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ABSTRACT

Autism spectrum disorder (ASD) is a complex and heterogeneous neurodevelop-

mental condition characterized by challenges with communication, social interaction,

and behavior. With an estimated heritability between 50-90%, a strong genetic basis

has been established ASD. While many ASD-associated genetic variants in coding

regions have been identified, genome-wide association studies have shown that most

trait-associated variants lie within noncoding regions. Therefore, here I have focused

on characterizing the contribution of noncoding de novo SNVs (dnSNVs) to ASD

risk.

To accomplish this, I leveraged whole-genome sequencing data from 1,917 fam-

ilies in the Simons Simplex Collection. In Chapter 2 describe the pipeline I have

established to improve the accuracy of genotype and variant calls, in order to ensure

a high quality list of dnSNVs. I then introduce the computational tools I used to

prioritize variants and identify cis-regulatory elements. I show that there is a strong

enrichment of high-impact coding dnSNVs in probands, but significance levels do not

withstand multiple-testing correction in noncoding regions.

In Chapter 3 I present power analyses suggesting that a larger sample size may

be necessary in order to detect association between ASD and noncoding dnSNVs in

probands. I also show that certain annotation categories are better than others at

capturing meaningful differences between probands and siblings. After discussing the

challenges in screening for ASD-associated noncoding dnSNVs, I provide suggestions

xii



as to how those challenges can be addressed for future studies.

I developed a web application database, De Novo Browser, which I introduce in

Chapter 4. In this work I have curated an annotated list of 267,000 dnSNVs. I

have made this list publicly available on the De Novo Browser, where the variants

can be explored in table form and sorted by a variety of features and annotations.

Together, my dissertation enhances our understanding of the role of noncoding vari-

ation in ASD, while also providing a tool and recommendations to benefit future

studies.
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CHAPTER I

Introduction

1.1 The Influence of Genetic Variation on Gene Expression

The central dogma of molecular biology was first proposed in the 1950’s by Francis

Crick, through which he outlined the theory that genetic information flows from

DNA to RNA, to then create functional products, proteins [27]. The process by

which information from DNA sequences leads to the functional product affects gene

expression, which we see as the appearance of phenotypes and characteristics. Gene

expression can be altered in a number of ways through genetic variation.

Genetic variation refers to alterations in DNA sequences, and these differences

between our individual genomes are what make us unique from one another. Vari-

ation in our genome can be brought about in multiple ways. Insertions and dele-

tions (INDELS) change sequences by adding or removing, respectively, one or more

nucleotides in a sequence. Sequences may also be duplicated, when a stretch of

nucleotides is copied and then placed back-to-back next to the original sequence.

These copied sequences may repeat just a few times, or even hundreds of times.

Repeating sequences are common, and indeed large portions of the human genome

consist of repetitive DNA. When the number of times these sequences are repeated

varies between individuals, they are known as copy-number variants (CNVs). In

1
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some cases, CNVs are harmless. However, some CNVs have been discovered as the

cause of certain diseases [126, 153]. Huntington’s disease and Fragile X are two of

the more well-known CNV-caused diseases, each caused by a trinucleotide sequence

that is repeated in excess [149]. With translocations, segments of DNA are relocated

to a different place in the genome. Translocations can also lead to inversions, which

occur when the sequence reinserts itself in reverse orientation. Inversions could also

occur from duplications.

The most common types of genetic variation in the human genome are single-

nucleotide polymorphisms (SNPs), which occur when there is a substitution at a

single base pair. In many cases, SNPs are biallelic, meaning that the observed allele

may be that which is seen in the reference genome or it may be substituted for a

variant allele. Generally, the allele which is more common across a population is

considered to be the “major” allele, while a SNP that occurs less frequently across

the population is considered to introduce a “minor” allele. The frequency at which

the less-common allele is observed in a given population is known as the minor-allele

frequency (MAF). Generally, this type of variation must have an allele frequency of

1% or greater to be considered a SNP [2]. In this dissertation I will also reference

single-nucleotide variants (SNVs), the more commonly used term when referring to

single-nucleotide polymorphisms present at a frequency of less than 1%.

As with the previously mentioned types of variation, in many cases SNPs may

have no negative effect on health and will not contribute to the development of

disease, depending on where they are located. For example, when speaking of coding

regions, SNPs can be synonymous, meaning they do not alter the encoded amino

acid. In many cases, this results in a mutation being silent and having no observable

effect on phenotype. Nonsynonymous SNPs, however, can be further categorized
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into two types of mutations that do affect the amino acid sequence: missense and

nonsense mutations. Missense SNPs change a codon, resulting in the substitution

for a different amino acid, which can have anywhere from neutral to highly negative

effects on protein function [105]. A nonsense mutation, rather than substituting

amino acids, introduces a stop codon prematurely. This can result in a shortened

protein, which may affect its ability to function properly.

Genetic variation can influence gene expression in a number of ways, including

through changes in the DNA sequence of the gene, modifications to the chromatin

structure, or changes to the regulatory elements that control gene expression. Ge-

netic variations that occur in coding regions can result in a change in the amino

acid sequence of a particular protein, while noncoding genetic variants are genetic

variations that do not directly affect the protein sequence but instead can still have

an effect on the gene by influencing the gene’s expression or by altering a regulatory

element near the gene.

1.2 The Role of the Noncoding Genome

For some time, it was widely-believed that noncoding DNA was simply “junk”,

serving no biological purpose. With the advent of technologies that have allowed

researchers to investigate the noncoding spaces of the human genome, it has become

more clear that this line of thinking was incorrect. Chiefly among the most signif-

icant functions we now know noncoding DNA serves, is to control gene expression.

This process of gene regulation controls the location, timing, and amount in which

genes are expressed. More specifically, much of this regulation is driven by non-

coding DNA sequences referred to as regulatory elements, which are essential for the

process of transcription to occur. These regulatory elements provide binding sites for
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proteins known as transcription factors, of which the right combination is necessary

for transcription to be carried out properly (Figure 1.1).

Figure 1.1: A simplified schematic of transcription factors binding at regulatory elements at proxi-
mal or distal binding sites in order to initiate transcription. Binding at cis-regulatory
modules (CRM) allows for the regulation of gene expression. Figure adapted from
Wasserman and Sandelin (2004) [145].

Among the main types of DNA regulatory elements are promoters, enhancers,

silencers, and insulators. Promoters are regions upstream of where gene transcription

begins, where transcription factors will bind along with RNA polymerase to initiate

transcription. Promoters may be considered core promoters, usually within a couple

hundred base pairs of the transcription start site, or proximal promoters, which are

further but still within a few hundred base pairs of the TSS [86, 22].

Enhancers also allow for the binding of transcription factors to help activate tran-

scription, often increasing the level of gene expression. Unlike promoters, enhancers
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are generally much further from the TSS, sometimes thousands of base pairs away

[16]. Enhancers generally are thought to function independent of distance and ori-

entation to the target gene, although exceptions have been found [29]. The most

popular theory to explain the mechanism by which enhancers can function from such

a long distance is the looping theory. This theory explains that once the necessary

transcription factors have bound to the enhancer, DNA will form a loop, bringing

the enhancer region close to the promoter [29, 22].

Contrary to promoters and enhancers, silencers repress expression rather than ac-

tivate or increase it. As with other regulatory elements, silencers will provide binding

sites for transcription factors, but these transcription factors have repressive activity.

Insulators can prevent activating or repressive effects by either acting as blockers of

enhancer-promoter interactions, or preventing silencing effects by protecting against

chromatin spreading.

Due to the fact that 98% of the human genome is made up of noncoding DNA,

the vast majority of SNPs are not found in coding regions, but instead in noncoding

regions [107]. Further, studies from GWAS have shown that 90% of phenotype-

associated SNPs map to noncoding regions of the genome, suggesting that causal

variants play a role in affecting gene expression [37, 53, 93, 20, 137, 87].

SNPs can play a large role in the regulation of gene expression by altering DNA

sequences at, or near, the binding sites of transcription factors, particularly when

these binding sites lie in regulatory elements [30]. Transcription factor binding sites

are regions of particular interest for this reason as well as the finding that they make

up 31% of GWAS SNPs [26]. Various studies have now provided evidence of SNPs

affecting transcription factor binding in a variety of ways, and being associated with

multiple diseases. SNPs can affect a transcription factor’s binding affinity [97, 63,
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103], by increasing [25] or decreasing [110] affinity (Figure 1.2). A SNP may also

completely destroy a transcription factor binding site [103, 52] or change a binding

site in a way that creates a binding site for a new transcription factor [110, 68, 7].

Figure 1.2: Different ways in which a SNP can affect transcription factor binding. Binding affinity
may be increased or decreased. A change of allele may ablate binding entirely, or modify
the site in a way that allows for a different transcription factor to bind.

1.3 Identifying Regulatory Elements

In order to identify SNPs in noncoding regions with the potential to affect gene ex-

pression, the important challenge of first annotating noncoding regions of the genome

had to be addressed. To this end, the Encylopedia of DNA Elements (ENCODE)

Consortium was established with the goal to create a comprehensive list of func-

tional elements in the human genome [26]. The ENCODE project involves a large

consortium of researchers from around the world who have used a variety of high-

throughput techniques to map and annotate various genomic features such as DNA

transcription, chromatin structure, and DNA methylation. Given that the binding

of transcription factors is essential for proper gene regulation, it is necessary to have

methods for identifying these binding sites. In this way, we can also define regulatory

elements throughout the genome.

Identifying regulatory elements remains a challenge, but there are now several

well-established techniques that are commonly used to do so. The ENCODE project
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has assisted in improving our understanding of which regions of the genome are

involved with regulating gene expression by providing computational and experi-

mental data from these techniques, resulting in genome-wide maps on histone mod-

ification, chromatin accessibility, and transcription factor binding sites. Here I will

describe four standard approaches for identifying transcription factor binding sites:

using position weight matrices (PWMs), Chromatin immunoprecipitation followed

by sequencing (ChIP-seq), DNase I hypersensitive site sequencing (DNase-seq), and

DNase footprinting.

Position weight matrices are useful for describing the binding DNA sequence pref-

erences of proteins. They represent the likelihood of proteins binding to a particular

DNA sequence. The value in each cell of the matrix represents the frequency of

that nucleotide at that position, normalized by the background frequency of that

nucleotide in the genome. These PWMs can inform us on the preferential bind-

ing sequences for transcription factors, which can then in turn help us to identify

regulatory regions.

ChIP-seq is an experimental technique used to measure the level of protein binding

to DNA, which can provide data on transcription factor binding, histone modifica-

tions, methylated DNA regions, and nucleosome positioning [26, 46]. The technique

begins with a crosslinking step in which proteins are bound to DNA. The chromatin

containing the bound proteins is then isolated through fragmentation, creating frag-

ments of approximately 300bp in length [139]. This is followed by the immunopre-

cipitation step, during which antibodies specific to the protein of interest bind to

the proteins (a specific transcription factor, for example). Following a purification

step to remove any unbound proteins, the remaining fragments containing the bound

proteins are then sequenced. The reads can then be mapped back to the reference
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genome to create a genome-wide map of locations where the proteins of interest are

bound.

Another method used to locate functional elements relies on identifying genomic

regions that are hypersensitive to cleavage by DNase I [88]. Each human cell con-

tains about 2 meters of DNA, with estimates of at least 30 million human cells in

our bodies [125]. Therefore, the human genome requires a method for packaging

all of the DNA. Packaging DNA into the nucleus of human cells is accomplished by

coiling and wrapping DNA around protein complexes called nucleosomes [39]. Re-

gions of the genome that are tightly compacted by nucleosomes are less accessible

for transcription factor binding. However, regions where nucleosomes have been dis-

placed, and are accessible for binding by transcription factors at regulatory elements,

are also more accessible for digestion by DNase I [17]. These DNase I hypersensi-

tive sites (DHS) have been shown to overlap with genetic regulatory elements [50].

Locating these DHS can be accomplished in a high-throughput manner through a

technique known as DNase-seq. With this technique, cells are treated with DNase

I, an enzyme that will preferentially digest DNA in regions not bound by proteins,

leaving behind regions of open chromatin. These regions are fragmented and undergo

adapter ligation followed by high-throughput sequencing. Reads are then mapped

to the reference genome, revealing areas of open chromatin.

Using a similar approach, DNase footprinting methods assist in identifying tran-

scription factor binding sites by leaving patterns that leave a protein binding “foot-

print”. This technique is based on the same principle that sites at which proteins

are bound to DNA will be protected from digestion [47]. DNase I is introduced

to a DNA sample and will cleave DNA molecules. DNA fragments are separated

by gel electrophoresis and will reveal regions that are protected from cleavage as a
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“footprint” on the gel [80].

1.4 The RegulomeDB framework

Each of the methods described in the previous section, on their own, are valuable

techniques for which a wealth of data has been gathered and provided as public data

by The ENCODE Project. These data provide researchers with information that

can be used to glean insight on the noncoding portions of the human genome and

annotate their own sequencing results or variants. For studies of genetic variation

in regulatory regions, these data are an invaluable resource. Still, each method has

its own limitations, and data for each must be accessed separately. A much more

efficient approach for using these data is to apply annotations as a combination

of these methods. To this end, RegulomeDB was established as a database and

annotation tool, guiding variant interpretation by integrating data from ENCODE

and other sources [18].

RegulomeDB allows users to prioritize SNPs using a heuristic scoring system based

on overlap with known and predicted regulatory elements using data from ENCODE,

The Roadmap Epigenome Project, GEO, and published literature. These data are

leveraged jointly to score the likelihood that a variant of interest has functional

effects on gene regulation. In the original implementation of RegulomeDB, variants

are assigned a score ranging from 1 to 7, with lower numbers indicating a higher

likelihood of functional significance. Scoring is based on the presence of experimental

evidence overlapping the given location of a variant (Figure 1.3). The scoring scheme

is based on a set of criteria including overlap with data evidence from ChiP-seq,

DNase-seq, DNase footprinting, PWMs, and eQTLs (Table 1.1).

RegulomeDB originally included about 600 million annotations across over 100
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Figure 1.3: An example of RegulomeDB scoring in a zoomed promoter region of the FMR1 gene.
All scored regions overlap with a DNase hypersensitive site, depicted by the yellow band.
The regions that also overlap ChIP-Seq peaks (MYC and REST), along with DNase
footprints and TF motifs are scored 2a and 2b. The regions overlapping a REST binding
site and motif, but not a DNase footprint, is scored as 2c. Here, the regions with less
evidence receive scores of 4 and 5, indicating a lower confidence of harboring regulatory
elements.

tissue and cell lines, and the prioritization and scoring method was tissue-agnostic.

