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ABSTRACT

Flooding causes more damage and fatalities than any other natural disaster. Simul-
taneously, storms carry large quantities of pollutants into receiving waters. These
challenges are compounded by urbanization and a changing climate. Traditional in-
frastructure solutions, such as larger storage basins and pipes, are cost prohibitive.
Green infrastructure (GI) has been proposed as a nature-based alternative to new
construction. GI includes assets such as rain gardens and bioswales, which are de-
signed to capture runoff, treat pollutants, and infiltrate water into underlying soils.
However, the scalability of these distributed solutions has yet to be vetted and mea-
sured at scale. Another promising solution, autonomous stormwater systems, lever-
age recent advances in wireless sensing, communications, and controls. Infrastructure
assets are retrofitted with wireless sensors and controllable valves, enabling them
to adapt to changing weather, flows, and pollutant loads. These controllable as-
sets are coordinated at the system-scale to achieve flooding and pollutant objectives
across watersheds. While these novel solutions have gained traction for traditional
stormwater infrastructure, they have only just begun to be investigated for GI. Before
autonomous technologies can be adopted for GI, several fundamental knowledge gaps
must be closed. Broadly, these include a lack of understanding around how GI can
be effectively and optimally measured at scale, as well as how pollutant transforma-
tions should be modeled to support real-time control. This dissertation addresses
these knowledge gaps and presents foundational work towards enabling autonomous
GI. The second chapter introduces an end-to-end data toolchain, underpinned by a
wireless GI sensor network for continuously measuring real-time water levels. The
toolchain automatically isolates storms in the sensor data to parameterize a dynam-
ical system model of GI drawdown dynamics. The model outputs are then used to
investigate the explanatory features of drawdown dynamics. We show how invest-
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ments in monitoring networks support a more targeted and data-driven approach to
GI design, placement, and maintenance. Investing in monitoring networks requires
knowing where to place sensors and how many are needed. The third chapter intro-
duces a sensor placement methodology for urban drainage networks using publicly
available datasets and Gaussian Processes. The methodology is flexible enough to
work for any stormwater sensor or spatial parameter of interest, has guarantees of
optimality, and is computationally efficient. We show that the methodology max-
imizes information gained from the sensor network while minimizing its size. The
fourth chapter addresses the lack of simulation tools necessary for modeling complex
pollutant transformations affected by real-time control in urban drainage networks.
A new water quality package, StormReactor, is introduced. StormReactor provides
an open-source Python programming interface for simulating complex pollutant gen-
eration, treatment, and real-time control processes. Two case studies are presented
to illustrate the fidelity of StormReactor and the potential of using real-time control
for ecological benefits. Expanding upon these case studies, the fifth chapter evaluates
the impact of real-time control on pollutant removal in GI. StormReactor is used to
simulate real-time control of a real-world inspired GI to capture phosphorus. We show
that real-time control not only provides a “digital” alternative to existing, passive GI
upgrades, like soil amendments, but it also provides long-term flexibility. This flexi-
bility enables stormwater managers to dynamically balance trade-offs in existing GI
designs and aids in the larger goal of system-level control. The dissertation concludes
with a broader discussion on how the discoveries made can support the development
of a new generation of autonomous GI.

xiv



CHAPTER 1

Introduction

Flooding causes more damage and fatalities than any other natural disaster [1]. Si-
multaneously, storms carry large quantities of pollutants into receiving waters [2–4].
In fact, runoff pollution is acknowledged as one of our greatest environmental chal-
lenges [5]. These problems are compounded by urbanization and a changing climate
[6]. More than half of the world’s population lives in urban areas [7], and this number
continues to rise. With urbanization comes an increase in impervious area, which
results in fewer surfaces to infiltrate stormwater [6, 8, 9]. At the same time, storms
have become more frequent and intense [9, 10]. As our cities become boxed in by de-
velopment, more frequent flooding and larger quantities of pollutants degrade urban
waterways and downstream ecosystems [11].

Presently, the main solution to combat flooding and pollution is to build larger
infrastructure, such as pipes and storage basins [12]. Bigger pipes can be built to
move stormwater out of urban areas faster, while bigger basins provide storage for
excess stormwater. The additional capacity provided by larger infrastructure is vital
but there are several drawbacks. First, this solution is cost prohibitive for most urban
areas [13]. Second, these solutions often have adverse environmental impacts. The
increased volume and velocity discharged into natural waterways can cause erosion
and damage aquatic ecosystems [11, 14–16]. Finally, these solutions are passive,
meaning they lack the ability to adapt to storms and changing urban landscapes
[13, 15]. As such, more adaptive solutions have been sought to manage stormwater
and protect our communities.

Adaptive stormwater solutions can be enabled by taking advantage of the au-
tonomy that is presently being embedded in self-driving vehicles, smart homes, and
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related "smart" systems [13, 17]. Leveraging the recent advancements and cost reduc-
tions in wireless sensing, computation, and communication [17], infrastructure can be
transformed from passive to active with the addition of distributed sensors and con-
trollable valves [13]. These technologies enable a stormwater asset to respond in real-
time to changing weather, flows, and pollutant loads [18, 19]. Autonomous stormwater
systems may one day coordinate tens to hundreds of individual stormwater assets to
route water and treat pollutants in real-time to meet watershed goals [20–22]. While
these technological solutions are gaining traction for traditional stormwater infras-
tructure (e.g., pipes, basins), they have yet to be investigated for green infrastructure
(GI).

GI is a nature-based stormwater management alternative that filters and absorbs
stormwater where it falls [23]. One popular design in the rapidly growing toolbox of
GI are rain gardens, which are the focus of this dissertation. Rain gardens enable
pervious management in impervious urban areas [24]. Examples of rain gardens
include bioretention cells and bioswales, which capture and reduce runoff by allowing
it to evapotranspire or exfiltrate into surrounding soil [23]. Benefits of rain gardens
include reducing runoff, promoting infiltration and evapotranspiration, recharging
groundwater, protecting stream channels, reducing peak flows, and treating pollutants
[25, 26]. The general design features of a rain garden are the ponding area, soil media
layer, native plants, and an optional gravel layer and underdrain (Figure 1.1). The
gravel layer and underdrain are generally recommended for areas with slow draining
native soils (e.g., ≤ 1.27 cm/hr [27]).

GI is often presented as a more natural and cost-effective alternative to upgrading
traditional stormwater infrastructure [28] but some studies have called attention to
its limitations [29–31]. While effective at capturing small rainfall events, GI have had
varying results capturing large or consecutive storms and treating pollutants [25, 32,
31, 33]. These performance limitations are a consequence of GI being underpinned
by complex biological and physical processes [34]. GI performance can be hindered
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Figure 1.1: The general design features of a rain garden.

further if it is not frequently monitored and maintained [31], however, monitoring GI
at the city-scale is costly and time-intensive [25]. Furthermore, the distributed nature
of GI has made it difficult to evaluate how the impacts of GI scale; for example, if GI
effectively mediates downstream water quantity and quality [35]. These limitations
highlight the need for new ways to monitor and boost the performance of GI at
both the site- and system-scale. Autonomous technologies, such as those added to
traditional stormwater infrastructure, may enable GI to scale and to perform better
than ever imagined (Figure 1.2).

The goal of this dissertation is to strike a middle ground between the distributed
benefits of GI and the system-level benefits that can be achieved with autonomous
stormwater systems. Specifically, the objective is to evaluate the fundamental under-
pinnings of autonomous GI, and to close the following major knowledge gaps that
prevent this vision from becoming reality.
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Figure 1.2: Visualization of autonomous stormwater systems with autonomous GI.

• We do not understand how to utilize recent technological advances in sensing
and computation for city-scale GI monitoring, preventing us from knowing if
individual GI are performing as designed, as well as if and how GI impacts
scale. New sensing devices and automated data analytic toolchains are needed
to process the high-resolution datasets obtained from such networks.

• We do not understand the value of information in urban drainage networks, nor
where we should install sensors in our urban drainage networks, including GI.
Without a comprehensive sensor placement methodology, communities can only
intuit where sensors are needed and assume they are obtaining the necessary
information for managing their urban drainage networks.

• We do not understand how to model water quality-based real-time control in
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stormwater infrastructure, including GI, which prevents us from knowing if or
how it will work. Existing stormwater models cannot represent water quality
processes at the fidelity required to evaluate real-time control at either the site-
or system-scale.

• We do not understand how to build an autonomous GI site, nor how to control
such a site, preventing us from knowing if real-time control can improve GI
pollutant treatment performance. While real-time control has been shown to
improve pollutant removal in traditional stormwater infrastructure, extrapolat-
ing these benefits to GI is difficult because pollutant removal is underpinned by
much more complex biological and physical processes.

This dissertation will close these knowledge gaps by introducing new advances in
wireless sensing, data analytics, and control for green stormwater infrastructure. In
addition to improving our fundamental understanding of autonomous green infras-
tructure systems, this work will provide practical, data-driven tools water managers
can use to guide GI development from design to maintenance. To that end, the
specific contributions of this dissertation include:

• Chapter 2: An end-to-end data toolchain, underpinned by a novel wireless
sensor network for continuously measuring real-time water levels in GI. The
toolchain isolates storms in the sensor data to parameterize a dynamical sys-
tem model of GI drawdown dynamics. The model outputs are then used to
investigate the explanatory features of drawdown dynamics. The methodology
is evaluated on a GI sensor network in Detroit (Michigan, US), showing that
depth to groundwater, imperviousness, longitude, and drainage area to surface
area (DA/SA) ratio are the most important features explaining GI drawdown
dynamics in Detroit.

• Chapter 3: An iterative sensor placement methodology for urban drainage
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networks using sensor data, publicly available GIS datasets, and Gaussian Pro-
cesses (GP). The proposed methodology can be used for any urban drainage
network sensor or spatial parameter of interest, has guarantees of optimality,
and is easy and efficient to use. The proposed methodology is evaluated on the
Detroit GI sensor network, showing that the size of existing network can be
reduced without compromising the predictive capabilities of the network.

• Chapter 4: StormReactor, a new water quality package providing an open-
source Python programming interface for simulating complex pollutant genera-
tion, treatment, and real-time control processes. The package’s ability to model
complex pollutant transformations and real-time control actions is evaluated us-
ing two case studies. The first case study shows that StormReactor improves
pollutant process representation by including pollutant generation processes,
while the second case study shows that a real-time controlled asset can achieve
the same pollutant improvements as an uncontrolled asset in a quarter of the
spatial footprint.

• Chapter 5: A study that evaluates the impact of real-time control on pollu-
tant removal in GI. Based on a real-world GI retrofitted for real-time control
in Toledo (Ohio, US), StormReactor is used to simulate real-time control of the
GI’s underdrain to improve phosphorus removal. The autonomous GI is com-
pared to an uncontrolled GI and a GI passively upgraded with soil amendments.
Results show the autonomous GI matches the pollutant treatment performance
of the uncontrolled GI in half the spatial footprint. The autonomous GI also
matches the performance of the passive upgrade, suggesting real-time control
may provide a “digital” alternative to existing, passive upgrades.
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1.1 Background

1.1.1 Green Infrastructure Performance

GI have shown varied performance in terms of reducing runoff and peak flows (Ta-
ble 1.1). Generally, rain gardens effectively capture small storms but struggle with
large and/or consecutive storms [25, 32, 31, 33, 36]. Winston et al. [37] found that
three rain gardens reduced overall runoff by 36 to 59%, despite slow draining native
soils. During small rainfall events (i.e, 1-year design rainfall intensities), the rain
gardens reduced peak flows by 24 to 96%. Whereas the gardens released outflows
during large events (i.e., 5.5 to 13.8 mm).

In terms of pollutants, removal is highly dependent on the complex biological
and physical interactions between the pollutant and the GI plant/soil systems [34].
Greater success has been observed with capturing particular pollutants (e.g., total
suspended solids), through sedimentation and filtration by the soil media [24]. Dis-
solved pollutants (e.g., dissolved phosphorus, dissolved nitrogen), however, are even
more challenging for rain gardens to treat [24, 38]. Rain gardens primarily remove
dissolved pollutants through adsorption, but they can also leach (i.e., release) pollu-
tants previously stored in the soil media and vegetation [24, 39]. Table 1.1 provides
a summary of GI performance reported in several literature review studies.

1.1.2 GI Design Standards

Many communities rely on established stormwater management manuals, which detail
how to select, design, construct, and maintain stormwater infrastructure, including
GI. A manual’s goal is to set forth best management practices which will elicit a cer-
tain level of performance, such as mitigating peak flow or infiltrating a certain fraction
of runoff [42]. Regional and local manuals set design requirements (e.g., site selection,
GI selection/sizing, soil media composition, underdrain sizing, plant selection) as well
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Literature No. Studies Runoff Peak TSS TP TN
Citation per Review Flow
[25] 17 48 to 97% N/A 47 to 99% −3 to 99% 32 to 99%
[23] 4 N/A N/A −170 to 96% −240 to 87% 40 to 59%
[40] 12 N/A N/A 54 to 99%
[41] 14 0 to 100% 0 to 99% −170 to 100% −240 to 100% −3 to 99%

Table 1.1: Review studies of rain garden performance reporting reductions in runoff,
peak flow, total suspended solids (TSS), total phosphorus (TP), and total nitrogen
(TN).

as performance metrics [24]. These design requirements and performance metrics ex-
ist for a variety of reasons, for example to ensure public safety and limit liability
by eliminating trip hazards, adding barriers around water features, and to control
mosquitoes, but most fundamentally, to ensure that stormwater is being managed
consistently across various sites. As an example, two common metrics for rain gar-
dens and bioretention cells include the maximum allowable ponding time, generally
12–48 hours [27, 43, 44], and infiltration rate, typically 2.5–5 cm/hr [24, 27, 44].

While infiltration rates can vary substantially even within the same GI, drawdown
rates are representative of the entire system [45, 46]. Drawdown rate is the speed at
which water is evapotranspired or exfiltrated into the surrounding native soil [47, 37].
The drawdown rate of GI is a function of the design features, building and mainte-
nance practices, and the surrounding and underlying physiographic features [47, 48].
Design features include size, soil type, and vegetation. During site construction, how
the sites are excavated and graded can cause significant soil compaction which ulti-
mately impacts GI drawdown rates [49]. Physiographic features include the native
soils, topography, land use type, depth to groundwater, and sunlight [50, 48]. While
GI design can be optimized, in most cases the surrounding physiographic features
cannot be changed. These features may have a strong effect on GI drawdown. For
example, a shallow groundwater table (< 2–3 m) may result in more saturated media,
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which forms a smaller hydraulic gradient, impeding infiltration into the GI and exfil-
tration out of the GI into the native soil [51, 52]. This suggests that the drawdown
rate of GI is governed by complex interactions between design features and surround-
ing physiographic features. Few large-scale data sets exist to verify these patterns at
scale, however.

1.1.3 Measuring GI Performance

Monitoring is needed to confirm whether a GI is meeting desired management goals.
Additionally, monitoring can be used to determine whether local stormwater manuals
are setting appropriate design standards and performance metrics. Due to the sheer
number of sites and the cost of measuring quantitative metrics such as drawdown
rate, cities often rely on visual inspection or modeling to assess performance [25].
If GI monitoring is carried out, it is generally limited to certain time periods and
conditions [25, 48, 53].

Drawdown rate has been traditionally measured via drawdown testing. A GI is
filled with water (either synthetically or via rainfall) until ponding occurs, then the
drain depth and time are recorded to calculate the drawdown rate [47, 54]. These
measurements are typically conducted manually with the help of a watch and gauge
plate. Drawdown testing is generally only done pre- and post-installation [37], but
occasionally assets are tested as they age to track how they change over time [55, 56].
Unfortunately, the laboriousness of drawdown testing results in most communities
having sparse datasets of in-situ GI drawdown. Furthermore, drawdown is inherently
non-linear [37], meaning that drawdown rate may change over the course of a storm
and in response to ambient conditions. To gain a complete picture of GI behavior,
more data are needed than what can be obtained from a single drawdown test taken
during a single storm event.

Recent technological advances in Internet of Things (IoT) technologies have opened
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up new possibilities for low-cost, high resolution stormwater sensing [20, 57]. Real-
time sensing has been successfully deployed to monitor depths and flows in stormwater
[19] and sewer networks [58, 59]. Recently, some studies have used sensors, such as
pressure transducers connected to data loggers, to monitor GI [60, 56, 37, 54]. While
these studies provided high resolution measurements, they required frequent field
maintenance (e.g., downloading the data onsite, replacing batteries), making this
approach impractical for obtaining large-scale, and/or long-term data. Aside from
these studies, the uptake of these technologies for GI management has been limited.
According to a national survey of officials in water utilities and agencies, assumed
high construction and maintenance costs associated with smart GI are the two main
barriers to adoption [61]. As such, there is a need to vet low-cost, low-maintenance
IoT solutions for GI at scale.

1.1.4 Optimal Sensor Placement

Even with access to reliable GI sensors, knowing where to place these devices be-
comes a challenge. Communities that want to measure GI performance at scale,
or stormwater infrastructure more broadly, at scale are faced with the challenge of
determining how many sensors are needed and where they should be placed in the ur-
ban drainage network. Several studies have investigated optimization-based methods
for sensor placement in urban drainage networks [62–69]. These studies formulated
and then solved an objective function using computational models and optimization
algorithms. For example, Fattoruso et al. [62] explored flood gauge placement for
calibrating an EPA Storm Water Management Model (SWMM). The study searched
for the model parameters that minimized the error between the predicted and mea-
sured values in the real urban drainage network. The sensors were selected using an
enumerative search algorithm. This approach has several limitations, however. First,
this methodology works for model calibration, but it is not transferable to other
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objectives, like event detection or understanding drawdown dynamics. Second, the
approach relies on a calibrated model, which many communities do not have. Finally,
the selected algorithm does not necessarily guarantee optimality.

Studies have also investigated optimal sensor placement for detecting pollutants
[63, 66, 67] and flooding [64, 68, 69]. These studies developed their own objective
functions based on domain knowledge. The required data to evaluate their objective
functions were obtained through model simulations. The majority of these studies
used SWMM [63, 62, 66, 68], while the remaining studies used either a graph-based
model [64], a Bayesian network model [69], or a derived model of riverine contaminant
transport [67]. Using the model outputs, the objective functions were then solved
using optimization methods, including Bayesian decision networks [66], agglomerative
clustering [68], and genetic algorithms [63, 64]. While these approaches resulted in
viable sensor placements, they have the same limitations as Fattoruso et al. [62].

Yazdi [65] proposed a more flexible objective function based on entropy theory to
place water quality sensors in urban drainage networks. The objective was to maxi-
mize the joint entropy, or the information content obtained by the sensor network. To
solve the objective function, SWMM and an evolutionary algorithm was used. While
more flexible, two of the limitations described above still remain— it uses a calibrated
model and it does not guarantee optimality.

