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Abstract 

 

Fast-food restaurants represent a significant sector of the retail industry, with consumers 

spending over $310 billion in a single year, that has shown consistent yearly average growth of 

6% over the last 10 years. However, there is a surprising scarcity of studies focused on the 

replenishment logistics of this sector. Considering how replenishment logistics are critical to any 

fast-food company success and how costly the logistical challenges in this area can be, it makes 

this a particularly interesting area of study. The work discussed in this dissertation addresses this 

gap by developing quantitative models and decision tools focused on the replenishment logistics 

in the fast-food industry.  

We introduce the store replenishment problem (SRP), which is concerned with 

minimizing the logistics costs associated with replenishing stores in a network over a fixed time 

horizon. The objective function of the SRP was defined in collaboration with a supply chain 

group at a well-known fast-food chain to include four critical cost components associated with 

the replenishment logistics: transportation, labor, fleet size, and route-time overage costs. We 

formulate the SRP as a mixed-integer program using a set-partitioning approach. The 

formulation uses a set of pre-generated potential routes as input and then concurrently 

determines fleet size, delivery routes, and chooses which routes are going to be completed by a 

single-driver or a team of two. Using real-world data, we show that the proposed heuristic 

outperforms the current industry baseline and that the multi-component objective function 

obtains superior solutions to those obtained with one-dimensional objectives, such as minimizing 

only the travel distance or the fleet size.  



 xiii 

The second model presented focuses on a generalization of the SRP, where building a 

flexible delivery schedule is included as a decision variable (SRP-FS). This flexible schedule 

determines both the timing and the quantity of the deliveries at each store while observing the 

storage capacity of the stores. The objective of the SRP-FS is also to minimize replenishment 

costs and uses the same multi-component cost structure as the SRP. We developed a two-step 

simulated annealing metaheuristic, that incorporates an adjusted Savings Algorithm to solve the 

vehicle routing component. A series of self-generated test problems and real-world data from our 

industry collaborator are used to evaluate the performance of the heuristic. The results show that 

the proposed metaheuristic is capable of finding good solutions in reasonable times and that 

significant cost reductions can be obtained by introducing a flexible delivery schedule.  

The last model discussed in this dissertation is concerned with the impact of the store 

network composition on the SRP. Due to the nature of the fast-food industry, store locations are 

not uniformly spread through regions and can result in areas with high density of stores areas 

with relatively isolated stores in remote locations. This mixed composition in the store network 

can present a logistical challenge for decision-makers when planning store replenishment routes. 

We propose a quantitative model that exploits the clustered nature of the store network into the 

solution approach. Using a clustering heuristic, we are able to simplify the decision space of the 

problem and formulate the SRP as a bin-packing problem to assign clusters to routes. Our 

computational results show that the proposed heuristic outperforms the original SRP method in 

almost every test instance, particularly in instances based on real-world data from our industry 

collaborator.  
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Chapter 1  

Introduction 

The replenishment function, in its most general form, presents a costly logistic challenge 

for most supply chains (Akkerman et al. 2010). This is particularly critical in the retail industry, 

where an effective store replenishment process is needed to ensure the success of companies by 

allowing costumer access to their products. Fast-food restaurants represent a significant sector in 

the retail industry, with the USDA (2018) reporting that consumers spent over $310 billion in 

2017 alone, with an average consistent growth of 6% year to year. While food supply chains 

have been extensively studied in the literature (Lemma et al. 2014), there is a surprising scarcity 

of studies focused on replenishment logistics in this large sector of the industry. This dissertation 

is intended to address the above gap by developing quantitative models and decision tools to 

manage the replenishment logistics in the fast-food industry.  

 Fast-food store networks are often composed of a large number of stores spread out 

across multiple regions, and in some cases multiple countries. Popular fast-food chains such as 

those under the Yum! Brands umbrella have thousands of locations worldwide. In the US alone, 

KFC operates over 4,000 stores, while Taco Bell reports 6,611 locations (Yum! Brands, no date). 

Due to the size of the above networks, and the need to maintain inventory regularly and 

consistently available at all the stores, many of the fast-food companies operate (or have 

contracts with) regional distribution centers (DCs) out of which all the stores in a given region 

are replenished on a regular basis. While there are different business models under which fast-

food companies manage their replenishment logistics, a common approach is for the 
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replenishment logistics to be coordinated centrally by their supply chain group. The work 

discussed in this dissertation is based on such an approach and is concerned with the challenges 

involved in managing the replenishment logistics for a given region with a known DC and 

network of stores.   

A summary of each chapter and its focus are presented as follows. In Chapter 2 we 

formally define the Store Replenishment Problem (SRP), which is the primary focus of this 

dissertation. The SRP objective is to minimize the overall replenishment cost by finding an ideal 

set of routes to satisfy the (known) store demands over a (known) planning horizon, given a 

fixed delivery schedule, considering both the fleet size and single-driver versus team routes (two 

drivers). The objective function of the SRP was developed jointly with our industry collaborator 

(a well-known and large fast-food chain) and formulated to include four key cost components 

that are critical to the overall replenishment costs: cost due to distance traveled, labor cost, fleet 

size costs, and the additional cost incurred by those routes that may exceed their time limits.  

The multi-component nature of the cost function is one of the key contributions of this 

chapter. To the best of our knowledge, the SRP is the first problem to incorporate single vs team-

driver routes, fleet sizing, labor costs, and route-time overage costs, all concurrently, in making 

the routing decisions. Through the computational results we present, we are able to show how 

the above SRP objective function outperforms one-dimensional objective functions (such as 

minimizing only the travel distance) that have frequently been used in routing problems. A 

second contribution of this chapter are the insights obtained from our results, using real-world 

data from our industry collaborator, and sensitivity analysis that can be critical for logistics 

managers. We developed a solution approach for the SRP that generates a set of potential routes 

which are then used by a mixed-integer formulation of the SRP as input to find a solution that 
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minimizes overall costs. While being a heuristic approach, it allows for real-world problems to 

be solved in practical times with commercial solvers like CPLEX.  

Chapter 3 is concerned with extending the SRP to include the delivery schedule itself as a 

decision variable. That is, the SRP with flexible schedule (SRP-FS) generalizes the SRP by 

relaxing the assumption that the delivery schedule is given and fixed, while still considering the 

other decision elements (fleet size, routing, single/team routes) and using the same multi-

dimensional objective function. While introducing a flexible schedule can have potential cost 

benefits to the SRP, it significantly increases the complexity of the problem. To gain insight into 

the problem we first studied a simplified version of the model, where only direct deliveries (that 

is, out-and-back trips) are allowed for each store. The near-optimal heuristic approach we present 

for the direct-delivery version is then used to build an initial solution for the more complex 

milkrun version of the problem (where each truck visits two or more stores). To address the 

increased complexity of the SRP-FS, we developed a two-step simulated annealing metaheuristic 

that in each iteration first builds a delivery schedule and then evaluates its corresponding routes 

until a good solution is identified. The introduction of the SRP-FS and the proposed solution 

method is the main contribution of Chapter 3. To the best of our knowledge, the SRP-FS is the 

first study to incorporate this particular set of decision variables and cost components 

simultaneously. Using real-world data, we are also able to assess the cost benefits of introducing 

a flexible schedule when compared to the current industry baseline.  

In Chapter 4, we study the impact of the location of the stores in the network and exploit 

store-clustering in solving the SRP. In the fast-food sector, the decision of where to locate the 

stores is often based on customer demand, local trends and competition, and the number and 

location of existing stores in the area. Due to the variability in these factors, store locations are 
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often not uniformly spread through the region, resulting in areas with high density of stores, 

while other areas contain only a small number of stores (or sometimes individual stores) in 

relatively remote locations. Such a mixed composition of store locations in the network presents 

a logistical challenge when planning replenishment routes to supply the stores. The key 

contribution of Chapter 4 is the development of a solution approach that takes advantage of the 

clustered nature of the store locations in order to simplify the SRP and find better solutions 

efficiently. Using a clustering-based heuristic, we group stores in the service region to reduce the 

decision space of the problem. We then formulate the SRP as a bin-packing problem with the 

objective of minimizing replenishment costs by assigning the above clusters into bins that 

represent delivery routes. These assignments are then used by a multi-step routing heuristic to 

build the final routes. The computational results show that the proposed clustering-based 

heuristic outperforms the original SRP method introduced in Chapter 2 with respect to both 

solution quality and runtime. 

Each chapter discussed above was structured as a stand-alone research article to be 

submitted for review and potential publication. Thus, each Chapter was prepared with its own 

introduction, literature review, and results/discussions. The final chapter of the dissertation 

summarizes the overall work that was performed, and it includes a discussion of the results and 

possible future research directions.    
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Chapter 2  

Development and Application of a Cost-Driven Decision Model for Store Replenishment 

Logistics in the Fast-Food Sector1 

 

1. Introduction 

Although consumer spending at fast-food restaurants reached $310 billion in 2017 (USDA, 2018), 

there is a scarcity of academic research on the supply chain logistics of this sector. A significant 

portion of food supply related literature is focused on production, with applications in the 

agriculture industry, and on reducing food waste; see, for example, (Lemma, et al. 2014). While 

production and waste reduction are relevant, the highly competitive fast-food sector relies on the 

timely and efficient replenishment of their stores, which is fertile ground for academic research. 

This study is focused on the fast-food sector, where customer loyalty, driven by price and 

quality of the brand, is key for success (Shokri, et al. 2014). The store networks for fast-food 

companies often span large regions or countries and may involve thousands of locations. For 

example, as of 2018, Domino’s Pizza reports over 5,400 stores in the US, with plans to expand to 

about 8,000 locations (Klein, 2018). Similarly, Yum! Brands operates over 43,000 locations 

globally, including 4,062 KFC stores, 7,447 Pizza Hut stores, and 6,611 Taco Bell stores in the 

US alone (Yum! Brands, nd). Given the large number of stores, their geographical spread, and the 

need to replenish them frequently, the store network is often divided into regions, with a 

distribution center (DC) serving each region. Usually, the store replenishment operations are 
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coordinated through a company’s central planning group, using their own DCs and trucks/drivers. 

Even when such operations are outsourced, using a central DC for each region is fairly common.      

Similar settings are also found in the grocery-food sector. However, grocery stores carry a 

much larger number and variety of stock keeping units (SKUs), and in many cases (such as wine, 

soft drinks, and dairy products) they use a hybrid model where some goods are delivered through 

a DC while others are delivered by the vendors through a direct store delivery (DSD) model, which 

represents about 25% of their sales (GMA, 2008). Some of the major grocery-food 

suppliers/producers are moving away from the DSD model, opting instead to ship their goods to 

their customers’ DCs (Staff, 2019). While such a trend brings the grocery-food sector closer to our 

study, given the above differences in scale and variety, and the fact that DSD is still common for 

groceries, we limit our attention to the fast-food sector.    

Store replenishment is a primary source of cost (Akkerman et al. 2010). The travel costs 

between the DC and the stores is a significant contributor to the overall cost, which is perhaps why 

a majority of the publications reviewed in a survey of routing papers by Braekers et al. (2016) 

have distance-dependent objective functions. However, other factors, such as the labor cost 

associated with delivering inventory, the fleet cost, and whether routes are driven by a single driver 

or a team of two, can also play a major role in determining the total replenishment cost. Balancing 

the above costs while making resource allocation decisions and meeting multiple time/distance 

constraints is often a complex challenge, which perhaps persuaded some to use simpler, one-

dimensional objectives. While distance minimization alone may be suitable for some routing 

problems, for the fast-food store replenishment problem (SRP), using a one-dimensional objective 

neglects key trade-offs that may lead to inferior solutions. In this paper we address the above 

challenge by developing a cost-based model that incorporates distance-based costs as well as cost 
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of delivery labor and other cost elements into the objective function to minimize the overall cost 

of replenishment logistics. Using real-world data from our industry collaborator, we show how 

such an approach leads to better solutions and provides key managerial insights to improve 

competitiveness.     

2.1 Objective and Contribution 

We present a cost-driven model to minimize the logistics costs associated with the SRP, which we 

define as determining the number of trucks, the delivery routes, and which routes will be single- 

or two-driver (team) routes to support a given delivery plan (i.e., set of orders for each store in a 

region) over a fixed time horizon, with a known DC location and known distances.  In addition to 

fleet-sizing and vehicle routing, the model considers single vs team routes and the unloading labor. 

The objective is to minimize the total replenishment cost to satisfy store orders while accounting 

for route-time and truck-capacity constraints.   

Given a delivery plan, the SRP is structurally similar to a vehicle routing problem (VRP), 

since the main concern is the construction of low-cost routes to deliver the necessary inventory to 

the stores. However, the SRP is also concerned with minimizing the fleet cost and the labor cost 

associated with unloading inventory. Additionally, the SRP considers the added cost incurred by 

routes that extend beyond their time limits (overage routes). Unlike traditional vehicle routing 

models, the proposed model considers single-driver and team routes, which are a common practice 

(Goel et al., 2019).  Although the same truck might be used for a single- or team-route, the limits 

on route length and usable truck capacity are different since team routes can complete longer routes 

and deliver larger quantities. Accordingly, single- and team-routes have a specific cost structure 

and constraint set associated with each. Capturing the interplay between the above costs is an 

essential component of the SRP.  



9 

 

We formulate the SRP as a mixed-integer programming (MIP) model, with an objective that 

incorporates multiple cost elements.  Due to complex routing decisions and constraints, a set of 

pre-generated potential routes are used as input. To generate the routes, we utilize a simple 

clustering heuristic. The proposed model, including the objective function, was developed with 

extensive input from the supply chain team of a national fast-food company who was our 

collaborator for the study.  

The main contributions of the paper are twofold. First, we developed a cost-based objective 

that incorporates multiple, relevant cost elements associated with fast-food store replenishment 

logistics.  To the best of our knowledge, this is the first store replenishment study that incorporates 

single/team-driver routes, route overage costs, and fleet sizing decisions concurrently. We show 

that our cost function outperforms one-dimensional objective functions, frequently adopted in 

routing problems.  Second, through our computational results, using real-world data and a series 

of sensitivity analyses, we obtain insights that can be critical for management in the fast-food 

sector. Furthermore, the proposed approach allows large-scale problems to be solved with a 

standard solver such as CPLEX.  

The remainder of the paper is organized as follows. In Section 2, we review the relevant 

literature. The MIP formulation and the cost function are presented in Section 3. The route-

generating clustering heuristic is described in Section 4. In Section 5, we discuss the computational 

results and present benchmark comparisons. The sensitivity analyses we performed and the results 

are presented in Section 6. Lastly, Section 7 presents our conclusions and possible future research 

directions.   

2. Literature Review  

Most problems that involve routing are modelled as a Vehicle Routing Problem (VRP), which is 
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an extensively-researched, NP-hard problem (Lenstra and Kan, 1981), with books and survey 

articles devoted to the topic; see, for example Sharda et al. (2008), Laporte (2009), Toth and Vigo 

(2014), and Braekers et al. (2016). Food distribution has been one of the many applications for the 

VRP. For example, Tarantilis and Kiranoudis (2001) focused on perishable foods and developed 

a metaheuristic to minimize the distance-based cost for milk distribution.  In a related paper, 

Tarantilis and Kiranoudis (2002) developed an algorithm to minimize the total distance traveled 

in a meat distribution application.  

As VRP research expanded, more variants emerged. A recent “concise review” of emerging 

VRP variants cites over 300 papers (Vidal et al., 2019). Two extensions of the VRP that are 

relevant to the SRP are the Period(ic) VRP (PVRP) and the Multi-Period VRP (MVRP).  The 

PVRP focuses on selecting a delivery schedule from a predefined set of schedules for each node 

in a network, and building routes to support the selected delivery schedule (Francis et al., 2008). 

In the classical PVRP, the customers must be visited with certain frequencies during the time 

horizon. While both the SRP and PVRP include routing decisions over multiple periods, as 

explained below, there are specific differences between them.  

The PVRP was introduced by Beltrami and Bodin (1974), and its first formulation was 

presented in  Christofides and Beasley (1984) as an integer program (IP). Building upon the IP 

formulation of the PVRP, Cordeau et al. (1997) proposed a Tabu search heuristic to solve a mixed-

integer formulation of the PVRP. Similarly, in Chao et al. (1995), which was later expanded by 

Gulczynski et al. (2011), the authors propose a two-step heuristic that first solves an IP to develop 

an initial delivery schedule, and then uses an improvement heuristic to find an ideal routing and 

schedule. Additionally, other heuristics developed originally for the VRP were extended to the 

PVRP by Alegre et al. (2007) and Hemmelmayr et al.  (2009).   
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Francis et al. (2006) presented an approximating method to solve the PVRP with “service 

choice,” which allows the model to choose the frequency of visit for each customer, and change 

the structure of the delivery schedule accordingly.  However, as is the case with most of the PVRP 

literature, the delivery frequencies are based on predetermined patterns (such as daily deliveries, a 

delivery every other day, etc.), narrowing the possibilities. Unlike the PVRP, the SRP assumes 

that the delivery schedule over the time horizon has been fixed and it does not necessarily follow 

a predetermined pattern.  

Virtually all the PVRP papers assume the number of trucks is given, and they use it to limit 

the number of routes completed in each period.  In contrast, the SRP treats the number of trucks 

as a decision variable.  One exception is Gaudioso and Paletta (1992), who propose a heuristic to 

solve the PRVP with the main objective of minimizing the number of trucks required. Their model 

is similar to the SRP in that the number of trucks is a decision variable and the maximum travel 

time for each route is limited. However, the SRP does not focus only on the number of trucks; it 

is concerned with minimizing the overall cost, which includes travel and labor cost in addition to 

the truck cost. Another key difference is that, although we also limit the maximum route-time, the 

SRP allows a route to exceed the limit by imposing an overage cost. 

The MVRP, on the other hand, which was formally defined by Archetti et al. (2015), shares 

many similarities with the PVRP, the main one being its goal to build routes for a set of customers 

over multiple time periods. While the MVRP also selects a delivery schedule, it assumes the 

customers have delivery due dates, and in contrast to the PVRP, there is no fixed frequency for the 

deliveries.  Both Archetti et al. (2015) and Larrain et al. (2019) formulated the MVRP with the 

objective of minimizing the transportation cost, considering inventory holding and a late-delivery 

penalty. In López-Santana et al. (2018), the authors present a three-phase approach for the MVRP 
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to minimize the total travel time. Wen et al. (2010) studied a dynamic extension of the MVRP, 

with customer demands updated each day. The authors present a three-phase heuristic to solve a 

multi-objective formulation of the problem that tries to minimize travel distance and customer wait 

time, while balancing work. Although the MVRP has a broader decision scope than the PVRP, the 

differences we described between the SRP and PVRP apply to the MVRP as well, particularly the 

fixed schedule, the number of trucks being a decision variable, and our multi-component cost 

function.  

To the best of our knowledge, none of the published PVRP or MVRP studies explicitly 

consider single- vs team-driving routes. Our formulation explicitly considers them, which bears 

some similarity to the Heterogeneous VRP (HVRP).  Introduced by Golden et al. (1984), the 

HVRP focuses on route optimization with a fleet of vehicles of varying parameters, such as vehicle 

capacity. While the SRP assumes a homogeneous fleet of vehicles, the cost, the (effective) 

capacity, and the length limit of each route depends on whether it is a single-driver or team route. 

This is comparable to choosing between two types of vehicles in a non-homogeneous fleet. 

However, most HVRP publications do not consider multi-period time horizons, and they only 

focus on fleet dimensioning.  Further details on the HVRP are presented in Koç et al. (2016). 

An advantage of our formulation of the SRP lies in the objective function, which incorporates 

multiple cost elements that account for miles traveled, labor, truck cost, excess route-time costs, 

and single- vs team-routes (see Section 3). Instead of being one-dimensional, our objective 

function captures the inherent trade-offs between the above cost elements, which not only leads to 

superior solutions but also reveals managerial insights as we show later in the paper.  The proposed 

SRP heuristic serves as at useful tool for planning and decision-making in the fast-food supply 

chain and similar settings.   
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3. Formulating the SRP  

We present our assumptions, the cost model, and the resulting MIP model.   

3.1 Modelling Assumptions 

The time horizon is modelled as a finite set of discrete time periods. For our application, each day 

represents a time period. Store demand is represented by the orders a store places (at most one 

order per store per day), which are fulfilled by the DC. Based on the store orders, a delivery plan 

is developed for the region; it specifies the delivery quantity and the time period for each delivery 

at each store over the time horizon. Given the delivery plan, the following assumptions are made 

for the MIP model:  

(1) Each store must receive the planned delivery quantity in the specified time period; no early 

or late deliveries are allowed.  

(2) The stores are responsible for managing their own inventories and they each own the store 

inventory. Therefore, inventory carrying cost at the stores is not considered. We assume 

sufficient stock to support the delivery plan is available at the DC. Expiration dates and shelf 

life are considered by the DC in filling the store orders.   

(3) Routes are classified into single-driver and team routes (two drivers). 

(4) The trucks are physically identical. However, the usable (or effective) capacity of a truck 

depends on the type of route (single-driver or team).  

(5) A truck can complete at most one route per time period.  

(6) The trucks and drivers are available at the beginning of each time period.  

(7) A store is visited by at most one truck per time period (no split deliveries).  

(8) Potential routes are predetermined using a route-generation heuristic.  

(9) Store demand (measured in pounds) is for a single, aggregate SKU.   
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As the first assumption suggests, the SRP is concerned with minimizing cost by choosing the 

appropriate routes and fleet size needed to support the delivery plan.  This assumption is aligned 

with the business model of our industry collaborator, where each store has a predetermined 

delivery plan. Furthermore, although the stores are charged a nominal delivery fee, all the 

transportation and delivery costs are borne by the company, which gives them a strong incentive 

to minimize the cost of supporting the delivery plan. While the delivery plan itself is also of 

interest, the development/optimization of the delivery plan is beyond the scope of our paper.     

The second assumption helps us focus on supporting the delivery plan instead of inventory 

management at the DC. Per our industry collaborator, stock shortages at the DC are rare, and if it 

occurs, they have systems in place to minimize the impact on the stores.  Unless there is a major 

supply disruption, shortages at the DC are not common and they are rectified quickly.   

The third assumption stems from an industry practice of using multiple drivers on a route to 

allow longer routes and larger delivery quantities, without violating federal hours-of-service 

regulations (MacMillan, 2018). Assumption 4 addresses single-driver vs team routes, as each type 

of route has specific parameters. Assumptions 5, 6, and 7 are made primarily to simplify the model.  

The eighth assumption, i.e., using a set partitioning approach for our formulation, is 

advantageous when capturing complex cost functions and intra-route constraints (Toth and Vigo, 

2014).  The last assumption, i.e., using an aggregate SKU, allows us to limit the total weight on a 

truck without tracking each SKU individually. Our industry collaborator also expresses their 

delivery data in total pounds using an aggregate SKU.     

3.2 The Cost Model 

The cost model and the MIP formulation (section 3.3) are general-purpose, and they capture the 

inherent trade-offs in the SRP. While the primary computational results in our study are based on 
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specific parameter values furnished by our industry collaborator, whose input was instrumental in 

the development and validation of the model, the cost model and the MIP formulation have broad 

applicability, meaning they can be used in other SRP applications as long as the appropriate 

parameter values are specified.   

Using a one-dimensional objective, such as just minimizing distances, is common in the 

literature.  However, a one-dimensional objective is at best a surrogate objective that captures only 

a portion of the problem, and it may fall short of adequately capturing key trade-offs inherent to 

the SRP. For example, in some cases, one may be able to reduce overall cost by using a team route 

instead of a single-driver route, even if the total distance traveled increases.  