While this tool is extremely useful for identifying functional regions in a general

manner, a common challenge in studies focusing on specific phenotypes has been

the inability to resolve differences in gene regulatory networks between different

tissues [18, 51, 82]. Accordingly, the latest update to RegulomeDB builds upon

the original framework to prioritize regulatory variants in non-coding regions of the

human genome in a tissue-specific manner. This newer computational tool, Tissue-

specific Unified Regulatory Features (TURF), has been integrated into RegulomeDB

v2.0 [35]. In addition to the annotations previously available, TURF incorporates

data from allele-specific transcription factor binding in six cell lines. Random forest

models are trained on tissue-specific annotations to return both a generic score (tissue

agnostic) and a tissue-specific score. The work done by Dong and Boyle showed

that GWAS variants were enriched with regulatory variants predicted by TURF

tissue-specific scores in trait-related organs, highlighting the usefulness of this tool in
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prioritizing regulatory variants in studies of traits associated with specific tissues [35].

Importantly, this ability to make tissue-specific predictions has been evidenced to

improve the prioritization of associated variants in complex brain disorders, including

autism [35, 36, 81].

Table 1.1: Scoring scheme for RegulomeDB. Variants receiving a score of 1 require overlap an eQTL
and represent those most likely to reside within a functional region, therefore having the
highest potential for having regulatory effects on gene expression. Higher scores indicate
decreasing evidence for variants overlapping functional regions. Figure adapted from
Boyle et al. [18].

1.5 Overview of Autism Spectrum Disorder

Autism was first described as “infantile autism” in 1943, by Austrian-American

psychiatrist Leo Kanner when he described 11 children with “extreme autistic alone-

ness”, “delayed echolalia”, and an “anxiously obsessive desire for the maintenance of

sameness.” [60] The term “autism” was borrowed from Eugene Bleular, who had orig-

inally used the term to describe schizophrenic patients who withdrew into themselves.

Kanner, however, established that the characteristics he viewed made autism unique

from other existing conditions. After decades of establishing diagnostic concepts
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and overcoming initial misunderstandings about the condition, when the Diagnostic

and Statistical Manual of Mental Disorders-III (DSM-III) was published in 1980 it

included autism for the first time[9].

Over the last decades, and through different editions of the DSM, the definition of

autism has changed. In 2013, the term autism was changed to autism spectrum dis-

order in the DSM-IV, and became an umbrella term covering the previously-separate

conditions of autistic disorder, pervasive development disorder – not otherwise spec-

ified (PDD-NOS), and Asperger syndrome. Today, the DSM-V, the latest edition of

the DSM, defines autism as a neurodevelopmental disorder characterized by persis-

tent difficulties in social communication and interaction, and restricted, repetitive

patterns of behavior, interests, or activities [105, 8] (Fig 1.4).

Figure 1.4: A simplified visualization of characteristics associated with autism spectrum disorder
(ASD), grouped into five broad categories. Individuals diagnosed with ASD may ex-
perience combinations of different characteristics, each to varying degrees. This makes
ASD a very individualized condition resulting in a wide range of characteristics.
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The CDC established the Autism and Developmental Disabilities Monitoring

(ADDM) Network in 2000 to monitor the prevalence of ASD. Since the year 2000,

the estimated prevalence of ASD has increased from 1 in 150 children to the most

recent estimate of 1 in 44 children [83]. It is thought that this increase in preva-

lence has more to do with increased global awareness than biological changes [152].

With an increased focus on ASD research, surveillance and diagnostic methods have

improved, which has been reflected in the overall ability to properly identify cases.

These changes in diagnostic accuracy can be seen in changes to the skewed assigned

at birth sex ratio, which has consistently shown more boys than girls to be diag-

nosed. A Danish group in 1995 found the ratio ratio of diagnosed boys to girls to

be 8:1. More recently though, this ratio has dropped to as low as 4.2:1 [152, 77]. It

is thought that a big factor affecting this difference is diagnostic bias. Many studies

have now suggested that girls are diagnosed later in life than boys, with one poten-

tial reason for this being that diagnostic assessments are skewed to identifying ASD

characteristics in boys [38]. The apparent increase in ASD prevalence and drop in

skewed sex ratio over the years indicates that, while research is still leading to diag-

nostic improvements, our understanding of how to characterize and diagnose ASD is

an ongoing challenge.

Along with changes and improvements to classification and diagnostic methods

for ASD over the years, the last several decades have brought a much greater under-

standing of the biology behind the disorder. In the 1950s and 1960s, when infantile

autism was still being defined, many psychiatrists suggested aberrant parenting as a

potential cause of the characteristics they were recognizing [38, 84]. At this time, it

was also assumed that schizophrenia was caused by the “schizophrenogenic mother”

[45]. This concept was popularized by Bruno Bettelheim, through his suggestion of
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“refrigerator mothers” being a cause of autism, through lack of maternal (or paternal)

warmth [45, 94]. Psychologists would claim that only through “correct” maternal be-

havior would children grow up to be hard-working, self-disciplined adults; deviation

from this would result in weak-minded, badly behaved, aberrant adults [84]. Leading

into the 1970s, the “refrigerator mother” concept had finally begun to be rejected as

the body of research on autism grew.

Genetic studies of twins were among some of the more informative, providing

further evidence that there was a strong biological basis to autism [84, 41]. These

studies brought to light the importance of genetic variation in the etiology of autism.

In the decades to follow, our understanding of the role of genetics in autism continued

to evolve significantly. With the advent of next-generation sequencing came the

ability to study autism genetics on the scale of whole exomes and genomes, which has

led to the identification of hundreds of associated genes and variants and accelerated

the path to our current understanding of the genetic basis of autism [124, 108, 100].

1.6 Summary of Dissertation

In this dissertation, I aim to contribute to the body of research in autism genetics

by focusing on genetic variation in noncoding regions of the genome, an area for

which there are significant gaps in our knowledge. I will outline my approach for

identifying de novo single-nucleotide variants using whole-genome sequencing data

from an autism cohort. Leveraging data from functional genomics experiments, I

then annotate these variants in an effort to identify those that are more likely to

impact gene regulatory function and test for their association with autism. I follow

this up by describing some of the challenges encountered while performing a study

of this type and provide suggestions as to how future studies might address these
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challenges. Finally, I will introduce a web application that I developed with the goal

of providing a straightforward way for other researchers to explore the data I have

generated for this work.



CHAPTER II

Identifying and Profiling Noncoding De Novo Variants in an
Autism Cohort using Whole-Genome Sequencing

2.1 Abstract

Autism spectrum disorder (ASD) refers to a broad range of neurodevelopmental

conditions most often characterized by challenges with social interaction, communi-

cation, and behavior. While the genetic contribution to ASD has been extensively

explored, most studies have restricted their focus to genetic variation in protein-

coding DNA regions, which collectively account for only 2% of the human genome.

This limitation is in sharp contrast to the results of many genome-wide association

studies which have revealed that the vast majority of trait-associated variants lie

within the noncoding regions. Therefore, investigation of noncoding variation in

ASD individuals has the potential to uncover novel ASD-associated variants. In par-

ticular, de novo mutations have been implicated in the genetic etiology of ASD given

that the rare nature of these uninherited variants makes them potentially more dele-

terious than common variants, as they are not subject to selective pressures. Here, I

have identified and prioritized noncoding de novo single-nucleotide variants (SNVs)

in regulatory regions of the genome in order to better understand their contribu-

tions to ASD. To identify predicted pathogenic de novo SNVs, I have analyzed whole

genome sequence data from 1,917 families participating in the Simons Simplex Col-

16
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lection autism cohort. I have used RegulomeDB, an established database containing

nearly 60 million annotations of known and predicted regulatory elements. The

sources of this data include public datasets from the Encyclopedia of DNA elements

(ENCODE) Consortium, the Roadmap Epigenome Mapping Consortium, GEO, and

published literature. In order to identify a set of SNVs that are more likley to im-

pact function, SNVs were annotated using the RegulomeDB heuristic scoring, which

is based on their overlap with predicted functional elements. Additionally, SNVs

were annotated using TURF, a model built on the RegulomeDB framework that

prioritizes which variants are likely to be functional in a tissue-specific manner. I

hypothesized that a subset of these SNVs disrupt the function of regulatory elements

that ultimately impair expression of ASD-associated genes. While I did detect a

strong enrichment of proband de novo SNVs in high-impact coding regions, statisti-

cal tests performed on noncoding variants failed to reach significance. These results

suggest that there may be challenges that need to be addressed when designing fu-

ture autism studies. This work contributes to our understanding of the function of

rare noncoding variants and their contributions to ASD genetics.

2.2 Introduction

2.2.1 The Genetic basis of ASD

Phenotypes that vary between people in a population generally do so because

of differences in genotype and environment between those people. In an effort to

tease apart and quantify to what extent the basis of those phenotypes lies mostly

in genes or environment, researchers have used heritability estimates. Heritability

is defined as the proportion of variation in a given trait or condition that can be

attributed to genetic variation. This heritability estimate is generally based on a

single population. It is a value that can range from zero to one, where a heritability
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closer to zero would indicate that variability in a trait is less likely to be influenced by

genetic variation rather than by environmental factors. For example, a characteristic

such as the ability to speak another language has a heritability of zero because it is

not controlled by genetics. On the other hand, disorders such as sickle-cell anemia

or cystic fibrosis have heritability estimates closer to one because they are highly

influenced by variants in single genes [109, 98]. Variation in traits with a heritability

somewhere in between zero and one, such as variation in skin color, would be expected

to be explained by a combination of genetic variation and environmental factors [104].

Often, particularly with complex phenotypes, there is a mixture of genetic and

environmental factors at play. In many cases, it is an interaction between these

factors that dictates a phenotype. Such is the case with autism. While environ-

mental factors alone have not been shown to result in autism, there is evidence that

environmental factors may be involved [61, 1]. The most recent studies, however,

estimate the heritability of autism to be as high as 90%, suggesting a very strong

genetic influence [120, 11].

Traditionally, heritability estimates for autism have been derived from twin stud-

ies. The earliest autism twin study was a study of 21 pairs of British twins in 1977

[41]. In the study, for 10 pairs of dizygotic twins in which one twin was diagnosed

with autism, there was zero concordance. For the 11 pairs of monozygotic (geneti-

cally identical) twins, however, 36% were concordant. Although the sample size was

small, it was very important at the time because it established clear evidence for a

genetic basis of autism which would be built upon in the field. Many more twin stud-

ies have been performed since then, with increasingly large cohorts, and concordance

for broader autism spectrum disorder diagnosis has been reported to be as high as

92% between monozygotic pairs [44, 13]. Twin studies led to the understanding that
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there is a large genetic component to the characteristics that define autism spectrum

disorder.

Prior to next-generation sequencing, one method for studying ASD was by iden-

tifying large chromosomal changes with karyotype analyses. These analyses revealed

the presence of copy number variants (CNVs), translocations, and inversions among

autism cases [146, 70, 147]. Many of these variants were found to be uninherited, de

novo, mutations. As improvements were made to variant-detection methods using

PCR-amplified DNA, candidate gene studies were performed in ASD, but lacked the

ability to find associations.

Genotyping microarrays opened the door for large scale analyses of SNPs in the

form of genome-wide association studies [115]. Microarrays also led to improved

detection of CNVs, with greater accuracy than had previously been possible with

karyotyping [54]. Using this technology, several studies were able to highlight the

role of CNVs in ASD [108, 124, 119]. As before, many of the enriched CNVs were

found to be de novo [49]. With the establishment of these new methods and the

realization that de novo mutations were involved, it became more commonplace to

perform studies in which de novo mutations in cases were compared to unaffected

sibling controls [119].

Whole-exome sequencing (WES) later provided yet another improved method,

with which researchers could investigate protein-coding regions of the genome. This

advancement again proved to be an effective method for identifying ASD-associated

variants, with de novo mutations still being implicated [100, 129]. Through WES,

many studies have reported candidate genes which may be contributing to autism,

with the number of genes implicated now being in the hundreds. Providing further

evidence of the role of de novo mutations, using WES, several groups have published
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their findings of de novo loss-of-function variants being associated with ASD [56, 95,

101].

In addition to improving the analysis of protein-coding regions [21, 150], when

compared to WES, whole-genome sequencing has the benefit of offering more cover-

age across the genome. This opens up the possibility to study the role of variants

in noncoding regions of the genome and improves the detection of rare and de novo

variants.

2.2.2 The Significance of de novo single-nucleotide variants

Common variants have been suggested to contribute to up to 50% of ASD cases

[48], but in those cases it is likely a case of combinations of many common variants

of low effect size, and common risk loci haven’t been found. Generally, the most

detrimental variants in a population will be naturally selected against over time,

resulting in them maintaining a lower allele frequency (Figure 2.1). When referring

to rare genetic variation, de novo mutations are among the rarest. These are genetic

changes that occur spontaneously in an individual and are not inherited from their

parents.

The evolution of next-generation sequencing has allowed for the investigation of

rare and de novo variants at an increasingly higher resolution. Structural variants

(SVs) have been shown to be associated with ASD, by affecting larger segments of

DNA. However, SNVs occur more frequently than SVs, and can sometimes be tied

to specific genes or regulatory elements more easily, in cases when the size of an

SV makes it more difficult to interpret its effect on gene function. Additionally,

following up with experimental methods can be more difficult with larger portions

of DNA, particularly in cases where the variant may affect multiple genes. Now we

have the tools and technology to be able to investigate de novo variation at single
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base resolution. Indeed, exome-wide studies have revealed rare and de novo variants

to be associated with ASD, and have allowed for the discovery of hundreds of ASD-

associated genes [48, 123]. Still, the coding regions in which these variants have been

found account for only a small portion of the human genome, and the next logical

step is to extend the research into the noncoding genome.

The work I have presented in this dissertation is based on the hypothesis that

a subset of dnSNVs contribute to ASD by affecting the regulation of target genes,

through interference of transcription factor binding at regulatory elements. The first

step of this investigation relies on the ability to identify a high-quality set of dnSNVs

from whole-genome sequence data.

Figure 2.1: This figure illustrates the concept that we can expect variants with the strongest effects
to have a low frequency. Adapted from Manolio et al. 2009 [85]

2.2.3 Cohort studies

An ideal way to identify de novo variants is to compare a child’s sequencing data

to that of its parents. When comparing the same genomic loci between child and
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parents, any variants present in the child that are absent from both parents can be

inferred to be uninherited. Then, we can begin to test for associations between the

phenotype of interest and mutations that are found only in the person displaying

said phenotype.

Although early twin studies in autism consisted of very few individuals, the abil-

ity of the studies to successfully establish a method for studying the genetic basis of

autism prompted future studies to leverage increasingly larger cohorts. Today, ge-

netic studies of autism require much larger population cohorts, with careful selection

of participants [76]. One of the largest autism cohorts is the Autism Birth Cohort

(ABC), which was established to study gene x environment interactions [136]. The

ABC is an unselected birth cohort consisting of over 100k children who have been

continuously screened in a longitudinal study started in 1999. This cohort has been

useful for studying relationships between environmental exposures and genomic find-

ings over developmental periods. However, it lacks the comprehensive whole-genome

sequencing data necessary for a study of extremely rare, noncoding variants.

