscous hypersonic flow past a half cylinder. 82

3.19 Mesh and solution adapted on drag for viscous hypersonic flow past a half
cylinder. 83

3.20 Error convergence for the Stanton number. 83

A.1 Density solution on a fine mesh for double Mach reflection. The shear layer
that involves the Kelvin-Helmholtz instability is zoomed in on the right. . . 89

A.2 Adapted meshes for the double Mach reflection problem. 91

viii

LIST OF TABLES

Table

3.1 Time and iterations required to converge to aM = 5 solution from aM = 4.5
one. 72

3.2 C values in Eqn. (3.17) for the hypersonic cylinder case. 73

ix

ABSTRACT

This thesis contributes to shock-capturing and high-order computational fluid dynamics

methods. We are concerned with convection-dominated equations, working towards Navier-

Stokes solvers capable of handling large solution gradients. The two high-order methods

that we focus on are the novel Active Flux method and the discontinuous Galerkin (DG)

method with polynomial order 2 solution reconstruction, which has been gaining popularity

in recent years.

We present a limiter for the Active Flux method based on the Flux-corrected transport

approach. The limiter is designed for acoustics where no maximum principle can be de-

termined and the solution can become unbounded due to wave focusing. It is capable of

reducing and sometimes eliminating overshoots for linear and nonlinear systems. We also

suggest ways for an efficient implementation of the evolution step of Active Flux. The Ac-

tive Flux method produces better quality discontinuous solutions when compared to the DG

method while maintaining similar efficiency.

The DGmethod, on the other hand, is more mature and suitable for challenging cases con-

taining shocks, in particular for hypersonic flow. We showcase DG and hybrid DG (HDG) re-

sults from transonic to hypersonic flows using a simplified artificial viscosity shock-capturing

approach coupled with output-based mesh refinement. Our discoveries include: Mesh Opti-

mization through Error Sampling and Synthesis (MOESS) does not always generate satis-

factory results in the presence of strong shocks due to error indicator disparity; an indicator

based on the domain integrated total enthalpy balances the refinement on and behind the

shock in many cases; HDG has the potential to reduce the cost of solution without compro-

mising the solution quality.

x

CHAPTER I

Introduction

1.1 Overview of High-Order CFD methods

Since the beginning of its popularity several decades ago, computational fluid dynamics

(CFD) has played a vital part in the aerodynamics community. Nevertheless, applications

requiring high accuracies, such as those that involve unsteady vortices and turbulence, are

out of reach for CFD methods with second-order accuracy or lower due to their formidable

cost. High-order methods are favored in these scenarios for their potential to deliver high

accuracy at a lower cost than the low-order methods. However, high-order methods often

face a stricter time-step size requirement for explicit time-stepping. At the same time, the

irregular pattern of the residual Jacobian matrix increases the cost of an implicit solution.

Meanwhile, as pointed out by Wang et al. in a review paper in 2013 [1], high-order methods

are usually more complicated and less robust than low-order methods. For these reasons,

there is a need to develop high-order methods further.

There are a few popular categories of CFD methods, and each of them has either been

extended or is native to high order. We go over some common categories in the following

paragraphs.

The finite difference method becomes high order through an accurate approximation of

the differential operators. This is achieved most of the time with a design of an enlarged

stencil [2]. The finite difference method is usually introduced in non-conservative forms,

1

although conservative formulations also exist. For conservation laws, the schemes need to

be carefully designed to maintain stability. In most cases, the finite difference method is

limited to structured meshes, which reduces its flexibility.

The finite volume method is native to conservation laws. The stability of the scheme

is achieved through upwind or stabilized fluxes. High-order finite volume methods require

polynomial reconstructions of the solution and approximations of the spatial derivatives [3].

In general finite volume methods above second-order are less common, and each increment

in order requires extra treatment of the solution derivatives.

In contrast, finite element methods are straightforward to bring to high orders. The

discontinuous Galerkin (DG) method is a popular high-order finite element method that

builds on extensive work in Riemann solvers from the finite volume method. It was first

introduced by Reed and Hill in 1973 for the neutron transport equation [4] and has started

to receive more attention since the groundwork by Cockburn and Shu extending DG to

non-linear hyperbolic problems in the 1990s [5, 6, 7]. The DG method enables high-order

computations on general unstructured meshes by increasing the order of the basis functions,

p. However, DG remains expensive in degrees of freedom, and hence storage and CPU

time. To tackle this, hybridized discontinuous Galerkin methods reduce the number of

globally-coupled unknowns in an implicit solution through a static condensation procedure

[8, 9, 10, 11]. Specifically, element-interior unknowns are decoupled through the addition of

the face unknowns, reducing the size of the global system to the number of face unknowns.

A few alternative high-order approaches exist. Spectral methods employ global trial

functions. They offer rapid error convergence for smooth solutions but are difficult to extend

to complex geometries [12]. Spectral element methods tackle this by partitioning the domain

into multiple elements [13]. Spectral element methods are thus closely related to finite

element methods, with the difference that boundaries in spectral element methods require

special treatment. Another popular family of high-order methods in recent years is flux

reconstruction methods proposed by Huynh in 2007[14]. Flux reconstruction methods work

2

with the differential form of the PDEs. The fluxes in the element interior are “corrected” by

enforcing continuity of the reconstructions at the interfaces. The scheme reduces to the DG

method with a particular choice of correction function.

The Active Flux method was first introduced in 2013 by Eymann and Roe as a multi-

dimensional third-order method [15] for hyperbolic equations. Since then, the method has

been extended to the Euler equations [16] and the Navier-Stokes equations [17, 18]. The

Active Flux method is designed to have a continuous solution representation in space and to

incorporate multidimensional physics. It allows a more relaxed time-step size compared to

other high-order methods and has the potential to produce better quality and more efficient

solutions, which we will discuss in this thesis.

Aside from the cost, another important consideration for high-order methods is robust-

ness. High-order discretizations suffer from oscillations near discontinuities and other under-

resolved features. In the case of the DG method, while a discontinuous approximation space

appears well-suited for handling discontinuous features, in practice, taking advantage of these

discontinuities is difficult for general cases [19]. In the next sections, we give an overview of

some common treatments of shocks and discontinuities for high-order methods, particularly

the Active Flux and the DG methods.

1.2 Resolving Discontinuities

Hyperbolic partial differential equations sustain discontinuities in their solutions. For

non-linear equations, shock formation is observed in some scenarios. To capture shocks

and discontinuities while preserving true high frequencies is a challenging task for high-order

methods [20]. Even when a converged solution is achieved, a poorly resolved shock can pollute

the solution downstream and lead to inaccurate output predictions. Several approaches

exist to tackle this problem. The essential ideas include introducing numerical dissipation,

reducing the solution order near the discontinuities, or leveraging the discontinuities in the

solution representations. We cover a few of the popular methods here.

3

Artificial Viscosity

Von Neumann and Richtmyer pioneered the method of solution-based artificial viscosity

in the 1950s [21]. A diffusion term is added to the governing equation where non-smoothness

is present in the solution. This diffusion term usually does not directly mimic a physical

viscosity but is usually taken for simplicity as a Laplacian smoothing with a variable coef-

ficient known as the “artificial viscosity field”. The amount of “viscosity” scales with the

mesh size and disappears in smooth regions so that the consistency of the numerical method

is maintained. Artificial viscosity has been notably adopted by Jameson et al. for their

finite volume scheme [22]. It has been popular for the streamwise upwind Petrov-Galerkin

finite element methods (SUPG) as a stabilization addition to the weak form of the equations

since the work of Hughes and Mallet [23]. This approach was extended to the DG method by

Hartmann and Houston [24, 25]. Persson and Peraire proposed a piecewise constant artificial

viscosity field and the use of discontinuity sensors for DG [26]. They also argued that the

artificial viscosity should scale with the DG resolution length, which is reconstruction order

dependent. Up until this point, the smoothness of the artificial viscosity field has not been

a concern of the research on this topic, and the formulation of the artificial viscosity is a

Laplacian diffusion term. Later, Barter and Darmofal argued in their publication the impor-

tance of making the artificial viscosity field smooth and proposed a PDE-based method to

find the smooth artificial viscosity [27]. Their PDE model for the artificial viscosity has the

form of a heat conduction equation that has the piecewise constant artificial viscosity as the

source term. The artificial viscosity field evolves together with the flow solution. Moreover,

the artificial viscosity term is their implementation is total enthalpy preserving. To reduce

the stiffness of the system, Ching et al. proposed a time-independent PDE as an alternative

[28]. A simplified approach to make the viscosity continuous is presented and verified in

Chap. 3 of this thesis.

Artificial viscosity is generally the most robust way of capturing shocks, especially for

hypersonic flow. It has simple designs and is applicable to most CFD schemes and different

4

mesh types. However, the method relies on a smoothness indicator that is usually heuris-

tic, and the amount of artificial viscosity often needs to be manually adjusted to achieve

satisfactory solutions.

Shock Fitting

In contrast to the shock-capturing strategy of introducing stabilization, shock-fitting, or

shock-tracking leverages solution discontinuities and placement of the element interfaces for

high-quality shock resolution. Shock-fitting methods have the advantage of not requiring

mesh refinement around the discontinuities. Bonfiglioli et al. designed a shocking fitting

method that involves the remeshing of the areas around the shock interfaces [29]. It has been

used to simulate shock/boundary layer interactions [30]. The development of implicit shock-

tracking methods has attracted some attention in recent years [31, 32, 33, 34]. The solution

that contains shocks, as well as the node locations for the node-aligned mesh, are solved at

the same time. The lack of robustness is one concern for this type of methods, although

some improvements have been demonstrated [32]. Moreover, these methods require major

changes to the existing solver codes to incorporate, whereas artificial viscosity or limiters are

much less intrusive.

Limiters

Introduced by Harten [35], the total variation diminishing (TVD) method is one of the

most broadly adopted classes of limiters. For a scalar conservation law, the total variation

of the solution u in the interval x ∈ [0, L], defined as

TV(u) =

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣ dx, (1.1)

should be non-increasing. This makes use of the fact that the time evolution does not

generate new extrema or exaggerate existing extrema, and serves as the basis for designing

5

TVD-type limiters. Second-order TVD methods are interpreted through mathematical proof

as a nonlinear combination of the first-order upwind, Lax-Wendroff, and Beam Warming

methods. However, for higher dimensional systems, TVD carries over assumptions that are

only true in 1D or for scalar problems. The TVD approach sometimes appears as slope

limiters, e.g. MUSCL [36]. This interpretation has been taken to DG, which is well known

as the RKDG scheme [7, 37]. The solution reconstruction reduces to first order where the

limiter is active.

Instead of reducing the solution order near a shock, essential non-oscillatory (ENO) or

weighted ENO (WENO) methods modify the solution reconstruction in troubled elements

with information in neighboring elements. Created by Harten et al. [38], the idea of ENO

is that the new solution should not have a greater number of extrema than the previous

time step. WENO is an improvement to the ENO methods that chooses the most physically

relevant stencil for the solution reconstruction [39]. WENO has been used to stabilize DG

[40, 41]. As a reconstruction method, the extension of WENO to unstructured meshes is not

straightforward and requires special treatment.

Flux-Corrected Transport

The flux-corrected transport method (FCT) was introduced by Boris and Book slightly

preceding TVD [42, 43, 44] and was extended to multiple dimensions by Zalesak [45]. The

idea has been applied to the finite element method by Lohner et al. [46]. It has been shown

to generate quality solutions but has not been as popular as the TVD approach due to the

lack of a mathematical proof. The essential idea of FCT is to construct an anti-diffusive flux

that is the difference between the high-order flux and a low-order flux for a non-oscillatory

scheme, and to limit this anti-diffusive flux before adding it to the low-order flux so that:

(1) no new extrema can be created and (2) the existing extrema are not exaggerated in the

low order solution. We are interested in the FCT method in particular because it does not

make false assumptions for multiple dimensions. In Chap. 2 we will discuss the problem

6

posed by the acoustics equations: The solution is not bounded by the maximum principle

and can become unbounded due to wave focusing. This makes FCT a strong candidate in

our choice of limiters for the acoustics equations.

1.3 Contributions of the Thesis

• Designed a limiter for the acoustics part of the Active Flux method;

• Created test cases for linear and nonlinear equations to test the performance of Active

Flux in the presence of discontinuities;

• Identified the first- and second-order components of the evolution operators for Active

Flux and improved the efficiency of the code implementation;

• Investigated a continuous artificial viscosity that does not rely on the solution of an

additional PDE;

• Tested the performance of the artificial viscosity for 2D transonic and hypersonic Euler

cases for the DG and HDG methods;

• Investigated the use of output-based mesh adaptation with the MOESS algorithm in

the presence of shocks.

1.4 Navier-Stokes Equations

We are concerned with different governing equations related to the Navier-Stokes equa-

tions or its nonviscous version, the Euler equations, throughout the thesis. Therefore they

are listed here for reference.

Let u(x⃗, t) : Rd ×R+ → Rm be a vector of m state variables in d spatial dimensions and

time. In the physical domain Ω, a general conservation law is given by

∂u

∂t
+∇ · H⃗(u,∇u) = 0, (1.2)

7

where H⃗(u,∇u) = F⃗(u)+G⃗(u,∇u), and F⃗(u) : Rm → Rm×d is the inviscid flux, G⃗(u,∇u) :

Rm × Rm×d → Rm×d is the viscous flux.

Given the state vector u = [ρ, ρv⃗, ρE] for the Navier-Stokes equations, where ρ is the

density, v⃗ is the velocity, and E is the total energy, the pressure can be found as P =

1
γ−1

(
ρE − 1

2
ρ|v⃗|2

)
, where γ is the ratio of specific heats. We have γ = 1.4 for the Navier-

Stokes and Euler cases throughout the thesis. The inviscid and viscous flux vectors are

F⃗(u) =


ρv⃗

ρv⃗ ⊗ v⃗ + P I

ρv⃗H

 , G⃗(u,∇u) =


0

−τ

−τ · v⃗ − kT∇T

 , (1.3)

where H = E + P
ρ
is the total enthalpy, I is the identity matrix of size d × d, T is the

temperature, kT is the conductivity coefficient, and τ is the shear stress tensor. For a

calorically-perfect gas, P = ρRT , where R is the specific gas constant. The shear stress is

τ = µ
(
∇v⃗ + (∇v⃗)T

)
− λ∇ · v⃗I, where µ is the dynamics viscosity, and λ = −2

3
µ is the bulk

viscosity. The dynamic viscosity is assumed to adhere to Sutherland’s law:

µ = µref

(
T

Tref

)1.5(
Tref + Ts

T + Ts

)
, (1.4)

where Tref can be arbitrary and Ts = 110K. The thermal conductivity is related to the

dynamic viscosity by the Prandtl number Pr:

kT =
γµR

(γ − 1)Pr
. (1.5)

We have Pr = 0.71 for our Navier-Stokes test cases.

The freestream viscosity is often given with the dimensionless Reynolds number Re =

ρV∞L
µ∞

, where V∞ and L are the velocity and length scale of the flow. For the Euler equations

that govern the inviscid flow behavior, µ and G⃗(u,∇u) are zero.

8

CHAPTER II

Limiting for the Active Flux Method

2.1 Introduction to the Active Flux Method

Many of the most popular solvers in Computational Fluid Dynamics (CFD) rely on the

projection of the states into one dimension depending on the mesh orientation, and the

application of a Riemann solver to the discontinuous data to find the upwind flux. The

result is an unsatisfactory representation of the physics and a loss of accuracy that could

be potentially achieved [19]. The Active Flux method was introduced as an alternative

approach to such projection. It is designed to incorporate multi-dimensional physics. The

time evolution of the solution in Active Flux does not rely on the orientation of the mesh

edges/faces. We are concerned with the Euler equations in Eqn. 1.2. A non-conservative

form of the Euler equations, for primitive variables q = [ρ, v⃗, P] is

∂ρ

∂t
+ v⃗ · ∇ρ+ ρ∇ · v⃗ = 0,

∂v⃗

∂t
+ v⃗ · ∇v⃗ +

1

ρ
∇P = 0⃗,

∂P

∂t
+ v⃗ · ∇P + γP∇ · v⃗ = 0.

(2.1)

The second terms in these equations ((v⃗ · ∇)u) describe how some quantities are carried

with the flow along the particle path. In the absence of other terms, the current value of a

quantity can be found somewhere on the particle path at a previous time. This is termed

9

“advection” in Active Flux. All the other terms describe how disturbances propagate through

the flow, e.g. acoustic waves. Acoustic waves propagate in all directions. The acoustics

instead needs to be evaluated with an integral on a sphere. The foundation of Active Flux

is the distinction between advection and acoustics. A thorough discussion of this can be

found in Roe’s publications [47, 19]. The distinction allows the treatment of advection and

acoustics each with the correct data. The correct account of physics naturally leads to a

stable scheme.

The separation of advection and acoustics also offers us the opportunity to apply limiters

to each of them separately. For the advection equations, a complete set of the Riemann

invariants can be found, and no new maxima or minima will be permitted. This allows the

application of the limiting schemes based on the “maximum principles” that can be readily

found. A survey of such schemes has been done by Zhang and Shu [48]. The acoustics equa-

tions, on the other hand, are not simultaneously diagonalizable and no maximum principles

can be found. New maxima or minima can be generated even for linear acoustics due to

wave focusing. Therefore developing a limiter for acoustics is the challenging part of the

task for the limiting of the Active Flux method.

In the next few sections, we give a summary of a few components of the Active Flux

method, before the limited scheme is presented.