Ideally, a sensor placement methodology would have the following properties. First,
it would use an objective function that is flexible enough to work for any sensor or
spatial parameter of interest to urban drainage networks. Second, it would have some
guarantees of optimality. Finally, it would be easy and efficient to use, meaning it is
computationally efficient and does not require a calibrated physics-based model.
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1.1.5 Modeling GI Performance

Data provide us with invaluable metrics to measure performance, but do not
enable models or scenario planning tools that are needed by community man-
agers to make investments in new infrastructure. GI are generally modeled
using an existing stormwater model, which can be broadly grouped into two
categories: water quantity models and water quality models. Most stormwa-
ter models primarily focus on coupled hydrologic-hydraulic processes with lim-
ited capabilities for modeling water quality (e.g., MIKE URBAN+, DR3M,
STORM, MUSIC, SWMM) [70, 71]. However, some stormwater models do focus on
high resolution water quality processes. These finite element models (e.g., HYDRUS-
CWMI, FITOVERT) simulate complex pollutant transformations within individual
sites [72–74]. Unfortunately, scaling from site- to watershed-scale becomes very diffi-
cult due to the input data requirements and the difficulty of parameterization. The
chasm between these two types of stormwater models forces a trade-off between ei-
ther comprehensively modeling water quality at the site scale, or less comprehensively
modeling watershed-scale processes.

To avoid this tradeoff, researchers have modified existing stormwater models, like
SWMM, to expand their pollutant modeling capabilities. SWMM, widely used in the
US stormwater community, is an open-source urban stormwater model [75]. SWMM’s
water quality model provides users the ability to introduce pollutants and pollutant
treatment, while also routing and calculating mass balance for each pollutant [76].
SWMM-TSS modified SWMM to simulate total suspended solids (TSS) transport,
accumulation, and erosion in sewers and retention tanks [77]. As its name implies, this
modification is only for TSS. Baek et al. [78] modified SWMM’s water quality module
for low impact development (LID) to include straining, decay, and decomposition of
pollutants. However, this modification does not work for stormwater storage assets
or links. Talbot et al. ([79]) modified PCSWMM, a licensed version of SWMM, to
simulate sediment loading due to soil erosion. This modification is not open source and
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thus not open for exploration or expansion by the community. All of these packages
are very useful for specific modeling tasks; however, they do not offer general water
quality modeling solutions.

Although these packages provide additional functionality, SWMM has many re-
maining pollutant modeling limitations that must be addressed. The water quality
module is limited by the range of treatment measures that can be modeled [80],
specifically, limited nutrient treatment capabilities inside storage nodes (e.g., basins,
wetlands) [81, 82]. SWMM cannot simulate pollutant treatment inside links (e.g.,
conduits, channels) or pollutant generation processes (e.g., resuspension, erosion) in-
side any stormwater asset. Pollutant treatment cannot be turned on or off based on
site conditions or other parameters, requiring treatment to run for the entire sim-
ulation. All of these constraints limit a user’s ability to model complex pollutant
transformations, necessitating a more generalizable and scalable approach.

Aside from water quality limitations, many stormwater quality models have lim-
ited or no ability to simulate real-time control. Real-time control is made possible
through the installation of sensors and controllers [83, 84]. To realize the goal of
autonomous stormwater systems, we must be able to model real-time control strate-
gies [85, 86]. One open-source and popular real-time control package is PySWMM, a
Python wrapper for the SWMM computational engine. PySWMM queries stormwa-
ter states directly from SWMM, which is used to apply control actions by setting the
control parameters for valves, gates, and pumps in real-time [87]. However, PySWMM
presently only enables real-time control decisions to be made based on water quan-
tity parameters (e.g., flow, head, depth, volume). Therefore, there is a need for a
comprehensive package that can both simulate water quality processes and real-time
control.
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1.1.6 Boosting GI Performance

1.1.6.1 Passive Modifications

Both simulation and field measurement studies have reported inconsistent results in
terms of GI’s ability to capture flows and pollutants [25, 33]. To boost GI per-
formance, passive design modifications have been explored in the literature [88–
90, 24, 39]. For GI with an underdrain, modifying the underdrain and outlet con-
figuration can boost hydrologic and pollutant performance. For example, to increase
retention time, the size of the outlet can be reduced and a larger diameter outlet placed
above ground [88]. The smaller outlet slows the flows from the underdrain, provid-
ing more time for the rain garden to treat pollutants and exfiltrate/evapotranspirate
flows, while the outlet above ground ensures the site does not flood. Aside from re-
ducing the outlet size, the outlet configuration can also be redesigned. For example,
adding an upturned elbow to the underdrain increases the the internal water storage
layer [89, 90]. The upturned elbow provides more time for the system to treat ni-
trogen and exfiltrate water into the surrounding soil instead of flowing through the
underdrain into the sewer system. While these solutions improve performance for
well-spaced storms, they may hinder performance for consecutive storms. If these
systems do not drain quickly, they may not have adequate storage space for the next
storm. To that end, more flexible solutions are needed that can improve performance
for both well-spaced and consecutive storms.

In terms of pollutants, treatment can also be improved by adding soil amendments
(organic or inorganic) to GI [24, 39]. For example, it is known that the phosphorus
sorption capacity can be improved by amending the iron oxide and aluminum oxide
contents of the soil inside a bioretention cell [91]. Soil amendments are mixed into
the soil media (5-30% of the total soil volume). Their price is highly dependent on
the type of amendment, ranging from free water treatment plant residuals (a by-
product of the water treatment plant) to $16,000 USD/m3 for iron filings. While
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soil amendments are excellent at removing specific pollutants, they deplete over time,
provide limited hydrologic benefits, and have limited or no impact on pollutants for
which they were not amended [91]. As such, discovering more flexible ways to manage
the limitations of GI is important for meeting runoff and pollutant goals.

1.1.6.2 Real-Time Control

While passive modifications may improve GI performance, their static nature mean
GI cannot adapt to changing conditions in real-time. Adding a controllable valve to
the end of a GI’s underdrain transforms it from a passive to active system, enabling
the GI to switch between storing and releasing water [92]. The opening and closing
of this valve allows for many of the trade-offs in existing bioretention designs to be
dynamically balanced. Intuitively, this suggests that controlling water levels using a
valve would improve exfiltration and pollutant treatment due to extended residence
times. However, real-time control creates a dynamic environment for soils, plants,
and microbes that is unexplored and may have unintended consequences [92]. A
laboratory column study by Persaud et al. [92] found that real-time control can
improve upon standard bioretention designs, but further optimization is required to
balance water quality benefits against storage needs for impending storms. Aside
from this column study, the benefits and practicality of real-time control have yet to
be quantified for GI.

1.2 Summary

When combined, the prior sections illustrate that a set of first steps need to be
taken to close key knowledge gaps, including (1) how to measure and analyze city-
scale GI performance; (2) where to place urban drainage network sensors; (3) how to
model stormwater quality-based real-time control; and (4) how to build and control
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autonomous GI. The following chapters chart a journey to close these knowledge gaps,
while highlighting new frontiers for the field of autonomous GI.
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CHAPTER 2

Measuring City-Scale Green Infrastructure
Drawdown Dynamics Using

Internet-Connected Sensors in Detroit

Abstract
The impact of green infrastructure (GI) on the urban drainage landscape remains
largely unmeasured at high temporal and spatial scales. To that end, a data toolchain
is introduced, underpinned by a novel wireless sensor network for continuously mea-
suring real-time water levels in GI. The internet-connected sensors enable the col-
lection of high-resolution data across large regions. A case study in Detroit (MI,
US) is presented, where the water levels of 14 GI sites were measured in-situ from
June to September 2021. The large dataset is analyzed using an automated storm seg-
mentation methodology, which automatically extracts and analyzes individual storms
from measurement time series. Storms are used to parameterize a dynamical system
model of GI drawdown dynamics. The model is completely described by the decay
constant α, which is directly proportional to the drawdown rate. The parameter is
analyzed across storms to compare GI dynamics between sites and to determine the
major design and physiographic features that drive drawdown dynamics. A corre-
lation analysis using Spearman’s rank correlation coefficient reveals that depth to
groundwater, imperviousness, longitude, and drainage area to surface area ratio are
the most important features explaining GI drawdown dynamics in Detroit. A dis-
cussion is provided to contextualize these finding and explore the implications of
data-driven strategies for GI design and placement.
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2.1 Introduction

Urban areas around the world are struggling to manage stormwater runoff and
flooding– a challenge compounded by rapid urbanization and climate change [93, 6].
Gray infrastructure, which consists of gutters, drains, and pipes, is the traditional
method for collecting and conveying stormwater away from urban areas. Recently,
green infrastructure (GI) has become a popular alternative, used either as a stan-
dalone stormwater management practice or in concert with traditional gray infras-
tructure [48, 35]. GI attempts to mimic the natural water cycle by using plants, soil,
and landscape design to capture and filter local runoff [25, 48]. One of the most com-
mon GI practices is bioretention cells, or rain gardens, which are depressed vegetated
areas that capture and reduce runoff by allowing it to evapotranspire or exfiltrate
into surrounding soil [24].

Communities worldwide are investing in GI for managing stormwater at increasing
scales. For example, China plans to spend over US$ 1.5 trillion on GI in 657 cities
by 2030 [94]. In the midwestern US, the city of Detroit, Michigan invested US$
15 million in GI between 2013–2017 and will invest US$ 50 million by 2029 [95].
These investments assume adding more GI assets will positively impact stormwater
outcomes, however, sufficient data to support this claim has yet to be produced
[96, 25, 97, 48].

Real-time monitoring of stormwater infrastructure at high temporal and spatial
resolutions is now possible with Internet of Things (IoT) technologies [57, 20]. Real-
time sensing has been successfully deployed to monitor depths and flows in stormwater
[19] and sewer networks [58, 59]. Recently, some studies have used sensors, such as
pressure transducers connected to data loggers, to monitor GI [60, 56, 37, 54]. While
these studies provided high resolution measurements, they required frequent field
maintenance (e.g., downloading the data onsite, replacing batteries), making this
approach impractical for obtaining large-scale, and/or long-term data. Therefore,
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there is still a need for GI IoT solutions.
To that end, we introduce an end-to-end data toolchain based on new wireless

sensors for estimating real-time drawdown in GI, the speed at which stormwater is
evapotranspired and exfiltrated into the native soil [37, 25]. These wireless sensors
are low-cost, easy to install, and can be deployed at scale to create large, long-
term, high-resolution datasets of urban drainage conditions. When combined with
an analytics toolchain, our approach can be used to automatically learn GI dynamics
from data on a storm-by-storm basis. To study the value of a city-wide dataset, we
present a case study of these GI sensors deployed in Detroit. This novel dataset is
used to characterize the drawdown dynamics of GI over multiple storms. The core
contribution of this paper is a new sensor and data analysis methodology, along with
experimental results that show which factors are the strongest predictors of drawdown
dynamics for the studied GI network.

2.2 Materials and Methods

2.2.1 Green Infrastructure Wireless Sensors

A wireless sensor was designed to continuously measure drawdown in GI (Figure 2.1).
Specifically, the device measures water level fluctuations in real-time. At the time
of writing, the sensor costs approximately US$ 1,000 to build and US$ 25 annually
for telecommunication and data storage services. The form factor of the sensor is
similar to a water well, consisting of a 1.5 m long, slotted PVC pipe with one end
holding the sensor and the other holding the remaining hardware components. The
sensor uses the vetted Open Storm hardware and cloud services stack detailed in
Bartos et al. [19]. The hardware layer relies on an ultra-low power ARM Cortex-M3
microcontroller (Cypress PSoC). The microcontroller manages the sensing and data
transmission logic of the embedded system. The sensor measures water levels to a
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Figure 2.1: A GI sensor installed in a rain garden (top right). The sensor’s hardware
layer (center) includes the PVC well, microcontroller, cellular modem, and pressure
transducer. The cloud services layer (left) includes the database backend, along with
applications for controlling sensor behavior and visualizing data (bottom right).

reported accuracy of ±0.762 cm using a pressure transducer (Stevens SDX 93720-110),
which converts a barometric reading to a 4–20 milliampere (mA) output. The sensor is
equalized for atmospheric pressure changes and was calibrated in the laboratory using
a standard water column. The device is connected to the internet with a 4G LTE
CAT-4 cellular modem (Nimbelink NL-SW-LTE). The cellular modem enables bi-
directional communication between the sensor and a remote cloud-hosted web server.
The device is powered using a 3.7 V lithium-ion battery (Tenergy) that is recharged
by a solar panel (Adafruit 500). Power consumption measurements were used to
confirm that when the device is on, power consumption is in the milli-amperage
range and when the device is in sleep mode, it is in the micro-amperage range. With
these power consumption numbers the sensor can stay in the field for up to 10 years

20



without needing a battery replacement.
The main reason for field maintenance occurs if a sensor malfunctions. The first

type of sensor malfunction is sensor drift, which is defined as a small temporal varia-
tion in the sensor output under unchanging conditions. Sensor drift can be detected
in this case when the sensor’s “zero” reading changes over time. The other type of
sensor malfunction occurs if a sensor provides a zero reading during periods of rainfall.
There are several possible explanations for this malfunction. First, since the sensor
operates by converting current to depth, there could be an issue with the analog
circuitry resulting in inaccurate current measurements. Second, the sensor could be
physically damaged during node assembly or deployment. Third, the sensor provides
a venting tube for equalizing atmospheric pressure changes. Although a cap is added
to the tube to keep moisture out, if the cap is faulty, condensation can enter the tube
and cause inaccurate readings. Finally, the PVC well may clog with sediment. To
rectify any of the above sensor malfunctions, the sensor is swapped for a new one,
which only takes a few minutes of field work.

The sensor measurements were validated in the field using a gauge plate and digital,
time-lapse photography by an outside consultant [98]. During rain events, photos
were taken of the ponded water and gauge plate measurement every ten minutes
(Figure A.1). There was an average alignment of 11 mm between the camera-recorded
and sensor-recorded depth measurements (Figure A.2).

Installation of the sensor takes less than 30 minutes by one person and requires
digging a 1 m deep hole using a simple, off-the-shelf, handheld post hole digger. The
sensor is placed in the hole and backfilled with soil. Real-time data begins streaming
to a web dashboard as soon as the unit is deployed. The sensor is deployed such
that an water level of 0 m indicates dry conditions, while a measurement above 1 m
indicates water is ponding on the surface.

The sensor takes measurements every ten minutes and reports data to the server
once every hour. Measurements are transmitted over the cellular network via a secure
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connection to a cloud-hosted server. Data and metadata are stored in an InfluxDB
database [99]. Measurements are then made available for visualization and sharing
with partners through Grafana [100], a dashboarding software used to plot measured
water level over time. Both InfluxDB and Grafana instances are hosted on an Amazon
Web Services (AWS) Elastic Cloud Computing (EC2) instance [101]. The system is
entirely open source and the complete codebase, hardware schematics, and how-to
guides have been made available as part of this paper on github.com/kLabUM/GI_

Sensor_Node.

2.2.2 Automatically Learning GI Dynamics from Data

To enable comparisons between sites without losing temporal information due to
averaging, we synthesize and parameterize a drawdown model automatically from
data. We assume that water levels inside GI can be approximated as a first-order
linear dynamical system, which evolves according to the differential equation:

dh

dt
= αh ; α < 0 (2.1)

where h represents the water level in GI and α is the decay constant– a measure of
how fast the water level inside a GI recedes following a storm. In this formulation,
this decay constant is directly proportional to drawdown rate and provides a single
parameter that can be compared between sites. A relatively larger magnitude α

corresponds to a faster rate of drawdown, while a smaller magnitude α corresponds
to more slowly changing water levels. More relevant to cross comparisons between
sites, however, is that α embeds both temporal and magnitude information in one
parameter. In other words, two sites could have similar bulk performance metrics,
such as average volume capture over 24 hours, but exhibit vastly different drawdown
curves. As such, studying the decay constant α allows us to compare sites while
taking advantage of the temporal granularity of our sensor data.
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Figure 2.2: (Top row) Time series water level measurement from a GI overlaid with
nearby publicly-available precipitation data. The orange boxes indicate distinct storm
events automatically detected by a peak finding algorithm. The decay constant α is
fit for three distinct storms in the same GI. (rows 2–4, left) To find α, we fit a line
for the relationship between water level (x-axis) and the change in water level (y-
axis). (rows 2–4, right) The found α’s are then plotted against the actual water levels
experienced from the three distinct storms. The R2 value for each fit is also provided.
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Linear regression is used to fit the drawdown model to the water level sensor data
of each storm. To fit the data to Eqn. 2.1, we find the fit that best captures the
relationship between the water level and its first derivative [h(t), dh

dt
] (Figure 2.2, left

col.). The slope of this line is the decay constant, α. This method selects the most
dominant rate of decay in the data. The fit of the model is evaluated using two
metrics: the coefficient of determination (R2) and root mean squared error (RMSE).
To illustrate the methodology, the fit of the drawdown model to the sensor data for
three distinct storms is shown in Figure 2.2.

Since we calculate α for every storm, drawdown dynamics of each site can be
compared on a storm-by-storm basis, or the set of α’s can be combined into a single
value for a given site. A single value of α can be thought of as a regression in
[h(t), dh

dt
] feature space across all storms. This allows us to model the expected water

level drawdown curve for a future storm. The resulting model could be used to inform
estimates on how long a GI would take to drain given an initial water level of h(0)
m, for example. A parameterized decay model can also be used to simulate the GI’s
behavior as part of a broader hydrologic simulator (e.g., US EPA SWMM [75]).

2.2.2.1 Implementation

An automated process is developed to identify individual storms in the sensor data.
This methodology requires water level time data, in this case provided by our sensors.
Storm events are automatically identified by marking local minima and maxima using
the find_peaks() function of Python Scipy Signal library [102]. To find the maxima
we pass the water level time series to the function, which returns a list of indices
corresponding to peaks (local maxima). To find the minima, we pass the negative of
the water level time series, which then returns a list of indices for local minima. We
use two of the function’s optional parameters to refine which points qualify as "peaks":
prominence (p) and distance. Prominence is a measure of how high a local maxima
stands out in comparison to its neighboring local minima. The prominence parameter
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Figure 2.3: Map of the 14 GI sites selected for sensors in Detroit.

was adjusted for each site such that the selected peaks corresponded reasonably well
to local rainfall measurements and captured a meaningful segment of water level
drawdown for each storm. We set the distance parameter to 3 hours, meaning adjacent
local minima/maxima must be at least 3 hours apart to be selected. An example of the
resultant automated storm segmentation is provided in Figure 2.2, top row. While
rainfall data are not required for the method, they can nonetheless be used as a
secondary check, by visually lining up storms detected in the water levels with those
measured by nearby rain gages.

Once the storms were isolated, the drawdown model is fit to the data using the
poly_fit() function of Python’s Numpy library [103]. The function uses least squares
to fit a polynomial to the provided data. We pass [h(t), dh

dt
] to the function with the

degree set to one. The function returns the α that minimizes the squared error.
Figure 2.2 (rows 2–4) show these fits along with the resultant drawdown model for
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three storms measured at the same site. Taken out of the differential form, the
drawdown model follows x = Ceαt+b, where C and b are scaling and offset parameters
that are adjusted to fit the magnitude of the storm. The coefficient of determination
(R2) and root mean squared error (RMSE) are calculated for each fit using Python’s
Scikit-learn library [104].