As next-generation sequencing has become more accessible and affordable, larger

cohorts that include whole-genome sequencing data have been established. The

Simons Simplex Collection was established in 2006 and provides access to WGS

data for approximately 2,600 families (Table 2.1). Importantly, for the work in this

dissertation, the SSC focuses on simplex families, in which only a single child of

the family is diagnosed with ASD. This provides a family structure that allows for

isolating variants only seen in affected children, in order to begin to identify de novo

associated with ASD.

Many of the families enrolled in the SSC are referred to as being of quad structure;

four family members consisting of two children, and two parents. In each family,
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Table 2.1: Summary of available whole-genome sequencing data from the Simons Simplex Collec-
tion. For the work presented in this dissertation, I utilized data from 1,917 complete
quads.[85]

one child is diagnosed with ASD, which I will often refer to as the proband going

forward. Along with the proband, each family also includes an unaffected sibling and

two unaffected parents. While the SSC also includes trio families (one child and two

parents), the quad-structure provides the added benefit of including the unaffected

sibling, which can be used as a control. The work that follows is derived from 1,917

quad-structure families from the SSC.

2.3 Methods

2.3.1 Data source

Investigating the noncoding region of the genome requires access to whole-genome

sequence data. With the aim of this research being to focus on de novo variants, it

was also necessary to have sequence data from a large number of individuals, as each
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individual is only expected to possess a relatively small number of these variants.

Additionally, this study required a carefully curated set of genomes from individuals

diagnosed with ASD. The primary goal of the Simons Simplex Collection (SSC) was

to establish a permanent repository of genetic samples and data from 2,600 simplex

families, which is ideal for this study.

The SSC is run by the Simons Foundation Autism Research Initiative (SFARI) and

began as a coalition of 12 university research clinics which would identify potential

participants, from their own clinics already serving children with ASD. Participants

were selected based on a “simplex” design, meaning that only one individual in the

family had a confirmed diagnosis of ASD. This simplex family structure has the

benefit of unaffected siblings providing an ideal control when identifying de novo

variants. Stringent criteria was applied when validating probands, and all probands

were evaluated using a number of diagnostic measures, such as the Autism Diagnostic

Observation Schedule (ADOS) [78] and the Autism Diagnostic Interview - Revised

(ADI-R) [79]. Comprehensive family medical history was collected and comorbidities

including sleep irregularities, and gastrointestinal problems were noted. Probands

were excluded for a number of reasons, the most common being: not meeting criteria

for ASD, having relatives diagnosed with ASD, significant perinatal incidents, and

low mental age [40]. As part of the Simons Simplex Collection inclusion criteria, all

probands and unaffected siblings were at least four years old, with probands being

no older than 18 at the time of diagnosis.

Blood samples were collected from each participant in the SSC and DNA was

extracted from blood cells. Whole-genome sequencing data was then produced for

approximately 9,200 individual genomes and data was processed by the Centers for

Common Disease Genomics and the New York Genome Center (NYGC). Genomes
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were sequenced at NYGC using 1 µg of DNA, an Illumina PCR-free library proto-

col, and sequencing on the Illumina X Ten platform with a mean coverage of 35.5.

Post-sequencing, reads were aligned to hg38 using BWA-MEM (0.7.15) [75], dupli-

cate reads marked (Picard version 1.83) and variant calling was done using GATK

(v3.5) [31]. The resulting BAM and variant call format (VCF) files were transferred

to Amazon Web Services (AWS) S3 storage system where they are accessible with

approval from the Simons Foundation Autism Research Initiative. I accessed the

VCF files containing the raw variant calls via AWS.

2.3.2 Genotype and Variant Quality Refinement

An important challenge in identifying genetic variants lies in the fact that raw

sequencing data contain many errors. This leads to subsequent steps in the down-

stream analysis also being prone to containing errors, including the presence of ar-

tifacts from the alignment and variant calling processes [74]. This is particularly

problematic when dealing with rare variants, where false positives and false nega-

tives can have a larger impact due to the reduced subset of variants that are available

to work with.

Compounding the challenge, the method by which I would be identifying de novo

SNVs (dnSNVs) required comparing genotype/variant calls at the same position be-

tween four members of the same family, with putative de novo calls being instances

of a child possessing an allele that was not present in any of the other three family

members. Clearly, this requires that all four calls at a particular locus be accurate.

Therefore, in this work, it was a priority for me to take steps to reduce error rates

and improve the quality of the calls I would be working with, before careful filtering

to identify the highest-quality set of de novo SNVs possible. To this end, I imple-

mented an extensive quality refinement pipeline, using existing high-quality data to
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improve the accuracy of the raw variant calls I started with.

2.3.3 Genotype Quality Score Refinement

For the first step of refining the quality of variant calls, I implemented GATK’s

Calculate Genotype Posteriors (CGP) tool to improve the quality of genotype calls

themselves from the raw VCF files. The CGP tool takes a high-quality (“gold-

standard”) set of variant calls as input to use as priors for calculating posterior

genotype likelihoods. For this I used the Phase 3 1000 Genomes set [3]. Because

the data involved families, I also provided a pedigree file, to inform CGP on the

relatedness of the individual calls, which CGP uses as family priors. After running

CGP using the default parameters, an updated Phred-scaled genotype likelihood was

available for each variant call.

2.3.4 Variant Quality Score Recalibration

As with sequencing and genotype calls, variant calls themselves contain artifacts

[74]. In an effort to reduce erroneous calls, GATK developed the Variant Quality

Score Recalibration process, in which a Gaussian mixture model is implemented to

classify and filter variant callsets, taking advantage of highly validated known variant

resources. Here, VQSR has been applied to the raw variant calls from the SSC,

generating a quality score which can be used to balance sensitivity and specificity

(Figure 2.2). This score is called the variant quality score log-odds (VQSLOD).

During the recalibration process, a tranche sensitivity threshold is specified as your

desired target sensitivity. For this set, variants were calibrated to filter out any

that did not have a VQSLOD above which 99.8% of variants in the truth set were

included. Variants with a score above the threshold were marked as “PASS” in the

VCF file and I filtered out the remaining that did not pass the threshold filter.
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Figure 2.2: An example of how VQSR tranches affect variant filtering. Selecting 90% as a
threshold has the lowest truth-sensitivity and returns fewer variants, but the transi-
tion/transversion ratio indicates the calls are of higher quality (based on an expected
Ti/Tv around 2.0 or 3.0 for WGS or WES, respectively [14]) The specificity is very
high, but many true variants would be missed. As the tranche threshold is increased,
more true positive calls are gained, at the expense of introducing more false positives.
[85]

2.3.5 Filtering out INDELS and low-complexity regions

In order to restrict my analyses to SNVs, I filtered out any remaining variants

that were not bi-allelic, as there were many INDELS in the original VCF file. Even

after an initial round of filtering to remove INDELS, however, it became apparent

there were still unwanted variants that were missed. Additionally, because false-

positive variant calls are introduced when including low-complexity regions, it was

also important to exclude those regions [106]. To address both of these issues, I

incorporated gold standard data sets of INDELS from the Mills and 1000 genomes

INDELS set [92] and low-complexity regions from UCSC’s RepeatMasker [130] and

TRF [15] reference files. If regions from the reference files overlapped with variants

from the VCF files, I excluded those variants from downstream analyses.
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2.3.6 Lifting over from hg38 to hg19

Over the course of completing this work, computational tools have gradually been

updated to include, or be compatible with, the hg38 genome build. However, at the

time some of these analyses were done, there were still certain limitations as far

as which tools or annotations were available for hg38. Therefore, in order to have

access to as many resources as possible, I decided to lift the data over from hg38

to hg19. This allowed me to take full advantage of more well-established resources

with a greater amount of data available. It should be noted that the negative side

to this is that there are known problems with the conversion process, during which

many variants can be lost or inaccurately converted [99], so there is a trade-off in the

process of conversion for the sake of having more resources in downstream analyses.

2.3.7 Calling de novo SNVs

For the first step in identifying de novo SNVs, I applied GATK’s VariantAnnota-

tor tool to tag possible de novo variants. Using the calculated posterior Genotype

Quality (GQ) score, I applied the threshold to filter out calls with GQ<20, a widely-

accepted cutoff and recommendation from other studies that have found this cutoffs

to result in a reasonable trade-off between precision and sensitivity [106], with a

GQ20 indicating a 99% chance of the genotype call being correct. Any variant with

a recorded depth (DP) of less than 10 was also not considered for the high quality

set, with DP being the number of reads that support a particular variant call at a

given position. The VariantAnnotator tool is designed to accept a pedigree file in

order to also apply a “hiConfDenovo” to possible de novo variants for cases in which

a variant is present in one individual but in neither of their parents. A limitation

of the tool is that it is only designed to work with trios. Because the data I was
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working with was from quad-structure families, VariantAnnotator didn’t take the

extra information from the unaffected child into account. To account for this, after

processing variants with VariantAnnotator I applied a custom script to incorporate

the additional data from the fourth family member, ensuring that putative de novo

variants present in a child were absent from the other three family members. I ran

this de novo variant identification process twice; once to identify dnSNVs in the

proband group, and again to identify dnSNVs in the unaffected sibling group.

Due to the rare nature of de novo mutations, it was important to apply a filter

based on population frequency. To reduce false-positive calls I required putative

dnSNVs to either be completely absent from the gnomAD [62] population database,

or be present at an allele frequency of less than 0.001, per recommendations from

other studies [106].

Figure 2.3: Overview of de novo variant detection pipeline with genotype and variant refinement
steps
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2.3.8 Identifying enhancers and promoter regions

For defining enhancer and promoter regions, I accessed DNase I and ChromHMM

data derived from experiments from the Roadmap Epigenomics Project [117]. All

data was derived from experiments in fetal brain tissue. To be considered an en-

hancer or promoter region, I identified regions of open chromatin (from DNase I

data) overlapping with regions corresponding to enhancer or promoter histone marks,

respectively, from ChromHMM data

2.4 Results

2.4.1 Raw count of identified de novo SNVs falls in line with expected human mutation
rates

Establishing an accurate list of putative de novo variants was the first critical step

toward investigating their association to ASD. Following the filtering and dnSNV

identification steps resulted in a high quality list of variants, with a mean of 69

dnSNVs per proband (Figure 2.4). There was not a significant excess of dnSNVs

in probands compared to siblings (134,969 vs 131,896 autosomal dnSNVs). This

indicates that we should not expect ASD risk to be explained by an excess in raw

dnSNV count, rather, more likely by a specific subset of deleterious mutations.

To confirm that this number fell within a reasonable range, I compared this count

to those of nine other published studies that have identified dnSNVs [91, 10]. Of the

studies I compared, the lowest mean count was 44 [42], with the highest being 90

[141] (Figure 2.5). Falling in line with these numbers, several other studies that have

specifically focused on estimating the de novo mutation rate in humans place this

number between 44 and 82 per generation [67, 4].
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Figure 2.4: Counts of de novo SNVs in probands from 1,917 Simons Simplex Collection families.
Blue dashed line indicates the observed median of 70 dnSNVs per proband.

Figure 2.5: Comparison of number of de novo SNVs (dnSNVs) identified across several studies. Of
the studies compared, the lowest observed mean count was 44 [42], while the highest
was 90 [141]. The orange bar represents the mean of 69 dnSNVs per proband I identified
from the Simons Simplex Collection for the work presented in this dissertation.

2.4.2 Advanced paternal age contributes to an increase in de novo variant count

Associations between paternal age and increased risk in neurodevelopmental dis-

orders have been well established [138]. In particular, these associations have been
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attributed to an increased number of de novo mutations [138, 67]. Using the ages

of fathers from the SSC families, I confirmed that indeed there was a positive corre-

lation between dnSNV count per proband and paternal age (r=0.51, p=2.6x10-126)

(Figure 2.6). These results estimate an increase of about 1.4 dnSNVs for each addi-

tional year of father’s age at the time of conception of child. A published estimate

of 1.5 additional dnSNVs per year of paternal age corroborates this finding [58]. The

presence of this association serves as a validation of the de novo variant set.

Figure 2.6: Scatterplot showing a positive correlation between paternal age and de novo SNV count
in probands (r=0.51, p=2.6x10-126). There is an estimated increase of 1.4 dnSNVs for
each additional year of father’s age

2.4.3 Enrichment of dnSNVs in high-impact coding regions

Before turning my focus to noncoding dnSNVs, I wanted to first investigate the

variants lying in coding regions. Given the reported associations between de novo

variants and brain disorders from studies using whole-exome sequencing [144, 113],

I decided to use this analysis as a way to further validate the set of dnSNVs I had

curated by determining whether it did have the potential to reveal enrichment of

certain classes of variants associated with the proband group.
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For this, I annotated all dnSNVs using the Ensembl Variant Effect Predictor

(VEP), an open-source tool for the annotation and prioritization of genomic vari-

ants [90]. For each variant that is annotated by VEP, a predicted consequence is

calculated. These predicted consequences are then also categorized by severity and

assigned an impact rating. Of the highest impact categories the set of dnSNVs were

annotated as, they fell within three categories: premature stop codon gained, stop

codon being lost, and a start codon being lost. These variants are all predicted to

have large effects on transcription. Of the 266,865 total dnSNVs, the number of

dnSNVs in probands and siblings predicted to lead to stop losses and start losses

was small, with no significant difference between the groups (2 vs 4, and 4 vs 8, re-

spectively). However, there was a surprisingly large number of variants predicted to

lead to premature stop codons (120 in probands vs 62 in siblings) (Figure 2.7). This

is a statistically significant enrichment in probands after multiple-testing correction

(FDR-adjusted p=.001, Fisher’s exact test).

Figure 2.7: Counts of dnSNVs in high-impact coding regions. There is a significant enrichment of
dnSNVs leading to premature stop codons in the proband group (120 vs 62 in siblings,
FDR-adjusted p=.001, Fisher’s exact test)
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2.4.4 The vast majority of de novo SNVs are found within noncoding regions of the
genome

To determine the distribution of dnSNVs by genomic region, I annotated all vari-

ants using the GENCODE v29 [43] reference file. Each variant was binned into one

of five genomic regions: 3’UTR, 5’UTR, CDS, intergenic, or intronic (Figure 2.8).

As expected, a large majority of variants ( 98%) were located in either intergenic

or intronic regions. This falls in line with the approximation of 1.5% of the human

genome consisting of protein-coding DNA [69]. Although I have provided evidence

that there are dnSNVs with potentially large effects in coding sequences, this much

larger proportion of dnSNVs in intronic and intergenic regions reinforces the im-

portance of investigating the potential effects of dnSNVs in the noncoding regions.

Proband and sibling dnSNVs were similarly distributed throughout the genome, with

no enrichment of dnSNVs within any particular regions between the two groups.