2.1.1 Solution Reconstruction

The nodal values of the primitive variables are stored for Active Flux. The solution

needs to be reconstructed for advection and acoustics operations. We restrict our attention

to the third-order Active Flux method. Consider a computational domain Ω divided into Ne

triangles. We represent a function u with discrete values U located on the element vertices

and edge midpoints as in Figure 2.1. The continuity of the reconstructed solution is enforced

by having a single value on each vertex and each edge. The number of discrete values (nodes)

Nn is about 2Ne. On triangle T , the third-order method requires a parabolic reconstruction

10

of the solution:

uh|T =
6∑

i=1

UIϕT,i(x⃗), (2.2)

where I is the global node index of the ith local node of T , and ϕT,i, i = 1, 2, · · · , 6 are

parabolic Lagrange basis functions. To construct a low-order scheme for limiting purposes,

the solution is reconstructed on a linear basis on the sub-triangles of T , see Fig. 2.1. On

triangle T :

uH |T =
4∑

e=1

3∑
i=1

UJφT,e,i(x⃗), (2.3)

where J is the global node index of the ith local node of sub-triangle Te, and φT,e,i, i = 1, 2, 3

are linear Lagrange basis functions that are only non-zero inside sub-triangle Te. The basis

functions are found by mapping the elements from the physical space to the reference space,

i.e., ϕT,i = ϕ̃i(J
−1
T (x⃗ − x⃗0)), φT,e,i = φ̃i(J

−1
T,e(x⃗ − x⃗0)), where J = ∂x⃗

∂ξ⃗
is the Jacobian of the

mapping, ϕ̃i(ξ⃗) and φ̃i(ξ⃗) are the Lagrange basis on a reference triangle, and x⃗0 is the global

coordinate of the node that is mapped to the origin in the reference space. To differentiate

the solution with respect to the global coordinates, we use the chain rule:

∇u|T = ∇ξ⃗u|TJ
−1
T . (2.4)

We sometimes consider the element average in the Active Flux method. The average

value on a triangle T is defined as

ū|T =
1

ST

∫
T

udS, (2.5)

where ST is the element area. The average for a parabolic reconstruction is the average of

the nodal values on the three edge nodes.

11

Figure 2.1: A cluster of elements. The solution is defined on the right by a quadratic inter-
polant and on the left by a piecewise linear interpolant on each subtriangle. The
discs mark domains of dependence for edge and vertex nodes.

2.1.2 Spherical Mean Operators

The Active Flux method for the acoustics equations was first presented by Eymann and

Roe [15], and refined by Fan and Roe [49]. Barsukow at el. studied the low Mach number

limit of Active Flux on Cartesian grids and found the scheme to be vorticity preserving and

match number compliant[50].

The linear acoustic system governs the propagation of small disturbances in a medium

with constant properties and zero velocity. The flow is isentropic in this case, i.e. ∇P =

c2∇ρ, where c is the background speed of sound. We omit the derivation of the equations and

the change of variables and present the equations as follows. For state variables u = [P, v⃗],

∂P

∂t
+ c1∇ · v⃗ = 0,

∂v⃗

∂t
+ c2∇P = 0,

(2.6)

where c1 and c2 are constants, and c1c2 = c2. Note that neither P nor v⃗ maps exactly to the

variables for the Euler equations. These equations serve as a stepping stone for developing

the full scheme for the Euler system. There is no maximum principle for this system. In

fact, the linear case allows solutions to become unbounded due to wave focusing (see the

discussion of the scalar wave equation that is satisfied here by the pressure in [51], p.215).

12

In the absence of rigorous bounds, we will adopt a version of the Flux-corrected Transport

method (FCT) [52] for such systems.

The system in Eqn. 2.6 is equivalent to

∂2P

∂t2
= c2∇2P,

∂2v⃗

∂t2
= c2∇(∇ · v⃗). (2.7)

We have an initial value problem with initial conditions: P (x⃗, 0) = P0(x⃗), v⃗(x⃗, 0) = v⃗0(x⃗).

This problem has an exact solution in an infinite domain for t ∈ [0,∞), which is the classic

Poisson’s formula:

P (x⃗, t) = P0(x⃗)− c1tM{∇ · v⃗0}(x⃗, ct) +
∫ ct

0

rM{∇2P0}(x⃗, r) dr,

v⃗(x⃗, t) = v⃗0(x⃗)− c2tM{∇P0}(x⃗, ct) +
∫ ct

0

rM{∇(∇ · v⃗0)}(x⃗, r) dr,
(2.8)

where M{f}(x⃗, r) = 1
4π

∫
∂B(x⃗,r)

f(x⃗ + ry⃗)dy⃗ is the mean operator on a sphere center at x⃗

with radius r. We define an operator:

I⃗{·}(·, r) := 2

r2

∫ r

0

r′M{∇(·)}(·, r′) dr′. (2.9)

Eqn. 2.8 becomes

P (x⃗, t) = P0(x⃗)− c1tM{∇ · v⃗0}(x⃗, ct) +
(ct)2

2
tr(I⃗){∇P0}(x⃗, ct),

v⃗(x⃗, t) = v⃗0(x⃗)− c2tM{∇P0}(x⃗, ct) +
(ct)2

2
I⃗{∇ · v⃗0}(x⃗, ct).

(2.10)

To avoid evaluating second-order derivatives for the C0 solution reconstruction, we use the

relation:

M{∇f}(x⃗, r) = 1

r2
∂

∂r

(
r2M{fn⃗}(x⃗, r)

)
, (2.11)

13

where n⃗ is the outward normal vector. This gives us:

I⃗{f}(x⃗, r) = 2

r2

∫ r

0

1

r′
∂

∂r′
(
r′2M{fn⃗}(x⃗, r′)

)
dr′. (2.12)

In two dimensions, the spherical operators degenerate to evaluations on circular disks,

M2D{f}(x, y, r) = 1

2πr

∫ r

0

∫ 2π

0

f(x+ s cos θ, y + s sin θ)dθ
s√

r2 − s2
ds.

I⃗2D{f}(x, y, r) =

2

r2

∫ r

0

1

r′
∂

∂r′

 r′

2π

∫ r′

0

∫ 2π

0

f(x+ s cos θ, y + s sin θ)

cos θ
sin θ

 dθ
s2

r′
√
r′2 − s2

ds

 dr′.

(2.13)

Since our solution reconstructions are polynomials, we pay attention to the application of

the operators to polynomials,

M2D{xpyq}(0, 0, r) = 1

2π

∫ 2π

0

cosp θ sinq θdθ
1

r

∫ r

0

sp+q+1

√
r2 − s2

ds︸ ︷︷ ︸
term I

,

I⃗2D{xpyq}(0, 0, r) = 1

π

∫ 2π

0

cosp+1 θ sinq θ

cosp θ sinq+1 θ

 dθ
1

r2

∫ r

0

1

r′
∂

∂r′

(
r′
∫ r′

0

sp+q+2

r′
√
r′2 − s2

ds

)
dr′︸ ︷︷ ︸

term II

.

(2.14)

M and I⃗ are applied to first-order spatial derivatives of the solution. For a second-order

polynomial reconstruction, the only terms present are p+ q ∈ {0, 1}. The two marked terms

in Eqn. 2.14 evaluate to:

term I :
1

r

∫ r

0

s√
r2 − s2

ds = 1,
1

r

∫ r

0

s2√
r2 − s2

ds =
π

4
r,

term II :
1

r2

∫ r

0

1

r′
∂

∂r′

(
r′
∫ r′

0

s2

r′
√
r′2 − s2

ds

)
dr′ =

π

2r
,

1

r2

∫ r

0

1

r′
∂

∂r′

(
r′
∫ r′

0

s3

r′
√
r′2 − s2

ds

)
dr′ = 1.

(2.15)

14

Remarks:

1. To apply Eqn. 2.14 to a node N , the coordinates are shifted to center at x⃗N in the

solution reconstruction in Eqn. 2.2 and Eqn. 2.3.

2. The spherical mean operator gets discretized when applied to discrete data. The solution

reconstruction is a piecewise polynomial, therefore Eqn. 2.14 is evaluated partially inside

each surrounding element of a node and summed together. For each solution node, the

operator is a dot product of some coefficients that depend on the mesh geometry and the

integral radius r, and the function values at the neighboring nodes. We denote the discrete

operators for node N by MN
r and IN

r . For a second-order polynomial reconstruction, the

coefficients are further expanded into MN
r = MN

0 +MN
1 r and IN

r = IN
−1/r + IN

0 . In real-

ity, the operators M0{ ∂
∂x
(·)}, M1{ ∂

∂x
(·)}, M0{ ∂

∂y
(·)}, M1{ ∂

∂y
(·)}, Ix,−1{ ∂

∂x
(·)}, Ix,0{ ∂

∂x
(·)},

Ix,−1{ ∂
∂y
(·)}, Ix,0{ ∂

∂y
(·)}, Iy,−1{ ∂

∂y
(·)}, Iy,0{ ∂

∂y
(·)} are pre-computed and stored in memory

before the time marching starts.

3.
∫ 2π

0
cosp θ sinq θdθ = 0 when p + q is odd. Therefore if M and I are applied to a C1

function, M1 and I−1 should evaluate to zero everywhere. This is consistent with the Taylor

expansion of the spherical mean operators [53]. In a general case, when the solution is

smooth (C0) and r is proportional to the mesh size h, M1r
2 and I−1r in Eqn. 2.8 are of

order O(h3).

4. M0{ ∂
∂x
(·)}, M0{ ∂

∂y
(·)} provide estimations for the first order spatial derivatives and

Ix,0{ ∂
∂x
(·)}, Ix,0{ ∂

∂y
(·)}, Iy,0{ ∂

∂y
(·)} provide estimations for the second order spatial deriva-

tives. This observation is useful when we extend the scheme to nonlinear equations.

2.1.3 Advection Operator

Let us consider an advection example that is a high dimensional version of the inviscid

Burger’s equation:

∂v⃗

∂t
+ v⃗ · ∇v⃗ = 0. (2.16)

15

For an initial condition v⃗(x⃗, 0) = v⃗0(x⃗), the exact solution of these equations on an infinite

domain is

v⃗(x⃗, t) = v⃗0(x⃗− v⃗(x⃗, t)t). (2.17)

For a third-order method, the advection speed only needs to be approximated to the second

order since it is multiplied by t in the Eqn. 2.17. We do this with the approximation:

v⃗(x⃗, t) ≈ v⃗0(x⃗)− v⃗0(x⃗) · ∇v⃗0(x⃗)t, (2.18)

where ∇v⃗0 is evaluated with the acoustics operators M0{ ∂
∂x
(·)} and M0{ ∂

∂y
(·)}. The state

is then interpolated at the upstream origin on the pathline,

x⃗∗ = x⃗− (v⃗0(x⃗)− v⃗0(x⃗) · ∇v⃗0(x⃗)t)t. (2.19)

This interpolation is done in two steps: search for the element in which x⃗∗ is located, and

evaluate

U{f, e⃗}(x⃗, d) = f(x⃗− de⃗), (2.20)

where d = |x⃗∗ − x⃗| and e⃗ = (x⃗∗ − x⃗)/d is a unit vector. The operator U{·, e⃗} is built during

the search step when the element that contains x⃗∗ is determined. We denote the discretized

advection operator for node U in direction e⃗ as UN
e .

2.1.4 Nonlinear Corrections

To give an example of how nonlinearity is tackled in Active Flux, we look at a set

of nonlinear acoustics equations that are sometimes called the p-system. We present the

equations in a simple form with variables that don’t map exactly to the Euler equations.

16

For state variables u = [ρ, v⃗],
∂ρ

∂t
+∇ · v⃗ = 0,

∂v⃗

∂t
+∇P = 0,

(2.21)

where P = 1
γ
ργ and γ is the specific heat ratio. Eqn. 2.21 gives rise to

∂2ρ

∂t2
= P ′∇2ρ+ P ′′(∇ρ) · (∇ρ)︸ ︷︷ ︸

correction I

,
∂2v⃗

∂t2
= P ′∇(∇ · v⃗) + P ′′∇ · v⃗∇ρ︸ ︷︷ ︸

correction II

. (2.22)

The wave speed in this case is c =
√
P ′ = ρ(γ−1)/2. Comparing Eqn. 2.21 and Eqn. 2.22

with Eqn. 2.6 and Eqn. 2.7, we have two extra terms in the expansion. The derivatives in

these terms are evaluated with the operators M0{ ∂
∂x
(·)} and M0{ ∂

∂y
(·)} introduced in the

last section, and they are multiplied by t2

2
to add to Eqn. 2.10 as nonlinear corrections.

We also list the expansion of the Euler equations here for reference:

∂2ρ

∂t2
=− ∂

∂t
(v⃗ · ∇ρ)− ∂

∂t
(ρ∇ · v⃗)

= (v⃗ · ∇v⃗) · ∇ρ+ v⃗ · ∇(v⃗ · ∇ρ)︸ ︷︷ ︸
advection

+ ∇2P︸︷︷︸
acoustics

+ v⃗ · ∇(ρ∇ · v⃗) + v⃗ · ∇ρ∇ · v⃗ + ρ(∇ · v⃗)2 + ρ∇ · (v⃗ · ∇v⃗)

∂2v⃗

∂t2
=− ∂

∂t
(v⃗ · ∇v⃗)− ∂

∂t
(
1

ρ
∇P)

= (v⃗ · ∇v⃗) · ∇v⃗ + v⃗ · ∇(v⃗ · ∇v⃗)︸ ︷︷ ︸
advection

+
γP

ρ
∇(∇ · v⃗)︸ ︷︷ ︸
acoustics

+
1

ρ
∇P · ∇v⃗

+ v⃗ · ∇
(
1

ρ
∇P

)
+

1

ρ2
v⃗ · ∇ρ∇P +

γ − 1

ρ
∇ · v⃗∇P +

1

ρ
∇(v⃗ · ∇P)

∂2P

∂t2
=− ∂

∂t
(v⃗ · ∇P)− ∂

∂t
(γP∇ · v⃗)

= (v⃗ · ∇v⃗) · ∇P + v⃗ · ∇(v⃗ · ∇P)︸ ︷︷ ︸
advection

+
γP

ρ
∇2P︸ ︷︷ ︸

acoustics

+
1

ρ

(
∇P − γP

ρ
∇ρ

)
· ∇P︸ ︷︷ ︸

=0 if isentropic

+ γv⃗ · ∇(P∇ · v⃗) + γv⃗ · ∇P∇ · v⃗ + γ2P (∇ · v⃗)2 + γP∇ · (v⃗ · ∇v⃗)

(2.23)

17

To simplify the correction terms, the acoustics terms are calculated after the advection

updates are added to the solution. We implicitly include second-order terms created by

applying the first-order acoustics operator to the advection updates. Some of the terms in

the corrections get eliminated, and we are left with the following,

∂2ρ

∂t2
: ρ((∇ · v⃗)2 −∇v⃗T : ∇v⃗)

∂2v⃗

∂t2
:

γ − 1

ρ
∇ · v⃗∇P +

1

ρ
∇P · (∇v⃗ −∇v⃗T)

∂2P

∂t2
:

1

ρ

(
∇P − γP

ρ
∇ρ

)
· ∇P + γP (γ(∇ · v⃗)2 −∇v⃗T : ∇v⃗)

(2.24)

Only first-order derivatives remain in the correction terms. These terms are again evaluated

with the operators M0{ ∂
∂x
(·)} and M0{ ∂

∂y
(·)}.

2.1.5 Enforcing Conservation

The solution evolution with the advection or acoustics operators is not conservative. This

is followed by a conservation step similar to the finite volume method, except that the fluxes

are calculated with the evolution evaluations. The conservation step in Active Flux also

serves as a “correction” step to the “prediction” of the evolution step to bring the scheme

to third order.

We restrict our attention to inviscid flow. Integrating Eqn. 1.2 on a triangle T and from

tn to tn +∆t gives us the update rule for the element average:

ST (ū
n+1
T − ūn

T) = −
∫ tn+∆t

tn

∫
∂T

F⃗(u) · n⃗dldt, (2.25)

where n⃗ is the outward normal vector. To evaluate the integral numerically on the right-hand

side, we use a 9-point Simpson’s rule, as illustrated in Fig. 2.2. For a function f on an edge

18

E with nodes m1, m2 and m3, and m2 being the midpoint node,

∫ tn+∆t

tn

∫
E

fdldt ≈ Fh
E

=
lE∆t

36
(F n

m1
+ 4F n

m2
+ F n

m3

+ 4F n+1/2,∗
m1

+ 16F n+1/2,∗
m2

+ 4F n+1/2,∗
m3

+ F n+1,∗
m1

+ 4F n+1,∗
m2

+ F n+1,∗
m3

),

(2.26)

where * denotes the solution from the evolution step. Note that this quadrature rule is exact

for a parabolic function.

𝑇

𝑛

𝑛 +
1

2

𝑛 + 1

𝑚1 𝑚2 𝑚3

𝑡

𝑥 𝑦

Figure 2.2: Illustration of Simpson’s rule for calculating the time integral of the flux.

The discrepancies ūn+1,∗ − ūn+1 are distributed to the nodes [54]. The nodal values are

updated as

un+1 = un+1,∗ +

∑
T∈E

ST (ū
n+1
T − ūn+1,∗

T)∑
T∈E

ST

. (2.27)

For equations that have different primitive variables and conservative variables, qn+1 needs

to be found from un+1 following this step.

2.2 Flux-Corrected-Transport Applied to the Acoustics Equations

2.2.1 Limited Active Flux

19

Algorithm 1

1: Initialize discrete nodal values Q0.
2: Calculate the time step size ∆t from the geometry of the mesh and the CFL number.
3: t = 0, n = 0.
4: while t < tend do
5: Compute Qn+1,h, Un+ 1

2
,h from the parabolic bases and Qn+1,l, Qn+ 1

2
,l from the linear

bases during the evolution step.
6: Compute the limited nodal values Qn+1,∗, Qn+ 1

2
,∗ and mark nodes that are limited.