Working with our industry collaborator, we defined the costs associated with the SRP based 

on (1) the miles traveled, (2) the labor associated with unloading inventory delivered (in pounds), 

and (3) the number of trucks needed. Another important aspect we gathered from our industry 

collaborator and incorporated into the model is that, although US federal regulations limit the 

amount of time a driver can work continuously to 14 hours (FMCSA, 2017), some routes require 

more time due to the size of the delivery region. In such cases, the driver is given an allowance to 

rest overnight, and the route becomes a two-day route. Team routes may also be used in such cases, 

since two drivers can alternate their working periods. Even with team routes, however, some routes 

might be long enough to qualify as a two-day route. Since each time period is modelled as a day, 

a fourth cost component, namely, an “overage cost,” was introduced (for both single and team 

routes) to capture the additional cost of those routes that exceed the one-day time limit. The above 

four cost components are used in the objective function of the MIP model, which is described in 

the next section. 

 



16 

 

3.3 MIP Formulation 

The MIP model for the SRP uses the following parameters:  

𝑁  = set of stores in the region (𝑖 =  1, … , |𝑁|) 

𝑅  = set of routes (𝑟 =  1, … , |𝑅|)  

𝑇  = planning horizon (𝑡 =  1, … , |𝑇|) 

𝑚𝑟 = distance in miles of route 𝑟 

𝑓𝑖𝑟 = indicator parameter; equals 1 if store 𝑖 is visited in route 𝑟, 0 otherwise.   

𝑑𝑖
𝑡 = demand in pounds (lbs) of store 𝑖 in time period 𝑡 

A distinctive aspect of the proposed formulation is that both single and team routes are considered.  

Single-driver routes have more restrictive limits on truck capacity and route time length than team 

routes as well as different cost parameters.  To capture the above differences, additional parameters 

are defined as follows: 

𝑈𝑉
1 (𝑈𝑉

2) = upper limit of truck capacity, in pounds, for single (team) routes 

𝑈𝑇
1 (𝑈𝑇

2) = upper limit of route time length, in minutes, for single (team) routes  

𝑙𝑟             = 1 if route 𝑟 is a team route; 0 if a single route 

𝐵𝑙𝑏          = unloading time, in minutes/pound unloaded 

𝐵𝑛           = stop time, in minutes/stop (equal for each stop) 

𝐵𝑚           = travel time, in minutes/mile traveled 

𝐶𝑉            = daily cost/truck required 

𝐶𝑚
1  (𝐶𝑚

2 ) = cost/mile traveled in a single (team) route 

𝐶𝑙𝑏
1  (𝐶𝑙𝑏

2  ) = cost/pound delivered in a single (team) route   

𝐶𝑈             = fixed overage cost for each route that exceeds the route-time upper limit  

The upper limits on truck capacity are determined based on the space and weight limitations 
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of the truck as well as what managers consider to be a reasonable amount of inventory a driver can 

unload on a route. The upper limits on route times, on the other hand, are defined subject to federal 

hours of service regulation depending on single vs team routes.  Route times are calculated by 

considering the driving time, a fixed stopping time/store, and the unloading time/store.  

The decision variables are defined as follows: 

𝑎𝑟
𝑡  = 1 if route 𝑟 is used in time period 𝑡; 0 otherwise 

𝑞𝑖𝑟
𝑡  =  number of pounds delivered to store 𝑖 on route r in time period 𝑡 

𝑥𝑟
𝑡  = 1 if length of route 𝑟 in mins in period 𝑡 goes over the upper limit; 0 otherwise    

𝑝𝑟
𝑡  = amount of time in minutes that route 𝑟 in period 𝑡 exceeds the upper limit 

𝐾  = fleet size 

The objective function is based on the four cost elements described in Section 3.2. The first term 

reflects the distance cost for each single or team route used: 

∑ ∑[𝐶𝑚
2  𝑙𝑟 + 𝐶𝑚

1 (1 − 𝑙𝑟)] 𝑚𝑟 𝑎𝑟
𝑡  

𝑟t

 (1) 

Similarly, the second term reflects the labor cost incurred due to unloading inventory, based on 

single or team route:     

∑ ∑ ∑[𝐶𝑙𝑏
2  𝑙𝑟 + 𝐶𝑙𝑏

1 (1 − 𝑙𝑟)] 𝑞𝑖𝑟
𝑡

𝑖𝑟𝑡

 
(2) 

The third term calculates the overage cost for each route that exceeds the route time limit: 

∑ ∑ 𝐶𝑈 𝑥𝑟
𝑡

𝑟𝑡

 (3) 

Lastly, the final term in the objective function reflects the cost of providing 𝐾 trucks over the time 

horizon:  

𝐶𝑉 𝑇 𝐾 (4) 
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The sum of the four components constitutes the objective function shown below.  Given a delivery 

plan, and a set of potential routes, the proposed formulation determines the number of trucks 

required and the routes to be used in each period to minimize the total cost over the time horizon. 

The MIP formulation is presented as follows:   

min ∑ ∑[𝐶𝑚
2  𝑙𝑟 + 𝐶𝑚

1 (1 − 𝑙𝑟)] 𝑚𝑟 𝑎𝑟
𝑡  

𝑟t

+ ∑ ∑ ∑[𝐶𝑙𝑏
2  𝑙𝑟 + 𝐶𝑙𝑏

1 (1 − 𝑙𝑟)] 𝑞𝑖𝑟
𝑡  

𝑖𝑟𝑡

  

                                 + ∑ ∑ 𝐶𝑈 𝑥𝑟
𝑡

𝑟𝑡

+ 𝐶𝑉 𝑇 𝐾 

(5) 

𝑠. 𝑡.  ∑ 𝑞𝑖𝑟
𝑡

𝑟

= 𝑑𝑖
𝑡 ∀  𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (6) 

∑ 𝑞𝑖𝑟
𝑡

𝑖

≤ 𝑎𝑟
𝑡  [ 𝑈𝑉

2 𝑙𝑟 + 𝑈𝑉
1 (1 − 𝑙𝑟)] ∀  𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (7) 

∑ 𝑎𝑟
𝑡  𝑓𝑖𝑟

𝑟

≤ 1 ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (8) 

∑ 𝑎𝑟
𝑡

𝑟

≤ 𝐾 ∀  𝑡 ∈ 𝑇 (9) 

∑(𝐵𝑙𝑏 𝑞𝑖𝑟
𝑡 )

i

+ ∑ (𝐵𝑛  
𝑞𝑖𝑟

𝑡

𝑑𝑖
𝑡

i ∈ {i | 𝑑𝑖
𝑡 > 0}

)  + 𝐵𝑚 𝑚𝑟 𝑎𝑟
𝑡  

                          ≤ [𝑈𝑇
2 𝑙𝑟 + 𝑈𝑇

1(1 − 𝑙𝑟)] + 𝑝𝑟
𝑡  

∀ 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (10) 

𝑝𝑟
𝑡 ≤ [𝑈𝑇

2 𝑙𝑟 + 𝑈𝑇
1(1 − 𝑙𝑟)] 𝑥𝑟

𝑡 ∀ 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (11) 

𝑥𝑟
𝑡 ≤ 1 ∀ 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇  (12) 

𝐾 ≥ 0 integer (13) 

𝑎𝑟
𝑡 ∈ {0,1} ∀ 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (14) 
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𝑞𝑖𝑟
𝑡 ≥ 0 ∀ 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (15) 

𝑥𝑟
𝑡 ∈ {0, 1} ∀ 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (16) 

𝑝𝑟
𝑡 ≥ 0 ∀ 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (17) 

Constraints (6) ensure that store demand is met in each period, while constraints (7) enforce the 

truck capacity.  Constraint set (8) prevents split deliveries.  Constraint set (9) ensures that the 

number of routes used in any period does not exceed the number of trucks. Set (10) calculates the 

estimated route time and determines if it exceeds the time limit. The left-hand side of the constraint 

contains three terms that calculate the amount of time needed for unloading the inventory, the fixed 

time associated with each stop on the route, and the drive time, respectively. On the right-hand 

side, the variable 𝑝𝑟
𝑡 captures the excess route time that goes over the upper limit. Set (11) identifies 

the number of routes that exceed the time limit to assign the appropriate overage cost in the 

objective function. While constraints (12) ensure that the route time for overage routes is bounded.  

Constraints (13) – (17) define the variables and the non-negativity constraints.  

4. Clustering Heuristic for Route Generation 

One challenge associated with the set partitioning-based approach we adopted is generating 

potential routes a priori. For example, with just 50 stores, if every route with up to 7 stores is 

feasible, it would yield over 118 million routes.  To address this challenge, we use a simple 

clustering heuristic to pre-generate a manageable set of potential routes. It is adapted from the 

nearest-neighbor-based clustering and routing heuristic (nCAR) presented by Sarkar et al. (2018). 

Our goal is not to develop an optimum-seeking algorithm for the SRP, but rather to use a simple 

heuristic to obtain solutions in reasonable times that allow us to investigate the impact of the 

various cost elements in the objective function on the solution structure and at the same time glean 

managerial insights made possible by a cost model with multiple elements.  Given the groundwork 
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we laid with the proposed model, subsequent studies can explore other solution techniques, such 

as column generation/pricing schemes, to obtain better solutions.    

The proposed clustering heuristic considers each period sequentially, and it allows for more 

than one set of parameters to be considered when building the routes, which lets the heuristic 

accept different parameters between single and team routes when determining the composition and 

size of the routes. Usable truck capacity is a constraining factor when determining which store will 

be added next to a cluster, while route time limits are used to constrain the cluster size.  

For each period, given a set of stores that must be visited, the heuristic creates multiple clusters 

of increasing size (measured by the number of stores).  For each cluster, a route is generated by 

finding the shortest path through the stores in the cluster, beginning and ending at the DC. The 

parameters for truck capacity and route time for both single and team routes are used as input, 

along with a distance matrix, store demand for each period, and the maximum number of stops 

allowed on a route, say, 𝑍.  

Given the above parameters, the following heuristic is employed, where 𝑧 serves as an 

iteration counter, and 𝑠 reflects the current cluster size.  The steps are executed for each time period 

𝑡, considering first the parameters for single-driver routes and then team routes: 

1. Let Nt represent the (sub)set of stores that must be visited in period 𝑡. 

2.  Set 𝑧 = 1.  Select store 𝑖 ∈ 𝑁𝑡 as the seed store of cluster 𝑖𝑧 and set 𝑠 = 1. Initialize the 

cluster demand to the demand of store 𝑖, i.e., set 𝑑𝑖𝑧
= 𝑑𝑖

𝑡, and the cluster time length to the 

driving time from the DC to store 𝑖 plus the time associated with visiting store 𝑖, which is 

equal to the unloading time, 𝑑𝑖
𝑡𝐵𝑙𝑏, and the fixed time per stop, 𝐵𝑛.   

3.  If 𝑠 = 𝑧, or the cluster time length exceeds the maximum route length in time (𝑈𝑇
1, 𝑈𝑇

2), go 

to Step 5. Otherwise, go to Step 4.  
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4. Determine the next store k to add to the cluster as follows: 

4a. For each store already in the cluster, identify its nearest neighbor in distance. (Ties are 

broken by the smallest store number.) Verify that adding the nearest neighbor to the 

cluster would not violate the truck capacity. If it does, then consider the next closest 

neighbor. Continue in this fashion until a feasible neighbor is found, or there are no 

neighbors that can be added. The above is repeated for each store already in the cluster, 

leading to a set of potential stores. 

   4b.  If the set of potential stores from Step 4a is empty, then set z = Z and go to Step 7. 

Otherwise continue to Step 4c.     

   4c. Given the set of potential stores identified in Step 4a, evaluate the increase in travel 

distance by inserting each potential store, one at a time, before and after its nearest 

neighbor in the cluster. Choose the position that yields the smallest increase. Record 

the increase in distance for each potential store.  

   4d.  Set the store that leads to the smallest increase in distance as store k and add it to the 

cluster. Update the cluster size (i.e., set 𝑠 = 𝑠 + 1), the cluster demand, (i.e., set 𝑑𝑖𝑧
=

𝑑𝑖𝑧
+ 𝑑𝑘

𝑡 ), and the cluster time length to include store k. Go to Step 3.   

5.  Compare the new cluster with previously saved clusters to avoid duplicates. 

6. Determine the shortest path to visit all the stores in the cluster from the DC. Save the shortest 

path as a route and add it to the set of routes 𝑅, identifying it as a single or team route.  

7.  If 𝑧 = 𝑍, then remove store 𝑖 from 𝑁𝑡 and go to Step 2. Otherwise, set 𝑧 = 𝑧 + 1, and go to 

Step 3.   

The shortest path in Step 6 was obtained by solving a Traveling Salesman Problem (TSP) 

using Google’s OR-Tools Python library (Google, 2019) which uses a greedy descent heuristic to 
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find a solution. Although the routes are generated by time period, the model is not restricted to use 

any route for a specific time period; rather, it considers the entire pool of routes when deciding 

which routes to use. The above heuristic allows some flexibility in the order in which the routes 

are built since the final set of routes does not change with the order in which the seed stores are 

selected, or whether single or team routes are generated first.  

5. Computational Results 

In this section we discuss two sets of results. For the first set, we solved a series of test instances 

of varying sizes with randomly generated data to evaluate the size limitations of the SRP heuristic. 

We also compare the results obtained from the SRP heuristic with baseline results obtained from 

alternative, one-dimensional objective functions. For the second set, using real-world data 

provided by our industry collaborator, we developed multiple problem instances to discuss the 

solutions obtained from the SRP heuristic and to compare them to the industry baseline as well as 

the other one-dimensional baselines. The SRP heuristic was programmed with 64-bit Python 3.7.4, 

while the MIP model was solved with CPLEX 12.7 on a Windows computer with a 64-bit 2.50 

GHz Intel Core i7 and 8 GB of RAM.  

5.1 Randomly Generated Test Instances 

We randomly generated a series of test instances of varying sizes to evaluate how the proposed 

heuristic performs with different data scenarios as shown in Table 2-3. The two main factors we 

varied on each instance is the problem size, defined by the number of stores, and the delivery 

frequency, defined by how many times during the time horizon each store needs replenishment.    

The largest problem size tested was 350 stores which is a representative average upper limit 

on the number of stores in a region for our industry collaborator. Store locations were randomly 
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scattered following a uniform distribution within a 600 × 600 grid, with the DC placed at the center 

(plots of the locations on each instance are included in the Appendix). The distance matrix was 

calculated for each instance assuming Euclidean distances. The frequency of delivery for each 

store was randomly generated following a normal distribution, with the average changing 

according to the level shown in Table 2-1. Once a frequency was determined for each store, a 

uniform distribution was used to randomly assign each demand to a period within the time horizon. 

The demand for each store was also generated using a normal distribution based on the parameters 

shown in Table 2-3. Data from our industry collaborators were used to define the values for all 

other parameters in the model (truck capacity, unit costs, etc.), these values are discussed in Section 

5.2 

Table 2-1. Parameters for the Random Test Instances 

Variable Level Parameter Value 

Problem Size 3 levels N = 10 

  N = 100 

  N = 350 

Order Frequency Low 𝜇 = 1; 𝜎 = 0.60 

 Average 𝜇 = 2; 𝜎 = 0.60 

 High 𝜇 = 4; 𝜎 = 0.60 

Store Demand   𝜇 = 2030; 𝜎 = 760.15 

For each combination 5 random test instances were generated following the procedure 

described above, for a total of 45 test instances. Using the SRP heuristic, we were able to solve all 

45 instances within a time limit of 3 hours. Table 2-2, where low and high demand frequency are 

denoted by “L” and “H,” respectively, shows the average total runtime for each combination as 

well as the portion of the total time dedicated to the CPLEX solver under the MIP Runtime 

columns.  
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Table 2-2. Average runtime (in secs) per test instance 

Instances 
Total Runtime MIP Runtime 

Avg Std Dev Avg Std Dev 

N10-L 2.05 0.81 0.25 0.09 

N10 3.71 1.13 0.56 0.18 

N10-H 3.33 0.92 0.34 0.15 

N100-L 34.67 3.40 0.95 0.15 

N100 60.40 7.77 1.92 0.69 

N100-H 76.99 7.48 3.18 0.93 

N350-L 1,913.68 198.05 17.51 2.80 

N350 5,072.02 724.94 56.72 1.05 

N350-H 10,109.55 1,395.58 139.26 9.63 

  

As expected, the total runtime increases with the number of stores in the network. Within 

instances of the same size, the total runtime increases as the order frequency increases. The 

majority of the overall runtime is dedicated to the clustering heuristic and building the MIP model. 

These two processes account for 94% of the total runtime on average across all the test instances. 

On the other hand, the average solver runtime across all the instances was under a minute, which 

indicates that, with the proposed approach, we are able to find solutions for various scenarios in a 

practical time. A key factor to consider is that, as the number of stores and the order frequency 

increase, the clustering heuristic generates a substantially larger number of routes, which leads to 

an increase in the size of the MIP since some variables and constraints are indexed by the number 

of routes and stores. This explains the significant increase in runtime for the instances with 350 

stores which generate approximately 10,000 routes each. 

To evaluate the performance of our proposed multi-dimensional objective function, we solved 

the same set of instances with alternative/one-dimensional objectives for comparison as follows: 

1) Minimizing only the truck cost (i.e., the fleet size), and 2) Minimizing only the cost of miles 

traveled (i.e., using only a distance-based objective as most studies do). For both of the alternative 

objectives, once a solution was found by the model, we calculated the total cost of the solution 
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using our proposed cost model to have a direct comparison. In Table 2-3, we summarize the 

average percentage difference between our proposed multi-dimensional objective function (MIP 

Soln) and the two alternative one-dimensional ones using the same set of instances.  

Table 2-3. Comparison of Alternative Objective Functions  

Instances MIP Soln Min Dist % Gap Min Truck % Gap 

N10-L  $9,153.02   $9,413.92  2.7%  $9,329.00  1.8% 

N10  $13,009.37   $13,205.86  1.6%  $14,941.01  15.0% 

N10-H  $19,321.88   $19,457.41  0.7%  $21,266.34  9.9% 

N100-L  $39,917.25   $39,932.94  0.0%  $47,861.54  19.8% 

N100  $53,877.55   $54,367.47  0.9%  $65,996.03  22.5% 

N100-H  $86,304.88   $86,713.60  0.5%  $99,367.30  15.1% 

N350-L  $136,899.52   $138,081.19  0.9% $161,656.75  19.4% 

N350  $166,462.99   $167,316.36  0.5% $195,828.80  17.6% 

N350-H  $238,665.22   $239,848.54  0.5% $273,002.85  15.5% 

  

 These result show that on average the multi-dimensional objective function outperforms both 

of the commonly used one-dimensional objectives across all the instances. Overall the solutions 

obtained when only truck cost is considered are 15% higher than the ones obtained with our 

objective function on average. The solutions obtained with the distance-based objective have a 

significantly smaller gap, being overall about 1% over our solutions. However, the differences in 

Table 2-3 ultimately depend on the specific cost parameters used and it does not diminish the 

theoretical significance of incorporating multiple, relevant cost components in the objective 

function. For example, if the labor cost increases relative to fuel cost, the differences in Table 2-3 

would likely be more pronounced.   

5.2 Industry Data 

Two problem instances were developed using data from our industry collaborator. Each instance 

is based on orders received from 181 stores over 6 days. The two instances are representative of 

the operations of our collaborator, where plans are made on a weekly basis with no Sunday 
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deliveries. Both instances involve the same 181 stores but use different delivery plans. Figure 2-1 

shows the location of the stores with the map details omitted to maintain data confidentiality. 

 
Figure 2-1. Map of Store and DC Location 

Store demand and a distance matrix are the main inputs to our approach. Actual road distances 

for the distance matrix were obtained from the Google Maps API (Google, 2020).  Additional input 

data includes the truck capacity and the maximum route time for both single and team routes, the 

average minutes/mile traveled, and the appropriate values for the cost parameters. Since the 

parameter values and cost estimates used for the test instances represent actual values used by our 

industry collaborator, they are not shown for confidentiality reasons.  However, we can report their 

relative relationships.  For example, the truck capacity for team routes is 35% higher than that of 

single-driver routes, as two drivers are allowed to handle higher quantities for delivery. Similarly, 

the maximum route-time is 30% higher for team routes. However, compared to single routes, team 

routes are 20% higher in cost/mile traveled, and 35% higher in cost/pound delivered.  The overage 

cost for exceeding the route time limit was set as the daily truck cost, to account for the incremental 

usage of the trucks on such routes.   
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The results obtained from the SRP heuristic are compared to the industry baseline cost, which 

was calculated employing the data obtained from our collaborator and their current routes, using 

the same cost model presented in Section 3. Our industry collaborator uses a commercial routing 

software to construct their routes and update them manually as new stores are opened and to 

accommodate weekly changes in demand.   

5.3 Discussion of Industry Data Results 

The “MIP solution” we get from solving the model with CPLEX is exact.  However, since the MIP 

model considers only the routes generated by the clustering heuristic, the MIP solution is a 

heuristic solution. The overall runtime for the SRP heuristic is 11.37 (14.8) mins for instance 1 

(2), with the MIP solver taking only 6-9 secs of this time. The bulk of the time is used to generate 

the routes (3,582 and 3,294 routes for instance 1 and 2, respectively) and build the MIP model. In 

addition to the industry baseline, we solved the same two instances with alternative/one-

dimensional objectives for comparison as follows: 1) Minimizing only the truck cost (i.e., the fleet 

size), 2) Minimizing only the cost of miles traveled (i.e., using only a distance-based objective as 

most studies do), and 3) Using the same cost function but allowing only single-driver routes.   
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Figure 2-2. Cost Comparison, Instance 1 

 
Figure 2-3. Cost Comparison, Instance 2 

Figure 2-2 (2-3) shows the cost of the MIP solution versus the alternative baselines for 

instance 1 (2). For both instances, the MIP solution outperforms all the baselines. Relative to the 

industry baseline, our solution yields a reduction of about 4% and 13% in total cost for each 

instance. This is a significant cost reduction for vehicle routing problems where, considering the 

large transportation volumes typically associated with these problems, even a 2% reduction is 
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considered substantial (Hasle and Kloster, 2007). Looking at the breakdown by cost component, 

the graphs show that the MIP solution does not incur the lowest cost by component. For example, 

the distance-only objective solution has a miles traveled cost that is 3% lower than that of the MIP 

solution, similarly the truck cost objective has a solution with an overage cost 11% lower than the 

MIP solution for instance 1 (4% for instance 2). However, when we consider all the cost 

dimensions together, the MIP solution identifies trade-offs that result in a lower overall cost. Table 

2-4 presents a detailed comparison of the MIP solution and the industry baseline. 

Table 2-4. Baseline versus MIP Results 

 Baseline - 1 MIP Soln - 1 Baseline - 2 MIP Soln - 2 

Total Cost $54,283.48  $51,946.13   $56,284.60  $49,399.04 

Miles Cost $25,661.31 $23,936.69   $27,191.51  $22,129.20 

Del Cost $15,585.85 $13,936.15   $16,353.05  $13,789.10 

Overage Cost $4,147.92 $4,296.06   $2,962.80  $3,703.50 

Truck Cost $8,888.40 $9,777.24   $9,777.24  $9,777.24 

Total Runtime (min) - 16.53 - 6.55 

MIP Runtime (min) - 0.18 - 0.11 

Miles 19,834.29 19,091.66 20,066.70 18,184.66 

Trucks 10 11 11 11 

Visits 408 408 395 395 

Miles/Visit 48.61 46.79 50.80 46.04 

Delivery Trips 55 60 58 56 

Routes Over Limit 28 29 20 25 

% Over 50.9% 48.33% 34.5% 45% 

No. of Team Routes 22 2 38 4 

The percentage differences observed in these comparisons may change based on the parameter 

values used and specific problems tested (recall that the proposed model can be implemented with 

any set of user-provided data).  Nevertheless, the above results support our main message that the 

SRP problem is a multi-dimensional problem with labor costs (driving as well as delivery) and 
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equipment (truck) costs, and therefore, using traditional one-dimensional objectives may lead to 

inferior solutions. By considering multiple cost elements concurrently, our model is able to 

quantify trade-offs and ultimately identify superior solutions, which is important not only for 

reducing costs but also for providing managerial insights. Furthermore, some of the trade-offs may 

not be intuitive or obvious at first glance, such as achieving a lower total cost with longer routes 

or more delivery trips, which makes the proposed model an interesting and effective heuristic.  The 

breakdown shown for the MIP solutions and the industry baseline in Table 2-4 highlights some of 

the key trade-offs which provides valuable managerial insights.   