Figure 2.8: Distribution of dnSNVs in different genomic regions. Nearly 98% of dnSNVs (proband
and sibling combined) are found in intergenic or intronic regions
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2.4.5 Similar distribution of RegulomeDB prediction scores between probands and
siblings

Because there is no significant difference in total raw count of dnSNVs between

probands and siblings, it could be expected that it is a subset a functional dnSNVs

which is associated with ASD risk. To identify this subset, I prioritized all dnSNVs

using the RegulomeDB heuristic scoring system (described in Chapter 1), assigning

scores to each variant based on evidence of having functional potential. Variants

received scores between 2 and 7, with lower numbers indicating a higher probability

of being a functional variant (Figure 2.9). Here, I prioritized variants with scores

of 2 and 3 (and their respective sub-classes) as variants of interest. There was

no significant difference of between the number of variants annotated as 2’s (FET,

p=.11) or 3’s (FET, p=.58).

Figure 2.9: Variants prioritized using RegulomeDB. Each variant received a score between 2 and 7,
with lower numbers indicating increasing evidence for overlap with regulatory elements.
No significant difference was seen between probands and siblings for variants scored as
2’s (p=.11, Fisher’s exact test) or 3’s (p=.58, FET)
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2.4.6 Individual RegulomeDB annotations are not enriched after multiple-testing cor-
rection

A comparison of dnSNV RegulomeDB prediction scores between the proband

and sibling groups revealed a very similar distribution of scores. This indicated

to me that if there was an enrichment of regulatory variants to be detected, a more

precise investigation of the functional annotations on which the prediction scores were

calculated would be necessary. In this way, rather than looking for an enrichment of

variants within general functional regions, I could examine individual annotations,

in the event of truly enriched regions being lost in the process of combining them

with other potentially irrelevant regions.

Consequently, using the RegulomeDB data, I identified each individual anno-

tation that overlapped proband and sibling dnSNVs. This resulted in identifying

1,402 unique categories including annotations from ChromHMM, ChIP-seq, PWMs,

DNase-seq and FAIRE-seq. ChromHMM annotations provided predictions on en-

hancer and promoter regions. ChIP-seq and PWM annotations identified predicted

binding sites for specific transcription factors. DNase-seq and FAIRE-seq annota-

tions identified regions of open chromatin. Because RegulomeDB includes annota-

tions across diverse cell types, the cell type from which each annotation was generated

was noted.

When testing for enrichment of dnSNVs within each of the 1,402 functional cate-

gories, excesses are seen in both cases and controls (Figure 2.10). Interestingly, only

one functional category remains narrowly significant after multiple-testing correc-

tion, and it corresponds to an excess of dnSNVs (albeit a slight one) in ChromHMM-

predicted enhancer regions in the sibling group (Fisher’s exact test FDR-adjusted

p=.045 , RR=.92). Additionally, the top three overall most significant results all



37

correspond to excesses in the sibling group. No functional category was significantly

enriched in the proband group after multiple-testing correction, with the most signif-

icant proband category being ChromHMM-predictied enhancer regions from neural

stem cell data (Fisher’s exact test FDR-adjusted p=.63 , RR=1.26). The proband

categories with the highest relative risk both came from predicted binding sites of

ZNF274 and ESR1 transcription factors (RR=2.47 and RR=1.98, respectively). Al-

though no conclusion can be made from these results, given their statistical insignifi-

cance, it is noteworthy that an association between SNPs in ESR1 and symptomatic

severity of ASD has been reported before [32].

Notably, although some of the categories are associated with brain tissue, many

are not. This brings into question the relevance of the non-brain tissue categories and

whether even the slight excesses of dnSNVs in certain categories are truly associated

with ASD or not.

2.4.7 Incorporating tissue-specific annotations is not sufficient to detect enrichment
of functional dnSNVs in probands

Tissue-specific Unified Regulatory Features (TURF) was developed as an update

to the original RegulomeDB scoring tool, with the goal being to provide a tool for

prioritizing variants in a tissue-specific manner [35]. While the original implementa-

tion of RegulomeDB serves the important purpose of prioritizing variants according

to general functional regions, it becomes increasingly important to prioritize in a

tissue-specific manner when studying a phenotype with known associations to a par-

ticular organ. This has been illustrated to specifically impact studies of brain-related

phenotypes [36].

Following the analysis of dnSNVs using the general RegulomeDB annotations,

I proceeded to annotate all dnSNVs from probands and siblings using the TURF
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Figure 2.10: Enrichment of 1,402 individual RegulomeDB features. Points in the volcano plot repre-
sent the burden of mutations within each predicted regulatory annotation (enhancers,
promoters, TF-binding sites, open chromatin regions). Excesses can be seen in both
the proband and sibling groups. Only one category remains significant after multiple
testing correction (ChromHMM-predicted enhancer in iPSC cell line) in the sibling
group (Fisher’s exact test FDR-adjusted p=.045 , RR=.92). No categories remain
significant in the proband group after multiple-testing correction

algorithm, assigning a score to each variant using brain-specific annotations. When

comparing TURF scores from all dnSNVs in the proband group to those from the

sibling group, scores were not significantly higher in the proband group (p=0.61;

Wilcoxon rank sum) (Figure 2.11). I performed the same statistical test to determine

if TURF scores were higher in probands vs. sibling when restricting specifically to

dnSNVs overlapping with enhancer and promoter regions, identified as described in

the Methods section. As was the case when considering all dnSNVs, TURF scores
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were not significantly higher in probands compared to siblings, although there was

slight improvement when restricting to enhancer regions (p=0.16; Wilcoxon rank

sum) and promoter regions (p=0.32; Wilcoxon rank sum).

Figure 2.11: Comparison of Tissue-specific Unified Regulatory Features (TURF) scores between
proband and sibling groups. All dnSNVs were scored using brain-specific annotations
to calculate the TURF score. TURF scores in the proband group were not significantly
higher than in the sibling group (p=0.61; Wilcoxon rank sum)

2.4.8 Multiple dnSNVs detected in the same enhancer regionss

Using DNase-Seq and ChromHMM data from the Roadmap Epigenomics Project

I identified fetal brain enhancer and promoter regions (Methods). I found no sig-

nificant enrichment of dnSNVs within those enhancer (3114 vs 3053; P=.7967) or

promoter (1814 vs 1750; p=0.5) regions in probands compared to siblings. However,

within these enhancer annotations I did identify three enhancer regions in probands

which each contained three dnSNVs within 1,000bp of each other, and which I’ll refer

to as multi-hit enhancers. These multi-hit enhancers have been previously identified

[102] and one of these enhancers has been shown to interact with the human gene
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DYRK1A, for which an association with autism has been suggested [142, 59]. Impor-

tantly, I also saw two multi-hit enhancers in the sibling group, albeit not the same

enhancers as in the proband group, indicating that while the multi-hit enhancers

found in the probands may be biologically relevant, they were not significantly en-

riched in probands compared to the siblings. To confirm that multi-hit enhancers

are a typical occurrence in dnSNV data and not, for example, a set of protective

sibling mutations, I downloaded the full list of 184,379 dnSNVs identified in control

samples from the Gene4Denovo database [154]. These are a collection of dnSNVs

obtained from whole-genome sequencing data of individuals who participated as con-

trols across various studies. Using the same filtering and annotation process as with

the SSC cohort, I identified six multi-hit enhancers from the Gene4Denovo individ-

uals, indicating no significant enrichment of multi-hit enhancers in the SSC cohort

compared to an external control group.

2.4.9 Leveraging chromatin-interaction data to identify target genes

A common method for linking variants to target genes is to assign the nearest

transcription start site as a variant’s target. However, as few as 22% of looping

interactions link elements to the nearest active TSS [122]. This suggests proximity

is not the most accurate predictor of long-range interactions, such as those between

enhancers and promoters. In order to address this, I have incorporated chromatin-

interaction data into our analysis to more accurately link predicted enhancer regions

to their target promoters. I have leveraged data from a previous study in which the

authors linked risk variants to target genes using promoter-capture Hi-C (pcHiC)

experiments in neural cells [131]. I applied those maps to the data in order to

determine any potential contacts between enhancer dnSNVs and gene promoters.

For each mutation I identified, I checked for contact with a promoter. If such a
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contact was present, I assigned that mutation to the gene corresponding to that

promoter. After assignment of target genes to all mutations for which contacts were

available, each gene was tested for an enrichment of dnSNVs. No genes showed

significant enrichment.

2.4.10 Prioritization of variants through manually selected combinations of relevant
annotationss

To this point, after applying several methods to prioritize dnSNVs, no single

method was successful in being able to identify a subset of functional noncoding

variants enriched in probands compared to siblings. As a final approach to determine

whether any of the annotations I had compiled could be used to discover ASD-

associated variants, I decided to combine annotations. Much as with the concept

of RegulomeDB being that regions overlapping multiple lines of evidence are more

likely to have a functional impact, my rationale for combining annotations was that

a single annotation may not be sufficient for filtering down to the variants with true

impact.

In addition to the RegulomeDB and promoter-capture Hi-C data I have already

described, here I have brought in additional relevant brain data. Whereas I pre-

viously had taken all protein-coding genes into account, I created a list of genes

preferentially expressed in brain-tissue, based on data from A.B. Wells et al. [148]. I

also referenced the SFARI Gene database for a list of genes with previous associations

to ASD. Genes scored as a ”SFARI 1” reflect the strongest evidence of true associa-

tion. Other annotations I incorporated at this point were CADD scores, which are

used to measure variant deleteriousness.

I proceeded to create filtering criteria based on several combinations of the avail-

able annotations. For example, instead of only focusing on variants scored as a 2
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by RegulomeDB, here I tested for enrichment of variants that were not only scored

as a 2, but also overlapped with the promoter region of brain-expressed genes. The

tables below display different combinations of annotations I tested for enrichments

of proband dnSNVs. The closest any category came to meeting significance was

variants linked to the promoter of SFARI genes, based on promoter-capture Hi-C

data (Table 2.2). However, as with previous cases, the significance did not survive

multiple-testing correction (FDR-adjusted p=.07, Fisher’s exact test).

Table 2.2: Enrichment test results for several manually-selected combinations of annotations, sorted
by FDR-adjusted p-values. No category remains significant after multiple-testing cor-
rection.
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Table 2.3: Enrichment test results for several manually-selected combinations of annotations, sorted
by FDR-adjusted p-values. No category remains significant after multiple-testing cor-
rection.

2.5 Discussion

A genetic basis for autism spectrum disorder has been well established. Still, even

as GWAS have revealed that the majority of trait-associated SNPs lie in noncoding

regions, it has remained a challenge to find specific noncoding biomarkers or associa-

tions between noncoding SNVs and ASD. The Simons Foundation Autism Research

Initiative has provided a valuable resource in the Simons Simplex Collection (SSC),
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a collection of whole-genome sequence data from thousands of families, designed to

assist in the discovery of de novo variants associated with ASD.

Here I have described the steps I have taken to identify a list of high-confidence

noncoding de novo SNVs (dnSNVs). I have established a pipeline to ensure a high

quality of genotype and variant calls. I have also implemented several filters in the

pipeline to increase the sensitivity and specificity of dnSNV detection. Using the

de novo discovery pipeline, I identified 266,865 autosomal dnSNVs in 1,917 SSC

Families, with a mean of 69 per proband. The number of dnSNVs per proband was

positively correlated with paternal age, with an estimated increase of 1.4 dnSNVs for

each additional year of the father’s age. Nearly 98% of all dnSNVs identified mapped

to noncoding regions of the genome.

Supporting previous findings, I detected a strong enrichment of proband dnSNVs

in high-impact coding regions. With nearly twice as many dnSNVs leading to prema-

ture stop codons in probands compared to siblings (120 vs 62, p=.001), the results

support the validity of the dnSNV list and that the enrichment testing approach I

have used can be applied to noncoding regions.

RegulomeDB was established as a database and annotation tool, providing a

method for variant prioritization by integrating functional data from ENCODE and

other sources. RegulomeDB scores variants based on several lines of evidence, in-

dicating the likelihood of a variant residing within a regulatory element and having

the potential to affect transcription factor binding. I have annotated the dnSNVs

identified in the SSC with both the original RegulomeDB tool, and TURF, the more

recent update to the RegulomeDB model, which calculates prediction scores in a

tissue-specific manner. Using TURF, I was able to incorporate annotations specific

to brain function.
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Ultimately, there was no category or annotation that could successfully separate

ASD-associated noncoding dnSNVs from all others. In some cases, annotations that

were tested even revealed an excess of dnSNVs in the sibling group vs the proband.

Following evidence from previous studies suggesting the importance of using anno-

tations relevant to organs associated with the phenotype of interest, I incorporated

brain-specific annotations. This addition of brain-related annotations was still in-

sufficient to allow for the detection of any significant associations between ASD and

noncoding dnSNVs in probands. These results indicate that there may be factors

which continue to present obstacles when conducting association studies for brain

disorders.



CHAPTER III

Challenges in Screening for De Novo Noncoding Variants
Contributing to Genetically Complex Phenotypes

3.1 Abstract

Understanding the genetic basis for complex, heterogeneous disorders, such as

autism spectrum disorder (ASD), is a persistent challenge in human medicine. Ow-

ing to their phenotypic complexity, the genetic mechanisms underlying these disor-

ders may be highly variable across individual patients. Furthermore, much of their

heritability is unexplained by known regulatory or coding variants. Indeed, there

is evidence that much of the causal genetic variation stems from rare and de novo

variants arising from ongoing mutation. These variants occur mostly in noncoding

regions, likely affecting regulatory processes for genes linked to the phenotype of in-

terest. However, because there is no uniform code for assessing regulatory function,

it is difficult to separate these mutations into likely functional and nonfunctional

subsets. This makes finding associations between complex diseases and potentially

causal de novo single-nucleotide variants (dnSNVs) a difficult task. To date, most

published studies have struggled to find any significant associations between dnSNVs

from ASD patients and any class of known regulatory elements. We sought to identify

the underlying reasons for this and present strategies for overcoming these challenges.

We show that, contrary to previous claims, the main reason for failure to find ro-

46
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bust statistical enrichments is not only the number of families sampled, but also

the quality and relevance to ASD of the annotations used to prioritize dnSNVs, and

the reliability of the set of dnSNVs itself. We present a list of recommendations for

designing future studies of this sort that will help researchers avoid common pitfalls.