2.2.3 Case Study

We selected Detroit, Michigan, US for the GI monitoring network (latitude 42°19’53”,
longitude −83°2’44”). Detroit has a unique opportunity for extensive GI installations
because approximately 103 km2 (28%) of the city is classified as vacant land [105].
The city is located at the outlet of three major watersheds (i.e., Rouge River, Clinton
River, Lake St. Clair) where flows eventually discharge into either Lake St. Clair
or the Detroit River. Due to Detroit’s location in the floodplain, most of its soil
is poorly drained clay and silt [106]. Detroit also has a shallow groundwater table.
Teimoori et al. [107] found that the modeled depth to groundwater in Detroit ranged
from approximately 1–3 meters below the ground surface. Detroit’s climate follows
a four-season pattern, with average temperatures ranging from −7.11°C to 28.7°C.
Detroit averages 87 cm and 137 days of precipitation per year [108]. Precipitation is
dispersed relatively evenly throughout the year as rain and snow, but heavier amounts
occur in spring and winter [106].

Detroit has a combined sewer system for managing stormwater and wastewater
which flows into the second largest wastewater plant in the world [106]. During ex-
treme rainfall events in 2021, the sewer conveyance and wastewater plant’s treatment
capacity was exceeded on multiple occasions, resulting in billions of gallons of raw
sewage being directly discharged into Detroit waterways [109]. In addition, residential
basements were flooded with sewage-laden runoff [109]. The need to mitigate flooding
and sewer overflows has driven the City of Detroit and organizations like the Detroit
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Sierra Club to prioritize GI installations [95].
In partnership with the Detroit Sierra Club, a non-profit organization, 14 GI sites

were selected for deployment in summer 2021 across 155 km2 of Detroit to monitor GI
performance (Figure 2.3). Since 2015, the Detroit Sierra Club has been working with
community partners and Detroit residents to build GI, primarily small residential
rain gardens. GI were selected that varied in terms of age, size, and surrounding land
use type. Twelve sites were rain gardens designed and built by Detroit Sierra Club
and their partners, and two were engineered and commercially built bioretention cells.
The design and site data for the GI were provided by Detroit Sierra Club (Figure A.4).
Moving forward, each site is identified by an alpha numeric code (e.g., S1 for site 1).

2.2.4 Correlation Analysis

Once the decay constants were extracted from the Detroit sensor network, a corre-
lation analysis was conducted to determine which design and physiographic features
explain GI drawdown, as quantified by the decay constant α. Design features included
the GI’s location, surface area, drainage area, storage volume, soil media depth, age,
and drainage area to surface area ratio (DA/SA ratio). The DA/SA ratio was calcu-
lated by dividing the drainage area by the surface area. The physiographic features
for each GI were extracted from public GIS datasets of percent imperviousness, land
use type, elevation, slope, native soil type (i.e., hydrologic soil group), and depth
to groundwater. Appendix B provides detailed steps on how the GIS datasets were
downloaded, processed, and the features were extracted for each GI.

The datasets investigated included both non-normal continuous (e.g., surface area,
elevation) and ordinal (e.g., land use type, hydrologic soil group) variables. To handle
both types of variables, Spearman’s rank correlation coefficient was selected for the
correlation analysis [110]. Spearman’s rank correlation coefficient is a nonparametric
measure of the strength and direction of the monotonic relationship between two
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ranked variables [111].
Spearman’s rank correlation coefficients were computed using the corr() function

of Python’s Pandas library [112]. A dataframe of the mean decay constants, physio-
graphic features, and design features for the GI monitoring network was passed to the
function. The function requires a correlation method, which was set to ’spearman’.
Readers are directed to a Zenodo web portal to freely obtain the data and code
referenced in this paper [113].

2.3 Results

2.3.1 Sensor Network Performance

Deployment of the GI monitoring network began mid-June 2021 and 14 operational
sensors were deployed by early July 2021 (installation dates provided in Table A.1).
The measurement period consists of data collected between June 15, 2021, and
September 1, 2021. During the measurement period, there were only two instances of
prolonged data loss— S8 and S12 had a two-hour and 24-hour data gap, respectively.
These losses did not impact the measurement of storm response at either site. Sensor
drift was not an issue, with an average drift of < 2.5 cm. There was one maintenance
trip on August 11th to swap S12’s sensor because it indicated the GI was empty
during periods of rain (Table A.1).

2.3.2 GI Drawdown Analysis

The measurement period coincided with Detroit’s 7th wettest summer on record,
which included several historic rain events: 15.2 cm of rain on June 25th, 5.6 cm on
July 16th, and 6.9 cm on August 12th [114]. During the measurement period, a total
of 122 storms were identified across the network (orange boxes in Figure 2.4 (left)).
Of the 122 storms, 15 storms were excluded as outliers from the analysis due to poor

28



Figure 2.4: (left) Water level (m) measured across all sites on the left y-axis with
rainfall (cm) on the right y-axis. Storm events are highlighted by the orange boxes.
Prominence (p), the minimum increase in water level needed for a storm event to be
considered distinct, is labeled for each site. (right) A boxplot showing the variance
in each GI’s decay constants measured for all highlighted storms.
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fit of the drawdown model (negative R2). A mean of 7.4 storm events were analyzed
for each site with the number of distinct storm events varying widely per site: 21 for
S11 versus 1 for S8. The variation in the number of storms captured by site is due to
both the installation date (Table A.1) and the spatial variation in rainfall [115].

Site No. Storms α RMSE R2

Analyzed (mean) (mean) (mean)
S1 11/11 −0.040 5.159 0.834
S2 3/3 −0.011 6.306 0.875
S3 4/4 −0.044 4.776 0.885
S4 9/12 −0.305 9.109 0.524
S5 9/9 −0.146 4.611 0.727
S6 5/6 −0.024 3.420 0.916
S7 9/9 −0.069 6.088 0.802
S8 1/3 −0.397 2.998 0.922
S9 9/12 −0.102 15.964 0.606
S10 11/12 −0.119 13.744 0.697
S11 21/24 −0.200 12.209 0.738
S12 3/3 −0.047 4.531 0.806
S13 6/6 −0.072 3.777 0.921
S14 7/8 −0.021 6.630 0.637

Table 2.1: The results from fitting the drawdown model to the storms captured by
the GI monitoring network. We report the mean decay constant α for each GI and
how well the decay constant α fit the sensor data as measured by RMSE and R2.

The mean fit of the drawdown model to the sensor data was R2 = 0.746 ±0.111
and RMSE = 8.579 ± 4.168. The fitted decay constant α varied by storm and by
GI (Figure 2.4 (right)). Across all storms and sites, the mean decay constant α and
standard deviation was −0.119 ± 0.124 hr−1. The average decay constant per site
varied by two orders of magnitude, from −0.011 hr−1 (S2) to −0.397 hr−1 (S8). The
number of storms identified versus analyzed, as well as the mean decay constant α,
RMSE, and R2 for each GI is provided in Table 2.1.
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The decay constant α corresponds with the GI’s drainage dynamics. During the
measurement period, most GI completely drained between storm events (S4, S8–S11),
providing full storage for the next storm event (Figure 2.4 (left)). S2, S6, and S12
always had some water present in their soil media, limiting the amount of storage
for each subsequent storm. During the measurement period, most sites experienced
ponding (water level > 1 m). However, ponding did not exceed 12 hours for most
sites (11 of 14 sites). S6, S11, and S9 experienced extended periods of ponding
during the June 25th storm for 22, 29, and 21 hours, respectively. Sites S6 and S11
also experienced extended ponding for approximately 24 hours during the July 16th
storm, and S11 ponded for about 16 hours during the August 12th storm.

2.3.3 Correlation Analysis

Spearman’s rank correlation coefficients between the GI design features and the de-
cay constants ranged from 0.01 (site age) to 0.34 (DA/SA ratio) (Figure 2.5). The
decay constants were most correlated with the DA/SA ratio (0.34) and drainage area
(0.23). Drainage area and DA/SA ratio were highly correlated with each other (0.92);
therefore, we focus analysis on the DA/SA ratio. The sites with the largest DA/SA
ratios had the smallest magnitude decay constants (i.e., drained the slowest). Soil
media depth, storage volume, surface area, and age had limited impact on the decay
constants (0.16, −0.09, 0.06, and 0.01, respectively).

The correlation coefficients between the physiographic features and the decay con-
stants ranged from −0.02 (slope) to −0.64 (groundwater depth) (Figure 2.5). The de-
cay constants were most correlated with groundwater depth (−0.64), latitude (−0.56),
imperviousness (0.43), and longitude (0.37). The closer groundwater was to the sur-
face, the slower the site drained (i.e., the smaller the decay constant’s magnitude).
Groundwater is also highly correlated with latitude (0.98), which explains the correla-
tion between latitude and the decay constants. Longitude, however, is not correlated
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Figure 2.5: Spearman’s rank order correlation coefficients for the decay constants,
design features, and physiographic features.

with groundwater but still has a positive correlation with the decay constants. The
decay constants’ magnitude decreases for sites further away from the western border
towards central Detroit, where the smallest magnitude decay constants are, increas-
ing again towards the eastern border. In terms of imperviousness, the greater the
imperviousness, the smaller the decay constant’s magnitude. This was not always the
case, however. For example, S1 and S12 are 53 and 52% impervious and their mean
α’s are −0.040 and −0.047 hr−1, respectively, while S9 is 92% imperviousness with
a mean α of −0.102 hr−1. The remaining physiographic features are either highly
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correlated with the explanatory variables discussed above (elevation and longitude:
−0.73; land use type and imperviousness: 0.80) or are minimally correlated with the
decay constants (hydrologic soil group: 0.10; slope: −0.02).

The relationship between the decay constant and its most correlated design feature,
DA/SA ratio, and physiographic feature, groundwater depth, was explored further.
We show groundwater depth versus DA/SA ratio for estimated decay constants in
Figure 2.6a. Given that decay constants were retrieved for individual sites and in-
dividual storms, the figure reflects averaged surface fit across all the observations.
The shape of Figure 2.6a is bounded by the observations made by the sensor network
and was not extrapolated beyond those bounds. The colored contours indicate the
expected decay constant based on the combination of groundwater depth and DA/SA
ratio. The red contours indicate slower drawdown while the blue/grey contours in-
dicate faster drawdown. To frame the interpretation of the figure, the corresponding
drawdown rates are also color coded in (Figure 2.6b).

In our study, decay constants with magnitudes ≥ −0.20 hr−1 result in the drainage
of one meter of water in under 24 hours (Figure 2.6b). Figure 2.6a shows there
are various combinations of groundwater depth and DA/SA ratio that achieve this
performance metric. On one end of the spectrum, groundwater can be as shallow
as 7.5 m if it has a small DA/SA ratio of 1–2. On the other end of the spectrum,
groundwater must be at least 10 m deep with a DA/SA ratio no larger than 8.
Furthermore, if the groundwater table is < 7.5 m, a slower drawdown rate is observed
regardless of the DA/SA ratio (bottom edge of Figure 2.6a). Similarly, when the
DA/SA ratio is > 8, the drawdown rate is slow regardless of the groundwater depth
(right edge Figure 2.6a).
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Figure 2.6: (a) A surface fit of the calculated decay constants (hr−1) based on ground-
water depth (m) (y-axis) and DA/SA ratio (x-axis). (b) The drawdown model curves
for the range of decay constants found in (a). Blue indicates faster drawdown rates
while red indicates slower rates.

2.4 Discussion

2.4.1 GI Drawdown Dynamics

The data toolchain introduced in this paper provides an automated way to analyze
high resolution hydrologic data, such as water levels in GI. This is enabled by the
storm segmentation methodology, which automatically extracts and analyzes data
from individual storms. As sensor networks scale, manual data analysis will become
infeasible, demanding that we discover means by which to automatically extract rele-
vant data for analysis or training of machine learning algorithms becomes infeasible.
As demonstrated here, the approach automatically identified storm events and sub-
sequently analyzed them to train models for the decay constants. The application of
a peak-find algorithm to extract events from other types of data (flows, rainfall, soil
moisture, etc) should be explored in future studies.
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The water levels from the 14 sensors indicate the GI are generally performing as de-
signed, despite record rainfall. The GI met and exceeded the requirement specified by
Detroit’s GI design manual that ponding time should not exceed 24 hours [44]. Below
the ground surface, the performance varied by site and storm. To completely drain 1
m of water in 24 hours a GI must have a decay constant ≥ −0.2 hr−1 (Figure 2.6b).
Only 2 of the 14 gardens had an average decay constant above this threshold. There-
fore, most sites have restricted storage capacity when they experience consecutive
storms.

Fitting a drawdown model for each storm and each site resulted in variability
across decay constant estimates. Statistical uncertainty is inherent in a study of this
scale, and may manifest across measurements, deployment consistency, and model
assumptions. Some variability in the decay constants was likely due in part to the
spatial and temporal variation in rainfall [115]. The decay constants may also have
been impacted by changes in GI conditions such as the swelling and shrinking of the
soil media following wet and dry periods, and the creation of preferential flow paths
after extended dry periods [38].

Naturally, a highly granular and continuous sensor dataset can be expected to
reveal dynamics and nonlinearities that are not apparent in single measurements or
short-term experimental campaigns. We contend that the use of the decay constant
poses a first step in the analysis of this large dataset and provides an initial balance
by enabling a metric for cross-site comparisons without compressing large amounts of
sensor data into an over simplistic summary that ignores dynamics entirely. Future
studies could explore the nuanced variabilities dynamics more explicitly.

Cross-site comparisons of water level dynamics revealed patterns driven by site
design and physiographic features. It is difficult to directly attribute the variation
seen between sites to the variations in these features due to the complexity of the
physical processes that govern GI drainage dynamics. The correlation analysis found
broadly, however, that GI with DA/SA ratios smaller than 8 have faster drawdown
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rates. Therefore, when designing GI, the size of the garden in relation to the size
of the drainage area is critically important. These results align with Davis [116],
which found that a large cell media volume to drainage area ratio and drainage
configurations were the two most dominant factors that improved GI performance.

Across the broader landscape, GI drawdown dynamics were highly correlated with
two physiographic features: groundwater depth and longitude. Faster drawdown rates
were correlated with a deeper groundwater table and locations on the outskirts of De-
troit. This illustrates the importance of evaluating groundwater levels when planning
urban GI installations, especially since many urban areas have shallow groundwater
tables [117], including Detroit [107]. The correlation with longitude may be explained
by prolonged soil compaction from development in central Detroit [118].

Some physiographic features had low correlation with the decay constants. Detroit
is relatively flat, which may explain the low correlation with elevation and slope. The
low correlation between the decay constants and the hydrologic soil group of the
surrounding soil is more difficult to posit. Our physiographic input data were limited
to public datasets, whose accuracy is driven by factors outside of the control of this
study. The low spatial resolution of publicly available raster datasets may oversimplify
the physiographic features at a GI site. In the future, site surveys may provide better
data for analyzing these physiographic features interaction with the decay constants.

Our results have several implications for the future of stormwater management.
Considering the broader urban drainage landscape and the potential impact of phys-
iographic features on GI drawdown rates, measurements should become a core compo-
nent of how managers choose to invest in GI. For example, measuring the drawdown
rate, groundwater depth, and/or soil compaction at a site before installation could
reduce the risk of installing GI in locations that will have impeded drainage regardless
of how well they are engineered. Beyond single sites, an investment into an entire
measurement network may help support a more targeted and data-driven approach to
GI design, placement, and maintenance. The application of this methodology could
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result in empirical design guidance, such as an empirical “heatmap”, as shown in Fig-
ure 2.6a. Such illustrations could serve as a field-validated guide for managers who
want to push the performance of their infrastructure without focusing all of their
limited resources into one particular design or locale. Naturally, this would require
the collection and analysis of more data, but the increasing reliability of technology
and automation afforded by some of the tools in this paper may reduce the barrier
to adoption.

One potential limitation of this work is the duration of our study period. Over
longer periods of time we would expect to see fluctuations in the decay constants
due to seasonal conditions (e.g., the rate of evapotranspiration falling during colder
months [119]) and due to longer-term trends (e.g., deterioration of the GI’s drainage
capacity due to clogging [31]). In future work, how the decay constants vary over
time should be investigated to determine these seasonal and long-term changes. The
reliability of the sensors should enable long-term data collection with reduced mea-
surement overhead.

2.4.2 Beyond Site-Level Drawdown Dynamics

This study used the high temporal and spatial resolution dataset produced by a
sensor network to provide a first order analysis of the variability in GI drawdown
dynamics, but the sensor network could also be used for a variety of other purposes.
Large GI sensor networks have potential for use in long-term GI monitoring. These
data can used to develop a deeper understanding of how GI installations fit into the
larger urban drainage network, but this may also require the application of expanded
tools for data analysis. Given the accessibility to and availability of modern Machine
Learning libraries, the data collected by these networks could be used to inform
predictive tools and interactive design guides. The sensor data can also be used
to iterate on site design or inform maintenance schedules. Measurements showing
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when drainage slows over time could indicate that the GI soil media is clogged and
should be replaced. A science-based method to validate such scenarios should be
investigated. These data may also be used for community education and engagement
by communicating to residents and community groups how and where GI may be
expected to work well.

2.5 Conclusion

This study introduces a wireless, real-time sensor for measuring GI drawdown. Net-
worked together across Detroit, these sensors provide high temporal and spatial res-
olution data for analyzing city-scale urban drainage conditions. To isolate individual
storms in this large dataset, we designed an automated storm segmentation method-
ology based on peak finding. To our knowledge, this study is the first to monitor
GI at this scale and combine it with a data-driven workflow to reveal explanatory
features of drawdown dynamics. In Detroit, the groundwater table, imperviousness,
longitude, and DA/SA ratio are the most important features impacting drawdown
rates. To confirm this finding for other regions, high resolution and long-term GI
monitoring is necessary.
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CHAPTER 3

Sensor Placement for Urban Drainage
Networks using Gaussian Processes

Abstract
Low-cost sensors have enabled monitoring of urban drainage networks at unprece-
dented temporal and spatial scales. The next frontier is determining how many sen-
sors are needed and where to place them. This study presents a comprehensive and
iterative methodology for placing sensors in urban drainage networks using sensor
data, publicly available GIS datasets, and Gaussian Processes (GP). The proposed
methodology can be used for any urban drainage network sensor or spatial parameter
of interest, has guarantees of optimality, and is easy and efficient to use. The proposed
methodology is evaluated on a real-world green infrastructure (GI) sensor network in
Detroit (Michigan, US). Using sensor data and GIS datasets, a GP model is trained
to estimate city-scale GI drawdown rates. The model’s uncertainty is then input into
a mutual information-based greedy algorithm to find the optimal sensor locations
in Detroit. The study’s results can be used for future GI development and GI sen-
sor placement in Detroit. Beyond Detroit, this study provides a roadmap for other
communities who want to find optimal sensor placements for their urban drainage
networks. The proposed methodology will improve our models and management of
our urban drainage networks.
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3.1 Introduction

Over the past five years, real-time infrastructure monitoring has become a standard
practice as Internet of Things (IoT) technologies have matured, enabling low-cost,
high-resolution sensing [57, 20, 120]. Internet-connected sensors are now measuring
a wide variety of stormwater parameters, such as water levels [18], soil moisture [92],
and pollutants [121]. With these advancements, the question of where to place sensors
becomes critically important. Several studies have investigated sensor placement for
urban drainage networks [62–69], however, they do not offer a methodology that
is flexible enough to be applied to any sensor and/or spatial parameter of interest.
Therefore, this study seeks to answer the following question: where should sensors be
placed in urban drainage networks to characterize the parameter of interest using the
minimum number of sites?