The MIP solution for the first instance shows a slight increase in the fleet size and the number 

of overage routes.  However, the overall cost is reduced since 90% fewer team routes are deployed. 

Similarly, for the second instance, the heuristic solution reduces the number of team routes by 

95%, which, combined with the reduced total miles traveled, yields a 13% reduction in total cost. 

Although our industry collaborator relies heavily on team routes, our solutions suggest that 

extending single routes by incurring overage costs is, in general, better than extending them 

through team driving (one would also need to consider some of the non-tangible trade-offs between 

single and team driving before making such changes). 

Further insights can be gained by examining the truck capacity utilization and the route lengths 

(in time).  When we compare the truck contents on each route with the route times, it becomes 

clear that the time limit is the tighter constraint. The graphs in Figure 2-4 (Figure 2-5) show the 

truck content in pounds for each truck used in the solution and the route time for each trip in the 

first instance under the MIP solution (industry baseline). The guidelines in the graphs show the 

upper limits for the truck capacity and the route times. The guideline for the truck capacity on team 

routes is not shown due to the scale chosen to best depict the data.   
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Figure 2-4. Truck Contents and Route Length for the MIP solution for Instance 1. 

The graphs for the truck capacity utilization show that, for instance 1, only 5 routes (10%) in 

the baseline use more than 90% of the truck capacity, while 15% of the routes in the heuristic 

solution are over the 90% threshold. Instance 2 shows similar results with 5% and 18% of the 

routes over the 90% threshold for the baseline and MIP solution, respectively (graphs for instance 

2 are shown in the Appendix).  However, in both the baseline and the MIP solution for the two 

instances, the average truck capacity utilization ranges between 61%-65%, with the capacity 

utilization of individual trucks ranging from 5% to 99%.  Such a wide range reflects the 

challenging nature of the SRP. The routes with low truck utilization are single-store routes, which 

are also known as out-and-back deliveries. For the baseline, with the exception of one, the routes 

with the lowest truck capacity utilization have a route time close to the upper limit, which indicates 
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that the store visited was far from the DC.  In contrast, in the SRP heuristic solution, single-store 

routes do not exceed 50% of the upper time limit. This suggests that, although these stores are at 

a reasonable distance from the DC, the SRP heuristic replenishes them individually, while more 

distant stores are part of multi-stop routes. Our results imply that further research on the merits of 

mixing out-and-back deliveries with multi-stop routes would be well-justified.   

For route times, the baseline (MIP solution) shows that about 51% (48%) of the routes are 

over the one-day limit for the first instance, and 35% (45%) for the second instance. These results 

indicate that, as we stated earlier, there is a tendency to accept overage costs instead of increasing 

the number of routes or changing other elements in the solution. This result can be influenced by 

the overage cost; we study how it interacts with the solution structure in the sensitivity analysis 

discussed in Section 6.  

 
Figure 2-5. Truck Contents and Route Length for the Baseline for Instance 1. 
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5.4 Split Deliveries 

The above results disallow split deliveries (SDs), which is consistent with the operations of our 

industry collaborator. SDs are often disallowed in the literature as well, although the SDVRP has 

received more attention in recent years; see, for example, Archetti and Speranza (2008) for a 

review of SDVRP and its comparison with the traditional VRP. Even though SDs are not used by 

our collaborator, there are no systemic rules against SDs, and exploring its impact seems justified 

due to the low average truck capacity utilization (61%-65%). With SDs, a higher truck utilization 

can be achieved, which in turn may reduce the number of routes and total distance for a lower 

overall cost.    

Removing constraint (4) in Section 3, and using the same two problem instances, we obtain 

the results shown in Figures 2-6 and 2-7, which indicate that, compared to the baseline, SDs reduce 

the total cost by 7% and 15% for the first and second instance, respectively. Although the 

optimality gap is very small (average of 0.55%), we note that the SD results are based on 

incumbent solutions obtained from the MIP model after it reached an upper limit of 3 hours without 

being able to confirm their optimality. Table 2-5 summarizes the performance of the SRP heuristic 

with and without SDs.    
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Figure 2-6. Cost Impact of Split Deliveries, Instance 1 

 
Figure 2-7. Cost Impact of Split Deliveries, Instance 2 

Table 2-5. Performance of the SRP Heuristic, Split Deliveries. 

 MIP Soln  

No SD  

Instance 1 

MIP Soln  

SD  

Instance 1 

MIP Soln  

No SD 

Instance 2 

MIP Soln 

SD  

Instance 2 

Total Cost Reduction 4.3% 7.1% 13.4% 15.2% 

Optimality Gap 0% 0.59% 0% 0.50% 

Total Runtime (min) 16.53 204.84 10.65 193.90 

MIP Runtime (min) 0.18 180.73 0.15 181.12 
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For both instances, allowing SDs results in a further reduction of about 3% in total cost. This 

can motivate further study on the impact of incorporating SDs into store replenishment in the fast-

food sector. Factors such as the model runtime and the additional disruption to store operations 

caused by SDs should also be considered.    

6. Sensitivity Analyses 

In this section we perform sensitivity analyses to better understand how each cost component 

impacts the solution. The analysis was performed by re-solving the first industry data instance with 

the SRP heuristic (with no SDs) while changing individual cost parameter values from zero to 

three times their original value, and keeping the other parameters fixed. As expected, when a cost 

parameter is changed, the total cost changes; however, we show the magnitude of the change 

relative to the change in the parameter value as well as possible changes in the structure of the 

solution. While one may also vary the cost parameters two or more at a time, our approach is 

needed as a starting point before trying more complicated changes.     

Figure 2-8 includes four graphs that show how each cost component and the overall cost 

change as a particular cost parameter was increased. Since the distance cost consistently represents 

the largest portion of the total cost, it is not surprising that increasing the cost/mile traveled in both 

single and team routes has the biggest impact in the total cost. While the lines for the other cost 

components do not change in the graph, changes in the unit distance cost affects the total miles 

traveled every time it is increased.  More specifically, when the unit costs are increased from 0 to 

3𝑥, the total miles traveled decreases by 14%. This change also led to more than doubling the 

number of overage routes, and a reduction from 21% to 9% in the proportion of team routes used.  

On the other hand, the overage cost appears to have the most impact in the structure of the 

solution, while causing the least increase in total cost.  As the overage cost increases, the other 
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components of the model adjust to keep the total cost from increasing significantly. As the overage 

cost increases from 0 to 3𝑥, the number of overage routes decreases by almost 60%, which leads 

to a small increase (3%) in the total miles traveled, and a significant change in single versus team 

routes, with the proportion of team routes going from 0% to 32%. This shows that as overage cost 

increases, team routes become advantageous since they allow larger delivery quantities and longer 

route times.  Changes to the overage cost is the only scenario where we observed a clear and 

significant change in the solution structure and the percent contribution of the individual cost 

components.  Although the change in the solution structure is significant, remarkably, the change 

in the total cost is relatively small as shown in the graph. 

Changes in the unit delivery cost caused an anticipated reduction in the total number of 

team routes used. However, the biggest reduction happens when the unit costs are increased from 

0 to 1𝑥, with the proportion of team routes decreasing by 80%. Further increases in this cost only 

lead to slight changes in the solution structure. The line graph shows how the total cost increases 

with the unit delivery costs, while the other cost components show almost no change. Similarly, 

examining the impact of changes in the truck cost, we can conclude that, within the range of 

values we examined, the solution structure is not sensitive to changes in the truck cost. As this 

cost parameter increased, the total number of trucks used did not change, and as the graph shows, 

it did not cause any significant changes in other cost components.  
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Figure 2-8. Sensitivity Analysis Graphs 
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7. Conclusions 

We introduced a MIP formulation for the SRP and developed a heuristic to minimize the overall 

logistics costs associated with replenishing store in a specified region.  The proposed approach 

derives its strength from its simplicity and effectiveness. It is simple in that we are able to obtain 

results in a reasonable time on a modest computer, using a commercial solver like CPLEX. It is 

effective in that using real-world data, our model identifies better solutions with a lower total cost 

than the baseline cost established from our industry collaborator’s operations.  

The two central contributions of this work are the cost-driven multi-dimensional objective 

function we developed, and the key managerial insights we obtain from the solutions. The 

proposed SRP heuristic uses a cost model (developed jointly with our industry collaborator) which 

captures trade-offs that are inherent to the SRP, and it allows us to capture distance-based and 

labor-based costs as well as equipment and time overage costs. Our numeric results based on 

industry data show that using traditional one-dimensional objectives, such as minimizing only the 

total distance or the fleet size, may lead to inferior solutions. Furthermore, our cost model considers 

single-driver and team routes. To our knowledge, this study may be the only one to consider team 

routes, overage cost, and fleet-sizing decisions simultaneously. Additionally, the general structure 

of the cost model, and the user-defined parameter values, allows for the proposed SRP heuristic to 

be generalized and applied to other distribution logistics problems with multiple nodes.   

The results from this study also provide key managerial insights for decision-makers in the 

fast-food industry. Our results show that total cost can be reduced with extended single-driver 

routes as opposed to using a larger number of team routes.  Through a series of sensitivity analyses, 

we established that among the cost components, the distance cost and the overage cost for extended 

routes show the highest impact on the overall cost and the solution structure, respectively. This 
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can motivate further study into how the overage cost is defined and what other factors may 

influence extending the routes beyond their current one-day limit.  

Although the results from the SRP heuristic showed a reduction in total cost, there are 

potential areas of study that can further improve the solutions, as shown for example with the SD 

results. Other future directions to study include a non-homogeneous fleet of trucks (which would 

allow for lighter or shorter routes, while simplifying urban-area deliveries) and incorporating 

multiple groups of SKUs.  
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Chapter 3  

The Store Replenishment Problem with Flexible Delivery Schedule and Limited Store 

Capacities2  

 

1. Introduction 

A critical success factor for a retail company is product availability.  A sector where this is 

particularly true is the fast-food sector. Despite the challenges posed by the Covid-19 pandemic, 

many fast-food companies were able to successfully continue their operations and provide their 

customers with the products and services they expect from a fast-food outlet. 

At the center of the operational success of many fast-food companies, one often finds a 

well-organized and fairly sophisticated supply chain group managing the distribution and 

replenishment logistics for their network of stores. The highly competitive nature of the fast-food 

sector has been a key motivator for the above groups to find ways to reduce cost and improve 

replenishment logistics, which led to the Store Replenishment Problem (SRP) described by Vigo 

Camargo & Bozer (2022). The objective of the SRP is to determine the least overall cost 

associated with satisfying the specified store demands in a fast-food network with a central 

distribution center (DC), considering the delivery routes, resources, and labor necessary to meet 

the above goal. The SRP assumes that the orders placed by the stores constitute a fixed delivery 

schedule; i.e., if a store has placed, say, two orders during the planning horizon, one for period 𝑡1 
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and one for period 𝑡2, then the two orders are scheduled for delivery on those two periods, in the 

quantities that were ordered, with no late or early deliveries allowed. However, since each 

vehicle visit to a store contributes to the cost, allowing flexibility in the form of early deliveries 

presents a strong opportunity to further reduce the overall replenishment cost by utilizing the 

delivery trips more efficiently and potentially reducing the number of store visits required.  

As discussed by Jaigirdar et al., (2022), decision-making for a food distribution network 

is a challenging endeavor, which can be further complicated by the significant costs associated 

with distribution logistics. According to Akkerman et al., (2010), store replenishment is a 

primary source of cost in food distribution. Since small percentage decreases in cost can lead to 

substantial savings in routing problems (Hasle & Kloster, 2007) the potential to identify cost 

reductions through a flexible delivery schedule is what motivated our study.  

To understand the impact of allowing early deliveries of food inventory, we study the 

SRP with a flexible schedule (i.e., SRP-FS), which is an extension and generalization of the SRP.  

The SRP-FS still takes the store orders as input but builds a delivery schedule, over a given 

multi-period planning horizon, that allows early deliveries while ensuring that store orders are 

met on time (i.e., no late deliveries).  Allowing early deliveries potentially reduces the overall 

cost but it also requires that we consider the storage capacity of each store. Once inventory is 

delivered at a store, it is owned by the franchise location rather than the company (Vigo 

Camargo & Bozer, 2022). Therefore, we do not account for the inventory holding cost in the 

SRP-FS model, but we still include the inventory balance equations since we need to keep track 

of inventory at each store to ensure that a store’s storage capacity is not exceeded.   

Furthermore, to keep track of the inventory level at each store and estimate the remaining 

capacity, we also have to consider how the store inventory is consumed over time, which is a 
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function of the end-customer demand.  Obtaining up-to-date data on inventory consumption at 

each store is possible with a modern point-of-sale system but using such data to construct the 

delivery schedule, one period at a time, would amount to dynamic delivery routing and inventory 

allocation at the DC every night, which is beyond the scope of our study and also beyond the 

goals of our industry collaborator.  Instead, we consider alternative ways to model inventory 

consumption at each store within the scope of our study and the data available to us.  Although 

the final results obtained from the model depend on the inventory consumption pattern, we stress 

that the proposed model and the solution procedure can be used with alternative inventory 

consumption patterns if needed.   

To tackle the SRP-FS, we developed a two-step metaheuristic based on Simulated 

Annealing to first build a candidate delivery schedule, and then use the Adjusted Team Savings 

Algorithm, as a second step, to build and evaluate the delivery routes for the candidate delivery 

schedule. To develop insights, we first studied a simplified version of the model, assuming that 

only direct (out-and-back) deliveries are allowed at each store. For the direct delivery approach, 

we present a heuristic policy that yields a near-optimal solution. The heuristic policy is then 

extended to the multi-stop version of the model and it is used to build the initial feasible solution 

for the proposed metaheuristic. Data obtained from our industry collaborator, i.e., the supply 

chain group of a leading and well-known national fast-food company, were used to test and 

evaluate the performance of the proposed heuristic.    

Various problems studied in the literature share similarities with the SRP-FS. Problems 

such as the Petrol Station Replenishment Problem (Brown & Graves, 1981), and the more 

general Periodic Vehicle Routing Problem (Francis et al., 2008), have similar structures and 

objectives. However, there are also key differences between the above problems and the SRP-FS, 
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such as the objective function formulation and the way the delivery schedule is treated (these 

differences are discussed further in Section 2). The objective function of the SRP-FS 

incorporates multiple cost elements based on the distance cost, the truck cost, the labor cost, and 

the additional cost associated with route-time extensions. Furthermore, the SRP-FS considers 

both single-driver and two-driver routes (team routes), which enhances the model since team 

routes offer extended route-time limits and they are common in the industry (Goel et al., 2019). 

While each type of route can be completed using the same trucks, depending on whether it is a 

single- or team-route, key parameters such as the maximum usable truck capacity, the route time 

limit, and the other costs associated with the route (such as the distance and labor cost) change 

accordingly.  

To summarize, the main contribution of this paper is the introduction of an extension to 

the SRP where we study the potential reduction in the overall cost of replenishing stores in a 

network through a flexible delivery schedule.  We develop a two-step simulated annealing 

metaheuristic that iteratively builds a delivery schedule and its corresponding routes to find a 

good solution to the problem. To the best of our knowledge, our study is the first one that 

incorporates multiple cost components into the objective function of the SRP, considers both 

team and single-driver routes, and allows a flexible delivery schedule simultaneously. 

Additionally, we present a near-optimal heuristic for the direct shipment version of the SRP-FS. 

In the following section we present past studies in the literature that are relevant to the 

SRP-FS. We then introduce a formal mathematical formulation of the SRP-FS in Section 3. In 

Section 4 we discuss the direct delivery case of the problem and present a solution method. 

Section 5 focuses on the heuristic approach developed to solve the SRP-FS, and the 
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computational results are presented in Section 6.  Last, in Section 7 we present our conclusions 

and potential directions for future research.  

2. Literature Review 

Determining the truck routes is one of the decisions made in the SRP-FS, making the problem 

part of a group of problems that has been studied extensively in the literature. Laporte (2009), 

Toth & Vigo (2014), and Mor & Speranza (2022), among others, describe progress made in 

vehicle routing problems (VRPs) over many years, including some of its well-known extensions. 

When considering the SRP-FS, we can compare it to similar problems that have been examined 

in the past. One such problem of particular interest is the Flexible Periodic VRP (or FPVRP), 

which is an extension of the traditional Periodic VRP (PVRP), first discussed by Archetti et al. 

(2017).  At its core, the PVRP and its extensions involve decisions analogous those made by the 

SRP-FS, as it also selects a delivery schedule along with its corresponding routing (Francis et al., 

2008). However, the PVRP assumes that costumers follow a particular demand frequency pattern 

over the time horizon and makes the delivery schedule selection based on a predetermine set of 

potential visit frequencies. This is a common feature of PVRP extensions, for example the PVRP 

with service choice, studied by Francis et al. (2006), where the service choice involves letting the 

model choose how often each customer is to be visited, is still limited to pick from 

predetermined frequency patterns over the planning horizon. The FPVRP differs from other 

PVRP extensions in that its flexibility is based on deciding when to visit each customer and how 

much inventory to deliver on each visit. Several studies in the literature focused on the FPVRP 

since its introduction. Archetti et al. (2018) build on the original MIP formulation of the problem 

and present a two-phase metaheuristic to solve the FPVRP. More recently, Huerta-muñoz et al. 

(2022) present a MILP formulation for the FPVRP with heterogeneous vehicles, and they 
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develop a kernel search-based metaheuristic to solve it. 

In general, FPVRP studies assign a total demand to each customer that must be satisfied 

over the planning horizon. Based on this total demand, the FPVRP is concerned with 

determining how much inventory to deliver on each visit. In contrast, in the SRP-FS, store orders 

(in specific quantitates) must be delivered by specific time periods within the planning horizon, 

and if early deliveries are made, the stores carry inventory forward as long as store demand is 

satisfied by the specified time period.  This feature makes the SRP-FS similar to another 

extension of the PVRP, known as the PVRP with Time Windows (PVRPTW). According to 

Cordeau et al. (2001), in the PVRPTW, each customer must be visited a specified number of 

times within a pre-determined time interval. The authors present a Tabu search heuristic to solve 

the problem. However, their work only considers a particular subset of potential schedules on 

which the customers can be visited throughout the planning horizon. Rothenbächer (2019) 

presents an exact algorithm to solve the PVRPTW based on a Branch-and-Price-and-Cut scheme, 

where the potential schedules to visit the customers are flexible in that they are allowed to 

overlap and consider different frequencies. However, this is still not equivalent to the flexibility 

inherent in the SRP-FS since the SRP-FS is not constrained by a predetermined set of potential 

visit schedules; the only restriction in scheduling the deliveries is to ensure that the store orders 

are met by specific periods, without exceeding the store capacity.   

The Petrol Station Replenishment Problem (PSRP) also deals with the replenishment and 

routing logistics associated with delivering inventory to a number of customers in a given region. 

Originally formulated by Brown & Graves (1981), the PSRP was motivated by the distribution 

operations of petroleum companies in North America. A key difference between the PSRP and 

the SRP-FS is that the former considers unique delivery vehicles that contain compartments that 
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can hold different petroleum products, and each compartment must be assigned to a specific 

customer on each route. Since its introduction, the PSRP was studied by Cornillier et al. (2008a), 

who present an exact algorithm to solve the single-day PSRP, and then by Cornillier et al., 

(2008b), who present a heuristic to solve the multi-period PSRP. The multi-period PSRP was 

also studied by Boers et al. (2020) who formulate the problem as an MILP and then present a 

decomposition heuristic to solve it. Al-Hinai & Triki (2020) recently presented a two-level 

evolutionary algorithm to solve the Periodic PSRP, where periodicity is introduced in the 

delivery schedule as well as the service choice of the customers. The above extensions of the 

PSRP share structural elements with the traditional PVRP in that potential delivery schedules are 

predefined. Again, this differentiates the SRP-FS from the other problems in that it is not 

constrained by predefined delivery schedules. Furthermore, in contrast to the PSRP, the SRP-FS 

is not limited by partitions in the delivery trucks that have to be assigned to individual stores and 

have more flexibility in the amount to deliver at each store.   

Another well-known and related routing problem is the Inventory Routing Problem 

(IRP), which is primarily concerned with building routes to minimize the transportation and 

inventory holding costs while determining the frequency and quantity for each delivery. The IRP 

has been studied extensively in the literature since its introduction by Bell et al. (1983). Surveys 

on studies concerned with the IRP can be found in Andersson et al. (2010), Moin & Salhi (2007), 

and Coelho et al. (2014). While the IRP shares a similar structure with the SRP-FS in that the 

delivery quantities, the schedule, and the routes are decision variables, they differ in the factors 

that impact these decisions. The IRP is traditionally focused on considering the inventory 

holding costs at the stores, which the SRP-FS does not consider due to the nature of the 

application. Furthermore, while both problems consider the inventory consumption rate of each 
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customer, the IRP uses this rate as the demand for each customer in order to determine the 

delivery schedule. In contrast, the SRP-FS has to ensure that the specific order quantities are 

delivered by specific periods, while still considering how the stores consume inventory and 

account for the limited store capacity.  

Unlike the other problems discussed in this section, the SRP-FS incorporate multiple cost 

components associated with travel, labor, fleet size, and route-time in its objective function, 

while considering the differences between team and single-driver routes and allowing a flexible 

delivery schedule. The above flexibility in the schedule is not restricted to predefined 

frequencies, as is the case in the PVRPTW and PSRP. Additionally, the SRP-FS ensures that 

stores receive what they order by the specified period, as opposed to determining the delivery 

quantities based on the consumption rate for each period, as in the IRP, or on a total demand, as 

is defined by the FVRP. These differences distinguish the SPR-FS from previous problems 

studied in the literature.  

3. Formulating the SRP-FS  

3.1 Modelling Assumptions 

The SRP-FS is modelled using a finite planning horizon with discrete time periods. For our 

particular application, and for our industry collaborator, a time period represents a day. The SRP-

FS is concerned with building a delivery plan, which includes the delivery schedule (that is, 

when each store is visited), the delivery quantities, and the routes for the trucks, based on 

specified store orders that are to be replenished through the DC. To formulate the SRP-FS as an 

MIP, the following assumptions are made: 

(1) Early deliveries are allowed as long as each store receives the inventory quantity they 
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ordered by the specified periods; no late deliveries are allowed. 

(2) Inventory is consumed at each store at a known and predetermined rate.  Alternative 

inventory consumption rates can be considered by the proposed model.   

(3) Once it is delivered, each store (franchisee) owns the inventory; therefore, the inventory 

carrying cost at the stores is not part of the objective function.    

(4) Stores have finite capacity for storing inventory. None of the store orders may exceed the 

store’s capacity. 

(5) A route can be completed by a single driver or a team of two drivers (team routes). 

(6) The usable capacity of a truck and the route-time limit depends on the type of route 

(single-driver or team). 

(7)  A truck can only complete one route per period. 

(8) All the trucks and drivers are available at the start of each period.  

(9) In a given period, a store may receive at most one delivery. No split deliveries are 

allowed.  