3.2 Introduction

In human medicine, heterogenous phenotypes are frequently grouped into sin-

gle disorders based solely on similarities in clinical presentation. Diagnostic criteria

for these conditions usually consist of lists of symptoms, of which individual patients

typically exhibit only a subset. As such, it is possible for two patients to display com-

pletely disparate sets of symptoms while still meeting the diagnostic criteria for said

disorder. Identifying the genetic basis of these disorders is necessary for understand-

ing their underlying mechanisms and developing effective treatments. However, the

breadth of phenotypes presented by individuals sharing the same diagnosis reflects

an underlying genetic basis that is at least as complex. Indeed, the combination of

subjective diagnostic criteria and the likely polygenic basis of most diagnostic symp-

toms, makes it possible for individuals with the same diagnosis to have completely

distinct sets of underlying mutations affecting entirely different pathways. Dissecting

this variation is necessary to identify common themes in the etiology and underlying

mechanisms of these disorders.

Among these disorders, Autism Spectrum Disorder (ASD) stands out as one of the

most complex, making it a good case study for developing robust statistical methods

to identify novel variants contributing to complex disorders. Such mutations are

difficult to identify using traditional statistical methods owing to difficulty objectively

grouping individual patients into cohorts and the fact that even patients with similar
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clinical presentation may not share the same underlying genetic and mechanistic

basis. Here we use ASD to model complex, heterogeneous phenotypes, and test

strategies for identifying de novo variants relevant to ASD given currently-available

whole-genome-sequencing (WGS) datasets and functional genomic annotations.

ASD is a term used to describe a group of neurodevelopmental conditions often

characterized by difficulties with social interaction, communication, and behavior.

A genetic basis for ASD was first established through twin studies showing stronger

concordance between monozygotic siblings compared to dizygotic siblings [116][71,

133]. Most estimates now place the heritability of ASD in the range of 50%-90% [48,

121, 140, 12]. With technological improvements, several classes of genetic variations

have been revealed to contribute to ASD etiology. This includes point mutations

and structural variants (such as copy-number variants), pointing to a genetically

heterogeneous background [57][124]. It is clear that many different types of genetic

factors play a role in ASD, and it would benefit the research community to begin

bridging the gaps in our understanding of the underlying genetic heterogeneity. As

a whole, common variants contribute strongly to ASD. Individually, however, each

of these common variants are expected to have small effects. This can be explained,

in part, by the fact that variants associated with large, harmful effects are less likely

than neutral variants to be maintained in a population. Conversely, uninherited

variants that arise spontaneously (de novo variants) may carry a higher risk than

inherited variants because they have not yet been acted upon and removed by natural

selection. While the combined effects of common variants may contribute to a large

portion of the heritability of autism [48], de novo mutations may potentially have

larger individual impacts.

A significant role for protein-coding variants in ASD has been established [55].
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Still, the coding variants that have been identified account for only a fraction of the

overall heritability of ASD. There is evidence that the genetic background of ASD

likely involves a combination of both coding and noncoding variation. Although

effect sizes of mutations in coding regions may, on average, be greater because of

their ability to directly affect amino acid sequences, mutations in noncoding regions

may contribute to autistic phenotypes in an alternate way: by disrupting regulatory

sequences [55]. Regulatory elements, such as promoters and enhancers, are responsi-

ble for controlling the precise time, location, and level of gene expression. Mutations

disrupting regulatory elements may interfere with proper expression of developmen-

tal genes in the brain, for example, leading to phenotypes that are characteristic

of ASD. With more than 98% of the human genome composed of noncoding DNA,

those noncoding regions present a logical place to potentially uncover some of the

missing heritability of autism. Indeed, most genome-wide association study signals

map to noncoding regions, highlighting their importance. Therefore, investigation

of noncoding variation has the potential to uncover novel ASD-associated variants.

Beyond the identification of noncoding variants, the challenge of their functional

interpretation remains. Previous studies have investigated possible roles of de novo

single-nucleotide variants (dnSNVs) in ASD by testing for enrichment of functional

evidence among dnSNVs in probands versus siblings used as matched controls. How-

ever, while these studies uncovered significant associations with several coding cat-

egories, ascertaining the functional impact of noncoding dnSNVs is more difficult:

whereas known properties of open reading frames, splice sites, and the biochemical

properties of amino acids facilitate coding dnSNV prioritization, no such code exists

to prioritize noncoding dnSNVs. Despite this difficulty, previous work has implied a

modest contribution of de novo noncoding variation in autism, although coding re-
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gions exhibited the strongest associations and noncoding associations were not robust

to multiple-testing correction [150]. The authors did not suggest that a noncoding

association does not exist, rather, that the signal is not as strong as expected and

that larger cohorts and careful attention to multiple-testing burden would be nec-

essary to observe any true signal from de novo noncoding mutations. Indeed, other

studies which have focused on noncoding mutations in ASD have also seen signifi-

cant enrichment disappear once multiple-testing corrections have been applied [141].

Nonetheless, these studies establish that these rare mutations do play a role in ASD,

underscoring the importance of improving methods with which to study them.

In recent years, we have learned certain features associated with active regulatory

sequence, including epigenetic marks, sequence motifs for various TFs, chromatin

accessibility, etc. Although we know that regulatory sequences are associated with

characteristic combinations of functional annotations (H3K4me1 and open chromatin

for enhancers, e.g.), our ability to predict the regulatory function of a locus based on

overlapping annotations remains limited. Despite an abundance of publicly-available

functional genomics datasets across many tissue and cell types, a uniform functional

code for regulatory sequences remains elusive. In the absence of such a code, vari-

ants must be prioritized based solely on their overlap with various combinations

of functional annotations thought to be important for regulatory function. Several

approaches for screening and combining annotations have been used to prioritize

variants in the ASD literature with varying degrees of success.

Most studies to date have leveraged the large number of public datasets by com-

bining individual functional annotations into functional categories meant to reflect

the regulatory potential of individual variants. A statistical test for enrichment must

then be run on each of these functional categories to identify if an excess of dnSNVs
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exists in probands, which may signal an association with development of ASD. Since

it is not known in advance which categories will be informative, this strategy requires

many individual tests to comprehensively screen for associations. Unfortunately, as

the number of annotations increases, the number of individual tests increases ex-

ponentially, invoking a substantial multiple-testing burden and potentially reducing

statistical power by orders of magnitude. As a result, very few studies have been able

to identify robust statistical enrichment of dnSNVs within any functional category

in ASD affected individuals. In nearly all of these studies, the solution presented for

this problem is to increase the number of families until sufficient power is achieved.

We wanted to explore the implications and practicality of this solution in compar-

ison to newer methods of variant prioritization, in hopes of identifying the optimal

solution given current technology. To this end, we analyzed whole-genome sequencing

data from 1,917 quad families in the Simons Foundation Autism Research Initiative

(SFARI) Simons Simplex Collection (SSC) cohort. These families represent a total of

7,668 individuals: 1,917 affected children and 5,751 unaffected parents and siblings.

This family structure is ideal for identifying de novo variants and provides us with

a natural control group in the unaffected siblings. Using a set of newly-identified

dnSNVs from this cohort, we quantified the ability of selected combinations of in-

dividual annotations, and scores from published variant-prioritization methods, to

detect differential associations with dnSNVs. For each of these functional categories,

we used 80% power curves to predict the optimal sample size, at which 80% of tests

are expected to be significant. We further evaluated the relative effect size nec-

essary to find a significant result given the current sample size in each functional

category, expressed as the difference in dnSNV burden in probands versus siblings

using 80% power curves. Finally, we used simulations to compare the actual effect
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sizes observed in probands and siblings to random expectations to assess whether a

significant test at any sample size is likely to reflect biologically-meaningful effects on

ASD risk. Based on these experiments, we can draw several conclusions about cur-

rent limitations in our ability to confidently identify dnSNVs contributing to ASD,

and propose strategies to improve future studies on the impact of dnSNVs on ASD

and other complex genetic disorders.

3.3 Methods

3.3.1 Identification and filtering of de novo single-nucleotide variants

In order to identify candidate de novo SNVs while minimizing false positives, we

implemented a pipeline to improve the quality of genotype and variant calls before

applying stringent filters. We first performed genotype refinement using GATK’s

[143] CalculateGenotypePosteriors tool and required all variants to pass the Variant

Quality Score Recalibration (VQSR) filter, using a sensitivity threshold of 99.8%.

We then filtered the variant set down to bi-allelic SNVs and tagged potential de

novo mutations if a variant was present in a child and not any of the other family

members, with the requirement that all four family members have GQ >= 20, DP

>= 10, and the more stringent of AC < 4 or AF < 0.1%. This same process was

followed separately both for probands and unaffected siblings to identify de novo

SNVs for each group. We further filtered mutations down to exclude those appearing

in more than one individual. Because the CalculateGenotypePosteriors tool was only

designed to handle trios, we created separate PED files for probands and unaffected

siblings, based on the PLINK pedigree file format. We referenced a file mapping SSC

individual IDs to SSC family IDs, provided as a resource by the SSC, to generate

these pedigree files.

We annotated all SNVs with their minor allele frequencies (MAF) using the
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Genome Aggregation Database (gnomAD) v2 [62]. Following annotation, we fil-

tered the variant set down to those with a MAF less than .001. Variants for which

a MAF was not available were also retained. We then used the Picard LiftoverVCF

tool [19] to liftover variants from the hg38 build to hg19 since not all computational

tools we used supported the hg38 build at the time of analysis.

Some families for which data was collected were initially enrolled in the SSC as

simplex families but were later discovered to be multiplex and flagged as such by

SFARI. These families were excluded from our analyses. Families were also excluded

if they were part of the Simons Ancillary Collection or the Simons Twins Collection.

To ensure that our identified mutations were true SNVs, variants overlapping with

low-complexity regions were filtered out using UCSC’s RepeatMasker [130] and TRF

[15] reference files. Additionally, the Mills and 1000g gold standard set was used as

a reference for filtering out mutations overlapping INDELS [92].

3.3.2 Annotation of coding dnSNVs

We defined coding mutations predicted to be damaging using Variant Effect Pre-

dictor (VEP) [90] annotations. For generating predictions, we used the ”-most se-

vere” tag in order to ensure that each variant was assigned just one ”consequence”

instead of taking every possible transcript into account for that variant. Variants

were considered to be “high-impact” dependent on their predicted consequence, based

on the VEP variant consequence table from Ensembl [28]. Additionally, we consid-

ered variants to be predicted loss-of-function if they were annotated by SIFT [96] as

“deleterious” and by Polyphen [5] as “probably damaging”. To identify genes that

may be more susceptible to being affected by mutations, we annotated mutations

with a score developed by the Exome Aggregation Consortium (ExAC) called pLI,

which indicates a gene’s probability of being intolerant to loss-of-function (LoF) mu-
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tations [72]. A high pLI score implies a gene is LoF intolerant and we annotated

genes with pLI>= 0.9 as extremely LoF intolerant. We downloaded pLI scores from

https://gnomad.broadinstitute.org/downloads under “Gene Constraint Scores” [62].

3.3.3 Annotation of fetal brain enhancer and promoter regions

To identify enhancer regions, we used combined male and female fetal brain

DNase-seq and ChromHMM data from the Roadmap Epigenomics Project [117]. Us-

ing core 15-state ChromHMM models we identified regions containing histone marks

corresponding to the ChromHMM states “Genic Enhancers”, “Enhancers”, and “Bi-

valent Enhancer.” We called those regions as enhancers if they also overlapped with

DNase peaks. We used a similar process to identify promoter regions, focusing in-

stead on the ChromHMM states “Active TSS”, “Flanking Active TSS”, and “Bivalent

TSS”, before determining which of those regions overlapped with DNase peaks. We

also annotated promoters through an alternate method using the GENCODE [43]

release 19 gene annotation file. Using all protein-coding genes, we defined promoters

as the region within 1,500bp upstream of the TSS of the respective gene.

3.3.4 Annotation with functional scoring tools

We generated TURF generic and brain-specific scores as described in Dong and

Boyle [35] with the tool available at https://github.com/Boyle-Lab/RegulomeDB-

TURF. We generated Disease Impact Scores following the instructions for making

predictions from the DNA model, provided at https://hb.flatironinstitute.org/asdbrowser/about.

3.3.5 Other annotations

We obtained a “rank” for dnSNVs using the original RegulomeDB scoring system,

with RegulomeDB v2.0. Ranks can be obtained from https://regulomedb.org/regulome-

search. We considered mutations to have potentially disruptive regulatory effects if
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they received scores of 2 or 3 (note that a score of 1 is not possible in de novo muta-

tions because it requires an eQTL annotation). For chromatin interaction analyses

we used promoter-capture Hi-C data generated by Song et al. [131]. We applied

those maps to our data to identify any potential contacts between dnSNVs and gene

promoters. If such a contact was present, we assigned that mutation to the gene cor-

responding to that promoter. We annotated variants with CADD v1.4 [114] using of-

fline scoring scripts, following instructions at https://github.com/kircherlab/CADD-

scripts/ for the GRCh37 genome build. For identifying evolutionarily conserved ele-

ments we scored dnSNVs using the 46-way placental alignment phastCons [127] track

from UCSC’s Genome Browser [64]. We obtained a list of genes, along with rankings

based on strength of evidence of their association with ASD, from the SFARI Gene

database at https://gene.sfari.org/database/human-gene/. We generated a list of

genes that were found to be preferentially-expressed in brain tissue using data from

A.B. Wells et al. [148].

3.3.6 Enrichment testing proceduress

For each of the annotations tested, we compiled contingency tables for Fisher’s

exact test (FET) by counting the number of proband and sibling dnSNVs overlapping

genomic regions falling within the category and those falling outside the category.

Individual FETs were performed for each annotation category using the fisher.test

method in R, with alternative=”greater” [151]. When multiple tests were performed,

multiple-testing adjustments were made using the FDR method in R [112, 118]. For

TURF generic, TURF brain-specific, and DIS scores, FET contingency tables were

constructed by counting proband and sibling dnSNVs scoring in the top 5% of scores

for each category. These were subjected to FET as described above. Wilcoxon rank-

sum tests were also performed on non thresholded data from these categories to
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compare average score rankings between proband and sibling cohorts. For all tests,

p <= 0.05 was used as the significance threshold.

3.3.7 Power analysis procedures

We performed the power analyses in R using the ‘pwr’ package. To calculate

the power for each annotation category across varying sample sizes we implemented

the two-proportion test within the ‘pwr’ package. Proband and sibling proportions

were defined as the proportion of dnSNVs within a particular annotation category

compared to the total number of dnSNVs in probands and siblings, respectively. We

ran each calculation at a significance level of 0.05, and with the alternative hypothesis

being “greater.”

3.3.8 Reverse power analysis procedures

We produced “reverse” power curves, where we held the sample size fixed and

plotted power over a range of differential overlapping proportions of proband and

sibling dnSNVs for each annotation category in order to assess how much additional

information each would need to convey in order to reach 80% power with 1,917

quad families. The same methods and thresholds described in the “Power analysis

procedures” were then used to plot power curves with the ‘pwr’ R package.