To that end, we propose a sensor placement methodology for urban drainage net-
works using Gaussian Processes (GPs). The methodology consists of training a GP
regression model using a sensor network and publicly available GIS datasets. The
GP model’s uncertainty is then used along with a mutual information-based greedy
algorithm to optimize sensor placement. To our knowledge, this is the first from-
the-ground-up study that seeks to fuse sensors with regional datasets and machine
learning to optimally place sensors in an urban drainage network.

3.1.1 Motivating example

The city of Detroit (Michigan, US) struggles to manage its stormwater for a vari-
ety of reasons. Located at the outlet of three major watersheds, Detroit receives
significant volumes of stormwater. The stormwater is hard to infiltrate because the
city has poorly drained clay and silt soils [106], and has a shallow groundwater table
[107]. These factors are compounded by increasing precipitation, aging infrastructure,
and rising surface water levels [122]. In response, Detroit has been installing green
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infrastructure (GI) [123, 122], a nature-based stormwater practice [23].
To investigate Detroit’s GI, wireless sensors were deployed in 14 of 144 rain gar-

dens and bioretention cells in summer 2021 (Figure 3.1b) [124]. The sensor’s form
factor is that of a water well, consisting of a 1.5 m long slotted PVC pipe with the
sensing device (pressure transducer) at one end and additional hardware components
(microcontroller, cellular modem, lithium-ion battery, solar panel) at the other end
(Figure 3.1a). The sensor measures real-time water level fluctuations inside GI with
the goal of better understanding how these sites capture and drain water.

The water level measurements can be used to compute the GI’s drawdown rate.
Drawdown rate is the speed at which water is captured by evapotranspiration and
exfiltration into native soils [37]. As a proxy for GI performance, drawdown rate is a
means to understand the role of GI in the broader drainage landscape. A drawdown
model was parameterized for each site using the water level dataset [124]. The model
approximates water level as a first-order linear dynamical system, which evolves ac-
cording to the differential equation:

dh

dt
= αh , α < 0 (3.1)

where h represents the water level in the GI and the decay constant α is a measure
of how fast the water level recedes. The decay constant is directly proportional to
drawdown rate: the larger α’s magnitude, the faster the water recedes. To compare
drawdown across Detroit, α was calculated for every storm event captured by the GI
sensor network during the measurement period (June 15 – September 1, 2021) [124].

These decay constants were then used to investigate which design and physio-
graphic features improve GI drawdown. To do this, a Spearman’s rank correlation
analysis was conducted. The features investigated included publicly available physio-
graphic GIS datasets and GI design data. From this correlation analysis, five features
were correlated with the decay constant but not collinear: depth to groundwater (-
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0.64), imperviousness (0.43), longitude (0.37), drainage area to surface area (DA/SA)
ratio (0.34), and soil media depth (0.16) [124].

To gain a deeper understanding of how GI fits into Detroit’s larger urban drainage
network, we can use these data and results to analyze city-scale drawdown patterns.
The GI sensors, however, may not be optimally placed to investigate these patterns.
Therefore, we ask the following question: how many sensors are needed and where
should they be placed to characterize drawdown, as quantified by α, across Detroit?

3.2 Methods

We propose a methodology for sensor placement in urban drainage networks that is
flexible, has guarantees of optimality, and is easy and efficient to use. In Section 3.2.1,
we introduce GP regression for creating city-scale predictive models. Aside from the
predictions, GPs also output the uncertainty associated with those predictions. In
Section 3.2.2, we explain how this uncertainty along with a mutual information-based
greedy algorithm can be used to find optimal sensor placements. The methodology is
designed to be iterative, which is described in Section 3.2.3. Finally, in Section 3.2.4,
we describe how we will evaluate the proposed sensor placement methodology using
the GI sensor network introduced in Section 3.1.1.

3.2.1 Gaussian Process Regression Model

GP regression is a nonparametric and probabilistic method for modeling nonlinear
relationships [125], like those inherent in urban drainage networks [126, 127]. A GP
regression model assumes the standard regression form [125]:

y = f(x) + ϵ (3.2)
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Figure 3.1: (a) The sensor and its components (left) installed in a Detroit rain garden
(top right) (modified from Mason et al. [124]). The bottom right plot shows the
sensor’s data output, water level, and the drawdown model (decay constant α =
−0.012) for one storm. (b) Map of the sensor locations (blue squares) selected from
all of the rain gardens and bioretention cells (orange circles) in Detroit.

43



where the measured parameter (y) is a function of the true parameter (f(x)) plus
Gaussian noise (ϵ ∼ N (µn, σn)).

Formally, a GP is a collection of Gaussian random variables, where any finite
subset are also jointly Gaussian [125]:

P (f(xn+1)|f(x1)f(x2)...f(xN)) ∼ N (µ,K). (3.3)

In Eq. 3.3, N is the number of random variables, µ is their mean, and K is their
covariance. For a sensor network, this means the joint distribution over a sensor-
measured parameter at a finite number of sensor locations is also Gaussian. GPs use
the jointly Gaussian property to estimate a measurement at an unmeasured location
(xN+1) using the prior (µ1:N , K1:N). Given a set of observed measurements (DN :

{x1:N ,y1:N}), the mean function predicts the most probable value of y at xN+1, and
the the covariance function, also known as the kernel, estimates the uncertainty of
that prediction. In this way, a GP is completely described by it’s mean and covariance
functions (Eq. 3.4).

f(x|DN) ∼ GP (µ(x|DN),K(x|DN)). (3.4)

For this study, we selected the squared exponential (SE) kernel (Eq. 3.5). The
squared exponential kernel is commonly used in GP literature to model non-linear
relationships [128], like those inherent in urban drainage networks [126, 127].

KSE(x, x
′) = σ2exp(− 1

2l2
(x− x′)2) + δxx′σ2

n (3.5)

The kernel is controlled by its hyperparameters θ : {σ2, l, σ2
n}. The lengthscale (l)

determines the smoothness of the function, the output variance (σ2) determines the
average distance the function is away from its mean, and the noise variance (σ2

n) is
only applied when x = x′. The hyperparameters that best fit the observed data are
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found by maximizing the log marginal likelihood (Eq. 3.6) [125], where KN×N is the
kernel matrix and IN×N is the identity matrix.

argmax
θ

log p(y|X, θ)

where log p(y|X, θ) = −1

2
yTK−1

y y − 1

2
log |Ky| −

N

2
log 2π,

Ky = KN×N + σ2
nIN×N

(3.6)

3.2.2 Sensor Placement

The goal is to place sensors which are most informative with respect to the entire
measurement space V . A common sensor placement methodology is to add sensors
where uncertainty, or entropy (H), is highest [65, 129, 130]. Eq. 3.7 quantifies this
uncertainty, called conditional differential entropy, for the unobserved locations V\A,
referred to as Ā for simplicity of notation, after placing sensors at locations A.

H(XĀ|XA) = −
∫

p(xĀ,xA) log p(xĀ|xA)dxĀdxA (3.7)

The conditional differential entropy of a Gaussian random variable XĀ, conditioned
on a set of variables XA, is a monotonic function of its variance:

H(XĀ|XA) =
1

2
log(2πeσ2

XĀ|XA
)

=
1

2
log(2πe(σ2

XĀ
− ΣXĀXAΣ

−1
XĀXĀ

ΣT
XĀXA

))
(3.8)

where ΣXĀXA is a covariance vector. Entropy, however, has a significant drawback,
which is that the selected sensors are those most uncertain about each other’s mea-
surements. Generally, this means the sensors are placed far away from each other,
which tends to be along the borders of the area of interest [131]. This phenomenon
results in "wasted" sensing space [132].
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An alternative to entropy is mutual information [133]. Mutual information ex-
pands the concept of entropy to a set of random variables, measuring their mutual
dependence. Specifically, it quantifies the amount of information obtained about one
random variable by observing the others [134].

We use mutual information as our optimization criterion for sensor placement. We
search for the subset of sensor locations that most significantly reduces the uncertainty
about the estimates in the rest of the space. Specifically, we want to find the set of k
sensors that give good predictions at all unmeasured locations, Ā, after placing sensors
at locations A. We do this by maximizing mutual information (I(XA;XĀ))[132]:

A∗ = argmaxA⊆V:|A|=kI(XA;XĀ)

= argmaxA⊆V:|A|=kH(XĀ)−H(XĀ|XA)
(3.9)

Solving this maximization problem directly, however, is NP hard. Fortunately, this
problem can be solved near-optimally using a greedy algorithm (Figure 3.2 [132]). In
each iteration, the algorithm selects the sensor that provides the maximum increase
in mutual information (δy) and adds it to the set A. The algorithm sequentially adds
sensors until |A| = k or the marginal gain becomes negative. The greedy algorithm
gives a (1−1/e) approximation of the optimal sensor placement [132]. Unfortunately,
this greedy algorithm is computationally intense for large n where n = |V|. A lazy
implementation of the greedy algorithm reduces the computational complexity from
O(kn4) to O(kn3) [132]. It is this greedy lazy algorithm (Figure C.1) that we use to
solve Eq. 3.9.

3.2.3 Iterative Process

The sensor placement methodology we propose is an iterative process. An initial
network of sensors is deployed. The data collected is used to train a GP model.
The model and the mutual information-based greedy algorithm are used to find the
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Figure 3.2: An approximation algorithm for maximizing mutual information (mod-
ified from [132]). The inputs are the covariance matrix K, the number sensors to
select k, and the set of locations to choose from V . The set of selected sensors A is
the output. For each possible sensor location y, the algorithm calculates the marginal
mutual information gain δy, the conditional variance σ2

y|A = σ2
y − ΣyAΣ

−1
AAΣ

T
yA, and

the conditional variance σ2
y|Ā = σ2

y − ΣyĀΣ
−1
ĀĀΣ

T
yĀ. Note ΣyA is a covariance vector

with one entry for each location in A.

optimal sensor locations. These locations are then used to augment the network,
which includes removing redundant sensors from the original network and adding
sensors at the newly identified locations. Once data is obtained from the augmented
network, the GP model is updated and the process is repeated.

3.2.4 Evaluation

3.2.4.1 GP model

A GP regression model was trained to estimate drawdown dynamics, as quantified
by α, across Detroit. The GP’s input features were identified by a Spearman’s rank
correlation analysis as described in Section 3.1.1. The input features included depth
to groundwater, imperviousness, longitude, DA/SA ratio, and soil media depth. Since
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soil media depth and DA/SA ratio are design features, they had to be estimated. To
do this, we used the average soil media depth (0.3 m) and average DA/SA ratio (4.0)
from the GI sensor network. We denote these input features as XS, a 107× 5 matrix.
The GP’s output y, is the decay constant α where |y| = 107.

The GP was implemented using GPy, a Guassian Process framework for Python
[135]. The ‘tnc’ solver was used to optimize the GP’s hyperparameters. The GP
model provides the option to add optimization restarts to help ensure an optimal
solution is found. To do this, GPy randomly restarts the model optimization and sets
the model to the best seen solution. The optimize_restarts parameter was set to
ten. The goodness of fit was analyzed using the log marginal likelihood, which was
computed using GPy.

Once the GP model was trained, it was used to estimate drawdown dynamics
across Detroit. We denote these new input features for Detroit as XD, a 14701 × 5

matrix. XS and XD are summarized in Table C.1 and Table C.2.
We also investigated the correlation between each sensor and the rest of the pre-

diction space. To do this, the GPog model’s covariance matrix was converted to a
correlation matrix. Then the column associated with each sensor was displayed on a
map to visualize the correlations.

3.2.4.2 Sensor placement

We evaluated sensor placement for two cases. We first determined which sensors
were redundant and should be removed. We then investigated where future sensors
should be installed considering all possible GI in Detroit. To find the optimal loca-
tions, we used MATLAB’s (ver. R2022b) Submodular Function Optimization (SFO)
toolbox [136]. The algorithm, sfo_greedy_lazy(), required two inputs: sigma, the
covariance matrix; and V_sigma = 1:size(sigma,1), the ground set of possible sen-
sor locations. The algorithm’s output includes A, the set of selected locations, and
scores, the mutual information gained by each location.
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To determine the redundant sensors in the initial network, the covariance matrix
(K14×14) was computed by passing the GI sensor network input features (XS) into
the squared exponential kernel. The covariance matrix and the ground set (|VS| =
14) were then input into the greedy lazy algorithm. The algorithm-selected sensors
(|AS| = k) were used to train a new GP (GPoptk). The log marginal likelihood of
GPoptk was compared to the original GP (GPog).

GPoptk was also compared to GPs created from randomly-selected sensors. To do
this, all of the possible sensor combinations were computed:

(
14
1

)
,
(
14
2

)
,...,

(
14
k

)
. From

each of these sets, 250 combinations were randomly chosen and used as training sets
for 250 new GPs. Root mean squared error (RMSE) was used to compare GPoptk and
the randomly-selected GP models (GPrandk). To do this, each model was tested on
the remaining sensors that were not used for training. RMSE was calculated using
Python’s Scikit-learn library [104].

To determine where to place future sensors, we combined the initial GI sensor
network dataset with two new GI datasets. The Detroit Sierra Club provided data
for their remaining unmeasured rain gardens and bioretention cells in Detroit. Ad-
ditional rain gardens and bioretention cells were obtained online [137]. The input
features XD were extrapolated from publicly available GIS datasets following the
methodology outlined in Mason et al. [124]. The input features XD were passed
to the squared exponential kernel to obtain the covariance matrix. The covariance
matrix (K144×144) and the ground set |VD| = 144 were then passed to the greedy lazy
algorithm. The algorithm’s optimal sensor locations (AD) are presented but cannot
be evaluated because we do not yet have sensor-measured decay constants for most
of these locations.

Readers are directed to a Zenodo web portal to freely obtain the data and code
reference in this paper [138].
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3.3 Results and Discussion

3.3.1 Gaussian Process Regression Model

The negative log likelihood of the GPog model was −88.58. The model’s optimal
hyperparameters are provided in Table 3.1. The smaller a feature’s lengthscale, the
more sensitive the model is to that feature. The GPog model was most sensitive to
groundwater depth and DA/SA ratio, and least sensitive to imperviousness.

Hyperparameter GPog GPopt

lgroundwater depth 11.76 12.30
lDA/SA ratio 14.74 273.63
llongitude 777.01 402.79
lsoil media depth 3120 960.14
limperviousness 42,249 721,765
σ2 0.032 0.041
σ2
N 0.009 0.005

Table 3.1: The optimal hyperparameters for the GPog and the GPopt models.

Detroit’s mean predicted decay constant was −0.160 ± 0.083 hr−1. Figure 3.3
(left) maps the predicted mean decay constants across Detroit. The map shows
slower drainage in Central Detroit, along the eastern border, and a small portion of
the western border. Faster drainage occurs along the northern border and southwest-
ern tip. The large-scale trend of poor predicted drainage near the river and better
drainage towards the periphery of the city generally follows the groundwater depths
across Detroit (Figure B.3).

The mean variance across Detroit was −0.013 ± 0.002 hr−2. Figure 3.3 (right)
maps the variance associated with the mean decay constant predictions. The map
shows the areas of highest uncertainty are along the northern border and in central
Detroit. This result is expected since the GP is most sensitive to groundwater level
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Figure 3.3: Maps of the predicted mean decay constant α across Detroit (left) and
the uncertainty associated with those predictions (right) from the GPog model.

and the shallowest and deepest groundwater levels are located in central Detroit and
along the northern border, respectively (Figure B.3). To reduce the uncertainty of of
our GP model, more sensor data is needed for these regions.

Overall, the GP methodology worked well for modeling GI drawdown because
spatial phenomena, like drawdown, are well described by GPs [132]. The methodology
was also easy and efficient to use. The GP was computationally fast to train (9.9
sec) and to estimate drawdown across Detroit (0.1 sec) using a 2018 MacBook Pro
(Processor: 2.2 Ghz 6-Core Intel Core i7; Memory: 16 GB 2400 MHz DDR4). The
input features were easily obtained online. These publicly available GIS datasets are
the most realistic option for building large-scale predictive models since surveying an
entire city is impractical. However, some site surveying may be necessary to check
these datasets because of their inherent errors and/or uncertainties.

The mapping tool introduced can aid engineers and city planners in scientifically
determining where future GI development should be prioritized. The predicted draw-
down map indicates where in the city faster drainage can be achieved and where
it is expected to be dampened by subpar site conditions. Comparing the locations
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of existing GI (Figure 3.1) with the map of predicted drawdown (Figure 3.3 (left)),
GI are generally absent from the fastest drawdown areas. Therefore, Detroit should
consider focusing future GI installations along the northern border and southwestern
tip to maximize drawdown performance. This methodology offers a novel method for
data-driven decision making and strategic placement of GI development.

While we focused on GI drawdown, GPs are transferable to other urban drainage
network sensors or parameters of interest. For example, if the existing datasets were
supplemented with rain data, a GP model could be developed to estimate volume
reduction. Aside from estimating a single output, GPs can also estimate multiple
outputs. If we have several outputs we would like to estimate, we would add an
additional covariance function (kernel) that specifies the covariance between the out-
puts. Combining this output kernel with our input kernel, we would then use this
new input-output kernel to estimates our outputs. For example, we could create a
predictive model of both drawdown and GI stormwater treatment if a water quality
sensor was added to the GI sensor.

Figure 3.4: The correlation between S1 (left), S4 (center), and S13 (right) with the
other sensors and the entire prediction space.

3.3.2 Sensor Placement

Figure 3.4 shows the correlation between three sensors (S1, S4, S13) and the rest of
the prediction space (other sensors provided in Figure C.2). The correlation map for
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each sensor is unique. S1 and S13 are both correlated with most of Detroit except
the northern border. S13, however, is less correlated overall than S1 and has an
uncorrelated region in central Detroit. S4 is also uncorrelated with central Detroit
but highly correlated with the northern border. These results show that sensors
are not necessarily most correlated with their nearest neighbors, underscoring the
challenge of sensor placement, and why a sensor placement strategy is critical.

The lazy greedy algorithm found the optimal number of sensors needed to predict
drawdown across Detroit was k = 6. In order of selection, the algorithm-selected
sensors (AS) were S14, S12, S10, S9, S4, and S6. Four of these sensors (S9, S10,
S12, S14) are clustered together on the eastern border, one sensor is located near
the northern border (S4), and the final sensor is located in central Detroit (S6).
Figure 3.5 (row 1) shows the mutual information gained by each sensor. Adding
additional sensors after S6 resulted in a negative marginal gain.