(10) Store orders are measured in pounds and are represented as a single aggregate SKU. 

The first assumption reflects the introduction of a flexible schedule. Provided the 

quantities ordered by each store have been delivered by the specified periods, a flexible schedule 

allows early deliveries in order to explore possible cost savings.  The second assumption is also 

due to a flexible schedule.  Since deliveries can be made earlier, the model needs to account for 

how inventory is consumed at each store in order to keep track of available space at each store 

for subsequent deliveries.  As stated earlier, although real-time inventory usage data may be 

available, using such data and changing the model to a nightly dynamic decision-making model 
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is beyond the scope of our study.  Instead, we use pre-defined inventory consumption rates for 

each store based on the inventory quantities ordered by the store.    

The remaining assumptions (3-10) are consistent with the SRP (Vigo Camargo & Bozer, 

2022).  The third assumption follows the business model commonly used in the fast-food sector, 

where inventory at the stores is owned by the franchisee rather than the company.  Team routes 

(assumptions 5 and 6) is a common practice in the trucking industry; it allows larger delivery 

quantities (hence, larger usable truck capacity) and longer routes, while respecting federal 

regulations limiting hours-of-service for the drivers.  Assumptions 7 through 10 are introduced 

mainly to simplify the model while still capturing general practices found in fast-food supply 

operations.    

3.2 MIP Formulation 

The mathematical formulation of the SRP-FS is an extension of the formulation presented in 

Vigo Camargo & Bozer (2022). For continuity, similar notation is used as defined below: 

𝑁  = set of locations in the region (𝑖 =  0, … , |𝑁|), where 0 denotes the DC 

𝑇  = planning horizon (𝑡 =  1, … , |𝑇|) 

𝐾   = set of trucks (𝑘 = 1, … , 𝑢), where 𝑢 is an upper bound for the total trucks used 

𝐿   = set of indexes to identify single-driver (1) and team routes (2) 

𝑑𝑖
𝑡  = demand in pounds (lbs) for store 𝑖 in time period 𝑡   

𝑈𝑉
𝑙    = upper limit on truck capacity, in pounds, for route type 𝑙 

𝑈𝑇
𝑙    = upper limit of route time length, in minutes, for route type 𝑙  

𝑚𝑖𝑗 = distance in miles from store i to j  

𝑉 = maximum number of stops allowed in a route 

𝐵𝑙𝑏  = unloading rate, in minutes per pound unloaded 

𝐵𝑛  = time per stop, in minutes per stop on a route 

𝐵𝑚  = travel time rate, in minutes per mile traveled on a route 

𝐶𝑉  = daily cost per truck required 
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𝐶𝑚
𝑙    = cost/mile traveled in a route for type route 𝑙  

𝐶𝑙𝑏
𝑙    = cost/pound delivered in a route for type route 𝑙    

𝐶𝑈  = fixed overage cost for each route that exceeds the route time upper limit  

To account for possible early deliveries, the model keeps track of available inventory at each 

store throughout the planning horizon.  Also, the limited storage capacity at each store must be 

accounted for to avoid unrealistically large one-time deliveries; a concern voiced by our industry 

collaborator in light of limited storage space at each store.  

To model the above concerns, the following additional parameters are introduced to 

extend the SRP:  

𝐼𝑖
0  = starting inventory in pounds at store 𝑖 

𝑈𝑆  = store capacity, upper limit in pounds 

𝑟𝑖
𝑡  = inventory consumption rate at store 𝑖 in period 𝑡 

 

The objective function is to minimize the overall cost associated with replenishing the stores 

from a given DC, considering a flexible schedule and the space limitations imposed by both the 

trucks and the stores. The decision variables are defined as follows: 

𝑥𝑖𝑗𝑘
𝑡𝑙   = 1 if truck 𝑘, completing a route type 𝑙, travels from store 𝑖 to 𝑗 in time period 𝑡 

𝑞𝑖𝑘
𝑡𝑙  = number of pounds delivered to store 𝑖 on truck k, on a route type l, in time period 𝑡 

𝑎𝑘
𝑡𝑙 = 1 if truck 𝑘, completing a route type l, is used on period t  

𝐼𝑖
𝑡 = inventory in pounds at store 𝑖 at the end of time period 𝑡 

𝑧𝑟
𝑡  = 1 if the time length of route 𝑟 goes over the upper limit in minutes on period 𝑡   

𝐻  = number of trucks required over the time horizon 

The mathematical formulation of the SRP-FS is presented as follows:  

 

min ∑ ∑ 𝐶𝑚
𝑙  𝑚𝑖𝑗  𝑥𝑖𝑗𝑘

𝑡𝑙  

𝑖,𝑗𝑡,𝑘,𝑙

+ ∑ ∑ ∑ 𝐶𝑙𝑏
𝑙  𝑞𝑖𝑘

𝑡𝑙

𝑖𝑘𝑡,𝑙

+ ∑ ∑ 𝐶𝑈 𝑧𝑘
𝑡𝑙

𝑟𝑡

+ 𝐶𝑉 𝑇 𝐻  
(1) 
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𝑠. 𝑡.    𝐼𝑖
𝑡−1 + ∑ 𝑞𝑖𝑘

𝑡𝑙

𝑘,𝑙

− 𝑟𝑖
𝑡 = 𝐼𝑖

𝑡 ∀  𝑖 ∈ 𝑁\{0}, 𝑡 ∈ 𝑇   (2) 

∑ ∑ 𝑞𝑖𝑘
𝑜𝑙

𝑜≤𝑡𝑘,𝑙

≥ ∑ 𝑑𝑖
𝑜

𝑜≤𝑡

 ∀  𝑖 ∈ 𝑁\{0}, 𝑡 ∈ 𝑇 (3) 

∑ 𝑞𝑖𝑘
𝑡𝑙

𝑘,𝑙

+ 𝐼𝑖
𝑡−1 ≤ 𝑈𝑆 ∀  𝑖 ∈ 𝑁\{0}, 𝑡 ∈ 𝑇 (4) 

∑ 𝑞𝑖𝑘
𝑡𝑙

𝑖>0

≤ 𝑎𝑘
𝑡𝑙 𝑈𝑉

𝑙  ∀  𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (5) 

∑ 𝑥𝑖𝑗𝑘
𝑡𝑙

𝑖,𝑘,𝑙

≤ 1 ∀ 𝑗 ∈ 𝑁\{0}, 𝑡 ∈ 𝑇 (6) 

∑ 𝑥𝑖𝑗𝑘
𝑡𝑙

𝑖,𝑗

≤ 𝑎𝑘
𝑡𝑙  𝑉 ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (7) 

∑ 𝑥𝑖𝑗𝑘
𝑡𝑙

𝑖

 𝑈𝑆 ≥ 𝑞𝑗𝑘
𝑡𝑙  ∀ 𝑗 ∈ 𝑁\{0}, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (8) 

∑ 𝑎𝑘
𝑡𝑙

𝑘,𝑙

≤ 𝐻 ∀  𝑡 ∈ 𝑇 (9) 

∑(𝐵𝑙𝑏 𝑞𝑖𝑘
𝑡𝑙 )

𝑖

+ ∑ 𝐵𝑛 𝑥𝑖𝑗𝑘
𝑡𝑙

𝑖>0,𝑗

 +  ∑ 𝐵𝑚 𝑚𝑖𝑗 𝑥𝑖𝑗𝑘
𝑡𝑙

𝑖,𝑗

 

≤ 𝑈𝑇
𝑙  (1 + 𝑧𝑘

𝑡𝑙) 

∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿  (10) 

𝑧𝑘
𝑡𝑙 ≤ 1 ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (11) 

∑ 𝑥0𝑗𝑘
𝑡𝑙

𝑗

= 𝑎𝑘
𝑡𝑙 ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (12) 

∑ 𝑥𝑖𝑗𝑘
𝑡𝑙

𝑖

−  ∑ 𝑥𝑗𝑜𝑘
𝑡𝑙

𝑜

= 0 ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁, 𝑙 ∈ 𝐿 (13) 

𝑎𝑘
𝑡𝑙 ∈ {0,1} ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (14) 

∑ 𝑥𝑖𝑗𝑘
𝑡𝑙

(𝑖,𝑗) ∈ 𝑆,𝑘

≤ |𝑆| − 1 ∀ 𝑆 ⊂ 𝑁, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (15) 

𝑢 ≥ 𝐻 ≥ 0 integer (16) 

𝑥𝑖𝑗𝑘
𝑡𝑙 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝑁, k ∈ K, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿  (17) 

𝑞𝑖𝑘
𝑡𝑙 ≥ 0 ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (18) 

𝐼𝑖
𝑡 ≥  0 ∀  𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (19) 
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𝑧𝑘
𝑡𝑙 ≥ 0 ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (20) 

 

The objective function in equation (1) represents the four cost components associated 

with SRP-FS; namely, the mileage cost due to the distance traveled, the delivery cost based on 

the quantity of inventory delivered (by the pound), the overage cost of exceeding a route time 

limit, and the fleet cost (for providing 𝐻 trucks throughout the planning horizon). Constraints (2) 

represent the basic inventory balance constraints, and they incorporate the rate of inventory 

consumption at each store. Constraints (3) are used to ensure that demand is met by the period 

expected for every store. Constraints (4) impose the store capacity, while constraints (5) ensure 

that the truck capacity is not exceeded on either single-driver or team routes.  Constraints (6) 

disallow split deliveries, while constraints (7) impose the maximum number of stops allowed in a 

route. Constraints (8) ensure that the delivery and the visit variables are linked. Constraints (9) 

ensure that the number of trucks used in any time period does not exceed the fleet size. The route 

time is calculated with constraints (10), including those routes which may incur an overage cost. 

Constraints (11) ensure that the route overage is bounded. Constraints (12) link the number of 

trucks used with every departure from the DC. Constraints (13) represent the routing balance 

constraints, while constraints (14) ensure that each truck is used at most once per period.  Set 

(15) represents the subtour elimination constraints, while constraint sets (16) – (20) define the 

variables and represent the non-negativity constraints.     

The above extension, combined with the routing component and subtour elimination 

constraints, significantly increases the complexity of the model compared to the original SRP 

with a fixed schedule. To gain insight into the solution structure of the SRP-FS, we first studied 

the direct delivery version of the problem, also known as out-and-back deliveries. In the 
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following section we discuss the direct delivery approach and a procedure to find a near-

optimum solution. 

4. SRP-FS with Direct Deliveries 

With direct deliveries from the DC, where a truck makes only an out-and-back trip to a store, 

SRP-FS is simplified significantly. Since the distance cost per mile traveled does not change 

over the planning horizon, and all the store orders have to be delivered, the solution to the direct-

delivery version of the SRP-FS focuses on the total number of deliveries made and the number of 

trucks needed, where the latter is dictated by the period with the maximum number of trucks 

used. Whether each route is completed by a single driver or a team, and whether or not a route 

exceeds its time limit, also impacts the final cost but these factors can be easily adjusted after a 

delivery schedule is developed.   

Except for the number of trucks needed, each store can be treated independently.  

Therefore, we first focus on minimizing the total number of deliveries. Considering each store 

individually and trying to minimize the number of deliveries resembles the Capacitated Lot 

Sizing Problem with Inventory Bounds (CLSP-IB). The traditional Lot Sizing Problem (LSP) is 

typically used in a production setting where there is demand for a product to be manufactured 

over a known planning horizon. The objective of the LSP is to determine in which periods to 

manufacture the product and how much to manufacture in order to meet demand, while 

minimizing the fixed and variable costs (Brahimi, et al. (2017)). The fixed cost is based on the 

setup cost for production, while the variable cost is based on the inventory holding cost, and in 

some cases the unit production cost. The CLSP-IB is an extension of the traditional LSP in that it 

limits the quantity that can be manufactured in each period, and it limits how much inventory can 

be stored between periods.  
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Under the direct delivery assumption, the truck capacity of the SRP-FS is analogous to 

the manufacturing capacity in the CLSP-IB. Similarly, the store capacity can be expressed as the 

inventory bounds in the CLSP-IB. In terms of the objective function, both problems incur a fixed 

cost (i.e., the out-and-back distance cost in the SRP-FS and the production setup cost in the 

CLSP-IB) as well as a variable cost directly associated with the number of items delivered (SRP-

FS) or manufactured (CLSP-IB).  Since the fixed cost in each problem remains the same through 

the planning horizon (cost per mile traveled and the setup cost), the main decision is focused on 

minimizing the number of deliveries (SRP-FS) or production runs (CLSP-IB). Hence, the two 

problems can be solved using similar solution methods.   

The LSP has been studied extensively in the literature, including the CLSP-IB extension 

(see Gharaei, et al. (2021)). In Florian & Klein (1971), the authors present an algorithm to obtain 

an optimal solution to the CLSP-IB with concave costs and a stationary production capacity. As 

an extension to this work, Akbalik et al. (2015) present two algorithms for the CLSP-IB for the 

case with concave costs and the case with Wagner-Whitin (WW) costs, which establishes that 

the cost of producing and holding inventory for a specific period is greater than or equal to the 

cost of just producing in the next period. For concave costs, the authors adapt the algorithm in 

Florian & Klein (1971) to incorporate inventory bounds and they formulate the problem as a 

Shortest Path Problem. For WW costs, they define recursive formulas for sub-plans (smaller 

intervals of time) within the given planning horizon and they obtain an optimal solution through 

dynamic programming.  

The above algorithms use the concept of “inventory periods,” defined as the time 

between a period where inventory is at full capacity and the next period when inventory is 

completely depleted. By assuming that the last period in the planning horizon is also the end 
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point of an inventory period (i.e., there is no inventory left at the end of the planning horizon), 

the above algorithms are able to identify one period within the sub-plans to produce a fraction of 

the total capacity, and then assign the other k necessary periods of production at full capacity in 

order to meet the exact demand. However, assuming that no inventory is left at the end of the 

planning horizon would not be appropriate in some cases, particularly in applications like the 

fast-food industry where inventory is rarely depleted completely, and any remaining inventory 

would normally be carried over to the next planning horizon. The decision policy described 

below is shown to yield an optimal solution for such applications, including the direct delivery 

version of the SRP-FS. The policy establishes that whenever the inventory level at a store at the 

start of a period is not enough to meet the expected consumption for that period, a delivery 

should be scheduled with enough inventory to not exceed the minimum of three items: 1) the 

truck capacity (based on a single-driver), 2) the available capacity at the store, and 3) the sum of 

the store orders in subsequent time periods. The third item is included to ensure that we do not 

deliver more inventory than what was ordered by the store over the planning horizon.  

To formalize the proposed policy and prove its optimality, let 𝑥𝑖
𝑡 ∈ 𝑋 be a binary variable 

to indicate whether or not a delivery is made in period 𝑡 ∈ 𝑇 at store i, while 𝑞𝑖
𝑡 is defined as the 

quantity of inventory delivered to store i in period 𝑡. The truck capacity and the store capacity are 

denoted by 𝑈𝑉 and 𝑈𝑆, respectively. Inventory available at the start of period 𝑡 is defined by the 

variable 𝐼𝑖
𝑡. Furthermore, 𝑑𝑖

𝑡 (integer) denotes the store order in period t. We assume that 𝑑𝑖
𝑡 ≤

𝑈𝑆 for all t, and that each store consumes inventory at a known rate of 𝑟𝑖
𝑡. A feasible solution to 

the above problem shows a schedule of periods in which a delivery is made as well as the 

amount delivered on each visit, while satisfying the capacity constraints and the store orders. The 

following definition leads to a mathematical formulation of the problem and a solution:  
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Definition: A set of positive integer values, 𝑋 = {𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑇}, is a solution to the direct 

delivery SRP-FS if the following constraints are satisfied:   

𝑥𝑖
𝑡  𝑈𝑉 ≥ 𝑞𝑖

𝑡     ∀ 𝑖, 𝑡 (21) 

∑ 𝑞𝑖
𝑜

𝑡

≥  ∑ 𝑑𝑖
𝑜

t

 ∀ 𝑖, 𝑡 (22) 

𝑈𝑆 ≥ 𝑞𝑖
𝑡 + 𝐼𝑖

𝑡 ≥ 𝑟𝑖
𝑡   ∀ 𝑡 (23) 

𝑥𝑖
𝑡 ≥ 0,   𝑞𝑖

𝑡 ≥ 0,    𝐼𝑖
𝑡 ≥ 0  ∀ 𝑖, 𝑡 (24) 

where 𝐼𝑖
𝑡−1 = 𝑞𝑖

𝑡−1 + 𝐼𝑖
𝑡−1 − 𝑟𝑖

𝑡−1 for all 𝑡 > 1.  With the above definition, a formal proposition 

for the optimal policy is established as follows.  

Proposition: Suppose a set of integer positive values, 𝑋∗, represents a schedule of deliveries to a 

store such that a delivery is scheduled whenever the inventory available at the start of the period 

is less than the expected consumption for that period, and the quantity delivered is the difference 

between the current inventory level and the maximum inventory allowed at the store. That is, 

𝑥𝑖
𝑡 = {

1   if  𝑞𝑖
𝑡 > 0

 
  0    otherwise

 (25) 

where,  

         𝑞𝑖
𝑡 =  {    𝑈𝑆 − 𝐼𝑖

𝑡    if    𝐼𝑖
𝑡 < 𝑑𝑖

𝑡 or ∑ 𝑞𝑖
𝑜

𝑡−1

< ∑ 𝑑𝑖
𝑜

𝑡

 
0    otherwise

 (26) 

Then 𝑋∗ is an optimal solution to the direct delivery SRP-FS. A proof of the optimality of the 

above proposition for an individual store is presented in the Appendix.  

The proposed policy provides us with a delivery plan that minimizes the total number of 

visits needed to satisfy the store orders. If a store is considered individually, minimizing the 

number of visits to the store yields the optimal solution. However, when all the stores are 

considered together, we have to account for the number of trucks used and its impact on the total 
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cost of the solution. To address the fleet cost, we developed the following heuristic that takes an 

initial delivery schedule, built from the proposed policy, and minimizes the number of trucks 

needed over the planning horizon: 

1. For each period t, calculate the average number of trucks needed up to that period: 

𝑉𝑡 =
∑ ∑ 𝑥𝑖

𝑜
𝑜≤𝑡𝑖

𝑡
 

2. Determine a lower bound on the number of trucks needed (𝐿𝑉) using the maximum 

value amongst the average calculated in step 1; that is, set 𝐿𝑉 = max
𝑡

 { 𝑉𝑡}. 

3. Starting from the first period, identify the deliveries in the initial delivery schedule 

that meet the following criteria as “fixed”: 

a. It is scheduled on the first period 

b. It is scheduled directly after a “fixed” delivery 

c. The available space at the store on the previous period is not enough to cover 

the necessary inventory to meet the store order and/or expected consumption 

4. If any period has a larger number of “fixed” deliveries than the calculated lower 

bound (𝐿𝑉), update the lower bound to the number of “fixed” deliveries.  

5. Build a final delivery schedule: 

a. All “fixed” deliveries will remain on the period they are on. 

b. Starting from the second period, assign any delivery from the initial schedule 

that is not “fixed” to the earliest period available that meets the following 

criteria:  

i. The number of deliveries on the available period is less than the lower 

bound 𝐿𝑉 
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ii. The available space at the store is greater than or equal to the amount 

of inventory delivered in the initial schedule 

iii. If no previous period is feasible, then keep the delivery on the same 

period 

6. Every time a delivery is scheduled, update the available space at the store. 

We tested the proposed heuristic using three test instances generated with random data. 

Each instance consisted of 350 stores and 10 time periods. Each store was assigned a storage 

capacity of 3,000 lbs, while store orders per period for each store were randomly generated using 

a uniform distribution between 300 and 2,700 lbs in multiples of 10. The initial inventory level at 

each store was also randomly generated using the same method as the store orders. For this 

particular test, we assumed the inventory consumption rate is equal to the store order, i.e., 

inventory is consumed in the same period the store order is expected. We varied the truck 

capacity between instances to create a different delivery frequency profile for each instance, 

ranging across high, medium, and low. A higher truck capacity reduces the need for frequent 

deliveries, while a lower truck capacity increases the delivery frequency for each store.  We 

compared the results obtained from the heuristic with the optimum solutions obtained from 

CPLEX using a modified version of the MIP model presented in the previous section.  

Table 3-1. Summary of Results Using the Direct Delivery Heuristic 

350 

Stores; 

T = 10 

Delivery Intensity 

Solution 

High Medium Low 

No. 

Visits 

No. 

Trucks 

Time 

(s) 

No. 

Visits 

No. 

Trucks 

Time 

(s) 

No. 

Visits 

No. 

Trucks 

Time 

(s) 

CPLEX 2319 233 92.12 1797 180 1076.3 969 168 1197.1 

Heuristic 2319 (260) 260 1.68 1797 (193) 180 1.57 969 (185) 168 0.98 
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% of Diff 0.00% 10.38%  0.00% 0.00%  0.00% 0.00%  

 

Table 3-1 summarizes the total number of visits (or deliveries) for each instance as well 

as the number of trucks needed. For the results obtained with the heuristic, the Table shows the 

final number of trucks found by the heuristic, as well as the initial number of trucks found when 

the initial delivery schedule is developed in parenthesis. The heuristic identifies the optimal 

solution for both instances within seconds when the delivery frequency is low (i.e., 20% of the 

periods have a delivery scheduled) or medium (i.e., 40% of the periods have a delivery 

scheduled). When the delivery frequency is high (i.e., deliveries for each store are, on average, 

scheduled on 70% of the periods), the heuristic finds a solution that is 10% over the optimum. 

Although a high delivery frequency is unlikely to be encountered in the fast-food industry, the 

above results show that the proposed heuristic is a practical tool to develop an initial delivery 

plan in a very short amount of time. In the following section we discuss the solution approach we 

developed for the milk-run version of the SRP-FS (i.e., each truck is allowed to visit two or more 

stores on one route). By adjusting how the truck lower bound is calculated in the Out-and-Back 

policy discussed in this section, we were able to use it to build an initial solution for the milk-run 

version of the problem. The adjustment involves determining the truck lower bound by 

comparing the average number of trucks required based on store visits (considering maximum 

number of stops allowed in a route) and the average number of trucks required based on 

inventory volume (considering single-driver truck capacity), and choosing the larger between 

them. After an initial schedule is built, we used the traditional Savings Algorithm (Clarke & 

Wright, 1964) to build corresponding routes and generate an initial feasible solution to the SRP-

FS.  
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5. A Two-Step Simulated Annealing Heuristic for the SRP-FS 

Turning our attention back to the milk-run version of the SRP-FS, it becomes evident that its 

solution structure, similar to the direct delivery version, can also be broken down into two main 

components: 1. Building a delivery schedule, and 2. Forming the deliveries into routes. The 

heuristic developed for the direct delivery version of the problem was also composed of two 

steps that were aligned with the two components of the solution structure, i.e., minimizing the 

number of store visits, and minimizing the number of trucks used. We therefore decided to use 

the same two-step structure for tackling the milk-run version of the SRP-FS, where each step is 

aligned with the two components of the solution structure, i.e., the first step focuses on building a 

feasible delivery schedule, while the second focuses on constructing the delivery routes.  

The overall structure of the solution procedure we developed for the SRP-FS is based on 

Simulated Annealing (SA). First discussed by Kirkpatrick et al. (1983), SA heuristics have been 

used in the literature to solve a wide range of optimization problems. One of the main advantages 

of SA for complex combinatorial problems is that it can avoid being trapped by local minima by 

accepting non-improving solutions in the search neighbourhood (Eglese, 1990). Studies that 

employ SA have been shown to obtain good solutions to problems in vehicle routing, scheduling, 

and lot-sizing; see, for example, the surveys by Koulamas et al. (1994), and Vidal et al. (2013), 

among others, which motivated us to use it for the SRP-FS. 