7: Compute the limited temporal integral of the flux on each edge.
8: Calculate the cellular residuals from the fluxes and distribute the discrepancies onto

Qn+1,∗.
9: t = t+∆t.
10: n = n+ 1.
11: end while

An algorithm of the limited Active Flux method is shown in Algorithm 1. At time step

n, the updates to the discrete values Qn = (P n, Un, V n) are computed with Eqn. 2.8 on

the solution reconstructions. The high order-solution Qn+1,h computed from the parabolic

reconstruction, and the low-order updates Qn+1,l calculated from the linear reconstruction

will be used to construct the limiter used in this chapter of the thesis.

To ensure stability, the time step size is constrained so that the spherical integration will

not exceed the element bounds. This leads to the definition of the Courant-Friedrichs-Lewy

(CFL) number:

ν :=
c∆t

λ
, (2.28)

where c∆t is the distance traveled by an acoustic wave and λ is the most restrictive distance

for a particular mesh imposed by the CFL rule. This is one-half of the shortest altitude over

all elements of the mesh, defined as

λ := min
T,E∈T

sT
lT,E

, (2.29)

where sT is the area of triangle T and lT,E is its edge length of edge E. This definition is

chosen so that the CFL limit will be given by ν = 1. Note that due to the CFL constraint,

the spherical integration on the linear bases will not exceed the sub-triangle bounds. See

20

Fig. 2.3 for an illustration.

𝜆

𝜆

Figure 2.3: Illustration of the CFL constraint.

In our current implementation, the half-step solutionsQn+ 1
2
,h andQn+ 1

2
,l will also need to

be evaluated during the evolution step for the purpose of computing the temporal integration

of the flux. However, it is possible to eliminate the half-time-step evaluations by manipulating

the first and second-order updates, reducing memory usage, and improving the efficiency of

the implementation. This is addressed in section 2.3.

2.2.1.1 FCT Limiting of the Evolution Step

The limiting criterion we employ comes from the FCT method [52]: No value may be

updated in a way that introduces a new extreme value into the solution, or that exaggerates

an existing extremum.

To implement this, for an unknown u and its discrete values U , the local maximum Umax
k

and minimum Umin
k of Un+1,l are found on node k by a search among the neighboring nodes

and itself. The neighboring nodes are sampled on the acoustics integral boundaries, as shown

in Fig. 2.4. The high-order evolution update Un+1,h
k will then be compared to Umax

k and Umin
k :

Un+1,∗
k =


Un+1,l
k , sk < s0 and

(
Un+1,h
k > Umax

k or Un+1,h
k < Umin

k

)
Un+1,h
k , else

, k = 1, 2, · · · , Nn

(2.30)

21

𝑥

𝑦

Figure 2.4: Neighboring nodes (marked by) sampled on the acoustics boundary for a node
at an element vertex or at an edge midpoint.

This is applied to each of the unknowns in q = (p,v). A smoothness indicator sk is

needed as an extra condition for turning on the limiter, which we will discuss in the next

section. The difference between the high-order solution and the limited solution will also be

stored as preparation for limiting the time integrals of the fluxes.

2.2.1.2 Smoothness Indicator

We construct a smoothness indicator on a node k as:

sk =
1

1− ν

∣∣∣∣∣Un+1,h
k − Un+1,l

k

Un+1,l
k − Un

k

∣∣∣∣∣ , (2.31)

where ν is the CFL number defined in Eqn. 2.28. We decide that a function is smooth locally

at the vertex or edge node k if sk < s0, where s0 is an empirical parameter determining the

limiter strength. This definition can be applied to any number of space dimensions. Based

on the analysis below, we are actually dealing with smoothness in time. If s0 is too big, too

few points will get limited and if s0 is too small, the smooth solutions will be contaminated.

Analysis:

22

To analyze the proposed smoothness indicator we turn to a simple linear advection prob-

lem in one dimension,

∂tu+ a∂xu = 0, (2.32)

where a > 0 is the wave speed. The solution propagates to the right: u(x, t) = u(x −

at). Consider a 1-dimensional domain divided uniformly into N cells of width ∆x, Ii =

[xi−1/2, xi+1/2]. The nodal values are stored at cell interfaces (Ui+1/2, i = 1, 2, · · · , N) and

also at cell centers (Ui, i = 1, 2, · · · , N). We again have the parabolic reconstruction on a

cell

uh|[xi−1/2,xi+1/2] = Ui−1/2
(ξ − 1)ξ

2
+ Ui(1− ξ2) + Ui+1/2

(ξ + 1)ξ

2
, (2.33)

where ξ =
2(x−xi−1/2)

xi+1/2−xi−1/2
− 1, and the linear (low-order) reconstruction

uH |[xi−1/2,xi] = Ui−1/2(−ξ) + Ui(1 + ξ),

uH |[xi,xi+1/2] = Ui(1− ξ) + Ui+1/2ξ.

(2.34)

Consider a node at an interface xi+1/2. Define the CFL number as ν = 2a∆t
∆x

(0 < ν ≤ 1), the

evolution step produces

Un+1,h
i+1/2 = Un

i−1/2

−ν(1− ν)

2
+ Un

i ν(2− ν) + Un
i+1/2

(2− ν)(1− ν)

2
, (2.35)

Un+1,l
i+1/2 = Un

i ν + Un
i+1/2(1− ν). (2.36)

Using these relations, our definition of the smoothness indicator is related to the solution at

time step n:

si+1/2 =
1

ν

∣∣∣∣∣U
n+1,h
i+1/2 − Un+1,l

i+1/2

Un+1,l
i+1/2 − Un

i+1/2

∣∣∣∣∣
=

1

ν

∣∣∣∣∣
ν2−ν
2

(Un
i−1/2 − 2Ui + Ui+1/2)

(ν − 1)(Un
i − Un

i+1/2)

∣∣∣∣∣
=

1

2

∣∣∣∣∣1− Un
i − Un

i−1/2

Un
i+1/2 − Un

i

∣∣∣∣∣
(2.37)

23

The analysis for nodes at cell centers produces the same results so it is omitted here. The

smoothness indicator is designed using information in time, however in 1D it is shown to be

a TVD-like formulation which uses curvature information to determine the smoothness at a

nodal point.

2.2.1.3 Low Order Flux Integral

By using a subset of these 9 points in Fig. 2.2, we can easily design a lower order flux

integral without extra information needed. We’ve found by numerical experiments that a

first-order flux works well:

∫ tn+∆t

tn

∫
E

fdldt ≈ F l
E =

lE∆t

6

(
F n+1,∗
m1

+ 4F n+1,∗
m2

+ F n+1,∗
m3

)
. (2.38)

The limited flux integral that we use for computing the residual is a linear combination of

the low-order flux in Eqn. 2.38 and the high order flux in Eqn. 2.26,

FE = ϵEF l
E + (1− ϵE)Fh

E, (2.39)

where ϵE (0 ≤ ϵE < 1) is calculated from the difference between the high-order updates

and the limited updates in the evolution step. Note that this is a possible flux integral that

we propose. Formulations other than a linear combination could also be viable. For a flux

integral associated with unknown u, the definition of ϵE is

ϵE(u) = tanh

(
α

∑3
i
1
3

∣∣Un+1,h
mi

− Un+1,∗
mi

∣∣
Un,max − Un,min

)
, (2.40)

where Un,max and Un,min are the maximum and minimum nodal values in the solution at

time step n, α is an empirical coefficient for adjusting the strength of the flux limiter. The

bigger that α is, the sharper the tanh function becomes, the bigger ϵE is for the same solution

values, and the more diffusive the flux integral becomes. We found that α has to be above

24

100 to have some effect. We tuned the value up to α = 500 to get satisfactory limiting results

for the numerical experiments in this thesis. Above this value, little change happens to the

limited discontinuous cases and more numerical errors are added to the smooth cases.

2.2.1.4 Solution Initialization in the Presence of Discontinuities

We wish to obtain solutions that represent discontinuities in a “satisfactory” manner.

This will depend on how discontinuous data is initialized, as well as on how it is subse-

quently propagated. There are several ways to initialize discontinuous data. We choose

two initializations that work for smooth data, and then take a definition of discrete con-

servation that allows us to interpret the results for non-smooth data. Consider a simple

pointwise initialization of a solution that contains a jump in values from u1 to u2 across

some discontinuity not aligned with the local mesh. See Fig 2.5 for a triangle with nodal

values that are assigned partially to u1 and partially to u2. The discontinuity in the solution

reconstruction inside the triangle will probably be misaligned with the actual orientation of

the discontinuity. This will result in different directions of wave propagation for different

elements that contain the same discontinuity on an unstructured mesh. An example will be

shown in the next section in which the interpolation initialization causes a certain level of

artificial fluctuation in the solution.

Although we doubt that this problem can be eliminated, we attempt to alleviate it by

opting for an L2 initialization of the test cases that contain discontinuities in this paper.

Inside a triangle T , where the exact initial data is u0(x⃗), the quantity

∫
T

(
ŨT,iϕT,i(x⃗)− u0(x⃗)

)2
ds (2.41)

is minimized to find ŨT,i, i = 1, 2, · · · , 6 locally for the nodes of T . The solution on a node

25

is then initialized to an average of the local nodal values from its neighboring elements:

U0
I =

∑
I∈T ŨT,iT

NI

, (2.42)

where I is a global node number, T denotes the triangles that contain node i, iT is the local

node number of node I in triangle T , and NI is the number of elements adjacent to node I.

Discontinuity

inside the

element

Actual

orientation of

the discontinuity

Figure 2.5: Discontinuity initialization inside a triangle. Filled nodes are assigned values u1

and unfilled nodes are assigned u2.

2.2.2 Test Cases: Linear Acoustics

The first set of test cases that we present is of linear acoustics in Eqn. 2.6. We choose

the constant for the smoothness indicator to be s0 = 1.4 for the examples in this section.

2.2.2.1 Case A: Periodic Sinusoidal Wave

We demonstrate the accuracy of the limited Active Flux scheme with a periodic sinusoidal

wave on a computational domain [−1, 1] × [−1, 1] with periodic boundary conditions. This

test case was first used by Lukácová-Medvidová et al. to test various second-order methods

26

[55]. The analytical solution is periodic in time with period T = 1/c:

P (x⃗, t) =
1

c
cos(2πct)[sin(2πx) + sin(2πy)],

u(x⃗, t) = −1

c
sin(2πct) cos(2πx),

v(x⃗, t) = −1

c
sin(2πct) cos(2πy).

(2.43)

We choose c = 1 (T = 1), ν = 0.7. The L2 error for a function denoted by g for time step n

is defined as

En
g =

√√√√ 1

Nn

Nn∑
i

(Gn
i − gexact(x⃗i, tn))

2. (2.44)

This is measured on unstructured meshes and shown in Fig. 2.6 against the mesh size,

defined as

h =
√

Ω/DOF. (2.45)

The solutions with limiters show a slight increase in errors but the third-order accuracy is

preserved. The difference between the limited and unlimited solutions gets smaller as the

degrees of freedom increase.

2.2.2.2 Case B: One-dimensional Discontinuities

The first discontinuous case we consider is a simple 1D discontinuity initialized on a 2D

unstructured mesh on a domain [−1, 1]× [−1, 1].

P0(x, y) =


2, x ≤ 0

1, x > 0

, v⃗0(x, t) = 0⃗. (2.46)

27

50 100 150

1/h

10 -6

10 -5

10 -4

10 -3

10 -2

L
2
 e

rr
o

r

3.0

p, unlimited

u, unlimited

v, unlimited

p, limited

u, limited

v, limited

Figure 2.6: Error convergence of the double sinusoidal wave for t = 1.

The boundary values are fixed on the left and right sides and periodic boundary conditions

are used for the upper and lower sides. The initial discontinuity in the pressure will create

two discontinuities of the same strength propagating to the left and to the right.

To test our 2D solver, a comparison between the 1D and 2D unlimited solutions for this

case is shown in Fig. 2.7. The 2D solver is used for the rest of the test cases presented in

this section. The 2D solution is obtained on an unstructured mesh with L2 initialization.

The overshoots in both solutions are about the same magnitudes, as are the widths of the

transitions. The main difference is that the 2D solution adds some scatter, especially in the

central region. This is due to the initialization of the discontinuity on an unstructured mesh.

Next, we want to investigate the effect that the initialization has on the quality of the

solution. The case was run with ν = 0.7 without limiting until t = 0.2 and the unlimited

solutions with different types of initialization are shown in Fig. 2.8. The solution initial-

ized with point values clearly shows oscillations in the middle plateau created as the two

discontinuities propagate in opposite directions. This can be explained by the discontinuity

misalignment illustrated in Fig. 2.5. The L2 initialization is able to alleviate this problem

since it doesn’t enforce a strict alignment between the orientation of the discontinuity and

28

Figure 2.7: Comparison of 1D and 2D unlimited solutions at t = 0.2 for case B with similar
mesh sizes.

the element edges inside each element. The L2 error in the center region normalized by the

jump magnitude is defined as

Ecenter(t) =

√√√√∑Nn

i,− ct
2
<xi<

ct
2
(Pi − 1.5)2∑Nn

i,− ct
2
<xi<

ct
2
1

. (2.47)

These are plotted against time in Fig. 2.9 for different mesh sizes. The oscillations are shown

to decrease in magnitude in proportion to the parameter ct
h
, which is the number of cells

crossed since initialization. The L2 initialization leads to lower- and faster-decaying errors

in the center region.

The limited and unlimited solutions are shown in Fig. 2.10. The limiter is able to

remove the major overshoots at the front of the discontinuities, and the sharpness of the

discontinuities is well preserved. The oscillations in the central region also seem to have

been slightly reduced.

2.2.2.3 Case C: Asymmetric Discontinuities in One Dimension

Since the same-strength wave propagating in case B could be a special example, we also

show here a case with discontinuities of asymmetric strengths. This is created by having

29

(a) Interpolation (b) L2

Figure 2.8: Comparison of solutions at t = 0.2 for two initialization strategies for test case
B.

10
0

10
1

10
2

c t/h

10
-3

10
-2

10
-1

E
c
e
n
te

r

interpolation, h = 0.0218

interpolation, h = 0.0110

interpolation, h = 0.0055

L2, h = 0.0218

L2, h = 0.0110

L2, h = 0.0055

Figure 2.9: Error of the center region reduces in time for test case B.

30

(a) Unlimited (b) Limited

Figure 2.10: Comparison of unlimited and limited solutions at t = 0.2 for test case B. h =
0.0218.

initial discontinuities in both the pressure and the velocity:

P0(x, y) =


2, x ≤ 0

1, x > 0

, u0(x, t) =


−0.2, x ≤ 0

0.2, x > 0

, v0(x, t) = 0. (2.48)

The pressure solutions are shown in Fig. 2.11. The limiter continues to work well for this

case, with the major overshoots on the two sides being eliminated.

(a) Unlimited (b) Limited

Figure 2.11: Comparison of unlimited and limited solutions at t = 0.2 for test case C. h =
0.0218.

31

2.2.2.4 Case D: Discontinuity in the Radial Direction

The next example is an initial discontinuity in the radial direction.

P0(x, y) =


2, r ≤ 0

1, r > 0

, v⃗0(x, t) = 0⃗, (2.49)

where r =
√

x2 + y2. We again have a domain of [−1, 1] × [−1, 1] and periodic boundary

conditions on all sides. Note that this doesn’t reduce to the same case in the radial direction

as case B. Assuming axial symmetry, the differential form of Eqn. 2.6 written in cylindrical

coordinates and assuming axial-symmetry is

∂P

∂t
+

1

r

∂(rur)

∂r
= 0,

∂ur

∂t
+

∂P

∂r
= 0,

(2.50)

where ur is the velocity in the radial direction. An extra source term is present in the

equation for P .

The solutions for these cases with ν = 0.7 are shown in Fig. 2.12 and Fig. 2.13. The

major overshoots are removed and the sharpness of the discontinuity is kept. The oscillations

in the major plateau have decreased over time.

(a) Unlimited (b) Limited

Figure 2.12: Comparison of unlimited and limited solutions at t = 0.2 for test case D. h =
0.0218.

32

(a) Unlimited (b) Limited

Figure 2.13: Comparison of unlimited and limited solutions at t = 0.3 for test case D. h =
0.0218.

2.2.3 Test Cases: Converging-Diverging Shock

In this section, we focus on the nonlinear equations where shocks can form from smooth

solutions and grow in strength. We are particularly interested in the cylindrical symmetric

cases of an initial shock propagating inwards in the radial direction. This setup is similar

to the Guderley problem for the Euler equations [56], which features an infinitely strong

converging shock. Related problems are frequently found in laser fusion and astrophysics

[57, 58, 59]. The Guderley problem has a similar solution involving a reflected diverging

shock [60]. The amplitudes of the solution quantities blow up at the time of the collapse.

This problem is challenging for numerical solvers due to the growth of the shock strength

and the amplitude blowup of the solution. We study here the performance of the Active

Flux method for the converging-diverging problem governed by the p-system in Eqn. 2.21

and the Euler equations in Eqn. 2.1.

2.2.3.1 Validation Case for the p-System

A validation test case for our 2D p-system solver is a 1D shock formation from an initial

Gaussian wave in a square domain of [−1, 1]× [−1, 1] with periodic boundaries on all sides.

33

(a) t = 0.1 (b) t = 0.3

Figure 2.14: p-system solution for an initial Gaussian wave. The solution is smooth at t = 0.1
and a shock has formed at t = 0.3.