The negative log likelihood of the GPopt6 model was −46.24, a slightly poorer fit
than GPopt. The hyperparameters of GPopt6 are provided in Table 3.1. Similar to
GPog, GPopt6 was most sensitive to groundwater depth and DA/SA ratio and least
sensitive to imperviousness.

Figure 3.5 (row 2) shows the new maps of predicted mean decay constants across
Detroit. The general trend in GPog is also found in GPopt6 and a similar range of
decay constants were predicted by both models. The minimum and maximum decay
constants were −0.280,−0.045 and −0.293,−0.021 hr−1 for GPog and GPopt6 , respec-
tively. The mean decay constant and standard deviation was −0.160 ± 0.083 and
−0.132 ± 0.082 hr−1 for GPog and GPopt6 , respectively. The GPopt6 model replicated
the ranges and patterns of GPog using fewer sensors. Therefore, the eight unselected
sensors (S1, S2, S3, S5, S7, S8, S11, and S13) can be removed from the network or
moved to other Detroit GI. These results suggest that sensor networks can be built
smaller without sacrificing its predictive power.

The uncertainty associated with the mean decay constant predictions are shown
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Figure 3.5: As k increases from k = 1 to k = 6, the mutual information increases for
both GPoptk and GPrandk (top row). The algorithm-selected sensors, however, outper-
form the randomly-selected sensors for every value of k. Maps of the predicted decay
constants (middle) and the uncertainty associated with those predictions (bottom)
from GPopt6 . The algorithm-selected sensors,AS, are plotted on top of the predicted
decay constants.
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in Figure 3.5 (row 3). The bottom half of Detroit as well as a thin band in northern
Detroit were the areas of highest uncertainty (colored blue). Those regions in the
GPog’s uncertainty map are teal/green, indicating higher levels of uncertainty (Fig-
ure 3.3 (right)). While the the northern border and central Detroit had the highest
uncertainty (colored yellow to red) in both models, GPopt6 was more certain in these
regions. Overall, GPopt6 was more accurate than GPog, with a mean variance and stan-
dard deviation of 0.008 ± 0.003 hr−2 and 0.013 ± 0.002, respectively. These results
illustrate that uncertainty can be reduced if the near-optimal sensor configuration is
used to create the predictive model.

Figure 3.5 (row 1) compares the mutual information gained from AS to those
randomly-selected (Arandk). For k = 1 to k = 6, the range of mutual information
gained (i.e., minimum, mean, maximum) is plotted for the randomly-selected loca-
tions. AS outperformed Arandk for every value of k. Similarly, Table 3.2 provides the
RMSE from the test set for GPoptk and GPrandk . While GPoptk ’s and GPrandk ’s mean
RMSE were similar for all values of k, GPoptk ’s RMSE was always lower than GPrandk ’s
maximum RMSE. These results demonstrate that GPoptk outperformed GPrandk for
all values of k, and the proposed methodology selects more optimal sensor locations
than a random methodology.

Sensors GPoptk RMSE GPrandk RMSE
(k) min average max
1 0.176 0.145 0.170 0.180
2 0.179 0.108 0.166 0.185
3 0.165 0.107 0.160 0.192
4 0.187 0.090 0.152 0.220
5 0.142 0.093 0.144 0.204
6 0.142 0.085 0.138 0.201

Table 3.2: For each value of k, the RMSE from the test set for GPoptk and the RMSE
range (i.e., minimum, average, and maximum) for GPrandk .
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Beyond the original network, the algorithm selected 60 of the 144 GI sites (AD)
for future sensor deployments (Figure 3.6 (left)). The locations are grouped in sets
of ten and color-coded by relative mutual information gain (Figure 3.6 (right)). The
locations that result in the greatest mutual information gain (dark blue), should be
installed first while those that result in minimal gain (red), should be installed last.
Significant mutual information gains can be obtained by the first 40 locations and
then the gains only marginally increase. The algorithm selected seven sensors from
the original GI sensor network (S12, S8, S3, S9, S13, S4, S7). Interestingly, only S12,
S9, and S4 were selected for both AS and AD.

Figure 3.6: The 60 locations selected by the algorithm, color-coded by priority (left).
The mutual information gain as k increases from k = 1 to k = 60, also color-coded
by priority. The first 40 locations result in significant increases in mutual information
and then the gains marginally increase.

To investigate why the algorithm selected different sensors from the original net-
work for AS and AD, we compared the normalized histograms of the input dataset,
XD, with the subset for the algorithm-selected locations, XAD

(Figure 3.7). The
histograms show the distributions of XAD

align with the distributions of XD. The
algorithm, therefore, selects locations so that these two distributions align. In this
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way, communities who do not have access to GPs could use the histogram method as
a "rule of thumb" to determine where to place sensors.

Figure 3.7: Normalized histogram of the GP features for all Detroit locations (blue)
and those of the algorithm-selected locations (orange).

AD could not be evaluated in the same way as AS because we did not have mea-
sured decay constants for most of these sites. Future work will evaluate these sites
after the next set of sensors are deployed. New sensors will result in new decay con-
stants which can then be used to retrain the GP model, improving it’s predictive
abilities. In this way, the proposed methodology is iterative: install sensors, train the
GP model, find optimal sensor placements, and repeat.

Using mutual information, the proposed sensor placement methodology is flexible
for any urban drainage network sensor or spatial parameter. The method selects
the sensors that result in the most mutual information gain. In this way, sensor
networks can be made smaller without losing predictive abilities as shown by GPopt6 .
As an iterative process, the model’s accuracy can be continually improved as sensor
placement is refined. The algorithm used to select the sensors has an optimally
guarantee (1−1/e). In addition, the methodology did not require a calibrated physics-
based model and was computationally efficient. It required 0.45 sec to find AS and
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0.51 sec to find AD using a a 2018 MacBook Pro (Processor: 2.2 Ghz 6-Core Intel
Core i7; Memory: 16 GB 2400 MHz DDR4).

3.4 Conclusions

This study presents a comprehensive sensor placement methodology for urban
drainage networks. The methodology is flexible enough to work for any urban
drainage network sensor or spatial parameter of interest, has guarantees of opti-
mality, and is easy and efficient to use. To demonstrate the methodology, we used
sensor data from a GI sensor network to create a predictive GP model of drawdown
rates across Detroit. The GP model’s uncertainty was then used to identify optimal
sensor locations in Detroit. While these results are critical for future GI development
and sensor deployments in Detroit, more importantly, they provide a roadmap for
other communities to follow. Optimal sensor placements will improve our models and
management of our urban drainage networks.
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CHAPTER 4

StormReactor: An Open-Source Python
Package for the Integrated Modeling of

Urban Water Quality and Water Balance

Abstract
Retrofitting watersheds with sensing and control technologies promises to enable au-
tonomous water systems, which control themselves in real-time to improve water
quality. To realize this vision, there is a need to improve the degree of fidelity in
the underlying representation of pollutant processes. This paper presents an open-
source Python package, StormReactor, which integrates the Stormwater Management
Model’s water balance engine with a new water quality module. StormReactor in-
cludes a variety of predefined pollutant generation and treatment processes, while
allowing users to implement additional processes on their own. To demonstrate the
range of possible water quality methodologies that can be modeled, we simulated sus-
pended solids and nitrates in a real and anonymized stormwater network. To illustrate
StormReactor ’s real-time control capabilities, a control strategy was implemented to
maximize denitrification. Case study results indicate a controlled asset can achieve
the same pollutant improvements as an uncontrolled asset in a quarter of the spatial
footprint.
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4.1 Introduction

A reliable and cost-effective method for treating stormwater pollutants is real-time
control [139–141]. Retrofitting stormwater assets with sensing and control technolo-
gies enables watersheds to adapt in real-time to individual storms or pollutant loads
[92, 142]. These smart stormwater assets can be coordinated at the watershed-scale
to maximize pollutant treatment [83, 21, 20]. In essence, this supports the anal-
ogy of transforming our natural or urbanized watersheds into distributed treatment
plants by combining knowledge from stormwater systems and process control [143].
To realize this vision, we must first be able to model both pollutant transformations
and the impact of real-time control actions on water quality at the watershed scale
[80, 85, 20].This can be achieved with integrated environmental modeling.

Integrated environmental modeling dynamically links distinctly separate models
during run-time to better understand the environmental system’s response to human
and natural stressors [144, 145]. Recently, integrated environmental modeling has
been used to combine climate and streamflow data with a water budget model and
a dynamic groundwater model [146], simulate the hydrological effects of land use
changes on karst systems [147], link precipitation forecasts with real-time hydrological
and hydraulic modeling for urban flood forecasting [148], couple hydrodynamic and
closed nutrient cycle ecological models to predict dissolved oxygen (DO) in surface
waters [149], and create a catchment-scale water quality modeling and monitoring
framework [150].

Integrated environmental modeling of stormwater requires the coupling of
water quantity and quality models. This necessitates simulating a num-
ber of underlying processes, including precipitation, runoff, climatic vari-
ables, land use, flow and pollutant routing, and pollutant transformations
[151–153]. While a number of existing models are able to represent these individual
components effectively at a granular scale, an all-in-one modeling package is still lack-
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ing. Given the complexity of stormwater, specifically its nonlinear dynamics [154, 85],
most existing models understandably seem to draw a line between flow and quality
[70, 71]. There has been a stated need to integrate these two types of environmental
models [143, 150, 155]. To that end, the specific contributions of this paper are:

• StormReactor, a new water quality package implemented as an extension of
the popular US Environmental Protection Agency’s (EPA) Stormwater Man-
agement Model (SWMM), which provides an open-source Python programming
interface for simulating complex pollutant generation, treatment, and real-time
control processes.

• An evaluation of the package’s ability to model complex pollutant transforma-
tions and real-time control actions using two case studies.

These contributions provide researchers and practitioners more flexibility in simulat-
ing water quality processes and pollutant-based real-time control at site and watershed
scales.

4.2 New Package for Modeling Stormwater Quality

A watershed-scale pollutant transformation model is comprised of the water quantity
and water quality representations of the stormwater network (Figure 4.1). These rep-
resentations provide insight into which sub-components are already well addressed by
existing models, and which others should be expanded or developed. The water quan-
tity representation focuses on the conveyance of water through the network of links
(e.g., channels, conduits) and nodes (e.g., detention basins, retention basins, wet-
lands). The hydrologic and hydraulic processes, which underpin the water quantity
sub-component, are well established in stormwater models [70, 71]. The water quality
representation includes the pollutant generation and treatment processes that occur
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Figure 4.1: A watershed-scale pollutant transformation model is comprised of the
water quantity and quality representations of the stormwater network. The water
quantity representation, often modeled by SWMM, focuses on the conveyance of wa-
ter through the network of links (e.g., channels, conduits) and nodes (e.g., detention
basins, retention basins, wetlands). The water quality representation, often modeled
using water treatment plant process literature, focuses on the water treatment pro-
cesses that occur in stormwater assets.

in stormwater assets (e.g., wetland as a continuously tank reactor (CSTR), retention
basin as a settling tank). Often, this sub-component is significantly simplified (e.g.,
first order decay models) instead of drawing from water treatment process literature
[143], leaving room for expansion.

Guided by the state of these sub-components in current stormwater models, we
developed StormReactor, a new water quality Python package, coupled with SWMM.
The choice to build a module for SWMM was based on a number of factors. First,
SWMM has a verified hydraulic solver, which is critically important for accurately
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Figure 4.2: StormReactor follows an object-oriented programming paradigm. This
modular approach allows for modifications and reuse by users. StormReactor uses a
configuration dictionary and can work with external Python libraries. StormReactor
interacts with PySWMM which interacts with SWMM all via getters and setters.
SWMM requires an input file and then when a simulation is complete, it creates the
report and output files.

modeling flow and pollutant routing [75]. In addition, building upon SWMM’s pop-
ularity engages a large user base ensuring it is accessible to more people. Finally,
SWMM is open source, which enables modification of its code and the use of popular
Python wrappers, such as PySWMM.

Section 4.2.1 and Section 4.2.2 detail the development and structure of StormReac-
tor. StormReactor was created by (1) modifying the SWMM and PySWMM source
code to allow water quality states to be modified and (2) building an additional
Python library to interface water quality modeling with these popular tools.
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4.2.1 SWMM and PySWMM

To address the limitations of SWMM’s water quality module, we modified SWMM’s
C source code1 by introducing getters and setters to allow for real-time access of
the model states during simulation (Table 4.1). A getter enables a user to access
a variable while a setter enables a user to change the value of a variable. We then
modified PySWMM’s Python source code2 to gain access to SWMM water quality
states and to provide the convenience of modeling in a popular scripting language.
While PySWMM already allowed for the interaction with SWMM’s quantity states
(e.g., flows, depths), it needed to be expanded to support interaction with water
quality states (Table 4.1). Now a user can interact with a pollutant’s concentration
in any node or link during any routing time step. In this way, SWMM is used to
transport pollutants using its reliable hydraulic and routing engine, PySWMM is
used to support Python interaction with SWMM’s C engine, and StormReactor adds
supplementary support for water quality modeling (Figure 4.2).

4.2.2 StormReactor

StormReactor enables users to model water quality, while fully leveraging the well val-
idated SWMM functionality for flow and routing. StormReactor provides a high-level
programming interface that removes the user from the complex interactions between
SWMM, PySWMM, and StormReactor, and only requires a few Python command
statements to model pollutant transformations. Users have the ability to select a
water treatment method in any stormwater asset and specify the routing time steps
across which to carry out simulations. To promote uptake by an existing community
of modelers, a user can select any of the already existing SWMM treatment functions
outlined in the SWMM Reference Manual Volume III: Water Quality (Table 4.2) [76].

1github.com/OpenWaterAnalytics/Stormwater-Management-Model
2github.com/OpenWaterAnalytics/pyswmm
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Table 4.1: The getters and setters added to both SWMM and PySWMM.

Variable Type Description
NODEQUAL getter current pollutant concentration in a node
NODECIN getter inflow concentration in a node
NODEREACTORC getter updated concentration after the mass bal-

ance of flows and pollutants in a node
NODEHRT getter hydraulic residence time (hours) in a node
LINKQUAL getter current pollutant concentration in a link
TOALLOAD getter total quality mass loading in a link
LINKREACTORC getter updated concentration after the mass bal-

ance of flows and pollutants in a link
Node.extQual setter current pollutant concentration in a link
Link.extQual setter current pollutant concentration in a node

Users can also select from a library of our new water quality methods, including re-
actor models and stream processes, such as erosion (Table 4.2). More importantly,
users can implement their own custom pollutant models using a Python interface
(Section 4.2.2.3). These custom pollutant models can be built upon states of the
various water quantity and quality parameters in SWMM (e.g., flow, depth, volume,
concentration) as well as interact with other Python packages (e.g., SciPy). Readers
are directed to Zenodo3 for StormReactor ’s source code and documentation.

4.2.2.1 User Experience

StormReactor can be installed using pip4. To use StormReactor, first import both
StormReactor and PySWMM (Figure 4.3). Next, define a configuration dictionary
stating at which nodes and links water quality will be modeled, as well as the desired
pollutants, water quality methods, and the parameters required for each method.

3DOI: 10.5281/zenodo.4913493
4pypi.org/project/stormreactor
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Then, create an instance of the water quality class by calling WaterQuality() which
takes two arguments: config, the configuration dictionary; and sim, a PySWMM
simulation object, which encapsulates all the SWMM simulation functionality (e.g.
start/stop simulation, get/set attributes). Finally, call the class instance method
updateWQState() to run the desired water quality
method.

Once initialized, StormReactor executes the simulation loop. First, StormReac-
tor queries the necessary water quantity and quality parameters (e.g., water depth,
pollutant concentration) for specific stormwater assets at the current routing time
step. Next, it uses the queried parameters to compute and set the new pollutant
concentration using a predefined or custom water quality method. If a water quality
computation requires a time parameter, the length of the routing time step is used.
If real-time control is being modeled, selected water quality and/or quantity data
are used to calculate the control decisions. SWMM then enacts the real-time control
decisions and routes the pollutant(s) and flows through the network. This process
can be repeated at any or every routing time step. The simulation loop terminates
after the number of desired routing time steps or the SWMM model is complete.

4.2.2.2 Architecture

StormReactor ’s architecture follows an object-oriented programming paradigm. This
matches already popular Python conventions and maximizes potential for user cus-
tomization. StormReactor begins by defining a class: WaterQuality(). The class
has an __init__ method which takes three parameters: self, an instance of the
class; sim, the PySWMM simulation object; and config, the configuration dictio-
nary. When an instance of the class is created, it automatically calls the __init__

method, which does the following: (1) initializes the asset flag; (2) calls the PySWMM
method sim.start_time to get the start time of the simulation; (3) initializes the
variable last_timestep to aid in calculating the length of the routing time step; (4)
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initializes the ordinary differential equation (ODE) solver for the CSTR water quality
method; and (5) defines the callable names of the water quality instance methods.
The WaterQuality() class also defines two important methods: updateWQState()

and updateWQState_CSTR(), which update the pollutant concentrations during a
SWMM simulation for non-CSTR and CSTR methods, respectively. The class also
has a collection of Python instance methods which specify the various treatment and
generation processes that can be performed on a pollutant (Table 4.2).

Time steps are handled by StormReactor by relying on SWMM. Many of the
treatment methods do not require a time parameter (e.g., event mean concen-
tration, constant removal, k-C* method). StormReactor handles these meth-
ods just as they would be handled in native SWMM. These methods grab the
current pollutant concentration and then calculates and sets the new concentra-
tion at the end of the current routing time step. For the methods that do re-
quire a time parameter (e.g., N-th order reaction kinetics, erosion, gravity set-
tling), StormReactor computes the routing time step length (dt) using the same
method as SWMM. To calculate dt, StormReactor calls the PySWMM function
sim.current_time to get the current simulation time, subtracts the previous routing
time step saved in the variable
last_timestep, and then converts it to seconds. In this way, StormReactor is de-
pendent on SWMM to get dt. Once dt is calculated and the current concentration is
queried, the new concentration is computed and set at the end of the current routing
time step. This new concentration then becomes the concentration at the beginning
of the next routing time step. Routing time steps are usually on the order of seconds,
whereas water quality processes may take much longer. Therefore, users must also
parameterize water quality coefficients on the order of seconds.
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4.2.2.3 Implementing Custom Pollutant Models

To implement a new custom pollutant model, users can either (1) add their new class
instance method to StormReactor ’s code base or (2) build their model directly in their
Python script using the appropriate getters and setters (Table 4.1). We recommend
the first option if code is to be more seamlessly shared with others. To add a new
method to the code base a user must:

1. Define the new method using the following convention: _NewMethod(self,

ID, pollutantID, parameters, flag). Non-public Python instance meth-
ods should always start with an underscore. The new method requires five pa-
rameters: self, an instance of the class; ID, the node or link name in SWMM;
pollutantID, the pollutant index in SWMM; parameters, the water quality
method parameters; and flag, used to determine if the method is for a link or
node.