3.3.9 Comparison to random permutations

In order to assess whether observed counts for each of our annotation categories

significantly deviate from random expectations, we performed a permutation analysis

using the same input data used for the FETs. Data were randomized by shuffling

the “proband” and “sibling” labels across all dnSNVs, for 10,000 permutations. For

each permutation, we stored the number of proband and sibling dnSNVs overlapping

each annotation category in the permuted data. Counts were used to generate an
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eCDF for each annotation category, and the mean of this distribution was used as

the expected count for proband and sibling. We then calculated z-scores to quantify

the deviation between the observed proband and sibling counts and the expected

randomized mean based on the standard deviation of the eCDF. Z-scores of 2.0 or

greater were considered significant evidence for departure from random expectation.

3.3.10 Comparison of dnSNV datasets across studies

For comparisons between studies, we obtained the publicly-available dnSNV datasets

from each of the other groups we included in our analyses. As with our own set, we

restricted the variants to autosomal dnSNVs. We generated the UpSet plot using

Intervene [66] and UpSetR [73]. For direct comparison between our variant set and

that of Zhou et al., we used BEDTools [73, 111] to obtain the intersection, union,

and disjoint sets.

3.4 Results

3.4.1 De novo SNV calls show substantial overlap with previous studies

From the SSC, we identified a median count of 70 autosomal de novo single-

nucleotide variants per proband (134,969 total autosomal proband dnSNVs). This is

consistent with the estimated mutation rate in the general human population [65, 67].

Compared to the median of 68 autosomal de novo mutations we identified in the

unaffected siblings (131,896 total autosomal sibling dnSNVs), we did not observe a

statistically significant difference in dnSNV count between the proband and sibling

groups (Fig. 3.1 A).

We annotated and categorized the dnSNVs into the following genomic regions:

3’UTR, 5’UTR, intergenic, intronic, and coding. Roughly 98% of dnSNVs overlap

noncoding regions of the genome, which falls in line with coding regions compris-
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ing 1.5% of the human genome. When taking all dnSNVs into account, within each

genomic region, there is not a statistically significant difference in counts between

probands and siblings (Fig 3.1 B).

We compared our list of identified dnSNVs to those from four other published

studies which also used the SCC data (Fig. 3.1 C). Approximately 84% of the

dnSNVs we identified have also been identified by at least one of these four groups

[150, 141, 10, 155]. While all compared groups used data from the same cohort (SSC),

the number of cohort families included in each group’s respective analyses varied.

The largest number of variants shared between studies came from the intersection

of our study (1,917 families included in analyses) with that of An et al. (1,902

families). The next highest overlap in variants came from the intersection between

three studies: our own, An et al. and Zhou et al. (1,790 families). As would be

expected, there was a smaller amount of overlap with the studies which included

fewer families on account of data availability at the time of their publication (Turner

et al. – 516 families, Werling et al. – 519 families).

3.4.2 De novo coding variants show significant association with ASD

In order to validate our dnSNV calling and enrichment testing strategies, we

wanted to first show our ability to recover enrichments of high-impact coding mu-

tations, which have been previously shown to be significantly associated with ASD

[55], within proband dnSNVs. We prioritized dnSNVs by annotating them using

Variant Effect Predictor (VEP) [90], SIFT [96], and PolyPhen [5]. Mutations were

classified as predicted loss-of-function coding mutations (LOFCMs) if they were an-

notated as “high-impact” by VEP, or as both “deleterious” by SIFT and “probably

damaging” by Polyphen. We used Fisher’s Exact Test (FET) to weigh the evidence

for a statistically significant excess of predicted LOFCMs in probands compared to
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Figure 3.1: A) Distribution of de novo SNVs (dnSNVs) across 1,917 families from the SSC. Probands
(blue) have a median of 70 dnSNVs per child while the median for unaffected siblings
(light pink) is 68 dnSNVs. The darker pink bars indicate overlap in counts between
probands and siblings. The difference in counts between the two groups is not statisti-
cally significant B) Distribution of dnSNVs by genomic region. Approximately 98% of
all dnSNVs identified and used in this study land in intronic or intergenic regions. The
number of dnSNVs in each category is not significantly different between probands and
siblings. C) Total number of dnSNVs identified across different individual studies (gold
bars), all using the Simons Simplex Collection cohort data. Blue vertical bars indicate
the number of variants identified by more than one study (solid black points connected
by black line) or variants only identified by a single group (solid black point). Although
all families are part of the same cohort, the number of families utilized by each study
varies, shown in the table.

siblings.

Consistent with our expectations, we observed 604 proband LOFCMs compared to
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467 sibling LOFCMs, representing a statistically-significant enrichment (FET, FDR-

adjusted p=0.002)(Figure 3.2). In all, over 90% of VEP high-impact variants were

stop-gain mutations, which result in premature stop codons and, in turn, truncated

transcripts. These stop-gain mutations were enriched even more strongly than all

LOFCMs, with nearly twice as many found in probands compared to siblings (120

vs 62 mutations; FET, FDR-adjusted p=0.001). Taken together, these observations

show we are able to recover known enrichments within our dnSNV dataset.

3.4.3 Proband dnSNVs are not enriched for predicted regulatory variants

We next wanted to extend our enrichment testing strategy to noncoding muta-

tions. Specifically, we were interested in determining if we could detect an enrichment

of proband mutations with the potential to affect regulatory function. We wanted to

know whether a more comprehensive set of dnSNVs coupled with our FET screening

strategy would yield any statistically significant enrichments in noncoding regulatory

annotation categories.

This approach relies on our ability to predict how likely noncoding variants are

to affect regulatory function. Most published studies have done so based on overlap

with genomic annotations commonly associated with cis-regulatory regions. Anno-

tations are derived from the Encyclopedia of DNA Elements (ENCODE) project

and include, open chromatin (DNase-seq and DNase footprinting), and transcription

factor (TF) binding sites (ChIP-seq), among others. These are commonly combined

into annotation categories; either exhaustively, by selecting a subset manually, or

by using computational methods. However, more recent studies have turned to ma-

chine learning to identify the relationships between functional annotations and ASD.

The distinct advantage of this approach is that it may reduce or obviate the need

for multiple-testing corrections. In order to compare these strategies, we selected a
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combination of annotation categories and prioritization scores and proceeded with

enrichment tests to determine if any significant associations could be recovered.

As representative manually-curated annotation categories, we combined annota-

tions from the ENCODE database for ChromHMM and DNase-Seq, enhancer and

promoter predictions from the Roadmap Epigenomics Project [117], chromatin in-

teraction data from Song et al. [131], and brain-specific gene expression data from

[148]. These were used to isolate sets of likely promoter and enhancer regions target-

ing genes expressed in the brain. Given known features of ASD etiology, these two

genomic compartments seemed likely to harbor an enrichment of dnSNVs affecting

relevant regulatory functions. However, when considering the number of mutations

overlapping enhancers we saw no significant difference between the proband and

sibling groups (3114 vs 3053, respectively; p=0.79, FET). Similarly, there was no

enrichment of mutations within promoters (1814 vs 1750; p=0.5, FET).

As representative variant prioritization methods, we selected Tissue-specific Uni-

fied Regulatory Features (TURF), a probabilistic scoring model that prioritizes in a

tissue-specific manner, which replaced the original categorical scores in the current

release of RegulomeDB [18]. For noncoding variants, we scored each dnSNV with two

different TURF prediction scores; one score was based on a previous implementation

of TURF which scores variants in a generic context (independent of tissue) [33]. The

second score was generated by the current implementation of TURF, in which func-

tional variants are predicted in a tissue-specific context [35]. We calculated these

scores based on functional evidence specifically from brain tissue, which we could

reasonably expect to be more relevant to ASD. For both generic and brain-specific

TURF scores, FET contingency tables were constructed based on overlap with posi-

tions scoring in the top 5% of annotated sites. In both cases, tests were not significant



62

after multiple-testing correction, similar to previous studies (generic TURF: FET,

FDR-adjusted p=0.6; brain-specific TURF: FET, FDR-adjusted p=0.5)(Fig. 2).

Since TURF scores are numeric and continuous, we retested for enrichment using

Wilcoxon Rank-Sum tests, which also failed to reach significance (generic TURF:

Wilcoxon Rank-Sum, p=0.83; brain-specific TURF: Wilcoxon Rank-Sum p=0.89).

Figure 3.2: Relative risk of proband de novo single-nucleotide variants across 65 annotation cate-
gories, including combinations of different annotations. A relative risk >1 represents
enrichment of dnSNVs in the proband group. The only categories that remain signifi-
cant after multiple-testing correction are related to coding-region annotations.
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3.4.4 Tissue- and disease-specific annotations are more informative than tissue-agnostic
annotations

Given the lack of enrichments observed for any annotation categories or prioritiza-

tion scores, we wanted to further explore how informative these annotations actually

are. Since most previous studies failing to show significant enrichments have cited

insufficient sample size as their primary limitation, we first asked what sample size

would be necessary to achieve 80% power in our statistical tests. To do so, we plot-

ted power curves for three noncoding annotation categories and prioritization scores:

TURF generic, TURF brain-specific, and Fetal Brain Promoters. For comparison, we

included two coding annotation categories: missense variants, regardless of severity

of impact, and high-impact variants, which are likely to lead to loss-of-function.

Considering a desired power threshold of at least 80%, our analyses revealed that

we are underpowered to detect enrichment of dnSNVs in probands for any of the

noncoding categories given our sample size of 1,917 quad families (Fig. 3.3A). As a

baseline, we estimated a power of 97% when testing for enrichment of high-impact

coding dnSNVs using the same sample size. However, it is notable that the missense

coding category yielded only 27% power at the current sample size, slightly below the

highest-performing noncoding category: TURF brain-specific scores ( 32% power).

TURF brain-specific scores were estimated to reach 80% power at a sample size

of 10,000 families.

We note that if we were to instead use generic (non-brain-specific) TURF scores

for prioritization, over 50,000 families would be necessary to achieve 80% power,

highlighting the potentially profound effects of the choice of training strategy for

variant prioritization. In particular, we see that including data directly relevant to

the tissue and developmental stage under study offers a significant improvement for
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this application. This is underscored by the observation that generic TURF scores

( 12% power) underperformed the manually-curated fetal brain promoter category

( 13% power) even though generic TURF scores incorporate more annotations to

generate their prioritization scores. Even so, an estimated 37k families would be

required to reach 80% power for detecting enrichment of fetal-brain promoter muta-

tions, showing that neither of these annotation categories are particularly informative

in terms of ASD risk.

3.4.5 Improving annotation quality has more impact on empirical power than increas-
ing sample size

We wanted to resolve the question of whether a significant test result based on

a larger sample size would actually reflect a meaningful association between any of

these annotation categories and ASD. In order to further dissect the strength of as-

sociations between proband dnSNVs and ASD, we assessed statistical power for each

annotation category at a fixed sample size over a range of effect sizes. We defined

the effect size for an annotation category as the difference between the fractions of

proband and sibling dnSNVs within a given annotation category. The magnitude of

this difference is indicative of the strength of the association between an annotation

and ASD. A highly informative annotation category would be expected to associate

mostly with proband dnSNVs and only rarely with sibling dnSNVs, so “overlapping”

counts in the FET contingency table would be highly skewed toward the proband

column. The effect size, therefore, would be relatively large. By contrast, an unin-

formative classifier would associate randomly with proband and sibling dnSNVs; i.e.

the observed proportions of proband and sibling dnSNVs overlapping the annotation

category would be equal. Thus, the observed effect size would be very small. We

wanted to assess how informative our annotation categories actually are in differ-
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entiating between proband and sibling cohorts. More precisely, we wanted to ask,

if we could improve an annotation to make it more informative, how much more

information must it convey to achieve 80% power at the current sample size? We

interpreted this as an ersatz quality metric for each annotation category.

We evaluated how much we would need to inflate the effect size of each annotation

category by plotting curves relating statistical power to the proportion of excess in-

formation in probands relative to siblings in FETs. In this framework, zero effect size

is observed when both proband and sibling have equal proportions of dnSNVs over-

lapping a given annotation category. We then emulate the consequences of increasing

the effect size by increasing the proband overlapping proportion while holding the

sibling proportion fixed, thus artificially increasing the effect size of the annotation

category. By recalculating empirical power thusly over a range of effect sizes, we

can plot curves showing the necessary effect size increase to reach 80% power at the

current sample size (Figure 3.3B).

Consistent with our power analysis results, brain-specific TURF scores required

the smallest increase in effect size to reach 80% power, approximately 2.2%, or

roughly 150 more than the 6,828 we actually observed. This makes them somewhat

more informative than generic TURF scores, which would require a 3.2% increase

of dnSNVs overlapping the top 5% of scores, or 240 more dnSNVs than the 7,370

actually observed. However, both variant prioritization methods performed substan-

tially better than the manually-curated fetal brain promoter category, which would

require a 6.5% increase in information to achieve 80% power at the present sample

size, or 117 variants in addition to the 1,806 observed.
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Figure 3.3: A) Power analysis for detecting proband enrichment of different categories of de novo
SNVs. The black dashed line indicates our current sample size (1,917 quad families).
We have estimated the sample sizes necessary in order to detect association of dnSNVs
with ASD. We estimate a power of 97% when testing for enrichment of high-impact
coding dnSNVs in probands at our current sample size. The missense coding category
yields a power of 27%. Brain-specific TURF scores (32% power) would require 10,000
more families to achieve 80% power. Over 50,000 families would be necessary for generic
TURF scores (12%) to reach that same 80% threshold. The fetal brain promoter cate-
gory slightly outperforms the generic TURF scores at 13%. B) Generic TURF starting
power = 0.12, achieves 80% at 3.2% increase ( 240 additional variants, 7,370 observed).
Brain TURF starting power = 0.32, achieves 80% at 2.2% increase ( 150 additional vari-
ants, 6,828 observed). Fetal brain starting power = 0.14, achieves 80% at 6.5% increase
( 117 additional variants, 1,806 observed). C) Observed counts of proband (blue bars)
and sibling (red bars) de novo SNVs prioritized with three different noncoding annota-
tions. We observed no significant difference between random counts (green bars) and
counts in probands or siblings (Z-scores: fetal brain promoters = 0.53, TURF generic
= 0.48, TURF brain = 1.16, permutation tests).

3.4.6 Comparison of current annotations to random permutations

Given the results of both the power and effect size analyses, we can conclude

that the most-informative noncoding annotation category among those tested were
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TURF brain-specific scores. However, even though only a modest increase in either

sample size or effect size was necessary to get to 80% power, the actual enrichment

test still failed to reach significance. All others performed significantly worse: ex-

treme increases in either sample or effect sizes would be necessary to reliably detect

enrichments. This led us to question whether these annotation categories actually

conveyed significantly more information than random expectations.

For each of the three noncoding annotation categories, we modeled the expected

random overlap of proband and sibling dnSNVs with the given annotation category

by randomly shuffling “proband” and “sibling” labels across all dnSNVs for 10,000

permutations. The mean number of overlapping proband and sibling dsSNVs across

permutations were then compared to the applicable observed counts (Fig 3.3C).