The initial condition is:

ρ0(x, y) = 1 + 2e−50x2

, u0 =
2

γ + 1
ρ

γ+1
2

0 . (2.51)

The initial condition is set so that one of the Riemann invariants is zero, and we have a

simple wave governed by ∂tρ+ ρ
γ−1
2 ∂xρ = 0. We choose γ = 2 for the test cases presented in

this thesis for the p-system. The CFL number is ν = 0.6.

The exact solution of this simple wave is ρ(x, t) = ρ0(x−
√
ρt). The initial Gaussian wave

is expected to travel in the positive x-direction. A shock forms at t = 0.24. Fig. 2.14 shows

the solutions before and after the shock formation. The exact solution is found iteratively

with the Newton-Raphson method. The solver is able to capture the correct location of the

shock with some slight oscillations. The L2 errors of the density are shown in Fig. 2.15

against mesh size. The error convergence rate is close to third order when the solution is

smooth and drops after the shock formation.

2.2.3.2 Converging-Diverging Shock for the p-System

To construct the imploding shock, the jumps in the variable states are calculated using

the Rankine-Hugoniot condition. The initial shock is placed at r0 = 6. The preshocked

34

0.01 0.02 0.03 0.04 0.05

h

10 -3

10 -2

10 -1

10 0

L
2
 e

rr
o

r
in

 d
e

n
s
it
y

2.56

t = 0.1

t = 0.3

Figure 2.15: Error convergence plot for the Gaussian wave case.

region is stationary, and the flow outside is isentropic. The initial condition is given by

(ρ, vr) =


(1, 0), 0 ≤ r < r0

(3,−
√
8r0/r), r ≥ r0

(2.52)

We run this case with a CFL number ν = 0.6. The converging shock propagates inwards

and grows in strength, as shown in Fig. 2.16. The limiter is able to reduce the overshoots

in the solution and helps us run the simulation past the point of collapse of the shock. The

moment of collapse in the solution is when the velocity at r = 0 changes from inwards to

outwards. This time is t = 3.74 in our numerical solution. Theoretically, the amplitudes of

the flow quantities blow up at the time of the collapse. Numerically, however, the maximum

density that appears in the solution depends on the mesh size. The diverging shock shown

in Fig. 2.17 propagates with diminishing strength. The contours of the density are shown

in Figure 2.18 for before and after the collision. Although the shocks are sustained by only

a few elements in these plots, their symmetries are well maintained.

We believe that Active Flux’s ability to properly resolve the shock relatively efficiently

and produce an uncontaminated solution is due to its proper representation of multidimen-

sional physics. This is showcased through a comparison with the DG method, which uses

traditional Riemann solvers. We run the same test case with DG equipped with p = 2

35

(a) t = 0.027 (b) t = 0.806

(c) t = 3.0 (d) t = 3.74

Figure 2.16: Converging shock for h = 0.054. Note the changes in the vertical scale.

36

(a) t = 3.83 (b) t = 3.92

(c) t = 4.56 (d) t = 5.0

Figure 2.17: Diverging shock for h = 0.054. Note the changes in the vertical scale.

(a) t = 3.74 (b) t = 3.83

Figure 2.18: Density contours for the converging-diverging shock.

37

Figure 2.19: Comparison of the Active Flux and DG solutions for the strong converging
shock at t = 3.0. DG has a CFL number close to 0.001.

solution representation, the Roe flux, the classic four-stage Runge-Kutta method, and an

artificial viscosity shock-capturing approach presented in Chap. 3. The setup of this shock

in this case is relatively strong, and DG exhibits instability. The maximum time step that

we are able to use for our mesh size h = 0.062 is ∆t = 2 × 10−4, which corresponds to a

CFL number on the magnitude of 0.001. The solution of DG shown in Fig. 2.19 is of good

quality, although it takes a significant amount of time to obtain.

If we instead set up a weaker shock with (ρL, vr,L) = (3, 0), (ρR, vr,R) = (5,−4), we are

able to run DG with ∆t = 0.004 for the same mesh size. However, the DG solution, in this

case, is more oscillatory than Active Flux, as shown in Fig. 2.20. We believe this is because

of the loss of accuracy due to the one-dimensional solution projection on the mesh edges.

2.2.3.3 Converging-Diverging Shock for the Euler Equations

The construction of an imploding shock for the Euler equations is not as obvious as the

p-system. To satisfy the Rankine-Hugoniot conditions, the initial shock is designed to be

(ρL, vr,L, PL) = (1, 0, 0.685), (ρR, vr,R, PR) = (2,−0.774, 1.885). (2.53)

38

0 2 4 6 8

r

2

3

4

5

6

7

8

Figure 2.20: Comparison of the Active Flux and DG solutions for the weak converging shock
at t = 2.0.

To construct the isentropic flow in the outer region, we start from

∂M

∂r
=

1

c

∂vr
∂r

− vr
c2

∂c

∂r
, (2.54)

where c =
√

γP
ρ

is the speed of sound, and M = vr
c
is the Mach number. Using the Euler

equations, we have

∂M

∂r
= −vr

c2
1

γ − 1

∂c

∂r
− 1

c

vr
r
− vr

c2
∂c

∂r

=
1

2

(
1 +

γ − 1

2
M2

)−1

γM2∂M

∂r
− M

r

(2.55)

Organizing this gives us an equation to solve for the Mach number for the cylindrical sym-

metric isentropic flow:

dM

dr
= −

1 + γ−1
2
M2

1− M2

2

M

r
. (2.56)

The initial condition is generated iteratively using Eqn. 2.56 starting from the shock location

and the right-hand side of the condition in 2.53. The primitive variables are found with the

39

(a) t = 0.1 (b) t = 2.39

(c) t = 5.0 (d) t = 7.0

Figure 2.21: Density profiles of the Euler converging-diverging shock. Note the changes in
the vertical scale.

isentropic relations:

ρ = ρ0

(
1 +

γ − 1

2
M2

)− 1
γ−1

, (2.57)

P = P0

(
1 +

γ − 1

2
M2

)− γ
γ−1

, (2.58)

where ρ0 and P0 are the stagnation density and pressure found from the postshock state.

The simulation is run with mesh size h = 0.054 and a CFL number ν = 0.7. Density

profiles of the shock converging (t = 0.1 and t = 2.39) and diverging (t = 5 and t = 7) are

shown in Fig. 2.21. The limiter presented in section 2.2 is applied. The converging shock is

stabilized and the diverging shock is captured with good quality even though the limiter is

designed for acoustics systems.

40

(a) t = 3.32 (b) t = 3.39 (c) t = 3.47

Figure 2.22: Radial velocity profiles of the Euler shock reflection.

We take a close look at the shock reflection process in Fig. 2.22. The process from the

onset of the reflection to the generation of the diverging shock is instant in theory and is

simulated with about 20 time steps. We observe the origin (r = 0) becoming a sink at the

onset of the reflection and a source a few time steps later. This reveals the mechanism of

the shock reflection.

2.3 Efficient Implementation of Active Flux

We have introduced the construction of the third-order Active Flux method for unstruc-

tured meshes. When implementing the method into code, there are a few tricks to achieve

the full potential of the efficiency that the method is designed to have. We introduce them

here and present a comparison with the standard explicit Runge-Kutta DG method.

2.3.1 Half-Step Evaluation

The Simpson’s quadrature in Eqn. 2.26 requires the solution for the half time step.

An extra evaluation of the half-step aside from the full-step with evolution is costly and in

fact unnecessary. If we write the evolution step in a general way, the solution is updated

41

according to

Qn+1,∗ = Qn,∗ +A1Q
n,∗∆t+

1

2
A2Q

n,∗∆t2, (2.59)

where A1 and A2 are the first and second order evolution operators, and A1Q
n,∗ and A2Q

n,∗

are estimations to ∂u
∂t

and ∂2u
∂t2

at time step n. In fact, A1Q
n,∗ and A2Q

n,∗ are straightforward

to identify in our implementation since the acoustics operators in Eqn. 2.14 and the advection

operator in Eqn. 2.20 are evaluated as first- and second-order components. This means that

the half time step is easily derived by multiplying the first-order components by 1
2
and the

second-order components by 1
4
.

2.3.2 Spherical Mean Evaluations

Consider the partially spherical integrals evaluated inside the circular sectors in an ele-

ment. The acoustics operators are applied to the first-order spatial derivatives of the solution.

For a parabolic solution reconstruction, the first-order spatial derivatives are linear.

Theorem:

For a linear function, the partial spherical integrals for the edge nodes are linear combi-

nations of those for the vertex nodes.

Proof :

Consider the spherical integrals in Eqn. 2.14 applied to a linear function described by

f(x, y) = b0 + bxx+ byy, evaluated partially for angle σ ∈ [σ1, σ2]. For a location (x0, y0), we

42

have

M{f}(σ1,σ2)(x0, y0, r) =
σ2 − σ1

2π
f(x0, y0) +

r

8
(sinσ2 − sinσ1)bx −

r

8
(cosσ2 − cosσ1)by,

I⃗{f}(σ1,σ2)(x0, y0, r) =
σ2 − σ1

2π

bx
by

+
f(x0, y0)

2r

 sinσ2 − sinσ1

− cosσ2 + cosσ1

+

 1
4π
(sin 2σ2 − sin 2σ1)bx − 1

4π
(cos 2σ2 − cos 2σ1)by

− 1
4π
(cos 2σ2 − cos 2σ1)bx − 1

4π
(sin 2σ2 − sin 2σ1)by


(2.60)

Two important relationships that we can derive from the above are, for translation,

M{f}(σ1,σ2)(x1, y1, r) = M{f}(σ1,σ2)(x0, y0, r) + (f(x1, y1)− f(x0, y0))
σ2 − σ1

2π
, (2.61)

I⃗{f}(σ1,σ2)(x1, y1, r) = I⃗{f}(σ1,σ2)(x0, y0, r) +
(f(x1, y1)− f(x0, y0))

2r

 sinσ2 − sinσ1

− cosσ2 + cosσ1

 ,

(2.62)

and for rotation,

M{f}(σ1+π,σ2+π)(x0, y0, r) = −M{f}(σ1,σ2)(x0, y0, r) + f(x0, y0)
σ2 − σ1

π
. (2.63)

I⃗{f}(σ1+π,σ2+π)(x0, y0, r) = I⃗{f}(σ1,σ2)(x0, y0, r)−
f(x0, y0)

r

 sinσ2 − sinσ1

− cosσ2 + cosσ1

 . (2.64)

Consider an element illustrated in Fig. 2.23. We use Mn to denote the partial spherical

integral for the circular sector at node n, where 1 ≤ n ≤ 6, fn is the function value for the

node, and ∆θn is the angle of the circular sector. We assume C1 solution reconstruction in

the plotted region for the purpose of the proof. The area denoted by n′ is translated from

the circular sector at node n. From Eqn. 2.61, we know

Mn − fn
∆θn
2π

= Mn′ − f1
∆θn
2π

, (2.65)

43

1

2

3

2’

3’

5

6

4

5’4’

6’

Figure 2.23: Partial spherical integrals inside an element.

and from Eqn. 2.63,

M4′ = M2′ +M3′ + (f1
∆θ1
π

−M1)

= M2 +M3 −M1 + f1
∆θ1
π

+ (f1 − f2)
∆θ2
2π

+ (f1 − f3)
∆θ3
2π

(2.66)

Meanwhile, M4 and M4′ are related by

M4 = M4′ +
1

2

(
f2 + f3

2
− f1

)
. (2.67)

Finally, we have

M4 = M2 +M3 −M1 + f2

(
1

4
− ∆θ2

2π

)
+ f3

(
1

4
− ∆θ3

2π

)
+ f1

∆θ1
2π

= M2 +M3 −M1 + f2

(
1

4
− ∆θ2

2π

)
+ f3

(
1

4
− ∆θ3

2π

)
+ f1

(
1

2
− ∆θ2

2π
− ∆θ3

2π

) (2.68)

This equation can be adopted to find the other two edge integrals from the nodal integrals

via mutations of the indices. We also omit the treatment of I⃗ since it is similar to the

treatment of M .

Because of this property, the partial spherical integrals inside each element are only

evaluated for the vertex nodes, and the edge integrals are found with the nodal values

44

through cheap calculations.

2.3.3 Efficiency Comparison with DG

With these improvements to the naive implementation, we test the efficiency of our code

with an Euler case of a moving vortex in the domain [−10, 10] × [−10, 10]. The initial

condition is given by

v⃗0 = v⃗∞ + τ⃗
ϵ

2π
e

(1−r2)
2

T 0 = T∞ − (γ − 1)ϵ2

8γπ2
e1−r2 , P 0 = (ρ0)γ

(2.69)

where r =
√

x2 + y2, τ = (−y, x), γ = 1.4, v⃗∞ = 1, and T∞ = 1. The L2 error of the solution

in Eqn. 2.44 is measured at t = 20 when the vortex has returned to its original location for

the first time. The efficient implementation proposed is around 40% faster than the naive

implementation without sacrificing the accuracy of the solution.

The performance of the Active Flux method is compared to DG with solution reconstruc-

tion order p = 1 and p = 2. The L2 errors shown in Fig. 2.25 for DG and Active Flux are

measured as

EAF =

√√√√√ m∑
i=1

Nn∑
j=1

(Ui,j − u0
i (x⃗j))2

Nn

, (2.70)

EDG =

√√√√√ m∑
i=1

∫
Ω
(ui − u0

i)
2dΩ∫

Ω
dΩ

. (2.71)

The DG method is advanced in time with a three-stage third-order Runge-Kutta scheme.

The CFL number for both methods is ν = 0.7. The time steps for Active Flux and DG are

45

10 15 20 25 30 35

1/h

10 -5

10 -4

10 -3

L
2
 e

rr
or

3.0

10 2 10 3 10 4

CPU time (s)

10 -5

10 -4

10 -3

L
2
 e

rr
or

Figure 2.24: Error convergence of the moving vortex case.

5 10 15 20 25 30 35

1/h

10
-6

10
-5

10
-4

10
-3

10
-2

L
2
 e

rr
o
r

4.0

3.0

Active Flux

DG, p = 1

DG, p = 2

10
1

10
2

10
3

10
4

CPU time (s)

10
-6

10
-5

10
-4

10
-3

10
-2

L
2
 e

rr
o
r

Active Flux

DG, p = 1

DG, p = 2

Figure 2.25: Comparison of the solution efficiency between Active Flux and DG.

calculated according to their time step restrictions as

∆tAF =
νλ

smax
, (2.72)

∆tDG =
νλ

(2p+ 1)smax
, (2.73)

where smax is the maximum wave speed in the domain, discussed below, and λ is defined

in Eqn. 2.28. The maximum wave speed is calculated as |u⃗| + c for the Euler equations,

where c =
√

γP
ρ

is the speed of sound. Note that the maximum time step for DG is 1
5
of the

maximum time step for Active Flux.

46

The DG results exhibit superconvergence properties for this test case. For the same

DOFs, Active Flux has slightly lower errors compared to the DG method with p = 1.

However, if we compare the computation time spent for the same accuracy, Active Flux is

comparable to DG with p = 2 for the same number of DOFs.

47

CHAPTER III

Artificial Viscosity Shock-capturing

3.1 Discontinuous Galerkin and Hybrid Discontinuous Galerkin

We consider two discretizations for the conservation law in Eqn. 1.2: discontinuous

Galerkin (DG) and hybridized discontinuous Galerkin (HDG). In each of these, the com-

putational domain Ω is divided into Ne elements, Ωe, in a non-overlapping tessellation Th.

Inside element Ωe, the state is approximated by polynomials of order p, with no continu-

ity constraints on the element boundary. Formally, we write: uh ∈ Vh = [Vh]
s, where

Vh = {u ∈ L2(Ω) : u|Ωe ∈ Pp ∀Ωe ∈ Th} , and Pp denotes polynomials of order p on the ref-

erence space of element Ωe.

3.1.1 Discontinuous Galerkin (DG)

The DG weak form of Eqn. 1.2 is obtained by multiplying the differential equation by

test functions in the same approximation space, integrating by parts, and coupling elements

via single-valued fluxes that are functions of the states on the two adjacent elements:

∫
Ωe

wT
h

∂uh

∂t
dΩ−

∫
Ωe

∇wT
h · H⃗(uh,∇uh) dΩ +

∫
∂Ωe

wT
h Ĥ · n⃗ ds

−
∫
∂Ωe

∂iw
+T
h K+

ij

(
u+
h − ûh

)
nj ds = 0 ∀wh ∈ Vh,

(3.1)

48

where (·)T denotes transpose, K+
ij is the diffusivity tensor, ûh = (u+

h + u−
h)/2, and on the

element boundary ∂Ωe, (·)+, (·)− denote quantities taken from the element or its neighbor

(or boundary condition), respectively, i, j index the spatial dimension, and summation is

implied on repeated indices.

For the normal flux, Ĥ · n⃗, we use the Roe-approximate Riemann solver [61] unless

specified otherwise and the second form of Bassi and Rebay (BR2) [62] for the viscous flux.

Choosing a basis for the test and trial spaces yields the semi-discrete form, MdU
dt
+R(U) = 0,

where M is the mass matrix, and U and R are the discrete state vector and the discrete

residual, respectively.

For steady cases, ∂u
∂t

= 0, we solve the discretized system of non-linear equations R(U) =

0 using the Newton-Raphson method. The linearization of the left-hand-side is the resid-

ual Jacobian matrix, A ≡ ∂R/∂U, which is sparse and exhibits a nearest-neighbor block

structure.