2. Provide a text description of the method including the water quality method
parameters and their required units. Be sure to note if the method is for links,
nodes, or both.

3. Write the pollutant transformation code for the new method.

(a) Define any variables that may be needed for the pollutant transformation
calculations.

(b) Query SWMM variables that are necessary for the computation (e.g.,
pollutant concentration, water depth, current simulation time) using
PySWMM getters.

(c) Compute the pollutant transformation concentration.

(d) Set the new pollutant concentration using
PySWMM setters.
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Figure 4.3: A Python code snippet that illustrates how some of the TSS and ni-
trate methods from the two case studies were implemented using StormReactor. The
package is imported and the configuration dictionary is defined. The configuration
dictionary includes the node/link IDs from the SWMM input file, the pollutant in-
dices based on the order in which they are defined in the SWMM input file, the
pollutant transformation methods selected, and the required pollutant transforma-
tion parameters. The methods are initialized by calling waterQuality(sim,config)
and the pollutant transformations are computed by calling updateWQState() each
routing time step.

4. Define the callable name in the __init__ method.

5. Write unit tests for the new method and add them to test_links.py and/or
test_nodes.py in the tests folder.

Once the new method is added to StormReactor ’s code base, the user can then use
it following the steps outlined in Section 4.2.2.1.

69



4.3 Water Quality Case Studies

The study area is a 7.8 km2 urban, separated stormwater network (Figure 4.1) located
in Michigan, which suffers from erosion problems due to high flashy flows. In this
network, stormwater first flows through a detention basin into a long channel. A
detention basin has its outlet at the bottom of the basin so between storms it is
usually dry. The long channel then flows into a retention basin. A retention basin
has its outlet at a higher point so it tends to retain a permanent pool of water. If
the height of the water in the retention basin is less than a specified threshold, water
flows directly into a constructed treatment wetland. Otherwise, water bypasses the
wetland and overflows into another channel. Water leaving the wetland flows into the
same channel as the overflow from the retention basin. The end of this channel is
considered the outfall of the stormwater network.

For the two case studies, we isolated the network described above from a calibrated
SWMM model of the larger, regional stormwater network. Since we removed the up-
stream assets from the model, we added inflows to simulate the real system response.
The network was forced with a 5-year, 12-hour storm, which corresponds with design
guidelines in the study region [22]. Readers are directed to Zenodo5 for the SWMM
input files and simulation code.

We provide these case studies to illustrate the following capabilities of StormRe-
actor : (1) StormReactor can model SWMM’s pollutant treatment equations as if we
used SWMM’s water quality module directly; (2) StormReactor can model new wa-
ter quality processes (e.g., channel erosion, CSTRs in series); and (3) StormReactor
enables water quality-based real-time control actions. The first case study uses TSS
to illustrate the first two capabilities (Section 4.3.1) and the second case study uses
nitrate to demonstrate the third capability (Section 4.3.2).

5DOI:10.5281/zenodo.4913515; DOI: 10.5281/zenodo.4913501

70



4.3.1 TSS Case Study

TSS (often measured as concentration in mg/L) is a commonly monitored pollu-
tant because it negatively impacts water quality. These impacts include increasing
turbidity, inhibiting plant growth, reducing species diversity, as well as providing
transportation for nutrients and heavy metals
[158–160]. To mitigate these negative impacts, researchers and practitioners must be
able to model deposition, erosion, and transport processes. Section 4.3.1.1 details how
StormReactor was used to model these TSS processes and Section 4.3.1.2 provides
the simulation results and discussion.

4.3.1.1 TSS Methods

Gravity settling was assumed to occur in the wetland, basins, and channels. We
selected the gravity settling equation from the SWMM Reference Manual Volume
III: Water Quality to illustrate how StormReactor allows users to model and match
existing SWMM treatment equations [76]. The gravity settling equation is defined
as:

C = C∗ + (C − C∗) exp (−k ∆t/d) (4.1)

The values for the steady state concentration (C∗=21 mg/L) and the settling
velocity (k=0.0005 m/s) were selected based on prior monitoring campaigns in the
region. At each routing time step (∆t), depth (d) was queried from SWMM and the
current concentration (C) was computed.

Along with gravity settling, erosion was also assumed to occur in both channels.
Many equations exist for modeling erosion and sediment transport, many of which can
be implemented in our library. For illustration purposes, we selected the Engelund-
Hansen sediment transport formula [157].
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The formula of Engelund and Hansen formula [157] can be expressed as:

f · ϕ = 0.105/2 (4.2)

where

f = (2 · g · d · So)/v
2 (4.3)

θ = (d · So)/[(Ss − 1)d50] (4.4)

qt = ϕ
[
(Ss − 1) g · d350

]1/2 (4.5)

where f is a friction factor, ϕ is a dimensionless sediment transport function, θ is a
dimensionless shear parameter, g is gravitational acceleration, d is hydraulic depth,
So is channel slope, v is mean channel velocity, Ss is specific gravity of sediment, d50
is mean particle diameter, and qt is total bed-material sediment discharge by weight
per unit width [161, 162]. The values for mean particle diameter (d50 = 0.04 mm),
sediment specific gravity (Ss = 1.6), and channel slope (0.037-1.8 m/m) were selected
based on site data. At each routing time step, the required parameter values were
queried from SWMM, the sediment discharge concentration was computed, and the
new TSS concentration was set in SWMM.

Root mean square error was used to validate both settling and erosion in the nodes
and links. For gravity settling in the nodes, root mean square error was calculated
for the cumulative TSS load from the StormReactor simulation and a native SWMM
simulation (Figure 4.4). The root mean squared error was zero for all three nodes.
Since treatment in SWMM links is a new feature of StormReactor, gravity settling
and erosion in the channels had to be validated differently. The load leaving the
channel was compared to the load entering the outfall. The root mean squared error
was 6.19E-13.

TSS concentrations measured directly downstream of our outfall average 21 mg/L
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Figure 4.4: Cumulative TSS load comparing gravity settling using SWMM’s tradi-
tional water quality module and StormReactor ’s water quality module for the deten-
tion basin, retention basin, and wetland. Root mean squared error was zero for each
asset.
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during steady state conditions and 175 mg/L during storm conditions. For our sim-
ulation, TSS was assumed to follow an event mean concentration (EMC) wash-off
model [75]. Since this network is dominated by channel erosion and not subcatch-
ment wash-off, the steady state EMC was used in the wash-off model. The additional
TSS needed to match storm event concentrations was provided by the erosion model.

4.3.1.2 TSS Results and Discussion

Results show that this system is dominated by erosion processes with only small
reductions due to gravity settling (Figure 4.5). The detention basin’s TSS concen-
tration averaged 13 mg/L due to the small EMC used in the wash-off model. The
retention basin saw higher concentrations throughout the simulation, with an average
TSS concentration of 121 mg/L. This was a result of significant erosion occurring in
the channel that connects the two basins. The wetland’s TSS concentration was lower
than in the retention basin, but still averaged 100 mg/L during the simulation. The
reduction was due to settling in the wetland. The outfall’s average TSS concentration
was 107 mg/L. The increase in concentration at the outfall was again due to channel
erosion occurring between the wetland and the outfall.

StormReactor improved TSS process representation by including channel erosion.
Prior to StormReactor, users could not model pollutant generation processes unless
they modified the parameters in the SWMM build-up and wash-off equations. In
our case study, this would have not reflected reality because it would have resulted
in high TSS concentrations in the detention basin. Since most of the TSS added to
this system comes from downstream channel erosion, high TSS concentrations should
only be found in the downstream assets. StormReactor now provides the ability to
model pollutant generation processes in the assets in which they occur.

The TSS simulation took 42.35 seconds on a 2018 MacBook Pro (Processor: 2.2
Ghz 6-Core Intel Core i7; Memory: 16 GB 2400 MHz DDR4) as compared to 6.75
seconds without the TSS model. As we scale to larger networks, future work must
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Figure 4.5: Simulation results for the various assets in the stormwater network includ-
ing inflow rate (top panel), TSS concentration (second panel), storage depth (third
panel), and outflow rate (bottom panel).

evaluate the computational efficiency of StormReactor.

4.3.2 Nitrate Case Study

Excess nitrogen can cause water quality impairments, such as eutrophication, harmful
algal blooms, and fish kills [163, 164]. In order to mitigate these negative impacts, re-
searchers and practitioners must be able to model the nitrogen cycle. This is presently
not possible in models like SWMM, because the multiphase, multicomponent reac-
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tions which are affected by the aerobic/anoxic conditions in the network cannot be
simulated [81, 82].

Section 4.3.2.1 details how StormReactor was used to model nitrate. Section 4.3.2.2
explains the addition of real-time control, which will control the stormwater network
in response to water quality states. To our knowledge, this case study is the first to
model nitrate treatment through real-time control at the scale of an entire stormwater
network.

4.3.2.1 Nitrate Methods

Modeling nitrogen interactions in stormwater is difficult because nitrogen exists in
various forms (e.g., nitrate, nitrite, particulate nitrogen, ammonia, ammonium, dis-
solved organic nitrogen, nitrogen gas) and undergoes numerous transformations (e.g.,
denitrification, nitrification, ammonification, fixation, and dissimilatory reduction)
[81]. In stormwater basins and wetlands, nitrogen is typically removed through three
main mechanisms: assimilation, sedimentation, and denitrification. However, the pri-
mary mechanism is denitrification [3]. High denitrification rates are a result of high
nitrate concentrations, low DO concentrations, and readily available sources of carbon
(e.g., decaying plants and grass) [156, 165].

For this case study, we focused only on nitrogen in the form of nitrate and there-
fore, denitrification as the primary removal mechanism. We selected nitrate because
site data and other studies indicate runoff is dominated by this form of nitrogen
[156]. Denitrification was assumed to occur only in the wetland because wetlands
tend to have large quantities of biomass and thus higher denitrification capacity than
other storage nodes [166, 167]. Since this case study assumed high nitrate concen-
trations and readily available sources of carbon, DO became the limiting factor for
denitrification, necessitating us to model DO concentrations as well.

The wetland DO model was implemented using the CSTR method in StormRe-
actor. Based on findings by Kadlec [168], we assumed the wetland functioned as
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three CSTRs in series. We selected CSTRs to illustrate how StormReactor enables
wastewater treatment process models. Often CSTRs are modeled assuming steady
state conditions, where the influent concentration, inflow rate, and outflow rate are
constant, and therefore, the concentration in the control volume is also constant.
Steady state condition allows for a closed form solution to the CSTR equation. How-
ever, in a wetland, influent concentration and flows are dynamic and therefore, the
CSTR should be assumed to be unsteady. We solved the unsteady CSTR with an
ODE solver to show how StormReactor integrates with other computational Python
packages. We selected the SciPy ODE numerical solver using the explicit runge-kutta
method6 [102]. The CSTR equation is defined as:

dC

dt
V = QinCin −QoutC − kCV (4.6)

Based on data collected in this network, the influent DO concentration (Cin) to the
wetland was assumed to be 9.6 mg/L. The reaction rate constant (kDO) was assumed
to be 0.2/hr [169]. At each routing time step, the dynamic parameters were queried
from SWMM (Qin, Qout, V ) and the ODE solver computed the current concentration
(C). Since the DO concentration was only relevant to triggering denitrification in the
wetland, DO was tracked only in Python and therefore, the new DO concentration
did not need to be set in SWMM (i.e., DO was not added as a pollutant in the SWMM
input file).

Nitrate treatment was triggered when the DO concentration dropped below 1
mg/L, signally anoxic conditions. Nitrate treatment in the wetland was also modeled
in StormReactor using three CSTRs in series [156]. The nitrate concentration in the
real stormwater network averages less than 1 mg/L during steady state and storm
conditions. Although this low level may exceed recommended water quality criteria
[170], assuming a larger concentration will result in higher rates of denitrification for

6docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

77



simulation purposes. Therefore, for our simulation, nitrate was added to the system
using SWMM’s wash-off model assuming an EMC of 10 mg/L, which aligns with 13%
of stream sites monitored by Mueller and Spahr [171]. The nitrate reaction rate con-
stant (kNO) was assumed to be 1.5/day [169]. At each routing time step, the dynamic
parameters were queried from SWMM (Qin, Qout, Cin, V ), the ODE solver computed
the current concentration (C), and that concentration was then set in SWMM. To
validate the CSTRs in series model, StormReactor ’s steady state concentration at
the end of the simulation was compared with the steady state analytical solution.
The wetland’s nitrate concentration from StormReactor converged to the computed
steady state analytical solution (5.7% error).

4.3.2.2 Nitrate Real-Time Control Strategy

A water quality-based controller was constructed to maximize denitrification without
flooding the wetland (Figure 4.6). The controller held water in the wetland until the
nitrate was treated or flooding was imminent. It also held water in the upstream
detention basin until the downstream wetland had sufficient storage capacity to han-
dle more inflow. When the controller opened a valve, it regulated the size of the
opening (0-100%) to release water at a rate proportional to the asset’s water level
by solving the submerged orifice equation [75]. It was assumed that the network had
the necessary water quantity and quality sensors and the outlets of the detention
basin and the wetland had controllable valves. To reflect real world implementation,
control decisions were constrained to every 15 minutes. The controlled scenario was
compared against a baseline, uncontrolled scenario to determine the effectiveness of
the controller.

OLD CAPTION: The controller’s objective was to maximize denitrification with-
out flooding the wetland. The controller computed the valve’s percent opening for the
detention basin (valveDB) and wetland (valveW ). Water was released proportionally
by solving the submerged orifice equation (Qmax = CA/

√
2gd) for C, the discharge
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Figure 4.6: Algorithm to maximize denitrification without flooding the wetland.
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coefficient, where Qmax was the maximum flow rate desired (Qmax = 2m3/s), A was
the completely open orifice area, g was acceleration due to gravity, and d was wa-
ter depth. Qmax was the flow rate threshold at which downstream sediments were
assumed to re-suspend [143].The computed value for C was multiplied by a scaling
factor f (f=1.75 in this study).

4.3.2.3 Nitrate Results and Discussion

The controller met the control objective of maximizing denitrification (Figure 4.7).
The controlled scenario saw a 95% nitrate load reduction at the outfall as compared
to the uncontrolled scenario. The load reduction was a result of keeping the valves
closed when either the wetland was oxic or the wetland’s nitrate concentration was
too high. The controller used both the wetland and the upstream basin for storage
until the conditions were appropriate to release flows. To put this load reduction into
context, SWMM was used to determine how large the studied wetland would need to
be to obtain the same load reduction without real-time control. After incrementally
increasing the area of the wetland and rerunning the SWMM simulation several times,
it was determined that the wetland would need to be four times as large to obtain
the same load reduction.

The controller also ensured that flooding did not occur in any of the assets (Fig-
ure 4.7). The water depths in the detention basin and wetland were kept below their
flooding thresholds. These two assets did not flood because the detention basin had
significant storage capacity, and the controller opened the wetland valve whenever
it was close to its maximum capacity. In both scenarios, the retention basin depth
resulted in some flows bypassing the wetland. Unfortunately, this is because of how
the retention basin/wetland system was designed. If a control valve was installed or
the bypass height was increased on the retention basin, these bypass flows could have
been reduced.

StormReactor provided the ability to implement a water quality-based controller
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in SWMM. Prior to this package, users trying to meet water quality goals with con-
trollers could only access water quantity states. Now, users can access water quality
states and build a pollutant concentration-based controller with only a few lines of
Python code.

The real-time controlled nitrate simulation took 86.84 seconds on a 2018 MacBook
Pro (Processor: 2.2 Ghz 6-Core Intel Core i7, Memory: 16 GB 2400 MHz DDR4).
The nitrate simulation without real-time control took 86.22 seconds, as compared to
the simulation without water quality or real-time control which took 12.30 seconds.
The increased computational time was a result of the longer simulation (twelve days
instead of five) and the ODE solver. Therefore, to increase computational efficiency
in the future, a discrete form update could be used instead of an ODE solver.

4.4 Discussion

As shown in the case studies, StormReactor improved water quality process represen-
tation at both the site and watershed scale. Rather than implementing an all-in-one
quality-quantity model, we coupled the popular water quantity features of SWMM
with StormReactor ’s water quality model. To illustrate the fidelity of StormReactor,
we showed how a variety of pollutant transformations (e.g., erosion, settling, CSTR)
matched expectations from established models and methods. Therefore, StormReac-
tor was shown to be an effective tool for modeling water quality.

To the best of our knowledge, our modular framework supports many of the fea-
tures seen in advanced hydraulic and water quality packages. For advanced users,
StormReactor ’s integration with Python will support numerical solvers and packages,
higher order reaction kinetics, wastewater process models (e.g., ASM-1), and com-
bined sewer networks. In its present implementation, StormReactor poses a few con-
straints which users need to be aware of before choosing to use it in their stormwater
studies. It does not presently support LID (i.e., green infrastructure) water quality

81



Figure 4.7: Comparison of the uncontrolled (dotted lines) and controlled (solid lines)
scenarios for the various assets in the stormwater network including inflow rate (top
panel), nitrate and DO concentration (second panel), storage depth (third panel),
valve position and outflow rate (fourth panel), and cumulative nitrate load (bottom
panel). In the depth panel, the gray solid lines depict the flooding thresholds for the
detention basin and the wetland and the bypass threshold for the retention basin.
No flooding occurred but some flows did bypass the wetland in both the uncontrolled
and controlled scenarios.
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processes because SWMM handles LID water quality outside of its link and node
data structures. In addition, StormReactor does not support high spatial resolution
water quality processes (e.g., advection, diffusion). Both LID access and high spatial
resolution models can be added and are proposed as future work. Aside from these
limitations, StormReactor provides a general water quality modeling solution that is
flexible and expandable.

The nitrate case study points to the potential of using real-time control or "smart"
stormwater systems for ecological benefits. Watershed water quality goals can be
achieved by tuning real-time control. The ability to model complex water quality
interactions enables the development and testing of real-time control algorithms that
use pollutant concentration, load, and sensor data. We can now utilize formal control
theory (e.g., PID, MPC, genetic algorithms) to explore emergent behavior, stability,
and optimal control strategies at both the site and watershed scale. We can then use
this information to optimize asset treatment performance, pushing our watersheds
to behave like distributed water treatment plants, and ultimately improve watershed
water quality.

4.5 Conclusions

StormReactor improves the fidelity of modeling pollutant transformations and
pollutant-based real-time control; moving us a step closer to realizing the goal of
controlling entire watersheds as real-time distributed treatment plants. Additional
fidelity could be gained by adding LID access and high spatial resolution models to
StormReactor. The flexibility of StormReactor gives researchers and practitioners
immense freedom in modeling water quality. We hope that this package will become
a community-driven resource. We see opportunities for the research community to
collaborate on the development of StormReactor by contributing their own pollutant
generation and treatment methods. As we scale to larger networks, future work must
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evaluate the computational efficiency of StormReactor. In addition, significant future
research stands to be enabled through the use of holistic frameworks, such as those
posed in this paper. In particular, future studies have the potential to evaluate how
to control entire watersheds in response to ecological objectives.
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Table 4.2: Overview of the current water quality methods that can be selected from
StormReactor including a method explanation and the asset type (node, link, or both)
it can be used for.