Z-scores were calculated to quantify the degree of departure between the observed

count and its random expectation. Z-scores exceeding 2.0 were considered significant.

However, the observed Z-scores for all categories were well under this threshold. No-

tably, TURF brain-specific scores, which performed the best in our other tests, was

the only annotation category with a Z-score exceeding 1 ( 1.16). By comparison, the

high-impact coding category produced a Z-score of 3.57 using these methods. There-

fore, we can conclude that even the best of our annotation categories are relatively

uninformative in regards to ASD risk or etiology.

3.4.7 dnSNV calls show variable quality across studies

We have seen the limitations of sample size and variant effect size across several

studies conducted by other research groups who have used the same raw data from

the Simons Simplex Collection to study noncoding mutations in ASD. Interestingly,

while all these studies are subject to the same limitations, their results appear to vary

substantially in terms of the specific associations found, with little reproducibility
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between groups, even when testing methods were similar.

To date, only one study has reported a robust statistical enrichment in a noncoding

category [155]. The authors use a disease impact score (DIS) to prioritize dnSNVs

relative to their impact on brain disease. This method is an extension of DeepSea

[156], a machine-learning model that assigns functional scores to individual variants

based on overlap with functional annotations from ENCODE and other sources.

DIS extends this model by way of training on a curated set of known features related

to brain disease phenotypes. The authors found significant evidence for higher DIS

scores in probands compared to siblings (p=.009, one-sided Wilcoxon rank sum test).

We wanted to know whether DIS scores would yield a significant enrichment within

our data as well, so we tested our own set of dnSNVs but found no enrichment using

either FET (p=0.214, one-sided FET) or Wilcoxon Rank-sum tests (p=.071, one-

sided Wilcoxon rank-sum test). This prompted us to investigate the effect of the

specific set of dnSNVs on test results. We investigated this by testing for association

of DIS scores within the union, intersection, and disjoint fractions of our dnSNVs

and those from Zhou et al. For each of these fractions, we repeated the Wilcoxon

rank-sum test as before, making note of whether a significant difference was apparent.

The only significant result we observed was for the intersection of both datasets

(p < 0.0026, one-sided Wilcoxon rank-sum test), which actually showed stronger

evidence for enrichment than Zhou et al. originally reported (p=0.009, one-sided

Wilcoxon rank-sum test). By contrast, neither the union (p=.083, one-sided Wilcoxon

rank-sum) nor disjoint datasets produced a significant result, with the lowest per-

formance observed for the disjoint sets (This study: p=0.99; Zhou et al.: p=0.73).

This suggests that the quality of dnSNV calls varies, with the highest-quality calls

also being the most reproducible.
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We further tested this hypothesis by intersecting our variants with those from

the previously-mentioned four other groups who have used their own methods to

identify dnSNVs in the SSC cohort (Fig 3.1c). We filtered down our set of dnSNVs

by keeping only those which appeared in at least two of these other groups’ published

sets. Once again, performing the Wilcoxon rank sum test on the intersection set of

dnSNVs revealed a significant difference in DIS between probands and siblings (p =

.02837), albeit at lower confidence compared to the intersection between our dnSNVs

and those from Zhou et al. We speculate that this decrease results from the decrease

in overall sample size incurred due to the smaller absolute size of the dnSNV datasets

in other studies.

Altogether, these results suggest that intersecting variants across sets of calls

leads to an overall increase in quality among the dnSNV calls. We postulate that

the disjoint sets of variants from across studies are enriched for false-positive variant

calls, which may arise due to sequencing errors, genotyping errors, or other unknown

sources. If not filtered out, these false-positive dnSNVs may dilute the signal from

true dnSNVs sufficiently to prevent a significant test result even when an annotation

is genuinely associated with ASD.

3.5 Discussion

Prior to this analysis, several groups have used data from the SSC to seek associa-

tions between noncoding dnSNVs and ASD, with all but one yielding no statistically

significant enrichments. Our results on three different noncoding annotation cate-

gories were consistent with their results in that we found no significant associations.

Our testing methods reproduced previously-demonstrated enrichments of proband

dnSNVs within high-impact coding annotation categories. However, it was not im-
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mediately clear if we observed no noncoding enrichments due to insufficient sample

size, as suggested by the authors of most previous studies, or the inability of the an-

notations we chose to reliably differentiate between regulatory and neutral noncoding

variants.

In order to systematically investigate these possibilities, we set out to objectively

evaluate how informative current annotations are in regards to differences in func-

tional effects of dnSNVs in probands vs siblings. This allowed us to compare different

strategies in terms of their effects on our ability to find potentially-revealing genomic

associations. Specifically, we explored the impact of sample size, choice of annota-

tions/variant prioritization methods, and choice of variant sets, on our power to

detect associations between de novo noncoding genetic variation and ASD.

Based on observed dnSNV counts in probands and siblings, our power analysis

suggests at least 10,000 quad families would be necessary to achieve a power of at

least 80% to detect an association between our best-performing noncoding annota-

tions category and ASD. Although autism cohorts are constantly growing, this is

approximately five times as many quad families than are currently available in the

SSC. More importantly, though, the necessity of such a large number of families

suggests a very small effect size, begging the question of whether such effects are

meaningful. We show evidence that, in fact, current annotations are only slightly

more informative than random expectations. Therefore, the strategy of increasing

sample size alone is likely to lead to erroneous conclusions.

What we see from this is that it is not only the sample size that is limiting our

ability to detect the effects of the dnSNVs, but also their effect sizes. This suggests

that certain annotations categories may not sufficiently capture meaningful differ-

ences between probands and siblings: i.e., the annotations used are unable to reli-
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ably differentiate between noncoding dnSNVs that are neutral (without regulatory

effects) and those capable of disrupting regulatory function. This may be amplified

particularly in phenotypically heterogeneous disorders such as ASD. Therefore, an

insignificant test result may not actually reflect lack of signal, but that the signal has

been attenuated by high-scoring dnSNVs that actually lack functional significance.

This effect may be particularly problematic if we rely solely on our intuition when

choosing annotation categories. This is demonstrated by the poor performance of

the fetal-brain-promoter category in this study; even though it is based on relevant,

tissue-specific annotations, it still fails to produce a significant association. Thus, the

most important choice when designing an experiment is likely which annotation cat-

egory/ies and/or prioritization score(s) to use, keeping in mind the need to minimize

multiple-testing burden. Werling et al. illustrated the importance of multiple-testing

burden in a study that included a comprehensive set of >13k annotation categories,

among which no significant associations were found after correcting for multiple-tests

[150].

Accordingly, it is likely that improving annotations and prioritization scores, par-

ticularly in relation to their relevance to the specific tissue/disorder under study,

is more likely to yield meaningful performance gains than increasing the number of

available families for study. For example, we note that brain-specific TURF scores

performed significantly better than generic TURF scores, highlighting the impor-

tance of using tissue-specific annotations when possible. We estimate nearly five

times as many families would be necessary to achieve a power of 80% when using

the generic TURF scores compared to tissue-specific TURF scores. Furthermore,

DIS scores, which are specifically trained on disease-related features, outperformed

TURF brain-specific scores even though the underlying training feature sets share
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substantial overlaps. A clear limitation when investigating the impact of noncoding

mutations in ASD is there are a great deal of ways with which we can choose to

annotate and prioritize variants. In theory, we isolate the variants with evidence of

being functionally relevant so that we can then use that subset of variants to test for

genotype-phenotype associations. However, depending on the choice of annotations,

the sets of variants being tested can be very different from each other, which would

have downstream consequences on the observed results.

Of the variant prioritization methods we implemented in this study, we achieved

the greatest power when using tissue-specific TURF scores. Using a combined-

annotation scoring system, such as TURF, comes with advantages compared to using

individual annotations. For one, it minimizes the multiple-testing burden because

multiple annotations are already built into the scoring system without having to

test them individually. Additionally, combined-annotation scoring systems also help

eliminate any bias introduced by the manual selection of annotations. Manual selec-

tion of annotations relies on the investigator’s pre-conceived notions of which genomic

regions may or may not be relevant or functional, and therefore has the potential

to introduce irrelevant data or miss sources of true signal. Previous investigators

who have focused on a few specific genomic regions (e.g. promoters, UTRs) have

themselves pointed out that not all possible classes of noncoding regulatory elements

were considered in their study [141], which could allow for other important regions

to be missed. Zhou et al. have provided further evidence of the utility of combined-

annotation scoring systems in their work in which they detected a significant burden

of mutations affecting transcriptional and post-transcriptional regulation in ASD

probands as compared to their unaffected siblings, using their Disease Impact Score

[155]. We note that some differences in results between our group’s work and that of
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Zhou’s could be attributed to the fact that their prioritization scoring method was

trained using a set of mutations specifically associated with disease from the Human

Gene Mutation Database, while TURF was trained on SNVs associated with general

regulatory function.

Different methods for identifying dnSNVs will yield different lists of mutations,

even when starting with the same sequencing data or variant calls. These differ-

ences in lists between research groups can negatively affect reproducibility, and in

fact we provide evidence that when working with the intersection of dnSNVs from

other groups we can improve the overall ability to detect associations. When com-

paring the sets of mutations identified by different groups, including our own, it is

encouraging to see that many of the same dnSNVs can be reproduced across groups

(Fig 1c). We can reasonably expect to have higher confidence that the intersections

of the sets represent true dnSNVs. Indeed, the fact that the intersection of our

dataset and Zhou et al. yielded a stronger enrichment for DIS scores than either

dataset alone suggests that the intersection is itself enriched for regulatory variants

as compared to variants in the disjoint set. This is consistent with the possibility

that variants discovered by only one group may be more likely to be false positives.

We do note that some differences in dnSNV sets may be attributed to the fact that

some studies included families that others did not, and there was little consistency in

dnSNV identification methods across studies. Taking this into account, we suggest

that improved methods of dnSNV identification and validation are likely to generate

substantial improvements.

We were surprised to note that the use of Wilcoxon rank-sum tests instead of FET

had disparate effects when using TURF brain vs DIS scores. Specifically, TURF brain

scores performed better with FET (FET p=0.5; Wilcoxon rank-sum p=0.89) whereas
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DIS performed better with Wilcoxon rank-sum (Wilcoxon rank-sum p=0.071; FET

p=0.214). This suggests that different prioritization scores may include biases that

affect our ability to detect associations with a phenotype of interest. For example,

while dnSNVs scoring within the top-5% of TURF brain-specific scores are modestly

(but not significantly) enriched in probands, proband dnSNVs do not systematically

rank higher than sibling dnSNVs based on their Wilcoxon rank-sum test results. By

contrast, the reverse is true for DIS. While it is not immediately clear what may be

responsible for the difference, it raises the question of whether a single significant test

result can be considered definitive evidence of correlation or whether hidden structure

may sway test results if only a single testing method is used, or whether disparate test

results reflect shortcomings in the quality of a given annotation. This suggests that it

may behoove researchers to compare results across different testing methods, giving

preference to annotations that show consistent performance regardless of method.

Taking all these findings into account, we can make several recommendations for

testing associations between genetic disorders and rare de novo variants:

1. Start with a high-confidence set of dnSNV calls, possibly leveraging intersections

with other published datasets.

2. Select annotations and/or training features relevant to the tissue and/or phe-

notype of interest. Our results showed that brain-specific TURF scores outper-

formed generic TURF by a wide margin. Likewise, DIS outperformed brain-

specific TURF in average score rank in probands and vs siblings, the difference

being that the DIS model was trained on disease-specific regulatory variants,

not general regulatory variants.

3. Do not rely on intuition alone in selecting annotations. Currently available
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machine-learning models do a better job of isolating signal from noise among a

large and varied set of individual annotations.

4. Improving prioritization scores rather than increasing sample size is more likely

to yield positive results. In particular, choosing training data that is relevant

to the tissue or phenotype under study is of critical importance.

3.6 Publication

The manuscript of the work presented in this chapter has been submitted and is

accessible on bioRxiv [23]: Christopher P. Castro, Adam G. Diehl, Alan P. Boyle.

Challenges in screening for de novo noncoding variants contributing to genetically

complex phenotypes



CHAPTER IV

De Novo Browser

4.1 Abstract

This dissertation presents an annotated list of 267,000 de novo single-nucleotide

variants from 1,917 quad-structure families in the Simons Simplex Collection (SSC).

I have developed a web application database called the De Novo Browser to allow

for a straightforward way to explore the data. The variants can be explored in table

form and are sortable by a variety of features and annotations. Additionally, one may

filter the variants to be displayed by combinations of those features. Functional pre-

diction scores, evolutionary conservation scores, and overlap with genomic features

are among the annotations included. This database can help researchers identify

genetic markers associated with ASD, as well as providing insight into the genetic

basis of ASD. The database is a valuable resource for the research community, as it

can save time and effort from repeating the same work, or from searching through

multiple different sources for the data they need.

4.2 Introduction

The work I have presented in this dissertation has resulted in identifying, an-

notating, and classifying approximately 267,000 de novo single-nucleotide variants

(dnSNVs) from just over 3,800 individuals participating in the Simons Simplex Col-
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lection (SSC) [40]. Many of these variants have also been identified across other

autism genomics studies, highlighting their likely importance. While the focus of

my work has been on autism spectrum disorder (ASD), genes harboring de novo

variants have been shown to overlap between several neurodevelopmental disorders

[135]. Therefore, much of the data on genes and mutations I have curated could

also be relevant to related studies and either serve as a supplement to other existing

data, or save researchers the time and effort of repeating the work I have already

done here. To that end, in an effort to make the work I have done more accessible

to the rest of the scientific community, I have developed a web application database

which can be used to explore the comprehensive list of all annotated de novo SNVs

from my work, called the De Novo Browser.

Through the De Novo Browser, researchers may make comparisons between indi-

viduals or families, cases vs controls, and apply a variety of filters to displaying the

variants. The aim of the database is to allow for a straightforward way to explore

the large amount of data, in whichever way is of the most interest to the researcher.

Whether the focus is on ASD, or de novo mutations in general, De Novo Browser

provides the research community with an accessible tool which can be used to provide

insights on patterns of de novo mutations in humans

4.3 Methods

4.3.1 Data collection and processing

The dnSNVs listed in the database are derived from whole-genomes of 3,834 indi-

viduals participating in the SSC , of whom 1,917 have an autism diagnosis. Variant

calling was originally performed by the Centers for Common Disease Genomics and

the New York Genome Center. I processed VCF files containing the raw variant

calls through pipelines for genotype and quality score recalibration using the Genome
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Analysis Toolkit (GATK) in order to improve the quality and only retain those of the

highest quality. I filtered variants down to high-quality autosomal SNVs and lifted

them all over to the hg19 genome build. Finally, I used a custom script to identify

de novo variants in each family by identifying variants present in the probands, but

absent from the unaffected sibling and both parents. I repeated this process to also

identify de novo SNVs in the unaffected siblings.