For unsteady cases, we integrate in time with a three-stage, third-order diagonally implicit

Runge-Kutta (DIRK) method [63]. The update fromUn toUn+1 proceeds through a solution

of nstage systems:

M(Ui −Un) + ∆taiiR(Ui) + ∆t
i−1∑
j=1

aijR(Uj) = 0, i = 1, · · · , nstage (3.2)

Un+1 = Un +∆t

nstage∑
j=1

bjR(Uj), (3.3)

where

aij =


α 0 0

1−α
2

α 0

−(6α2−16α+1)
4

6α2−20α+5
4

α

 , bi =


−(6α2−16α+1)

4

6α2−20α+5
4

α

 ,

and α = 0.435866521508459. Eqn. 3.2 can be solved with Newton-Raphson iterations at

each stage in a similar way as in the steady case, with a slight modification to the Jacobian

matrix that does not affect its sparsity.

49

3.1.2 Hybridized Discontinuous Galerkin (HDG)

The starting point for HDG discretization is the conversion of Eqn. 1.2 to a system of

first-order equations,

q⃗−∇u = 0⃗, (3.4)

∂u

∂t
+∇ · H⃗(u, q⃗) = 0, (3.5)

where q⃗h ∈ [Vh]
dim approximates the state gradient. Multiplying these two equations by

test functions v⃗h ∈ [Vh]
dim,wh ∈ Vh and integrating by parts over an element Ωe yields the

weak form:

∫
Ωe

v⃗T
h · q⃗h dΩ +

∫
Ωe

∇ · v⃗T
huh dΩ−

∫
∂Ωe

v⃗T
h · n⃗ ûh ds = 0 ∀v⃗h ∈ [Vh]

dim, (3.6)∫
Ωe

wT
h

∂uh

∂t
dΩ−

∫
Ωe

∇wT
h · H⃗ dΩ +

∫
∂Ωe

wT
h Ĥ · n⃗ ds = 0 ∀wh ∈ Vh, (3.7)

where ûh is a new independent unknown: the state on faces of the mesh. The system is

closed by a weak enforcement of flux continuity across faces,

∫
σf

µT
h

{
Ĥ · n⃗

∣∣
L
+ Ĥ · n⃗

∣∣
R

}
ds = 0 ∀µh ∈ Wh, (3.8)

where Wh denotes the order-p approximation space on the faces σf ∈ Fh of the mesh:

Wh = [Wh]
s, where Wh =

{
u ∈ L2(σf) : u|σf

∈ Pp ∀σf ∈ Fh

}
, and the subscripts L and R

refer to the left and right sides of a face. In HDG, the face approximations are independent

and generally discontinuous at nodes and edges in three dimensions. This increases the size

of the global system relative to the embedded discontinuous Galerkin method [64], but it

yields well-defined blocks in the Jacobian matrix that simplify preconditioning.

The fluxes in Eqn. 3.7 are one-sided, meaning that they depend only on the state and

50

gradient inside the element and the face state,

Ĥ · n⃗ = H⃗(ûh, q⃗h) · n⃗+ τ (ûh,uh, n⃗), τ =

∣∣∣∣ ∂∂u(F̂ · n⃗)
∣∣∣∣
u∗
h

(uh − ûh) + ηδ⃗h · n⃗. (3.9)

Note that τ consists of a convective stabilization computed about the Roe-average state, u∗
h,

and a BR2 viscous stabilization [65], where η is set to a value that is at least the number of

faces and δ⃗h is the BR2 auxiliary variable driven by the state jump uh − ûh.

Choosing bases for the trial/test spaces in Eqns. 3.6, 3.7, 3.8 gives a nonlinear system of

ordinary differential equations,

RQ = 0,

MU dU

dt
+RU = 0,

RΛ = 0,

(3.10)

where MU is the mass matrix. For a steady case, the ODEs reduce to a non-linear system

of equations

RQ = 0, RU = 0, RΛ = 0, (3.11)

with the Newton update system

A B

C D



∆Q

∆U

∆Λ

+


RQ

RU

RΛ

 =


0

0

0

 , (3.12)

where Q, U, and Λ are the discrete unknowns in the approximation of q⃗, u, and û, re-

spectively. [A,B;C,D] is the primal Jacobian matrix partitioned into element-interior and

interface unknown blocks. Note that A, B, and C contain both Q and U components. In

addition, A is element-wise block diagonal, and hence easily invertible using element-local

51

operations.

Statically condensing out the element-interior states gives a smaller system for the face

degrees of freedom,

(
D−CA−1B

)︸ ︷︷ ︸
K

∆Λ+
(
RΛ −CA−1

[
RQ;RU

])
= 0. (3.13)

Solving this set of equations constitutes the global solution of the problem. Following the

global solution for ∆Λ, an element-local back-substitution yields the updates to Q and U.

If the unsteady term is present, we integrate in time with the same DIRK scheme used

for the DG discretization:

RQ(Qi,Ui,Λi) = 0,

MU(Ui −Un) + ∆taiiR
U(Qi,Ui,Λi) + ∆t

i−1∑
j=1

aijR
U(Qj,Uj,Λj) = 0,

RΛ(Qi,Ui,Λi) = 0, i = 1, · · · , nstage

Un+1 = Un +∆t

nstage∑
j=1

bjR
U(Qj,Uj,Λj).

(3.14)

For the Newton iterations used to solve Eqn. 3.14 at each stage, the Jacobian matrix needs

to be modified slightly from the steady case, but this does not affect the sparsity of K.

3.2 Shock Capturing

3.2.1 Artificial Viscosity

This section outlines the shock-capturing approach using artificial viscosity. The starting

point is the general form of an unsteady convection-diffusion partial differential equation,

written in index notation,

∂tuk + ∂iFik = ∂i(Kijkl∂jul), (3.15)

52

where k, l index the state rank, i, j index the spatial dimension, Fik is the convective flux,

and Kijkl is the diffusivity tensor. Both F and K generally depend on the state and could

depend on the position. For shock capturing, we augment the physical diffusivity with an

extra tensor field,

Kstab
ijkl (x⃗) = Tklϵij(x⃗), (3.16)

where Tkl =
∂ũk

∂ul
and ũk = [ρ, ρu⃗, ρH] is a modified state vector that makes the stabilization

term preserve total enthalpy [27], and ϵij is an artificial viscosity tensor field. Numerical

dissipation is added through both the convective and diffusive fluxes. The Roe flux func-

tion [61] does not preserve total enthalpy, and hence we also present test results for the van

Leer–Hänel flux function [66], which is designed to preserve the total enthalpy.

The artificial viscosity tensor field is found as

ϵij(x⃗) = C
hij

h̄
ϵ0(x⃗), (3.17)

where C is an O(1) constant for adjusting the amount of stabilization, hij/h̄ is a smoothly

varying anisotropy field whose calculation is described below, and ϵ0(x⃗) is a smooth scalar

that comes from averaging to nodes an element-based artificial viscosity.

The mesh-implied metric of a simplex element e, Me, defines a Euclidean vector space

in which all edges of the element are unit length [67, 68], i.e., Me ∈ Sym+
d such that

√
viMe,ijvj = 1, ∀vi ∈ Edges(e). (3.18)

The metric has units of inverse distance squared, and it yields a measure of the size of the

element,

h̄e = [det(Me)]
−1/2 dim . (3.19)

53

As the metric eigenvalues have units of inverse square distance, the smoothly-varying anisotropy

field, hij/h̄, is obtained by dividing the inverse square root of the metric by h̄e, i.e., taking

1
h̄e
M−1/2

e , and averaging this quantity from elements to nodes. When needed at an arbitrary

point in an element, the anisotropy tensor is interpolated from the linear nodes that make

up the element.

The construction of the element-based artificial viscosity ϵ̂e starts from a baseline ele-

mental artificial viscosity defined as

ϵ0e =
λmaxh̄e

p
S̄e, (3.20)

where S̄e is a smoothness indicator computed from the states, which is either the resolution

or the variation indicator in this paper, λmax is the maximum wave speed in element e, and

p is the approximation order.

The calculation of artificial viscosity is followed by a Laplace smoothing of ϵe, which

simulates a diffusion effect on the elemental smoothness indicator. The formulation is similar

to a Jacobi smoother:

ϵ̃k+1
e = (1− cs)ϵ0e +

cs
ne

∑
t∈N (e)

ϵ̃kt , k = 0, · · · , nsmooth − 1 (3.21)

ϵe = ϵ̃nsmooth
e (3.22)

where N (e) denotes the neighboring elements of an element e (those with which it shares

an edge), ne is the number of the neighboring elements, and 0 < cs ≤ 1 is a user-defined

coefficient that adjusts the amount of diffusion. A larger cs introduces more diffusion. This

is only used in our two-dimensional experiments. cs is chosen to be 1.0 for the transonic

cases and 0.9 for the hypersonic cases. nsmooth = 10 was found to be sufficient for all cases.

The final step in the calculation of ϵ̂e is a filter used for the hypersonic test cases presented

in section 3.5 to clip away spurious small values generated by the Laplace smoothing. We

54

adopt the smooth filter definition from Barter and Darmofal [27], except that we apply it

before making the artificial viscosity continuous:

ϵ̂e(ϵe) =


0, ϵe ≤ θL

1
2
θH

(
sin
[
π
(

ϵe−θL
θH−θL

− 1
2

)]
+ 1
)
, θL < ϵe < θH

θH ϵe ≥ θH

, (3.23)

where θL and θH are the maximum and minimum values that ϵ̂e varies in between, and

θH = λmaxh̄e/p and θL = 0.01θH are used in this paper.

For unsteady cases, the artificial viscosity is calculated at each Newton iteration, and the

updated viscosity values are used in the calculation of the residuals and the linearizations

of the state variables. The artificial viscosity is treated as constant when calculating the

linearizations. This freezing of the viscosity results precludes Newton convergence, but in

practice does not significantly increase the number of iterations required to obtain a solution,

as many iterations are expended prior to the Newton convergence “bucket.” The lack of an

exact linearization, however, preserves the compact stencil, which is crucial for the efficiency

of the solver.

3.2.2 Smoothness Indicators

Both the resolution indicator and the variation indicator measure the smoothness of a

selected quantity, which is chosen to be the density for our experiments so that more artificial

viscosity is added where discontinuities appear in the solution. The one-dimensional results

presented are generated with the resolution indicator, whereas for the two-dimensional cases,

both indicators are used, and the type of indicator is specified in each case.

55

3.2.2.1 Resolution Indicator

The resolution indicator takes advantage of the fact that for a smooth solution, the

coefficients of the Fourier series decay rapidly. It is defined as the difference between a pth

order quantity and its least-squares projection onto the space of (p−1)th order polynomials:

S̄e =
f 2

f + 1
, f =

Se

S0

, Se =

∫
Ωe
(u− ũ)2 dΩ∫
Ωe

u2 dΩ
, (3.24)

where u is the chosen scalar for measuring regularity, ũ is its (p − 1)th projection, S0 =

10−c0−cpp is an order-dependent variation scale, and c0 and cp are constants that adjust the

amount of stabilization. The bigger both of the constants are, the more stabilization is

added. When the resolution indicator is used, the amount of stabilization is controlled by

both c0, cp in a nonlinear mapping as well as the coefficient C in Eqn. (3.17) in a linear way.

We did not attempt to fine-tune all three at the same time for this paper. C = 1 is used and

c0 and cp are tuned for all one-dimensional examples since we tested for different polynomial

orders for each case. For the two-dimensional examples, c0 = 0 and cp = 1 are used and C

is tuned whenever more stabilization is needed.

3.2.2.2 Variation Indicator

The variation indicator is based on the intra-element variation of a selected quantity:

S̄e =


0, Se < S∗ −∆S

Se

2

[
1 + sin

(
π

2∆S
(Se − S∗)

)]
, S∗ −∆S ≤ Se ≤ S∗ +∆S

Se, Se > S∗ +∆S

, (3.25)

Se =

[
1

|Ωe|

∫
Ωe

(
u

ūe

− 1

)2

dΩ

]1/2
(3.26)

where u is the chosen scalar for measuring regularity, and ūe =
1

|Ωe|

∫
Ωe

udΩ, S∗ and ∆S are

user-defined parameters. The smooth scaling was presented by Persson and Peraire [26] and

56

used in combination with the variation indicator by Ching et al. [28]. It preserves large

values and clips down small ones. S∗ is chosen to be 0.75 for our transonic cases and 1.25

for the hypersonic cases. ∆S is set to 0.25 throughout.

3.3 Mesh Adaptation

3.3.1 Adjoint Solution

The mesh adaptation process used in this thesis is driven by the estimation of the output

error. We use discrete adjoint solutions for the error estimation. Let Uh ∈ RNh and Rh ∈

RNh be the vector of the unknowns and the residuals respectively. The output for this

discretization is denoted as Jh. The adjoint vector, Ψh is the sensitivity of Jh with respect

to the residual. An infinitesimal perturbation δUh and the perturbation induced in the

residuals δRh satisfy

∂Rh

∂Uh

δUh + δRh = 0. (3.27)

The increment in the output is

δJh = Jh(Uh + δUh)− Jh(Uh) = ΨT
h δRh. (3.28)

Assuming the output is differentiable, we have

δJh =
∂Jh
∂Uh

δUh = −ΨT
h

∂Rh

∂Uh

δUh. (3.29)

This gives us the equation for the discrete adjoint:

(
∂Rh

∂Uh

)T

Ψh +

(
∂Jh
∂Uh

)T

= 0. (3.30)

57

For HDG, we have three sets of unknowns. Eqn. 3.30 becomes

AT
h CT

h

BT
h DT

h



ΨQ

h

ΨU
h

ΨΛ
h

+


∂Jh
∂Qh

T

∂Jh
∂Uh

T

∂Jh
∂Λh

T

 =


0

0

0

 , (3.31)

Similar to the forward solution for HDG, this is solved via static condensation. The face

DOFs are solved with

(
DT

h −BT
hA

−T
h CT

h

)︸ ︷︷ ︸
KT

h

ΨΛ
h +

(
∂Jh
∂Λh

T

−BT
hA

−T
h

[
∂Jh
∂Qh

T

;
∂Jh
∂Uh

T])
= 0. (3.32)

3.3.2 Output Error Estimation

Let H denote the current, “coarse”, approximation space, and h a fine space obtained by

increasing the polynomial order by 1 on each element. An estimate of the error between the

coarse and fine spaces for our output of interest, J , can be found using the adjoint-weighted

residual [69, 70]. With the adjoint solutions, the output error estimate for DG reads

Jh(U
H
h)− Jh(Uh) ≈ −δΨT

hRh(U
H
h), (3.33)

where UH
h is the coarse state prolongated into the fine space, and δΨh is obtained by sub-

tracting the coarse-space adjoint from the fine-space adjoint. The subtraction is done to

remove the effect of the numerical errors on the coarse mesh that rise from the solution con-

vergence and focus on the discretization errors. For HDG, the output error estimate includes

terms associated with the gradient and weak flux continuity equations,

Jh(U
H
h)− Jh(Uh) ≈ −(δΨQ

h)
TRQ

h − (δΨU
h)

TRU
h − (δΨΛ

h)
TRΛ

h . (3.34)

The localized error contributions on each element can be used as error indicators to drive

58

the mesh adaptation process. For DG, the error indicator on element e is

εe ≡
∣∣δΨT

h,eRh,e(U
H
h)
∣∣ . (3.35)

The HDG error indicators εQe and εUe can be found in a similar way, and the indicator

associated be element face DOFs, εΛe , is found by distributing the face error estimate equally

to the adjacent elements.

We also tested the entropy variables in place of the output adjoint for the Euler equations

[71]. They are defined by v ≡ ∂U/∂u, where U is the entropy function chosen as

U = −ρ(lnP − γ ln ρ)

γ − 1
. (3.36)

3.3.3 Mesh Optimization through Error Sampling and Synthesis (MOESS)

The MOESS algorithm used in this thesis was proposed by Fidkowski [68], which built

on earlier work of Yano [67].

To form a continuous optimization problem, the information about the size and stretching

of elements in a mesh, which is discrete, is encoded using a continuous Riemannian metric

M(x⃗) ∈ Rdim×dim. The idea of the MOESS algorithm is to optimize the change in the

current, mesh-implied metric M0(x⃗), through a step matrix S ∈ Rdim×dim as,

M = M
1
2
0 exp(S)M

1
2
0 , (3.37)

given a target cost Ctarget, so that the estimated output error is minimized.

The step matrix field S(x⃗) is represented by values at the mesh vertices, Sv, in the imple-

mentation of MOESS. The optimization process in MOESS is iterative. In each iteration, an

error reduction to cost introduction ratio is calculated at each vertex, the trace of the step

matrices is modified so that the vertices with the largest values of this ratio are refined, the

vertices with the smallest values of the ratio are coarsened, the trace-free part of the step

59

matrices is updated to modify the element shape with the desired anisotropy, and finally,

the step matrices are manipulated to constrain the total cost. The process then repeats with

the updated step matrices.

The rates of change of the total error and the cost with respect to the step matrices,

∂ε
∂Sv

and ∂C
∂Sv

, are calculated from element-based models that relate the error indicator εe and

elemental cost Ce to the step matrix on an element e. For DG, the error convergence model

is

εe = εe0e
tr(ReSe), (3.38)

where εe0 is the current error on element e, and Re is an element-specific error rate tensor

determined through an error sampling process. For HDG εe = εUe + εQe + εΛe , and

εUe = εUe0e
tr(RU

e Se), εQe = εQe0e
tr(RQ

e Se), εΛe = εΛe0e
tr(RΛ

e Se), (3.39)

where RU
e , RQ

e , RΛ
e are also found through error sampling. The cost model is related to the

trace of the step matrix, which indicates the decrease in the area of an element. The local

cost on element e is

Ce = Ce0e
1
2
tr(Se), (3.40)

where Ce0 is the current cost on element e, prior to refinement, measured by the number of

degrees of freedom.