The first step in the proposed heuristic uses SA to find a feasible delivery schedule and 

the corresponding delivery quantities. However, in order to evaluate the cost of the solution, the 

routing component associated with the delivery schedule needs to be built. The second step of 

the heuristic addresses the construction of the routes. The routing component is nested within the 

iterative SA structure and uses an adjusted savings algorithm to build routes based on the 
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delivery schedule created in the first step, and to determine which routes should be single-driver 

or team routes. The routes from the second step are used to calculate the overall cost of the 

solution, which allows the SA algorithm to either accept or reject the trial solution before 

proceeding to the next iteration.  In the following sections we present and discuss the details of 

the above two algorithms.    

5.1 Simulated Annealing Heuristic for Developing the Delivery Schedule 

The general structure used for our SA heuristic is based on the annealing scheme used by Bozer 

& Carlo (2008) and discussed in Tompkins et al. (2010). The following notation is used for the 

SA heuristic: 

𝑠0/𝑠/𝑠′ = initial/ current/ candidate solution 

𝑠∗ = current solution found by the heuristic with the lowest cost 

𝛼 = temperature reduction factor 

𝑇 = set of temperatures 𝑡𝑖  that follow the cooling schedule for the annealing process, where 

𝑡𝑖 = 𝑡0 𝛼𝑖 for all 𝑖 > 1  

𝑡0 = initial temperature 

𝜏  = parameter used to calculate an initial temperature 

𝑒  = fixed epoch length 

𝑓𝑗(𝑠) = objective value of the 𝑗th accepted candidate solution, 𝑠, in an epoch 

𝑓𝑒̅ = mean objective value of the accepted solutions in an epoch, where 𝑓𝑒̅ =  ∑ 𝑓𝑗(𝑠)𝑒
𝑗=1 /𝑒 

𝑓𝑒̅
′ = overall mean objective value of all the accepted candidate solutions during previous 

epochs to the current one for a given temperature 

𝜖𝑖 = threshold value to determine system equilibrium at temperature 𝑖 

𝑀 = maximum number of epochs to evaluate over all temperature 
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𝐼 = counter to record the temperature index where the current best solution, 𝑠∗, was found 

𝑁  = maximum number of successive temperature changes allowed without an improvement 

on the best solution, 𝑠∗ 

The proposed SA heuristic proceeds as follows and is depicted in Figure 3-1.  

Step 1. Determine the total cost of the initial solution, 𝑓(𝑠0). Use this value to set an initial 

temperature (𝑡0 = 𝑓(𝑠0)/𝜏) and initialize 𝑡1 = 𝛼𝑡0, 𝐼 = 1, and 𝑖 = 1. Set the initial 

solution as the current solution for the SA, 𝑠 = 𝑠0. 

Step 2a. Randomly select a period (𝑝) and a store (𝑛) that is visited on the selected period. 

Create a list of all other periods where it would be feasible to shift part or the entire 

delivery to store 𝑛, using the following rules: 

• If the potential period is before period p, then check if there is space available at 

the store. 

• If the potential period is after period p, then first check if part of the delivery can 

be delayed to the future period, or if it is required to meet store demand before the 

potential period. If part or all of the delivery can be delayed, then check if there is 

available space at the store on the future period.  

Step 2b.     From the list of potential periods, select the alternative period (𝑝′) with the lowest 

average truck utilization. If no deliveries are scheduled on the potential periods, then 

chose one randomly.  

Step 2c.     Determine the quantity (𝑦′) to be shifted to period 𝑝′.  

• If 𝑝′ < 𝑝, the quantity to shift will be the minimum between the space 

available at the store on the selected period, and the original delivery quantity. 
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• If 𝑝′ > 𝑝, the quantity to shift will be the minimum between the delivery 

quantity that can be delayed and the space available at the store on the 

selected period. 

Update the delivery schedule with the new delivery quantities, 𝑦𝑛
𝑝 = 𝑦𝑛

𝑝 − 𝑦′ and 

𝑦𝑛
𝑝′

= 𝑦𝑛
𝑝′

+ 𝑦′. 

Step 2d.     Using the updated delivery schedule, build a routing plan using the Adjusted Team 

Savings Algorithm for the altered periods p and p’ (see Section 5.2). Set the delivery 

schedule and resulting routes as the new candidate solution 𝑠′. 

Step 2e.  Calculate the change in total cost ∆𝑓 = 𝑓(𝑠) − 𝑓(𝑠′). If ∆𝑓 > 0, then 𝑠′ is accepted, 

set 𝑠 = 𝑠′ and go to Step 2f; otherwise go to Step 2e. 

Step 2f. Using a uniform distribution 𝑈(0,1), sample a random variable 𝑥. If 𝑥 ≤ exp (
∆𝑓

𝑡𝑖
), 

then candidate solution 𝑠′ is accepted (𝑠 = 𝑠′), go to Step 2g otherwise repeat the 

perturbation process from Step 2a.  

Step 2g.  Update the current objective value 𝑓(𝑠) = 𝑓(𝑠′). If 𝑓(𝑠) < 𝑓(𝑠∗), then set the current 

solution as the best solution found (𝑠∗ = 𝑠, 𝑓(𝑠∗) = 𝑓(𝑠)) and record the temperature 

index 𝐼 = 𝑖. If the number of candidate solutions accepted equals the epoch length 𝑒, 

go to Step 3; otherwise, go to Step 2a to repeat the perturbation process.   

Step 3. If equilibrium has not been reached at temperature 𝑡𝑖, that is, if the percentage 

difference between the mean objective value of the accepted solution on the current 

epoch and the overall mean objective value of the accepted solutions on previous 

epochs is over a specified threshold (
|𝑓̅𝑒−𝑓̅𝑒

′|

𝑓̅𝑒
′ ≥ 𝜖𝑖), restart the counter of accepted 

solutions and repeat the perturbation process from Step 2a. If equilibrium has been 
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reached, then update the temperature by setting 𝑖 = 𝑖 + 1 and 𝑡𝑖 = 𝑡0 𝛼𝑖. If the 

maximum number of successive temperature changes without improvements has been 

reached (𝑖 − 𝐼 ≥ 𝑁), STOP; otherwise go to Step 4. 

Step 4.  If the total number of epochs evaluated is less than the maximum (𝑀), repeat the 

perturbation process from Step 2a; otherwise STOP. 

 

Figure 3-1. SA Heuristic Flowchart 

One of the key steps in the above SA heuristic is how we perturb the current solution to obtain a 

candidate solution as shown in Step 2b. We evaluated a variety of alternative perturbation 

schemes using a test instance and compared it with choosing an alternative randomly. We found 

that selecting the period with the lowest truck utilization yielded the best solutions.  

5.2 Adjusted Team Savings Algorithm for the Delivery Routes 

Given a candidate delivery schedule generated by the SA heuristic, we need to build the delivery 

routes to evaluate the candidate schedule and determine the total cost of the solution. The 

Adjusted Team Savings algorithm (TS) was developed and integrated into the SA algorithm for 

this purpose. Similar to the classical savings algorithm developed by Clarke & Wright (1964), 

the TS starts from a set of routes (see below) and uses the potential savings that could be 
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generated by changing a route from single-driver to a team route and potentially including more 

stores into the route. The details of the TS are presented below and summarized in Figure 3-2.  

Step 1.  Using the traditional Savings Algorithm, build single-driver routes to visit all the stores 

scheduled for delivery in period 𝑡. Calculate the cost of each baseline route (𝐶𝑟
𝐵).  These 

single-driver routes serve as a baseline for the savings calculation.  

Step 2.  For each baseline route 𝑟, calculate its Team Savings 𝑆𝑟: 

 Step 2a.  Let route 𝑟 have the parameters of a Team route and continue adding stores to 

the route until truck capacity or maximum number of stops are met.  

 Step 2b.   Calculate the new cost of route 𝑡 using team route cost parameters (𝐶𝑟
𝑇). If 

additional stores were added to route 𝑟, then for comparison, calculate the cost of visiting 

these additional stores in a separate route (𝐶𝑟
𝐴).  

 Step 2c.  Determine the Team Savings for each route 𝑟, 𝑆𝑟 = 𝐶𝑟
𝐵 + 𝐶𝑟

𝐴 − 𝐶𝑟
𝑇 

Step 3.  Select the route with the highest Team Savings 𝑆𝑟. If 𝑆𝑟 > 0 go to Step 4; otherwise 

STOP and return the saved routes so far to the SA heuristic.  

Step 4. Save the selected route as a final solution route. Rebuild baseline routes for all stores that 

are not included in the saved routes and go to Step 2. 

 

Figure 3-2. Adjusted Team Savings Algorithm Flowchart 
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6. Computational Results 

The two-step SA heuristic (Section 5) was coded using Python 3.7.4 and all instances were run 

on a Windows computer with a 64-bit 2.50 GHz Intel Core i7 processor and 8GB of RAM. Two 

main sets of instances were used to obtain computational results: 1) Test set with randomly 

generated data; 2) Industry data set provided by our industry collaborator.  

The set of randomly generated data was originally created and used for the SRP in Vigo 

Camargo & Bozer (2022). A total of 45 instances are contained in this set with sizes ranging 

from 10 to 350 stores (𝑁 = 10, 100, 350), with a time horizon of a week. The store locations 

were randomly generated in a 600 x 600 grid with the DC located at the center. Store demand 

was also randomly generated following a normal distribution 𝑁(𝜇 = 2,030, 𝜎 = 760.15), based 

on the average value for store demand in the industry data instances. Each instance is 

characterized by low, medium and high frequency store orders, which was randomly generated 

for each store using a normal distribution with parameters 𝜇 = 1, 2, 4 orders in the planning 

horizon, respectively, and a standard deviation of 0.60 for all three frequencies. A subset of these 

randomly generated instances was used as a test set to determine the parameter values to use for 

the SA heuristic, which we discuss in the following section.  

6.1 SA Parameters 

An important factor in the performance of a SA heuristic is the values assigned to the annealing 

parameters.  Using guidelines discussed in Meller & Bozer (1996), we set the initial temperature 

as a fraction of the initial solution objective value using the parameter 𝜏. Using this approach to 

set the initial temperature determines the initial threshold acceptance, i.e., setting 𝜏 = 40 (with 

𝛼 = 1) gives a solution that is 5% over the initial solution an initial acceptance probability of 
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0.135. We also defined a cooling schedule that uses 𝛼 as the base cooling rate. The other two key 

parameters that can impact the performance of the SA heuristic are the epoch size (e) and the 

maximum number of temperature changes without an improvement in the solution (𝑁). To 

determine the value of the above four parameters, we completed a preliminary experiment using 

three instances from the set of randomly generated instances of varying size.  

Table 3-2. Alternative Values for SA Parameters 

Variable  Parameter Value 

𝛼  Base cooling rate 0.7, 0.8, 0.9 

𝜏  Initial temperature parameter 20, 40, 80 

e Epoch size 15, 30, 60 

N Max. number of temperature changes without improvements 5, 10 

 

Table 3-2 summarizes potential values assigned to each parameter. From these values we 

built 54 parameter combinations and used them to solve each instance three times for a total of 

648 runs. We compared the average solution obtained from each parameter combination with the 

lowest value found on each corresponding instance size by calculating the percentage difference 

between the objective values. Figure 3-3 shows the average percentage difference obtained from 

each parameter combination across all three instance sizes. From these preliminary results, we 

selected the combination of parameter settings that yielded the lowest average percentage 

difference. While the graph shows various parameter sets that are close to the lowest solution 

line, two individual sets obtained the lowest percentage difference, highlighted in the graph with 

an increased marker size. Looking at the breakdown of the results from these two parameter sets, 

we identified that one set performed better in smaller instances, while the other set performed 

better in larger instances. We selected the parameter set that performed better in larger instances 

(marked with a red outline in the graph), as these would be more representative of industry data. 

The values for this set correspond to 𝛼 = 0.8, 𝜏 = 40, 𝑒 = 15, 𝑁 = 10. 
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Figure 3-3. SA Parameter Testing 

6.2 SA Heuristic Performance 

To evaluate the performance of the proposed heuristic, we used the set of instances with 

randomly generated data. We solved all 45 instances with the SA heuristic using the parameters 

identified in the previous section. As a comparison, we also solved a version of the SRP-FS 

where we assume infinite truck capacity (ITC), for both types of routes, to serve as a benchmark. 

Furthermore, we used the formulation presented in Section 3 to solve the problem directly using 

CPLEX optimization software. However, due to the complexity and size of the problem, CPLEX 

was unable to solve the instances with 100 and 350 stores. For the instances with 10 stores, 

CPLEX reported incumbent solutions and their optimality gap after running for an hour. Due to 

the pseudo-random nature of the SA heuristic, we ran each instance three times and summarized 

the results in Table 3-3. We first discuss the results for all the instances and compare them with 

the ITC benchmark, and then we discuss the results obtained from CPLEX, which are 

summarized in Table 3-4.  

Table 3-3. SA Heuristic Performance 

 SRP-FS    ITC    % Diff 

Instance Best Sol Avg Sol 
Avg 

Time 
 Best Sol Avg Sol 

Avg 

Time 
 ITC 

n10-1 9,923.58 10,070.75 1,405.06  9,119.95 9,388.12 164.92  8.81% 

n10-1-H 17,061.81 17,497.49 1,219.67  16,470.11 16,640.07 908.21  3.59% 

0.0000%

2.0000%

4.0000%

6.0000%

8.0000%

Instances

Avg. % Difference From Best Solution 
Parameter Sets

Lowest Solution
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n10-1-L 7,100.71 7,200.85 242.80  6,185.35 6,857.21 225.53  14.80% 

n10-2 9,832.52 9,919.68 455.65  8,975.78 9,060.80 336.34  9.55% 

n10-2-H 15,930.02 16,363.90 1,362.62  14,108.38 14,720.53 1,482.85  12.91% 

n10-2-L 6,864.76 6,864.76 350.26  6,236.26 6,621.39 236.93  10.08% 

n10-3 8,748.35 8,949.07 389.65  8,083.03 8,083.03 313.99  8.23% 

n10-3-H 14,124.00 14,786.81 891.00  12,260.53 12,699.46 711.48  15.20% 

n10-3-L 7,057.15 7,272.33 643.51  6,209.77 6,450.89 143.11  13.65% 

n10-4 8,512.20 8,524.86 2,737.07  7,572.14 7,826.01 525.50  12.41% 

n10-4-H 14,224.39 14,944.91 2,000.22  12,697.45 12,854.64 346.64  12.03% 

n10-4-L 6,192.65 6,463.67 434.82  6,010.07 6,018.22 165.75  3.04% 

n10-5 9,424.10 9,605.88 1,127.08  9,127.44 9,138.64 111.57  3.25% 

n10-5-H 17,599.53 18,005.99 486.86  16,250.24 16,451.59 587.11  8.30% 

n10-5-L 6,455.45 6,585.78 94.56  6,283.86 6,283.86 122.27  2.73% 
       Avg  9.24% 

n100-1 52,246.38 52,818.75 3,613.79  49,715.72 50,925.75 3,048.01  5.09% 

n100-1-H 92,901.38 93,928.69 3,661.91  90,103.41 90,311.98 3,650.85  3.11% 

n100-1-L 38,316.24 38,582.24 3,611.22   38,214.97   39,531.74   3,070.20   0.27% 

n100-2 57,782.79 58,254.54 3,620.76  56,327.53 56,866.26 3,458.82  2.58% 

n100-2-H 92,558.58 93,405.59 3,653.33  88,476.45 89,469.17 3,646.78  4.61% 

n100-2-L 34,120.59 35,155.33 3,610.42  33,792.43 35,207.49 5,408.93  0.97% 

n100-3 57,043.01 57,702.15 3,622.06  55,978.29 56,578.24 3,535.86  1.90% 

n100-3-H 93,857.39 94,255.18 3,658.80  90,244.60 91,271.36 3,658.51  4.00% 

n100-3-L 37,168.58 38,263.42 3,237.63  35,870.97 37,086.38 3,433.32  3.62% 

n100-4 52,595.99 53,112.09 3,620.32  50,760.93 51,346.73 3,419.54  3.62% 

n100-4-H 94,312.42 95,552.99 3,657.86  91,503.37 92,323.32 3,652.98  3.07% 

n100-4-L 34,670.03 35,592.53 3,558.49  34,442.83 35,614.49 3,610.44  0.66% 

n100-5 50,443.29 50,853.20 3,618.88  49,577.22 50,146.83 3,620.71  1.75% 

n100-5-H 87,295.91 87,647.42 3,660.96  85,777.74 86,094.94 3,656.69  1.77% 

n100-5-L 33,948.29 34,481.43 3,610.85  33,608.59 34,186.48 3,612.05  1.01% 
       Avg  2.53% 

n350-1 161,766.78 162,362.88 3,826.98  143,800.75 144,261.18 3,779.37  12.49% 

n350-1-H 266,950.06 267,463.82 4,506.34  252,334.26 254,189.63 4,319.87  5.79% 

n350-1-L 111,016.14 111,290.11 3,677.32  109,124.05 109,822.33 3,689.26  1.73% 

n350-2 159,444.87 159,726.92 3,792.49  142,444.05 143,925.80 3,832.99  11.94% 

n350-2-H 260,978.22 261,373.96 4,361.89  252,341.19 252,810.27 4,251.96  3.42% 

n350-2-L 102,113.67 102,430.09 3,673.67  95,045.71 95,705.67 3,663.05  7.44% 

n350-3 154,599.79 155,164.67 3,779.09  141,562.99 143,649.03 3,777.37  9.21% 

n350-3-H 263,099.04 263,326.03 4,267.45  252,834.28 253,090.52 4,146.99  4.06% 

n350-3-L 105,354.96 106,137.34 3,685.49  97,496.93 97,969.08 3,671.27  8.06% 

n350-4 159,284.80 160,307.88 3,796.63  137,672.59 139,674.75 3,810.48  15.70% 

n350-4-H 261,794.04 263,179.84 4,491.39  248,542.02 249,466.64 4,274.37  5.33% 

n350-4-L 102,920.99 103,565.69 3,681.87  94,779.12 95,369.98 3,670.75  8.59% 

n350-5 155,915.76 156,192.11 3,801.30  139,295.52 140,339.97 3,748.63  11.93% 

n350-5-H 261,047.01 261,299.51 4,361.10  247,083.48 247,734.52 4,291.79  5.65% 

n350-5-L 100,508.43 101,310.92 3,692.40  95,797.74 96,691.68 3,667.99  4.92% 
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       Avg  7.75% 
      Total Avg  6.51% 

 

Table 3-3 shows the best and average solution found with the SA heuristic for each 

instance as well as the average runtime in seconds. Under the ITC block, we show the same 

information for the benchmark runs as a comparison. The last column shows the percentage 

difference between the best solution found by the SA heuristic and the benchmark solution based 

on ITC.    

Overall, the SA heuristic solutions have a gap of 6.51% with the benchmark solutions. 

The percentage difference between the SA solutions and the ITC solutions range from 0.27% to 

15.7%, with the smaller instances yielding solutions with a larger average gap than the other two 

group of instances. Solving the instances with 10 stores using the MIP formulation and CPLEX, 

we obtain the results shown in Table 3-4 where the incumbent solutions, along with the 

optimality gaps reported by the solver, were obtained with a maximum solver time set at one 

hour.  CPLEX not able to solve larger instances of 100 and 350 stores due to the size of the 

model.  

Table 3-4. MIP Solutions for n10 Instance 

 SRP-FS  MIP   
Instance Best Sol  Best Sol Opt Gap % Diff 

n10-1 9,923.58  8,595.91 9.53% 15.45% 

n10-1-H 17,061.81  16,309.28 13.49% 4.61% 

n10-1-L 7,100.71  6,622.51 6.00% 7.22% 

n10-2 9,832.52  9,158.19 16.93% 7.36% 

n10-2-H 15,930.02  15,098.00 26.13% 5.51% 

n10-2-L 6,864.76  6,846.35 13.50% 0.27% 

n10-3 8,748.35  8,385.17 11.23% 4.33% 

n10-3-H 14,124.00  13,161.83 15.44% 7.31% 

n10-3-L 7,057.15  6,855.96 16.19% 2.93% 

n10-4 8,512.20  7,991.03 8.72% 6.52% 

n10-4-H 14,224.39  13,401.95 14.86% 6.14% 
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n10-4-L 6,192.65  6,041.41 2.87% 2.50% 

n10-5 9,424.10  9,079.45 25.01% 3.80% 

n10-5-H 17,599.53  17,080.49 31.68% 3.04% 

n10-5-L 6,455.45  6,424.42 21.46% 0.48% 

    Avg 5.17% 

 

 With an average of 5.17%, and a median value of 4.61%, the percentage 

difference between the SA heuristic solution and the best solution found by solving the MIP 

model directly seem comparable to the difference we observed between the SA and ITC 

solutions for larger instances. These results support the ability of the SA heuristic to find quality 

solutions for a variety of instances, with different demand profiles and sizes, in a reasonable 

time. In the following section we discuss the results obtained using industry data and how they 

compare to the current industry benchmark and previous results from the traditional SRP.  

6.3 Industry Data Results 

There are two instances of industry data, and each instance consists of store orders placed by a 

network of 181 stores over one week of operations. These stores are all served by the same DC 

in the given region. To determine the distance between each store and the DC, we used the 

Google Maps API (Google, 2020) to calculate actual road distances. As with the randomly 

generated instances, the usable truck capacity for team routes was set to be 35% higher than 

single-driver routes, while team routes were given 30% more route time before incurring in 

overage costs. The cost parameters were obtained directly from our industry collaborator and are 

not shown due to confidentiality. In relative terms, the cost/mile traveled for team routes is 20% 

higher than single-driver routes, and the cost/pound delivered is 35% higher for team routes. 

Overage cost for routes that exceed the maximum set time reflects the daily cost of having a 

truck available.  
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 We compared the SA solutions obtained for the SRP-FS with the solutions obtained for 

the traditional SRP and the solution that represents the current industry baseline. The solutions to 

the traditional SRP are taken from Vigo Camargo & Bozer (2022), who use a clustering heuristic 

to solve the SRP with no early deliveries considered. Figures 3-4 and 3-5 show the comparison 

and cost breakdown between the above three solutions for the two instances of industry data.  

The graphs in these figures show how the SRP-FS solution reduces the total cost relative to the 

industry baseline by 15% and 20% for the two instances. Furthermore, when compared with the 

solution obtained for the traditional SRP, the SA heuristic for the SRP-FS obtains a solution with 

an 11% and 10% cost reduction for the two instances, which represents a significant sum in 

terms of absolute logistics costs.    

 

 

Figure 3-4. Industry Data Comparison – Instance 1 
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Figure 3-5. Industry Data Comparison – Instance 2 

The significant reduction in total cost for both instances reflects the benefit of allowing 

early deliveries. The solution for the SRP-FS has 13% less miles traveled for instance 1, and 

17% for instance 2. Likewise, it uses approximately 20% fewer trucks in both instances, and 

does not employ any team routes at all, in contrast to over 20 team routes used in the industry 

baseline in both instances. While no team routes are used, the SRP-FS solution does increase the 

number of routes that exceed the maximum route time, with a 25% increase in instance 1, and a 

55% increase in instance 2. When comparing the solutions from the SRP-FS with those of the 

traditional SRP, we see a similar trend with reductions in the number of trucks used (27% on 

both instances), and in the total miles traveled (10% and 13% for the two instances). The SRP 

solution employs far less team routes than the industry baseline, but it is still outperformed by 

the SRP-FS, which does not use any team routes. In contrast, the SRP-FS solutions have 20% 

more routes incurring overage costs than the SRP solutions. Even with the above differences, the 

SPR-FS manages to find a solution with 9%-11% lower costs than the traditional SRP, for both 

instances. These reductions in the total cost can be attributed to the flexibility introduced by 
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allowing early deliveries.  When comparing the solutions for the SRP-FS with the fixed schedule 

solution, we found that 3% of the deliveries scheduled for instance 1 were made in an earlier 

period, while for the second instance, 15% of the deliveries were made earlier.  