4.3.2 Annotations

Three of the functional prediction scores provided in the De Novo Browser are

based on the RegulomeDB framework: the RegulomeDB v2.0 rank score[18], Score

of Unified Regulatory Features (SURF) [34], and Tissue-specific Unified Regulatory

Features (TURF)[35]. The rank score is calculated using the original RegulomeDB

algorithm, based on overlap with DNase hypersensitive regions and predicted tran-

scription factor binding sites. Scores will range between 2 and 7, with lower-number

scores representing a larger predicted regulatory variant effect. Scores of “1” will

not be present in this set of dnSNVs because such a score requires the presence

of an eQTL. SURF builds upon the existing annotations used for calculating rank

scores by implementing a machine-learning based framework which combines fea-

tures from RegulomeDB and DeepSEA [18, 156], incorporating data from massively

parallel reporter assays to predict the effect of variants on expression in promoters

and enhancers. SURF scores range between 0 and 1.0, with scores closest to 1.0

representing variants with the largest predicted effects. Lastly, TURF extends on

SURF by training the model on tissue-specific functional genomic annotations. This

provides a score ranging from 0 to 1.0 for a specific tissue of interest. For the web

application, I have provided brain-specific TURF scores.

Other tools that I used for variant annotation include Combined Annotation De-
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pendent Depletion (CADD) [114], Variant Effect Predictor (VEP) [89], phastCons

[89, 127], SIFT [128], and PolyPhen [6] . CADD scores predict the deleteriousness

of variants by integrating multiple annotations and conservation information. In

the web application, I have provided the raw CADD scores as well as Phred-scaled

scores, with higher scoring variants more likely to be deleterious. SIFT and PolyPhen

were developed primarily for predicting the effects of amino acid substitutions, and

therefore are more appropriate for analyzing coding variants.

To determine overlap of dnSNVs with enhancer and promoter regions, I used a

combination of ChromHMM and DNase-seq data from the Roadmap Epigenomics

Project [117]. All data used was derived from fetal brain tissue. Once fetal brain

enhancers and promoters were identified, I intersected their loci with those of the

dnSNVs. Instances of overlap are noted in the browser.

To identify overlap of dnSNVs with protein-coding gene promoters I used GEN-

CODE release 19 gene annotations [43]. I defined promoters as the regions within

1,500bp upstream of gene TSS’s. In cases where dnSNVs overlapped with those

regions, the gene name of the respective TSS is listed in the browser table.

4.3.3 Web application

The De Novo Browser can be accessed at

https://boylelab.shinyapps.io/denovo_app/

4.4 Results

4.4.1 Browser interface

The De Novo browser contains information for 266,865 de novo SNVs from 1,917

quad-structure families. Each family consists of one individual diagnosed with ASD,

and one unaffected sibling. Variants in the database are listed for the 3,834 probands
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and neurotypical siblings, and are restricted to autosomal variants. The variants can

be explored in table form and are sortable by a variety of features/annotations (Fig

4.1). Additionally, one may filter the variants to be displayed by combinations of

those features.

For each variant entry, the first seven columns of the table contain information

on the variant’s coordinates (chrom, start end), alleles (ref, alt), and the individual

from which the variant was derived (SSC family ID, proband/sibling). The remain-

ing columns for each entry contain a variety of annotations, including functional

prediction scores (as described in Methods), evolutionary conservation scores, and

overlap with genomic features.

Figure 4.1: Sortable table of all annotated dnSNVs from the Simons Simplex Collection

The browser table can be sorted by each feature column, and there is a search

bar provided which can be used to search for specific feature entries, including gene

names. By default all 266,865 dnSNVs are included in the table. However, users

may choose to filter the table down according to feature options using drop-down
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menus on the left side of the table. For example, one may choose to only view

dnSNVs pertaining to probands, and choose the “proband” option from the “Child”

drop-down menu. Five menus show categorical variables: “Child”, “RegulomeDB”

and “VEP” (Variant Effect Predictor), “Fetal brain enhancer”, and “Fetal brain

promoter”. All available options for those features can be viewed by clicking on the

menu. For the enhancer and promoter menus, the user should select “yes” if they

wish to display dnSNVs overlapping with those regions. The remaining options are

numerical annotations: “TURF”, “Brain-specific functional score”, “CADD score”,

and “phastCons score”. For these numerical annotations, different thresholds are

provided and users may select to only view dnSNVs scoring in the top quantile of

their choosing for the respective annotation. In the case of wishing to apply multiple

filters at the same time, options from different drop-down menus can be selected

together (Figure 4.2

Figure 4.2: Page displaying dnSNVs meeting specific criteria based on the drop-down menu selec-
tions. Here we can see we’ve selected to only view “proband” dnSNVs, scoring in the
top 1% of the “Brain-specific functional score”, and classified as a “regulatory region
variant” by VEP. This reduces the list of dnSNVs to 192 variants of interest.
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Another feature of the De Novo Browser is the ability to compare counts of

dnSNVs in probands vs. unaffected siblings. Clicking on the tab above the table

labeled “Comparison of proband vs. sibling” displays a 2x2 matrix of counts based

on the filters selected from the drop-down menus (Figure 4.3). In addition to dis-

playing the counts of dnSNVs meeting the selected criteria, the browser also displays

the count as a proportion of the total number of dnSNVs in probands and siblings

respectively. A Fisher’s exact test is also performed to test for enrichment of the

selected subset of variants in probands, returning a p-value. When menu selections

are changed, counts will automatically be updated and the enrichment test will be

performed using the updated counts.

Figure 4.3: Page displaying dnSNV count comparison between probands and sibling based on user-
selected filters from the left panel. Results from a Fisher’s exact test are also displayed,
providing a p-value for enrichment of dnSNVs in probands compared to siblings. In
this example, we see a comparison of counts for dnSNVs classified as stop-gains. The
matrix tells us there are nearly twice as many of these mutations present in probands
compared to siblings (120 vs 62), and the result of the Fisher’s exact test tells us this
is a statistically significant enrichment in probands.
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Figure 4.4: Example enrichment test result from De Novo Browser. Choosing to view only dnSNVs
overlapping with fetal brain enhancer regions, the counts matrix shows us the distri-
bution is fairly even between probands and siblings. The result of the enrichment test
confirm there is not a statistically significant enrichment of dnSNVs overlapping fetal
brain promoters in probands.

4.5 Discussion

The De Novo Browser provides a simple way to explore annotated de novo single-

nucleotide variants identified in neurotypical individuals as well as individuals diag-

nosed with ASD. The web application allows users to filter variants by a number of

different annotations, including functional scores from the RegulomeDB framework

used for identifying variants with gene-regulatory potential. Although the original

motivation for curating this list of dnSNVs was to identify variants in noncoding

regions, the browser allows for researchers to to view variants that may have impor-

tance in other regions of the genome.

My hope is that this resource can save other researchers time and effort by pro-

viding a centralized location to access valuable variant data from one of the largest

whole-genome sequencing ASD cohorts currently available. This not only can save
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others the time of repeating the same work, but also saving the effort of searching

through multiple different sources to access data they need. For researchers who

have their own data, the De Novo Browser can provide additional data with which

to make comparisons.

This database can facilitate the discovery of new genetic markers and hopefully

help provide insights into the genetic basis of ASD. In addition to helping identify

variants potentially associated with ASD, the De Novo Browser can help in discov-

ering associated genes. Through this, researchers may gain a better understanding

of reasons for the development of ASD, which can potentially improve the ability

to diagnose it earlier in a child’s life in order to provide them with the appropriate

resources



CHAPTER V

Conclusion and Future Direction

5.1 Summary

The focus of this dissertation was to investigate the contribution of genetic variants

to ASD. Most estimates for the heritability of ASD fall in the range of 50-90%,

supporting a strong genetic basis [48, 121, 140, 12]. Past studies have shown a

substantial contribution of common genetic variants, often with additive effects, but

studies have failed to show strong evidence of associations from individual variants.

Further, most associations from genetic variants have been from coding regions of the

genome, despite nearly 90% of phenotype-associated SNPs identified by GWAS being

found within noncoding regions [87]. This represents a large portion of the genome

which remains to be explored for de novo SNVs (dnSNVs) associated with ASD.

The work here presents my approach for identifying dnSNVs in an autism cohort

and applying several methods to prioritize those with the potential for noncoding

regulatory activity. I have tested for associations between the noncoding dnSNVs

identified here and ASD-risk. I have also addressed existing challenges in screening

for de novo noncoding variants contributing to ASD and how they might be overcome

in the future.

85
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5.2 Future directions

In Chapter 2, I demonstrated that an enrichment of functional noncoding variants

was not detectable in probands compared to siblings. I took several approaches to

prioritizing variants in order to isolate those most likely to affect gene regulation,

including the incorporation of brain-specific annotations. Despite testing a variety of

classification methods, any excess of categories of dnSNVs never maintained statisti-

cal significance following multiple-testing correction. In Chapter 3, I explored factors

that could be limiting our ability to detect ASD-associated noncoding dnSNVs. Be-

low I outline future changes to the field of ASD genetics that could strengthen future

studies and improve our chances of successfully discovering noncoding biomarkers.

5.2.1 Larger autism cohorts

Power analyses revealed that when focusing on this rare subset of noncoding

variants, this type of study is unpowered at the sample size of 1,917 families I included

here. Considering a desired power threshold of 80%, this study achieved little more

than 30% power in the best scenario. To contrast, when testing for enrichment of

high-impact coding dnSNVs, the power was estimated to be 97%. Although the

necessary sample size to achieve 80% for noncoding dnSNV tests varied, depending

on prioritization method, power analyses indicated at least 10,000 families would be

required if one were to conduct this study in the same way.

Over the years, ASD cohorts have continued to grow larger. At the time of

initiating this work, the Simons Simplex Collection provided the largest collection

of whole-genome sequencing for an ASD cohort. Since then, the Simons Powering

Autism Research (SPARK) has been established, with the goal of providing genomic

data for nearly 72,000 individuals with ASD and their families [132]. While this is
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a large number of individuals, WGS data is only available for 3,227 autistic indi-

viduals, of the 11,545 total whole-genomes available in SPARK, with the remaining

individuals only having WES available. Still, the existence of the SPARK cohort

provides encouragement that cohorts will continue to grow in size. As sequencing

costs continue to go down and technology continues advancing, it is only a matter of

time before cohorts include WGS data for tens of thousands of autistic individuals.

This will be an important step toward establishing sufficiently powered studies of

rare noncoding variants.

5.2.2 Improvements to noncoding annotations

I showed in Chapter 3 that, although having a large enough sample size is im-

portant, improving annotation quality is also necessary for detecting associations

between proband dnSNVs and ASD. The difference that annotations can make was

evident in the comparison of tissue-agnostic prioritization scores to brain-specific

TURF scores. Given the calculated effect sizes of dnSNVs annotated with each

method, an estimated 50,000 additional families would be necessary to achieve 80%

power when using tissue-agnostic prioritization scores for noncoding dnSNVs, com-

pared to 10,000 families that would be necessary when using brain-specific annota-

tions. This highlights the importance of selecting annotations derived from relevant

tissues.

While brain-specific TURF scores were still unable to achieve statistical signifi-

cance in terms of enrichment of dnSNVs in probands, one study has been successful in

detecting significant enrichment of noncoding dnSNVs using a similar scoring model

[155]. In their study, Zhou et al. applied their deep-learning-based framework to

generate Disease Impact Scores (DIS) to prioritize dnSNVs. Much like the TURF

model, their model relies on identifying overlap with functional annotations based on
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ENCODE. Using their model, the authors found higher DIS in probands compared

to siblings at a statistically significant level (p=.009).

When seeking for the difference between TURF and DIS that could potentially be

making the difference between enrichment tests being significant or not significant,

one thing that stands out is that DIS is trained on SNPs specifically associated with

disease from the Human Gene Mutation Database [134]. This is an indication that

while TURF is successful at prioritizing regulatory variants in a more general manner,

perhaps the additional data from disease-associated SNPs that is being incorporated

into DIS is important when seeking associations to ASD.

Altogether, it is evident that as more relevant data is included in future prioriti-

zation methods, be it tissue-specific annotations or known disease-related variants,

annotations will become increasingly effective at separating out truly associated vari-

ants.

5.2.3 Combining data sets and studying multiple classes of variants together

In Chapter 2 I gave an overview of the discovery of different classes of variants

associated with ASD. With a better understanding of common variants, and variants

in coding regions, an existing gap in our knowledge remains in understanding the role

of rare noncoding variants in ASD. This was the motivation for restricting the work

done here to noncoding dnSNVs. However, while it is the case that there are some

rare mutations of large effect driving ASD phenotypes, it has also been shown that

a large majority of genetic variants associated with ASD are common variants with

additive effects. It has been estimated that the combined effects of many common

variants working together could account for almost 50% of the genetic basis of ASD

[48]. Therefore, restricting analyses to one specific type of rare variation, likely leaves

a study susceptible to missing many other driving genetic factors.
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Following this logic, in 2022, researchers used data from the SPARK cohort to

identify de novo coding variants as well as rare inherited loss of function variants

[157]. By integrating both classes of variants together, the authors were able to

identify 60 ASD-associated genes, five of which had not been previously reported. In

the same vein, another study conducted during the same year identified 74 risk genes

by combining de novo and inherited variants in addition to incorporating variants

from previous studies [24]. Seven of the genes they identified had not been previously

reported in any study.

Studies of several individual classes of genetic variation have bolstered our under-

standing of the genetic heterogeneity of ASD. Although we cannot yet fully under-

stand even the individual contribution of each class of variant, it is clear that many

different types of variation are simultaneously involved. As more variant lists are

published and made publicly available, it will allow researchers to study their effects

in a combined manner and detect enrichments that may have been otherwise missed.

5.3 Concluding Remarks

In this dissertation I have established a pipeline for the detection of de novo

SNVs using variant calls derived from whole-genome sequence data from the Simons

Simplex Collection. The set of variants I curated revealed an enrichment of protein-

coding dnSNVs predicted to lead to loss-of-function. I annotated and classified these

dnSNVs with the goal of identifying a subset of noncoding dnSNVs associated with

ASD. Ultimately, no enrichments of dnSNVs in probands within noncoding categories

were detectable following multiple-testing corrections. My examination into what

factors may be preventing the detection of noncoding enrichment indicate that, in

addition to larger sample sizes, more precise tissue-specific annotations would be



90

necessary. I have developed a web application, the De Novo Browser, to share some

of the work I have done with the research community in an effort to facilitate access

to relevant data for future studies. As ASD cohorts continue to grow in size and

autism classification methods and noncoding functional annotations improve, further

progress in our understanding of the true effects of noncoding de novo SNVs can be

made. It is my hope that the work I have presented in this dissertation can shed

some light on the current state of research in the genetic basis of ASD and contribute

to the path forward.
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