The updated Riemann metric field at the end of the optimization is used as the input

to the Bi-dimensional Anisotropic Mesh Generator (BAMG) [72] to generate the updated

mesh. In practice, several iterations of the mesh optimization and flow/adjoint solution are

performed and the convergence of the targeted output is monitored.

60

3.3.4 Error Sampling

The error rate tensors in Eqn. 3.38 and Eqn. 3.39 are estimated by sampling a few

refinements for each element. These are the divisions of the original triangle into two or four

equal-sized triangles. The error indicator after the refinement is

εei = εe0 −∆εei. (3.41)

The difference is estimated as

∆εei =
∣∣ΨHi T

h,e Rh,e(U
H
h)
∣∣ , (3.42)

where ΨHi
h is the adjoint on refined space, ΨHi

, projected into the fine space of order p+ 1.

In practice, ΨHi
is obtained by projecting the fine space adjoint to the refined space Hi. For

HDG, the change in the error estimate for the DOFs on each face needs to be distributed

equally to its neighboring elements.

The error rate tensor is then solved by minimizing

∑
i

[
log

εei
εe0

− tr(ReSei)

]2
, (3.43)

where Sei is the step matrix for refinement option i.

3.4 One-dimensional test cases

3.4.1 Steady Linear Advection

We start by showing an example of a steady case of the linear advection equation,

a
du

dx
= f. (3.44)

61

The source term f is chosen so that the exact solution is

u(x) =
tanh(256(x− 0.4)) + 3

2
, (3.45)

which contains a sharp variation at x = 0.4.

The DG solutions of different polynomial orders on a uniform mesh are shown in Fig. 3.1.

The boundary values are fixed. The upwind flux is used for advection, and the continuous

artificial viscosity is tested for stabilization. The artificial viscosity is able to reduce the

overshoots in the solutions, even at very high orders, up to p = 14 tested. The amount of

the artificial viscosity can be tuned by changing c0 and cp in Eqn. 3.24 to further reduce

the oscillations, but this comes at the cost of the sharpness of the discontinuity. A trade-off

needs to be made when deciding the amount of artificial viscosity to add.

0 0.5 1

x

1

1.5

2

2.5

u

p = 2, N = 16

without AV

with AV

0 0.5 1

x

1

1.5

2

2.5

u

p = 4, N = 16

without AV

with AV

0 0.5 1

x

1

1.5

2

2.5

u

p = 14, N = 16

without AV

with AV

Figure 3.1: DG solutions for steady advection: a = 1.0, c0 = 1.8, cp = 0.3, with and without
artificial viscosity (AV).

3.4.2 Unsteady Linear Advection

We demonstrate the ability of the continuous artificial viscosity to stabilize a transient

solution with an example of the Zalesak “wave basket” [73] traveling with constant speed

a = 1. The initial condition is imposed by a least-squares projection of the analytical solution

to the order p approximation space. The solutions on a uniform mesh after one period of

wave traveling are shown in Fig. 3.2. The oscillations in the initial conditions plotted as

62

“IC”, are caused by the least-squares initialization. In this case, we test DG and HDG, and

both methods perform similarly. The oscillations in the solutions are greatly reduced by the

addition of artificial viscosity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.5

0

0.5

1

1.5

u

p = 2, N = 64 IC

without AV

with AV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.5

0

0.5

1

1.5

u

p = 9, N = 64 IC

without AV

with AV

(a) DG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.5

0

0.5

1

1.5

u

p = 2, N = 64
IC

without AV

with AV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.5

0

0.5

1

1.5

u

p = 9, N = 64
IC

without AV

with AV

(b) HDG

Figure 3.2: DG and HDG solutions for unsteady advection: t = 1.0, ∆t = 0.001, c0 = 1.0,
cp = 0.4.

3.4.3 Unsteady Inviscid Burgers

We compare the use of the continuous piece-wise linear artificial viscosity to the discon-

tinuous piece-wise constant artificial viscosity through an example of the 1D inviscid Burgers

equation

∂u

∂t
+ u

∂u

∂x
= 0, (3.46)

with an initial sinusoidal wave

u0(x) = sin(2π(x− 0.5)) + 1, (3.47)

and periodic boundary conditions. A shock wave will start to form at t = 1
2π

as the wave

propagates in space. We run the test case on a uniform mesh. The Godunov scheme [74] is

used for the advection flux.

In Fig. 3.3, we show the solution values and first derivatives for the Burgers equation

63

example. The derivatives of the solutions with the discontinuous artificial viscosity are more

oscillatory for both the DG and HDG cases.

Given the implicit characteristics solution u(x, t) = u(x−ut), the exact solution ue can be

found iteratively at each point in space. We define the L1 error of the solution as
∫ 1

0
|u−ue|dx

and the L2 error of the solution as
√∫ 1

0
(u− ue)2dx. The convergence of the L1 and L2 errors

is shown in Fig. 3.4. At t = 0.05 the solution is smooth, and both DG and HDG show error

convergence of the corresponding orders of the methods. At t = 0.2, a shock has formed,

and the orders of error convergence for both DG and HDG drop to 1. The errors for the

piece-wise constant artificial viscosity cases at t = 0.2 are in general bigger than those of the

continuous artificial viscosity cases.

It is worth mentioning that the discontinuous artificial viscosity tends to reduce the

stability of the Newton-Raphson iterations when the time step taken is relatively large.

Although this instability can be alleviated by smaller time steps or under-relaxation of the

Newton-Raphson iterations, it makes the solution with the discontinuous artificial viscosity

more costly (about 20% compared to the p = 1 artificial viscosity for this test case). This is

a more serious issue when more artificial viscosity is added.

Moreover, if the amount of artificial viscosity is tuned down within the reasonable range

so that the capturing of the shock is sharper but more oscillatory, the difference between

the errors for the piece-wise constant and the piece-wise linear artificial viscosity increases

further.

3.5 Two-dimensional test cases

The two-dimensional test cases that we present are steady Euler cases with artificial

viscosity, solved on unstructured triangular meshes with orders pϵ = 1 and p = 2. Laplace

smoothing is used for all cases unless specified otherwise.

64

0 0.5 1

x

-60

-40

-20

0

d
u
/d

x

p = 9, N = 8

0 0.5 1

x

1

2

3

4
u

exact without AV non-smooth AV smooth AV

(a) DG

0 0.5 1

x

-60

-40

-20

0

d
u
/d

x

p = 9, N = 8

0 0.5 1

x

1

2

3

4

u

exact without AV non-smooth AV smooth AV

(b) HDG

Figure 3.3: DG and HDG solutions to the Burgers equation: N = 8, p = 9, t = 0.2.,
∆t = 2× 10−4, c0 = 2.0, cp = 0.4.

3.5.1 Transonic Airfoil

We demonstrate the solver’s shock-capturing ability and the effect of Laplace smoothing

with a transonic case at freestream Mach number M = 0.8 past a NACA 0012 airfoil at

an angle of attack α = 1.25◦. We run the case with both the resolution indicator (C = 2)

and the variation indicator (C = 0.5) with and without Laplace smoothing for more than

10 adaptive iterations based on the drag adjoint. The drag convergence over the adaptive

iterations is shown in Fig. 3.5. The adapted mesh and solution for the resolution indicator

with Laplace smoothing are shown in Fig. 3.6. One main shock appears above the airfoil and

a weak one appears below. Thin, anisotropic elements are placed along the shock interface

by the mesh adaptation process.

Since the refined elements of the unstructured mesh are not perfectly aligned with the

shock, the non-linear smoothness indicators can cause oscillations in the artificial viscosity

values along the shock. Therefore, oscillations can form along the shock in the solutions.

Laplace smoothing of the artificial viscosity has the potential to alleviate this effect. To

compare the solutions, a line probe is taken of the entropy field behind the shock for the

solutions on the final adapted meshes. Fig. 3.7 shows the entropy measured along the

line probe. Laplace smoothing is able to reduce the oscillations in the entropy for both the

resolution and the variation indicators. Note that the Laplace smoothing is for the elemental

65

10
1

10
2

dof

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

L
2
 e

rr
o

r

2.13

3.31

3.73

4.55

p = 1, p = 1

p = 2, p = 1

p = 3, p = 1

p = 4, p = 1

p = 1, p = 0

p = 2, p = 0

p = 3, p = 0

p = 4, p = 0

10
1

10
2

dof

10
-2

10
-1

L
1
 e

rr
o

r

1.0

p = 1, p = 1

p = 2, p = 1

p = 3, p = 1

p = 4, p = 1

p = 1, p = 0

p = 2, p = 0

p = 3, p = 0

p = 4, p = 0

(a) DG, t = 0.05 on the left and t = 0.2 on the right.

10
1

dof

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

L
2
 e

rr
o

r

1.78

3.32

3.51

4.25

p = 1, p = 1

p = 2, p = 1

p = 3, p = 1

p = 4, p = 1

p = 1, p = 0

p = 2, p = 0

p = 3, p = 0

p = 4, p = 0

10
1

dof

10
-2

10
-1

L
1
 e

rr
o

r

1.0

p = 1, p = 1

p = 2, p = 1

p = 3, p = 1

p = 4, p = 1

p = 1, p = 0

p = 2, p = 0

p = 3, p = 0

p = 4, p = 0

(b) HDG, t = 0.05 on the left and t = 0.2 on the right.

Figure 3.4: Error convergence for DG and HDG solutions to Burgers equation.

66

0 5 10 15

Adaptive Iterations

0.0325

0.033

0.0335

0.034

0.0345

0.035

0.0355

0.036

0.0365

0.037

C
D

resolution, unsmoothed

variation, unsmoothed

resolution, smoothed

variation, smoothed

(a) DG

0 5 10 15

Adaptive Iterations

0.0325

0.033

0.0335

0.034

0.0345

0.035

0.0355

0.036

0.0365

0.037

C
D

resolution, unsmoothed

variation, unsmoothed

resolution, smoothed

variation, smoothed

(b) HDG

Figure 3.5: Drag coefficient convergence for the transonic airfoil case.

(a) Mesh (b) Mach number (c) Stabilization viscosity

Figure 3.6: Transonic airfoil DG solution with the resolution indicator and Laplace smooth-
ing, dof = 1× 104.

67

artificial viscosity, and it happens during the process of setting up of the linear system for

each Newton-Raphson iteration. The increase in computational time due to the smoothing

iterations is negligible.

Fig. 3.8 shows the pressure coefficient plots on the upper surface of the airfoil. The

difference between the location of the shock determined with the resolution and the variation

indicators is less than 0.1% of the chord length for both DG and HDG. The resolution of

the shock improves as the mesh is refined.

d

0 0.1 0.2 0.3 0.4 0.5

d

0.008

0.0085

0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

s
/s

 -
 1

resolution, unsmoothed

variation, unsmoothed

resolution, smoothed

variation, smoothed

(b) DG

0 0.1 0.2 0.3 0.4 0.5

d

0.008

0.0085

0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

s
/s

 -
 1

resolution, unsmoothed

variation, unsmoothed

resolution, smoothed

variation, smoothed

(c) HDG

Figure 3.7: Line probe of entropy behind the shock.

3.5.2 Transonic Gaussian Bump

We investigate the errors in the total enthalpy generated by the numerical scheme with a

test case of M = 0.7 channel flow with a smooth Gaussian bump geometry. The resolution

indicator is used with C = 4 for all the results presented for this case. The channel is bounded

68

0 0.2 0.4 0.6 0.8 1

x/c

-1.5

-1

-0.5

0

0.5

1

1.5

2

-c
p

resolution, dof = 1e4

variation, dof = 1e4

resolution, dof = 4e4

variation, dof = 4e4

0.637 0.6375 0.638 0.6385 0.639 0.6395 0.64

0

0.5

1

(a) DG

0 0.2 0.4 0.6 0.8 1

x/c

-1.5

-1

-0.5

0

0.5

1

1.5

2

-c
p

resolution, dof = 1e4

variation, dof = 1e4

resolution, dof = 4e4

variation, dof = 4e4

0.637 0.6375 0.638 0.6385 0.639 0.6395 0.64

0

0.5

1

(b) HDG

Figure 3.8: Pressure coefficient distributions on the upper surface of the airfoil in transonic
flow.

in the region [−1.5, 1.5]× [0, 0.8]. The bump on the bottom of the channel is defined by

y = 0.0625e−(x/0.2)2 . (3.48)

The total enthalpy should be conserved across the shock for an exact inviscid solution.

However, the added artificial viscosity as well as the inviscid flux function can serve as sources

of total enthalpy. Fig. 3.9 shows a convergence study of the L2 error in the total enthalpy,

defined as

EH =

√∫
Ω
(H/H∞ − 1)2dΩ∫

Ω
dΩ

, (3.49)

on uniformly refined meshes. The modification of the state vector in the stabilization term,

i.e. a non-identity tensor Tkl in Eqn. 3.16, improves the total enthalpy solutions as well as

the convergence rate. However, due to the nonlinearity of the shock-capturing method, the

convergence rate is still lower than 1. The van Leer–Hänel flux function further reduces the

total enthalpy generation. However, the use of the van Leer–Hänel flux function is found to

impair the stability of the numerical scheme.

69

In the results in Fig. 3.10 we compare mesh adaptation with the drag adjoint and with

the entropy variables. The drag coefficient is defined as

CD =

∫
bottom

(P − P∞)nxdl
γ
2
P∞M2

∞h
, (3.50)

where nx is the horizontal component of the outward-pointing normal vector, h = 0.025

is the height of the bump. The drag coefficient and the error in the total enthalpy both

converge as the adaptation progresses when using the drag adjoint and eventually hover

around the optimal values. However, when the entropy variables are used for adaptation,

the drag coefficient and the error in the total enthalpy both eventually begin to increase

after one point despite the effort of the adaptation to put elements along the shock. This

seems to be relieved when the degrees of freedom increase, especially for the drag coefficient.

Fig. 3.11 displays the meshes for the two adaptive iterations marked in Fig. 3.10. The

mesh for iteration 9 contains more refined elements along the shock while the mesh in the

rest of the flow region is significantly coarsened. This iteration corresponds to the higher

error in both drag and total enthalpy. This observation suggests that adaptation based

on the entropy variables leads to meshes overly focused on the shock, causing insufficient

resolution in the rest of the flow domain, and eventually results in inaccurate output values.

Adaptation based on the drag output, on the other hand, is able to balance the resolution

addition throughout the domain, producing more accurate output values and better total

enthalpy preservation.

3.5.3 Inviscid Hypersonic Flow Past a Half-Cylinder

This test case is a hypersonic, M = 5, flow past a half-cylinder. A strong bow shock

forms in front of the cylinder and stresses the high-order shock capturing. Part of the flow

region behind the shock is subsonic, bounded within the M = 1 contour lines. Supersonic

outflow boundary conditions are used at the outflow boundaries. The definition of the error

70

40 60 80 100 120 140 160 180

dof
1/2

10 -5

10 -4

10 -3

E
H

1.0

Roe, identity T

Roe, constant H T

vLH, constant H T

Figure 3.9: Total enthalpy error convergence on uniformly refined meshes for the bump case,
using different diffusivity tensor transformations, as defined in Eqn. 3.16.

0 5 10 15 20

Adaptive Iterations

0.245

0.25

0.255

0.26

0.265

0.27

C
D

Adapt on drag, dof = 1500

Adapt on drag, dof = 6000

Adapt with entropy variable, dof = 1500

Adapt with entropy variable, dof = 6000

0 5 10 15 20

Adaptive Iterations

0

0.5

1

1.5

E
H

10 -4

Adapt on drag, dof = 1500

Adapt on drag, dof = 6000

Adapt with entropy variable, dof = 1500

Adapt with entropy variable, dof = 6000

Figure 3.10: Drag and total enthalpy convergence during adaptation for the bump case.

(a) Iteration 5 (b) Iteration 9

Figure 3.11: Meshes adapted using the entropy variables for the bump case.

71

in the total enthalpy varies slightly from the previous test case:

EH =
1

D

√∫
Ω

(H/H∞ − 1)2dΩ, (3.51)

where D = 2 is the diameter of the cylinder. Since the primary source of enthalpy error is

the region behind the shock, the length scale that is of our concern is the cylinder diameter

instead of the area of the flow region.

We compare the DG and HDG performances by running both discretizations on the same

mesh starting from M = 4.5 solutions. The results are listed in Table 3.1. Compared to

DG, HDG reduces the degrees of freedom and the number of nonlinear iterations required

for convergence. However, the computational time does not improve for this case of p = 2.

Since HDG requires static condensation and back-substitution solutions before and after each

solution of the linear system, the advantage of HDG over DG in terms of computational

time is usually achieved with higher polynomial orders, when the reduction in degrees of

freedom from DG to HDG is more drastic. In addition, HDG suffers from a weaker block-

based preconditioner, due to its smaller, more numerous blocks relative to DG, and this can

increase the number of iterations taken by the linear solver.

Table 3.1: Time and iterations required to converge to a M = 5 solution from a M = 4.5
one.

dof nonlinear iterations CPU time (s)
DG 2400 2803 3.9405× 102

HDG 1875 2670 8.2952× 102

We compare the results obtained by adapting on the total enthalpy output EH with

those obtained by adapting using the entropy variables. The Gaussian bump test case

demonstrated that the entropy variables can intensively target the shock. The adaptive

solutions were run for more than 15 iterations starting from an initial structured mesh

until the outputs started oscillating about fixed values. The DG results with the resolution

indicator are shown in Fig. 3.13. The same effect of the entropy variables is observed for

72

the cylinder test case. The total enthalpy adjoint targets the shock and refines in the region

behind the shock at the same time, while the entropy adjoint focuses extensively on the

shock wave.