Water Quality Method Asset
Type

Method Explanation

Event Mean Concentra-
tion

Both Treatment results in a constant concentra-
tion

Constant Removal Both Treatment results in a constant percent re-
moval

Co-Removal Both Removal of some pollutant is proportional
to the removal of some other pollutant

Concentration-
Dependent Removal

Both When higher pollutant removal efficiencies
occur with higher influent concentrations

Nth Order Reaction Ki-
netics

Both When treatment of pollutant X exhibits
nth order reaction kinetics where the in-
stantaneous reaction rate is kCn

k-C* Model Node The first-order model with background
concentration made popular by Kadlec and
Knight [156] for long-term treatment per-
formance of wetlands.

Gravity Settling Both During a quiescent period of time within
a storage volume, a fraction of suspended
particles will settle out

CSTR Node CSTR is a common model for a chemi-
cal reactor. The behavior of this CSTR is
modeled assuming it is not in steady state
because outflow, inflow, volume, and con-
centration are constantly changing.

Erosion Link Engelund and Hansen [157] developed
a procedure for sediment transport in
streams.

85



CHAPTER 5

Improvement of Phosphorus Removal in
Bioretention Cells Using Real-Time Control

Abstract
Retrofitting urban watersheds with wireless sensing and control technologies will en-
able the next generation of autonomous water systems. While many studies have
highlighted the benefits of real-time controlled grey infrastructure, few have evalu-
ated real-time controlled green infrastructure. Motivated by a controlled bioretention
site, where phosphorus is a major runoff pollutant, we present an analysis of phos-
phorus removal over a range of influent concentrations and storm conditions for three
scenarios: a passive, uncontrolled bioretention cell (baseline), a real-time controlled
cell (autonomous upgrade), and a cell with soil amendments (passive upgrade). Re-
sults suggest the autonomous upgrade matched the pollutant treatment performance
of the baseline scenario, only using half the spatial footprint. The autonomous up-
grade matched the performance the passive upgrade; suggesting real-time control may
provide a “digital” alternative to existing, passive upgrades. These findings may help
stormwater managers, who are often constrained by site or cost constraints, meet
their water quality goals.

5.1 Introduction

An emerging generation of autonomous stormwater solutions promises to shrink
the size of infrastructure needed to manage runoff pollution and changing weather.
Retrofitting stormwater infrastructure with wireless sensors, gates, valves, and pumps
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will reduce flooding and improve pollutant treatment [143, 20]. This will be achieved
by dynamically adjusting water levels to take advantage of excess storage and en-
hanced treatment conditions. At the core of this vision is system-level control, where
tens to hundreds of individual stormwater assets will coordinate in real-time to route
water and promote the uptake of pollutants across the scale of entire watersheds
[20, 21]. In lieu of new construction, this will repurpose existing infrastructure by
dynamically adapting it on a storm-by-storm basis [143].

Many studies have highlighted the benefits of autonomous stormwater infrastruc-
ture for gray infrastructure, including basins, ponds, and underground infrastruc-
ture [172], but few have explicitly evaluated real-time control of green infrastructure
[92, 173]. Real-time control of larger and non-biologically active sites, such as de-
tention basins, have shown significant benefits—a valve at the outlet can be used to
extend retention time and drastically improve the capture of sediment-bound pol-
lutants [172, 174]. Extrapolating these benefits to green infrastructure, and more
specifically bioretention systems, is difficult because pollutant removal is underpinned
by much more complex biological and physical processes [34]. Real-time control of
a bioretention cell can be achieved cost effectively by adding an actuated valve and
a water level sensor (Figure 5.1b). At the time of writing, a fully automated and
internet-connected control system could be constructed for $1,500 USD using open-
source solutions. Readers are directed to Bartos et al. [19] and www.open-storm.org
for details and best practices on implementation.

The purpose of this chapter is to begin exploring these processes for phosphorus,
a runoff pollutant associated with harmful algal blooms [175], using StormReactor, a
new water quality modeling toolchain [173]. Specifically, this chapter compares phos-
phorus removal in a passive, uncontrolled bioretention cell (i.e., baseline) scenario to
two upgraded scenarios: one with real-time control (i.e., autonomous upgrade) and
another with water treatment plant residuals (i.e., passive upgrade). The approach
ingests laboratory-measured data into a model of bioretention-based phosphorus re-
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moval under real-time control. Treatment performance is evaluated across a broad
range of influent concentrations and storm conditions.

5.2 Methods

5.2.1 Hydrologic and Control Model

A bioretention cell at the Toledo Zoo in Toledo, Ohio, US was retrofitted for real-time
control (Figure 5.1). To estimate site performance, a hydrological model was built
and calibrated using the hydraulic conductivity rate of the existing site (i.e., 5.1
cm/hr). This site is considered oversized by most US design guidelines, which stipu-
late that bioretention cells should generally capture the runoff of no more than 8,094
m2 (2-acres), and that the surface area of a cell should be 5-10% of this contribut-
ing impervious area [27]. Therefore, the hydrological model assumed a contributing
impervious area of 4,047 m2 (1-acre) and cell surface area of 405 m2 (0.1-acre).

The hydrologic model was built using the U.S. EPA’s Stormwater Management
Model (SWMM), a physically-based, discrete-time, storm-runoff simulation model
[75]. While recent updates to SWMM feature a tool for modeling green infrastruc-
ture, the tool does not include the ability to dynamically control the flow through
the underdrain. To circumvent this issue, the bioretention hydrologic model was
built following the methodology vetted by Lucas [88], which represents the individ-
ual components of the cell (i.e., ponding area, soil media, gravel storage, underdrain,
and surrounding soil) using SWMM junctions, conduits, orifices, outlets, weirs, and
outfalls (Figure 5.2).

A level controller was designed as an initial step in exploring bioretention con-
trol. The controller released water from the underdrain at a rate proportional to the
cell’s ponding height (i.e., the deeper the ponding height, the larger the valve open-
ing). Specifically, the controller sets the underdrain’s valve to a position between
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Figure 5.1: The cross-section of (a) a passive, uncontrolled bioretention cell (i.e.,
baseline) and (b) a real-time controlled bioretention cell (i.e., autonomous upgrade)
with images of the sensor node and control valve installed on a cell in Toledo, Ohio,
US.

closed (0%) and open (100%) based on the following formula: valve position =

10% × ponding height. Control decisions were made once every 15 minutes, as
implemented in the field. The controller promotes improved hydrologic conditions
and, by extension, improved pollutant removal. Readers can access the simula-
tion documentation from the GitHub online repository (github.com/bemason/RTC_
GreenInfrastructure).

5.2.2 Phosphorus Model

Although SWMM has the ability to model nutrient removal, it is limited to percent
removal and first order dynamics [76], which cannot effectively represent the complex
nutrient interactions triggered by real time control [143]. Therefore, the phosphorus
model was added as a new custom pollutant model to the open-source Python pack-
age StormReactor [173]. StormReactor provides a high-level programming interface
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Figure 5.2: A bioretention cell hydrologic model was built following the methodology
vetted by Lucas [88], which represents the individual components of the cell (i.e.,
ponding area, soil media, gravel storage, underdrain, and surrounding native soil)
using SWMM junctions, conduits, orifices, outlets, weirs, and outfalls. An orifice is
used to simulate a controllable valve on the underdrain.

for users to model pollutant transformations while leveraging the flow and routing
functionality of SWMM. StormReactor provides the ability to model complex pollu-
tant transformations (e.g., higher order reaction kinetics, wastewater process models,
and differential equations). Readers can access the source code and documentation
from the GitHub online repository (github.com/kLabUM/StormReactor).

Li and Davis’s [176] phosphorus model was implemented, which represents a biore-
tention cell as a plug flow reactor and one-dimensional adsorption column (Figure 5.3).
The model allows for advective flow in and out of a horizontal differential element
of the soil media and considers filtration, adsorption, and leaching reactions. The
mass balances for the reactor are shown for the particulate and dissolved phosphorus
concentrations (CPP, CDP) in Equations 1 and 2, respectively (Figure 5.3).

The water quality model parameters were experimentally derived and calibrated
by Li and Davis [176]. In the baseline and autonomous scenarios, these parameters
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assume the cell’s soil media consists of 74% bioretention soil media, 22% additional
sand, and 3% mulch, on an air-dry mass basis. In the passive upgrade scenario, 5% of
the bioretention soil media was replaced with water treatment plant residuals [177].

5.2.3 Control Performance Evaluation

As discussed, bioretention cells can be upgraded in a variety of ways to boost per-
formance. An analysis was performed to compare phosphorus removal in a pas-
sive, uncontrolled bioretention cell (baseline) scenario to two upgraded scenarios: one
with real-time control (autonomous upgrade) and another with water treatment plant
residual soil amendments (passive upgrade). To capture the wide range of conditions
a bioretention cell may experience, the scenarios were evaluated under a variety of
influent concentrations and design storms. Five total phosphorus influent concen-
trations (0.2, 0.6, 1.0, 1.4, and 1.8 mg/L) were selected based on literature values
for commercial, residential, and agricultural settings [178]. Since dissolved and par-
ticulate phosphorus removal are independent of each other, equal amounts of each
were used in the evaluation (i.e., for 0.2 mg/L of total phosphorus, 0.1 mg/L of both
dissolved and particulate phosphorus were used). Three 6-hour Soil Conservation
Service (SCS) Type II design storms were evaluated as conventional in the green in-
frastructure community: 12.7 mm (0.5 in), 25.4 mm (1.0 in), and 50.8 mm (2.0 in)
[179].0

In addition, a simulation using rain data from the wet summer of 2015 in Toledo,
OH, US was used to evaluate performance under real, dynamic weather conditions
for the same three scenarios described above. The weather data selected includes
several consecutive storms, dry periods, as well as large and small storms. The
total phosphorus influent concentration was assumed to be 0.38 mg/L, the average
concentration for all US land use types according to the US National Stormwater
Quality Database [180].
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Figure 5.3: On the left, a controllable bioretention cell modeled as a plug flow reactor
showing the dissolved (DP ) and particulate phosphorus (PP ) transformations in the
soil. The model represents the flow rate (Q) through a differential element (dx).
The pollutant’s concentration (C) changes as it moves through the length (L) of the
reactor. The area (A), porosity (ϵ), and Q determine infiltration. On the right,
mass balance equations. To create Eq. 1a and 2a, the variables were separated and
integrated over L and the change in concentration (Co to Ce); and the adsorption and
filtration rate constants (kad, kfil) were substituted in for the reaction rates (r). To
create Eq. 1b and 2b, C0

eq exp
β1t was substituted in for the equilibrium concentration

(Ceq) to account for the variability in Ceq over the lifetime of the soil; where C0
eq is

the initial Ceq for a storm event, β1 is a constant describing the rate at which Ceq
approaches Co, and t is the cumulative time elapsed from the start of a storm event.
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5.3 Results and Discussion

5.3.1 Comparative Analysis

The results of the comparative analysis are shown in Figure 5.5. Illustrated are
various permutations of design storms (x-axis) and influent concentration (y-axis)
across multiple scenarios: baseline (a), autonomous upgrade (b), and passive upgrade
(c). For each simulation, the total phosphorus load (flow times concentration) was
computed for the flows entering the bioretention cell, exiting through the underdrain,
exfiltrating into the surrounding soil, and overflowing when the ponding height was
exceeded. A mass balance of these loads then determined the final value (i.e., color)
used in the figure. The figure colors indicate if the overall mass balance resulted in
phosphorus capture (blue) or release (red). The black line indicates the transition
from phosphorus capture to release.

The baseline scenario released phosphorus during the low influent simulations and
removed phosphorus during the high influent simulations (Figure 5.5a). The equi-
librium concentration essentially defines the point separating removal from release.
When the influent concentration is larger than the equilibrium concentration, removal
occurs, otherwise, desorption of the pollutant occurs, resulting in a net increase in
the pollutant concentration [176].

The autonomous upgrade captured phosphorus during most simulations (Fig-
ure 5.5b). During the smaller storms, the controlled underdrain remained closed
for most of the simulation, resulting in little to no phosphorus being released. The
transition from phosphorus capture to release occurred during the larger storms with
lower influent concentrations. Akin to the baseline, this was due to the system trying
to reach the equilibrium concentration.

The autonomous upgrade outperformed the baseline scenario (Figure 5.5a,b),
aligning with the results of the real-time controlled bioretention column study by
Persaud et al. [92]. Since the autonomous upgrade released at least two times less
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Figure 5.4: Total phosphorus (g) either captured or released by a bioretention cell
over various storm sizes (x-axis) and influent concentrations (y-axis) for the baseline
(a), autonomous upgrade (b), and passive upgrade (c) scenarios. The black lines
denote a shift from capturing (blue) to releasing (red) phosphorus.

phosphorus load than the baseline during all design storms, the autonomous upgrade
could match the pollutant treatment performance of the baseline in half the spa-
tial footprint. This result aligns with other research that has shown that real-time
controlled stormwater infrastructure can be built smaller without compromising per-
formance [143, 173].

The passive upgrade resulted in phosphorus capture for all design storms and
influent concentrations (Figure 5.5c). By design, soil amendments have high reaction
rate constants and a low equilibrium concentration. Both factors worked together
to ensure the cell’s phosphorus concentration remained low. Therefore, even though
water left the unregulated underdrain, the load released was relatively small.

Although the modeled soil amendments were successful at treating phosphorus,
they have several drawbacks. Their efficacy will inevitably deplete over time, requir-
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ing the installation of new amendments. Soil amendments are targeted pollutant
solutions; they have limited or no impact on other pollutants [91]. Similarly, they do
not provide hydrologic benefits, and may even reduce hydraulic conductivity [181].
Although the water treatment residual amendments are a free by-product from the
water treatment plant, there is a cost to excavating and reinstalling the amended soil.
For the modeled site at the time of writing, the installation of the passive upgrade
would cost an estimated $4,800 USD [182]. There would be additional costs for mon-
itoring and maintenance but calculating these costs are outside of the scope of this
chapter.

Real-time control pushed the autonomous upgrade to perform similarly to the
passive upgrade (Figure 5.5b,c). The performance was essentially equivalent during
the smallest design storm, but the autonomous upgrade released up to seven times
more phosphorus load during the larger two storms. By analogy, real-time control
enables a bioretention cell to perform as if it has been “digitally” upgraded to achieve
benefits of passive soil amendments. By controlling the flow through the underdrain
the system is forced to mimic the pollutant treatment of the passive upgrade. The
removal mechanism, however, is different for the autonomous upgrade. Removal
is primarily through volume reduction rather than adsorption and filtration. By
exfiltrating water and phosphorus, the volume of water leaving the site is reduced,
thus also diminishing potential adverse impacts on downstream waterways.

The autonomous upgrade can be used to address a variety of pollutants (e.g.,
phosphorus, metals, solids) through volume reduction, while the passive upgrade only
targets one pollutant through adsorption and filtration. Therefore, the autonomous
upgrade provides long-term management flexibility by enabling the cell to be “repro-
grammed” to tailor retention times whenever a new pollutant needs to be treated, or
when knowledge of site dynamics changes. This flexibility is even more pronounced
when considering system-level control. Stormwater managers can coordinate a net-
work of autonomously upgraded sites, allowing them to decide where and how pol-
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lutants are treated to meet system-level water quality goals [22]. In addition, the
autonomous upgrade is cost-effective ($1,500 USD including parts and installation at
the time of writing). That being said, since real-time control is not readily offered as
a commercial solution, it is still difficult to project this cost into a future commercial
market. Like the passive upgrade, there may be additional costs for monitoring and
maintaining the site that are outside of the scope of this chapter.

5.3.2 Dynamic Storm Analysis

In the previous section, phosphorus removal was evaluated using design storms to
better understand performance across the wide range of conditions a bioretention
cell may experience. A dynamic storm simulation was carried out to evaluate per-
formance using local, measured storm data. The three scenarios received the same
cumulative influent load (5.9 g) (Figure 5.4a,d,g). The differences, however, occur
when comparing the cumulative released and captured loads. The cumulative load
released from the underdrain (no overflow/runoff occurred) was 7.7 g and 7.1 g for
the baseline and passive upgrade scenarios, respectively (Figure 5.4h). These results
suggest the baseline and passive upgrades leached phosphorus previously captured
in the soil (Figure 5.4i). Leaching is attributed to the wetting/drying cycle in the
bioretention soil media. When dried soil is wetted, the phosphorus concentration ini-
tially increases as previously captured phosphorus is washed and eluted from the soil
media [176]. The higher phosphorus concentration combined with the larger volumes
of water leaving their underdrains (Figure 5.4b) resulted in net export of phosphorus
(Figure 5.4e). The autonomous upgrade also exhibited higher phosphorus concentra-
tions at the start of each storm (due to the wet-dry cycle) but only a fraction of water
was released from the underdrain and the rest was exfiltrated (Figure 5.4b,c). This is
why the autonomous upgrade captured 5.4 g and released 0.6 g, about twelve times
less phosphorus load than the uncontrolled cells (Figure 5.4h,i).
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Figure 5.5: Dynamic storm simulation results showing the inflow (a), drain flow (b),
and exfiltration (c) rates; influent (d), released (f), and captured (f) mass flow rates
(MFR); and cumulative total phosphorus (TP) load in grams received (g), released
(h), and captured (i) for the baseline (light blue), autonomous upgrade (green), and
passive upgrade (dark blue) scenarios.
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5.4 Conclusions

This chapter explored the early potential of real-time controlled bioretention cells.
Using a controlled bioretention cell as motivation, phosphorus removal was simulated
for a variety of influent concentrations and storm conditions. Three scenarios were
evaluated including the baseline, autonomous upgrade, and passive upgrade. Both the
autonomous and passive upgrades improved pollutant removal. Future work should
evaluate the benefits of a combined autonomous-passive upgrade and more mathe-
matically complex control algorithms.

The autonomous upgrade was shown to release at least two times less phosphorus
load than the baseline during all design storm simulations. Therefore, the autonomous
upgrade matched the pollutant treatment performance of the baseline in half the
spatial footprint for the system studied here. These findings need to be generalized
but may stand to benefit stormwater managers who often cannot design retention
systems to the recommended size due to site or cost constraints.

Water quality goals (e.g. phosphorus removal) can be achieved by adding real-
time control as illustrated in both the design storm and dynamic storm analyses.
Not only does real-time control potentially provide a “digital” alternative to existing,
passive upgrades, like soil amendments, but it also provides long-term management
flexibility. This flexibility enables stormwater managers to dynamically balance trade-
offs in existing bioretention designs and aids in the larger goal of system-level control.
A real-world experiment is necessary to validate these findings in-situ.
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CHAPTER 6

Conclusion

6.1 Summary of Contributions

The objective of this dissertation was to advance autonomous green stormwater in-
frastructure. To that end, this dissertation tackled both theoretical and technological
knowledge gaps, which ultimately led to a number of fundamental contributions, in-
cluding, but not limited to:

• Chapter 2: We introduced a low-cost, low-maintenance sensor for real-
time, high-resolution GI monitoring. When coupled with an automated data
toolchain, we showed how investments in monitoring networks support a more
targeted and data-driven approach to GI design, placement, and maintenance.