The reductions observed in the number of team routes used goes along with an increase 

in the number of longer routes. While longer routes incur an overage cost, by not using team 

routes, the model is able to identify savings in both labor and mileage costs. These longer routes 

allow the SRP-FS to make better use of the truck capacity throughout the planning horizon. 

Table 3-5 shows a summary of the truck utilization from all three solution sets for both instances.  

We observe that, under the SRP-FS, the truck utilization ranges between 27%-73% for the two 

instances, while both the SRP and industry baseline have a significantly larger range of 5%-99% 

for both instances. The flexibility inherent in the SRP-FS reduces the need to use trucks to make 

single, small deliveries and to employ team routes. With team routes being a common practice in 

the trucking industry, the results shown here can motivate further study into how team routes are 

employed and the impact they may have beyond their economic impact.  

Table 3-5. Truck Utilization Summary 

 Instance 1   Instance 2   

 SRP-FS SRP Industry Baseline SRP-FS SRP Industry Baseline 

Min 33% 5.0% 5.4% 27% 5.3% 7.3% 

Max 73% 99.3% 100% 73% 99.4% 99.0% 

Average 64% 61.8% 61.1% 64% 64.6% 52.7% 

 

Allowing early deliveries comes, on the other hand, with the constraint imposed by the 

limited store capacity. For our study we set the capacity of all the stores to be 1.5 times the 

largest store order in the network, to follow the assumption that no store order is larger than the 

store capacity. Based on this parameter, the SRP-FS solution shows that the average store 

capacity utilization ranges from 5%-34% for instance 1, and 5%-54% for instance 2, with an 
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average of 12% and 15%, respectively. While this result indicates that the truck capacity is the 

limiting factor for our data, adjusting these values allows the model to be used to assess the 

potential savings associated with increasing the storage capacity at the stores. For example, 

stores located far from the DC may benefit from larger storage capacities.      

Last, the cost reduction obtained by allowing early deliveries is particularly interesting 

because it can be a significant adjustment to the more common approach in the fast-food industry 

of using a fixed delivery schedule each week, where only the store orders are updated from one 

week to the next. The potential of further reducing their overall costs by 10% can be a significant 

motivator to allow early deliveries as long as the store capacity is not exceeded. 

7. Conclusions 

In this paper, we extend the traditional SRP and introduce the SRP-FS, where the delivery 

schedule as well as the amount of inventory to deliver on each visit are part of the decision 

variables. The SRP-FS has the objective of minimizing the overall replenishment costs 

associated with the distance traveled, the labor costs, route-time overage costs, and the truck 

cost, while ensuring that store orders are delivered by the specified period, and neither the store 

capacity nor the truck capacity are exceeded. To the best of our knowledge, this is the first study 

in the literature to incorporate the above cost components into the decision-making process while 

considering single-driver and team routes and at the same time allowing a flexible delivery 

schedule. As part of the contributions of this paper, we presented a MIP formulation of the SRP-

FS with subtour elimination constraints. However, due to the size and complexity of the model, a 

commercial optimization software (CPLEX) was unable to solve even small instances of 10 

stores to optimality.  To tackle larger and realistic instances, we developed a two-step SA 

heuristic that incorporates an adjusted savings algorithm for the routing component of the 
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problem. Another contribution of the paper is the study of the direct delivery version of the SRP-

FS, where a truck is allowed to make only out-and-back deliveries to each store. For the direct 

delivery version of the problem, we developed a heuristic policy that yields a near-optimal 

solution.  

Test instances with 10, 100 and 350 stores, and randomly generated store demand were 

used to evaluate the performance of the proposed SA heuristic. Comparing the SA solutions with 

those solutions obtained with an infinite truck capacity as a baseline, we observed that the SA 

solutions have a gap of about 7% on average across all instances. While the MIP was unable to 

solve the smaller instances to optimality, we were able to obtain incumbent solutions for 

instances with 10 stores and compare them to the solutions obtained from the SA heuristic. The 

comparison showed an average gap of about 5% between the SA heuristic solution and the MIP 

incumbent solution (with an average optimality gap of about 15.5%). While the analysis of these 

results is limited by the fact that we could not obtain optimal solutions to the test instances, we 

were able to show that the ITC benchmark used for comparison has a comparable gap between 

the SA heuristic results and those obtained from the MIP model and thus could serve as a lower 

bound for the problem.  

The quality of the solutions obtained with the SA heuristic is further supported by the 

results obtained using two instances of industry data obtained from our collaborator in the fast-

food industry. We were able to use the SA heuristic to obtain a solution for both instances and 

compare them with the current industry baseline as well as with the traditional SRP solution with 

a fixed delivery schedule. In this comparison, the SRP-FS outperforms both the industry baseline 

and the traditional SRP. The cost reductions are reflected in the reductions we obtain in the 

number of trucks required, the number of store visits, the distance traveled, and the number of 
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team-routes used. The results show that the proposed SA heuristic is capable of managing data 

instances of realistic size while obtaining good solutions that provide key managerial insights 

concerning early deliveries and store capacities.  

Several managerial insights are gained from the study.  First, the results highlight the 

significant impact that a flexible delivery schedule has on the overall cost. Our results show that 

allowing early deliveries can lead to reductions in most cost elements while still meeting store 

orders on the specified periods. However, it is common in industry to use predetermined delivery 

days for each store (perhaps due to its simplicity), and changing to a flexible delivery schedule 

would require operational changes. Such changes would require input from and participation by 

different stakeholders across the supply chain, particularly from franchise owners. Further 

analysis of such changes is beyond the scope of our study. Second, the results may also impact 

how management utilizes available resources, such as the delivery trucks and the fleet size, 

through the planning horizon, and how work is assigned to drivers by balancing the use of 

single-driver and team routes. Our results suggest that current industry applications may be 

employing an excess of team routes, and that a reduction in such routes can help decrease the 

overall cost. Further study into the use of team vs single-driver routes and their impact in the 

fast-food supply chain seems well-justified to develop additional insights.   

The results in this study are based on the assumption that the planning horizon of the 

SRP-FS is given and fixed. Future areas of research can focus on using data-analytic tools to 

incorporate a look-ahead component for the planning horizon to potentially improve the 

decisions made by the model. Incorporating future demand data from stores can impact the 

quantities that are delivered to stores as future consumption is taken into account. The results of 

the study are also based on limited space available to store inventory at each store. Available 
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space at each store is often at a premium and adding more space may or may not be feasible. 

However, insufficient store space would force frequent deliveries, which would drive up the cost 

especially for stores that are not close to the DC. Future research may focus on how store 

capacity impacts the solution structure and replenishment decisions.  Such research would also 

have interesting managerial implications as it can better inform space requirements imposed by 

management on future stores based on their locations and demand. 

Another direction of future research we are currently exploring is focused on the impact 

the store locations (relative to the DC and relative to each other) has on the decisions made by 

the SRP-FS. Factors like clusters of stores, the size of the clusters, and their distance to the DC, 

can be exploited to further reduce cost and make better replenishment decisions. In industries 

like the fast-food industry, the decision of where to open new stores is often driven by projected 

customer demand, existing store locations, and market competitors. This can lead to areas in a 

network with a high density of stores due to high customer demand, or remote locations at a 

significant distance from the DC. Understanding how such factors influence the solution 

structure and incorporating them into the decision-making process can have significant benefits 

and important managerial implications for reducing the replenishments costs as well as assessing 

the locations of current and future stores.   

References 

Akbalik, A., Penz, B., & Rapine, C. (2015). Capacitated lot sizing problems with inventory 

bounds. Annals of Operations Research, 229(1), 1–18. https://doi.org/10.1007/s10479-015-

1816-6 

Al-Hinai, N., & Triki, C. (2020). A two-level evolutionary algorithm for solving the petrol 

station replenishment problem with periodicity constraints and service choice. Annals of 

Operations Research, 286, 325–350. https://doi.org/https://doi.org/10.1007/s10479-018-

3117-3 



82 

 

Andersson, H., Hoff, A., Christiansen, M., Hasle, G., & Løkketangen, A. (2010). Industrial 

aspects and literature survey: Combined inventory management and routing. Computers and 

Operations Research, 37(9), 1515–1536. https://doi.org/10.1016/j.cor.2009.11.009 

Archetti, C., Fernández, E., & Huerta-muñoz, D. L. (2017). The Flexible Periodic Vehicle 

Routing Problem. Computers and Operations Research, 85, 58–70. 

https://doi.org/https://doi.org/10.1016/j.cor.2017.03.008 

Archetti, C., Fernández, E., & Huerta-muñoz, D.L. (2018). A two-phase solution algorithm for 

the Flexible Periodic Vehicle Routing Problem. Computers and Operations Research, 99, 

27–37. https://doi.org/10.1016/j.cor.2018.05.021 

Bell, W.J., Dalberto, L.M., Fisher, M.L., Greenfield, A.J., Jaikumar, R., Kedia, P., … Prutzman, 

P. J. (1983). Improving the Distribution of Industrial Gases with an On-Line Computerized 

Routing and Scheduling Optimizer. Interfaces, 13(6), 4–23. 

https://doi.org/10.1287/inte.13.6.4 

Boers, L., Atasoy, B., Correia, G., & Negenborn, R.R. (2020). The Multi-period Petrol Station 

Replenishment Problem: Formulation and Solution Methods. In E. Lalla-Ruiz, M. Mes, & 

S. Voß (Eds.) (pp. 600–615). Cham: Springer International Publishing. 

Bozer, Y.A., & Carlo, H.J. (2008). Optimizing inbound and outbound door assignments in less-

than-truckload crossdocks. IIE Transactions, 40(11), 1007–1018. 

https://doi.org/10.1080/07408170802167688 

Brahimi, N., Absi, N., Dauzère-Pérès, S., & Nordli, A. (2017). Single-item dynamic lot-sizing 

problems: An updated survey. European Journal of Operational Research, 263(3), 838–

863. https://doi.org/10.1016/j.ejor.2017.05.008 

Brown, G.G., & Graves, G.W. (1981). Real-Time Dispatch of Petroleum Tank Trucks. 

Management Science, 27(May 2022), 19–32. 

https://doi.org/https://doi.org/10.1287/mnsc.27.1.19 

Clarke, G., & Wright, J.W. (1964). Scheduling of Vehicles from a Central Depot to a Number of 

Delivery Points. Operations Research, 12(4), 568–581. https://doi.org/10.1007/s13398-014-

0173-7.2 

Coelho, L.C., Cordeau, J., & Laporte, G. (2014). Thirty Years of Inventory Routing. 

Transportation Science, 48(1), 1–19. https://doi.org/https://doi.org/10.1287/trsc.2013.0472 

Cordeau, J., Laporte, G., & Mercier, A. (2001). A unified tabu search heuristic for vehicle 

routing problems with time windows. Journal of Operational Research Society, 52, 928–

936. 

Cornillier, F., Boctor, F.F., Laporte, G., & Renaud, J. (2008a). A heuristic for the multi-period 

petrol station replenishment problem. European Journal of Operational Research, 191, 

295–305. https://doi.org/10.1016/j.ejor.2007.08.016 



83 

 

Cornillier, F., Boctor, F.F., Laporte, G., & Renaud, J. (2008b). An exact algorithm for the petrol 

station replenishment problem. Journal of the Operational Research Society, 59, 607–615. 

https://doi.org/10.1057/palgrave.jors.2602374 

Eglese, R.W. (1990). Simulated annealing: A tool for operational research. European Journal of 

Operational Research, 46(3), 271–281. https://doi.org/10.1016/0377-2217(90)90001-R 

Florian, M., & Klein, M. (1971). Deterministic Production Planning with Concave Costs and 

Capacity Constraints. Management Science, 18(1), 12–20. 

https://doi.org/https://doi.org/10.1287/mnsc.18.1.12 

Francis, P., Smilowitz, K. and Tzur, M. (2006) ‘The Period Vehicle Routing Problem with Service 

Choice’, Transportation Science, 40(4), pp. 439–454. doi: 10.1287/trsc.1050.0140. 

Francis, P., Smilowitz, K., & Tzur, M. (2008). The Period Vehicle Routing Problem and its 

Extensions. In B. Golden, S. Raghavan, & E. Wasil (Eds.), The vehicle routing problem: 

latest advances and new challenges (pp. 73–102). New York. 

Goel, A., Vidal, T., & Kok, A.L. (2019). To team up or not – Single versus team driving in 

European road freight transport. Rio de Janeiro, Brasil. Retrieved from 

https://w1.cirrelt.ca/~vidalt/papers/Team-vs-Single.pdf 

Google. (2020). Google Maps Platform. Retrieved from https://cloud.google.com/maps-platform/ 

Huerta-Muñoz, D.L., Archetti, C., Fernández, E., & Perea, F. (2022). The Heterogeneous 

Flexible Periodic Vehicle Routing Problem : Mathematical formulations and solution 

algorithms. Computers and Operations Research, 141(105662). 

https://doi.org/https://doi.org/10.1016/j.cor.2021.105662 

Kirkpatrick, A.S., Gelatt, C.D., Vecchi, M.P., Science, S., Series, N., & May, N. (1983). 

Optimization by Simulated Annealing. Science, 220(4598), 671–680. 

https://doi.org/https://doi.org/10.1126/science.220.4598.671 

Koulamas, C., Antony, S., & Jaen, R. (1994). A survey of simulated annealing applications to 

operations research problems. Omega, 22(1), 41–56. https://doi.org/10.1016/0305-

0483(94)90006-X 

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408–416. 

https://doi.org/10.1287/trsc.1090.0301 

Meller, R.D., & Bozer, Y.A. (1996). A new simulated annealing algorithm for the facility layout 

problem. International Journal of Production Research, 34(6), 1675–1692. 

https://doi.org/10.1080/00207549608904990 

Moin, N. H., & Salhi, S. (2007). Inventory routing problems: a logistical overview. Journal of 

the Operational Research Society, 58(9), 1185–1195. 

https://doi.org/10.1057/palgrave.jors.2602264 



84 

 

Mor, A., & Speranza, M.G. (2022). Vehicle routing problems over time : a survey. Annals of 

Operations Research, 1–21. https://doi.org/https://doi.org/10.1007/s10479-021-04488-0 

Rothenbächer, A. (2019). Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem 

with Flexible Schedule Structures. Transportation Science, 53(3), 850–866. 

https://doi.org/https://doi.org/10.1287/trsc.2018.0855 

Tompkins, J.A., White, J.A., Bozer, Y.A., & Tanchoco, J.M.A. (2010). Facilities Planning. John 

Wiley & Sons. 

Toth, P., & Vigo, D. (Eds.). (2014). Vehicle Routing: Problems, Methods, and Applications. 

Philadelphia: Society for Industrial and Applied Mathematics : Mathematical Optimization 

Society. Retrieved from http://epubs.siam.org/doi/book/10.1137/1.9781611973594 

Vidal, T., Crainic, T.G., Gendreau, M., & Prins, C. (2013). Heuristics for multi-attribute vehicle 

routing problems: A survey and synthesis. European Journal of Operational Research, 

231(1), 1–21. https://doi.org/10.1016/j.ejor.2013.02.053 

Vigo Camargo, A., & Bozer, Y.A. (2022). Development and Application of a Cost-Driven 

Decision Model for Store Replenishment Logistics in the Fast-Food Sector. [Manuscript 

submitted for publication]. 

 

 



3 This Chapter will be submitted for review and possible publication as: Bozer, Y. A. and Vigo Camargo, 

A. (2023) ‘Impact of Network Geography on the Store Replenishment Problem in the Fast-Food Sector.’ 

 

85 

 

 

85 

Chapter 4  

Impact of Network Geography for the Store Replenishment Problem in the Fast-Food 

Sector3 

1. Introduction 

The logistics associated with replenishing stores in a network is a complex problem with 

significant cost implications that can be found in a multitude of industries. The Store 

Replenishment Problem (SRP) was heavily motivated by the logistical challenges encountered in 

the fast food industry (Vigo Camargo and Bozer, 2022).  Decisions related to the number and 

locations of the fast-food stores are often based on factors such as customer demand, franchising 

agreements, local trends and competition, as well as the location of existing stores. Given the non-

uniform distribution of population centers across a geographic area, stores are often located in an 

uneven manner, with some areas representing a high density of stores, while other stores are 

located in fairly remote locations, away from other stores and the distribution center (DC) from 

which all the stores are replenished. Such a mixed composition of store locations in the network 

presents both a challenge and an opportunity in terms of logistics planning and developing ideal 

routes to meet store demand while minimizing overall logistics costs.  

In this paper we focus on the store network composition and its impact on solving the SRP. 

Due to the nature of the fast-food industry, clusters of stores are often found in and around high-

population centers. The key question we address is whether or not one can develop better and 

simpler solution procedures to the SRP, including the routing decisions, by taking the above 



86 

 

clusters into account and what such a procedure would look like. While clustering heuristics are 

not novel, we show that store clusters can indeed be exploited for tackling the SRP. The solution 

procedure we propose incorporates a bin-packing formulation and a routing component with a 

clustering heuristic to identify solutions that outperform previous results and with significantly 

shorter runtimes.  

The SRP was first defined by Vigo Camargo & Bozer (2022) as a replenishment problem that 

incorporates routing and fleet-sizing decisions as well as selecting between single-driver versus 

team routes (two drivers), while minimizing a multi-component cost function that considers 

distance, delivery labor, fleet size, and route time overage costs. In this paper we introduce an 

alternative solution procedure for the SRP based on the same assumptions as in the above paper 

of a given and fixed delivery schedule in a known store network. We use a clustering heuristic to 

group the stores into clusters and thus reduce the decision space for the problem. The above 

clusters are then used as input for a bin packing model, which assigns the clusters into bins that 

represent trucks/routes to be used in minimizing the four cost components of the original objective 

function. Lastly, we use a multi-step routing heuristic to build the final delivery routes based on 

the assignments obtained from the bin packing solution.  

Data obtained from the supply chain group of an (inter)national, well-known fast-food 

company, who served as our industry collaborator for this study, were used to evaluate the 

performance of the proposed heuristic. We compare the results of the new clustering-based 

approach above with the baseline cost obtained from our industry collaborator as well as with the 

solutions presented in Vigo Camargo & Bozer (2022) and show that the new heuristic outperforms 

both.  
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The remainder of the paper is organized as follows. In Section 2 we discuss some of the 

relevant literature. We introduce our solution procedure and discuss its key components in Section 

3. Section 4 presents the computational results obtained using the proposed heuristic.  Lastly, we 

discuss our conclusions and areas of future research in Section 5.    

2. Literature Review  

The objective of this study is to introduce a solution method for the SRP that incorporates 

the clusters that occur in the store network in order to facilitate the decision-making process. The 

SRP was first defined in Vigo Camargo & Bozer (2022), which includes a literature review 

focused on the structure of the problem. For this paper, we will discuss relevant literature to the 

solution method we are proposing and how it relates to the SRP.  

Routing problems have been extensively studied in the literature over the years. Surveys 

like those by Sharda et al. (2008) and Mor and Speranza (2022) discuss a variety of studies 

focused on routing problems and the different techniques used to solve them. Some of these 

studies have employed a type of methodology that can be described as ‘cluster first-route second’ 

(Bodin, 1975) where the set of nodes that need to be visited is divided into smaller subsets and 

then smaller routing problems are solved.  

In Hiquebran et al. (1993), the authors use a nearest neighbor algorithm to group nodes in 

a network and in conjunction with a simplified simulated annealing present a solution method to 

the traditional vehicle routing problem (VRP). Motivated by the waste collection logistics, Kim 

et al. (2006) presented the waste collection VRP, which differs from the traditional VRP in that 

trucks are allowed to make stops at disposal stations when they are full and complete additional 

routes in the same period. The authors used a clustering-based heuristic, which was based on the 

K-means algorithm, and an insertion algorithm to build the routes to solve the waste collection 
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VRP. Similarly, Dondo and Cerdá (2007) presented a multi-step heuristic approach to solve the 

multi-depot VRP with a heterogeneous fleet, where clusters are used to simplify and solve a 

direct MILP formulation of the problem. Shortly after, Ghoseiri and Ghannadpour (2010) used 

an urgency-based clustering heuristic to assign trains to depots and then used a hybrid genetic 

algorithm to find a solution for the multi-depot VRP with a homogenous fleet. In Qi et al. 

(2012), the authors use spatial and temporal information to cluster nodes in the network and use 

a genetic algorithm to solve the VRP with time windows (VRPTW). More recently, Fachini and 

Armentano (2020) present an exact algorithm for the heterogeneous fixed fleet VRPTW that uses 

Benders decomposition to divide the problem into a generalized assignment problem and TSP 

subproblems.  

Bramel and Simchi-Levi (1995) introduced a location based heuristic to solve the 

capacitated VRP (CVRP), which approximates the problem to a capacitated concentrator 

location problem to connect subsets of stores and turn them into routes. Shin and Han (2011) 

present a three-step heuristic for the CVRP using a distance-only objective function. Their 

cluster first approach uses a centroid-based clustering heuristic that uses a strategy of starting 

new clusters using seed nodes that are the furthest from the other clusters built. After employing 

a cluster-improvement process, they solve traveling salesman problems (TSP) on each cluster to 

build the final routes. To solve the CVRP, Kao and Chen (2013) used combinatorial particle 

swarm optimization to cluster customers and then simulated annealing to sequence the 

corresponding routes.  

While the proposed heuristic in this paper employs a similar cluster first-route second 

approach as those discussed above, our approach is motivated by the replenishment logistics in 

the fast-food sector and incorporates elements that differ from those in the other studies 
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discussed here. The structure of the SRP, with is multi-dimensional cost objective function, and 

the incorporation of fleet sizing and single versus team routes, with the routing decisions, make it 

stand apart from the other VRP-focused papers. Cömert et al. (2017) uses a cluster first-route 

second approach to solve a routing problem motivated by a supermarket supply chain, but the 

problem is formulated as a VRPTW with the objective of minimizing total time. Furthermore, 

our approach includes formulating the SRP as a bin packing problem and directly solving the 

model to obtain route assignments, which to the best of our knowledge, was not an approach 

used on other cluster first-route second papers.  

The bin packing problem (BPP) has been vastly studied in the literature over the years 

(Munien & Ezugwu, (2021), including in vehicle routing applications. However, in most of these 

applications the BPP is used to model the loading of the trucks, rather than the assignment of 

stores to routes, as we propose in our solution method. Hamdi-Dhaoui et al. (2014) presented a 

variant of the VRP that incorporates the loading of the truck as part of the decisions with the 

objective of both minimizing travel cost and balancing the loads across the fleet. The loading 

component is defined as a two-dimensional BPP and a genetic algorithm is used to find a 

solution. Heßler et al. (2022) disregards the routing component and focuses on the problem of 

loading trucks constrained by both weight and volume in a direct delivery setting. With the 

objective of minimizing the fleet size, the authors present a heuristic solution method to solve the 

problem.  

Another variant of the BPP considers the interaction between items assigned to the same 

bin. This is relevant to our study, since when multiple clusters are assigned to a route, the 

additional distance between the two clusters needs to be considered by the model.  Li et al. 

(2014) discusses the two-dimensional BPP with conflict penalties, where items may incur in 



90 

 

additional cost when assigned to the same bin. The authors define the problem with the objective 

of minimizing the total number of bins used and the conflict penalties incurred, and present an 

algorithm as a solution method. A one-dimensional version of this problem was also introduced 

by Khanafer et al. (2012) where column-generation and tabu search were used to find a solution.  