The errors in the drag coefficient and the total enthalpy are shown in Fig. 3.14. The

drag coefficient is defined as

CD =

∫
cylinder

(P − P∞)nxdl
γ
2
P∞M2

∞D
, (3.52)

where nx is the horizontal component of the outward-pointing normal vector. The values for

drag and EH are found by averaging the output values of the last 5 adaptive iterations. The

dof counts plotted for both DG and HDG are the element interior degrees of freedom, since

that is what the MOESS algorithm targets. The “exact” value of the drag was obtained

with adaptation on EH and dof = 38400. The linear coefficient C in Eqn. (3.17) has

to be tuned to achieve convergence, as listed in Table 3.2. With a strong shock and the

effect of the Laplace smoothing that smears the values to some extent, we resort to larger

stabilization values than in the transonic cases. The variation indicator in general is more

robust and requires less tuning. Moreover, the iterative convergence of HDG appears to be

more sensitive to the amount of stabilization, so the coefficient value was lowered on the

coarsest mesh.

Table 3.2: C values in Eqn. (3.17) for the hypersonic cylinder case.
indicator DG HDG
resolution 256 128 (coarsest) / 256 (otherwise)
variation 6 6

The errors for a series of structured shock-fitted meshes are also plotted in Fig. 3.14 for

comparison. The shock-fitted meshes are shown in Fig. 3.12. To generate these meshes, the

shock geometry is taken to be the M = 3.5 contour line. Uniform spacing is used in the

tangent direction, and tanh spacing centered at the shock location is used to find the grid

point locations along the radial direction. The tanh spacing is created with a transformation

73

function that is applied to a linear spacing, defined as

xtanh =
5

8
arctanh (xlinear) + 1, (3.53)

where xlinear ∈ [tanh (−1.6), tanh (2.4)] and xtanh ∈ [0, 2.5]. The radial locations of the mesh

points are found as

r

R
= xtanh

(rs −R)

R
+ 1, (3.54)

where rs is the location of the shock for a particular tangential direction and R = D/2

is the radius of the cylinder. After finding the grid points, the neighboring points are

connected, and the elements are divided in half to form a triangular mesh. The flow solution

is then found on the newly generated mesh and the mesh generation and solution process are

repeated several times. For the shock-fitted meshes, the elements are less skewed. C = 32, 16

are used for DG and HDG, respectively, with the resolution indicator, and C = 6 is used

with the variation indicator.

The mesh adaptation is evidently able to reduce the errors in both the total enthalpy

and the drag, achieving convergence rates close to 2 for adaptation on EH . The adaptation

with the entropy variables shows worse convergence of EH . However, the error in drag is

reasonable. The drag does not seem to be affected too much by the lack of resolution behind

the shock. Finally, the resolution and the variation indicator perform similarly for this test

case.

We also attempted mesh adaptation with the drag adjoint for this case. However, the

adaptation focuses on the adjoint features and not as much on the shock, leading to an

under-resolved shock and spurious solutions. To see the refinement along the shock more

clearly, we show an example of a M = 2 case where the shock is further away from the

cylinder and the shock and the drag adjoint features are more distinguishable. The adapted

meshes with p = 2 are shown in Fig. 3.15. From dof = 4800 to dof = 9600 the mesh is not

74

(a) dof = 2400

(b) dof = 9600

Figure 3.12: Shock-fitted meshes generated for comparison with mesh adaptation for the
hypersonic cylinder case.

refined along the shock but only on the adjoint features.

To determine whether this is a problem caused by the MOESS algorithm or the output-

based mesh adaptation, we ran the same case with hanging-node adaptation [75, 76]. The

adaptation decides which elements to refine based on the error indicators presented in section

3.3. Each adaptive iteration is governed by a fixed growth factor that is chosen to be 1.3. The

adapted meshes are shown in Fig. 3.16. With hanging-node adaptation, the drag adjoint

indicator leads to more refinement behind the shock and close to the cylinder boundary

compared to the total enthalpy adjoint indicator, but it does not over-emphasize the drag

adjoint features.

This suggests that the shock under-resolution observed with MOESS may be due to a

noisy error indicator that leads to a larger spread of error magnitudes, an inaccurate error

convergence rate calculation via MOESS sampling in certain parts of the flow, and/or an

error indicator that does not respond well to refinement due to singular adjoint features.

A comparison of the distributions of the adaptation error indicators between the drag ad-

75

T
ot
al

en
th
al
p
y
ad

jo
in
t

(a) Mesh (b) Mach number (c) Stabilization viscosity

E
n
tr
op

y
ad

jo
in
t

(d) Mesh (e) Mach number (f) Stabilization viscosity

Figure 3.13: Adaptive DG results for M = 5 inviscid flow past a cylinder. dof = 2400

76

D
G

20 40 60 80 100

dof
1/2

10 -4

10 -3

E
H

2.0
adapt on E

H
, resolution

adapt on E
H

, variation

entropy adjoint, resolution

entropy adjoint, variation

uniform refinement, resolution

20 40 60 80 100

dof 1/2

10 -4

10 -3

10 -2

E
rr

o
rs

 i
n

 C
D

2.0

adapt on E
H

, resolution

adapt on E
H

, variation

entropy adjoint, resolution

entropy adjoint, variation

uniform refinement, resolution

H
D
G

20 40 60 80 100

dof
1/2

10 -4

10 -3

E
H

2.0

adapt on E
H

, resolution

adapt on E
H

, variation

uniform refinement, resolution

20 40 60 80 100

dof 1/2

10 -4

10 -3

10 -2

E
rr

o
rs

 i
n

 C
D

2.0

adapt on E
H

, resolution

adapt on E
H

, variation

uniform refinement, resolution

Figure 3.14: Convergence plots for the cylinder case.

77

(a) dof = 2400 (b) dof = 4800 (c) dof = 9600

Figure 3.15: Adapted meshes with MOESS for M = 2 flow past a cylinder using the drag
adjoint.

Drag adjoint Total enthalpy adjoint

(a) dof = 7605 (b) dof = 12105 (c) dof = 5211 (d) dof = 9306

Figure 3.16: Adapted meshes with hanging node adaptation for M = 2 flow past a cylinder.

78

joint and the total enthalpy adjoint is shown in Fig. 3.17. The large error indicator values

for the drag adjoint case are localized to elements that are already small, suggesting that

MOESS is fixated on certain primal/adjoint features or their interaction. The adjoint fea-

tures are specific to the drag output. The enthalpy adjoint appears smoother, and this likely

makes the error indicator more spread out. As MOESS optimizes the mesh to equidistribute

the marginal error-to-cost ratio, large error indicators in certain consistent regions will lead

MOESS to gravitate mesh resolution to those regions, at the cost of lower resolution else-

where. Hanging-node adaptation is not as sensitive to the relative error magnitudes, as it

only uses the magnitudes to select a fraction of elements to refine. Hence, it does not suffer

the same over-resolution as long as the fixed fraction is sufficiently large. From Figure 3.17,

the regions of overly high resolution for MOESS appear to be the leading-edge stagnation

streamline and the intersection of the bow shock and the adjoint “shock” (domain of influ-

ence boundary). Mitigating this output-based indicator disparity in the presence of strong

shocks, through smoothing of the adjoint or adjustments to the adjoint-weighted residual

calculation, is a topic for future work.

3.5.4 Viscous Hypersonic Flow Past a Half-Cylinder

One important goal for high-quality shock-capturing for hypersonic flow is to generate

accurate predictions of wall heating. To test the heat transfer predictions of our solver, we

use the canonical test case of M = 17.605 flow past a cylinder. The freestream Reynolds

number is Re = ρ∞RcV∞/µ∞ = 376, 930, where ρ∞, V∞, µ∞ are the freestream density,

velocity magnitude, and viscosity, and Rc is the cylinder radius. The temperature for the

freestream is T∞ = 200K, and on the adiabatic wall we have Twall/T∞ = 2.5.

To validate our solutions, the DG solution for a fine mesh is shown in Fig. 3.18. Two

quantities plotted along the wall boundary are the pressure coefficients and the Stanton

79

(a) drag adjoint, [−2, 1.5] (b) error indicators, drag,
[0, 2× 10−5]

(c) total enthalpy adjoint,
[−0.06, 0.02]

(d) error indicators, H,
[0, 2× 10−5]

Figure 3.17: Comparison of x-momentum adjoint and error indicators for M = 2 flow past
a cylinder.

80

number, defined as,

Cp =
p− p∞
1
2
ρV 2

∞
, CH =

qwall
cpρ∞V∞(T0,∞ − Twall)

, (3.55)

where qwall is the heat transfer on the wall, found as the energy flux, cp =
γR
γ−1

is the constant

pressure specific heat, and T0,∞ is the freestream stagnation temperature. Our DG and HDG

solutions are overlapping for the pressure coefficient, and have some slight differences in the

Stanton number, which could be caused by the different wall boundary treatments for DG

and HDG. The Stanton number is compared to the DG solution of Ching at el. [28]. Their

prediction with PDE-based artificial viscosity has good agreement with our DG result.

Our attempts for adaptation with MOESS and integrated heat flux on the wall as the

targeted output were unsuccessful for this test case. The reason is when MOESS moves the

boundary elements where variations are occurring inside the boundary layer, the solution

projection on the adapted meshes either generates non-physical conditions or creates artificial

discontinuities that become unstable in the next few time steps. This is likely alleviated if

the adaptation is started from a relatively fine mesh. Instead, we opted for hanging-node

adaptation. The adapted mesh and solution are shown in Fig. 3.19. In the heat adjoint plot,

larger values appear along the stagnation streamline, indicating that the prediction of the

wall heating is sensitive to changes in this area. The mesh is refined in the areas that affect

the wall boundary, with the focus on the wall, the shock, the stagnation streamline, and

the sonic lines behind the shock. With the Stanton number on an adapted fine mesh as the

ground truth, the errors in the Stanton number are plotted in Fig. 3.20. The error converges

faster with adaptation compared with uniform mesh refinement, showing the effectiveness of

mesh adaptation in reducing the cost of an accurate solution.

81

(a) mesh (b) temperature, DG

-0.5 0 0.5

y/D

0

0.5

1

1.5

2

c
p

DG

HDG

-0.5 0 0.5

y/D

0

1

2

3

4

5

6

7

8

S
ta

n
to

n
 N

u
m

b
e
r

10 -3

Ching et al.

DG

HDG

Figure 3.18: A fine mesh and the solution for viscous hypersonic flow past a half cylinder.

82

(a) mesh (b) temperature (c) adjoint

Figure 3.19: Mesh and solution adapted on drag for viscous hypersonic flow past a half
cylinder.

100 120 140 160 180

dof
1/2

10 -5

10 -4

10 -3

E
rr

o
r

in
 C

H

Adaptation

Uniform refinement

Figure 3.20: Error convergence for the Stanton number.

83

CHAPTER IV

Conclusion

Developing robust limiting and shock capturing approaches is critical for the application

of high-order CFD methods. In this thesis, we focused on improving the efficiency and

robustness of the Active Flux and DG methods in the presence of shocks.

The Active Flux method has the potential to produce solutions with better quality com-

pared to the conventional CFD methods at the same cost. A physically based limiter for

the Active Flux method is proposed [77]. To tackle the difficulty that no physical bounds

can be determined for the acoustics systems, we employed the FCT limiting principles. The

low-order method constructed as a baseline of the limiter uses linear basis functions on sub-

triangles. Test cases from linear to nonlinear equations have proven the effectiveness of the

limiter. We paid particular attention to the problem of converging-diverging shocks that are

shown to be challenging for the DG method, which falls into the category of conventional

CFD methods. The success of Active Flux in simulating this problem is attributed to its

multidimensional nature. Additionally, approaches to improve the efficiency of the imple-

mentation of Active Flux are discussed. The simplification of the half-step evaluation comes

from the distinction of first- and second-order evolution terms. The improved Active Flux

method has an efficiency comparable to that of the DG methods with Runge-Kutta time

stepping.

The DG and HDG methods, on the other hand, are more mature and capable of handling

84

challenging applications. We demonstrated through one-dimensional and two-dimensional

simulations the ability of the continuous artificial viscosity to capture shocks in an adaptive-

mesh setting for both the DG and HDG discretizations [78]. We presented results that

support generally agreed-upon ideas about the implementation of artificial-viscosity shock

capturing. We found that the continuous artificial viscosity works better than piece-wise

constant artificial viscosity in reducing oscillations near discontinuities. In the case of hyper-

sonic flow, continuous artificial viscosity can potentially stabilize the cases that piece-wise

constant artificial viscosity cannot. We discovered that the variation indicator results in

faster convergence most of the time since the resolution indicator relies on a low-order pro-

jection and is more nonlinear. However, the resolution indicator distinguishes the shock

better from the other variations in the flow field, e.g. expansion waves. In our experiments,

the mesh adaptation with the entropy adjoint tends to focus too much on the shock, at the

cost of reducing the degrees of freedom in other areas that are key to total enthalpy preser-

vation and accurate output computation. Adaptation on the L2 error of the total enthalpy

or an integrated force can lead to better results in many cases.

Some possible future work includes: a) addressing the limiting of the advection part for

Active Flux separately from the acoustics part; b) tackling cases that involve shock and

boundary layer interaction; c) improving the MOESS algorithm to mitigate the problem

with error indicator disparity.

85

APPENDIX

86

APPENDIX A

Additional Test Case: Double Mach Reflection

A.1 Unsteady Adjoint

The space-time mesh adaptation used for this unsteady case is detailed in [79]. We give

a summary of it here. For an unsteady output of the form

J̄ =

∫ T

0

J(U(t), t)dt+ JT (U(T)), (A.1)

the continuous-in-time adjoint Ψ(t) is solved backwards in time from the differential equa-

tion:

−M
dΨ

dt
+

∂R

∂U

T

Ψ+
∂J

∂U

T

= 0, (A.2)

with boundary condition:

Ψ(T) = −M−1dJT
dU

T

. (A.3)

87

The output error is estimated as

δJ̄ =
Nt∑
n=1

Ne∑
e=1

tn∫
tn−1

−ΨT
h,eR̄h,e(U

H
h)dt︸ ︷︷ ︸

εne

, (A.4)

where R̄ = MdU
dt

+ R is the unsteady residual, and Nt is the number of time steps. The

time contribution to the error is estimated using a spatially down-projected adjoint,

δJ̄ time =
Nt∑
n=1

Ne∑
e=1

tn∫
tn−1

−(IhHΨ)Th,eR̄H,e(UH)dt

︸ ︷︷ ︸
εn,time
e

, (A.5)

where IhH is a least-square projection from order p+ 1 to p. The spatial error is then found

as δJ̄ space = δJ̄ − δJ̄ time. A growth factor for the total DOFs f tot is prescribed by the user.

The growth factors for the spatial and temporal DOFs f space and f time are calculated from

δJ̄ space and δJ̄ time so that the marginal error to cost ratios for space and time are equal. The

time dimension is then refined uniformly, and the mesh is adapted with MOESS and error

indicators defined as

ϵspacee =

∣∣∣∣∣
Nt∑
n=1

εn,spacee

∣∣∣∣∣ =
∣∣∣∣∣
Nt∑
n=1

(εne − εn,time
e)

∣∣∣∣∣ (A.6)

for an element e.

A.2 Adaptation results

This inviscid test case is a M = 10 shock impinging on a 30◦ wedge, introduced by

Woodward and Collela [80]. The computation domain is [0, 4]× [0, 1]. The shock is given at

88

Figure A.1: Density solution on a fine mesh for double Mach reflection. The shear layer that
involves the Kelvin-Helmholtz instability is zoomed in on the right.

time t as

[ρ, u, v, P] =


[8, 8.25 cos(π

6
),−8.25 sin(π

6
), 116.5], x < x0 +

y√
3
+ 2ust√

3
,

[1.4, 0, 0, 1.0], x ≥ x0 +
y√
3
+ 2ust√

3
,

(A.7)

where x0 = 1/6 is the start of the wall on the domain bottom, and us = 10 is the shock

speed. This relation is used to prescribe the initial condition and boundary condition on

the left and top boundaries and between [0, x0] on the bottom boundary. Extrapolation

is used at the right boundary. In practice, a tanh function is used to specify the shock

to prevent non-physical conditions in the L2 initialized flow field. Second-order backward

difference and a third-order diagonal Runge-Kutta method are employed for the primal and

the adjoint solutions, respectively. The coefficient for the amount of artificial viscosity is set

to C = 200.

The DG solution at t = 0.2 on a fine 48×192 structured triangular mesh is shown in Fig.

A.1. The triangles are created by splitting the quadrature elements in half. A self-similar

structure forms upon impact over the ramp and grows in size as the shock propagates to

the right. The flow consists of two triple points, each consisting of the intersection of three

shocks and a shear layer. The shear layer originating from the triple point to the right

exhibits Kelvin-Helmholtz instability. We are able to capture a jet stream adjacent to the

bottom wall that emits from it.

89

We are interested in the areas that the mesh adaptation targets in this unsteady flow

field with complex structures. The adaptation is started from a coarse 12 × 48 × 2 mesh.

Two outputs are used: lift on the bottom wall and the domain integral of the total enthalpy,

Ih0, both at the final time step t = 0.2. The adapted meshes are shown in Fig. A.2 each

after two adaptation iterations and a growth factor f tot = 1.5. The adaptation with the

total enthalpy adjoint targets the area swept by the shock structures. The anisotropy in the

mesh follows the orientation of the impinging shock. On the other hand, the adaptation with

the lift adjoint refines only in areas relevant to the lift prediction, including the initial shock

location, the arched shock, and the wall boundary, leaving the final shock under-resolved.