• Chapter 3: We introduced a comprehensive sensor placement methodology for
urban drainage networks that is flexible enough to work for any sensor or spatial
parameter of interest, has guarantees of optimality, and is easy and efficient to
use. We showed the mutual information criterion maximizes information gained
while minimizing the size of the sensor network.

• Chapter 4: We introduced StormReactor, a Python package that improves the
fidelity of modeling pollutant transformations and pollutant-based real-time
control. We showed that the improved fidelity enables the development and
testing of real-time control algorithms that use pollutant concentration, load,
and/or sensor data.
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• Chapter 5: Using StormReactor, we discovered that real-time control not
only provides a “digital” alternative to existing, passive GI upgrades, like soil
amendments, but it also provides long-term management flexibility. This flexi-
bility enables stormwater managers to dynamically balance trade-offs in existing
bioretention designs and aids in the larger goal of system-level control.

6.2 Future Research Directions

While the contributions of this dissertation move us closer to autonomous green
stormwater infrastructure systems, work remains to continue to accelerate the adop-
tion of this vision. The following sections present some promising future research
directions towards this end, with more details and other directions highlighted in the
respective chapters.

6.2.1 Analyzing Long-term GI Performance

The reliability of the GI sensor introduced in Chapter 2 should enable long-term data
collection with reduced measurement overhead. Long-term GI performance has not
yet been investigated at the temporal and spatial scales enabled by the GI sensor.
Future research should examine how the decay constants vary over time to determine
seasonal and long-term changes. In addition, these long-term datasets may be able to
be used to inform maintenance schedules. Slowed drainage may indicate the GI soil
media is clogged and should be replaced. A science-based method to validate such
scenarios should be investigated.

6.2.2 Empirical GI Design and Placement Guidelines

Future work should investigate how the GI measurements from Chapter 2 can be
used to inform future GI design and placement. The methodology presented could
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be used to create empirical design guides, such as an empirical “heatmap” shown in
Figure 2.6a. The empirical "heatmap" could be used to inform future GI design and
placement in Detroit. For example, the design (i.e., DA/SA ratio) and placement (i.e.,
depth to groundwater) of a future GI asset could be selected based on the desired
drawdown rate. A new sensing modality should be explored and deployed to validate
the approach. The results could then be used to iterate on site design.

The mapping tool introduced in Chapter 3 provides another approach for strategic
placement of GI assets. Engineers and city planners could use the map to scientifically
determine where future GI development should be prioritized. For example, the
predicted drawdown map showed faster drainage occurs along the northern border of
Detroit. New GI could be built and monitored in this region. These sites can then
be used to not only validate the predictive map’s output, but also to validate the
predictive map’s ability as a planning tool.

6.2.3 Iterative Sensor Placement

Future work should validate the algorithm-selected sensor locations in the broader
Detroit GI landscape. To do this, sensors should be installed in at least the "Priority
1" locations (Figure 3.6). Once data has been collected for a sufficient period of
time, the data should be analyzed using the automated data toolchain introduced in
Chapter 2. The new decay constants can then be used to retrain the GP model. This
work should show that the new GP model is more accurate than the previous model,
illustrating the iterative nature of the sensor placement.

6.2.4 Improving StormReactor

Future work should address the limitations of StormReactor. Presently, StormRe-
actor does not support LID water quality processes, LID real-time control, or high
spatial resolution water quality processes. To add access to a GI’s water quality
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processes, SWMM’s LID module (lid.c) must be modified. Currently, SWMM
reads the percent removal for each pollutant and LID from the input file using
readRemovalsData(). The percent removal is then used by lid_addDrainRunon()

to update the LID’s pollutant concentration. The pollutant loads are then updated
with lid_addDrainLoads(). These functions would need to be modified so that in-
stead of using the percent removal provided in the input file, they would use the user
provided concentrations computed using StormReactor. In addition, the ability to
control the LID’s underdrain during the simulation must be added. We investigated
changing the underdrain’s coefficient in the input file to simulate opening and closing
the underdrain, however, this method is not computationally stable. Therefore, a
different method must be developed.

Adding the ability to model high spatial resolution water quality processes, like
advection or diffusion, in StormReactor will prove more challenging. SWMM models
nodes and links as completely mixed stirred tank reactors; assuming the concentration
is constant throughout the entirety of a node or link. This assumption is contrary
to high spatial resolution water quality processes. One approach to model advection
may be to discretize links or nodes into smaller sections. Each section would remain
completely mixed, but advection could be estimated by tracking the pollutant as it
moves from one section to the next. To do this, a Python function could be added
to read the link and node information from a SWMM input file and then update the
input file with discretized links and nodes before running the simulation.

6.2.5 Next Steps for Autonomous GI

StormReactor now enables the development and testing of real-time control algo-
rithms that use pollutant concentration, load, and sensor data. Future work should
explore the use of formal control theory to explore emergent behavior, stability, and
optimal control strategies at both the site and watershed scale [183]. We can then use

102



this information to optimize asset treatment performance, pushing our watersheds to
behave like distributed water treatment plants, and ultimately improve watershed
water quality.

Chapter 5 illustrated that real-time control provides long-term management flexi-
bility by enabling the GI to be “reprogrammed”. Future work should investigate how
to reprogram GI to address different pollutants. Not only will individual pollutants
need to be targeted, but several pollutants may need to be targeted at once, requiring
the tailoring of retention times to competing objectives. To handle these competing
objectives, more complex control algorithms will likely be needed. Beyond the site-
scale, future work must investigate how to coordinate a network of autonomously
upgraded sites to meet system-level water quality goals.

Future work should also evaluate the benefits of a combined autonomous-passive
upgrade. Adding soil amendments would improve the passive treatment of pollutant
treatment while real-time control would provide the ability to control outflows and
residence time. Together, these upgrades should push the performance boundary of
GI even further. Our simulated study showed that the autonomous upgrade matched
the pollutant treatment performance of the baseline in half the spatial footprint for
the system studied. This result may enable resource-scarce water managers to design
GI smaller without compromising performance. These findings should be validated
with a real-world experiment.
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APPENDIX A

GI Sensor Network

The GI sensor was validated by an outside consultant [98] using a gage plate and
camera (Figure A.1, Figure A.2). For more details, please refer to Dierks [98].

Figure A.1: An example of sensor and camera-measured depths in one GI asset from
the validation study completed by an outside consultant.
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Figure A.2: The sensor validation setup using a gage plate and camera

Figure A.4 provides a list of the 14 monitored GI sites with their design features
and physiographic features. The site type refers to if the site is a rain garden (RG)
or a bioretention cell (BRC). The land use type refers to if the site is classified as a
developed low intensity (DLI), developed medium intensity (DMI), or developed high
intensity (DHI). The installation and maintenance dates for these sites are provided
in Table A.1. To analyze rainfall at the GI sites, data was obtained from eight rain
gauges in Detroit (Figure A.3). The closest gauge to each site was selected.
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Figure A.3: The eight Detroit rain gauges used to analyze rainfall.

Site ID Deployment Maintenance
S1 6/11/21 N/A
S2 6/18/21 N/A
S3 6/11/21 N/A
S4 6/11/21 N/A
S5 7/02/21 N/A
S6 6/11/21 N/A
S7 6/11/21 N/A
S8 7/02/21 N/A
S9 6/18/21 N/A
S10 6/18/21 N/A
S11 6/11/21 N/A
S12 6/18/21 8/11/21
S13 6/11/21 N/A
S14 6/18/21 N/A

Table A.1: Records of the field visits (deployment and maintenance) for the 14 GI
devices.
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Figure A.4: List of the 14 monitored GI and their design and physiographic features.
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APPENDIX B

GIS

B.1 GIS Data Pre-Processing

The following steps were taken to download and pre-process the GIS datasets used
in the correlation analysis using ArcGIS Pro. Table B.1 provides the details on the
GIS datasets including the year, source, type, and resolution.

1. Added a CSV file with the spatial coordinates and decay constants of each GI
location.

2. The GI data was displayed using the Display XY Data tool. Set the X field as
longitude and the Y field as Latitude.

3. Reprojected the GI layer using the Project tool to GCS_WGS_1984.

4. Downloaded the City of Detroit Boundary JSON file from https://data.

detroitmi.gov/datasets/detroitmi::city-of-detroit-boundary/about.

5. Converted Detroit boundary to shapefile and deleted center cutout of Ham-
tramck and Highland Park using the Edit Vertices tool.

6. Downloaded 3m (1/9th arc second) elevation data for Wayne County, Michigan,
US from https://earthexplorer.usgs.gov [184]

7. Combined the eleven elevation images into one using the Mosaic to New Raster
tool.
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8. Added the USA SSURGO – Soil Hydrologic Group [185], USA NLCD Land
Cover [186], and USA NLCD Impervious Surface Time Series [186] raster
datasets from the ArcGIS Virtual Portal.

9. Reprojected the four raster datasets using the Project Raster tool to
GCS_WGS_1984.

10. Clipped the four raster layers to Detroit boundary shapefile the Extract by
Mask tool

11. Made all four raster files have the same resolution (30 m) using the Resample
tool.

12. Used the elevation layer to create a new slope layer using the Surface Parameters
tool [187]. Selected the quadratic option (which is default and recommended
option for most data and applications), the default calculated neighborhood
distance, the z unit was set to meter, and the output slope measurement was
set for percent rise.

13. The land cover layer contains categorical data, so we needed to change these
to numerical values for the correlation analysis using the Reclassify tool. The
“High Developed Intensity” value was set to 3, “Medium Developed Intensity”
to 2, “Low Developed Intensity” to 1, and all other categories to 1 since they
are most closely related to “Low Developed Intensity”. “Open Water” was set
to NODATA since we cannot install GI there.

14. Obtained the well data for Michigan from the State of Michigan’s Water Well
Viewer [188], Wellogic System [189], and the US Geologic Survey’s Groundwater
Watch [190]. Combined the three well datasets into one Excel file. Plotted
histogram of static water level to check for outliers, kurtosis, and skewness
to show it’s a normal distribution. The CSV file was then added to ArcGIS
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Pro. The data is displayed using the Display XY Data tool. Set the X field as
longitude and the Y field as Latitude.

15. Reprojected the wells layer using the Project tool to GCS_WGS_1984.

16. Interpolated groundwater levels using the Empirical Bayesian Kriging tool. The
output cell size was set to the same size as the other raster datasets (30 m).
Data transformation type was none and the semivariogram type was Power.
Additional model parameters were 50 for the maximum # of points in each
local model; 1 for the local model area overlap factor; and 1,000 for the num-
ber of simulated semivariograms. The search neighborhood parameters used
a Smooth Circular search neighborhood with a smoothing factor of 0.85 and
the default calculated radius (21,399 m). Used GA Layer to Rasters to convert
the geostatistical layer to a raster file for both the prediction and the predic-
tion standard error. Masked it to the Detroit boundary shapefile and selected
GCS_WGS_1984 as the projection.

17. Used the Extract Multi Values to Points tool to extract the values from each
raster layer (elevation, slope, HSG, groundwater, imperviousness, land use type)
at the GI locations.

18. Converted this data to an Excel file using the Table to Excel tool and loaded it
into Python for the correlation analysis.

B.2 Groundwater Interpolation

Detroit has a shallow groundwater system, with the groundwater table being one to
three meters below the surface in some regions [107]. For this reason, it is critical
to include groundwater in the analysis. To the best of our knowledge, the only
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Dataset Year Source Type Resolution
City of Detroit Boundary 2021 City of Detroit Vector N/A
National Elevation Dataset 1/9
Arc Second [184]

2017 USGS Raster 3 m

USA SSURGO Soil Hydrologic
Group [185]

2021 Esri Raster 30 m

USA NLCD Land Cover [186] 2019 Esri Raster 30 m
USA NLCD Impervious Surface
[186]

2019 Esri Raster 30 m

Well Records [188] 2021 State of Michigan CSV N/A
Well Records [189] 2021 State of Michigan CSV N/A
Well Records [190] 2021 US Geologic Sur-

vey
CSV N/A

Table B.1: Details on the GIS datasets.

available groundwater data for the State of Michigan are a collection of water well
records which provide the static water level (ft), or depth to the groundwater, for each
well. Three sets of well records were found: (1) Water Well Viewer by the State of
Michigan’s Department of Environmental Quality [188]; (2) Wellogic System by the
State of Michigan’s Department of Environment, Great Lakes and Energy (previously
the Department of Environmental Quality) [189]; and (3) Groundwater Watch by the
US Geologic Survey [190]. It is important to note that although the derived data in
these files represents the best readily available data, they do not represent a complete
database of all wells or well records in existence. The well records include three CSV
files with each well’s ID, location (latitude, longitude), static water level, and other
data that is irrelevant for this analysis. A limitation of these records is that there is
a single static water level reading for each well. And since groundwater fluctuates,
the variation in groundwater is missing, creating some uncertainty.

We want to use the groundwater data to see if there is a correlation between GI
drawdown rates and the depth to groundwater. To do this, we need an estimate of
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Total Wells 1670
Mean (ft) 34.6
St. Dev. (ft) 22.7
Max (ft) 120.0
Min (ft) 1.0
Kurtosis 0.93
Skewness 0.96

Table B.2: Groundwater well record summary statistics.

groundwater depth for each GI, which requires the well records need to be manipulated
into a usable form. The three water well records are combined into a single Excel file.
A histogram of the static water level is plotted to check for outliers (Figure B.1). In
addition, summary statistics are computed (Table B.2). Since the values for kurtosis
and skewness are between ± 2, this is considered acceptable to prove the data follows
a normal univariate distribution [191]. Therefore, the full dataset is used (no outliers
removed), and no data transformations are used. The dataset is added to ArcGIS
Pro using the Excel to Table tool, displayed using the Display XY Data tool, and
then reprojected to “GCS WGS 1984”. The next step is to interpolate the static water
level across Detroit.

Kriging is an accepted method of estimating groundwater at sites where the water
level data are available but where there may be insufficient additional data necessary
for groundwater flow modeling [192]. Traditional kriging methods estimate a vari-
ogram that is considered the true variogram of the observed data without explicitly
considering uncertainty. Recently, a new form of kriging, Empirical Bayesian Kriging
(EBK), has been shown to perform better than other types of kriging methods [193].
It has been successfully used to evaluate inter-annual water-table evolution in Mexico
[194] and to quantify uncertainty in groundwater modeling [195]. The fundamental
advantage of EBK over classical kriging methods is that it creates a spectrum of var-
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Figure B.1: Histogram of the static water level (ft) in the Detroit region water wells.

iograms which account for the uncertainty introduced by estimating a variogram in
the first place [194]. Therefore, EBK is used to interpolate groundwater following the
methodology of Li et al. [194].

In ArcGIS Pro, the EBK tool is selected with the groundwater point data as the
input feature. The Z value field was set to groundwater depth. The output cell size
is set to the same size as the other raster datasets (30 m). The data transforma-
tion type is set to “None” because the data is normally distributed. There are three
semivariogram options when the data transformation is “None”: power, linear, and
thin plate spline. Power is selected because it is relatively fast, flexible, and balances
performance and accuracy. The search neighborhood parameters used a “Smooth Cir-
cular” search neighborhood with a smoothing factor of 0.85 and the default calculated
radius (21,399 m) [194]. ArcGIS Pro’s leave-one-out cross-validation is used to find
the remaining model parameters: maximum number of points in each local model,
the local model area overlap factor, and the number of simulated semivariograms.
Following the methodology of Li et al. [194], we calculate the mean error (ME), root
mean square error (RMSE), average standard error (ASE), mean standardized error
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Check if the following hold: The prediction variability is:
ASE ≈ RMSE and RMSE≈ 1 Correctly assessed
ASE > RMSE and RMSSE < 1 Overestimated
ASE < RMSE and RMSSE > 1 Underestimated

Table B.3: Groundwater well record summary statistics.

Inside 90% Interval 91.1
Inside 95% Interval 94.4
Mean 0.230
RMSE 16.7
MSE 0.00979
RMSSE 0.998
ASE 16.4

Table B.4: ArcGIS Pro cross-validation report for the optimal parameter values.

(MSE), and root mean square standardized error (RMSSE) for each subset of pa-
rameters. The different errors from cross-validation ware analyzed with the rules in
Table B.3 to assess the variability of predictions and evaluate the performance (under
or over-estimation) of the EBK model.

Cross-validation results found the optimal parameters to be: 50 for the maximum
number of points in each local model; 1 for the local model area overlap factor; and
1,000 for the number of simulated semivariograms. The interpolation errors suggest
the EBK model performs correctly and does not under or overestimate groundwater
(Table B.4). As a secondary check, Li et al. [194] reported an RMSE ≈ ASE ≈
13.16-14.43, and our values are close (16.4-16.7). Figure B.2 shows the predicted
versus true groundwater depths.

The EBK model with the optimal parameters is used to interpolate groundwater
across Detroit. The GA Layer to Rasters tool is used to convert the geostatistical
layer to a raster file for both the prediction and the prediction standard error. The
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output is set to be masked to the Detroit boundary shapefile and projected to “GCS
WGS 1984”. The interpolated groundwater along with the groundwater wells are
shown in Figure B.3. The interpolated groundwater map aligns with the literature.
Teimoori et al. [107] found that the depth to groundwater is deepest in the northwest
and gradually decreases as you move southeast. The standard error of prediction plot
shows the errors are higher in areas where well data does not exist (Figure B.4).

Figure B.2: The predicted versus true groundwater depth from the EBK model.

The final steps are to prepare the data for the correlation analysis. The Extract
Multi Values to Points tool is used to extract the values from the groundwater raster
layer at the GI locations and then it is converted to an Excel file using the Table to
Excel tool. Then the groundwater data is also converted into an Excel file using the
Table to Excel tool. Finally, these files are loaded into Python.
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Figure B.3: Detroit’s groundwater wells and interpolated groundwater depth (ft).

Figure B.4: The standard error of prediction of the interpolated groundwater depth.
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APPENDIX C

Gaussian Processes and Sensor Placement

Figure C.1: Approximation algorithm for maximizing mutual information using lazy
evaluation.
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Input Feature Minimum Mean ± Std Dev Maximum
groundwater depth 5.02 6.66±1.46 11.10
DA/SA ratio 1.10 5.00±3.43 13.00
longitude −83.26 −83.05±0.07 −82.94
soil media depth 0.30 0.45±0.29 1.00
imperviousness 39.00 64.23±16.93 98.00
decay constant α −0.503 −0.119±0.124 −0.006

Table C.1: The range of the input features for training GPog.

Input Feature Minimum Mean ± Std Dev Maximum
groundwater depth 2.44 7.63±2.01 14.63
DA/SA ratio N/A 4.00 N/A
longitude −83.29 −83.10±0.09 −82.91
soil media depth N/A 0.30 N/A
imperviousness 0.00 63.92±23.06 100.00

Table C.2: The range of the input features for predicting decay constant α across
Detroit.
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Figure C.2: The correlation between each sensor and the entire prediction space.
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