In these studies, the interaction between items in a bin are considered as conflict that need 

to be avoided. In our approach, the interaction between clusters can be inevitable and thus it was 

necessary that the additional distance between clusters was considered rather than actively 

discouraged. Our formulation of the SRP as a BPP includes a constraint that captures the 

additional distance traveled between pairs of clusters assigned to the same bin. This distance is 

then included as part of the cost component associated with distance traveled in the objective 

function. Additionally, by using a clustering heuristic to reduce the number of nodes in the 

network, our formulation of the BPP can be solved directly using a commercial solver like 

CPLEX for even large real-world instance of 300 stores in practical time. In the following 

section we further discuss the various components of our proposed solution method.  

3. Solution Method 

As described in Section 1, the core idea in our study is to create clusters of stores to simplify the 

decision-making process for the SRP. By creating such clusters, we can formulate the SRP as a 

bin-packing problem, where the bins represent the routes to be completed by a single truck. The 

goal of the bin-packing formulation is to assign the clusters to routes in order to supply the 

necessary inventory to each store in the cluster while trying to minimize the logistics costs 

associated with the distance traveled, delivery labor, truck fleet size, and route time overages. The 

proposed solution procedure is composed of three main components. The first component groups 

the stores in the network into clusters. The resulting clusters are used as input for the bin-packing 
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formulation of the SRP, which represents the second component. Lastly the solution of the bin-

packing problem is used to create the necessary routes.  In the following sections we discuss the 

above components in more detail. 

3.1 The Clustering Heuristic 

To create and adjust the initial set of clusters for our model, we adapted elements from the well-

known K-means clustering heuristic (MacQueen, 1967). The K-means clustering heuristic initially 

builds K clusters, whose centroids are then adjusted and each store is (re)assigned to the nearest 

centroid. Our clustering heuristic uses a similar iterative approach and incorporates components 

that more directly fit the needs of the SRP. The steps of the clustering heuristic are described 

below:  

Step 1. Identify the stores that are visited in period 𝑡 and randomly select a store to serve as the 

centroid for a cluster.  

Step 2. Build the cluster by assigning stores, one at a time, nearest to the selected centroid that 

meet the following criteria: 

- The store is not already assigned to another cluster.  

- Number of stores assigned to the cluster is less than the maximum allowed (𝑀). 

- Distance from the store to the centroid is less than the maximum distance allowed (𝑅). 

- Estimated time to visit all the stores in the cluster does not exceed the maximum route 

time allowed (𝑈𝑇).  

Step 3. If no more stores can be added to the current cluster, randomly select another unassigned 

store as the centroid for a new cluster and repeat Step 2. If all the stores have been assigned 

to a cluster, go to Step 4. 
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Step 4. Calculate new centroids for all the clusters based on the locations of the assigned stores. 

For each cluster, assign the store nearest to the calculated centroid as the cluster’s new 

centroid. 

Step 5. If the new centroids are the same as the previous ones, or the distance between the new and 

previous centroids is less than a user-specified threshold (𝐷), then finalize the clusters and 

go to Step 6. Otherwise, restart the store assignment process using the new centroids and 

following the criteria in Step 2. 

Step 6. For each cluster, calculate the average distance between the stores assigned to the cluster 

and the cluster centroid.  

Step 7. For each cluster 𝑖, find the nearest store to the centroid of cluster 𝑖 that is assigned to 

another cluster 𝑗. Verify if it is feasible to reassign the store from cluster 𝑗 to 𝑖 using the 

following criteria: 

- The number of stores in cluster 𝑖 is not over the maximum allowed (𝑀). 

- Distance between the store and centroid 𝑖 does not exceed the maximum allowed (𝑅). 

- The additional estimated time to visit the stores in cluster 𝑖 does not exceed maximum 

route time (𝑈𝑇). 

- The sum of the average cluster distance (between the stores and the centroid) is reduced 

by the exchange.    

If the exchange is feasible, reassign the store and repeat Step 7 for the next cluster until all 

clusters have been checked; otherwise go to Step 8.  

Step 8. Find the furthest store from the centroid in cluster 𝑖 and verify if a two-store exchange 

between another cluster 𝑗 is feasible using the same criteria outlined in Step 7 for both 
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clusters. If the exchange is feasible, reassign the stores and repeat Step 7 for the next cluster 

until all the clusters have been checked.  

Step 9. After all clusters have been checked, calculate the new centroids for each cluster whose 

stores were exchanged. Assign the store nearest to the calculated centroid as the cluster’s 

new centroid.  STOP if any of the following criteria are met: 

- The centroids did not change.  

- The distance between the new and previous centroids is less than 𝐷.   

- 𝑁 iterations of the heuristic have been completed.  

Otherwise, start a new iteration from Step 2 using the new centroids.  

The clusters obtained from the above heuristic are used as input for the bin packing model 

described next.  

3.2 The Bin Packing Problem Formulation 

The bin packing problem (BPP), which has been studied extensively in the past, is concerned with 

partitioning a given set of items with particular weights into the minimum number of (identical) 

bins without exceeding the capacity of the bins (Munien & Ezugwu, 2021).  The BPP has been 

used successfully in a variety of applications ranging from scheduling, resource allocation, and 

logistics in areas such as production and health care; for the details, please see the survey by 

Munien & Ezugwu (2021). We formulate the SRP as a BPP to assign clusters of stores to routes 

to be completed by a single truck. Under this approach, the clusters and the store demands serve 

as the weighted items, while the routes, that are constrained by capacity and maximum route time, 

represent the bins. In order to build this formulation, we made the following assumptions: 

1. The delivery schedule is given and fixed over the planning horizon. 

2. Each store (or franchisee) owns and manages their own inventory. 
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3. Cluster demand includes store demand for each store assigned to the cluster. 

4. A “bin” represents a route to be completed by single truck employing a single driver or 

a team. 

5. Usable truck capacity and maximum route-time is defined by the type of route it 

completes (team or single-driver). 

6. Trucks can only complete one route per period. 

7. All the trucks and drivers are available at the start of each period. 

8. No cluster of stores will exceed truck capacity or the maximum number of stops 

allowed on a route. 

9. A cluster can only be assigned to one route in each period. No split deliveries to are 

allowed.  

10. Store orders and truck capacity are measured in pounds. Demand is represented as a 

single aggregate SKU. 

The above assumptions are consistent with the SRP formulation introduced by Vigo 

Camargo & Bozer (2022). The key differences are introduced in assumptions 3, 4 and 8, which 

consider the clusters and the bin packing approach used in this study. Assumption 3 helps define 

the input data the model uses by defining how store demand is translated to the clusters. The fourth 

assumption defines how the “bins” are translated to the SRP in the form of routes to be completed. 

Lastly, with assumption 8, we ensure the feasibility of the problem and maintain that, at minimum, 

a cluster can always be assigned to a route.  

 We use the following notation to build the bin packing formulation of the SRP: 

𝑁,  𝑅,  𝑇,  𝐿 Sets for clusters, routes, time period, and route type.  

𝑈𝑉
𝑙  Usable truck capacity for route type l. 
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𝑉 Maximum number of stops allowed in a route. 

𝑚𝑖 Average distance in cluster i. 

𝑑𝑖 Store demand of the stores in cluster i. 

𝑛𝑖 Number of stores in cluster i. 

𝑚𝑖
𝐷𝐶 Distance from centroid of cluster i to the DC. 

𝑚𝑖𝑗
𝐶  Distance between cluster i and cluster j.  

The decision variables for the model are defined as follows: 

𝑥𝑖𝑟
𝑙  1 if cluster i is assigned to truck r of route type l; 0 otherwise.  

𝑦𝑟
𝑙 1 if truck r with route type l is used. 

𝑧𝑟
𝑙  1 if truck r with route type l exceeds maximum route time; 0 otherwise. 

𝑃𝑟 Maximum distance between clusters assigned to r. 

𝐾 Fleet size. 

The mathematical formulation is presented below: 

𝑈𝑇
𝑙  Max. route time before overage cost is incurred for route type l. 

𝐶𝑉 Cost per time period of having a truck available for use. 

𝐶𝑚
𝑙  Cost per mile traveled on a route type l.  

𝐶𝑙𝑏
𝑙  Cost per pound of inventory delivered on a route type l.  

𝐶𝑈 Overage cost incurred by a route that exceeds the max. route time.  

𝐵𝑚 Time per mile traveled. 

𝐵𝑙𝑏 Time per pound delivered. 

𝐵𝑛 Time per stop in a route.  
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𝑚𝑖𝑛 𝑆𝑉 𝑇 𝐾 + ∑ 𝑥𝑖𝑟
𝑙  𝑚𝑖 𝑛𝑖  𝐶𝑚

𝑙

𝑖, 𝑟,𝑙

+ ∑ 𝑃𝑟

𝐶𝑚
𝑙

2
𝑟, 𝑙

+ ∑ 𝑥𝑖𝑟
𝑙  𝑑𝑖 𝑆𝑙𝑏

𝑖, 𝑟,𝑙

+ ∑ 𝑧𝑟
𝑙  𝐶𝑈

𝑟, 𝑙

 
(1) 

𝑠. 𝑡.  ∑ 𝑥𝑖𝑟
𝑙  𝑈𝑉

𝑟, 𝑙

≥ 𝑛𝑖  ∀ 𝑖 ∈ 𝑁 (2) 

∑ 𝑥𝑖𝑟
𝑙  𝑑𝑖

𝑖

≤ 𝑈𝑇
𝑙  𝑦𝑟

𝑙       ∀ 𝑟 ∈ 𝑅,  𝑙 ∈ 𝐿 (3) 

∑ 𝑥𝑖𝑟
𝑙  𝑛𝑖

𝑖

≤ 𝑈𝑉𝑦𝑟
𝑙 ∀ 𝑟 ∈ 𝑅,  𝑙 ∈ 𝐿 (4) 

∑ 𝑥𝑖𝑟
𝑙 ≤ 1

𝑟,   𝑙

 ∀𝑖 ∈ 𝑁 (5) 

∑ 𝑦𝑟
𝑙

𝑙

≤ 1 ∀ 𝑟 ∈ 𝑅 (6) 

∑ 𝑦𝑟
𝑙

𝑙

≤ ∑ 𝑦𝑟−1
𝑙

𝑙

 ∀ 𝑟 > 1 (7) 

∑ 𝑥𝑖𝑠
𝑙

𝑠≥𝑟,   𝑙

≤ ∑ 𝑥𝑝𝑟−1
𝑙

𝑝≤𝑖,   𝑙

 ∀ 𝑖 > 1,  𝑟 > 1 (8) 

∑ 𝑦𝑟
𝑙

𝑟,   𝑙

≤ 𝐾 
 (9) 

∑ 𝑥𝑖𝑟
𝑙  𝑑𝑖  𝐵𝑙𝑏

𝑖

+ ∑ 𝑥𝑖𝑟
𝑙  𝑛𝑖 𝐵𝑛

𝑖

+ 𝑃𝑟 𝐵𝑚

+ ∑ 𝑥𝑖𝑟
𝑙  𝑚𝑖 𝑛𝑖  𝐵𝑚

𝑖

≤ 𝑈𝑇
𝑙 (1 + 𝑧𝑟

𝑙 ) 

∀𝑖 ∈ 𝑁 (10) 

∑ 𝑥𝑗𝑟
𝑙  (𝑚𝑖𝑗 + (

𝑚𝑖
𝐷𝐶 + 𝑚𝑗

𝐷𝐶

2
)

𝑗,   𝑙

≤ 𝑃𝑟 + (1 − ∑ 𝑥𝑖𝑟
𝑙

𝑙

) 𝑀 

∀ 𝑖 ∈ 𝑁,  𝑟 ∈ 𝑅 (11) 
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𝑥𝑖𝑟
𝑙 ≥ 0 (integer) ∀ 𝑖 ∈ 𝑁,  𝑟 ∈ 𝑅, 𝑙 ∈ 𝐿 (12) 

𝑦𝑟
𝑙 ≥ 0 (integer) ∀ 𝑟 ∈ 𝑅,  𝑙 ∈ 𝐿 (13) 

𝑧𝑟
𝑙 ≥ 0 (integer) ∀ 𝑟 ∈ 𝑅,  𝑙 ∈ 𝐿 (14) 

𝑃𝑟 ≥ 0 ∀ 𝑟 ∈ 𝑅 (15) 

𝐾 ≥ 0 (integer)  (16) 

Equation (1) defines the four main cost components of the objective function of the SRP; 

that is, fleet cost, mileage cost due to distance traveled, labor cost of delivery based on the pounds 

of inventory to unload, and the overage cost incurred by routes that exceed the route time limit. 

Constraints (2) ensure that all the stores are visited, while constraints (3) ensure that the truck 

capacity is not exceeded. Similarly, constraints (4) ensure that no route assignment exceeds the 

maximum number of stops allowed in a route. With constraints (5) we ensure that no split 

deliveries are allowed. Constraints (6) define whether a route is assigned to a single driver or a 

team. Constraints (7) and (8) are used as symmetry-breaking constraints to simplify the assignment 

process and ensure that the model can find a solution in reasonable time. The fleet size is defined 

via constraint (9).  Constraint (10) is used to calculate the route time incorporating the labor time 

associated with unloading inventory, a fixed stopping time for each stop, and the estimated travel 

time. With constraints (11) the model captures the largest distance between a pair of clusters 

assigned to the same route to incorporate the distance to traveled between clusters in the same 

route. Lastly, constraints (12) – (16) define the variables and establish non-negativity.  

The solution obtained from the bin packing formulation represents an assignment of 

clusters to routes. However, this assignment is not structured as an actual route, and only gives us 

an estimate of what the associated cost would be. We use this solution as input for the last step in 
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our solution procedure where the actual routes are built and evaluated before a final solution is 

obtained. The heuristic used to build the routes is discussed in the following section. 

3.3 The Route Building Heuristic 

The final step is focused on building the delivery routes based on the assignments obtained from 

the bin packing formulation. We start by solving a traveling salesman problem (TSP) for each 

route assignment in the bin packing solution, using the Google’s OR-Tools Solver (Google, 2019). 

These initial routes are then used as input for the “adjusted team savings” algorithm presented in 

Vigo Camargo & Bozer (2022b). This second step ensures that none of the routes built by the TSP 

violate the route time limits and decides if any of the routes should be changed between single-

driver and team routes. To finalize the routes, we perform a 2-opt exchange over all the constructed 

routes to evaluate alternative sequencing of the routes and remove any significant crossings within 

routes that were impacting the total distance traveled. Figure 4-1 summarizes the three steps used 

to build and finalize the routes for the proposed solution procedure.    

 

Figure 4-1. The Route Building Heuristic 
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4. Computational Results 

The proposed clustering-based heuristic was coded in Python 3.7.4, and all the problem instances 

were solved on a Windows 10 computer with a 64-bit 2.50 GHz Intel Core i7 processor and 8GB 

of RAM. Data from our industry collaborator were used to build two industry-data instances and 

a baseline to evaluate the performance of the clustering-based heuristic. Additional instances with 

randomly generated demand data and store locations were also used to study the performance of 

the heuristic under different network conditions, which we discuss in section 5.2. 

4.1 Industry Data 

The data set from our industry collaborator is based on a network of 181 stores served by the same 

DC. It contains the store orders that must be delivered through the planning period, which 

represents a week. To build the distance matrix, we used the Google Maps API (Google, 2020) 

and determined the actual road distances between each store and the DC. Truck capacity was set 

to reflect the actual operations of our industry collaborator, with team routes allowed to carry 35% 

more inventory than single-driver routes on the same type of trucks. Similarly, route-time limits 

were set, beyond which an overage cost is incurred, with team routes having a limit that is 30% 

higher. The parameters used for the cost components in the objective function were also provided 

by our industry collaborator. (Actual values of the truck capacity, the route-time limits, and the 

cost parameters are not reported to protect data confidentiality.)  While we cannot disclose actual 

cost values, we can report their relative values. The cost incurred per mile for team routes is 20% 

higher than single-driver routes, and the cost per pound delivered (i.e., the labor cost) is 35% less 

for single-driver routes than team routes. If a route exceeds the specified route-time limit, it incurs 

an overage cost set equal to the daily cost of having to provide an additional truck.  
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Figure 4-2 shows the locations of the 181 stores and the DC.  Given the nature of the fast-

food industry, the map clearly shows how some stores form clusters around high-population 

centers, while other stores are located at distant locations and/or generally isolated.  As we 

discussed earlier, this type of clustering among real-world store locations is the primary motivation 

behind the development of the clustering-based heuristic we present in this paper. By exploiting 

the clusters in the network, the clustering-based heuristic we propose for the SRP simplifies the 

problem and it allows for a solution to be developed using a simple bin-packing approach. 

 

Figure 4-2. Map of Store Locations for our Industry Collaborator 

The first step of the heuristic identifies the clusters of stores that have to be visited in each 

time period. (Not each store is visited in each time period.) Figure 4-3 shows the resulting clusters 

that were identified for each time period in problem instance 1. Each cluster is colored, and the 

centroid of each cluster is identified by the store number. For each time period, the routes are built 

by assigning clusters to trucks using the bin packing model (described in Section 3). We then 

employ a route improvement procedure (to ensure that no constraints are violated) and a 2-opt 

exchange procedure (to reduce the distance on each route).  Figure 4-4 shows the resulting routes 

built for each time period in problem instance 1. 
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Figure 4-3. Clusters Obtained with Industry Data Instance 1 
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Figure 4-4. Routes Resulting from Industry Data Instance 1 
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To assess the results obtained with the clustering-based heuristic, we used the routes and 

delivery plans from our industry collaborator to build an industry baseline. As an additional 

comparison, we also used the SRP results from Vigo Camargo & Bozer (2022), who employed a 

set partitioning (SP) model to solve the SRP with the same industry data used in this paper and a 

computer with the same specifications given above. Table 4-11 shows a summary of the results 

obtained from the proposed clustering-based heuristic, the industry baseline, and the SP-SRP 

results for both problem instances. 

Table 4-1. Clustering Heuristic vs the Industry Baseline vs SP-SRP 

 Instance 1 Instance 2 

 Industry SP-SRP  Clustering Industry SP-SRP Clustering 

Total Cost $54,283.48 $51,946.13 $46,787.48 $56,284.60 $49,399.04 $48,413.55 

Miles Cost $25,661.31 $23,936.69 $20,689.06 $27,191.51 $22,129.20 $21,449.64 

Del Cost $15,585.85 $13,936.15 $14,099.07 $16,353.05 $13,789.10 $14,964.57 

Overage Cost $4,147.92 $4,296.06 $4,888.62 $2,962.80 $3,703.50 $4,888.62 

Truck Cost $8,888.40 $9,777.24 $7,110.72 $9,777.24 $9,777.24 $7,110.72 

Runtime (sec) - 991.80 115.15 - 393 60.35 

 For both problem instances, the proposed clustering-based heuristic yields a solution that 

is lower in total cost than both the industry baseline and the SP-SRP cost, and it does so with 

significantly shorter runtimes compared to the original SP-SRP solution method. For problem 

instance 1 (problem instance 2), the clustering-based heuristic obtains a 14% (14%) reduction in 

total cost compared to the industry baseline, which is also 10% (2%) less than the SP-SRP cost. In 

both instances, the clustering-based heuristic obtains a solution over 80% faster than the original 

SP-SRP method used by Vigo Camargo & Bozer (2022). The above results show numerically that 

the proposed clustering-based heuristic, and the bin packing approach it utilizes, simplifies the 

problem, which allows it to obtain lower-cost solutions in significantly shorter runtimes.  
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The solution found by the clustering-based heuristic exhibits an increase in the number of 

routes that exceed the route-time limit and thus incur an overage cost, with instance 1 increasing 

by 14%, and instance 2 by 32%.  However, the increase in overage cost is balanced out by a 10% 

reduction in total miles traveled, and a more than 25% reduction in total number of trucks used in 

both instances. Also, the number of team routes used decreases significantly in the clustering-

based solution compared to the industry baseline; the decrease is 86% and 68%, respectively, for 

problem instances 1 and 2.  This is consistent with previous results presented by Vigo Camargo & 

Bozer (2022), who discussed the potential over-reliance on team routes in the fast-food industry.     

4.2 Randomly Generated Problem Instances 

To further study the performance of the clustering-based heuristic, we built a series of problem 

instances based on randomly generated data, using the industry data as a template. These instances 

are based on 100 stores with orders placed over a planning horizon of a week. We wanted to ensure 

that clusters, similar to those that appear in real-world scenarios, were included in the network of 

randomly generated instances. To achieve this, we varied the number of clusters, the size of the 

clusters, and the maximum distance allowed from the centroid of a cluster, for a total of 27 

instances. We generated two different demand data instances and solved all 27 instances using 

both demand data, for a total of 54 instances.   

For the number of clusters, we used 3, 5 and 10. Then we allowed the size of each cluster 

to be randomly generated with a minimum of three stores and a maximum that varied between 5, 

11 and 22.  Lastly, for the maximum distance allowed on each cluster, we used the average distance 

between all the stores in the industry data as our baseline average, and then also included half and 

double that value as additional parameters. The centroid of each cluster was randomly placed in a 

600 × 600 grid, and the stores within each cluster were placed randomly around the centroid. 
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Additional stores were randomly placed in the grid, with the DC placed at the center. The distance 

matrix was generated assuming Euclidean distances between the stores and the DC. Store demand 

was randomly generated using a normal distribution with an average of 2,030 lbs and a standard 

deviation of 760.15, based on the demand values from the industry data. Order frequency was also 

generated using a normal distribution with an average of 2 and a standard deviation of 0.60.  

Table 4-2.  Clustering Heuristic Performance Comparison 

No. of 

Clust. 

Max. 

Size of 

Clust. 

Max. 

Dist. 

% Diff 

Soln 

% Diff 

Runtime 

3 

5 

0.5x -15.5% -76.7% 

1x -15.0% -80.9% 

2x -13.0% -74.4% 

11 

0.5x -21.7% -76.8% 

1x -16.6% -70.2% 

2x -12.0% -75.0% 

22 

0.5x -6.7% -85.4% 

1x -7.9% -84.8% 

2x -7.4% -77.7% 

5 

5 

0.5x 2.3% -76.3% 

1x -1.1% -82.2% 

2x 1.0% -81.9% 

11 

0.5x -12.7% -79.5% 

1x -11.6% -83.5% 

2x -10.1% -73.0% 

22 

0.5x -36.4% -88.4% 

1x -23.2% -88.8% 

2x -13.8% -88.5% 

10 

5 

0.5x -10.0% -71.1% 

1x -12.2% -76.7% 

2x -11.8% -76.1% 

11 

0.5x -12.9% -82.3% 

1x -15.1% -79.0% 

2x -8.8% -82.6% 

22 

0.5x -8.6% -88.2% 

1x -4.6% -91.1% 

2x -2.4% -91.3% 
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We solved each instance three times using the clustering-based heuristic to obtain an average 

solution. As a comparison, we also solved each instance using the original SP-SRP method 

presented by Vigo Camargo & Bozer (2022) and report the average percent difference in total cost 

and runtime for each instance in Table 2. The actual cost solutions of both methods for all 54 

instances are shown in the Appendix.  

The results show that the clustering-based heuristic obtains a lower-cost solution for almost 

every instance, with an average cost reduction of 11%. (Only in the set of instances with 5 clusters 

of at most 5 stores, the clustering-based heuristic was unable to improve on the baseline with an 

average solution 2% over the SP-SRP solution.) Furthermore, the clustering-based heuristic 

obtains solutions significantly faster, with an average runtime 80% faster than that of the original 

SP-SRP method. Closer examination of the results indicates that, as expected, the clustering-based 

heuristic performs better with tighter clusters (0.5x), with an average reduction of 13% in total cost 

for tight clusters in contrast to an 8% reduction for clusters with a larger distance allowed (2x).  