This study informs us in a similar way as the case of hypersonic flow past a half-cylinder

about the relationship between the shock and the adaptation indicators. For the purpose of

resolving the shock, the total enthalpy is a better indicator. However, the prediction of the

surface integrals (e.g. lift and drag) does not necessarily require the resolution of the shock

structures, particularly at all times in an unsteady simulation.

90

(a) Initial mesh.

(b) Adapted on lift.

(c) Adatped on Ih0.

Figure A.2: Adapted meshes for the double Mach reflection problem.

91

BIBLIOGRAPHY

92

BIBLIOGRAPHY

[1] Zhijian J Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni,
Andrew Cary, Herman Deconinck, Ralf Hartmann, Koen Hillewaert, Hung T Huynh,
et al. High-order CFD methods: current status and perspective. International Journal
for Numerical Methods in Fluids, 72(8):811–845, 2013.

[2] Sanjiva K Lele. Compact finite difference schemes with spectral-like resolution. Journal
of computational physics, 103(1):16–42, 1992.

[3] Chi-Wang Shu. High-order finite difference and finite volume WENO schemes and
discontinuous Galerkin methods for CFD. International Journal of Computational Fluid
Dynamics, 17(2):107–118, 2003.

[4] William H Reed and Thomas R Hill. Triangular mesh methods for the neutron transport
equation. Technical report, Los Alamos Scientific Lab., N. Mex.(USA), 1973.

[5] Bernardo Cockburn and Chi-Wang Shu. The Runge–Kutta discontinuous Galerkin
method for conservation laws V: multidimensional systems. Journal of Computational
Physics, 141(2):199–224, 1998.

[6] Bernardo Cockburn and Chi-Wang Shu. The local discontinuous Galerkin method
for time-dependent convection-diffusion systems. SIAM journal on numerical analy-
sis, 35(6):2440–2463, 1998.

[7] Bernardo Cockburn and Chi-Wang Shu. Runge-Kutta discontinuous Galerkin methods
for convection-dominated problems. Journal of Scientific Computing, 16(3):173–261,
2001.

[8] N.C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discon-
tinuous Galerkin method for linear convection-diffusion equations. Journal of Compu-
tational Physics, 228(9):3232–3254, 2009.

[9] J. Peraire, N. C. Nguyen, and B. Cockburn. A hybridizable discontinuous Galerkin
method for the compressible Euler and Navier-Stokes equations. AIAA Paper 2010-363,
2010.

[10] Jochen Schütz and George May. A hybrid mixed method for the compressible
Navier–Stokes equations. Journal of Computational Physics, 240:58–75, May 2013.

93

[11] Michael Woopen, Aravind Balan, Georg May, and Jochen Schütz. A comparison of
hybridized and standard DG methods for target-based hp-adaptive simulation of com-
pressible flow. Computers & Fluids, 98:3–16, July 2014.

[12] M Yousuff Hussaini and Thomas A Zang. Spectral methods in fluid dynamics. Annual
review of fluid mechanics, 19(1):339–367, 1987.

[13] Anthony T Patera. A spectral element method for fluid dynamics: laminar flow in a
channel expansion. Journal of computational Physics, 54(3):468–488, 1984.

[14] Hung T Huynh. A flux reconstruction approach to high-order schemes including dis-
continuous Galerkin methods. In 18th AIAA computational fluid dynamics conference,
page 4079, 2007.

[15] Timothy A Eymann and Philip L Roe. Multidimensional active flux schemes. In 21st
AIAA computational fluid dynamics conference, page 2940, 2013.

[16] Philip L Roe, Jungyeoul Maeng, and Doreen Fan. Comparing Active Flux and dis-
continuous Galerkin methods for compressble flow. In 2018 AIAA Aerospace Sciences
Meeting, page 0836, 2018.

[17] Fanchen He and Philip L Roe. A novel numerical scheme based on Active Flux method
for hyperbolic heat equations in multidimensional space. In AIAA Aviation 2019 Forum,
page 3638, 2019.

[18] Fanchen He. Towards a New-generation Numerical Scheme for the Compressible Navier-
Stokes Equations With the Active Flux Method. PhD thesis, 2021.

[19] Philip Roe. Is discontinuous reconstruction really a good idea? Journal of Scientific
Computing, 73(2):1094–1114, 2017.

[20] Philip Roe. Designing CFD methods for bandwidth—a physical approach. Computers
& Fluids, 214:104774, 2021.

[21] J. Von Neumann and R. D. Richtmyer. A method for the numerical calculation of
hydrodynamic shocks. Journal of Applied Physics, 21(3):232–237, 1950.

[22] Antony Jameson, Wolfgang Schmidt, and Eli Turkel. Numerical solution of the euler
equations by finite volume methods using runge kutta time stepping schemes. In 14th
fluid and plasma dynamics conference, page 1259, 1981.

[23] Thomas JR Hughes and Michel Mallet. A new finite element formulation for com-
putational fluid dynamics: Iv. a discontinuity-capturing operator for multidimensional
advective-diffusive systems. Computer methods in applied mechanics and engineering,
58(3):329–336, 1986.

[24] Ralf Hartmann and Paul Houston. Adaptive discontinuous galerkin finite element meth-
ods for the compressible euler equations. Journal of Computational Physics, 183(2):508–
532, 2002.

94

[25] Ralf Hartmann. Adaptive discontinuous Galerkin methods with shock-capturing for the
compressible Navier-Stokes equations. International Journal for Numerical Methods in
Fluids, 51(9–10):1131–1156, 2006.

[26] P.-O. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin meth-
ods. AIAA Paper 2006-112, 2006.

[27] Garrett E. Barter and David L. Darmofal. Shock capturing with PDE-based arti-
ficial viscosity for DGFEM: Part I, formulation. Journal of Computational Physics,
229(5):1810–1827, 2010.

[28] Eric J. Ching, Yu Lv, Peter Gnoffo, Michael Barnhardt, and Matthias Ihme. Shock cap-
turing for discontinuous Galerkin methods with application to predicting heat transfer
in hypersonic flows. Journal of Computational Physics, 376:54–75, January 2019.

[29] Aldo Bonfiglioli, Marco Grottadaurea, Renato Paciorri, and Filippo Sabetta. An un-
structured, three-dimensional, shock-fitting solver for hypersonic flows. Computers &
Fluids, 73:162–174, 2013.

[30] Alessia Assonitis, Renato Paciorri, and Aldo Bonfiglioli. Numerical simulation of
shock/boundary-layer interaction using an unstructured shock-fitting technique. Com-
puters & Fluids, 228:105058, 2021.

[31] Matthew J Zahr, Andrew Shi, and P-O Persson. Implicit shock tracking using an
optimization-based high-order discontinuous Galerkin method. Journal of Computa-
tional Physics, 410:109385, 2020.

[32] Tianci Huang and Matthew J Zahr. A robust, high-order implicit shock tracking
method for simulation of complex, high-speed flows. Journal of Computational Physics,
454:110981, 2022.

[33] Andrew Corrigan, Andrew D Kercher, and David A Kessler. A moving discontinuous
Galerkin finite element method for flows with interfaces. International Journal for
Numerical Methods in Fluids, 89(9):362–406, 2019.

[34] Andrew D Kercher and Andrew Corrigan. A least-squares formulation of the mov-
ing discontinuous Galerkin finite element method with interface condition enforcement.
Computers & Mathematics with Applications, 95:143–171, 2021.

[35] Ami Harten. High resolution schemes for hyperbolic conservation laws. Journal of
computational physics, 135(2):260–278, 1997.

[36] Bram Van Leer. Towards the ultimate conservative difference scheme. v. a second-order
sequel to godunov’s method. Journal of computational Physics, 32(1):101–136, 1979.

[37] A. Burbeau, P. Sagaut, and C.H. Bruneau. A problem-independent limiter for high–
order Runge-Kutta discontinuous Galerkin methods. Journal of Computational Physics,
169(1):111–150, 2001.

95

[38] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R Chakravarthy. Uni-
formly high order accurate essentially non-oscillatory schemes, iii. In Upwind and high-
resolution schemes, pages 218–290. Springer, 1987.

[39] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-oscillatory
schemes. Journal of computational physics, 115(1):200–212, 1994.

[40] J. Qiu and C.W. Shu. Hermite WENO schemes and their applications as limiters
for Runge-Kutta discontinuous Galerkin, method: One-dimensional case. Journal of
Computational Physics, 193(1):115–135, 2003.

[41] Hong Luo, Joseph D Baum, and Rainald Löhner. A Hermite WENO-based limiter
for discontinuous Galerkin method on unstructured grids. Journal of Computational
Physics, 225(1):686–713, 2007.

[42] Jay P Boris and David L Book. Flux-corrected transport. i. shasta, a fluid transport
algorithm that works. Journal of computational physics, 11(1):38–69, 1973.

[43] David L Book, Jay P Boris, and K Hain. Flux-corrected transport ii: Generalizations
of the method. Journal of Computational Physics, 18(3):248–283, 1975.

[44] Jay P Boris and David L Book. Flux-corrected transport. iii. minimal-error fct algo-
rithms. Journal of Computational Physics, 20(4):397–431, 1976.

[45] Steven T Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids.
Journal of computational physics, 31(3):335–362, 1979.

[46] Rainald Löhner, Ken Morgan, Jaime Peraire, and Mehdi Vahdati. Finite element flux-
corrected transport (fem–fct) for the Euler and Navier–Stokes equations. International
Journal for Numerical Methods in Fluids, 7(10):1093–1109, 1987.

[47] Philip Roe. Did numerical methods for hyperbolic problems take a wrong turning?
In XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applica-
tions, pages 517–534. Springer, 2016.

[48] Xiangxiong Zhang and Chi-Wang Shu. Maximum-principle-satisfying and positivity-
preserving high-order schemes for conservation laws: survey and new developments.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
467(2134):2752–2776, 2011.

[49] Doreen Fan and Philip L Roe. Investigations of a new scheme for wave propagation. In
22nd AIAA Computational Fluid Dynamics Conference, page 2449, 2015.

[50] Wasilij Barsukow, Jonathan Hohm, Christian Klingenberg, and Philip L Roe. The active
flux scheme on Cartesian grids and its low mach number limit. Journal of Scientific
Computing, 81(1):594–622, 2019.

[51] Gerald Beresford Whitham. Linear and nonlinear waves. John Wiley & Sons, 2011.

96

[52] Dmitri Kuzmin, Rainald Löhner, and Stefan Turek. Flux-corrected transport: principles,
algorithms, and applications. Springer, 2012.

[53] Richard Courant and David Hilbert. Methods of mathematical physics: partial differen-
tial equations. John Wiley & Sons, 2008.

[54] Fanchen He and Philip L Roe. The treatment of conservation in the Active Flux method.
In AIAA AVIATION 2020 FORUM, page 3032, 2020.

[55] Maria Lukacova-Medvidova, KW Morton, and Gerald Warnecke. Finite volume evolu-
tion Galerkin methods for hyperbolic systems. SIAM Journal on Scientific Computing,
26(1):1–30, 2004.

[56] KG Guderley. Starke kugelige und zylindrische verdichtungsstosse in der nahe des
kugelmitterpunktes bnw. der zylinderachse. Luftfahrtforschung, 19:302, 1942.

[57] Hans Motz. The physics of laser fusion. London and New York, 1979.

[58] Stefano Atzeni and Jürgen Meyer-ter Vehn. The physics of inertial fusion: beam plasma
interaction, hydrodynamics, hot dense matter, volume 125. OUP Oxford, 2004.

[59] Michael Fink, W Hillebrandt, and FK Röpke. Double-detonation supernovae of sub-
chandrasekhar mass white dwarfs. Astronomy & Astrophysics, 476(3):1133–1143, 2007.

[60] Scott D Ramsey, James R Kamm, and John H Bolstad. The guderley problem revisited.
International Journal of Computational Fluid Dynamics, 26(2):79–99, 2012.

[61] P.L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.
Journal of Computational Physics, 43(2):357–372, 1981.

[62] F. Bassi and S. Rebay. GMRES discontinuous Galerkin solution of the compressible
Navier-Stokes equations. In Bernardo Cockburn, George Karniadakis, and Chi-Wang
Shu, editors, Discontinuous Galerkin Methods: Theory, Computation and Applications,
pages 197–208. Springer, Berlin, 2000.

[63] Roger Alexander. Diagonally implicit Runge–Kutta methods for stiff ode’s. SIAM
Journal on Numerical Analysis, 14(6):1006–1021, 1977.

[64] Krzysztof J. Fidkowski and Guodong Chen. Output-based mesh optimization for hy-
bridized and embedded discontinuous Galerkin methods. International Journal for Nu-
merical Methods in Engineering, 121(5):867–887, 2019.

[65] Krzysztof J. Fidkowski. A hybridized discontinuous Galerkin method on mapped de-
forming domains. Computers and Fluids, 139(5):80–91, November 2016.

[66] D Hänel, R Schwane, and G Seider. On the accuracy of upwind schemes for the solution
of the Navier-Stokes equations. In 8th Computational Fluid Dynamics Conference, page
1105, 1987.

97

[67] Masayuki Yano. An optimization framework for adaptive higher-order discretizations of
partial differential equations on anisotropic simplex meshes. PhD thesis, Massachusetts
Institute of Technology, 2012.

[68] Krzysztof Fidkowski. A local sampling approach to anisotropic metric-based mesh op-
timization. In 54th AIAA Aerospace Sciences Meeting, page 0835, 2016.

[69] R. Becker and R. Rannacher. An optimal control approach to a posteriori error esti-
mation in finite element methods. In A. Iserles, editor, Acta Numerica, pages 1–102.
Cambridge University Press, May 2001.

[70] Krzysztof J. Fidkowski and David L. Darmofal. Review of output-based error estimation
and mesh adaptation in computational fluid dynamics. AIAA Journal, 49(4):673–694,
2011.

[71] Krzysztof J Fidkowski and Philip L Roe. An entropy adjoint approach to mesh refine-
ment. SIAM Journal on Scientific Computing, 32(3):1261–1287, 2010.

[72] Houman Borouchaki, Paul-Louis George, Frédéric Hecht, Patrick Laug, and Eric Saltel.
Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie I:
Algorithmes. PhD thesis, INRIA, 1995.

[73] Steven T Zalesak. The design of Flux-Corrected Transport (FCT) algorithms for struc-
tured grids. In Flux-Corrected Transport, pages 29–78. Springer, 2005.

[74] Sergei Konstantinovich Godunov. A difference scheme for numerical solution of discon-
tinuous solution of hydrodynamic equations. Math. Sbornik, 47:271–306, 1959.

[75] Marco A. Ceze and Krzysztof J. Fidkowski. Output-driven anisotropic mesh adaptation
for viscous flows using discrete choice optimization. AIAA Paper 2010-0170, 2010.

[76] Krzysztof J. Fidkowski. Output error estimation strategies for discontinuous Galerkin
discretizations of unsteady convection-dominated flows. International Journal for Nu-
merical Methods in Engineering, 88(12):1297–1322, 2011.

[77] Yifan Bai and Philip L Roe. Toward physically-based limiting for the active flux scheme.
In AIAA AVIATION 2021 FORUM, page 2744, 2021.

[78] Yifan Bai and Krzysztof J Fidkowski. Continuous artificial-viscosity shock capturing
for hybrid discontinuous galerkin on adapted meshes. AIAA Journal, 60(10):5678–5691,
2022.

[79] Krzysztof J Fidkowski. Output-based space–time mesh optimization for unsteady flows
using continuous-in-time adjoints. Journal of Computational Physics, 341:258–277,
2017.

[80] Paul Woodward and Phillip Colella. The numerical simulation of two-dimensional fluid
flow with strong shocks. Journal of computational physics, 54(1):115–173, 1984.

98

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Overview of High-Order CFD methods
	Resolving Discontinuities
	Contributions of the Thesis
	Navier-Stokes Equations

	Limiting for the Active Flux Method
	Introduction to the Active Flux Method
	Solution Reconstruction
	Spherical Mean Operators
	Advection Operator
	Nonlinear Corrections
	Enforcing Conservation

	Flux-Corrected-Transport Applied to the Acoustics Equations
	Limited Active Flux
	FCT Limiting of the Evolution Step
	Smoothness Indicator
	Low Order Flux Integral
	Solution Initialization in the Presence of Discontinuities

	Test Cases: Linear Acoustics
	Case A: Periodic Sinusoidal Wave
	Case B: One-dimensional Discontinuities
	Case C: Asymmetric Discontinuities in One Dimension
	Case D: Discontinuity in the Radial Direction

	Test Cases: Converging-Diverging Shock
	Validation Case for the p-System
	Converging-Diverging Shock for the p-System
	Converging-Diverging Shock for the Euler Equations

	Efficient Implementation of Active Flux
	Half-Step Evaluation
	Spherical Mean Evaluations
	Efficiency Comparison with DG

	Artificial Viscosity Shock-capturing
	Discontinuous Galerkin and Hybrid Discontinuous Galerkin
	Discontinuous Galerkin (DG)
	Hybridized Discontinuous Galerkin (HDG)

	Shock Capturing
	Artificial Viscosity
	Smoothness Indicators
	Resolution Indicator
	Variation Indicator

	Mesh Adaptation
	Adjoint Solution
	Output Error Estimation
	Mesh Optimization through Error Sampling and Synthesis (MOESS)
	Error Sampling

	One-dimensional test cases
	Steady Linear Advection
	Unsteady Linear Advection
	Unsteady Inviscid Burgers

	Two-dimensional test cases
	Transonic Airfoil
	Transonic Gaussian Bump
	Inviscid Hypersonic Flow Past a Half-Cylinder
	Viscous Hypersonic Flow Past a Half-Cylinder

	Conclusion
	APPENDIX
	Unsteady Adjoint
	Adaptation results

	BIBLIOGRAPHY