Similarly, when larger clusters are allowed (maximum of 22 stores per cluster), the 

clustering-based heuristic obtains solutions with a 12% cost reduction on average, and for problem 

instances with a maximum of 5 stores per cluster, it obtains solutions with an 8% cost reduction 

relative to the original SP-SRP method. Combined with the results obtained from the industry data, 

our computational results show that the clustering-based heuristic is most efficient when large, 

dense clusters of stores are present in the network. Such a result is particularly relevant for the 

proposed heuristic since in many fast-food networks, there is a tendency for clusters to appear in 

and around populous areas such as city centers due to large customer demand in such areas.   

To further explore the performance of the proposed heuristic under real-world scenarios, 

we built four additional test instances using the actual store locations of our industry collaborator 
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in four different service areas. These four instances are similar in size to the baseline industry 

instances we used earlier, with the number of stores ranging from 130 to 350. Figure 5 shows the 

store locations for each test instance.  We generated random demand data for each of these 

instances using the same method discussed above. As a comparison, we once again solved all four 

instances with the original SP-SRP method as well as with the proposed clustering-based heuristic. 

Table 4-3 summarizes the results.    

 

 

Figure 4-5. Store Locations for Industry Test Instances 
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Table 4-3. Results with Test Instances Based on Real-World Locations 

Inst. 
No. of 

Stores 

Avg 

Clustering 

Solution 

Runtime 

(Secs) 

SP-SRP 

Solution 

Runtime 

(Secs) 

% Diff 

Soln 

% Diff 

Runtime 

1 133 $45,444.63 148.64 $51,849.75 825.31 -12.4% -82.0% 

2 221 $70,829.67 65.95 $120,922.80 1,008.18 -41.4% -93.5% 

3 175 $79,691.41 74.98 $80,112.50 1,725.72 -0.5% -95.7% 

4 349 $101,512.94 149.53 $103,279.76 5,208.17 -1.7% -97.1% 

 

The additional test results further support the fact that the clustering-based heuristic outperforms 

the original SP-SRP method, and it does so for all four test instances, based on real-world store 

locations. The range observed for the percentage differences in the solution values can be attributed 

to the differences in the composition of the networks. Instance 2, which includes the densest 

clusters across all four instances (shown in Figure 4-5), yields the highest percentage difference. 

This is aligned with the results obtained with the randomly generated instances, where tighter 

clusters yield better results. Furthermore, with an average runtime of 1.6 minutes across all four 

instances, and an objective function that captures the relevant cost elements, the clustering-based 

heuristic is a practical tool for decision-makers and analysts who can make a large number of what-

if runs to address logistics-related and/or store location-related planning problems. 

5. Conclusions 

We present a new solution method for the SRP that exploits the clusters found in the store locations 

of fast-food networks. The proposed heuristic uses a bin-packing formulation to simplify the 

decision space and find good solutions in short times. Using data obtained from our industry 

collaborator in the fast-food sector and additional randomly-generated test instances, we evaluated 

the performance of the proposed heuristic against the original solution method introduced by Vigo 
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Camargo & Bozer (2022).  

The computational results show that the clustering-based heuristic outperforms the original 

SP-SRP method on the industry data instances with an average cost reduction of 6%. Additional 

results, using randomly-generated instances, also show that the proposed heuristic can find better 

solutions than the original SP-SRP with an average cost reduction of 12.5% across all 58 test 

instances. These results include four test instances with real-world store locations from our 

industry collaborator. Overall, the proposed heuristic is able to find solutions with an average 

runtime of 1.60 minutes, which represents a significant reduction of 86%, on average, from the 

previous method. 

The solution method introduced in this study can serve as a planning tool for decision-

makers in the logistics field. Considering its short runtime even with a fairly large number of 

stores, it can be a practical tool to perform what-if analyses and provide critical insights into future 

store locations and the impact of network composition on logistic challenges. This study focused 

on the original SRP, which assumes a fixed delivery schedule is given.  Future research can 

incorporate the clustering approach to the flexible SRP, where the delivery schedule is part of the 

decision space. The short runtimes can be especially valuable in such cases since the decision 

space is considerably larger for the flexible SRP.   
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Chapter 5  

Conclusions  

 

In this dissertation we introduced the Store Replenishment Problem (SRP) motivated by 

the logistical challenges encountered in the fast-food supply chain where multiple stores in a 

known region are replenished out of a distribution center (DC). In each chapter a different aspect 

or extension of the SRP was studied and a quantitative model was developed to find practical 

solutions and support the decision-making process. A summary of each chapter, including our 

conclusions and findings, is presented below.  

In Chapter 2, we formally defined the SRP and developed a simple and effective heuristic 

to minimize costs associated with replenishment logistics. The model uses a cost-driven multi-

component objective function that is capable of capturing the trade-offs between the cost 

incurred due to distance traveled, labor, fleet size, and route time overages. Using data from our 

industry collaborator, we were able to show that the solutions obtained with the proposed multi-

component objective function outperformed one-dimensional objectives (distance-based, or fleet 

size only) that are commonly used for similar routing problems in the literature. The 

computational results also provided insights that can significantly impact managerial decisions. 

Our results showed that longer single-driver routes can be more cost effective than employing a 

larger number of team routes. Through sensitivity analyses performed on the various cost 

components, we were able to establish that the distance cost and the route time overage cost have 

the highest impact on the total cost and solution structure, respectively. This further motivates 
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taking a closer look at how overage costs are determined and the impact that longer single-driver 

routes can have in the general logistics operations.  

In Chapter 3, we present an extension to the SRP (that is, SRP-FS), where the delivery 

schedule and the amount of inventory to be delivered on each visit are included as decision 

variables. We formulated the SRP-FS as a MIP with subtour elimination constraints, but due to 

the complexity of the problem, an alternative solution method was required for large real-world 

instances. Using a simulated annealing structure, we developed a two-step metaheuristic (SA 

metaheuristic) that first finds a feasible delivery schedule and then incorporates an adjusted 

savings algorithm to build corresponding routes and classify them as single-driver or team 

routes. As part of the analysis carried out in this chapter, we also studied a simpler version of the 

SRP-FS where only direct deliveries (out-and-back trips) are allowed.  Under the direct delivery 

approach, we were able to develop a heuristic policy that considers the problem as a lot sizing 

problem with inventory bounds and obtains near-optimal solutions. This method allowed us to 

easily build initial solutions for the SRP-FS that were then used by the SA metaheuristic as a 

starting point.  

To evaluate the performance of the heuristic, we used a set of randomly generated test 

instances of various sizes (10, 100, and 350 stores). We solved the test instances assuming 

infinite truck capacity (ITC) to serve as a baseline and observed an average percentage difference 

of 7% between the baseline and the SRP-FS solutions. This gap is comparable to the 5% 

difference we observed between the solutions obtained from directly solving the MIP using 

CPLEX for the smaller instances and the SA metaheuristic solutions. While these results are 

limited by the fact that CPLEX was not able to find the optimal solutions for the test instances, 

the above comparison shows that the ITC baseline can serve as a lower bound to the problem. 
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The performance of the SA metaheuristic is further supported by the computational results 

obtained from solving the industry data instances. Comparing the SRP-FS solutions to both the 

current industry baseline and the SRP solutions obtained in Chapter 2, we were able to show how 

introducing a flexible delivery schedule significantly outperforms the fixed delivery alternative 

in all instances. While a flexible delivery schedule has the potential of reducing most of the cost 

elements associated with replenishment logistics, it is important to note that the implementation 

would require significant operational changes within the industry that would benefit from input 

obtained from various stakeholders across the supply chain. The cost reductions attained by 

using a flexible schedule are reflected in a reduction of the number of trucks required, store 

visits, distance traveled, and team-routes used. This further motivates the study of how team 

routes are currently used in industry and the impact a reduction of their use can have in the 

overall operations.  

In Chapter 4, we introduced a new solution method for the SRP that takes advantage of 

the clusters found in the store networks of fast-food supply chains. By formulating the SRP as a 

bin-packing problem, we simplify the decision space and are able to find good solutions in short 

times. The bin-packing formulation assigns clusters of stores to delivery routes in order to 

minimize costs. These assignments are then used to build actual delivery routes using a routing 

heuristic. Computational results using industry data from our collaborator showed that the new 

method outperformed the original set-partitioning approach introduced on Chapter 2, with an 

average cost reduction of 6%. Across all the test instances we used to evaluate the performance 

of the new solution method, we found that the bin-packing approach obtains cost reductions of 

12.5% on average when compared with the original approach. Furthermore, the clustering-based 

heuristic had an average runtime of 1.60 minutes, which represents an 86% reduction in runtime 



115 

 

from the original method. Considering its short processing time, the method in Chapter 4 can 

serve as a practical planning tool for decision-makers to consider new store locations and the 

impact of the network composition on the replenishment logistics. While this chapter was 

focused on the SRP, future research can extend the proposed approach for the SRP with a 

flexible delivery schedule, where the simplification of the decision space can be particularly 

beneficial due to the more complex scenario a flexible schedule introduces to the problem.     
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Appendix A  

Supplemental Information for Chapter 2 

Truck contents and route lengths (in time) for instance 2 are shown in Figure A-1 and Figure A-2 

for the SRP heuristic and the baseline, respectively.  

 

 

Figure A-1. Truck contents & route time, SRP heuristic-Instance 2. 
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Figure A-2. Truck contents & route time, Baseline-Instance 2. 

 

Figures A-3 – A-5 show plots for the location of stores and DC used for the N10, N100, and 

N350 random instances respectively.  
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Figure A-3. Plot of Store and DC Location for N10 Instances 

 

Figure A-4. Plot of Store and DC Location for N100 Instances 

 

Figure A-5. Plot of Store and DC Location for N350 Instances   
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Appendix B  

Proof of Direct Delivery Optimal Policy from Chapter 3 

By contradiction, assume 𝑋∗ is not optimal. Then there must exist an alternate set of positive 

integers, 𝑥̂𝑡 ∈ 𝐴∗, that represents an alternative delivery schedule that is feasible and has fewer 

total deliveries than 𝑋∗. This implies that the set  𝑥̂𝑡 meets the following constraints 

𝑥̂𝑖
𝑡 ∗ 𝑈𝑉 ≥ 𝑞̂𝑖

𝑡      ∀ 𝑖, 𝑡 (B1) 

𝑈𝑆 ≥ 𝑞̂𝑖
𝑡 + 𝐼𝑖

𝑡 ≥ 𝑑𝑖
𝑡     ∀ 𝑖, 𝑡 (B2) 

𝑥̂𝑖
𝑡 ≥ 0 ∀ 𝑖, 𝑡 (B3) 

𝑞̂𝑖
𝑡 ≥ 0, 𝐼𝑖

𝑡 ≥ 0 (B4) 

 

and the inequality below is true, 

∑𝑥̂𝑖
𝑡 <  ∑𝑥𝑖

𝑡  . (B5) 

 

Inequality B5 implies that there must be at least one period 𝑛 for which the quantity of inventory 

delivered to the store in the alternative solution is zero, while in 𝑋∗ the maximum allowed 

quantity was delivered. That is to say that for period n, we have 

𝑞̂𝑖
𝑛 = 0 < 𝑞𝑖

𝑛 = 𝑈𝑆 − 𝐼𝑖
𝑛 . (B6) 

WLOG we assume that there is no period where 𝑞̂𝑖 = 0 = 𝑞𝑖. That is, for no period in the 

planning horizon, will both solutions make the decision to not make a delivery. If such a period 

existed, the problem can be modified by removing the period in question without affecting the 

solution.  

Let 𝑝 be the first time period for which 
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∑ 𝑥̂𝑖
𝑡

𝑝

<  ∑ 𝑥𝑖
𝑡

𝑝

 . (A7) 

That is, let period 𝑝 be the first time period in which the number of deliveries made up to that 

period in schedule 𝑋∗ is strictly larger than the deliveries made in the alternative solution. This 

implies that 𝑞̂𝑖
𝑝 = 0 and 𝑞𝑖

𝑝 = 𝑈𝑆 − 𝐼𝑖
𝑝
. In other words, for period 𝑝 no inventory was sent to the 

store in the alternative solution, while a delivery of 𝑈𝑆 − 𝐼𝑖
𝑝
 was made in 𝑋∗.  

With no deliveries made in period 𝑝 in the alternative solution, the inventory available for that 

period must be sufficient to meet the demand, i.e., 𝐼𝑖
𝑡 ≥ 𝑑𝑖

𝑡 must be true. Since there was a 

delivery in period 𝑝 in solution 𝑋∗, then the amount of inventory delivered in the alternative 

solution must be larger than the amount delivered in solution 𝑋∗ by period 𝑝; that is,  

∑ 𝑞̂𝑡

𝑝−1

> ∑ 𝑞𝑡

𝑝−1

 . (B8) 

If we examine period 𝑝 − 1, we see that there are only two feasible options: 

𝑞̂𝑝−1 ≥ 𝑞𝑝−1 > 0   or   𝑞𝑝−1 > 𝑞̂𝑝−1 = 0  (B9) 

The above two cases imply that either in the alternative solution the amount delivered was 

greater than the one made in solution 𝑋∗, or that for this period the alternative solution did not 

make a delivery, while a delivery was made in solution 𝑋∗. These are the only two possibilities 

because we know that if  𝑞𝑝−1 = 𝑞̂𝑝−1 = 0, we can remove the period without affecting the 

solution, and that if 𝑞𝑝−1 = 0 when  𝑞̂𝑝−1 > 0, then 𝑝 could not be the first period where the 

number of deliveries in solution 𝑋∗ is larger than in the alternative solution.  

With 𝑞𝑝−1 > 0, from the proposed policy it follows that the quantity delivered must be 𝑞𝑝−1 =

𝑈𝑆 − 𝐼𝑝−1, and by definition of the solution, the inventory available for the selected period 𝑝 is 

given by: 
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𝐼𝑝 = 𝑞𝑝−1 + 𝐼𝑝−1 − 𝑟𝑝−1 

    =  𝑈𝑆 − 𝐼𝑝−1 + 𝐼𝑝−1 − 𝑟𝑝−1 

𝐼𝑝 = 𝑈𝑆 − 𝑟𝑝−1     

(B10) 

From the proposed policy, since 𝑞𝑝−1 > 0, then it must mean that either the inventory available 

in period 𝑝 is not enough to meet the period’s consumption rate and thus 

𝑟𝑝 > 𝐼𝑝 = 𝑈𝑆 − 𝑟𝑝−1, (B11) 

or the amount already delivered does not cover the expected store demand by this period: 

∑ 𝑞𝑡

𝑝−1

< ∑ 𝑑𝑡

𝑝

 (B12) 

For the first scenario, we can calculate the inventory for period 𝑝 in the alternative solution 𝐴∗ 

as, 

𝐼𝑝 = 𝑞̂𝑝−1 + 𝐼𝑝−1 − 𝑟𝑝−1 (B13) 

Since  𝑞̂𝑝 = 0, then we must have 𝐼𝑝 ≥ 𝑟𝑝, and the following inequality holds:   

𝐼𝑝 = 𝑞̂𝑝−1 + 𝐼𝑝−1 − 𝑟𝑝−1 ≥ 𝑟𝑝 (B14) 

Combining the above inequalities, we conclude that the inventory for period 𝑝 in solution 𝐴∗ 

must be greater than or equal to the consumption rate for the period, while the inventory for that 

same period in solution 𝑋∗ is strictly less than this rate; that is: 

 

 

𝐼𝑝 ≥ 𝑟𝑝 > 𝐼𝑝 

         𝐼𝑝 = 𝑞̂𝑝−1 + 𝐼𝑝−1 − 𝑟𝑝−1 ≥ 𝑟𝑝 > 𝑈𝑆 − 𝑟𝑝−1 = 𝐼𝑝  

𝑞̂𝑝−1 + 𝐼𝑝−1 − 𝑟𝑝−1 > 𝑈𝑆 − 𝑟𝑝−1 

𝑞̂𝑝−1 + 𝐼𝑝−1 > 𝑈𝑆 

(B15) 
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The above inequality shows how the alternative solution 𝐴∗ violates the inventory capacity 

constraint for period 𝑝 − 1, which means it is not a feasible solution, and thus 𝑋∗ must be 

optimal.  

Similarly, for the second scenario we have:  

∑ 𝑞𝑡

𝑝−1

< ∑ 𝑑𝑡

𝑝

 (B16) 

Since the alternative solution is not making a delivery on period p, then: 

∑ 𝑞𝑡

𝑝−1

< ∑ 𝑑𝑡

𝑝

≤  ∑ 𝑞̂𝑡

𝑝−1

 (B17) 

If we subtract the inventory consumption over this period, we can calculate the inventory 

available for the period: 

𝐼𝑝 = ∑ 𝑞𝑡 − 𝑟𝑡

𝑝−1

<  ∑ 𝑞̂𝑡 − 𝑟𝑡

𝑝−1

= 𝐼𝑝 (B18) 

As we showed before, we can rewrite the inventory calculations as: 

𝐼𝑝 = 𝑈𝑆 − 𝑟𝑝−1 < 𝑞̂𝑝−1 + 𝐼𝑝−1 − 𝑟𝑝−1 = 𝐼𝑝, (B19) 

which again, shows that for this to be true, the inventory of the alternative solution must violate 

the store capacity constraint: 

𝑈𝑆 < 𝑞̂𝑝−1 + 𝐼𝑝−1, (B20) 

which proves that the proposition leads to an optimal solution. 
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Appendix C  

Supplemental Information for Chapter 4 

 

The following Tables present detailed solutions for the 54 instances with randomly-generated data 

used in Section 5.2.  

Table C-1. Comparison of Random Cluster Instances with Demand Instance 1. 

No. of 

Clusters 

Max. Size 

of 

Clusters 

Max. 

Dist 

Avg 

Clustering 

Solution 

Runtime 

(Secs) 

SRP 

Solution 

Runtime 

(Secs) 

% Diff 

Soln 

% Diff 

Runtime 

3 

5 

0.5x  $ 63,245.52      149.48   $ 77,438.20  535.35 -18.3% -72.1% 

1x  $ 65,107.87      130.13   $ 78,308.34  580.67 -16.9% -77.6% 

2x  $ 64,289.84      205.15   $ 74,680.07  611.55 -13.9% -66.5% 

11 

0.5x  $ 63,368.82      172.15   $ 76,476.27  608.43 -17.1% -71.7% 

1x  $ 63,125.53      200.78   $ 76,786.59  581.62 -17.8% -65.5% 

2x  $ 64,150.82      183.76   $ 76,277.27  630.90 -15.9% -70.9% 

22 

0.5x  $ 59,128.02        96.48   $ 65,302.83  569.40 -9.5% -83.1% 

1x  $ 59,894.94      108.41   $ 68,010.14  604.61 -11.9% -82.1% 

2x  $ 59,728.55      114.46   $ 67,650.34  510.07 -11.71% -77.6% 

5 

5 

0.5x  $ 63,953.37      201.18   $ 61,114.03  620.67 4.6% -67.6% 

1x  $ 61,503.56      141.61   $ 61,636.76  625.75 -0.2% -77.4% 

2x  $ 62,190.46      134.81   $ 61,336.91  629.68 1.4% -78.6% 

11 

0.5x  $ 60,109.64      143.02   $ 72,445.09  525.55 -17.0% -72.8% 

1x  $ 60,215.11        95.49   $ 71,725.37  539.44 -16.0% -82.3% 

2x  $ 61,306.09      170.94   $ 70,815.65  556.26 -13.4% -69.3% 

22 

0.5x  $ 57,579.63        65.96   $ 90,487.23  499.75 -36.4% -86.8% 

1x  $ 58,367.22        58.32   $ 74,049.34  548.48 -21.2% -89.4% 

2x  $ 58,362.48        56.82   $ 71,252.87  520.35 -18.09% -89.1% 

10 

5 

0.5x  $ 59,602.73      140.31   $ 63,653.50  523.82 -6.4% -73.2% 

1x  $ 58,963.09      159.33   $ 64,938.74  580.75 -9.2% -72.6% 

2x  $ 57,889.49      131.92   $ 66,026.54  582.70 -12.3% -77.4% 

11 

0.5x  $ 58,182.78        90.61   $ 67,101.18  514.54 -13.3% -82.4% 

1x  $ 59,762.82      121.12   $ 72,728.37  529.77 -17.8% -77.1% 

2x  $ 61,208.06        85.56   $ 68,178.29  572.41 -10.2% -85.1% 

22 0.5x  $ 46,652.57        53.54   $ 51,060.34  381.94 -8.6% -86.0% 
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1x  $ 47,763.58        38.06   $ 50,629.07  414.68 -5.7% -90.8% 

2x  $ 50,654.25        57.46   $ 54,369.43  618.30 -6.83% -90.7% 

  

Table C-2. Comparison of Random Cluster Instances with Demand Instance 2. 

No. of 

Clusters 

Max. 

Size of 

Clusters 

Max. 

Distance 

Avg 

Clustering 

Solution 

Runtime 

(Secs) 

SRP 

Solution 

Runtime 

(Secs) 

% Diff 

Soln 

% Diff 

Runtime 

3 

5 

0.5x  $ 58,732.66        87.40  67242.84 466.7845 -12.7% -81.3% 

1x  $ 58,640.17        78.53  67463.37 499.2829 -13.1% -84.3% 

2x  $ 58,847.03        84.82  66997.47 480.298 -12.2% -82.3% 

11 

0.5x  $ 60,484.04        85.35  82005.87 473.4953 -26.2% -82.0% 

1x  $ 58,265.19      124.24  68832.1 495.0834 -15.4% -74.9% 

2x  $ 59,736.65        96.80  64986.91 463.8333 -8.1% -79.1% 

22 

0.5x  $ 53,853.45        52.93  56059.05 431.3504 -3.9% -87.7% 

1x  $ 55,438.28        54.71  57727.16 440.3037 -4.0% -87.6% 

2x  $ 56,242.77        84.56  58065.37 380.5483 -3.14% -77.8% 

5 

5 

0.5x  $ 58,279.35        75.92  58291.73 505.6113 0.0% -85.0% 

1x  $ 56,333.79        68.90  57525.41 530.1622 -2.1% -87.0% 

2x  $ 57,167.71        74.10  56864.09 504.3538 0.5% -85.3% 

11 

0.5x  $ 56,319.70        62.51  61440.7 455.7078 -8.3% -86.3% 

1x  $ 56,144.06        68.62  60433.2 451.3109 -7.1% -84.8% 

2x  $ 56,813.19      110.90  60979.33 475.5009 -6.8% -76.7% 

22 

0.5x  $ 53,343.03        38.58  83798.74 383.9155 -36.3% -90.0% 

1x  $ 53,156.43        43.68  71177.29 374.1824 -25.3% -88.3% 

2x  $ 53,923.70        41.48  59547.04 344.1806 -9.44% -87.9% 

10 

5 

0.5x  $ 53,433.27      125.67  61808.25 404.0106 -13.5% -68.9% 

1x  $ 54,354.92        86.59  64040.5 449.5515 -15.1% -80.7% 

2x  $ 53,863.72      117.96  60644.92 468.3748 -11.2% -74.8% 

11 

0.5x  $ 52,459.14        70.01  59945.7 394.8867 -12.5% -82.3% 

1x  $ 53,110.83        77.94  60632.55 405.5063 -12.4% -80.8% 

2x  $ 56,882.05        86.83  61387.06 436.6573 -7.3% -80.1% 

22 

0.5x  $ 43,177.56        25.29  47214.18 261.852 -8.5% -90.3% 

1x  $ 45,415.99        27.69  47081.17 322.6722 -3.5% -91.4% 

2x  $ 46,788.19        36.21  45878.18 441.5506 1.98% -91.8% 

 

 

 

 


